WO2012165601A1 - 排熱回収ボイラおよび発電プラント - Google Patents

排熱回収ボイラおよび発電プラント Download PDF

Info

Publication number
WO2012165601A1
WO2012165601A1 PCT/JP2012/064233 JP2012064233W WO2012165601A1 WO 2012165601 A1 WO2012165601 A1 WO 2012165601A1 JP 2012064233 W JP2012064233 W JP 2012064233W WO 2012165601 A1 WO2012165601 A1 WO 2012165601A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat recovery
air
exhaust heat
recovery boiler
gas
Prior art date
Application number
PCT/JP2012/064233
Other languages
English (en)
French (fr)
Inventor
啓一 中村
秀顕 島田
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to DE112012002336.6T priority Critical patent/DE112012002336T5/de
Priority to KR1020137032291A priority patent/KR101530807B1/ko
Publication of WO2012165601A1 publication Critical patent/WO2012165601A1/ja
Priority to US14/090,813 priority patent/US9416686B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • F01K23/105Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • Embodiments of the present invention relate to an exhaust heat recovery boiler having an auxiliary combustion device and a power plant.
  • the combined cycle power plant is a power plant in which an exhaust heat recovery boiler is combined with a gas turbine and a steam turbine.
  • a high-temperature and high-pressure combustion gas is sent from the combustor to the gas turbine, and the generator is rotated by rotating the gas turbine by the expansion of the combustion gas.
  • the exhaust gas is introduced into an exhaust heat recovery boiler, and steam is generated by the heat energy of the exhaust gas in the exhaust heat recovery boiler.
  • the steam is sent to the steam turbine and turns the generator with the gas turbine.
  • an exhaust heat recovery boiler is a boiler that generates steam corresponding to the heat of exhaust gas discharged from a gas turbine and supplies the steam to the steam turbine.
  • Heat recovery boilers are increasing. This is because the output of the gas turbine decreases in summer and it is necessary to compensate for the decrease in the amount of steam generated in the exhaust heat recovery boiler as the amount of exhaust gas decreases.
  • other than steam turbines such as cogeneration plants and desalination plants This is to supply steam.
  • the first stage auxiliary combustion device arranged on the most upstream side with respect to the flow direction of the exhaust gas emits exhaust gas. Since most of the oxygen contained therein is consumed, the amount of oxygen supplied to the second and subsequent auxiliary combustion devices downstream of the oxygen tends to be insufficient. In the burners of the auxiliary burners after the second stage, incomplete combustion may occur, and there is a problem that the concentration of harmful substances such as carbon monoxide and nitrogen oxides increases.
  • the auxiliary combustion device is provided with a plurality of burners. As the amount of fuel input is reduced, the combustion state in each burner tends to become unstable, and the concentration of harmful gases such as carbon monoxide in the exhaust gas is reduced. There was a problem that it was extremely high.
  • an object of the present invention is to eliminate the problems of the prior art, maintain a good combustion state in each burner of the auxiliary combustion device, and reduce emission of gases such as carbon monoxide discharged from the auxiliary combustion device.
  • An object of the present invention is to provide an exhaust heat recovery boiler and a power plant that are made possible.
  • the present invention provides a gas turbine comprising a plurality of heat exchangers having a superheater, an evaporator, and a economizer along a flow direction of exhaust gas from a gas turbine.
  • a gas turbine comprising a plurality of heat exchangers having a superheater, an evaporator, and a economizer along a flow direction of exhaust gas from a gas turbine.
  • an auxiliary combustion device that heats the exhaust gas by burning a plurality of burners on the upstream side of any one of the heat exchangers, and a plurality of the auxiliary combustion devices
  • Each of the burners is provided with an air supply device that additionally supplies air from the outside of the duct.
  • a plurality of heat exchangers having a superheater, an evaporator, and a economizer are arranged in a duct along the flow direction of the exhaust gas from the turbine, and steam is generated using the exhaust gas of the gas turbine.
  • an auxiliary combustion device that burns a plurality of burners to heat the exhaust gas, and a harmful gas in the exhaust gas discharged from the exhaust heat recovery boiler Means for extinguishing any one of the burners or a plurality of burners among the burners provided in the auxiliary burner so that the concentration does not exceed the limit value.
  • the present invention includes a gas turbine that rotationally drives a turbine with high-temperature, high-pressure combustion gas, and a plurality of heat exchangers having a superheater, an evaporator, and a economizer along the flow direction of exhaust gas from the gas turbine.
  • An exhaust heat recovery boiler that is disposed in the duct and generates steam using the exhaust gas of the gas turbine, a steam turbine driven by the steam generated in the exhaust heat recovery boiler, and driven by the gas turbine and the steam turbine
  • the exhaust heat recovery boiler on the upstream side of any one of the heat exchangers, an auxiliary combustion device that burns a plurality of burners to heat the exhaust gas, and a plurality of auxiliary combustion devices
  • Each of the burners is provided with an air supply device that additionally supplies air from the outside of the duct.
  • FIG. 1 is a system diagram of a power plant to which an exhaust heat recovery boiler according to an embodiment of the present invention is applied.
  • FIG. 1 is a schematic diagram showing a configuration of an exhaust heat recovery boiler according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a burner arrangement of a first stage auxiliary burner installed in the exhaust heat recovery boiler of FIG. 2.
  • FIG. 3 is a schematic view showing a burner arrangement of a second stage auxiliary burner installed in the exhaust heat recovery boiler of FIG. 2.
  • 5 is a graph showing the relationship between the load of the gas turbine and the valve opening degree of the air regulating valve in the auxiliary combustion device of FIG. 4.
  • FIG. 5 is a graph showing the relationship between the fuel input amount and the valve opening of the air regulating valve in the auxiliary combustion device of FIG. 4.
  • FIG. 5 is a graph showing the relationship between the amount of fuel input and the concentration of carbon monoxide in the auxiliary combustion device of FIG. 4.
  • FIG. 1 is a system diagram of a combined cycle type power plant to which an exhaust heat recovery boiler according to the present embodiment is applied.
  • reference numeral 10 indicates a generator
  • 12 indicates a steam turbine
  • 14 indicates a gas turbine
