WO2017163623A1 - 燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法 - Google Patents

燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法 Download PDF

Info

Publication number
WO2017163623A1
WO2017163623A1 PCT/JP2017/003831 JP2017003831W WO2017163623A1 WO 2017163623 A1 WO2017163623 A1 WO 2017163623A1 JP 2017003831 W JP2017003831 W JP 2017003831W WO 2017163623 A1 WO2017163623 A1 WO 2017163623A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel gas
flow rate
fuel
supply
burner
Prior art date
Application number
PCT/JP2017/003831
Other languages
English (en)
French (fr)
Inventor
龍太 中村
浩市 松下
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP17769670.5A priority Critical patent/EP3406973B1/en
Priority to KR1020187024569A priority patent/KR102053563B1/ko
Priority to CN201780014120.9A priority patent/CN108700295B/zh
Priority to DK17769670.5T priority patent/DK3406973T3/da
Publication of WO2017163623A1 publication Critical patent/WO2017163623A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/02Use of propulsion power plant or units on vessels the vessels being steam-driven
    • B63H21/08Use of propulsion power plant or units on vessels the vessels being steam-driven relating to steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/005Gaseous fuel from a central source to a plurality of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/007Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/007Regulating fuel supply using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K2400/00Pretreatment and supply of gaseous fuel
    • F23K2400/20Supply line arrangements
    • F23K2400/201Control devices

