WO2017159744A1 - ショベル - Google Patents

ショベル Download PDF

Info

Publication number
WO2017159744A1
WO2017159744A1 PCT/JP2017/010481 JP2017010481W WO2017159744A1 WO 2017159744 A1 WO2017159744 A1 WO 2017159744A1 JP 2017010481 W JP2017010481 W JP 2017010481W WO 2017159744 A1 WO2017159744 A1 WO 2017159744A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance information
stereo camera
height
reference height
controller
Prior art date
Application number
PCT/JP2017/010481
Other languages
English (en)
French (fr)
Inventor
裕介 佐野
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to JP2018505986A priority Critical patent/JP6651607B2/ja
Publication of WO2017159744A1 publication Critical patent/WO2017159744A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/245Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using a plurality of fixed, simultaneously operating transducers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C15/00Surveying instruments or accessories not provided for in groups G01C1/00 - G01C13/00

Definitions

  • the present invention relates to an excavator.
  • Patent Document 1 An excavator that can measure the topography of an excavation site using a stereo camera mounted on a cabin is known (see, for example, Patent Document 1).
  • a stereo camera as a soil shape measuring device is mounted on a cabin. Therefore, at the time of deep excavation, the excavation part may be blocked by the earth and sand in the foreground and measurement may not be possible.
  • An excavator includes a lower traveling body, an upper revolving body that is rotatably mounted on the lower traveling body, an attachment that is attached to the upper revolving body, and a measurement that is attached to the attachment.
  • the control unit calculates distance information by eliminating the influence due to the change in the posture of the attachment derived based on the detection value of the posture sensor.
  • the above-mentioned means can provide an excavator that can accurately measure the topography of the excavation site even during deep excavation.
  • FIG. 1 is a side view of an excavator according to an embodiment of the present invention.
  • the excavator has a crawler-type lower traveling body 1 capable of self-propelling and an upper revolving body 3 mounted on the lower traveling body 1 through a turning mechanism 2 so as to be capable of turning.
  • the boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 as an end attachment is attached to the tip of the arm 5.
  • the attachment is constituted by the boom 4, the arm 5, and the bucket 6.
  • the boom 4, arm 5, and bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • a boom angle sensor S1 as an attitude sensor is attached to the boom 4
  • an arm angle sensor S2 as an attitude sensor is attached to the arm 5, and a bucket angle sensor S3 as an attitude sensor is attached to the bucket 6.
  • the boom angle sensor S1 measures the posture of the boom 4.
  • the boom angle sensor S ⁇ b> 1 is an acceleration sensor that detects a tilt angle with respect to the horizontal plane and detects a rotation angle of the boom 4 with respect to the upper swing body 3.
  • the arm angle sensor S2 measures the posture of the arm 5.
  • the arm angle sensor S ⁇ b> 2 is an acceleration sensor that detects the rotation angle of the arm 5 relative to the boom 4 by detecting the inclination with respect to the horizontal plane.
  • the bucket angle sensor S3 measures the attitude of the bucket 6.
  • the bucket angle sensor S3 is an acceleration sensor that detects the rotation angle of the bucket 6 with respect to the arm 5 by detecting the inclination with respect to the horizontal plane.
  • the boom angle sensor S1, the arm angle sensor S2, and the bucket angle sensor S3 are a potentiometer using a variable resistor, a stroke sensor that detects a stroke amount of a corresponding hydraulic cylinder, and a rotary encoder that detects a rotation angle around a connecting pin. Etc. You may be comprised by the combination of the acceleration sensor and the gyro sensor.
  • the boom 4 is provided with a stereo camera S4 as an earth and sand shape measuring device.
  • the earth and sand shape measuring apparatus may be a laser distance meter, a laser range finder, or the like.
  • the stereo camera S4 may be attached to the arm 5.
  • Stereo camera S4 may be attached to both boom 4 and arm 5.
  • the upper swing body 3 is provided with a cabin 10 as a cab and a power source such as an engine 11 is mounted.
  • the cabin 10 is provided with a communication device S5 as communication means.
  • the communication device S5 controls communication between the excavator and the outside.
  • the communication device S5 controls, for example, wireless communication between the management device 100 in another location and the excavator.
  • an input device D1 In the cabin 10, an input device D1, an audio output device D2, a display device D3, a height setting switch D4, a controller 30 and the like are installed.
  • the controller 30 functions as a control unit that performs drive control of the excavator.
  • the controller 30 is composed of an arithmetic processing unit including a CPU and an internal memory.
  • Various functions of the controller 30 are realized by the CPU executing programs stored in the internal memory.
  • the input device D1 is a device for an excavator operator to input various information to the controller 30 and the like.
  • the input device D1 is a membrane switch attached around the display device D3.
  • a touch panel or the like may be used as the input device D1.
  • the audio output device D2 outputs various audio information in response to an audio output command from the controller 30 or the like.
  • an in-vehicle speaker that is directly connected to the controller 30 is used as the audio output device D2.
  • An alarm device such as a buzzer may be used as the audio output device D2.
  • the display device D3 as a display unit outputs various image information in response to a command from the controller 30.
  • an in-vehicle liquid crystal display directly connected to the controller 30 is used as the display device D3 attached to the driver's seat in the cabin 10.
  • the height setting switch D4 is a device for an excavator operator to input a reference height to the controller 30 or the like.
  • a switch provided to the operation lever is used as the height setting switch D4.
  • a calibration switch or the like may be used.
  • FIG. 2 is a functional block diagram illustrating a configuration example of the excavator.
  • the controller 30 calculates distance information from the stereo camera S4 to the measurement target ground surface.
  • the controller 30 receives the first measurement value from the stereo camera S4.
  • the first measurement value is data acquired by the stereo camera S4, for example, parallax data.