  • Reference numeral 16 indicates an exhaust heat recovery boiler.
  • the generator 10 is connected by the same drive shaft 18 as the steam turbine 12 and the gas turbine 14.
  • An air compressor 20 is connected to the drive shaft 18.
  • the air compressor 20 compresses air A sucked from the outside into a high temperature and high pressure and supplies the compressed air to the combustor 22.
  • the compressed air is mixed with the fuel supplied from the fuel system 24 and burned, and high-temperature and high-pressure combustion gas is sent to the gas turbine 14.
  • the turbine of the gas turbine 14 is rotationally driven, and the generator 10 rotates.
  • the exhaust gas 25 discharged from the gas turbine 14 is guided to the exhaust heat recovery boiler 16 through the exhaust duct 26.
  • a high temperature superheater 28 in order from the upstream side along the flow direction of the exhaust gas 25 discharged from the gas turbine 14,
  • Four types of heat exchangers such as an evaporator 32 and a economizer 34 are installed.
  • a steam drum 36 is installed in the evaporator 32.
  • the economizer 34 heats the boiler feed water with the heat of the exhaust gas 25 and then supplies it to the steam drum 36.
  • the steam drum 36 performs gas-liquid separation of the saturated steam generated in the evaporator 32, and maintains a balance with the saturated steam by maintaining the interior at a predetermined water level.
  • the water that has been gas-liquid separated by the steam drum 36 is reintroduced into the evaporator 32.
  • the saturated steam inside the steam drum 36 is sent to the low-temperature superheater 30 through the saturated steam pipe 38 and superheated here, and further guided to the high-temperature superheater 28 where the steam is further superheated.
  • a temperature reducer 40 for adjusting the steam temperature is installed between the low temperature superheater 30 and the high temperature superheater 28.
  • An outlet pipe 42 is connected to the boiler outlet of the high-temperature superheater 28, and the superheated steam superheated by the high-temperature superheater 28 is sent to the steam turbine 12 through the outlet pipe 42 and performs expansion work to perform the steam turbine. 12 is rotated.
  • the steam that has finished the work is led to the condenser 43 and returned to the water, and then sent to the feed water pump 46 through the condensate return pipe 45, where it is pressurized and returned to the economizer 34.
  • auxiliary combustion devices 50 and 52 are installed as follows.
  • the first stage auxiliary combustion device 50 is disposed at the most upstream position in the flow direction of the exhaust gas 25, and is installed upstream of the high-temperature superheater 28 in the case of the exhaust heat recovery boiler 16 of this embodiment. Yes.
  • a plurality of burners 51 are installed toward the high-temperature superheater 28 on the downstream side.
  • the first fuel supply pipe 54 is provided with a fuel adjustment valve 56 and a fuel cutoff valve 57, and controls the amount of fuel to be burned by the burner 51 by adjusting the opening of the fuel adjustment valve 56. Yes. When all the burners 51 are extinguished, the fuel cutoff valve 57 is closed.
  • FIG. 3 is a diagram showing the arrangement of the burners 51 and the fuel supply pipes to the burners 51 in the first stage auxiliary burner 50.
  • the first fuel supply pipe 54 branches to the fuel supply pipes 58a and 58b downstream of the fuel adjustment valve 56.
  • four burners 51 are provided in the fuel supply pipes 58a and 58b, respectively.
  • 59 are connected in parallel. When the fuel cutoff valve 59 is closed, each burner 51 is extinguished individually.
  • the second stage auxiliary burner 52 is disposed downstream of the first stage auxiliary burner 50, in this embodiment, upstream of the evaporator 32.
  • a plurality of burners 53 are installed toward the evaporator 32 on the downstream side.
  • the second fuel supply pipe 55 is provided with a fuel adjustment valve 60 that adjusts the amount of fuel input and a fuel cutoff valve 61 that closes when all the burners 53 are extinguished.
  • FIG. 4 is a view showing the arrangement of the burners 53 in the second stage auxiliary burner 52, fuel supply piping to each burner 53, and air ducts. Similar to the first stage auxiliary combustion device 50, the second fuel supply pipe 55 branches to the fuel supply pipes 63a and 63b downstream of the fuel adjustment valve 60. In this embodiment, the fuel supply pipe 63a, Four burners 53 are connected to 63 b in parallel via fuel cutoff valves 64. When the fuel cutoff valve 64 is closed, each burner 51 is extinguished individually.
  • the air sent from the fan 65 flows through the air ducts 66a and 66b and is introduced into each burner 53.
  • An air amount adjusting valve 68 is provided at an air inflow portion of each burner 53. In the air amount adjusting valve 68, the opening degree of the valve is adjusted by an actuator 69.
  • reference numeral 70 indicates a control device that controls ignition, extinguishing operation, and air supply amount of the first stage auxiliary combustion device 50 and the second stage auxiliary combustion device 52.
  • the flow rate of the fuel flowing through the fuel system 24 is detected by the flow meter 62 and input to the control device 70.
  • the exhaust duct for guiding the exhaust gas discharged from the exhaust heat recovery boiler 16 to the chimney is provided with a gas sensor 72 for detecting the concentration of harmful gases such as carbon monoxide and nitrogen oxides in the exhaust gas.
  • the gas concentration detection signal 72 is introduced into the control device 70.
  • the exhaust heat recovery boiler according to the present embodiment is configured as described above. Next, the operation thereof will be described. First, the operation of the first stage auxiliary combustion device 50 and the second stage auxiliary combustion device 52 in the exhaust heat recovery boiler 16 will be described.
  • the second stage auxiliary combustion device 52 is arranged upstream of the evaporator 32, when the exhaust gas 25 is heated by the flame ejected from the burner 53, the evaporator 32 is mainly used in the evaporator 32. The amount of evaporation can be increased.
  • the first stage auxiliary combustion device 50 is disposed upstream of the high temperature superheater 28 and the low temperature superheater 30, when the exhaust gas 25 is heated by the flame blown from the burner 51, The degree of superheat of steam in the high temperature superheater 28 and the low temperature superheater 30 can be increased.
  • the first stage auxiliary combustion device 50 When operating the exhaust heat recovery boiler 16 without igniting the auxiliary combustion devices 50 and 52, when the amount of steam is insufficient and the amount of steam to be supplied to the steam turbine 12 is increased, the first stage The burner 53 of the auxiliary burner 52 is ignited, and the amount of fuel input to the second stage auxiliary burner 52 is increased. If the first stage auxiliary combustion device 50 is operated from the first stage, the high temperature exhaust gas 25 will overheat the high temperature superheater 28 and the low temperature superheater 30 while the evaporation amount is not sufficient, which is not preferable. .
