JP7150670B2 - ボイラ及びこれを備えた発電プラント並びにボイラの制御方法 - Google Patents

ボイラ及びこれを備えた発電プラント並びにボイラの制御方法 Download PDF

Info

Publication number
JP7150670B2
JP7150670B2 JP2019121474A JP2019121474A JP7150670B2 JP 7150670 B2 JP7150670 B2 JP 7150670B2 JP 2019121474 A JP2019121474 A JP 2019121474A JP 2019121474 A JP2019121474 A JP 2019121474A JP 7150670 B2 JP7150670 B2 JP 7150670B2
Authority
JP
Japan
Prior art keywords
burner
boiler
load
fuel
boiler load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019121474A
Other languages
English (en)
Other versions
JP2021008963A (ja
Inventor
真梨子 酒井
新一 峯
聡 寺田
佳奈 福岡
力夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019121474A priority Critical patent/JP7150670B2/ja
Publication of JP2021008963A publication Critical patent/JP2021008963A/ja
Application granted granted Critical
Publication of JP7150670B2 publication Critical patent/JP7150670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、固体燃料を用いるボイラ及びこれを備えた発電プラント並びにボイラの制御方法に関するものである。
石炭焚きボイラなどの大型のボイラは、中空形状をなして鉛直方向に設置される火炉を有し、この火炉壁に複数の燃焼バーナが火炉の周方向に沿って配設されている。また、石炭焚きボイラは、火炉の鉛直方向上方に煙道が連結されており、この煙道に蒸気を生成するための熱交換器が配置されている。そして、燃焼バーナが火炉内に燃料と空気(酸化性ガス)との混合気を噴射することで火炎が形成され、燃焼ガスが生成されて煙道に流れる。燃焼ガスが流れる領域にボイラへの給水が導かれる熱交換器が設置され、熱交換器を構成する伝熱管内を流れる水や蒸気を加熱して過熱蒸気が生成される。
火力発電所において需要電力(必要な発電量)への増加要求が発生した場合、ボイラ負荷(ボイラの蒸気発生量)を上昇させることで、発電量の増加を行っている。石炭焚きボイラの負荷を上昇させる場合は、ボイラへの給水量を増加するとともに火炉での燃焼量を増加させるにあたり、微粉炭燃焼バーナへ供給する微粉燃料を増加させる。このとき、ミル(粉砕機)で石炭を粉砕して微粉燃料を生成する量を増加させて、搬送用ガスとなる一次空気で微粉炭燃焼バーナへ搬送する。
需要電力の増加に対して、具体的には、以下の手順で発電量の増加を行っている。
(a)需要電力を基に発電機出力要求変化指令を出力し、発電機出力要求変化指令を基に主蒸気圧力設定値を設定するとともに、実際の主蒸気圧力を取得し比較して、主蒸気圧力の増減を行う。
(b)上記(a)を基にボイラ負荷変化指令を出力して、微粉炭燃焼バーナの燃焼量(燃料供給量)、ボイラ給水流量、空気流量など制御系統への増加指令を出力する。
(c)上記(b)に従い、ミルへの給炭量と搬送用ガスとなる一次空気流量を所定量まで増加させ、微粉炭燃焼バーナへ供給する微粉燃料を増加させる。
(d)ボイラ内での給水流量と各収熱部(火炉壁、過熱器、再熱器)における伝熱バランスを調整して、ボイラ出口の主蒸気圧力を所定値まで増加させる。
以上の手順により、微粉炭燃焼バーナの燃焼量が所定量まで増加し、これに応答時間を伴いながらボイラ負荷が所定値まで上昇して、必要な主蒸気流量の増加を完了する。そして、蒸気タービンへ供給する主蒸気流量が増加することで、蒸気タービン回転力が増加し、発電機出力増加により発電量が所定値まで上昇して、発電機出力要求変化指令に対応する需要電力を満たすことができる。
微粉炭燃焼バーナへの微粉燃料の供給は、ミルに給炭された石炭を粉砕・分級をして所定サイズ範囲の微粉炭とし、搬送用ガスとなる一次空気で微粉炭燃焼バーナへ搬送する方法で行うため、上記(b)と上記(c)との間で応答時間がかかってしまい、ボイラの負荷上昇時間に遅れが発生する。
特許文献1には、微粉炭燃焼バーナの一部が異常停止した場合に、異常停止した微粉炭燃焼バーナ以外に対応している起動用バーナを稼働して、不足する燃焼量を補う技術が開示されている。
特許第4979535号公報
しかし、上記特許文献1に記載された起動用バーナの使用方法は、停止した微粉炭燃焼バーナの燃焼量を補うものであり、ボイラの負荷増大時に用いることを想定していない。
発電グリッド内に石炭焚きボイラ発電プラントと太陽光発電のような再生可能エネルギー発電プラントとが併存している場合がある。このような場合、再生可能エネルギーは天候に応じて発電量が変動するので、石炭焚きボイラ発電プラントで変動分を吸収する必要がある。例えば、太陽光発電は、昼間は発電するが夜間は発電しないため、石炭焚きボイラ発電プラントは昼間から夜間に移行するときにボイラ負荷を大幅に増大する必要がある。このような運用は、ほぼ負荷一定や緩やかな負荷変化で運転を行っていた石炭焚きボイラでは想定されていなかった運用である。このため、石炭焚きボイラでは、ボイラ負荷変化率としては、例えば3~5%/min程度とされていた。
しかし、以上のような状況などに鑑み、石炭焚きボイラ発電プラントに高いボイラ負荷変化率が要求されるようになってきた。
本発明は、高いボイラ負荷変化率を実現することができるボイラ及びこれを備えた発電プラント並びにボイラの制御方法を提供することを目的とする。
本発明の一態様に係るボイラは、火炉内に固体燃料を用いて火炎を形成する固体燃料バーナと、前記固体燃料バーナの起動時に用いられる起動用バーナと、前記固体燃料バーナ及び前記起動用バーナを制御する制御部と、を備え、前記制御部は、ボイラ負荷を増大させるために燃料供給量を増大させる際に、前記起動用バーナの起動時に用いられる起動用ボイラ負荷変化率よりも大きい負荷増大用ボイラ負荷変化率を用いて、前記起動用バーナを制御する。