  • the parallax data is, for example, a stereo pair image obtained by the left and right cameras.
  • the range shown in the stereo pair image and the size of the object shown in the stereo pair image change according to the disturbance.
  • the disturbance includes, for example, a change in the posture of the boom 4, that is, a change in the height of the stereo camera S4.
  • the controller 30 estimates the influence of the change in the posture of the boom 4 on the stereo pair image.
  • the stereo pair image is adjusted by changing the range appearing in the stereo pair image and the size of the object appearing in the stereo pair image so that the influence is offset.
  • accurate distance information is calculated based on the adjusted stereo pair image.
  • the controller 30 includes functional units that perform various functions.
  • the controller 30 includes a height position calculation unit 31, a distance calculation unit 32, and a memory unit 33.
  • the height position calculation unit 31 calculates the height position of the stereo camera S4 attached to the boom 4 based on the detection value of the boom angle sensor S1.
  • a signal for setting a reference height is input to the height position calculation unit 31 from the height setting switch D4.
  • the signal for setting the reference height is input to the height position calculation unit 31 when the excavator operator presses the height setting switch D4, for example.
  • the height position calculation unit 31 calculates the height position of the stereo camera S4 at that time from the detection value of the boom angle sensor S1 and sets it as the reference height.
  • the height position is a height with respect to a plane including the ground contact surface of the excavator.
  • the reference height is set, for example, before the measurement by the stereo camera S4 is started.
  • the height position calculation unit 31 calculates the moving height of the stereo camera S4 (the amount of change in height from the reference height) based on the height position of the stereo camera S4 at the time of measurement and the reference height.
  • the moving height of the stereo camera S4 corresponds to the amount of change from the height position of the stereo camera S4 at the time of setting the reference height to the height position of the stereo camera S4 after the movement.
  • the height position calculation unit 31 may convert the movement height of the stereo camera S4 into parallax data related information corresponding to the movement height of the stereo camera S4 and output it.
  • the parallax data related information is, for example, information related to the range that appears in the stereo pair image and the size of the object that appears in the stereo pair image.
  • the controller 30 Based on the parallax data related information corresponding to the moving height of the stereo camera S4 output from the height position calculation unit 31, the controller 30 outputs the first measurement value (parallax data) output from the stereo camera S4 to the second. Correction to measurement values (parallax data).
  • the second measurement value corresponds to parallax data (stereo pair image) acquired by a virtual stereo camera located at the reference height.
  • the controller 30 adjusts the focal length (adjusts the parallax) so that the first measurement value (first stereo pair image) becomes the second measurement value (second stereo pair image).
  • the controller 30 generates the second stereo pair image by changing the range shown in the first stereo pair image and the size of the object shown in the first stereo pair image.
  • controller 30 outputs the second stereo pair image to the distance calculation unit 32.
  • the distance calculation unit 32 calculates distance information from the reference height to the measurement target surface J based on the second stereo pair image.
  • the distance information may be a distance image.
  • the distance calculation unit 32 outputs the calculated distance information to the display device D3 and the memory unit 33.
  • the display device D3 generates and displays a cross-sectional shape of the terrain based on the acquired plurality of distance information.
  • the memory unit 33 outputs the acquired distance information to the communication device S5.
  • the communication device S5 transmits distance information to the management device 100 using a communication line.
  • FIG. 3 is a flowchart of the distance information calculation process. This process is repeated at predetermined time intervals.
  • step (hereinafter abbreviated as ST) 1 the height position calculation unit 31 of the controller 30 sets the reference height based on the signal for setting the reference height input from the height setting switch D4.
  • controller 30 starts measurement using the stereo camera S4 in ST2.
  • the controller 30 Based on the parallax data related information corresponding to the moving height of the stereo camera S4 output from the height position calculation unit 31, the controller 30 outputs the first measurement value (first stereo pair image) output from the stereo camera S4. Is corrected to the second measurement value (second stereo pair image) (ST3).
  • FIG. 4 is an explanatory diagram of the principle of generating the second stereo pair image.
  • Hn indicates the height based on the second stereo pair image.
  • H is a reference height.
  • Hn ′ indicates the height based on the first stereo pair image.
  • ⁇ Z is the moving height of the stereo camera S4. Therefore, the height Hn based on the second stereo pair image can be calculated by subtracting the moving height ⁇ Z from the height Hn ′ based on the first stereo pair image.
  • the moving height ⁇ Z is calculated by the height position calculation unit 31.
  • the controller 30 performs a process of adjusting the focal length (adjusting the parallax) so that the first stereo pair image becomes the second stereo pair image (ST4).
  • FIG. 5 is an explanatory diagram of a method for adjusting the focal length (view angle) of the stereo camera S4.
  • FIG. 5 shows a right viewpoint image which is one of the stereo pair images by a solid line, and a left viewpoint image which is the other of the stereo pair images by a broken line.
  • (1) shows an image of the object X when the stereo camera S4 images from the reference height.
  • the parallax included in (1) is, for example, 15 pixels.
  • (2) shows an image of the object X captured by the stereo camera S4 when the boom 4 moves upward.
  • the parallax possessed by (2) is, for example, 10 pixels.
  • the controller 30 adjusts the focal length (view angle) so that the object X in (2) has the same size as the object X in (1), and increases the parallax by 5 pixels. Do.