Definitions

  • the present invention relates to a fuel supply apparatus, a marine boiler provided with the same, and a control method for the fuel supply apparatus.
  • liquefied natural gas stored in a liquefied natural gas tank (LNG tank) or boil-off gas generated in the LNG tank is combusted in a burner portion of the boiler to generate steam, and propeller is rotated by a steam turbine to obtain propulsive force.
  • LNG ship A liquefied natural gas carrier (LNG ship) is known (see, for example, Patent Document 1).
  • a fuel gas that does not contain sulfur such as liquefied natural gas or boil-off gas, can be used as a fuel for obtaining propulsive power, which is advantageous from the viewpoint of environmental protection.
  • the LNG ship described in Patent Literature 1 always generates a fuel with a constant flow rate in the boiler even when the load of the steam turbine is low so that a steam amount larger than the steam amount required by the steam turbine for the main engine is always generated. Gas is being supplied. And the LNG ship described in patent document 1 is returning the excess steam with respect to the load of a steam turbine from the dump steam pipe to the main condenser. Therefore, in the LNG ship described in Patent Document 1, the energy of the fuel gas for generating the steam returned from the dump steam pipe to the main condenser is wasted. In order to avoid such waste, it is necessary to reduce the supply amount of the fuel gas according to the load of the steam turbine.
  • the turndown ratio of the fuel gas supplied to the burner section (the ratio of the maximum flow rate at the rated output to the controllable minimum flow rate) is generally 7: 1. Degree. Further, the square root of the flow rate of the fuel gas is proportional to the pressure of the fuel gas. Therefore, if the flow rate of the fuel gas with a turndown ratio of 7: 1 is controlled by a single control valve between the minimum flow rate and the maximum flow rate, the pressure of the fuel gas when circulating the minimum flow rate will cause the maximum flow rate to burn. It becomes 1/49 (1/7 square) of the pressure at the time of supplying to a part.
  • the present invention has been made in view of such circumstances, and it is possible to achieve fuel from a low load region where the fuel gas supplied to the burner portion is low to a high load region where the fuel gas supplied to the burner portion is large. It is an object of the present invention to provide a fuel supply device, a marine boiler equipped with the fuel supply device, and a control method for the fuel supply device, which can maintain stable combustion using only fuel gas without wasting gas energy.
  • a fuel supply apparatus is a first fuel supply device that is used in a marine boiler and that supplies fuel gas to a burner section having a main nozzle and a sub nozzle and distributes the fuel gas supplied from a supply source.
  • a first adjustment valve that is provided in the two supply pipes and that adjusts the flow rate of the fuel gas guided from the first supply pipe to the main nozzle via the second supply pipe; and an opening degree of the first adjustment valve.
  • a control unit for controlling, the control unit is closed when the flow rate of the fuel gas supplied from the first supply pipe to the burner unit is less than a predetermined flow rate, from the first supply pipe Used for the burner
  • the flow rate of the fuel gas is the opening degree to control the first control valve so as to increase according to an increase of the flow rate of the fuel gas when the the predetermined flow rate or more.
  • the first adjustment valve in the low load region where the flow rate of the fuel gas supplied from the first supply pipe to the burner portion is less than the predetermined flow rate, the first adjustment valve is in the closed state.
  • the entire amount of fuel gas supplied from the supply pipe to the burner portion is guided from the third supply pipe to the sub nozzle.
  • the first regulating valve since the first regulating valve is in the closed state, the pressure of the fuel gas decreases in proportion to the square root of the flow rate of the fuel gas.
  • the flow rate range in the low load region is limited to a certain range, it is possible to suppress fuel gas pressure fluctuations with respect to flow rate fluctuations.
  • the increase in the flow rate of the fuel gas As a result, the opening of the first regulating valve increases. Decreasing the pressure of the fuel gas required to supply a desired flow rate of fuel gas to the burner unit by increasing the opening of the first regulating valve and increasing the cross-sectional area of the burner unit. Can do.
  • the fuel gas extends from the low load region where the fuel gas supplied to the burner unit is low to the high load region where the fuel gas supplied to the burner unit is large.
  • stable combustion using only fuel gas can be maintained without wasting energy.
  • the fuel supply apparatus includes a second adjustment valve that adjusts a flow rate of the fuel gas supplied from the supply source to the first supply pipe, and the control unit includes a second adjustment valve
  • the structure which controls an opening degree may be sufficient. According to this configuration, the flow rate of the fuel gas supplied from the supply source to the first supply pipe can be adjusted to an appropriate amount by the second adjustment valve.
  • the control unit opens the second adjustment valve.
  • the first adjustment valve may be controlled so that the opening degree of the first adjustment valve increases in accordance with the increase of the first adjustment valve.
  • a marine boiler according to an aspect of the present invention includes the burner portion and the fuel supply device described above. Since the fuel supply device described above is provided, the energy of the fuel gas is wasted from the low load region where the fuel gas supplied to the burner unit is low to the high load region where the fuel gas supplied to the burner unit is large. Therefore, stable combustion using only the fuel gas can be maintained.
  • a control method for a fuel supply apparatus is a control method for a fuel supply apparatus that is used in a marine boiler and that supplies fuel gas to a burner section having a main nozzle and a sub nozzle.
  • Has a regulating valve that adjusts the ratio between the flow rate of the fuel gas guided to the main nozzle and the flow rate of the fuel gas guided to the sub nozzle, and the flow rate of the fuel gas supplied to the burner section is
  • the fuel gas is supplied from the low load region where the fuel gas supplied to the burner unit is low to the high load region where the fuel gas supplied to the burner unit is large. Stable combustion using only fuel gas can be maintained without wasting energy. In this case, it is not necessary to set the pressure of the fuel gas on the supply source side too large.
  • the present invention from the low load region where the fuel gas supplied to the burner unit is low to the high load region where the fuel gas supplied to the burner unit is high, only the fuel gas is used without wasting energy of the fuel gas. It is possible to provide a fuel supply device capable of maintaining stable combustion by the above, a marine boiler equipped with the fuel supply device, and a control method for the fuel supply device.
  • FIG. 1 It is a lineblock diagram showing a marine propulsion plant using a marine boiler. It is a block diagram of the fuel supply apparatus shown in FIG. It is a figure which shows the relationship between the flow volume of fuel gas, and the opening degree of a control valve and a flow regulating valve. It is a figure which shows the relationship between the flow volume of fuel gas, and the load of a main nozzle and a pilot nozzle. It is a figure which shows the relationship between the flow volume of fuel gas, and the pressure of fuel gas.
  • a marine propulsion plant 300 installed in the ship shown in FIG. 1 is connected to a marine boiler 200 that generates steam, a propulsion turbine unit 310 that is driven by the steam generated by the marine boiler 200, and a propulsion turbine unit 310. And a propulsive force generator 320 that obtains a propulsive force to propel the ship.
  • a marine boiler 200 that generates steam
  • a propulsion turbine unit 310 that is driven by the steam generated by the marine boiler 200
  • a propulsion turbine unit 310 and a propulsion turbine unit 310.
  • a propulsive force generator 320 that obtains a propulsive force to propel the ship.
  • the marine boiler 200 includes a main furnace 210, a burner unit 220, a reheat furnace 230, a reheater 240, and a fuel supply device 100.
  • a main furnace 210 of the marine boiler 200 includes a hollow furnace 211 having a substantially rectangular parallelepiped shape, a front bank tube 212 through which water passes, a superheater 213 having a primary superheater pipe 213a and a secondary superheater pipe 213b, and evaporation.
  • a tube group 214, a water drum 215, and a steam drum 216 are provided.
  • the primary superheater tube 213a is disposed on the furnace 211 side, and the secondary superheater tube 213b is disposed on the evaporation tube group 214 side.
  • the primary superheater pipe 213a and the secondary superheater pipe 213b are connected so as to form a flow path through which superheated steam flows.
  • the end of the primary superheater tube 213a on the furnace 211 side is configured to receive saturated steam generated by the steam drum 216.
  • the end of the secondary superheater pipe 213b on the evaporation pipe group 214 side is connected to one end of the superheater outlet pipe L1.
  • the other end of the superheater outlet pipe L1 is connected to the branch pipe L2 and the branch pipe L3 of the propulsion turbine section 310 at the branch position P1.
  • Burner unit 220 is a device that burns fuel gas supplied from fuel supply device 100.
  • the combustion of the fuel gas by the burner unit 220 is performed inside the furnace 211.
  • the exhaust gas generated by the combustion of the fuel gas is guided from the furnace 211 to the reheating furnace 230 through the superheater 213 and the evaporation tube group 214. Details of the fuel supply device 100 will be described later.
  • the reheating furnace 230 is an apparatus that is provided downstream of the evaporation pipe group 214 of the main furnace 210 in the flow direction of the exhaust gas and is formed in a cylindrical shape so as to extend in the vertical direction (vertical direction).
  • the reheating furnace 230 includes a reheating burner 231 that reheats the exhaust gas guided from the furnace 211.
  • the reheat burner 231 is supplied with boil-off gas (fuel gas) from an LNG tank 400 described later via a fuel pipe L4.
  • the amount of fuel supplied to the reheat burner 231 is adjusted by the flow rate adjustment valve 232.
  • the exhaust gas generated by the combustion of fuel by the reheat burner 231 and the exhaust gas from the furnace 211 reheated by the reheat burner 231 are guided to the reheater 240.
  • the reheater 240 is a device that reheats the steam that has worked in the high pressure turbine 311 of the propulsion turbine unit 310 with the heat of the exhaust gas and supplies the steam to the intermediate pressure turbine 312 of the propulsion turbine unit 310.
  • the reheater 240 reheats the steam guided from the propulsion turbine unit 310 by the heat of the exhaust gas guided to the reheater 240.
  • the exhaust gas that has exchanged heat with steam in the reheater 240 is discharged into the atmosphere.
  • the propulsion turbine unit 310 includes a high pressure turbine 311, an intermediate pressure turbine 312, a low pressure turbine 313, a reverse turbine 314, a condenser 315, an on-off valve 316 disposed in the branch pipe L2, and a branch pipe L3. And an on-off valve 317 disposed.
  • the high-pressure turbine 311 obtains rotational power from superheated steam supplied from the superheater outlet pipe L1 through the branch pipe L2.
  • the steam that has worked in the high-pressure turbine 311 is guided to the upper end of the reheater 240.
  • the intermediate pressure turbine 312 obtains rotational power from the reheated steam reheated by the reheater 240.
  • the steam that has worked in the intermediate pressure turbine 312 is guided to the low pressure turbine 313.