ボイラ負荷を増大させるために燃料供給量を増大させる際に起動用バーナを用いることとした。これにより、固体燃料バーナのみで負荷の増大を行う場合に比べて高いボイラ負荷変化率を得ることができる。
さらに、ボイラ負荷増大時に、起動用バーナの起動時に用いられる起動用ボイラ負荷変化率よりも大きい負荷増大用ボイラ負荷変化率を用いることとした。これにより、ボイラ負荷増大時にさらに高いボイラ負荷変化率を実現することができる。
固体燃料としては、例えば、石炭やバイオマス燃料などの炭素含有固体燃料が挙げられる。
起動用ボイラに用いられる燃料としては、固体燃料バーナよりも応答性が良い燃料が用いられ、例えば、軽油や重油等の液体燃料や、メタンガス等のガス燃料が用いられる。
さらに、本発明の一態様に係るボイラでは、前記起動用バーナに起動用燃料を供給する燃料供給系統を備え、前記制御部は、前記起動用バーナの停止時に、前記燃料供給系統の燃料圧力を所定値以上に維持する待機モードを備えている。
一般に、起動用バーナはボイラの起動時に用いられた後は停止されるので、起動用燃料を供給する燃料供給系統の燃料圧力は大気圧程度まで低下させられる。その後、起動用バーナを再度起動しようとすると、燃料ポンプを再び起動し、燃料供給系統のリークチェックを行う必要があるので、即座に起動用バーナを起動させることができない。
これに対して、起動用バーナの停止時であっても燃料供給系統の燃料圧力を所定値以上に維持する待機モードを設けることとしたので、ボイラ負荷増大時に起動用バーナを起動する際の時間遅れを可及的に小さくできる。これにより、さらに高いボイラ負荷増大率を得ることができる。
待機モードにおける圧力の所定値としては、例えば、起動用バーナが安定的に起動する際に要求される圧力が用いられる。
さらに、本発明の一態様に係るボイラでは、前記制御部は、前記負荷増大用ボイラ負荷変化率を用いてボイラ負荷を上昇させ、目標ボイラ負荷の0.5%以上5%以下だけ下回るボイラ負荷に到達したときに、前記起動用バーナの燃料供給量を低下させる。
目標ボイラ負荷を0.5%以上5%以下だけ下回る負荷に到達したときに起動用バーナの燃料供給量を低下させることとした。これにより、ボイラ負荷増大時に必要十分な起動用燃料の消費量とすることができる。また、目標ボイラ負荷を0.5%以上5%以下だけ下回る負荷に到達したときに起動用バーナの燃料供給量を低下させることとしたので、ボイラ負荷が目標ボイラ負荷へ到達する時間延長を抑制しながら、現実のボイラ負荷が目標ボイラ負荷を超えるオーバーシュートを可及的に抑制することができる。
さらに、本発明の一態様に係るボイラでは、前記起動用バーナの燃料供給量を低下させる際の燃料減少率は、前記負荷増大用ボイラ負荷変化率よりも緩やかとされている。
起動用バーナの燃料減少率を負荷増大用ボイラ負荷変化率よりも緩やかとしたので、起動用バーナよりも応答が遅い固体燃料バーナの変化に合わせることができる。これにより、起動用バーナと固体燃料バーナとの併用を効果的に行うことができる。
なお、「緩やか」とは変化率(%/min)の絶対値が小さいことを意味する。例えば、起動用バーナの燃料減少率の絶対値は、負荷増大用ボイラ負荷変化率の絶対値の1/4以上1/2以下とされる。
さらに、本発明の一態様に係るボイラでは、前記制御部は、ボイラ負荷を増大させる際に、給水量を先行的に増大させる。
ボイラ負荷変化率を増大させるとボイラへの給水量の追随遅れが発生し、例えば、節炭器と過熱器との間に設けられた汽水分離器の入口温度が過剰に上昇して機器を破損させるおそれがある。そこで、負荷増大の際には先行的に給水量を増大させることにした。これにより、汽水分離器入口における過剰な昇温を抑制することができる。
給水量を増大させるには、例えば、給水ポンプの駆動用蒸気圧力を増大させて給水ポンプの出力増大を行う。また、汽水分離器の入口に対しての給水量の増大は、汽水分離器をバイパスした給水を過熱器にスプレーするスプレー水量を減少することで、行ってもよい。
本発明の一態様に係る発電プラントは、上記のいずれかに記載のボイラと、前記ボイラで生成された蒸気によって回転駆動される蒸気タービンと、前記蒸気タービンによって回転駆動される発電機と、を備えている。
さらに、本発明の一態様に係る発電プラントでは、前記蒸気タービンの下流側に設置された復水器と、前記蒸気タービンの入口側の蒸気を、前記蒸気タービンをバイパスして前記復水器へ導くタービンバイパス経路と、前記タービンバイパス経路に設けられたタービンバイパス弁と、を備え、前記制御部は、ボイラ負荷増大時に、前記タービンバイパス弁を閉から開へとする期間を制御する。
ボイラ負荷増大時にボイラ負荷が目標値を超えて発電量がオーバーシュートするおそれがある。そこで、タービンバイパス弁を閉から開へとする期間を制御して一時的に主蒸気を復水器へと導き蒸気タービンをバイパスさせることとした。これにより、蒸気タービンによる発電量がオーバーシュートすることを抑制することができる。
本発明の一態様に係るボイラの制御方法は、火炉内に固体燃料を用いて火炎を形成する固体燃料バーナと、前記固体燃料バーナの起動時に用いられる起動用バーナと、前記固体燃料バーナ及び前記起動用バーナを制御する制御部と、を備えたボイラの制御方法であって、ボイラ負荷を増大させるために燃料供給量を増大させる際に、前記起動用バーナの起動時に用いられる起動用ボイラ負荷変化率よりも大きい負荷増大用ボイラ負荷変化率を用いて、前記起動用バーナを制御する。
起動用バーナを用いることによって高いボイラ負荷変化率を実現することができる。
一実施形態に係る石炭焚きボイラ発電プラントを示した概略構成図である。 燃焼装置を示した正面図である。 起動用バーナの燃料供給系統を示した概略構成図である。 起動用バーナの動作を示したフローチャートである。 石炭焚きボイラの負荷上昇時の挙動を示したグラフである。 図3の変形例を示した概略構成図である。
以下に添付図面を参照して、本発明に係る好適な一実施形態を、図面を参照して説明する。なお、この実施形態により本発明が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。
図1には、本実施形態の石炭焚きボイラ発電プラント(発電プラント)1が示されている。
本実施形態では、固体燃料(炭素含有固体燃料)として例えば石炭を用いる。本実施形態のボイラは、石炭を粉砕した微粉炭を微粉燃料として用い、この微粉炭を燃焼バーナにより燃焼させ、この燃焼により発生した熱を回収して給水や蒸気と熱交換して過熱蒸気を生成することが可能な石炭焚き(微粉炭焚き)ボイラである。以降の説明で、上や上方とは鉛直方向上側を示し、下や下方とは鉛直方向下側を示すものである。
