WO2017159641A1 - 高炉への原料装入方法 - Google Patents

高炉への原料装入方法 Download PDF

Info

Publication number
WO2017159641A1
WO2017159641A1 PCT/JP2017/010058 JP2017010058W WO2017159641A1 WO 2017159641 A1 WO2017159641 A1 WO 2017159641A1 JP 2017010058 W JP2017010058 W JP 2017010058W WO 2017159641 A1 WO2017159641 A1 WO 2017159641A1
Authority
WO
WIPO (PCT)
Prior art keywords
coke
blast furnace
layer
mixed
raw material
Prior art date
Application number
PCT/JP2017/010058
Other languages
English (en)
French (fr)
Inventor
和平 市川
佑介 柏原
大山 伸幸
津田 和呂
尚史 山平
石井 邦彦
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2017541884A priority Critical patent/JP6354074B2/ja
Priority to KR1020187026183A priority patent/KR102182443B1/ko
Priority to BR112018068563-1A priority patent/BR112018068563B1/pt
Priority to CN201780017142.0A priority patent/CN109072318B/zh
Publication of WO2017159641A1 publication Critical patent/WO2017159641A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/008Composition or distribution of the charge
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/18Bell-and-hopper arrangements
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices

Definitions

  • the present invention relates to a raw material charging method for a blast furnace. Specifically, in blast furnace operation in which a coke mixed ore layer and a coke layer are formed in layers in a blast furnace, the amount of coke mixed in the coke mixed ore layer is appropriately controlled according to the properties of the coke forming the coke layer. In addition, the present invention relates to a method for charging raw materials into a blast furnace to ensure air permeability inside the blast furnace.
  • the coke that secures the air permeability in the furnace is reduced, so that the ventilation resistance in the blast furnace increases.
  • a general blast furnace when the iron ore charged from the top of the furnace reaches a temperature at which softening starts, the ore layer is deformed while filling the voids by the weight of the raw material existing in the upper part. Therefore, at the lower part of the blast furnace, the ventilation resistance of the ore layer is very large, and a fused layer (referred to as a “fusion zone”) in which almost no gas flows is formed.
  • the air permeability of the cohesive zone has a great influence on the air permeability of the entire blast furnace, and the productivity in the blast furnace is limited.
  • a raw material obtained by mixing ore and coke having a relatively small particle diameter referred to as “mixed raw material”
  • coke having a relatively large particle diameter in a blast furnace. It is known that it is effective to alternately charge and form a coke mixed ore layer made of a mixed raw material and a coke layer made of coke having a relatively large particle size in a layer shape. That is, it is known that mixing coke with an ore layer is effective, and many techniques for forming a coke mixed ore layer have been proposed.
  • Patent Document 1 in a bell-less blast furnace, coke is charged into a downstream hopper among ore hoppers, and coke is deposited on the ore on a conveyor, and then charged into a furnace bunker.
  • a technique for charging ore and coke into a blast furnace through a turning chute has been proposed.
  • Patent Document 2 in a bell-less blast furnace, when charging coke or ore stored in a plurality of furnace top bunkers from the center of the furnace toward the furnace wall in the radial direction of the furnace, Ore stored in another top bunker from the time when the discharge amount of the coke stored in one reaches a predetermined amount between 5 and 50% by mass of the amount of coke charged for one batch Has been proposed, and technology for simultaneously charging coke and ore is proposed. Thereby, it is said that three kinds of batches, ie, a normal charging batch for coke, a central charging batch for coke, and a batch for mixing charging can be performed simultaneously.
  • Patent Document 3 all ore and all coke are completely removed in order to prevent instability of the cohesive zone shape in blast furnace operation and decrease in gas utilization rate near the center, and to improve stable operation and thermal efficiency.
  • a raw material charging technique for charging into a blast furnace after mixing has been proposed.
  • Patent Document 4 as a means of enjoying the reactivity improvement effect by mixed coke, by mixing highly reactive coke and ore with low JIS reducibility, low reactive ore is reacted with high efficiency, Technologies for improving the reactivity of the blast furnace have been proposed.