  • the rotational power obtained by the high-pressure turbine 311 and the intermediate-pressure turbine 312 is transmitted to the propulsion force generator 320 connected thereto.
  • the low-pressure turbine 313 obtains rotational power from the steam guided from the intermediate-pressure turbine 312. Rotational power obtained by the intermediate pressure turbine 312 is transmitted to a propulsion force generator 320 connected to the intermediate pressure turbine 312. Steam that has worked in the low-pressure turbine 313 is guided to the condenser 315.
  • the reverse turbine 314 obtains rotational power from the superheated steam supplied from the superheater outlet pipe L1 via the branch pipe L3. The steam that has worked in the reverse turbine 314 is guided to the condenser 315.
  • the condenser 315 condenses the steam guided from the low-pressure turbine 313 and the reverse turbine 314 into water, and supplies the water to the steam drum 216 of the main furnace 210.
  • the rotational power obtained by the reverse turbine 314 is power in the opposite direction to the rotational power obtained by the high-pressure turbine 311, the intermediate-pressure turbine 312, and the low-pressure turbine 313.
  • the high-pressure turbine 311, the intermediate-pressure turbine 312, and the low-pressure turbine 313 transmit the rotational power that moves the ship forward to the propulsion force generator 320.
  • the reverse turbine 314 transmits rotational power for moving the ship backward to the propulsion force generator 320.
  • the on-off valve 316 and the on-off valve 317 are valves whose on / off state is switched by a control device (not shown) of the marine propulsion plant 300.
  • the control device of the marine propulsion plant 300 guides superheated steam from the superheater outlet pipe L1 to the high-pressure turbine 311 through the branch pipe L2 by opening the on-off valve 316 and closing the on-off valve 317.
  • the control device of the marine propulsion plant 300 closes the on-off valve 316 and opens the on-off valve 317, whereby superheated steam is transferred from the superheater outlet pipe L1 to the reverse turbine 314 via the branch pipe L3. Lead.
  • the propulsion force generation unit 320 includes a speed reducer 321 that decelerates the rotational speed of the rotational power transmitted from the propulsion turbine unit 310, a propeller shaft 322 coupled to the speed reducer 321, and a propeller 323 coupled to the propeller shaft 322. And have.
  • the propulsive force generating unit 320 generates propulsive force that rotates the propeller 323 by the rotational power transmitted from the high-pressure turbine 311, the intermediate-pressure turbine 312, and the low-pressure turbine 313 to advance the ship. Further, the propulsion force generation unit 320 generates propulsion force that rotates the propeller 323 with the rotational power transmitted from the reverse turbine 314 to reverse the ship.
  • the fuel supply apparatus 100 includes a compressor 10 that compresses fuel gas supplied from an LNG tank (supply source) 400, a heater 20 that heats the fuel gas compressed by the compressor 10, and A flow meter 30 that measures the flow rate of the fuel gas flowing through the fuel gas supply path 101, and a flow rate adjustment valve (second adjustment valve) that adjusts the flow rate of the fuel gas guided from the fuel gas supply path 101 to the fuel gas supply header 102 40, a first fuel supply unit 50, a second fuel supply unit 60, a third fuel supply unit 70, and a control unit 90.
  • LNG tank supply source
  • a heater 20 that heats the fuel gas compressed by the compressor 10
  • a flow meter 30 that measures the flow rate of the fuel gas flowing through the fuel gas supply path 101
  • a flow rate adjustment valve second adjustment valve
  • the fuel supply device 100 serves as a supply system for the fuel gas supplied from the LNG tank 400, a fuel gas supply path 101 connected to the LNG tank 400, and a fuel gas supply path 101 connected to the fuel gas supply path 101 to supply from the LNG tank 400.
  • a fuel gas supply header 102 first supply pipe
  • the entire amount of fuel gas supplied to the fuel gas supply path 101 is supplied to the fuel gas supply header 102, but other modes may be used.
  • the marine propulsion plant 300 includes a plurality of marine boilers 200
  • a fuel supply path for distributing the fuel gas supplied to the fuel gas supply path 101 to the plurality of marine boilers 200 may be separately provided. Good.
  • the fuel supply apparatus 100 includes a main nozzle supply pipe (second supply pipe) 54, a main nozzle supply pipe (second supply pipe) 64, and a main nozzle supply pipe (first) connected to the fuel gas supply path 101, respectively. 2 supply piping) 74.
  • the fuel supply apparatus 100 includes a pilot nozzle supply pipe (third supply pipe) 55, a pilot nozzle supply pipe (third supply pipe) 65, and a pilot nozzle supply pipe (first) connected to the fuel gas supply path 101, respectively. 3 supply piping) 75.
  • the burner unit 220 included in the marine boiler 200 includes a first burner 221, a second burner 222, and a third burner 223.
  • the first burner 221 includes a main nozzle 221 a connected to the main nozzle supply pipe 54 and a pilot nozzle 221 b connected to the pilot nozzle supply pipe 55.
  • the second burner 222 has a main nozzle 222 a connected to the main nozzle supply pipe 64 and a pilot nozzle 222 b connected to the pilot nozzle supply pipe 65.
  • the third burner 223 includes a main nozzle 223 a connected to the main nozzle supply pipe 74 and a pilot nozzle 223 b connected to the pilot nozzle supply pipe 75.
  • the fuel gas supplied to the compressor 10 is a boil-off gas generated in the LNG tank 400 that liquefies and stores natural gas, which is a hydrocarbon-based combustible gas.
  • the boil-off gas is a gas generated by vaporizing liquefied natural gas stored in the LNG tank 400 by heat input from the outside.
  • a gas obtained by forcibly vaporizing liquefied natural gas with a heat source may be used as the fuel gas supplied to the compressor 10.
  • natural gas mainly composed of methane is used as the fuel gas, but other modes may be used.
  • other hydrocarbon combustible gases such as ethylene may be used.
  • hydrocarbon fuel gas not containing sulfur is supplied to the burner unit 220 from the viewpoint of environmental protection.
  • the compressor 10 is a device that pressurizes the fuel gas supplied from the LNG tank 400.
  • the compressor 10 pressurizes the fuel gas to about 80 kPa and supplies it to the fuel gas supply path 101. Further, the temperature of the fuel gas rises due to pressurization by the compressor 10.
  • the temperature of the fuel gas is, for example, about ⁇ 90 ° C. before being pressurized by the compressor 10 and in the range of ⁇ 80 ° C. or more and ⁇ 70 ° C. or less after the pressurization.
  • the heater 20 is a device that heats the fuel gas pressurized by the compressor 10.
  • the heater 20 is different from the controller 90 so that the temperature of the fuel gas detected by a temperature sensor (not shown) provided on the downstream side of the heater 20 becomes a preset temperature (for example, 30 ° C.). It operates according to a control command from a control device (not shown).
  • the flow meter 30 is a device that measures the flow rate of the fuel gas supplied from the fuel gas supply path 101 to the fuel gas supply header 102.
  • the flow meter 30 outputs a measurement signal indicating the measured flow rate of the fuel gas to the control unit 90 via a signal line (not shown).
  • the flow rate adjustment valve 40 is a valve that adjusts the flow rate of the fuel gas supplied from the LNG tank 400 to the fuel gas supply header 102.
  • the opening degree of the flow rate adjustment valve 40 is determined by a control signal transmitted from the control unit 90 via a signal line (not shown) so that the flow rate measured by the flow meter 30 matches the flow rate set by the control unit 90. Be controlled.
  • the first fuel supply unit 50, the second fuel supply unit 60, and the third fuel supply unit 70 are provided in the fuel gas supply header 102, respectively.
  • the first fuel supply unit 50 includes a flow rate of fuel gas supplied from the fuel gas supply header 102 via the main nozzle supply pipe 54 to the main nozzle 221 a and a pilot nozzle from the fuel gas supply header 102 via the pilot nozzle supply pipe 55. It is a device that adjusts the ratio of the flow rate of the fuel gas supplied to 221b.
  • the second fuel supply unit 60 has a flow rate of the fuel gas supplied from the fuel gas supply header 102 to the main nozzle 222a via the main nozzle supply pipe 64 and the fuel gas supply header 102 via the pilot nozzle supply pipe 65.
  • the ratio of the flow rate of the fuel gas supplied to the pilot nozzle 222b is adjusted.
  • the third fuel supply unit 70 has a flow rate of the fuel gas supplied from the fuel gas supply header 102 to the main nozzle 223a via the main nozzle supply pipe 74 and the fuel gas supply header 102 via the pilot nozzle supply pipe 75.
  • the ratio of the flow rate of the fuel gas supplied to the pilot nozzle 223b is adjusted.
  • the first fuel supply unit 50 includes a shutoff valve 51 and a shutoff valve 52 provided in the fuel gas supply header 102, and a main nozzle from the fuel gas supply header 102 provided in the main nozzle supply pipe 54 via the main nozzle supply pipe 54. And a control valve (first adjustment valve) 53 that adjusts the flow rate of the fuel gas guided to 221a.
  • the shut-off valve 51 and the shut-off valve 52 are opened by the control unit 90 when the fuel gas is burned by the burner unit 220, and are closed by the control unit 90 when the fuel gas is not burned by the burner unit 220. State.
  • shutoff valve 61, shutoff valve 62, and control valve 63 provided in the second fuel supply unit 60 are the same as the shutoff valve 51, shutoff valve 52, and control valve 53 provided in the first fuel supply unit 50, respectively.
  • the description below will be omitted.
  • the shutoff valve 71, shutoff valve 72, and control valve 73 provided in the third fuel supply unit 70 are the same as the shutoff valve 51, shutoff valve 52, and control valve 53 provided in the first fuel supply unit 50, respectively. Therefore, the description below is omitted.
  • the control unit 90 is a device that controls each unit included in the fuel supply device 100.
  • the control unit 90 controls the opening of the control valve 53, the control valve 63, and the control valve 73, and the opening of the flow rate adjustment valve 40, respectively. Further, the control unit 90 controls the open / close states of the shutoff valve 51, the shutoff valve 52, the shutoff valve 61, the shutoff valve 62, the shutoff valve 71, and the shutoff valve 72.
  • the control unit 90 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and a computer-readable storage medium.
  • a CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing. As a result, various functions are realized.
  • the flow rate [%] of the fuel gas shown on the horizontal axis indicates the first fuel supply unit 50 when each of the control valve 53 and the flow rate adjustment valve 40 of the present embodiment is maintained at the maximum opening.
  • the flow rate of the fuel gas supplied from the first to the first burner 221 is 100%, and the ratio of the actual fuel gas flow rate to the 100% fuel gas flow rate is shown.
  • the lower limit value Fr1 of the flow rate of the fuel gas is set to about 15% because the fuel gas turndown ratio of the present embodiment (the maximum flow rate at the rated output and the controllable minimum flow rate). This is because the ratio is about 7: 1.
  • the fuel supply device 100 of the present embodiment supplies the fuel gas substantially equally to each of the first fuel supply unit 50, the second fuel supply unit 60, and the third fuel supply unit 70 by the fuel gas supply header 102. Is. Accordingly, the flow rate of the fuel gas supplied to each of the first fuel supply unit 50, the second fuel supply unit 60, and the third fuel supply unit 70 is 1/3 of the flow rate of the fuel gas measured by the flow meter 30. It becomes.
  • the shutoff valve of any one of the first fuel supply unit 50, the second fuel supply unit 60, and the third fuel supply unit 70 is closed, and the shutoff valves of the other fuel supply units are opened.