本実施形態において、石炭焚きボイラ発電プラント1は、石炭焚きボイラ3と、蒸気タービン発電設備5とを備えている。
石炭焚きボイラ3は、火炉11と燃焼装置12と煙道13とを有している。火炉11は、四角筒の中空形状をなして鉛直方向に沿って設置されている。火炉11を構成する火炉壁(伝熱管)は、複数の蒸発管とこれらを接続するフィンとで構成され、給水や蒸気と熱交換することにより火炉壁の温度上昇を抑制している。
燃焼装置12は、火炉11を構成する火炉壁の下部側に設けられている。本実施形態では、燃焼装置12は、火炉壁に装着された複数の微粉炭燃焼バーナ(固体燃料バーナ)21を有している。例えば微粉炭燃焼バーナ21は、周方向に沿って均等間隔で配設されたものが1セットとして、鉛直方向に沿って複数段配置されている。但し、火炉の形状や一つの段における燃焼バーナの数、段数はこの実施形態に限定されるものではない。
各微粉炭燃焼バーナ21は、微粉炭供給管26を介して粉砕機(ミル)31に連結されている。これら粉砕機31は、図示しないが、例えばハウジング内に回転テーブルが駆動回転可能に支持され、この回転テーブルの上方に複数のローラが回転テーブルの回転に連動して回転可能に支持されて構成されている。石炭が複数のローラと回転テーブルとの間に投入されると、ここで所定の微粉炭の大きさに粉砕され、搬送用ガス(一次空気)とともに搬送されて図示しない分級機で所定サイズ範囲に分級される。分級された微粉炭は、微粉炭供給管26を介して微粉炭燃焼バーナ21に供給される。
火炉11は、各微粉炭燃焼バーナ21の装着位置に風箱36を備えている。風箱36には、図示しない空気ダクトの一端部が連結されている。空気ダクトの他端部には図示しない送風機が設けられている。
煙道13は、火炉11の鉛直方向上部に連結されている。煙道13は、燃焼ガスの熱を回収するための熱交換器として、例えば、一次過熱器41、二次過熱器42、最終過熱器43、再熱器44、節炭器45が設けられており、火炉11での燃焼で発生した燃焼ガスと各熱交換器を流通する給水や蒸気との間で熱交換が行われ、石炭焚きボイラ3から蒸気を発生供給する。
蒸気タービン発電設備5は、高圧タービン51と、高圧タービン51に対して同軸にて連結された中低圧タービン52と、中低圧タービン52に対して同軸にて連結された発電機53とを備えている。なお、高圧タービン51、中低圧タービン52及び発電機53は、同軸に連結されていることに限定されるわけではなく、ギアを介してそれぞれを別軸として構成しても良い。
高圧タービン51の上流側には、主蒸気弁56を備えた主蒸気管55が接続されている。主蒸気管55の上流側は、最終過熱器43に接続されて、石炭焚きボイラ3で発生した主蒸気を供給する。高圧タービン51の下流側は、高圧タービン排出配管57を介して、再熱器44の上流側に接続されている。
中低圧タービン52の上流側には、再熱蒸気弁59を備えた再熱蒸気管58が接続されている。再熱蒸気管58の上流側は、再熱器44の下流側に接続されている。中低圧タービン52の下流側は、中低圧タービン排出配管60を介して、復水器63に接続されている。復水器63に導かれた蒸気は、海水等の冷却水によって冷却されて凝縮して復水となる。
発電機53は、高圧タービン51及び中低圧タービン52によって回転駆動されて発電する。発電機53にて発生した電力は、図示しない配線を介して系統へと送られる。
復水器63の下流側には給水配管65が接続されている。給水配管65の下流側は、節炭器45に接続されている。給水配管65の途中位置には、給水ポンプ67が設けられており、給水ポンプ67によって復水が節炭器45へと供給される。
給水ポンプ67は、給水ポンプ駆動用蒸気タービン68によって回転駆動される。給水ポンプ駆動用蒸気タービン68には、高圧蒸気抽気配管70を介して高圧タービン51から高圧蒸気が導かれるようになっているとともに、低圧蒸気抽気配管72を介して中低圧タービン52から低圧蒸気が導かれるようになっている。高圧蒸気抽気配管70には高圧蒸気抽気弁71が設けられ、低圧蒸気抽気配管72には低圧蒸気抽気弁73が設けられている。各蒸気抽気弁71,73の開度は、制御部30によって制御される。
節炭器45と汽水分離器46との間には、炉壁管47が設けられている。炉壁管47は、火炉11を取り囲むように設けられた複数の伝熱管とされている構成されている。給水は節炭器45を経由して炉壁管47内を通過する際に、火炉11内の火炎から輻射を受けて加熱される。炉壁管47を通過することによって加熱された給水は、汽水分離器46へと導かれる。
汽水分離器46にて分離された蒸気は一次過熱器41へと供給され、汽水分離器46にて分離されたドレン水は、ドレン水配管75を介して復水器63へと導かれる。
主蒸気管55には、主蒸気弁56の上流側から分岐するようにタービンバイパス配管(タービンバイパス経路)77が設けられている。タービンバイパス配管77の下流側は、復水器63に接続されている。タービンバイパス配管77によって、主蒸気の一部が高圧タービン51及び中低圧タービン52をバイパスするようになっている。タービンバイパス配管77には、タービンバイパス弁78が設けられている。タービンバイパス弁78の開度を閉から開とする期間は、制御部30によって制御される。
制御部30は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
図2には、微粉炭燃焼バーナ21を備えた燃焼装置12の一例が示されている。図2は、火炉11の内部側から燃焼装置12を見た正面図である。微粉炭燃焼バーナ21は、所定間隔を空けて複数設けられている。各微粉炭燃焼バーナ21の間には、起動用バーナ22又は燃焼補助空気ノズル23が配置されている。
図3には、起動用バーナ22に起動用燃料を供給する燃料供給系統80が示されている。
本実施形態では、起動用燃料として例えば軽油を用いる。燃料供給系統80は、軽油が貯留された軽油タンク81から起動用バーナ22に起動用燃料である軽油を供給する。なお、起動用燃料としては、軽油に限定されるものではなく、微粉炭燃料よりも着火性が良い燃料が用いられ、例えば、重油等の液体燃料でも良く、メタンガス等のガス燃料でも良い。
軽油タンク81と起動用バーナ22との間には、燃料供給主配管83が設けられている。燃料供給主配管83には、軽油タンク81側から順に、軽油ポンプ85、圧力計86、流量計87、流量調整弁88、遮断弁89及び軽油バーナ弁90が設けられている。遮断弁89をバイパスするようにリークチェック弁92を備えたリークチェック配管91が設けられている。