  • the fuel is also supplied to the first stage auxiliary combustion device 50 and burned by the burner 51. If the temperature of the exhaust gas 25 is not increased by heating with the first stage auxiliary combustion device 50, the superheat of the steam in the high temperature superheater 28 and the low temperature superheater 30 will not be sufficient, and the steam temperature at the boiler outlet will decrease. This is because there is a risk of it.
  • the first stage auxiliary combustion device 50 is sufficiently supplied with oxygen by the exhaust gas 25. Therefore, the combustion state is stabilized.
  • the exhaust gas 25 in which oxygen has been consumed in the first stage auxiliary combustion apparatus 50 is supplied to the second stage auxiliary combustion apparatus 52, oxygen tends to be deficient. The state may become unstable.
  • the fan 65 is rotated and air is allowed to flow through the air ducts 66a and 66b so that unstable combustion due to lack of oxygen does not occur in the second stage auxiliary combustion device 52.
  • the burner 53 is supplied. By doing so, oxygen can be additionally supplied to each burner 53 of the second stage auxiliary burner 52, so that a stable combustion state can be secured, and the second stage auxiliary burner 52 is secured.
  • the emission of harmful gases, such as carbon monoxide, can be suppressed in advance.
  • the control device 70 monitors the concentration of the harmful gas such as carbon monoxide discharged from the second stage auxiliary combustion device 52, and controls the valve opening degree of the air amount adjustment valve 68. It is controlled automatically and always maintains the optimal combustion state.
  • the load of the gas turbine 14 and the amount of fuel input are also involved in addition to the amount of air. .
  • the reason why the combustion state becomes unstable and the emission amount of carbon monoxide or the like increases in the second stage auxiliary combustor 52 is that the gas turbine 14 is operated at a high load and the second stage auxiliary combustor 52 This is noticeable when the amount of fuel input is low.
  • FIG. 5 is a graph showing the relationship between the load of the gas turbine 14 and the valve opening degree of the air amount adjustment valve 68.
  • the flow rate of the exhaust gas 25 supplied from the gas turbine 14 to the exhaust heat recovery boiler 16 is small. Is set to fully open. As the load on the gas turbine 14 gradually increases, the flow rate of the exhaust gas 25 also increases accordingly. Therefore, when the preset load L1 is reached, air is supplied to each burner 53 of the second stage auxiliary combustor 52. Therefore, the control device 70 reduces the valve opening degree of the air regulating valve 68 so as not to become excessive.
  • an optimal opening for the load is set in advance so that the concentration of harmful gas such as carbon monoxide in the gas discharged from the second stage auxiliary combustion device 52 does not exceed the limit value. For example, it is decreased linearly as shown in FIG. In this way, the valve opening of the air amount adjustment valve 68 is reduced as the load of the gas turbine 14 increases, so that the air adjustment valve 68 is optimal for each burner 53 of the second stage auxiliary combustion device 52. A quantity of air is supplied and the combustion state can be stabilized.
  • FIG. 6 is a graph showing the relationship between the amount of fuel input to the second stage auxiliary burner 52 and the valve opening of the air amount adjustment valve 68.
  • the opening of the air adjustment valve 68 is large, the amount of air to each burner 53 becomes excessive. A proper valve opening is set, and combustion in each burner 53 is stabilized.
  • the control device 70 has a flow meter 62 so that the concentration of harmful gas such as carbon monoxide in the exhaust gas does not exceed the limit value.
  • the opening of the air adjustment valve 68 is increased to increase the amount of air to be supplied.
  • valve opening change pattern shown in FIG. 6 are combined to monitor the load of the gas turbine 14 and the fuel input amount at the same time while opening the air adjustment valve 68. May be automatically adjusted.
  • the amount of exhaust gas supplied to the exhaust heat recovery boiler 16 increases, so that the same amount of fuel is input to the second stage auxiliary combustor 52. Even so, the higher the output of the gas turbine 14, the greater the amount of steam generated.
  • the amount of fuel input to the second stage auxiliary burner 52 may be reduced.
  • the combustion state in each burner 53 tends to become unstable, and the concentration of harmful gases such as carbon monoxide becomes extremely high.
  • some burners 53 are extinguished as shown in FIG. 7 so that the concentration of harmful gas such as carbon monoxide does not exceed a predetermined limit value.
  • the horizontal axis indicates the amount of fuel input to the second-stage auxiliary burner 52
  • the vertical axis indicates the concentration of carbon monoxide in the gas discharged from the second-stage auxiliary burner 52.
  • the concentration Cmax of carbon monoxide is a limit value.
  • Curve A shows the change in the carbon monoxide concentration when all the burners 53 of the second stage auxiliary combustor 52 are ignited. As the fuel input decreases, the carbon monoxide concentration gradually increases.
  • the control device 70 monitors the concentration of carbon monoxide discharged from the second stage auxiliary combustion device 52 based on the output signal of the gas sensor 72, and when the carbon monoxide concentration approaches the limit value Cmax. Before that, for example, half, in this case, the fuel cutoff valves 64 of the four burners 53 are closed to extinguish the fire.
  • the remaining four burners 53 are ignited, and the fuel input amount per unit increases, so the amount of oxygen supplied per burner 53 together with the fuel As a result, the combustion state is stabilized, and as a result, the carbon monoxide concentration can be greatly reduced.
  • an arbitrary fuel cutoff valve 59 may be closed to extinguish a part of the eight burners 51.
  • the exhaust heat recovery boiler according to the present invention has been described with reference to the embodiment of the exhaust heat recovery boiler provided with the first stage auxiliary combustion device and the second stage auxiliary combustion device.
  • this embodiment is an example.
  • the scope of the invention is not limited thereto.
  • exhaust heat recovery boiler of the present invention is not limited to a steam turbine, but can be applied to, for example, a plant that supplies steam to a desalination plant or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