  • the flow rate of the fuel gas supplied to each of the open fuel supply units is a value half that of the flow rate of the fuel gas measured by the flow meter 30.
  • the shutoff valve of any one of the first fuel supply unit 50, the second fuel supply unit 60, and the third fuel supply unit 70 is opened, and the shutoff valves of the other fuel supply units are closed.
  • the flow rate of the fuel gas supplied to the fuel supply unit in the open state is the same as the flow rate of the fuel gas measured by the flow meter 30.
  • the controller 90 controls the opening degree of the flow rate adjustment valve 40 as indicated by a broken line in FIG. As shown in FIG. 3, when the controller 90 gradually increases the opening degree of the flow regulating valve 40, the flow rate of the fuel gas gradually increases from the lower limit value Fr1 toward the upper limit value Fr3 (100% flow rate). To do. Moreover, the control part 90 controls the opening degree of the control valve 53 as shown by a solid line in FIG. As shown in FIG. 3, the control unit 90 controls when the flow rate of the fuel gas supplied from the fuel gas supply header 102 to the first burner 221 is a low load region where the flow rate is Fr1 or more and less than Fr2 (predetermined flow rate). The valve 53 is controlled to be closed.
  • control unit 90 increases the opening according to the increase in the flow rate of the fuel gas when the flow rate of the fuel gas supplied from the fuel gas supply header 102 to the first burner 221 is a high load region where the flow rate is Fr2 or more.
  • the control valve 53 is controlled to do so.
  • the load [%] indicated by the vertical axis in FIG. 4 represents the load (output) of the first burner 221 when each of the control valve 53 and the flow rate adjustment valve 40 is maintained at the maximum opening (when the maximum load is reached).
  • the actual load ratio of the main nozzle 221a and the pilot nozzle 221b to 100% load is shown as 100%.
  • the control unit 90 controls the control valve 53 so that the opening degree of the control valve 53 increases as the opening degree of the flow rate adjustment valve 40 increases.
  • the opening degree of the control valve 53 increases, the ratio of the load of the main nozzle 221a to the load of the pilot nozzle 221b gradually increases.
  • the ratio of the load of the pilot nozzle 221b and the load of the main nozzle 221a becomes equal.
  • the load on the pilot nozzle 221b is about 35%, while the load on the main nozzle 221a is about 65%.
  • the fuel gas flow rate ratio between the pilot nozzle 221b and the main nozzle 221a is 65:35, and the load of the pilot nozzle 221b and the load of the main nozzle 221a are summed.
  • the value is 100%.
  • the fuel gas pressure [kPa] indicated by the vertical axis in FIG. 5 indicates the fuel gas pressure in the fuel gas supply header 102.
  • the fuel gas supplied to the fuel gas supply header 102 is depressurized from the fuel gas supply path 101 through the flow rate adjustment valve 40.
  • the pressure of the fuel gas of the present embodiment is a low load region where the flow rate of the fuel gas is Fr1 or more and less than Fr2 (predetermined flow rate), and the flow rate of the fuel gas is Fr2 or more.
  • the pressure of the fuel gas gradually increases as the flow rate of the fuel gas increases.
  • the amount of increase in the pressure of the fuel gas with respect to the increase in the flow rate of the fuel gas is smaller than that in the low load region.
  • the control unit 90 controls the control valve 53 so that the opening degree of the control valve 53 increases as the opening degree of the flow rate adjustment valve 40 increases.
  • the opening degree of the control valve 53 By increasing the opening degree of the control valve 53, the amount of increase in fuel gas pressure required to increase the unit flow rate is suppressed.
  • the comparative example indicated by the broken line in FIG. 5 is an example in which the control unit 90 maintains the control valve 53 in the closed state even in the high load region.
  • the increase amount of the pressure of the fuel gas with respect to the increase of the flow rate of the fuel gas is the same as that in the low load region even in the high load region.
  • the pressure of the fuel gas required to make the flow rate of the fuel gas a desired flow rate in the high load region becomes excessively larger than that in the present embodiment. .
  • Pmin which is the value of the pressure of the fuel gas required when the flow rate of the fuel gas reaches the lower limit value Fr1
  • the fuel gas supply path 101 in the comparative example is used. This means that the pressure of the fuel gas supplied to the tank needs to be excessively increased. That is, in the comparative example, in order to excessively increase the pressure of the fuel gas supplied to the fuel gas supply path 101, it is necessary to provide the compressor 10 having high pressurization performance.
  • a specific example is given and the pressure of the fuel gas required by this embodiment and the pressure of the fuel gas required by a comparative example are demonstrated.
  • the fuel gas flow rates of the pilot nozzle 221b and the main nozzle 221a are 300 kg / h and 700 kg / h, respectively, and the total flow rate is 1000 kg / h. It shall be.
  • the fuel gas flow rate ratio of the pilot nozzle 221b and the main nozzle 221a is 70:30.
  • the fuel gas supply The pressure of the fuel gas supplied to the header 102 needs to be at least the pressure Pr1 [kPa] expressed by the equation (1).
  • 1.5 [kPa] is the minimum pressure of the combustion gas required for the first burner 221 to maintain the combustion of the fuel gas without misfiring.
  • the main nozzle 221a since the flow rate of the fuel gas from the main nozzle 221a when the flow rate of the fuel gas is 100% is 700 kg / h, the main nozzle 221a has a flow rate of 300 kg / h (the maximum flow rate of the pilot nozzle 221b) to 700 kg / h. Adjust the fuel gas flow rate within the range.
  • the pressure of the fuel gas supplied to the fuel gas supply header 102 is at least a pressure Pr2 expressed by the equation (2). It is necessary to set [kPa].
  • the fuel gas flow ratio of the pilot nozzle 221b and the main nozzle 221a 70:30
  • the comparative example is an example in which the control valve 53 is maintained in a closed state.
  • the pressure of the fuel gas supplied to the fuel gas supply header 102 is at least a pressure Pr3 expressed by the equation (3). It is necessary to set [kPa].
  • the turndown ratio ratio of the maximum flow rate at the rated output and the controllable minimum flow rate
  • the pressure of the fuel gas supplied to the fuel gas supply header 102 can be set high. it can. That is, the value of the minimum flow rate with respect to the maximum flow rate at the rated output can be set to a smaller value.
  • the control valve 53 is closed in a low load region where the flow rate of the fuel gas supplied from the fuel gas supply header 102 to the first burner 221 is less than Fr2 (predetermined flow rate).
  • the fuel gas supply header 102 supplies the first burner 221 with the entire amount of fuel gas, which is led from the pilot nozzle supply pipe 55 to the pilot nozzle 221b.
  • the pressure of the fuel gas decreases in proportion to the square root of the flow rate of the fuel gas.
  • the flow rate range in the low load region is limited to a certain range that is greater than or equal to the lower limit value Fr1 and less than Fr2, the pressure fluctuation of the fuel gas with respect to the flow rate variation can be suppressed.
  • the opening of the control valve 53 increases. Necessary for supplying a desired flow rate of fuel gas to the first burner 221 by increasing the opening of the control valve 53 and increasing the flow passage cross-sectional area of the first burner 221 (opening area to the furnace 211). It is possible to reduce the pressure of the fuel gas.
  • the fuel supply device 100 of the present embodiment from the low load region where the fuel gas supplied to the first burner 221 is small to the high load region where the fuel gas supplied to the first burner 221 is large.
  • stable combustion using only the fuel gas can be maintained without wasting the energy of the fuel gas.
  • the turndown ratio with respect to the pressure of the supplied fuel gas can be set high, and the value of the minimum flow rate with respect to the maximum flow rate at the rated output can be set to a smaller value.
  • the fuel supply device 100 of the present embodiment includes a flow rate adjustment valve 40 that adjusts the flow rate of the fuel gas supplied from the LNG tank 400 to the fuel gas supply header 102, and the control unit 90 determines the opening degree of the flow rate adjustment valve 40. Control. By doing so, the flow rate of the fuel gas supplied from the LNG tank 400 to the fuel gas supply header 102 can be adjusted to an appropriate amount by the flow rate adjustment valve 40.
  • the control unit 90 performs control according to the increase in the opening degree of the flow rate adjustment valve 40.
  • the control valve 53 is controlled so that the opening degree of the valve 53 increases.
  • the fuel gas supplied to the first burner 221 in the high load region where the flow rate of the fuel gas supplied from the fuel gas supply header 102 to the first burner 221 is Fr2 (predetermined flow rate) or more.
  • the flow path cross-sectional area of the first burner 221 can be increased, and the pressure of the fuel gas required to supply a desired flow rate of fuel gas to the first burner 221 can be reduced.
  • the fuel supply apparatus 100 of the present embodiment includes a compressor 10 that pressurizes the fuel gas supplied from the LNG tank 400 and a heater 20 that heats the fuel gas pressurized by the compressor 10. By doing so, the fuel gas supplied from the LNG tank 400 can be appropriately pressurized and heated and supplied to the first burner 221.
  • the control valve 53 is closed when the flow rate of the fuel gas supplied from the fuel gas supply header 102 to the first burner 221 is less than Fr2 (predetermined flow rate).
  • Fr2 predetermined flow rate
  • the opening degree increases in accordance with the increase in the fuel gas flow rate.
  • the control method of the fuel supply device 100 of the present embodiment from the low load region where the fuel gas supplied to the first burner 221 is low to the high load region where the fuel gas supplied to the first burner 221 is large, Stable combustion using only the fuel gas can be maintained without wasting energy of the fuel gas. In this case, it is not necessary to set the pressure of the fuel gas on the LNG tank 400 side too large.
  • the burner unit 220 includes the three burners of the first burner 221, the second burner 222, and the third burner 223, and the fuel supply device 100 has the first fuel supply unit 50, the second fuel supply unit 60, and the third burner.
  • the fuel supply unit 70 includes the three fuel supply units, other modes may be used.
  • the burner unit 220 may include only the first burner 221, and the fuel supply device 100 may include only the first fuel supply unit 50.
  • the burner unit 220 may include four or more burners, and the fuel supply device 100 may include the same number of fuel supply units as the number of burners.
  • the marine boiler 200 includes the reheat furnace 230 and the reheater 240, but may be a marine boiler that does not include these.
  • the above-described fuel supply apparatus 100 can be applied to a marine boiler that does not have the reheating furnace 230 and the reheater 240.
  • Second fuel supply unit 40 Flow control valve (second control valve) 50 1st fuel supply part 53 Control valve (1st adjustment valve) 54 Main nozzle supply pipe (second supply pipe) 55 Pilot nozzle supply piping (third supply piping) 60 Second fuel supply unit 70 Third fuel supply unit 90 Control unit 100 Fuel supply device 101 Fuel gas supply path 102 Fuel gas supply header (first supply pipe) 200 Marine Boiler 220 Burner 221 First Burner 221a Main Nozzle 221b Pilot Nozzle (Sub Nozzle) 222 Second burner 222a Main nozzle 222b Pilot nozzle (sub nozzle) 223 Third burner 223a Main nozzle 223b Pilot nozzle (sub nozzle) 400 LNG tank (source)