軽油ポンプ85と圧力計86との間には、圧力調整ライン93が設けられている。圧力調整ライン93の下流側は軽油タンク81に接続されている。圧力調整ライン93には、圧力調整弁94が設けられている。圧力調整弁94は圧力計86の計測値に基づいてその開度が制御部30(図1参照)によって制御される。
流量調整弁88は、流量計87の計測値に基づいてその開度が制御部30(図1参照)によって制御される。燃料供給主配管83の遮断弁89と軽油バーナ弁90との間から分岐して、圧力調整ライン93の圧力調整弁94の下流側に接続される戻り配管95が設けられている。戻り配管95には、循環弁96が設けられている。循環弁96の開度は、制御部30(図1参照)によって制御される。
上記構成の石炭焚きボイラ発電プラント1は、以下のように動作する。
<定常運転>
石炭焚きボイラ発電プラント1が起動された後の定常運転では、以下のように動作する。
粉砕機31が駆動することによって石炭が粉砕され微粉炭が生成させる。微粉炭は、搬送用ガスと共に微粉炭供給管26を通過し、微粉炭燃焼バーナ21に供給される。また、石炭焚きボイラ3から排出された排ガスと熱交換することによって加熱された燃焼用空気が風箱36を介して各微粉炭燃焼バーナ21に供給される。これにより、微粉炭燃焼バーナ21は、微粉炭と搬送用ガスとが混合した微粉燃料混合気を火炉11に吹き込むと共に燃焼用空気を火炉11に吹き込み、火炎を形成する。このように形成された火炎が火炉11内の下部で生じ、燃焼ガスが火炉11内を上昇し、煙道13に排出される。
燃焼ガスは、煙道13に配置された各過熱器41,42,43、再熱器44、節炭器45で熱交換した後、所定の排ガス処理が行われた後に図示しない煙突から大気中に排出される。
燃焼ガスと熱交換することによって過熱器41,42,43で過熱された蒸気は、主蒸気管55を通り高圧タービン51へと導かれて高圧タービン51を回転駆動する。高圧タービン51で仕事を終えた蒸気は、高圧タービン排出配管57を通り再熱器44へと導かれる。再熱器44へ導かれた蒸気は、燃焼ガスによって再び過熱され再熱蒸気となり、再熱蒸気管58を通り中低圧タービン52へ導かれる。中低圧タービン52は、再熱蒸気によって回転駆動される。高圧タービン51及び中低圧タービン52によって得られた回転駆動力は、発電機53へと伝達され発電が行われる。
中低圧タービン52で仕事を終えた蒸気は、中低圧タービン排出配管60を通り復水器63へと導かれて復水となる。復水器63内の復水は、給水ポンプ67によって節炭器45へと導かれて加熱される。その後、節炭器45から導かれた給水は、炉壁管47を通りつつ加熱され、汽水分離器46へと導かれる。汽水分離器46にて分離された蒸気は、各過熱器41,42,43へと順次送られて燃焼ガスによって過熱される。
石炭焚きボイラ発電プラント1は、定常運転時に需要電力が増加した場合、以下の手順で発電量の増加を行う。
(a)需要電力を基に発電機出力要求変化指令を出力し、発電機出力要求変化指令を基に主蒸気圧力設定値を設定するとともに、実際の主蒸気圧力を取得し比較して、主蒸気圧力の増減を行う。
(b)上記(a)を基にボイラ負荷変化指令を出力して、微粉炭燃焼バーナ21の燃焼量(燃料供給量)、ボイラ給水流量、空気流量など制御系統への増加指令を出力する。
(c)上記(b)に従い、粉砕機31への給炭量と搬送用ガスとなる一次空気流量を所定量まで増加させ、微粉炭燃焼バーナ21へ供給する微粉燃料を増加させる。
(d)ボイラ内での給水流量と各収熱部(炉壁管47、過熱器41,42,43、再熱器44)における伝熱バランスを調整して、ボイラ出口の主蒸気圧力を発電機出力要求指令で設定される所定値まで増加させる。
<起動時>
石炭焚きボイラ発電プラント1の起動時には、以下のように動作する。
起動時には、微粉炭燃焼バーナ21が停止している状態で起動用バーナ22を起動する。起動用バーナ22の起動手順は以下の通りである。
起動用バーナ22への燃料供給系統80において、軽油タンク81と連通する軽油ポンプ85を起動して、圧力調整弁94にて圧力制御を行う。
次に、流量調整弁88、リークチェック弁92を開け、所定圧力到達にてリークチェック弁92を閉とし、所定時間経過後、圧力変化が所定範囲内であることを確認し、リークチェック(油漏れ発生の有無確認)を完了とする。このとき、遮断弁89は閉とされている。
そして、リークチェックにて油漏れ発生が無いことを確認後、遮断弁89を開とし、燃料供給系統80内の昇圧を行う。
起動用バーナ22の点火が可能な所定圧力に到達後、軽油バーナ弁90を開とし、起動用バーナ22の点火を行う。このとき、制御部30は、起動用バーナ22によるボイラ負荷増加率として起動用ボイラ負荷増加率を用いる。
以上の起動動作は、図4のステップS1に示されている。
起動用バーナ22によってボイラ負荷が上昇していき、ボイラ負荷が例えば15%以上30%以下の所定値を超えると、微粉炭燃焼バーナ21を稼働し、微粉炭燃焼バーナ21が安定して稼働していることを確認した後に、軽油バーナ弁90を閉として起動用バーナ22を消火する(ステップS2)。
<待機運転>
そして、起動用バーナ22の燃料供給系統80は待機運転を行う(ステップS2)。従来は軽油ポンプ85の運転を停止していたが、本実施形態では戻り配管95と循環弁96を設けることで、軽油ポンプ85の運転を継続する。
具体的には、制御部30は、軽油バーナ弁90を閉として起動用バーナ22を消火した後であっても、軽油ポンプ85の運転を継続させる。そして、戻り配管95に設けた循環弁96を開とする。これにより、軽油ポンプ85から吐出された軽油は、流量調整弁88及び遮断弁89を通過した後に、戻り配管95を通って圧力調整ライン93を介して軽油タンク81へ戻される。流量調整弁88は所定圧力以上となるように開度制御される。この所定圧力としては、起動用バーナ22が安定的に起動する際に要求される圧力が用いられる。
このような軽油の循環運転を行うことによって、燃料供給系統80内で点火可能な圧力を保持する。
<ボイラ負荷上昇時>
発電グリッド内の太陽光発電等の再生可能エネルギー発電プラントが停止した場合のように、比較的大きな負荷上昇が要求された場合(ステップS3)には、以下のような動作を行う。石炭焚きボイラ発電プラント1のボイラ負荷は低負荷状態にあり、微粉炭燃焼バーナ21の一部は停止している状態で、負荷上昇が要求された場合である。