  • the controller 30 of the present embodiment corrects the number of pixels according to the change in the height of the stereo camera S4. That is, the controller 30 optically changes the range shown in the first stereo pair image and the size of the object shown in the first stereo pair image. However, the controller 30 may change the range shown in the first stereo pair image and the size of the object shown in the first stereo pair image in a digital image processing manner.
  • the distance calculation unit 32 of the controller 30 calculates the distance information from the reference height to the measurement target ground surface J based on the second measurement value (second stereo pair image) generated in ST3 (ST5).
  • controller 30 outputs the calculated distance information to the display device D3 and the memory unit 33.
  • the excavator of this embodiment since the excavator of this embodiment has the stereo camera S4 attached to the boom 4 as an attachment, it is possible to measure the topography of the excavation site even during deep excavation. Further, the excavator of this embodiment calculates accurate distance information based on the second stereo pair image generated so as to remove the influence of the moving height of the stereo camera S4 from the first stereo pair image of the stereo camera S4. Therefore, even if the posture of the boom 4 changes during measurement, the topography of the excavation site can be accurately measured.
  • FIG. 6 is a diagram showing a configuration example of an excavator according to another embodiment of the present invention.
  • the excavator configuration example shown in FIG. 6 is different from the excavator configuration example shown in FIG. 2 in that the controller 30 calculates the distance information, but is common in other points. Therefore, description of common parts is omitted, and different parts are described in detail.
  • the first measurement value (first stereo pair image) is input from the stereo camera S4 to the distance calculation unit 32 of the present embodiment.
  • the distance calculation unit 32 calculates first distance information based on the input first measurement value (first stereo pair image). In the present embodiment, for example, the first distance information is calculated from the parallax of the first stereo pair image.
  • the first distance information is distance information from the stereo camera S4 to the measurement target ground surface J including the moving height of the stereo camera S4.
  • the controller 30 corrects the first distance information calculated by the distance calculation unit 32 based on the moving height of the stereo camera S4 output from the height position calculation unit 31 to the distance information from the reference height.
  • FIG. 7 is a flowchart of the distance information calculation process. This process is repeated at predetermined time intervals.
  • the height position calculation unit 31 of the controller 30 sets the reference height based on the signal for setting the reference height input from the height setting switch D4 in ST21.
  • controller 30 starts measurement using the stereo camera S4 in ST22.
  • the distance calculation unit 32 of the controller 30 calculates first distance information based on the first measurement value (first stereo pair image) output from the stereo camera S4 (ST23).
  • the controller 30 Based on the moving height of the stereo camera S4 output from the height position calculation unit 31, the controller 30 corrects the first distance information calculated by the distance calculation unit 32 to distance information from the reference height (ST24). ).
  • FIG. 8 is an explanatory diagram of the principle of calculating accurate distance information from the first distance information.
  • Hn indicates distance information after correction.
  • H refers to a reference height.
  • ⁇ Z indicates the moving height of the stereo camera S4.
  • X2 indicates an object imaged by the stereo camera S4.
  • Rn indicates the distance from the stereo camera S4 at the reference height to the object X2.
  • Rn ′ indicates the distance from the moved stereo camera S4 to the object X2.
  • Rn and Rn ′ are derived from the first stereo pair image output from the stereo camera S4.
  • Hn ′ indicates the first distance information calculated from Rn ′.
  • L indicates the distance from the upper swing body 3 to the stereo camera S4. For example, L is stored in advance in an internal memory or the like.
  • indicates the angle of the boom 4 when the stereo camera S4 is at the reference height.
  • ⁇ ′ indicates the angle of the boom 4 when the stereo camera S4 moves by ⁇ Z.
  • ⁇ and ⁇ ′ are detected by, for example, the boom angle sensor S1.
  • ⁇ n indicates an angle with respect to the optical axis (vertical line) of the stereo camera S4 of a line connecting the stereo camera S4 and the object X2 when the stereo camera S4 is at the reference height.
  • ⁇ n ′ indicates an angle with respect to the optical axis (vertical line) of the stereo camera S4 of a line segment connecting the stereo camera S4 and the object X2 when the stereo camera S4 moves by ⁇ Z.
  • ⁇ n and ⁇ n ′ are calculated from internal parameters of the stereo camera S4, for example.
  • ⁇ X indicates the movement distance of the stereo camera S4 in the X direction (left and right direction in FIG. 8).
  • W indicates the distance between the optical axis of the stereo camera S4 at the reference height and X2.
  • the distance information Hn can be calculated by the following formula.
  • the moving height ⁇ Z is obtained by the equation (1).
  • ⁇ X Lcos ⁇ ′ ⁇ Lcos ⁇ (2)
  • ⁇ n is expressed by Expression (3).
  • ⁇ n ′ is expressed by Expression (3) ′.
  • Hn ′ Rn ′ ⁇ cos ⁇ n ′ (4)
  • the distance information Hn is obtained by Expression (5).
  • the distance information Hn Rn ′ ⁇ cos ⁇ n′ ⁇ Z (5)
  • the distance information Hn can be calculated by subtracting the moving height ⁇ Z from the first distance information Hn ′.
  • the controller 30 calculates distance information in the vertical direction of the stereo camera S4 has been described. However, the controller 30 performs the same process even if the attitude of the stereo camera S4 changes due to the attachment operation. Similar processing is performed in a plurality of directions other than vertically below.
  • controller 30 outputs the calculated distance information to the display device D3 and the memory unit 33.
  • accurate distance information is calculated by eliminating the influence of the moving height of the stereo camera S4 from the first measurement value (first stereo pair image) of the stereo camera S4. Therefore, even if the posture of the boom 4 moves during measurement, the topography of the excavation site can be accurately measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Multimedia (AREA)
  • Mining & Mineral Resources (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Measurement Of Optical Distance (AREA)
  • Operation Control Of Excavators (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