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

LNGタンク(400)から供給される燃料ガスを流通させる燃料ガス供給ヘッダ(102)と、メインノズル供給配管(54)と、パイロットノズル供給配管(55)と、メインノズル供給配管(54)に設けられる制御弁(53)と、制御弁(53)の開度を制御する制御部(90)と、を備え、制御部(90)が、燃料ガス供給ヘッダ(102)から第1バーナ(221)に供給される燃料ガスの流量が所定流量未満である場合に閉状態とし、燃料ガス供給ヘッダ(102)から第1バーナ(221)に供給される燃料ガスの流量が所定流量以上である場合に燃料ガスの流量の増加に応じて開度が増加するよう制御弁(53)を制御する燃料供給装置(100)を提供する。

Description

燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法
 本発明は、燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法に関するものである。
 近年、環境保護の観点から船舶燃料(特に重油)に含まれる硫黄分に対する規制が強まっている。重油に替えて硫黄分の低い軽油を用いることも可能であるが、高額であるため運航採算を大きく悪化させてしまう。
 一方、液化天然ガスタンク(LNGタンク)に貯蔵された液化天然ガスあるいはLNGタンクで発生したボイルオフガスをボイラのバーナ部で燃焼させて蒸気を発生させ、蒸気タービンによりプロペラを回転させて推進力を得る液化天然ガス運搬船(LNG船)が知られている(例えば、特許文献1参照。)。LNG船においては、液化天然ガスあるいはボイルオフガスという硫黄分を含まない燃料ガスを、推進力を得るための燃料として使用可能であるため、環境保護の観点から有利である。
特開2014-118047号公報
 しかしながら、特許文献1に記載されるLNG船は、主機用蒸気タービンが要求する蒸気量より多い蒸気量を常に生成するように、蒸気タービンの負荷が低い場合であってもボイラに一定流量の燃料ガスを供給している。そして、特許文献1に記載されるLNG船は、蒸気タービンの負荷に対して過剰となる蒸気をダンプ蒸気管から主復水器に戻している。そのため、特許文献1に記載されるLNG船は、ダンプ蒸気管から主復水器に戻される蒸気を生成する分の燃料ガスのエネルギーが無駄となっていた。このような無駄を避けるためには、蒸気タービンの負荷に応じて燃料ガスの供給量を減らす必要がある。
 ここで、特許文献1に記載されるようなLNG船において、バーナ部に供給する燃料ガスのターンダウン比(定格出力時の最大流量と制御可能な最小流量の比)は一般的に7:1程度である。また、燃料ガスの流量の二乗根と燃料ガスの圧力とが比例関係となる。そのため、ターンダウン比7:1の燃料ガスの流量を最小流量と最大流量との間で単一の制御弁により制御しようとすると、最小流量を流通させる際の燃料ガスの圧力が最大流量をバーナ部へ供給する際の圧力の1/49(1/7の二乗)となる。そのため、単一の制御弁の上流側の燃料ガスの圧力を過大に大きく設定しないと、最小流量を流通させる際の燃料ガスの圧力が低くなりすぎて失火等により安定燃焼を維持することができない。
 このように、蒸気タービンが低負荷で運転される場合、すなわちバーナ部に供給される燃料ガスが最小流量となる場合に、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することはできなかった。
 本発明は、このような事情に鑑みてなされたものであって、バーナ部に供給される燃料ガスが少ない低負荷領域からバーナ部に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することを可能とした燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 すなわち、本発明の一態様の燃料供給装置は、舶用ボイラに用いられるとともに主ノズルと副ノズルとを有するバーナ部に燃料ガスを供給し、供給源から供給される前記燃料ガスを流通させる第1供給配管と、前記第1供給配管から前記主ノズルへ前記燃料ガスを供給する第2供給配管と、前記第1供給配管から前記副ノズルへ前記燃料ガスを供給する第3供給配管と、前記第2供給配管に設けられ、前記第1供給配管から前記第2供給配管を介して前記主ノズルに導かれる前記燃料ガスの流量を調整する第1調整弁と、前記第1調整弁の開度を制御する制御部と、を備え、前記制御部が、前記第1供給配管から前記バーナ部に供給される前記燃料ガスの流量が所定流量未満である場合に閉状態とし、前記第1供給配管から前記バーナ部に供給される前記燃料ガスの流量が前記所定流量以上である場合に前記燃料ガスの流量の増加に応じて開度が増加するよう前記第1調整弁を制御する。
 本発明の一態様の燃料供給装置によれば、第1供給配管からバーナ部に供給される燃料ガスの流量が所定流量未満となる低負荷領域においては、第1調整弁が閉状態となり第1供給配管からバーナ部に供給される燃料ガスの全量が第3供給配管から副ノズルに導かれる。この低負荷領域においては、第1調整弁が閉状態であるため、燃料ガスの流量の二乗根に比例して燃料ガスの圧力が低下する。しかしながら、低負荷領域の流量範囲は一定範囲内に限られるため、流量の変動に対する燃料ガスの圧力変動を抑制することができる。
 また、本発明の一態様の燃料供給装置によれば、第1供給配管からバーナ部に供給される燃料ガスの流量が所定流量以上となる高負荷領域においては、燃料ガスの流量の増加に応じて第1調整弁の開度が増加する。第1調整弁の開度を増加させてバーナ部の流路断面積を増大させることにより、所望の流量の燃料ガスをバーナ部へ供給するのに必要とされる燃料ガスの圧力を低減することができる。
 このように、本発明の一態様の燃料供給装置によれば、バーナ部に供給される燃料ガスが少ない低負荷領域からバーナ部に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することができる。この場合において、供給源側の燃料ガスの圧力を過大に大きく設定する必要がない。
 本発明の一態様の燃料供給装置は、前記供給源から前記第1供給配管に供給される前記燃料ガスの流量を調整する第2調整弁を備え、前記制御部が、前記第2調整弁の開度を制御する構成であってもよい。
 本構成によれば、前記供給源から前記第1供給配管に供給される前記燃料ガスの流量を第2調整弁により適量に調整することができる。
 上記構成の燃料供給装置においては、前記制御部が、前記第1供給配管から前記バーナ部に供給される前記燃料ガスの流量が前記所定流量以上である場合に、前記第2調整弁の開度の増加に応じて前記第1調整弁の開度が増加するよう前記第1調整弁を制御してもよい。
 このようにすることで、第1供給配管からバーナ部に供給される燃料ガスの流量が所定流量以上となる高負荷領域においては、バーナ部に供給される燃料ガスの増加に応じてバーナ部の流路断面積を増大させ、所望の流量の燃料ガスをバーナ部へ供給するのに必要とされる燃料ガスの圧力を低減することができる。
 本発明の一態様の舶用ボイラは、前記バーナ部と、上述の燃料供給装置と、を備える。
 上述の燃料供給装置を備えているため、バーナ部に供給される燃料ガスが少ない低負荷領域からバーナ部に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することができる。
 本発明の一態様の燃料供給装置の制御方法は、舶用ボイラに用いられるとともに主ノズルと副ノズルとを有するバーナ部に燃料ガスを供給する燃料供給装置の制御方法であって、前記燃料供給装置が、前記主ノズルに導かれる前記燃料ガスの流量と前記副ノズルに導かれる前記燃料ガスの流量との比率を調整する調整弁を有し、前記バーナ部に供給される前記燃料ガスの流量が所定流量未満である場合に前記調整弁を閉状態とする第1制御工程と、前記バーナ部に供給される前記燃料ガスの流量が前記所定流量以上である場合に前記燃料ガスの流量の増加に応じて開度が増加するよう前記調整弁を制御する第2制御工程と、を備える。
 本発明の一態様の燃料供給装置の制御方法によれば、バーナ部に供給される燃料ガスが少ない低負荷領域からバーナ部に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することができる。この場合において、供給源側の燃料ガスの圧力を過大に大きく設定する必要がない。
 本発明によれば、バーナ部に供給される燃料ガスが少ない低負荷領域からバーナ部に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することを可能とした燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法を提供することができる。
舶用ボイラを用いた舶用推進プラントを示す構成図である。 図1に示す燃料供給装置の構成図である。 燃料ガスの流量と制御弁および流量調整弁の開度との関係を示す図である。 燃料ガスの流量とメインノズルおよびパイロットノズルの負荷との関係を示す図である。 燃料ガスの流量と燃料ガスの圧力との関係を示す図である。
 以下、本発明の一実施形態の舶用ボイラを用いた舶用推進プラント300について、図面を参照して説明する。
 図1に示す船舶に設置された舶用推進プラント300は、蒸気を生成する舶用ボイラ200と、舶用ボイラ200により生成された蒸気により駆動される推進用タービン部310と、推進用タービン部310に連結されて船舶を推進させる推進力を得る推進力発生部320と、を備える。
 以下、舶用推進プラント300が備える各部について説明する。
 まず始めに、舶用ボイラ200について詳細に説明する。
 舶用ボイラ200は、主炉210と、バーナ部220と、再熱炉230と、再熱器240と、燃料供給装置100とを有する。
 舶用ボイラ200の主炉210は、中空の略直方体形状をした火炉211と、水が通過するフロントバンクチューブ212と、一次過熱器管213aと二次過熱器管213bを有する過熱器213と、蒸発管群214と、水ドラム215と、蒸気ドラム216と、を備える。
 一次過熱器管213aは火炉211側に配置され、二次過熱器管213bは蒸発管群214側に配置されている。一次過熱器管213aおよび二次過熱器管213bとは内部に過熱蒸気を流通させる流路が形成されるように連結されている。
 一次過熱器管213aの火炉211側の端部は、蒸気ドラム216で生成された飽和蒸気を受け取るように構成されている。二次過熱器管213bの蒸発管群214側の端部は、過熱器出口配管L1の一端部に接続されている。一方、過熱器出口配管L1の他端部は、分岐位置P1において、推進用タービン部310の分岐配管L2および分岐配管L3に接続されている。
 バーナ部220は、燃料供給装置100から供給される燃料ガスを燃焼させる装置である。バーナ部220による燃料ガスの燃焼は火炉211の内部で行われる。燃料ガスの燃焼により発生する排ガスは、火炉211から過熱器213および蒸発管群214を経て再熱炉230へ導かれる。燃料供給装置100の詳細については後述する。
 再熱炉230は、主炉210の蒸発管群214よりも排ガスの流通方向の下流側に設けられ、鉛直方向(上下方向)に延びるように筒状に形成される装置である。再熱炉230は、火炉211から導かれる排ガスを再加熱する再熱バーナ231を有する。再熱バーナ231には、燃料配管L4を介して後述するLNGタンク400からボイルオフガス(燃料ガス)が供給される。再熱バーナ231に供給される燃料の供給量は、流量調整弁232により調整される。再熱バーナ231による燃料の燃焼により発生する排ガスおよび再熱バーナ231により再加熱された火炉211からの排ガスは、再熱器240へ導かれる。
 再熱器240は、推進用タービン部310の高圧タービン311で仕事をした蒸気を排ガスの熱により再加熱して推進用タービン部310の中圧タービン312へ供給する装置である。再熱器240は、推進用タービン部310から導かれる蒸気を、再熱器240に導かれる排ガスの熱により再加熱する。再熱器240で蒸気との熱交換をした排ガスは、大気中に排出される。
 次に、推進用タービン部310について詳細に説明する。
 推進用タービン部310は、高圧タービン311と、中圧タービン312と、低圧タービン313と、後進タービン314と、復水器315と、分岐配管L2に配置される開閉弁316と、分岐配管L3に配置される開閉弁317と、を有する。
 高圧タービン311は、過熱器出口配管L1から分岐配管L2を介して供給される過熱蒸気により回転動力を得る。高圧タービン311で仕事をした蒸気は、再熱器240の上端部に導かれる。
 中圧タービン312は、再熱器240により再加熱された再熱蒸気により回転動力を得る。中圧タービン312で仕事をした蒸気は、低圧タービン313に導かれる。
 高圧タービン311および中圧タービン312が得た回転動力は、これらに連結される推進力発生部320に伝達される。