制御部30は、発電機出力要求変化指令により上位からボイラ負荷上昇指令が出力されると、これを受けて起動用バーナ22を点火する(ステップS4)。このとき、起動用バーナ22の燃料供給系統80は待機運転を行っているので、即座に起動用バーナ22を点火させることができる。
これに対して、待機運転を行っていない場合には、起動用バーナ22を点火する前に起動時と同様の起動シーケンスが必要となる。具体的には、待機運転を行わない場合は、図4のステップS20に示したように、起動用バーナ22によって微粉炭燃焼バーナ21の点火が完了すると、起動用バーナ22を消火する。さらに、このときに軽油ポンプ85も停止してしまう。したがって、燃料供給系統80における軽油圧力は大気圧程度まで低下してしまう。この状態でステップS3のボイラ負荷上昇指令が出力されると、再び起動用バーナ22の起動シーケンスが行われることとなる。具体的には、軽油ポンプ85を起動し(ステップS40)、燃料供給系統80内のリークチェックを行い(ステップS41)、燃料供給系統80内の昇圧を行い(ステップS42)、その後に起動用バーナ22の点火を行う(ステップS43)。
このように、待機運転を行う場合の起動用バーナ22の点火(ステップS4)と、待機運転を行わない場合の起動用バーナ22の点火(ステップS40~S43)とを比べれば明らかなように、待機運転を行う場合の方が素早く短時間で起動用バーナ22を再度に点火できることが分かる。これにより、ボイラ負荷変化率を増大することができる。
図5には、待機運転を行う本実施形態と、待機運転を行わない比較例との対比が示されている。同図において、横軸は時間、縦軸はボイラ負荷に比例するバーナ燃焼量である。
符号A1で示した破線が本実施形態の起動用バーナ22のバーナ燃焼量を示し、符号B1で示した点線が待機運転を行っていない比較例の起動用バーナ22のバーナ燃焼量を示す。ボイラ負荷上昇指令出力を制御部30が得た時刻をt0である。本実施形態では、時刻t0で起動用バーナ22が点火されており、比較例では時刻t1で点火されていることが分かる。このように、待機運転を行っている本実施形態はボイラ負荷上昇指令出力を得て即座に点火が行われ、比較例では(t1-t0)時間だけ遅れて点火されている。これにより、本実施形態では、待機運転を行わない比較例よりもバーナ燃焼量を短時間で増加できるため、ボイラ負荷変化率を向上させることができる。
点火後の起動用バーナ22のバーナ燃焼量の傾きを対比すると、本実施形態のバーナ燃焼量変化率(すなわち負荷増大用ボイラ負荷変化率)は、比較例のバーナ燃焼量変化率(すなわち起動用ボイラ負荷変化率)よりも大きくされている。これにより、本実施形態は、比較例よりもバーナ燃焼量を短時間で増加できるため、ボイラ負荷変化率を向上させることができる。
本実施形態では、所定ボイラ負荷まで起動用バーナ22のバーナ燃焼量を単調に増大させていく。所定ボイラ負荷は、目標ボイラ負荷よりも小さい値に設定され、目標ボイラ負荷を実際のボイラ負荷(符号A2参照)が大きくオーバーシュートしない程度に予め設定されている。所定ボイラ負荷の設定値は制御部30の記憶部に予め格納されている。したがって、制御部30には、目標となるボイラ負荷変化率(例えば5%/min以上7%/min以下)を達成するために、所定時間(例えば1分)で目標ボイラ負荷に到達するように負荷増大用ボイラ負荷変化率が設定されている。
本実施形態では、時刻t2にて所定ボイラ負荷に到達した後の起動用バーナ22のバーナ燃焼量は、所定時間にわたって一定とする制御を行う。そして、時刻t4にて起動用バーナ22のバーナ燃焼量を減じる制御を行う。時刻t4は、実際のボイラ負荷(符号A2参照)が目標ボイラ負荷の0.5%以上5%以下(より具体的には1%以上2%以下)だけ下回るボイラ負荷に到達した時刻とされる。制御部30は、当該ボイラ負荷に到達したとき(時刻t4)に起動用バーナ22のバーナ燃焼量を低下させる。なお、起動用バーナ22の負荷を低下させるボイラ負荷は、実際のボイラ負荷(符号A2参照)のオーバーシュートが許容範囲内となるような値に予め設定されている。
本実施形態では、起動用バーナ22のバーナ燃焼量の低下速度(変化率)は、予め定められた値が制御部30に設定されている。具体的には、所定時間(例えば3分)でバーナ燃焼量(すなわち軽油燃料量)が0となるように制御される。この起動用バーナ22のバーナ燃焼量を低下させるときの変化率の絶対値は、起動用バーナ22の起動時のバーナ燃焼量の変化率の絶対値よりも小さく設定されている。これは、起動用バーナ22よりも応答が遅い微粉炭燃焼バーナ21の変化に合わせるためである。そして、本実施形態の起動用バーナ22は、時刻t6にて停止される。例えば、起動用バーナ22のバーナ燃焼量を低下させるときの変化率の絶対値は、起動用バーナ22の起動時のバーナ燃焼量の変化率の絶対値1/4以上1/2以下に設定される。
本実施形態の微粉炭燃焼バーナ21のうち、停止していた微粉炭燃焼バーナ21は、時刻t3にて点火される。このタイミングは、微粉炭燃焼バーナ21の応答遅れ時間によって決まる。応答遅れ時間は、発電機出力要求変化指令により上位からボイラ負荷上昇指令出力を制御部30が受けて粉砕機31に負荷増大指令をし、負荷増大指令後の微粉炭が実際に微粉炭燃焼バーナ21に到達するまでの時間である。
これに対して、待機運転を行っていない比較例の微粉炭燃焼バーナ21は、時刻t3よりも遅れた時刻t5にて点火される。これは、比較例ではボイラ起動時のシーケンスを想定しているので、起動用バーナ22でボイラ負荷が所定値以上に上昇するのを待って微粉炭燃焼バーナ21を点火するという考え方に基づいており、微粉炭燃焼バーナ21の点火を可及的に早めて応答性を高めるという要請がないからである。
比較例では、起動用バーナ22のバーナ燃焼量は、起動用ボイラ負荷変化率に基づいて徐々に上昇させていき、微粉炭燃焼バーナ21が点火されたら微粉炭燃焼バーナ21の負荷上昇に応じて徐々に起動用バーナ22のバーナ燃焼量を徐々に低下させていく。そして、時刻t8で目標ボイラ負荷にて微粉炭燃焼バーナ21の単独運転が実現される。
本実施形態では、目標ボイラ負荷に到達するように起動用バーナ22のバーナ燃焼量がプログラム制御されているので、早めに目標ボイラ負荷に到達させることができる。このため、時刻t8よりも早めの時刻t7で目標ボイラ負荷にて微粉炭燃焼バーナ21の単独運転が実現される。これにより、本実施形態では、目標ボイラ負荷へ短時間で到達できるため、目標となるボイラ負荷変化率(例えば5%/min以上7%/min以下)を達成できるようになっている。なお、比較例におけるボイラ負荷変化率は、比較例よりも低く、例えば3%/min程度である。