 ガスタービン14からの排ガスの流れ方向にそって過熱器28、30、蒸発器32、節炭器34を有する複数の熱交換器がダクト27内に配置され、ガスタービン14の排ガス25を利用して蒸気を発生する排熱回収ボイラであり、いずれかの熱交換器の上流側で、複数のバーナを燃焼させて排ガスを加熱する助燃装置50、52を設け、助燃装置52の複数のバーナのそれぞれに、ダクトの外部から空気を供給する空気供給装置を設ける。

Description

排熱回収ボイラおよび発電プラント
 本発明の実施形態は、助燃装置を有する排熱回収ボイラおよび発電プラントに関する。
 近年の火力発電プラントでは、プラントの熱効率の向上を図るため、コンバインドサイクル発電が主流になりつつある。コンバインドサイクル発電プラントは、ガスタービン、蒸気タービンに排熱回収ボイラを組み合わせた発電プラントである。ガスタービンには燃焼器から高温高圧の燃焼ガスが送られ、燃焼ガスの膨張によりガスタービンを回転させ発電機を回す。その後、排ガスは排熱回収ボイラに導入され、この排熱回収ボイラで排ガスのもつ熱エネルギーによって蒸気を発生させる。蒸気は蒸気タービンに送られ、ガスタービンとともに発電機を回すことになる。
 一般に、排熱回収ボイラは、ガスタービンから排出される排ガスの熱に応じた蒸気を発生して蒸気タービンに蒸気を供給するボイラであるが、最近では、排ガスを加熱する助燃装置を付加した排熱回収ボイラが増えている。これは、夏季にはガスタービンの出力が低下し排ガス量の減少に伴い排熱回収ボイラでの蒸気発生量低下を補填する必要があること、またコジェネレーションプラントや造水プラント等、蒸気タービン以外にも蒸気を供給するためである。
 最近の排熱回収ボイラにおいては、蒸気供給量を増やすために助燃装置が大型化してきている。これに伴い排熱回収ボイラ内の排ガス温度が高くなり、ボイラ構成部材の耐久性・信頼性が下がるのを防止するために、助燃装置を複数箇所に設置することが行われている(例えば、特開2001-116208号)。
 複数台の助燃装置を設置した排熱回収ボイラで、複数台の助燃装置を同時に燃焼させた場合、排ガスの流れ方向に対して最も上流側に配置されている第1段目の助燃装置で排ガス中に含まれる酸素の多くが消費されるため、それより下流の第2段目以降の助燃装置に供給される酸素量が不足しがちになる。第2段目以降の助燃装置のバーナでは不完全燃焼が発生することがあり、一酸化炭素、窒素酸化物などの有害物質濃度が増加する、という問題があった。
 また、ガスタービンの出力が高くなってくる場合には、排熱回収ボイラに供給される排ガス流量が増大するので、助燃装置への燃料投入量を減らしていくことがある。この場合、助燃装置は複数のバーナを備えているところ、燃料投入量を絞っていくと、各バーナでの燃焼状態が不安定になり易く、排ガス中の一酸化炭素等の有害ガスの濃度が極端に高くなる、という問題があった。
 そこで、本発明の目的は、前記従来技術の有する問題点を解消し、助燃装置の各バーナでの燃焼状態を良好に保ち、助燃装置から排出される一酸化炭素等の有ガスの排出を低減できるようにした排熱回収ボイラおよび発電プラントを提供することにある。
 前記の目的を達成するために、本発明は、ガスタービンからの排ガスの流れ方向にそって過熱器、蒸発器、節炭器を有する複数の熱交換器がダクト内に配置され、前記ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラにおいて、いずれかの前記熱交換器の上流側で、複数のバーナを燃焼させて前記排ガスを加熱する助燃装置と、前記助燃装置の複数のバーナのそれぞれに、前記ダクトの外部から空気を追加的に供給する空気供給装置と、を具備したことを特徴とするものである。
 また、本発明は、スタービンからの排ガスの流れ方向にそって過熱器、蒸発器、節炭器を有する複数の熱交換器がダクト内に配置され、前記ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラにおいて、いずれかの前記熱交換器の上流側で、複数のバーナを燃焼させて前記排ガスを加熱する助燃装置と、前記排熱回収ボイラから排出される排ガス中の有害ガスの濃度が制限値を超えないように、前記助燃装置の備えるバーナのうち、いずれかのバーナ若しくは複数のバーナを消火する手段と、を具備したことを特徴とするものである。
 さらに、本発明は、高温、高圧の燃焼ガスによってタービンを回転駆動するガスタービンと、ガスタービンからの排ガスの流れ方向にそって過熱器、蒸発器、節炭器を有する複数の熱交換器がダクト内に配置され、前記ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラと、前記排熱回収ボイラで発生した蒸気により駆動される蒸気タービンと、前記ガスタービンおよび蒸気タービンによって駆動される発電機と、を備え、前記排熱回収ボイラは、いずれかの前記熱交換器の上流側で、複数のバーナを燃焼させて前記排ガスを加熱する助燃装置と、前記助燃装置の複数のバーナのそれぞれに、前記ダクトの外部から空気を追加的に供給する空気供給装置と、を具備したことを特徴とするものである。
は本発明の一実施形態による排熱回収ボイラが適用される発電プラントの系統図である。 は本発明の一実施形態による排熱回収ボイラの構成を示す模式図である。 は図2の排熱回収ボイラに設置される第1段目の助燃装置のバーナ配置を示す模式図である。 は図2の排熱回収ボイラに設置される第2段目の助燃装置のバーナ配置を示す模式図である。 は図4の助燃装置において、ガスタービンの負荷と、空気調整弁の弁開度との関係を示すグラフである。 は図4の助燃装置において、燃料投入量と空気調整弁の弁開度との関係を示すグラフである。 は図4の助燃装置において、燃料投入量と一酸化炭素濃度の関係を示すグラフである。
発明を実施するための最良の形態
 以下、本発明による排熱回収ボイラの一実施形態について、添付の図面を参照しながら説明する。 
 図1は、本実施形態による排熱回収ボイラが適用されるコンバインドサイクル型の発電プラントの系統図である。
 この図1において、参照番号10は発電機を示し、12は蒸気タービン、14はガスタービンを示している。参照番号16は、排熱回収ボイラを示す。
 発電機10は、蒸気タービン12とガスタービン14と同一の駆動軸18によって連結されている。また駆動軸18には空気圧縮機20が連結されている。この空気圧縮機20は、外部から吸入された空気Aを高温高圧に圧縮して燃焼器22に供給する。この燃焼器22では、燃料系統24から供給される燃料に圧縮された空気が混合されて燃焼し、高温高圧の燃焼ガスがガスタービン14に送られる。この燃焼ガスが膨張仕事をすることによりガスタービン14のタービンが回転駆動され、発電機10は回転する。ガスタービン14から排出された排ガス25は排気ダクト26を通って排熱回収ボイラ16に導かれる。