 低圧タービン313は、中圧タービン312から導かれる蒸気により回転動力を得る。中圧タービン312が得た回転動力は、中圧タービン312に連結される推進力発生部320に伝達される。低圧タービン313で仕事をした蒸気は、復水器315に導かれる。
 後進タービン314は、過熱器出口配管L1から分岐配管L3を介して供給される過熱蒸気により回転動力を得る。後進タービン314で仕事をした蒸気は、復水器315に導かれる。
 復水器315は、低圧タービン313および後進タービン314から導かれる蒸気を凝縮して水とし、主炉210の蒸気ドラム216へ給水する。
 後進タービン314が得る回転動力は、高圧タービン311、中圧タービン312、および低圧タービン313が得る回転動力とは逆方向の動力である。
 高圧タービン311、中圧タービン312、および低圧タービン313は、船舶を前進させる回転動力を推進力発生部320に伝達する。一方、後進タービン314は、船舶を後進させる回転動力を推進力発生部320に伝達する。
 開閉弁316および開閉弁317は、舶用推進プラント300の制御装置(図示略)により開閉状態が切り替えられる弁である。舶用推進プラント300の制御装置は、開閉弁316を開状態とし、かつ開閉弁317を閉状態とすることにより、過熱蒸気を過熱器出口配管L1から分岐配管L2を介して高圧タービン311へ導く。一方、舶用推進プラント300の制御装置は、開閉弁316を閉状態とし、かつ開閉弁317を開状態とすることにより、過熱蒸気を過熱器出口配管L1から分岐配管L3を介して後進タービン314へ導く。
 次に、推進力発生部320について詳細に説明する。
 推進力発生部320は、推進用タービン部310から伝達される回転動力による回転数を減速させる減速機321と、減速機321に連結されるプロペラ軸322と、プロペラ軸322に連結されるプロペラ323とを有する。推進力発生部320は、高圧タービン311、中圧タービン312、および低圧タービン313から伝達される回転動力によりプロペラ323を回転させて船舶を前進させる推進力を発生する。また、推進力発生部320は、後進タービン314から伝達される回転動力によりプロペラ323を回転させて船舶を後進させる推進力を発生する。
 次に、本実施形態の舶用ボイラ200が備える燃料供給装置100の詳細について図面を参照して説明する。
 図2に示すように、燃料供給装置100は、LNGタンク(供給源)400から供給される燃料ガスを圧縮する圧縮機10と、圧縮機10により圧縮された燃料ガスを加熱するヒータ20と、燃料ガス供給路101を流通する燃料ガスの流量を計測する流量計30と、燃料ガス供給路101から燃料ガス供給ヘッダ102へ導かれる燃料ガスの流量を調整する流量調整弁(第2調整弁)40と、第1燃料供給部50と、第2燃料供給部60と、第3燃料供給部70と、制御部90と、を備える。
 また、燃料供給装置100は、LNGタンク400から供給される燃料ガスの供給系統として、LNGタンク400に接続される燃料ガス供給路101と、燃料ガス供給路101に接続されてLNGタンク400から供給される燃料ガスを流通させる燃料ガス供給ヘッダ102(第1供給配管)と、を備える。
 なお、図2に示す構成は、燃料ガス供給路101に供給される燃料ガスの全量を燃料ガス供給ヘッダ102に供給するものとしたが、他の態様であってもよい。例えば、舶用推進プラント300が複数の舶用ボイラ200を備える場合には、燃料ガス供給路101に供給される燃料ガスを複数の舶用ボイラ200に分配するための燃料供給路を別途設けるようにしてもよい。
 また、燃料供給装置100は、燃料ガス供給路101にそれぞれ接続されるメインノズル供給配管(第2供給配管)54と、メインノズル供給配管(第2供給配管)64と、メインノズル供給配管(第2供給配管)74と、を備える。
 また、燃料供給装置100は、燃料ガス供給路101にそれぞれ接続されるパイロットノズル供給配管(第3供給配管)55と、パイロットノズル供給配管(第3供給配管)65と、パイロットノズル供給配管(第3供給配管)75と、を備える。
 図2に示すように、舶用ボイラ200が備えるバーナ部220は、第1バーナ221と、第2バーナ222と、第3バーナ223とを有する。第1バーナ221は、メインノズル供給配管54に接続されるメインノズル221aとパイロットノズル供給配管55に接続されるパイロットノズル221bと、を有する。第2バーナ222は、メインノズル供給配管64に接続されるメインノズル222aとパイロットノズル供給配管65に接続されるパイロットノズル222bと、を有する。第3バーナ223は、メインノズル供給配管74に接続されるメインノズル223aとパイロットノズル供給配管75に接続されるパイロットノズル223bと、を有する。
 ここで、圧縮機10に供給される燃料ガスは、炭化水素系可燃性ガスである天然ガスを液化して貯蔵するLNGタンク400で生成されるボイルオフガスである。ボイルオフガスとは、LNGタンク400に貯蔵される液化した天然ガスが外部からの入熱等により気化して生成されたガスである。
 また、圧縮機10に供給される燃料ガスとして、液化した天然ガスを熱源(図示略)により強制的に気化させたガスを用いてもよい。
 ここでは、燃料ガスとして、メタンを主成分とした天然ガスを用いるものとしたが、他の態様であってもよい。例えば、エチレン等の他の炭化水素系可燃性ガスを用いてもよい。このように本実施形態においては、環境保護の観点から硫黄分を含まない炭化水素系燃料ガスをバーナ部220へ供給するものとする。
 圧縮機10は、LNGタンク400から供給される燃料ガスを加圧する装置である。圧縮機10は、燃料ガスを80kPa程度まで加圧して燃料ガス供給路101へ供給する。また、圧縮機10による加圧によって燃料ガスの温度は上昇する。燃料ガスの温度は、例えば、圧縮機10による加圧前が約-90℃であり、加圧後が-80℃以上かつ-70℃以下の範囲となる。
 ヒータ20は、圧縮機10により加圧された燃料ガスを加熱する装置である。ヒータ20は、ヒータ20の下流側に設けられた温度センサ(図示略)により検出される燃料ガスの温度が予め設定された温度(例えば、30℃)となるように制御部90とは異なる他の制御装置(図示略)からの制御指令により動作する。
 流量計30は、燃料ガス供給路101から燃料ガス供給ヘッダ102へ供給される燃料ガスの流量を計測する装置である。流量計30は、計測した燃料ガスの流量を示す計測信号を、信号線(図示略)を介して制御部90に出力する。
 流量調整弁40は、LNGタンク400から燃料ガス供給ヘッダ102に供給される燃料ガスの流量を調整する弁である。流量調整弁40の開度は、流量計30が計測する流量と制御部90が設定する流量とが一致するように、制御部90から信号線(図示略)を介して伝達される制御信号により制御される。
 第1燃料供給部50と、第2燃料供給部60と、第3燃料供給部70は、それぞれ燃料ガス供給ヘッダ102に設けられている。
 第1燃料供給部50は、燃料ガス供給ヘッダ102からメインノズル供給配管54を介してメインノズル221aへ供給される燃料ガスの流量と燃料ガス供給ヘッダ102からパイロットノズル供給配管55を介してパイロットノズル221bへ供給される燃料ガスの流量との比率を調整する装置である。同様に、第2燃料供給部60は、燃料ガス供給ヘッダ102からメインノズル供給配管64を介してメインノズル222aへ供給される燃料ガスの流量と燃料ガス供給ヘッダ102からパイロットノズル供給配管65を介してパイロットノズル222bへ供給される燃料ガスの流量との比率を調整する装置である。同様に、第3燃料供給部70は、燃料ガス供給ヘッダ102からメインノズル供給配管74を介してメインノズル223aへ供給される燃料ガスの流量と燃料ガス供給ヘッダ102からパイロットノズル供給配管75を介してパイロットノズル223bへ供給される燃料ガスの流量との比率を調整する装置である。
 第1燃料供給部50は、燃料ガス供給ヘッダ102にそれぞれ設けられる遮断弁51および遮断弁52と、メインノズル供給配管54に設けられ燃料ガス供給ヘッダ102からメインノズル供給配管54を介してメインノズル221aに導かれる燃料ガスの流量を調整する制御弁(第1調整弁)53と、を有する。
 遮断弁51および遮断弁52は、バーナ部220による燃料ガスの燃焼が行われる場合に制御部90により開状態とされ、バーナ部220による燃料ガスの燃焼が行われない場合に制御部90により閉状態とされる。
 なお、第2燃料供給部60が備える遮断弁61,遮断弁62,制御弁63は、それぞれ第1燃料供給部50が備える遮断弁51,遮断弁52,制御弁53と同様のものであるため、以下での説明を省略する。同様に、第3燃料供給部70が備える遮断弁71,遮断弁72,制御弁73は、それぞれ第1燃料供給部50が備える遮断弁51,遮断弁52,制御弁53と同様のものであるため、以下での説明を省略する。
 制御部90は、燃料供給装置100が備える各部を制御する装置である。制御部90は、制御弁53,制御弁63,制御弁73の開度、および流量調整弁40の開度をそれぞれ制御する。また、制御部90は、遮断弁51,遮断弁52,遮断弁61,遮断弁62,遮断弁71,遮断弁72の開閉状態を制御する。
 なお、制御部90は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。
 次に、制御部90により実行される制御弁53の開度および流量調整弁40の開度の制御について、図3から図5を参照して説明する。
 なお、以下では第1燃料供給部50についてのみ説明するが、第2燃料供給部60と第3燃料供給部70は第1燃料供給部50と同様である。したがって、以下では第2燃料供給部60および第3燃料供給部70についての説明を省略する。
 図3から図5において、横軸に示す燃料ガスの流量[%]は、本実施形態の制御弁53および流量調整弁40のそれぞれが最大開度に維持される場合に第1燃料供給部50から第1バーナ221へ供給される燃料ガスの流量を100%とし、100%の燃料ガスの流量に対する実際の燃料ガスの流量の割合を示している。
 図3から図5において燃料ガスの流量の下限値Fr1が約15%に設定されているのは、本実施形態の燃料ガスのターンダウン比(定格出力時の最大流量と制御可能な最小流量の比)が約7:1となっているからである。
 なお、本実施形態の燃料供給装置100は、燃料ガス供給ヘッダ102により、第1燃料供給部50と第2燃料供給部60と第3燃料供給部70のそれぞれに略均等に燃料ガスを供給するものである。従って、第1燃料供給部50,第2燃料供給部60,第3燃料供給部70のそれぞれに供給される燃料ガスの流量は、流量計30が計測する燃料ガスの流量の1/3の値となる。
 また、第1燃料供給部50と第2燃料供給部60と第3燃料供給部70とのいずれか1つの燃料供給部の遮断弁を閉状態とし、その他の燃料供給部の遮断弁を開状態とする場合、開状態の燃料供給部のそれぞれに供給される燃料ガスの流量は、流量計30が計測する燃料ガスの流量の1/2の値となる。
 また、第1燃料供給部50と第2燃料供給部60と第3燃料供給部70とのいずれか1つの燃料供給部の遮断弁を開状態とし、その他の燃料供給部の遮断弁を閉状態とする場合、開状態の燃料供給部に供給される燃料ガスの流量は、流量計30が計測する燃料ガスの流量と同量となる。
 制御部90は、図3に破線で示すように流量調整弁40の開度を制御する。図3に示すように、制御部90が流量調整弁40の開度を漸次増加させると、それに応じて燃料ガスの流量が下限値Fr1から上限値Fr3(100%の流量)に向けて漸次増加する。
 また、制御部90は、図3に実線で示すように制御弁53の開度を制御する。図3に示すように、制御部90は、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr1以上かつFr2(所定流量)未満となる低負荷領域である場合に制御弁53を閉状態とするように制御する。
 また、制御部90は、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2以上となる高負荷領域である場合に燃料ガスの流量の増加に応じて開度が増加するよう制御弁53を制御する。
 次に、図4を参照して、制御部90による流量調整弁40と制御弁53の開度の調整により実現されるメインノズル221aとパイロットノズル221bとの負荷の負担割合の調整について説明する。
 図4に縦軸で示す負荷[%]は、制御弁53および流量調整弁40のそれぞれが最大開度に維持される場合(最大負荷となる場合)の第1バーナ221の負荷(出力)を100%とし、100%の負荷に対するメインノズル221aとパイロットノズル221bとの実際の負荷の割合を示している。
 図4に示すように、燃料ガスの流量がFr1以上かつFr2(所定流量)未満となる低負荷領域である場合には、制御弁53が閉状態となっているため、メインノズル221aの負荷は0%に維持される。この低負荷領域において、パイロットノズル221bの負荷は、燃料ガスの流量の増加に対応して漸次増加する。