比較例よりも上昇した所要のボイラ負荷変化率である5%/min以上7%/min以下を得るために、制御部30は、発電機出力要求変化率として、比較例のような通常の負荷増大時よりも高い値を設定する。高い発電機出力要求変化率を設定することで、それを基に時間経過に対する主蒸気圧力設定を行い、実際の主蒸気圧力と比較して、主蒸気圧力偏差の演算を行う。主蒸気圧力を設定する際は、タイムラグ設定時間を、起動用バーナ22を用いる軽油使用時は、微粉炭燃焼バーナ21を用いる石炭専焼時と比べて約1/2に短縮可能であるため、主蒸気圧力設定の変化率を上げることができる。ここで、タイムラグ設定時間とは、ボイラ負荷変化指令出力後に応答遅れ時間を経て微粉炭燃焼バーナ21の燃焼量が増加し始めることを考慮し、ボイラ負荷変化指令出力後から主蒸気圧力設定の変更を開始するまでの間にタイムラグを設けて、微粉炭燃焼バーナ21の燃焼量に対する主蒸気圧力の安定した制御を達成するための設定時間である。
<汽水分離器の保護制御>
上述のようにボイラ負荷変化率を増大させると給水量の追随遅れが発生し、煙道13に配置された各過熱器41,42,43、再熱器44、節炭器45や、汽水分離器46の入口温度が過剰に上昇して機器を破損させるおそれがある。そこで、ボイラ負荷増大の際には先行的に給水量を増大させる。
具体的に給水量を増大させるには、例えば、高圧蒸気抽気弁71(図参照)の開度を増大させて、給水ポンプ67の駆動用蒸気圧力を増大させて給水ポンプ67の出力増大を行う。また、汽水分離器46の入口に対しての給水量の増大は、汽水分離器46をバイパスした給水を過熱器41,42,43にスプレーするスプレー水量を減少させることで、行ってもよい。
<ボイラ負荷オーバーシュート抑制>
ボイラ負荷増大時にボイラ負荷が目標ボイラ負荷を超えてオーバーシュート(図5参照)するおそれがある。このオーバーシュートを抑制するために、タービンバイパス弁78(図1参照)を閉から開へとする期間を制御して蒸気を復水器63へと導き蒸気タービン51,52をバイパスさせても良い。
本実施形態によれば、以下の作用効果を奏する。
ボイラ負荷を増大させるために燃料供給量を増大させる際に起動用バーナ22を用いることとした。これにより、微粉炭燃焼バーナ21のみで負荷の増大を行う場合に比べて高いボイラ負荷変化率を得ることができる。
さらに、ボイラ負荷増大時に、起動用バーナ22の起動時に用いられる起動用ボイラ負荷変化率よりも大きい負荷増大用ボイラ負荷変化率を用いることとした。これにより、ボイラ負荷増大時にさらに高いボイラ負荷変化率を実現することができる。
起動用バーナ22の停止時であっても起動用燃料を供給する燃料供給系統80の燃料圧力を所定値以上に維持する待機モードを設けることとしたので、ボイラ負荷増大時に起動用バーナ22を起動する際の時間遅れを可及的に小さくできる。これにより、さらに高いボイラ負荷増大率を得ることができる。
目標ボイラ負荷を0.5%以上5%以下だけ下回る負荷に到達したときに起動用バーナ22の燃料供給量を低下させることとした。これにより、ボイラ負荷増大時に必要十分な起動用燃料の消費量とすることができる。また、目標ボイラ負荷を0.5%以上5%以下だけ下回る負荷に到達したときに起動用バーナ22の燃料供給量を低下させることとしたので、ボイラ負荷が目標ボイラ負荷へ到達する時間延長を抑制しながら、現実のボイラ負荷が目標ボイラ負荷を超えるオーバーシュートを可及的に抑制することができる。
起動用バーナ22の燃料減少率を負荷増大用ボイラ負荷変化率よりも緩やかとしたので、起動用バーナ22よりも応答が遅い微粉炭燃焼バーナ21の変化に合わせることができる。これにより、起動用バーナ22と微粉炭燃焼バーナ21との併用を効果的に行うことができる。
なお、本実施形態は、以下のように変形することができる。
図6には、変形例としての起動用バーナ22の燃料供給系統80’が示されている。
同図に示した燃料供給系統80’は、図3に示した燃料供給系統80のように戻り配管95を備えていない。この場合、待機運転における軽油圧力の維持は以下のように行う。
遮断弁89を開とし、常時、軽油バーナ弁90まで軽油を充圧しながら、圧力調整ライン93を経由する循環運転を行う。そして、圧力調整弁94にて点火可能な待機圧力を保持する。
同図に示すように、流量調整弁88と遮断弁89との間に高圧Nアキュムレータ97を設置してもよい。高圧Nによってダイヤフラムを介して燃料供給主配管83内の軽油を加圧しつつ、起動用バーナ22の点火の際に生じる圧力変動を吸収することができる。
待機運転中に軽油を循環させるための補機動力を低減するために、循環運転による常時充圧専用の小型ポンプ85’を軽油ポンプ85に対して並列に設置しても良い。これにより、待機運転中は軽油ポンプ85を停止することができる。当該構成は、図3に示した燃料供給系統80に適用しても良い。
また、軽油ポンプ85のモータをインバーター化して、流量見合いでのモータ回転数制御を行っても良い。これにより、補機動力を低減させることができる。当該構成は、図3に示した燃料供給系統80に適用しても良い。
なお、本実施形態では固体燃料として石炭を用いた構成として説明したが、バイオマス燃料や石油精製時に発生するPC(石油コークス:Petroleum Coke)燃料などの他の炭素含有固体燃料を用いても良い。
1 石炭焚きボイラ発電プラント(発電プラント)
3 石炭焚きボイラ(ボイラ)
5 蒸気タービン発電設備
11 火炉
12 燃焼装置
13 煙道
21 微粉炭燃焼バーナ(固体燃料バーナ)
22 起動用バーナ
23 燃焼補助空気ノズル
26 微粉炭供給管
30 制御部
31 粉砕機(ミル)
36 風箱
41 一次過熱器
42 二次過熱器
43 最終過熱器
44 再熱器
45 節炭器
46 汽水分離器
47 炉壁管
51 高圧タービン
52 中低圧タービン
53 発電機
55 主蒸気管
56 主蒸気弁
57 高圧タービン排出配管
58 再熱蒸気管
59 再熱蒸気弁
60 中低圧タービン排出配管
63 復水器
65 給水配管
67 給水ポンプ
68 給水ポンプ駆動用蒸気タービン
70 高圧蒸気抽気配管
71 高圧蒸気抽気弁
72 低圧蒸気抽気配管
73 低圧蒸気抽気弁
75 ドレン水配管
77 タービンバイパス配管(タービンバイパス経路)
78 タービンバイパス弁
80 燃料供給系統
81 軽油タンク
83 燃料供給主配管
85 軽油ポンプ
86 圧力計
87 流量計
88 流量調整弁
89 遮断弁
90 軽油バーナ弁
91 リークチェック配管
92 リークチェック弁
93 圧力調整ライン
94 圧力調整弁
95 戻り配管
96 循環弁
97 高圧Nアキュムレータ