本発明の実施例に係るショベルは、下部走行体(1)と、下部走行体(1)に旋回可能に搭載される上部旋回体(3)と、上部旋回体(3)に取り付けられるアタッチメントと、アタッチメントに取り付けられた、測定対象地表の形状を測定するステレオカメラ(S4)と、アタッチメントの姿勢を計測するブーム角度センサ(S1)と、ステレオカメラ(S4)の第1ステレオペア画像により、ステレオカメラ(S4)から測定対象地表までの距離情報を算出するコントローラ(30)を備える。コントローラ(30)は、ブーム角度センサ(S1)の検出値に基づいて導き出されるアタッチメントの姿勢の変化による影響を排除して距離情報を算出する。

Description

ショベル
 本発明は、ショベルに関する。
 キャビン上に取り付けられたステレオカメラにより、掘削箇所の地形を測定可能なショベルが知られている(例えば特許文献1参照)。
特開2002-328022号公報
 特許文献1に係るショベルは、土砂形状測定装置としてのステレオカメラがキャビン上に取り付けられている。そのため、深掘り掘削時においては、掘削箇所が手前の土砂に遮られて測定できない場合がある。
 上記課題に鑑み、深掘り掘削時においても掘削箇所の地形を正確に測定可能なショベルを提供することが望ましい。
 本発明の一実施形態に係るショベルは、下部走行体と、前記下部走行体に旋回可能に搭載される上部旋回体と、前記上部旋回体に取り付けられるアタッチメントと、前記アタッチメントに取り付けられた、測定対象地表の形状を測定する土砂形状測定装置と、前記アタッチメントの姿勢を計測する姿勢センサと、前記土砂形状測定装置の第1測定値により、前記土砂形状測定装置から前記測定対象地表までの距離情報を算出する制御部を備えるショベルであって、前記制御部は、前記姿勢センサの検出値に基づいて導き出される前記アタッチメントの姿勢の変化による影響を排除して距離情報を算出する。
 上述の手段により、深掘り掘削時においても掘削箇所の地形を正確に測定可能なショベルを提供できる。
本発明の実施例に係るショベルの側面図である。 図1のショベルの構成例を示す図である。 距離情報算出処理の一例のフローチャートである。 第2測定値へ補正する原理の説明図である。 ステレオカメラの焦点距離を調整する手法の説明図である。 本発明の別の実施例に係るショベルの構成例を示す図である。 距離情報算出処理の別の一例のフローチャートである。 距離情報を算出する原理の説明図である。
 図1は、本発明の実施例に係るショベルの側面図である。
 ショベルは、自走可能なクローラ式の下部走行体1と、この下部走行体1上に旋回機構2を介して旋回可能に搭載された上部旋回体3を有している。
 上部旋回体3には、ブーム4が取り付けられている。ブーム4の先端にはアーム5が取り付けられ、アーム5の先端にはエンドアタッチメントとしてのバケット6が取り付けられている。
 ブーム4、アーム5、及びバケット6によりアタッチメントが構成される。ブーム4、アーム5、バケット6は、ブームシリンダ7、アームシリンダ8、バケットシリンダ9によりそれぞれ油圧駆動される。ブーム4には姿勢センサとしてのブーム角度センサS1が取り付けられ、アーム5には姿勢センサとしてのアーム角度センサS2が取り付けられ、バケット6には姿勢センサとしてのバケット角度センサS3が取り付けられる。
 ブーム角度センサS1はブーム4の姿勢を計測する。本実施例では、ブーム角度センサS1は水平面に対する傾斜を検出して上部旋回体3に対するブーム4の回動角度を検出する加速度センサである。
 アーム角度センサS2はアーム5の姿勢を計測する。本実施例では、アーム角度センサS2は水平面に対する傾斜を検出してブーム4に対するアーム5の回動角度を検出する加速度センサである。
 バケット角度センサS3はバケット6の姿勢を計測する。本実施例では、バケット角度センサS3は水平面に対する傾斜を検出してアーム5に対するバケット6の回動角度を検出する加速度センサである。
 ブーム角度センサS1、アーム角度センサS2、及びバケット角度センサS3は、可変抵抗器を利用したポテンショメータ、対応する油圧シリンダのストローク量を検出するストロークセンサ、連結ピン回りの回動角度を検出するロータリエンコーダ等であってもよい。加速度センサとジャイロセンサの組み合わせで構成されていてもよい。
 ブーム4には土砂形状測定装置としてのステレオカメラS4が取り付けられている。土砂形状測定装置は、レーザー距離計、レーザレンジファインダ等であってよい。ステレオカメラS4はアーム5に取り付けられていてもよい。ステレオカメラS4はブーム4とアーム5の両方に取り付けられていてもよい。
 上部旋回体3には運転室としてのキャビン10が設けられ且つエンジン11等の動力源が搭載されている。また、キャビン10には通信手段としての通信装置S5が設けられている。
 通信装置S5は、ショベルと外部との間の通信を制御する。通信装置S5は、例えば、他の場所にある管理装置100とショベルとの間の無線通信を制御する。
 キャビン10内には、入力装置D1、音声出力装置D2、表示装置D3、高さ設定スイッチD4、コントローラ30等が設置されている。
 コントローラ30は、ショベルの駆動制御を行う制御部として機能する。本実施例では、コントローラ30は、CPU及び内部メモリを含む演算処理装置で構成される。コントローラ30の各種機能は、CPUが内部メモリに格納されたプログラムを実行することで実現される。
 入力装置D1は、ショベルの操作者がコントローラ30等に各種情報を入力するための装置である。本実施例では、入力装置D1は、表示装置D3の周囲に取り付けられるメンブレンスイッチである。入力装置D1としてタッチパネル等が用いられてもよい。
 音声出力装置D2は、コントローラ30等からの音声出力指令に応じて各種音声情報を出力する。本実施例では、音声出力装置D2として、コントローラ30に直接接続される車載スピーカが利用される。音声出力装置D2として、ブザー等の警報器が利用されてもよい。
 表示部としての表示装置D3は、コントローラ30からの指令に応じて各種画像情報を出力する。本実施例では、キャビン10内で運転席に向かって取り付けられる表示装置D3として、コントローラ30に直接接続される車載液晶ディスプレイが利用される。
 高さ設定スイッチD4は、ショベルの操作者がコントローラ30等に基準高さを入力するための装置である。本実施例では、高さ設定スイッチD4として、操作レバーに付与されているスイッチが利用される。キャリブレーションスイッチ等が利用されてもよい。
 次に、図2を参照しながら、ショベルの各種機能要素について説明する。図2は、ショベルの構成例を示す機能ブロック図である。