 また、図4に示すように、燃料ガスの流量がFr2以上となる高負荷領域である場合には、制御弁53が燃料ガスの流量の増加に応じて制御弁53の開度が漸次増加するため、メインノズル221aの負荷が漸次増加する。この高負荷領域において、パイロットノズル221bの負荷は、燃料ガスの流量の増加に対応して漸次増加する。一方で、高負荷領域においては、燃料ガスの流量の増加量に対するパイロットノズル221bの負荷の増加量が、低負荷領域におけるそれよりも少なくなる。
 これは、高負荷領域においては、制御部90が流量調整弁40の開度の増加に応じて制御弁53の開度が増加するよう制御弁53を制御するからである。制御弁53の開度が増加することにより、パイロットノズル221bの負荷に対するメインノズル221aの負荷の割合が漸次増加する。燃料ガスの流量が約60%となる場合にパイロットノズル221bの負荷とメインノズル221aの負荷の割合が等しくなる。
 また、燃料ガスの流量が100%となる場合には、パイロットノズル221bの負荷が約35%であるのに対してメインノズル221aの負荷が約65%となる。このように、燃料ガスの流量が100%となる場合には、パイロットノズル221bとメインノズル221aの燃料ガスの流量比が65:35となり、パイロットノズル221bの負荷とメインノズル221aの負荷を合計した値が100%となる。
 次に、図5を参照して、燃料ガスの流量と燃料ガスの圧力との関係について説明する。
 図5に縦軸で示す燃料ガスの圧力[kPa]は、燃料ガス供給ヘッダ102内の燃料ガスの圧力を示している。燃料ガス供給ヘッダ102に供給される燃料ガスは、燃料ガス供給路101から流量調整弁40を経て減圧される。
 図5に実線で示すように、本実施形態の燃料ガスの圧力は、燃料ガスの流量がFr1以上かつFr2(所定流量)未満となる低負荷領域である場合と燃料ガスの流量がFr2以上となる高負荷領域である場合のいずれにおいても、燃料ガスの圧力は燃料ガスの流量の増加に応じて漸次増加する。
 一方、高負荷領域においては、燃料ガスの流量の増加に対する燃料ガスの圧力の増加量が、低負荷領域におけるそれよりも少なくなる。
 これは、高負荷領域においては、制御部90が流量調整弁40の開度の増加に応じて制御弁53の開度が増加するよう制御弁53を制御するからである。制御弁53の開度が増加することにより、単位流量を増加させるのに必要となる燃料ガスの圧力の増加量が抑制される。
 一方、図5に破線で示す比較例は、高負荷領域においても、制御部90が制御弁53を閉状態に維持した例である。この比較例では、高負荷領域においても、燃料ガスの流量の増加に対する燃料ガスの圧力の増加量が、低負荷領域におけるそれと同じとなる。
 そのため、図5に破線で示すように、比較例においては、高負荷領域で燃料ガスの流量を所望の流量とするために必要とされる燃料ガスの圧力が本実施形態よりも過大に大きくなる。これは、燃料ガスの流量が下限値Fr1となる場合に必要とされる燃料ガスの圧力の値であるPminを本実施形態と比較例とで一致させるには、比較例において燃料ガス供給路101に供給される燃料ガスの圧力を過大に大きくしておく必要があることを意味する。すなわち、比較例においては、燃料ガス供給路101に供給される燃料ガスの圧力を過大に大きくするために、高い加圧性能を備える圧縮機10を設ける必要がある。
 ここで、具体的な例を挙げて、本実施形態で必要とされる燃料ガスの圧力と、比較例で必要とされる燃料ガスの圧力について説明する。
 本実施形態では、燃料ガスの流量が100%となる場合に、パイロットノズル221bとメインノズル221aの燃料ガスの流量が、それぞれ300kg/hと700kg/hであり、合計の流量が1000kg/hであるものとする。この場合、パイロットノズル221bとメインノズル221aの燃料ガスの流量比が70:30となる。
 この場合、燃料ガスの流量の下限値Fr1が100kg/hであるとすると、パイロットノズル221bが100kg/hから300kg/hの範囲で燃料ガスの流量を調整可能とするためには、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力を少なくとも式(1)で示す圧力Pr1[kPa]とする必要がある。
  Pr1=1.5・(300/100)=13.50     (1)
 ここで、1.5[kPa]は第1バーナ221が失火せずに燃料ガスの燃焼を維持するために必要とされる最小の燃焼ガスの圧力である。
 また、燃料ガスの流量が100%となる場合のメインノズル221aの燃料ガスの流量が700kg/hであることから、メインノズル221aは300kg/h(パイロットノズル221bの最大流量)から700kg/hの範囲で燃料ガスの流量を調整する。メインノズル221aが300kg/hから700kg/hの範囲で燃料ガスの流量を調整可能とするためには、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力を少なくとも式(2)で示す圧力Pr2[kPa]とする必要がある。
  Pr2=1.5・(700/300)=8.17     (2)
 このように、パイロットノズル221bとメインノズル221aの燃料ガスの流量比が70:30となる場合、Pr1>Pr2となる。そのため、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力を少なくともP1に設定しておくことにより、最小流量である100kg/hから最大流量である1000Kg/hまで、燃料ガスの流量調整が可能である。
 次に、比較例について説明する。比較例は、制御弁53を閉状態に維持した例である。この場合、パイロットノズル221bのみで、最小流量である100kg/hから1000kg/hの範囲で燃料ガスの流量を調整する必要がある。パイロットノズル221bが100kg/hから1000kg/hの範囲で燃料ガスの流量を調整可能とするためには、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力を少なくとも式(3)で示す圧力Pr3[kPa]とする必要がある。
  Pr3=1.5・(1000/100)=150.00   (3)
 すなわち、比較例の場合、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力を本実施形態よりも10倍を超えた高い値に設定する必要がある。
 以上のように、本実施形態では、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力を過大に大きく設定する必要がない。
 また、換言すれば、本実施形態では、燃料ガス供給ヘッダ102に供給される燃料ガスの圧力に対するターンダウン比(定格出力時の最大流量と制御可能な最小流量の比)を高く設定することができる。すなわち、定格出力時の最大流量に対する最小流量の値をより小さい値に設定することができる。
 以上説明した本実施形態が奏する作用及び効果について説明する。
 本実施形態の燃料供給装置100によれば、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2(所定流量)未満となる低負荷領域においては、制御弁53が閉状態となり燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの全量がパイロットノズル供給配管55からパイロットノズル221bに導かれる。この低負荷領域においては、制御弁53が閉状態であるため、燃料ガスの流量の二乗根に比例して燃料ガスの圧力が低下する。しかしながら、低負荷領域の流量範囲は下限値Fr1以上かつFr2未満の一定範囲内に限られるため、流量の変動に対する燃料ガスの圧力変動を抑制することができる。
 また、本実施形態の燃料供給装置100によれば、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2(所定流量)以上となる高負荷領域においては、燃料ガスの流量の増加に応じて制御弁53の開度が増加する。制御弁53の開度を増加させて第1バーナ221の流路断面積(火炉211への開口面積)を増大させることにより、所望の流量の燃料ガスを第1バーナ221へ供給するのに必要とされる燃料ガスの圧力を低減することができる。
 このように、本実施形態の燃料供給装置100によれば、第1バーナ221に供給される燃料ガスが少ない低負荷領域から第1バーナ221に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することができる。この場合において、LNGタンク400側の燃料ガスの圧力を過大に大きく設定する必要がない。
 換言すれば、本実施形態では、供給される燃料ガスの圧力に対するターンダウン比を高く設定することができ、定格出力時の最大流量に対する最小流量の値をより小さい値に設定することができる。
 本実施形態の燃料供給装置100は、LNGタンク400から燃料ガス供給ヘッダ102に供給される燃料ガスの流量を調整する流量調整弁40を備え、制御部90が、流量調整弁40の開度を制御する。
 このようにすることで、LNGタンク400から燃料ガス供給ヘッダ102に供給される燃料ガスの流量を流量調整弁40により適量に調整することができる。
 また、制御部90が、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2(所定流量)以上である場合に、流量調整弁40の開度の増加に応じて制御弁53の開度が増加するよう制御弁53を制御する。
 このようにすることで、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2(所定流量)以上となる高負荷領域においては、第1バーナ221に供給される燃料ガスの増加に応じて第1バーナ221の流路断面積を増大させ、所望の流量の燃料ガスを第1バーナ221へ供給するのに必要とされる燃料ガスの圧力を低減することができる。
 本実施形態の燃料供給装置100は、LNGタンク400から供給される燃料ガスを加圧する圧縮機10と、圧縮機10により加圧された燃料ガスを加熱するヒータ20と、を備える。
 このようにすることで、LNGタンク400から供給される燃料ガスを適正に加圧および加熱して第1バーナ221へ供給することができる。
 本実施形態の燃料供給装置100の制御方法は、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2(所定流量)未満である場合に制御弁53を閉状態とする第1制御工程と、燃料ガス供給ヘッダ102から第1バーナ221に供給される燃料ガスの流量がFr2(所定流量)以上である場合に燃料ガスの流量の増加に応じて開度が増加するよう制御弁53を制御する第2制御工程と、を備える。
 本実施形態の燃料供給装置100の制御方法によれば、第1バーナ221に供給される燃料ガスが少ない低負荷領域から第1バーナ221に供給される燃料ガスが多い高負荷領域に至るまで、燃料ガスのエネルギーを無駄にすることなく燃料ガスのみによる安定燃焼を維持することができる。この場合において、LNGタンク400側の燃料ガスの圧力を過大に大きく設定する必要がない。
〔他の実施形態〕
 以上においては、バーナ部220が第1バーナ221,第2バーナ222,第3バーナ223の3つのバーナを備え、燃料供給装置100が第1燃料供給部50,第2燃料供給部60,第3燃料供給部70の3つの燃料供給部を備えるものとしたが他の態様であってもよい。
 例えば、バーナ部220が第1バーナ221のみを備え、燃料供給装置100が第1燃料供給部50のみを備える態様であってもよい。
 また例えば、バーナ部220が4以上の複数のバーナを備え、燃料供給装置100がバーナの数と同数の複数の燃料供給部を備えるものとしてもよい。
 また、以上においては、舶用ボイラ200が、再熱炉230および再熱器240を有するものとしたが、これらを有しない舶用ボイラとしてもよい。再熱炉230および再熱器240を有しない舶用ボイラに対して、前述した燃料供給装置100を適用することが可能である。
40  流量調整弁(第2調整弁)
50  第1燃料供給部
53  制御弁(第1調整弁)
54  メインノズル供給配管(第2供給配管)
55  パイロットノズル供給配管(第3供給配管)
60  第2燃料供給部
70  第3燃料供給部
90  制御部
100 燃料供給装置
101 燃料ガス供給路
102 燃料ガス供給ヘッダ(第1供給配管)
200 舶用ボイラ
220 バーナ部
221 第1バーナ
221a メインノズル
221b パイロットノズル(副ノズル)
222 第2バーナ
222a メインノズル
222b パイロットノズル(副ノズル)
223 第3バーナ
223a メインノズル
223b パイロットノズル(副ノズル)
400 LNGタンク(供給源)
 