Claims (8)

  1. 火炉内に固体燃料を用いて火炎を形成する固体燃料バーナと、
    前記固体燃料バーナの起動時に用いられる起動用バーナと、
    前記固体燃料バーナ及び前記起動用バーナを制御する制御部と、
    を備え、
    前記制御部は、ボイラ負荷を増大させるために燃料供給量を増大させる際に、前記起動用バーナの起動時に用いられる起動用ボイラ負荷変化率よりも大きい負荷増大用ボイラ負荷変化率を用いて、前記起動用バーナを制御するボイラ。
  2. 前記起動用バーナに起動用燃料を供給する燃料供給系統を備え、
    前記制御部は、前記起動用バーナの停止時に、前記燃料供給系統の燃料圧力を所定値以上に維持する待機モードを備えている請求項1に記載のボイラ。
  3. 前記制御部は、前記負荷増大用ボイラ負荷変化率を用いてボイラ負荷を上昇させ、目標ボイラ負荷の0.5%以上5%以下だけ下回るボイラ負荷に到達したときに、前記起動用バーナの燃料供給量を低下させる請求項1又は2に記載のボイラ。
  4. 前記起動用バーナの燃料供給量を低下させる際の燃料減少率は、前記負荷増大用ボイラ負荷率よりも緩やかとされている請求項3に記載のボイラ。
  5. 前記制御部は、ボイラ負荷を増大させる際に、給水量を先行的に増大させる請求項1から4のいずれかに記載のボイラ。
  6. 請求項1から5のいずれかに記載のボイラと、
    前記ボイラで生成された蒸気によって駆動される蒸気タービンと、
    前記蒸気タービンによって回転駆動される発電機と、
    を備えている発電プラント。
  7. 前記蒸気タービンの下流側に設置された復水器と、
    前記蒸気タービンの入口側の蒸気を、前記蒸気タービンをバイパスして前記復水器へ導くタービンバイパス経路と、
    前記タービンバイパス経路に設けられたタービンバイパス弁と、
    を備え、
    前記制御部は、ボイラ負荷増大時に、前記タービンバイパス弁を閉から開へとする期間を制御する請求項6に記載の発電プラント。
  8. 火炉内に固体燃料を用いて火炎を形成する固体燃料バーナと、
    前記固体燃料バーナの起動時に用いられる起動用バーナと、
    前記固体燃料バーナ及び前記起動用バーナを制御する制御部と、
    を備えたボイラの制御方法であって、
    ボイラ負荷を増大させるために燃料供給量を増大させる際に、前記起動用バーナの起動時に用いられる起動用ボイラ負荷変化率よりも大きい負荷増大用ボイラ負荷変化率を用いて、前記起動用バーナを制御するボイラの制御方法。
JP2019121474A 2019-06-28 2019-06-28 ボイラ及びこれを備えた発電プラント並びにボイラの制御方法 Active JP7150670B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019121474A JP7150670B2 (ja) 2019-06-28 2019-06-28 ボイラ及びこれを備えた発電プラント並びにボイラの制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121474A JP7150670B2 (ja) 2019-06-28 2019-06-28 ボイラ及びこれを備えた発電プラント並びにボイラの制御方法