 本実施例では、コントローラ30は、ステレオカメラS4から測定対象地表までの距離情報を算出する。コントローラ30にはステレオカメラS4から第1測定値が入力される。第1測定値は、ステレオカメラS4が取得するデータであり、例えば視差データである。視差データは、例えば、左右のカメラで得られたステレオペア画像である。ステレオペア画像に写る範囲及びステレオペア画像に写っている物の大きさは外乱に応じて変化する。外乱は、例えば、ブーム4の姿勢の変化、すなわち、ステレオカメラS4の高さの変化を含む。コントローラ30は、ブーム4の姿勢の変化がステレオペア画像に与える影響を推定する。そして、その影響が相殺されるようにステレオペア画像に写る範囲及びステレオペア画像に写っている物の大きさを変化させることでステレオペア画像を調整する。そして、調整後のステレオペア画像に基づいて正確な距離情報を算出する。
 コントローラ30は、様々な機能を担う機能部を含む。本実施例では、コントローラ30は、高さ位置演算部31、距離演算部32、メモリ部33を含む。
 高さ位置演算部31は、ブーム角度センサS1の検出値に基づいて、ブーム4に取り付けられたステレオカメラS4の高さ位置を演算する。高さ位置演算部31には、高さ設定スイッチD4から基準高さを設定する信号が入力される。
 基準高さを設定する信号は、例えば、ショベルの操作者が高さ設定スイッチD4を押したときに高さ位置演算部31に入力される。高さ位置演算部31は、基準高さを設定する信号が入力されると、ブーム角度センサS1の検出値からそのときのステレオカメラS4の高さ位置を演算して基準高さとする。高さ位置は、ショベルの接地面を含む平面に対する高さである。基準高さの設定は、例えば、ステレオカメラS4による測定が開始される前に行われる。
 高さ位置演算部31は、測定時のステレオカメラS4の高さ位置と、基準高さとに基づいて、ステレオカメラS4の移動高さ(基準高さからの高さ変化量)を算出する。ステレオカメラS4の移動高さは、基準高さ設定時のステレオカメラS4の高さ位置から、移動後のステレオカメラS4の高さ位置までの変化量に相当する。高さ位置演算部31は、ステレオカメラS4の移動高さを、ステレオカメラS4の移動高さに相当する視差データ関連情報に変換して出力してもよい。視差データ関連情報は、例えば、ステレオペア画像に写る範囲及びステレオペア画像に写っている物の大きさに関する情報である。
 コントローラ30は、高さ位置演算部31から出力されたステレオカメラS4の移動高さに相当する視差データ関連情報に基づいて、ステレオカメラS4から出力された第1測定値(視差データ)を第2測定値(視差データ)へ補正する。第2測定値は、基準高さに位置する仮想的なステレオカメラが取得した視差データ(ステレオペア画像)に相当する。その際、コントローラ30は、第1測定値(第1ステレオペア画像)が、第2測定値(第2ステレオペア画像)となるように焦点距離を調整(視差を調整)する。コントローラ30は、例えば、第1ステレオペア画像に写る範囲及び第1ステレオペア画像に写っている物の大きさを変化させて第2ステレオペア画像を生成する。
 その後、コントローラ30は、第2ステレオペア画像を距離演算部32へ出力する。
 距離演算部32は、第2ステレオペア画像に基づいて、基準高さから測定対象地表Jまでの距離情報を演算する。距離情報は、距離画像であってもよい。距離演算部32は、演算した距離情報を表示装置D3と、メモリ部33へ出力する。
 表示装置D3は、取得した複数の距離情報に基づいて地形の断面形状を生成して表示する。
 メモリ部33は、取得した距離情報を通信装置S5へ出力する。通信装置S5は、通信回線を利用して距離情報を管理装置100へ送信する。
 次に、図3を参照しながら、コントローラ30が実行する距離情報算出処理について説明する。図3は、距離情報算出処理のフローチャートである。この処理は所定の時間間隔で繰り返される。
 コントローラ30の高さ位置演算部31は、ステップ(以下、STと略す)1で、高さ設定スイッチD4から入力された基準高さを設定する信号に基づいて基準高さを設定する。
 その後、コントローラ30は、ST2でステレオカメラS4を用いた測定を開始する。
 コントローラ30は、高さ位置演算部31から出力されたステレオカメラS4の移動高さに相当する視差データ関連情報に基づいて、ステレオカメラS4から出力された第1測定値(第1ステレオペア画像)を第2測定値(第2ステレオペア画像)へ補正する(ST3)。
 図4を参照しながら、コントローラ30が実施するST3の処理について詳しく説明する。図4は、第2ステレオペア画像を生成する原理の説明図である。
 図4において、Hnは、第2ステレオペア画像に基づく高さを指す。Hは、基準高さである。Hn'は、第1ステレオペア画像に基づく高さを指す。ΔZは、ステレオカメラS4の移動高さである。したがって、第2ステレオペア画像に基づく高さHnは、第1ステレオペア画像に基づく高さHn'から移動高さΔZを差し引いて算出できる。移動高さΔZは、高さ位置演算部31で算出される。
 その後、コントローラ30は、第1ステレオペア画像が、第2ステレオペア画像となるように焦点距離を調整(視差を調整)する処理を行う(ST4)。
 次に図5を参照しながら、コントローラ30が実行するST4の処理を説明する。図5は、ステレオカメラS4の焦点距離(画角)を調整する手法の説明図である。図5は、ステレオペア画像のうちの一方である右視点画像を実線で示し、ステレオペア画像のうちの他方である左視点画像を破線で示している。
 (1)は、ステレオカメラS4が基準高さから撮像した際の物体Xの画像を示している。(1)が有する視差を例えば15画素とする。(2)は、ブーム4が上方へ移動した際にステレオカメラS4が撮像した物体Xの画像を示している。(2)が有する視差を例えば10画素とする。コントローラ30は、(3)に示すように(2)の物体Xが(1)の物体Xと同じ大きさになるように焦点距離(画角)を調整させて視差を5画素分増やす処理を行う。本実施例のコントローラ30は、ステレオカメラS4の高さの変化に応じて、画素数の補正を行う。すなわち、コントローラ30は、第1ステレオペア画像に写る範囲及び第1ステレオペア画像に写っている物の大きさを光学的に変化させる。但し、コントローラ30は、第1ステレオペア画像に写る範囲及び第1ステレオペア画像に写っている物の大きさをデジタル画像処理的に変化させてもよい。
 その後、コントローラ30の距離演算部32は、ST3で生成された第2測定値(第2ステレオペア画像)に基づいて、基準高さから測定対象地表Jまでの距離情報を演算する(ST5)。