 図1に示されるように、排熱回収ボイラ16のダクト27の内部には、ガスタービン14から排出された排ガス25の流れ方向にそって上流側から順に高温過熱器28、低温過熱器30、蒸発器32、節炭器34といった4種類の熱交換器が設置されている。蒸発器32には蒸気ドラム36が設置されている。節炭器34は、ボイラ給水を排ガス25の熱で加熱してから蒸気ドラム36に供給する。蒸気ドラム36では、蒸発器32で発生した飽和蒸気の気液分離を行うとともに、その内部を所定の水位に保つことで飽和蒸気とのバランスが保たれるようになっている。蒸気ドラム36で気液分離された水は蒸発器32に再導入される。
 蒸気ドラム36内部の飽和蒸気は、飽和蒸気管38を通って低温過熱器30に送られ、ここで過熱されてから、さらに高温過熱器28に導かれ、ここで蒸気はさらに過熱される。低温過熱器30と高温過熱器28の間には、蒸気温度を調節するための減温器40が設置されている。
 高温過熱器28のボイラ出口には出口配管42が接続されており、高温過熱器28で過熱された過熱蒸気は、出口配管42を通って蒸気タービン12に送られ、膨張仕事を行って蒸気タービン12を回転させることになる。仕事を終えた蒸気は、復水器43に導かれて水に戻されてから、復水戻り配管45を通って給水ポンプ46に送られ、ここで加圧されて節炭器34に還流される。燃料系統24からは、助燃装置50、52にそれぞれ燃料を供給する第1の燃料供給配管54、第2の燃料供給配管55が分岐している。
 本実施形態による排熱回収ボイラ16では、次のように助燃装置50、52が設置されている。 
 このうち、第1段目の助燃装置50は、排ガス25の流れ方向において最上流の位置に配置され、この実施形態の排熱回収ボイラ16の場合、高温過熱器28の上流側に設置されている。この第1段目の助燃装置50には、複数のバーナ51が下流側の高温過熱器28に向けて設置されている。第1の燃料供給配管54には、燃料調整弁56と燃料遮断弁57が配設されており、バーナ51で燃焼させる燃料投入量を燃料調整弁56の開度を調整することで制御している。すべてのバーナ51を消火するときには燃料遮断弁57が閉じるようになっている。
 図3は、第1段目の助燃装置50でのバーナ51の配置および各バーナ51への燃料供給配管を示す図である。第1の燃料供給配管54は、燃料調整弁56の下流で燃料供給配管58a、58bに分岐しており、この実施形態では、燃料供給配管58a、58bにはそれぞれ4つのバーナ51が燃料遮断弁59を介して並列に接続されている。燃料遮断弁59が閉じると、各バーナ51は個別に消火される。
 次に、図2において、第2段目の助燃装置52は、第1段目の助燃装置50より下流位置、この実施形態の場合、蒸発器32の上流側に配置されている。この第2段目の助燃装置52には複数のバーナ53が下流側の蒸発器32に向けて設置されている。第2の燃料供給配管55には、燃料投入量を調整する燃料調整弁60とすべてのバーナ53を消火するときに閉じる燃料遮断弁61が配設されている。
 図4は、第2段目の助燃装置52でのバーナ53の配置および各バーナ53への燃料供給配管、空気ダクトを示す図である。第1段目の助燃装置50と同様に、第2の燃料供給配管55は、燃料調整弁60の下流で燃料供給配管63a、63bに分岐しており、この実施形態では、燃料供給配管63a、63bにはそれぞれ4つのバーナ53が燃料遮断弁64を介して並列に接続されている。燃料遮断弁64が閉じると、各バーナ51は個別に消火される。
 また、ファン65から送られてくる空気は、空気ダクト66a、66bを流れて各バーナ53に導入される。各バーナ53の空気流入部分には、空気量調整弁68が設けられている。この空気量調整弁68では、弁の開度はアクチュエータ69で調整されるようになっている。
 次に、図2において、参照番号70は、第1段目の助燃装置50と第2段目の助燃装置52の点火、消火操作および空気供給量を制御する制御装置を示す。燃料系統24を流れる燃料の流量は、流量計62により検出され、制御装置70に入力される。また、排熱回収ボイラ16から排出される排ガスを煙突に導く排気ダクトには、排ガス中の一酸化炭素や窒素酸化物などの有害ガスの濃度を検出するガスセンサ72が設けられており、このガスセンサ72のガス濃度検出信号は、制御装置70に導入される。
 本実施形態による排熱回収ボイラは、以上のように構成されるものであり、次に、その作用について説明する。 
 まず、第1段目の助燃装置50と第2段目の助燃装置52の排熱回収ボイラ16における作用について説明する。
 図1において、第2段目の助燃装置52は、蒸発器32の上流に配置されていることから、バーナ53から噴き出される火炎で排ガス25が加熱されると、主に、蒸発器32での蒸発量を増大させることができる。
 これに対して、第1段目の助燃装置50は、高温過熱器28、低温過熱器30の上流に配置されていることから、バーナ51から噴き出される火炎で排ガス25が加熱されると、これら高温過熱器28、低温過熱器30での蒸気の過熱度を上昇させることができる。
 助燃装置50、52に点火せずに排熱回収ボイラ16を運転している時に、蒸気量が足りなくなり、蒸気タービン12に供給すべき蒸気量を増やす場合には、最初に第2段目の助燃装置52のバーナ53に点火して、第2段目の助燃装置52への燃料投入量を増加させていく。最初の段階から第1段目の助燃装置50を運転していると、蒸発量が十分でない状態のまま高温の排ガス25で高温過熱器28と低温過熱器30を過熱しすぎることなり、好ましくない。
 このように第2段目の助燃装置52だけに燃料を投入して、バーナ53で燃料を燃焼させている間は、排ガス25中に十分な酸素があるため、燃焼状態は安定する。
 次に、蒸気タービン12に供給すべき蒸気量をさらに増やす場合には、第1段目の助燃装置50にも燃料を供給してバーナ51で燃料を燃焼させる。第1段目の助燃装置50で加熱して排ガス25の温度を上昇させないと、高温過熱器28、低温過熱器30での蒸気の過熱が十分でなくなり、ボイラ出口での蒸気温度が低下してしまうおそれがあるからである。
 こうして、第1段目の助燃装置50と第2段目の助燃装置52の双方で燃料を燃焼させていると、第1段目の助燃装置50では、排ガス25によって酸素が十分に供給されるので、燃焼状態は安定する。これに対して、第2段目の助燃装置52には、第1段目の助燃装置50で酸素が消費されてしまっている排ガス25が供給されるため、酸素不足になりがちであり、燃焼状態が不安定になることがある。