Publications (2)

Publication Number Publication Date
JP2021008963A JP2021008963A (ja) 2021-01-28
JP7150670B2 true JP7150670B2 (ja) 2022-10-11

Family

ID=74199700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121474A Active JP7150670B2 (ja) 2019-06-28 2019-06-28 ボイラ及びこれを備えた発電プラント並びにボイラの制御方法

Country Status (1)

Country Link
JP (1) JP7150670B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01150715A (ja) * 1987-12-09 1989-06-13 Toshiba Corp 燠燃焼ボイラの排ガス成分濃度制御装置
JPH0722207U (ja) * 1993-08-10 1995-04-21 石川島播磨重工業株式会社 微粉炭バーナ装置

Also Published As

Publication number Publication date
JP2021008963A (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
US7509794B2 (en) Waste heat steam generator
JP6749780B2 (ja) 追い焚きガスタービンコンバインドサイクルプラントの改良された温度が比較的低い状態の蒸気タービンを起動する方法
JP3032005B2 (ja) ガス・蒸気タービン複合設備
JP2010090894A (ja) 給水ポンプサイズを縮小するために燃料ガス加熱器の排水を使用する蒸気温度調節用装置
US20140345278A1 (en) Method for operating a gas and steam turbine installation for frequency support
JP5665621B2 (ja) 排熱回収ボイラおよび発電プラント
JP6400779B1 (ja) 発電プラント及びその運転方法
JP6342539B1 (ja) 発電プラント及びその運転方法
JP2007187352A (ja) ボイラの起動方法
JP7150670B2 (ja) ボイラ及びこれを備えた発電プラント並びにボイラの制御方法
CN112303608A (zh) 锅炉发电设备及其控制方法
JP4718333B2 (ja) 貫流式排熱回収ボイラ
JP7351793B2 (ja) 石炭火力発電システム
JP7409864B2 (ja) 蒸気発生装置、プラント、及び、蒸気発生装置の制御方法
KR20170075010A (ko) 복합 화력 발전 설비들의 저 부하 턴다운
JP2019173696A (ja) コンバインドサイクル発電プラント、およびその運転方法
JP5537475B2 (ja) 排熱回収ボイラおよび発電プラント
JP5183649B2 (ja) 貫流ボイラの強制冷却方法
JP2007285220A (ja) コンバインドサイクル発電設備
JP2013007533A (ja) 貫流ボイラの制御方法及び装置
WO2023002814A1 (ja) アンモニア燃料供給ユニット、発電プラント、及びボイラの運転方法
JP2022123455A (ja) 発電プラント及びその制御方法並びに改造方法
JP2023123154A (ja) ボイラシステム用の配管ユニット、ボイラシステムの改造方法、及びボイラシステム
Berezinets et al. Topping the 300-MW power unit at the GRES-24 district power station with a GTE-110 gas turbine unit. Technical solutions on the thermal circuit
KR20160147243A (ko) 연소로 폐열회수장치 및 연소로 폐열회수방법

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20211206

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7150670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150