 上述では、コントローラ30がステレオカメラS4の鉛直下方の距離情報を算出する処理を説明したが、コントローラ30は、アタッチメントの動作によって、ステレオカメラS4の姿勢が変化しても同様の処理を行う。
 その後、コントローラ30は、演算した距離情報を、表示装置D3やメモリ部33へ出力する。
 上述のように、本実施例のショベルは、ステレオカメラS4をアタッチメントとしてのブーム4に取り付けたので、深掘り掘削時においても掘削箇所の地形を測定できる。また、本実施例のショベルは、ステレオカメラS4の第1ステレオペア画像から、ステレオカメラS4の移動高さによる影響を取り除くように生成された第2ステレオペア画像に基づいて正確な距離情報を算出するので、測定時にブーム4の姿勢が変化しても掘削箇所の地形を正確に測定できる。
 次に、本発明の別の実施例に係るショベルについて説明する。図6は本発明の別の実施例に係るショベルの構成例を示す図である。
 図6に示すショベルの構成例は、コントローラ30が距離情報を演算する手順が異なる点で図2に示すショベルの構成例と異なるが、その他の点で共通する。そのため共通部分の説明を省略し、相違部分を詳細に説明する。
 本実施例の距離演算部32には、ステレオカメラS4から第1測定値(第1ステレオペア画像)が入力される。距離演算部32は、入力された第1測定値(第1ステレオペア画像)に基づいて第1距離情報を演算する。本実施例では例えば第1ステレオペア画像が有する視差から第1距離情報を演算する。第1距離情報は、ステレオカメラS4の移動高さを含んだステレオカメラS4から測定対象地表Jまでの距離情報である。
 コントローラ30は、高さ位置演算部31から出力されたステレオカメラS4の移動高さに基づいて距離演算部32が演算した第1距離情報を、基準高さからの距離情報へ補正する。
 次に、図7を参照しながら、コントローラ30が実行する距離情報算出処理を説明する。図7は、距離情報算出処理のフローチャートである。この処理は所定の時間間隔で繰り返される。
 コントローラ30の高さ位置演算部31は、ST21で、高さ設定スイッチD4から入力された基準高さを設定する信号に基づいて基準高さを設定する。
 その後、コントローラ30は、ST22でステレオカメラS4を用いた測定を開始する。
 コントローラ30の距離演算部32は、ステレオカメラS4から出力された第1測定値(第1ステレオペア画像)に基づいて第1距離情報を算出する(ST23)。
 コントローラ30は、高さ位置演算部31から出力されたステレオカメラS4の移動高さに基づいて、距離演算部32が演算した第1距離情報を、基準高さからの距離情報へ補正する(ST24)。
 図8を参照しながら、コントローラ30が実施するST24の処理について詳しく説明する。図8は、第1距離情報から正確な距離情報を算出する原理の説明図である。
 図8において、Hnは、補正後の距離情報を指す。Hは、基準高さを指す。ΔZは、ステレオカメラS4の移動高さを指す。X2は、ステレオカメラS4が撮像する物体を指す。
 Rnは、基準高さにあるステレオカメラS4から物体X2までの距離を指す。Rn'は、移動したステレオカメラS4から物体X2までの距離を指す。Rn、Rn'は、ステレオカメラS4が出力する第1ステレオペア画像から導き出される。Hn'は、Rn'から算出される第1距離情報を指す。Lは、上部旋回体3からステレオカメラS4までの距離を指す。Lは、例えば、内部メモリ等に予め記憶されている。αは、ステレオカメラS4が基準高さにあるときのブーム4の角度を指す。α'は、ステレオカメラS4がΔZだけ移動したときのブーム4の角度を指す。α、α'は、例えば、ブーム角度センサS1によって検出される。θnは、ステレオカメラS4が基準高さにあるときのステレオカメラS4と物体X2とを結ぶ線分の、ステレオカメラS4の光軸(鉛直線)に対する角度を指す。θn'は、ステレオカメラS4がΔZだけ移動したときのステレオカメラS4と物体X2とを結ぶ線分の、ステレオカメラS4の光軸(鉛直線)に対する角度を指す。θn、θn'は、例えば、ステレオカメラS4の内部パラメータから算出される。ΔXは、ステレオカメラS4のX方向(図8の左右方向)の移動距離を指す。Wは、基準高さにあるステレオカメラS4の光軸とX2との距離を指す。
 具体的に距離情報Hnは、以下の式により算出できる。
 移動高さΔZは、式(1)により求められる。
 ΔZ=Lsinα'-Lsinα   (1)
 ΔXは、式(2)により求められる。
 ΔX=Lcosα'-Lcosα   (2)
θnは、式(3)で表される。θn'は、式(3)'で表される。
 θn=sin-1(W/Rn)   (3)
 θn'=sin-1((W-ΔX)/Rn')   (3)'
 第1距離情報Hn'は、式(4)により求められる。
 Hn'=Rn'×cоsθn'   (4)
 距離情報Hnは、式(5)により求められる。
 Hn=Rn'×cоsθn'-ΔZ   (5)
 端的にいうと、距離情報Hnは、第1距離情報Hn'から移動高さΔZを差し引くことにより算出できる。
 上述では、コントローラ30がステレオカメラS4の鉛直下方の距離情報を算出する処理を説明したが、コントローラ30は、アタッチメントの動作によって、ステレオカメラS4の姿勢が変化しても同様の処理を行う。鉛直下方以外の複数方向においても同様の処理を行う。
 その後、コントローラ30は、演算した距離情報を、表示装置D3やメモリ部33へ出力する。
 上述のように、別の実施例のショベルにおいても、ステレオカメラS4の第1測定値(第1ステレオペア画像)からステレオカメラS4の移動高さによる影響を排除して正確な距離情報を算出するので、測定時にブーム4の姿勢が移動しても掘削箇所の地形を正確に測定できる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限
されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び
置換を加えることができる。
 本願は、2016年3月16日に出願した日本国特許出願2016-053007号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 30・・・コントローラ 31・・・高さ位置演算部 32・・・距離演算部 33・・・メモリ部 S1・・・ブーム角度センサ S2・・・アーム角度センサ S3・・・バケット角度センサ S4・・・ステレオカメラ(土砂形状測定装置) S5・・・通信装置(通信手段) 100・・・管理装置 D1・・・入力装置 D2・・・音声出力装置 D3・・・表示装置(表示部) D4・・・高さ設定スイッチ