 本実施形態では、第2段目の助燃装置52に酸素不足による不安定燃焼が生じないように、図4に示すように、ファン65を回転させ、空気ダクト66a、66bに空気を流して各バーナ53に供給している。こうすることによって、第2段目の助燃装置52の各バーナ53には酸素を追加供給することができるので、安定した燃焼状態を確保することが可能になり、第2段目の助燃装置52からの一酸化炭素等の有害ガスの排出を未然に抑制することができる。
 この間、ファン65で供給する空気量は多すぎても少なすぎても、第2段目の助燃装置52の燃焼状態は安定しないので、空気量調整弁68の弁の開度を調整しながら、適正量の空気を各バーナ53に供給する。空気量調整弁68の弁の開度は、制御装置70がアクチュエータ69に弁開度を指令して調整される。制御装置70は、ガスセンサ72の出力信号に基づいて、第2段目の助燃装置52から排出される一酸化炭素等の有害ガスの濃度を監視しながら、空気量調整弁68の弁開度を自動で制御し、常に最適な燃焼状態を維持する。
 第2段目の助燃装置52にファン65で空気を追加供給する場合、安定した燃焼状態を確保するためには、空気量以外にも、ガスタービン14の負荷や燃料投入量も関係してくる。第2段目の助燃装置52で燃焼状態が不安定になり一酸化炭素等の排出量が増加するのは、ガスタービン14が高負荷で運転され、かつ第2段目の助燃装置52への燃料投入が少ない時に顕著である。
 そこで、図5は、ガスタービン14の負荷と空気量調整弁68の弁開度の関係を示すグラフである。 
 図5において、ガスタービン14が低負荷領域で運転されているときは、このガスタービン14から排熱回収ボイラ16に供給される排ガス25の流量は少ないので、空気量調整弁68の弁開度は全開に設定されている。ガスタービン14の負荷が次第に増大していくと、それに伴って排ガス25の流量も増大していくので、予め設定した負荷L1に達したら、第2段目の助燃装置52の各バーナ53に空気が過剰にならないように、制御装置70は空気調整弁68の弁開度を絞っていく。このとき弁開度については、第2段目の助燃装置52から排出されるガス中の一酸化炭素等の有害ガスの濃度が制限値を超えないように、負荷に対する最適な開度をあらかじめ設定しておき、例えば、図5に示すように直線的に減少させる。 
 このように、ガスタービン14の負荷増大に応じて空気量調整弁68の弁開度は絞られていくので、第2段目の助燃装置52の各バーナ53には、空気調整弁68により最適量の空気が供給され、燃焼状態を安定させることができる。
 次に、図6は、第2段目の助燃装置52への燃料投入量と空気量調整弁68の弁開度の関係を示すグラフである。 
 図6において、第2段目の助燃装置52への燃料投入量が少ない領域では、空気調整弁68の開度が大きいと、各バーナ53への空気量が過剰になってしまうので、あらかじめ適正な弁開度を設定しておき、各バーナ53での燃焼を安定させる。燃料投入量が増大していくと、燃焼に必要な空気量も増えるので、排出ガス中の一酸化炭素等の有害ガスの濃度が制限値を超えないように、制御装置70は、流量計62により燃料投入量を監視しながら、予め設定した燃料投入量F1を超えてから、空気調整弁68の開度を大きくしていって、供給する空気量を増やしていく。
 なお、図5に示した弁開度の変化パターンと図6に示した弁開度の変化パターンを組み合わせて、ガスタービン14の負荷と燃料投入量を同時に監視しながら空気調整弁68の開度を自動調整するようにしてもよい。
 これまで説明したのは、第2段目の助燃装置52の各バーナ53にファン65により空気を送って燃焼状態を安定させる場合であるが、以下のように、第2段目の助燃装置52に設けている8台のバーナ53うち、任意の一台若しくは複数台のバーナ53を消火するようにしてもよい。
 例えば、ガスタービン14の出力が高くなっている場合には、排熱回収ボイラ16に供給される排ガス量は増大してくるので、第2段目の助燃装置52に同じ量の燃料が投入されたとしても、ガスタービン14の出力が高くなるほど蒸気発生量は増えることになる。
このような場合、蒸気発生量が最大値以上にならないようにするために、第2段目の助燃装置52への燃料投入量を減らしていく場合がある。
 第2段目の助燃装置52への燃料投入量を減らしていくと、各バーナ53での燃焼状態が不安定になり易く、一酸化炭素等の有害ガスの濃度が極端に高くなる特性を示す場合がある。このような場合、一酸化炭素等の有害ガスの濃度が所定の制限値を超えないように、図7に示すように、いくつかのバーナ53を消火することになる。
 図7において、横軸は第2段目の助燃装置52への燃料投入量を示し、縦軸は第2段目の助燃装置52から排出されるガス中の一酸化炭素濃度を示している。一酸化炭素の濃度Cmaxが制限値である。
 曲線Aは、第2段目の助燃装置52のバーナ53が全台点火されているときの一酸化炭素濃度の変化を示す。燃料投入量が減っていくにつれて、一酸化炭素濃度は次第に高まっていく。制御装置70は、ガスセンサ72の出力信号に基づいて、第2段目の助燃装置52から排出される一酸化炭素の濃度を監視しており、一酸化炭素濃度が制限値Cmaxに近づいていくと、その手前で、例えば、半数、この場合4台のバーナ53の燃料遮断弁64を閉じて消火する。
 この結果、曲線Bで示すように、残りの4台のバーナ53は点火しており、一台あたりの燃料投入量は増加するので、燃料といっしょにバーナ53一台あたりに供給される酸素量が増えて燃焼状態が安定する結果、一酸化炭素濃度を大きく減少させることができる。
 複数のバーナ53を消火する場合には、図4において、水平方向の同じ平面上にあるバーナ53を同時に消火することが好ましい。これにより、バーナ53により加熱される排ガス25が水平方向に温度不均一となる状態を低減することができる。
 以上、第2段目の助燃装置52のバーナ53のうちの一部のバーナを消火させることにより、残りの点火したままのバーナ53の燃焼状態を安定させる実施形態を説明したが、第1段目の助燃装置50についても、燃料投入量を減らす場合には、図3において、任意の燃料遮断弁59を閉じて、8台あるバーナ51のうちの一部を消火するようにしてもよい。
 以上、本発明に係る排熱回収ボイラについて、第1段目の助燃装置、第2段目の助燃装置を設けた排熱回収ボイラの実施形態を挙げて説明したが、この実施形態は例示であり、発明の範囲はそれらに限定されない。
 また、本発明の排熱回収ボイラは、蒸気タービンだけに限らずに、例えば、造水プラント等に蒸気を供給するプラントにも適用することができる。