Claims (5)

  1.  舶用ボイラに用いられるとともに主ノズルと副ノズルとを有するバーナ部に燃料ガスを供給する燃料供給装置であって、
     供給源から供給される前記燃料ガスを流通させる第1供給配管と、
     前記第1供給配管から前記主ノズルへ前記燃料ガスを供給する第2供給配管と、
     前記第1供給配管から前記副ノズルへ前記燃料ガスを供給する第3供給配管と、
     前記第2供給配管に設けられ、前記第1供給配管から前記第2供給配管を介して前記主ノズルに導かれる前記燃料ガスの流量を調整する第1調整弁と、
     前記第1調整弁の開度を制御する制御部と、を備え、
     前記制御部が、前記第1供給配管から前記バーナ部に供給される前記燃料ガスの流量が所定流量未満である場合に閉状態とし、前記第1供給配管から前記バーナ部に供給される前記燃料ガスの流量が前記所定流量以上である場合に前記燃料ガスの流量の増加に応じて開度が増加するよう前記第1調整弁を制御する燃料供給装置。
  2.  前記供給源から前記第1供給配管に供給される前記燃料ガスの流量を調整する第2調整弁を備え、
     前記制御部が、前記第2調整弁の開度を制御する請求項1に記載の燃料供給装置。
  3.  前記制御部が、前記第1供給配管から前記バーナ部に供給される前記燃料ガスの流量が前記所定流量以上である場合に、前記第2調整弁の開度の増加に応じて前記第1調整弁の開度が増加するよう前記第1調整弁を制御する請求項2に記載の燃料供給装置。
  4.  前記バーナ部と、
     請求項1から請求項3のいずれか一項に記載の燃料供給装置と、を備える舶用ボイラ。
  5.  舶用ボイラに用いられるとともに主ノズルと副ノズルとを有するバーナ部に燃料ガスを供給する燃料供給装置の制御方法であって、
     前記燃料供給装置が、前記主ノズルに導かれる前記燃料ガスの流量と前記副ノズルに導かれる前記燃料ガスの流量との比率を調整する調整弁を有し、
     前記バーナ部に供給される前記燃料ガスの流量が所定流量未満である場合に前記調整弁を閉状態とする第1制御工程と、
     前記バーナ部に供給される前記燃料ガスの流量が前記所定流量以上である場合に前記燃料ガスの流量の増加に応じて開度が増加するよう前記調整弁を制御する第2制御工程と、を備える燃料供給装置の制御方法。
PCT/JP2017/003831 2016-03-22 2017-02-02 燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法 WO2017163623A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17769670.5A EP3406973B1 (en) 2016-03-22 2017-02-02 Fuel supply device and marine boiler provided therewith, and fuel supply device control method
KR1020187024569A KR102053563B1 (ko) 2016-03-22 2017-02-02 연료 공급 장치 및 그것을 구비한 선박용 보일러, 그리고 연료 공급 장치의 제어 방법
CN201780014120.9A CN108700295B (zh) 2016-03-22 2017-02-02 燃料供给装置、具备该燃料供给装置的船舶用锅炉、以及燃料供给装置的控制方法
DK17769670.5T DK3406973T3 (da) 2016-03-22 2017-02-02 Brændstofforsyningsindretning og skibskedel forsynet dermed, og brændstofforsyningsindretningsstyringsfremgangsmåde

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-056969 2016-03-22
JP2016056969A JP6665004B2 (ja) 2016-03-22 2016-03-22 燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法

Publications (1)

Publication Number Publication Date
WO2017163623A1 true WO2017163623A1 (ja) 2017-09-28

Family

ID=59899959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003831 WO2017163623A1 (ja) 2016-03-22 2017-02-02 燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法

Country Status (6)

Country Link
EP (1) EP3406973B1 (ja)
JP (1) JP6665004B2 (ja)
KR (1) KR102053563B1 (ja)
CN (1) CN108700295B (ja)
DK (1) DK3406973T3 (ja)
WO (1) WO2017163623A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7245629B2 (ja) * 2018-10-18 2023-03-24 三菱重工業株式会社 ガス燃料供給装置、燃焼装置
JP7179650B2 (ja) * 2019-02-27 2022-11-29 三菱重工マリンマシナリ株式会社 ボイルオフガス処理システム及び船舶
KR102526253B1 (ko) * 2021-12-06 2023-04-28 대우조선해양 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박
KR102573651B1 (ko) * 2021-12-06 2023-09-01 한화오션 주식회사 이중 연료 엔진용 연료 오일 유량의 측정 유니트 및 동 유니트를 포함하는 연료 오일 공급 시스템, 그리고 이를 포함하는 선박

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853245B2 (ja) * 1980-11-14 1983-11-28 株式会社山武 ガス流量制御装置
JPS6239330B2 (ja) * 1983-03-01 1987-08-22 Matsushita Electric Ind Co Ltd
JP2008281271A (ja) * 2007-05-10 2008-11-20 Rinnai Corp コンロバーナ
JP2009002529A (ja) * 2007-06-19 2009-01-08 Rinnai Corp コンロバーナ
US20100058770A1 (en) * 2008-09-08 2010-03-11 Siemens Power Generation, Inc. Method and System for Controlling Fuel to a Dual Stage Nozzle

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS418729Y1 (ja) * 1964-03-13 1966-04-27
JP2574184B2 (ja) * 1990-05-09 1997-01-22 株式会社ユニシアジェックス 車両の出力制御装置
JP4920013B2 (ja) * 2008-07-08 2012-04-18 リンナイ株式会社 バーナ用ガスノズル装置
TR201907491T4 (tr) * 2008-11-20 2019-06-21 Bsh Hausgeraete Gmbh Çok devreli bir brülörün, özellikle de çift devreli bir brülörün ısıtma gücünü ayarlamak için yöntem ve bu gibi bir yöntemin uygulanabilmesi için düzenek.
JP5521602B2 (ja) * 2010-02-09 2014-06-18 株式会社Ihi 副生ガス焚き燃焼装置の燃料制御装置
JP2012167859A (ja) * 2011-02-14 2012-09-06 Mitsubishi Heavy Ind Ltd 舶用ボイラ
US8915059B2 (en) * 2011-09-09 2014-12-23 General Electric Company Fuel gas pressure control system and method for reducing gas turbine fuel supply pressure requirements
JP2014118047A (ja) 2012-12-17 2014-06-30 Mitsubishi Heavy Ind Ltd Lng船の蒸気ライン

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853245B2 (ja) * 1980-11-14 1983-11-28 株式会社山武 ガス流量制御装置
JPS6239330B2 (ja) * 1983-03-01 1987-08-22 Matsushita Electric Ind Co Ltd
JP2008281271A (ja) * 2007-05-10 2008-11-20 Rinnai Corp コンロバーナ
JP2009002529A (ja) * 2007-06-19 2009-01-08 Rinnai Corp コンロバーナ
US20100058770A1 (en) * 2008-09-08 2010-03-11 Siemens Power Generation, Inc. Method and System for Controlling Fuel to a Dual Stage Nozzle

Also Published As

Publication number Publication date
EP3406973A1 (en) 2018-11-28
KR102053563B1 (ko) 2019-12-06
CN108700295B (zh) 2019-08-06
EP3406973B1 (en) 2020-01-22
JP2017172835A (ja) 2017-09-28
KR20180100444A (ko) 2018-09-10
CN108700295A (zh) 2018-10-23
EP3406973A4 (en) 2019-01-16
DK3406973T3 (da) 2020-03-02
JP6665004B2 (ja) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017163623A1 (ja) 燃料供給装置およびそれを備えた舶用ボイラ、並びに燃料供給装置の制御方法
US8104283B2 (en) Steam temperature control in a boiler system using reheater variables
WO2012165601A1 (ja) 排熱回収ボイラおよび発電プラント
JP5665621B2 (ja) 排熱回収ボイラおよび発電プラント
US3894396A (en) Control system for a power producing unit
JP6319526B1 (ja) 発電設備
JP5693281B2 (ja) 再熱ボイラ
JP6304462B1 (ja) 発電設備
CN105102771A (zh) 用于发电厂的灵活运转的方法
RU2563559C1 (ru) Парогазовый энергоблок с парогенерирующими водородно-кислородными установками
JP2007285220A (ja) コンバインドサイクル発電設備
JP7150670B2 (ja) ボイラ及びこれを備えた発電プラント並びにボイラの制御方法
US11661867B2 (en) Gas turbine exhaust heat recovery plant
JP7409864B2 (ja) 蒸気発生装置、プラント、及び、蒸気発生装置の制御方法
JP5537475B2 (ja) 排熱回収ボイラおよび発電プラント
JP7069803B2 (ja) 燃焼装置
GB967941A (en) Power plant comprising a vapour turbine
JP2007024425A (ja) 複合ボイラシステム及びその運転方法
JP2023127184A (ja) 流動層ボイラの燃焼制御装置、木質バイオマス発電設備及び流動層ボイラの燃焼制御方法
JP3746634B2 (ja) 蒸気温度制御装置
JP2016084923A (ja) ガス供給設備
JP4830636B2 (ja) 発電プラントの燃料制御装置
JP2017109738A5 (ja)
JPH0674414A (ja) ボイラの制御装置
JPH04309702A (ja) 加圧流動層ボイラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017769670

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187024569

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024569

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017769670

Country of ref document: EP

Effective date: 20180824

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17769670

Country of ref document: EP

Kind code of ref document: A1