Claims (7)

  1.  下部走行体と、
     前記下部走行体に旋回可能に搭載される上部旋回体と、
     前記上部旋回体に取り付けられるアタッチメントと、
     前記アタッチメントに取り付けられた、測定対象地表の形状を測定する土砂形状測定装置と、
     前記アタッチメントの姿勢を計測する姿勢センサと、
     前記土砂形状測定装置の第1測定値により、前記土砂形状測定装置から前記測定対象地表までの距離情報を算出する制御部を備えるショベルであって、
     前記制御部は、前記姿勢センサの検出値に基づいて導き出される前記アタッチメントの姿勢の変化による影響を排除して距離情報を算出する、
     ショベル。
  2.  前記制御部は、基準高さを設定し、前記土砂形状測定装置から取得した前記第1測定値を、前記姿勢センサの前記検出値と前記基準高さとに基づいて補正して、前記基準高さからの距離情報を算出する、
     請求項1に記載のショベル。
  3.  前記制御部は、前記土砂形状測定装置の前記第1測定値と前記姿勢センサの前記検出値と前記基準高さとに基づいて第2測定値を生成し、前記第2測定値から前記基準高さからの距離情報を算出する、
     請求項2に記載のショベル。
  4.  前記制御部は、前記土砂形状測定装置から取得した前記第1測定値から第1距離情報を算出し、前記第1距離情報と前記姿勢センサの前記検出値と前記基準高さとに基づいて、前記基準高さからの距離情報を算出する、
     請求項2に記載のショベル。
  5.  前記基準高さを設定する信号を出力する高さ設定スイッチが備えられている、
     請求項2に記載のショベル。
  6.  前記上部旋回体に取り付けられた運転室と、
     前記運転室内に設置された表示部と、を更に有し、
     前記制御部は、距離情報を前記表示部に表示する、
     請求項1に記載のショベル。
  7.  通信手段を更に備え、
     前記制御部は、距離情報を前記通信手段を介して管理装置へ送信する、
     請求項1に記載のショベル。
PCT/JP2017/010481 2016-03-16 2017-03-15 ショベル WO2017159744A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018505986A JP6651607B2 (ja) 2016-03-16 2017-03-15 ショベル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016053007 2016-03-16
JP2016-053007 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017159744A1 true WO2017159744A1 (ja) 2017-09-21