Claims (23)

  1.  ガスタービンからの排ガスの流れ方向にそって過熱器、蒸発器、節炭器を有する複数の熱交換器がダクト内に配置され、前記ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラにおいて、
     いずれかの前記熱交換器の上流側で、複数のバーナを燃焼させて前記排ガスを加熱する助燃装置と、
     前記助燃装置の複数のバーナのいずれかに、前記ダクトの外部から空気を追加的に供給する空気供給装置と、
    を具備したことを特徴とする排熱回収ボイラ。
  2.  前記助燃装置は、前記過熱器の上流側で前記排ガスを加熱する第1の助燃装置と、前記蒸発器の上流側で前記排ガスを加熱する第2の助燃装置と、を有し、前記空気供給装置は、前記第2の助燃装置の各バーナに空気を供給することを特徴とする請求項1に記載の排熱回収ボイラ。
  3.  前記空気供給装置は、前記第2の助燃装置の各バーナに空気を供給する通路となる空気ダクトと、空気を前記各バーナに向けて前記空気ダクトに空気を強制的に流すファンと、を備えることを特徴とする請求項2に記載の排熱回収ボイラ。
  4.  前記空気供給装置は、前記第2の助燃装置の各バーナに供給する空気量を調整する空気量調整手段をさらに備えることを特徴とする請求項2または3に記載の排熱回収ボイラ。
  5.  前記排熱回収ボイラから排出される排ガス中の有害ガスの濃度を検出する手段をさらに備え、前記有害ガスの特定成分濃度が制限値を超えないように前記空気量調整手段を操作し空気量を制御することを特徴とする請求項4に記載の排熱回収ボイラ。
  6.  前記ガスタービンの負荷に応じて、有害ガスの特定成分濃度が制限値を超えないように前記空気量調整手段を操作し空気量を制御することを特徴とする請求項5に記載の排熱回収ボイラ。
  7.  前記カスタービンの負荷が増大することに応じて、前記空気量調整手段の弁開度を絞っていくことを特徴とする請求項6に記載の排熱回収ボイラ。
  8.  前記ガスタービンが低負荷で運転されているときには、前記空気量調整手段の弁開度を全開にし、負荷が増大し予め設定した負荷の設定値を越えた後は、前記弁開度を直線的に減少させることを特徴とする請求項6に記載の排熱回収ボイラ。
  9.  前記第2の助燃装置への燃料投入量に応じて、有害ガスの特定成分濃度が制限値を超えないように前記空気量調整手段を操作し空気量を制御することを特徴とする請求項5に記載の排熱回収ボイラ。
  10.  前記第2の助燃装置への燃料投入量が少ない領域では、前記空気量調整手段の弁開度を予め設定した適正な開示に保ち、燃料投入量が増加し予め設定した所定の燃料投入量を超えた後は、前記弁開度を徐々に大きくすることを特徴とする請求項9に記載の排熱回収ボイラ。
  11.  前記排熱回収ボイラから排出される排ガス中の有害ガスの濃度が制限値を超えないように、前記第2の助燃装置の備えるバーナのうち、いずれか任意のバーナを消火する手段をさらに備えたことを特徴とする請求項2に記載の排熱回収ボイラ。
  12.  ガスタービンからの排ガスの流れ方向にそって過熱器、蒸発器、節炭器を有する複数の熱交換器がダクト内に配置され、前記ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラにおいて、
     いずれかの前記熱交換器の上流側で、複数のバーナを燃焼させて前記排ガスを加熱する助燃装置と、
     前記排熱回収ボイラから排出される排ガス中の有害ガスの濃度が制限値を超えないように、前記助燃装置の備えるバーナのうち、いずれか任意のバーナを消火する手段と、
    を具備したことを特徴とする排熱回収ボイラ。
  13.  高温、高圧の燃焼ガスによってタービンを回転駆動するガスタービンと、
     ガスタービンからの排ガスの流れ方向にそって過熱器、蒸発器、節炭器を有する複数の熱交換器がダクト内に配置され、前記ガスタービンの排ガスを利用して蒸気を発生する排熱回収ボイラと、
     前記排熱回収ボイラで発生した蒸気により駆動される蒸気タービンと、
     前記ガスタービンおよび蒸気タービンによって駆動される発電機と、を備え、
     前記排熱回収ボイラは、
     いずれかの前記熱交換器の上流側で、複数のバーナを燃焼させて前記排ガスを加熱する助燃装置と、
     前記助燃装置の複数のバーナのいずれかに、前記ダクトの外部から空気を追加的に供給する空気供給装置と、
    を具備したことを特徴とする発電プラント。
  14.  前記助燃装置は、前記過熱器の上流側で前記排ガスを加熱する第1の助燃装置と、前記蒸発器の上流側で前記排ガスを加熱する第2の助燃装置と、を有し、前記空気供給装置は、前記第2の助燃装置の各バーナに空気を供給することを特徴とする請求項13に記載の発電プラント。
  15.  前記空気供給装置は、前記第2の助燃装置の各バーナに空気を供給する通路となる空気ダクトと、空気を前記各バーナに向けて前記空気ダクトに空気を強制的に流すファンと、を備えることを特徴とする請求項14に記載の発電プラント。
  16.  前記空気供給装置は、前記第2の助燃装置の各バーナに供給する空気量を調整する空気量調整手段を備えることを特徴とする請求項14または15に記載の発電プラント。
  17.  前記排熱回収ボイラから排出される排ガス中の有害ガスの濃度を検出する手段をさらに備え、前記有害ガスの特定成分濃度が制限値を超えないように前記空気量調整手段を操作し空気量を制御することを特徴とする請求項16に記載の発電プラント。
  18.  前記ガスタービンの負荷に応じて、有害ガスの特定成分濃度が制限値を超えないように前記空気量調整手段を操作し空気量を制御することを特徴とする請求項17に記載の発電プラント。
  19.  前記カスタービンの負荷が増大することに応じて、前記空気量調整手段の弁開度を絞っていくことを特徴とする請求項18に記載の発電プラント。
  20.  前記ガスタービンが低負荷で運転されているときには、前記空気量調整手段の弁開度を全開にし、負荷が増大し予め設定した負荷の設定値を越えた後は、前記弁開度を直線的に減少させることを特徴とする請求項18に記載の発電プラント。
  21.  前記第2の助燃装置への燃料投入量に応じて、有害ガスの特定成分濃度が制限値を超えないように前記空気量調整手段を操作し空気量を制御することを特徴とする請求項18に記載の発電プラント。
  22.  前記第2の助燃装置への燃料投入量が少ない領域では、前記空気量調整手段の弁開度を予め設定した適正な開示に保ち、燃料投入量が増加し予め設定した所定の燃料投入量を超えた後は、前記弁開度を徐々に大きくすることを特徴とする請求項21に記載の発電プラント。
  23.  前記排熱回収ボイラから排出される排ガス中の有害ガスの濃度が制限値を超えないように、前記第2の助燃装置の備えるバーナのうち、いずれかのバーナを消火する手段をさらに備えたことを特徴とする請求項16に記載の発電プラント。
PCT/JP2012/064233 2011-05-31 2012-05-31 排熱回収ボイラおよび発電プラント WO2012165601A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012002336.6T DE112012002336T5 (de) 2011-05-31 2012-05-31 Wärmerückgewinnungdampferzeuger und Kraftwerk
KR1020137032291A KR101530807B1 (ko) 2011-05-31 2012-05-31 배열 회수 보일러 및 발전 플랜트
US14/090,813 US9416686B2 (en) 2011-05-31 2013-11-26 Heat recovery steam generator and power plant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011122420A JP5774381B2 (ja) 2011-05-31 2011-05-31 排熱回収ボイラおよび発電プラント
JP2011-122420 2011-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/090,813 Continuation US9416686B2 (en) 2011-05-31 2013-11-26 Heat recovery steam generator and power plant

Publications (1)

Publication Number Publication Date
WO2012165601A1 true WO2012165601A1 (ja) 2012-12-06

Family

ID=47259452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064233 WO2012165601A1 (ja) 2011-05-31 2012-05-31 排熱回収ボイラおよび発電プラント

Country Status (5)

Country Link
US (1) US9416686B2 (ja)
JP (1) JP5774381B2 (ja)
KR (1) KR101530807B1 (ja)
DE (1) DE112012002336T5 (ja)
WO (1) WO2012165601A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256644A (zh) * 2013-04-11 2013-08-21 杭州锅炉集团股份有限公司 扩大低压省煤器系统

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2535513T3 (es) * 2011-09-07 2015-05-12 Alstom Technology Ltd Método para el funcionamiento de una central eléctrica
US9260982B2 (en) * 2013-05-30 2016-02-16 General Electric Company System and method of waste heat recovery
US9587520B2 (en) * 2013-05-30 2017-03-07 General Electric Company System and method of waste heat recovery
EP3001102B1 (en) 2014-09-26 2020-10-28 Stork Thermeq B.V. A heat recovery unit and power plant
JP2017535713A (ja) 2014-10-24 2017-11-30 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft ダクト燃焼式コンバインドサイクル発電プラントの応答性を向上させるシステム及び方法
EP3037635B1 (en) * 2014-12-22 2017-08-09 Alfa Laval Corporate AB Exhaust gas treatment system and method, as well as ship comprising, and use of, such a system
KR102132044B1 (ko) * 2015-06-16 2020-07-09 현대중공업파워시스템 주식회사 복합 화력발전 시스템
DE102017223705A1 (de) * 2017-12-22 2019-06-27 E.On Energy Projects Gmbh Kraftwerk
JP7414663B2 (ja) * 2020-08-06 2024-01-16 株式会社東芝 排熱回収ボイラ
CN112010522A (zh) * 2020-09-13 2020-12-01 上海康恒环境股份有限公司 一种垃圾焚烧锅炉耦合污泥低温炭化处置系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313601A (ja) * 1991-04-11 1992-11-05 Ishikawajima Harima Heavy Ind Co Ltd ボイラ設備
JPH0729583A (ja) * 1993-07-12 1995-01-31 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JPH1037716A (ja) * 1996-07-26 1998-02-10 Ishikawajima Harima Heavy Ind Co Ltd 排気再燃型コンバインドサイクルプラントの空気流量制御方法及び装置
JP2001116208A (ja) * 1999-10-14 2001-04-27 Babcock Hitachi Kk ダクトバーナ付き排熱回収ボイラ
JP2007232262A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd コージェネレーションプラント及びその運転方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443550A (en) * 1967-05-05 1969-05-13 Gen Electric Two-section heat recovery steam generator
US4555902A (en) * 1984-01-16 1985-12-03 Vevy Manufacturing Inc. Heat recovery system
GB9309735D0 (en) * 1993-05-12 1993-06-23 British Gas Plc Steam turbine
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
US5628183A (en) * 1994-10-12 1997-05-13 Rice; Ivan G. Split stream boiler for combined cycle power plants
US5558047A (en) * 1994-11-30 1996-09-24 The Babcock & Wilcox Company Low Nox integrated boiler-burner cogeneration apparatus
JP3794796B2 (ja) * 1997-08-29 2006-07-12 三菱重工業株式会社 コンバインド発電プラント
CA2334699C (en) * 1998-06-10 2008-11-18 Siemens Aktiengesellschaft Fossil-fuel-fired steam generator
KR100309208B1 (ko) * 1999-05-25 2001-09-28 윤영석 배열회수용 보일러
US20100305768A1 (en) * 2009-06-01 2010-12-02 General Electric Company Control for improved thermal performance of a steam turbine at partial load

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313601A (ja) * 1991-04-11 1992-11-05 Ishikawajima Harima Heavy Ind Co Ltd ボイラ設備
JPH0729583A (ja) * 1993-07-12 1995-01-31 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池発電装置
JPH1037716A (ja) * 1996-07-26 1998-02-10 Ishikawajima Harima Heavy Ind Co Ltd 排気再燃型コンバインドサイクルプラントの空気流量制御方法及び装置
JP2001116208A (ja) * 1999-10-14 2001-04-27 Babcock Hitachi Kk ダクトバーナ付き排熱回収ボイラ
JP2007232262A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd コージェネレーションプラント及びその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103256644A (zh) * 2013-04-11 2013-08-21 杭州锅炉集团股份有限公司 扩大低压省煤器系统
CN103256644B (zh) * 2013-04-11 2015-07-08 杭州锅炉集团股份有限公司 扩大低压省煤器系统

Also Published As

Publication number Publication date
DE112012002336T5 (de) 2014-02-20
KR20140040737A (ko) 2014-04-03
US9416686B2 (en) 2016-08-16
JP2012251671A (ja) 2012-12-20
JP5774381B2 (ja) 2015-09-09
KR101530807B1 (ko) 2015-06-22
US20140090356A1 (en) 2014-04-03

Similar Documents

Publication Publication Date Title
JP5774381B2 (ja) 排熱回収ボイラおよび発電プラント
US20140150438A1 (en) System and method for operating a gas turbine in a turndown mode
JP5346258B2 (ja) 加熱用低btu燃料流量比ダクトバーナ及び熱回収システム
JP5302066B2 (ja) ガスタービンエンジンの負荷ポイントを制御するための制御システム及び方法
RU2614471C2 (ru) Способ и система регулирования для газовой турбины
JP5665621B2 (ja) 排熱回収ボイラおよび発電プラント
CN113874603B (zh) 用于改进锅炉和蒸汽涡轮机启动时间的系统和方法
JP5130145B2 (ja) ボイラプラント,ボイラプラントの制御装置及びその制御方法
JP2010261456A (ja) ガスタービン用燃料を加熱するシステム及び方法
JP5400850B2 (ja) 排熱ボイラシステムの制御方法および制御装置
JP7185507B2 (ja) 蒸気タービン設備、蒸気タービン設備の始動方法およびコンバインドサイクルプラント
KR102003136B1 (ko) 보일러, 콤바인드 사이클 플랜트 및 보일러의 증기 냉각 방법
JP4859512B2 (ja) 燃焼ボイラの制御方法
JP5537475B2 (ja) 排熱回収ボイラおよび発電プラント
JP6385574B2 (ja) コンバインドサイクル発電ユニットのための排熱回収ボイラの運転方法およびコンバインドサイクル発電プラント
JP2006266085A (ja) 再生サイクル式ガスタービン発電システム
KR102485928B1 (ko) 하이브리드 발전설비의 급기장치 및 급기방법
JP2005146940A (ja) コジェネレーションシステムの運転方法
JP6127658B2 (ja) ガスエンジンコージェネレーションシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12792866

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120120023366

Country of ref document: DE

Ref document number: 112012002336

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20137032291

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12792866

Country of ref document: EP

Kind code of ref document: A1