Family

ID=59851194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010481 WO2017159744A1 (ja) 2016-03-16 2017-03-15 ショベル

Country Status (2)

Country Link
JP (2) JP6651607B2 (ja)
WO (1) WO2017159744A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440854A (zh) * 2018-10-18 2019-03-08 南京天辰礼达电子科技有限公司 一种计算斗尖与大臂轴心位置关系的方法
CN110027001A (zh) * 2018-01-04 2019-07-19 罗伯特·博世有限公司 用于运行移动的作业机器的方法以及移动的作业机器
JP2020159142A (ja) * 2019-03-27 2020-10-01 日立建機株式会社 作業機械
JPWO2021009873A1 (ja) * 2019-07-17 2021-01-21
JP2021070922A (ja) * 2019-10-29 2021-05-06 住友重機械工業株式会社 ショベル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194550A (ja) * 1997-09-24 1999-04-09 Kikuo Tokida 土工事管理システム、土工事管理方法及び光波測距用光反射装置
JP2012255286A (ja) * 2011-06-08 2012-12-27 Topcon Corp 建設機械制御システム
JP2016008484A (ja) * 2014-06-26 2016-01-18 住友建機株式会社 建設機械
WO2016013691A1 (ja) * 2015-10-15 2016-01-28 株式会社小松製作所 位置計測システム及び位置計測方法
US20160054114A1 (en) * 2014-08-25 2016-02-25 Trimble Navigation Limited All-in-one integrated sensing device for machine control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003344045A (ja) * 2002-05-29 2003-12-03 Yaskawa Electric Corp 画像処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1194550A (ja) * 1997-09-24 1999-04-09 Kikuo Tokida 土工事管理システム、土工事管理方法及び光波測距用光反射装置
JP2012255286A (ja) * 2011-06-08 2012-12-27 Topcon Corp 建設機械制御システム
JP2016008484A (ja) * 2014-06-26 2016-01-18 住友建機株式会社 建設機械
US20160054114A1 (en) * 2014-08-25 2016-02-25 Trimble Navigation Limited All-in-one integrated sensing device for machine control
WO2016013691A1 (ja) * 2015-10-15 2016-01-28 株式会社小松製作所 位置計測システム及び位置計測方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110027001A (zh) * 2018-01-04 2019-07-19 罗伯特·博世有限公司 用于运行移动的作业机器的方法以及移动的作业机器
CN109440854A (zh) * 2018-10-18 2019-03-08 南京天辰礼达电子科技有限公司 一种计算斗尖与大臂轴心位置关系的方法
JP2020159142A (ja) * 2019-03-27 2020-10-01 日立建機株式会社 作業機械
JP7003082B2 (ja) 2019-03-27 2022-01-20 日立建機株式会社 作業機械
JPWO2021009873A1 (ja) * 2019-07-17 2021-01-21
WO2021009873A1 (ja) * 2019-07-17 2021-01-21 日本電気株式会社 掘削軌道生成方法、システム、及び掘削軌道生成装置
JP7248122B2 (ja) 2019-07-17 2023-03-29 日本電気株式会社 掘削軌道生成方法、システム、及び掘削軌道生成装置
JP2021070922A (ja) * 2019-10-29 2021-05-06 住友重機械工業株式会社 ショベル

Also Published As

Publication number Publication date
JP6848039B2 (ja) 2021-03-24
JP2020046439A (ja) 2020-03-26
JPWO2017159744A1 (ja) 2018-11-29
JP6651607B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
JP6848039B2 (ja) ショベル
JP7305823B2 (ja) ショベル及びショベルの計測システム
WO2015182455A1 (ja) 作業機の作動状態検出システム及び作業機
JP6794193B2 (ja) 作業機械の画像表示システム
JP5759798B2 (ja) 建設機械制御システム
JP6050525B2 (ja) 位置計測システム、作業機械及び位置計測方法
JP6707047B2 (ja) 建設機械
JP5823046B1 (ja) 油圧ショベルの較正システム及び較正方法
KR102089454B1 (ko) 계측 시스템, 작업 기계 및 계측 방법
US20160244949A1 (en) Posture calculation device of working machinery, posture calculation device of excavator, and working machinery
JP7420733B2 (ja) 表示制御システムおよび表示制御方法
JP2012233353A (ja) 油圧ショベルの較正システム及び油圧ショベルの較正方法
US20170146343A1 (en) Outside Recognition Device
JP2008144379A (ja) 遠隔操縦作業機の画像処理システム
JP2012112108A (ja) 作業機械の周囲監視装置
CN111032962B (zh) 工程机械
WO2019225133A1 (ja) 油圧ショベル、およびシステム
JP2007061042A (ja) 作業機の自動制御システム
JP6606230B2 (ja) 形状計測システム
JP7436339B2 (ja) 表示制御装置及び表示方法
AU2020212919B2 (en) System and method for work machine
JP6433664B2 (ja) 建設機械用俯瞰画像表示装置
JP2021165526A (ja) 作業機械の画像表示システム
JP2017032276A (ja) 位置計測システム
JP6923144B2 (ja) 作業機械の画像表示システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505986

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766740

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766740

Country of ref document: EP

Kind code of ref document: A1