  • the thickness of the coke layer is relatively reduced. It is empirically known that when the thickness of the coke layer is reduced in the blast furnace, the ventilation resistance in the cohesive zone where the ore softens and melts increases, thereby impeding stable operation.
  • Patent Document 5 in order to prevent local reduction of the coke layer thickness, the charging range of the coke at the furnace port portion is set to an area of 40% or more from the furnace wall side in the furnace radial direction.
  • a technique has been proposed in which the average thickness of one layer of coke at the furnace port is 60 cm or more.
  • Patent Document 6 proposes a technique for adjusting the amount of coke charged at the top of the furnace so that the average thickness of the coke layer at the furnace belly is 250 mm or more.
  • Patent Document 5 and Patent Document 6 are operating conditions when a large amount of coke is not mixed in the ore. If a large amount of coke is mixed in the ore, the air permeability of the coke mixed ore layer (ore layer) is improved. Therefore, it is considered that the lower limit value of the coke layer thickness can be relaxed.
  • JP-A-3-211210 JP 2004-107794 A JP-A-53-152800 JP-A-64-36710 Japanese Patent Laid-Open No. 7-18310 Japanese Patent Laid-Open No. 11-506393
  • the coke forming the coke layer is used after being sieved with a sieve having a predetermined opening size, and coke having a size smaller than the opening size of the sieve (hereinafter referred to as “powdered coke”).
  • a sieve having a predetermined opening size and coke having a size smaller than the opening size of the sieve (hereinafter referred to as “powdered coke”).
  • the properties of the coke forming the coke layer vary, and the content of the powdery coke in the coke layer varies depending on the properties of the coke.
  • the air permeability deteriorates.
  • increase the thickness of the coke layer to ensure the air permeability of the coke layer that is, the air permeability of the blast furnace. Is required.
  • it is necessary to reduce the amount of coke mixed with the mixed raw material This is because when the amount of coke mixed with the mixed raw material is not reduced, the reducing material becomes excessive, and not only the CO 2 emission amount increases but also the manufacturing cost increases.
  • the present invention has been made in view of the above circumstances, and its object is to form a coke layer in a blast furnace raw material charging method in which a coke mixed ore layer and a coke layer are formed in layers in a blast furnace.
  • the coke layer thickness is increased or decreased according to the content of powdered coke in the coke to be used, and the coke mixing amount of the coke mixed ore layer is appropriately controlled, thereby ensuring the air permeability inside the blast furnace. It is to provide a raw material charging method to a blast furnace.
  • the gist of the present invention for solving the above problems is as follows.
  • a raw material charging method to a blast furnace in which a coke mixed ore layer made of the mixed raw material and a coke layer made of the coke are formed in a layer in a furnace
  • a particle size measurement sensor installed above a transport facility for transporting coke for forming the coke layer to a blast furnace, wherein the short diameter of particles contained in the coke transported by the transport facility is in the range of 5 mm to 35 mm
  • the coke mixing amount in the mixed raw material is set to be equal to or less than an upper limit value of the coke mixing amount calculated by substituting the measured ratio into the following equation (1).
  • Mix [(9/10) ⁇ ⁇ 69 / 2] ⁇ ⁇ + 200 (1)
  • Mix is the upper limit value of the amount of coke in the mixed raw material (kg / molten iron-ton)
  • is the short diameter of the coke particles, and is an arbitrary value in the range of 5 mm to 35 mm.
  • is a ratio (% by mass) of coke particles having a minor axis of ⁇ mm or less.
  • the particle size distribution of the coke for forming the coke layer is measured by a coke conveyance facility to the blast furnace. . And based on the measurement result of this particle size distribution, the coke mixing amount to the coke mixed ore layer is set, and the coke mixing amount of the set coke mixing and the coke particles having a short diameter of 35 mm or less, which is the standard condition, are set.
  • the coke amount that is the difference between the coke mixing amount when the ratio in the coke to be formed is zero is allocated as the coke that forms the coke layer.
  • the thickness of the coke layer increases, and as a result, the air permeability of the coke layer, that is, the air permeability inside the blast furnace is ensured, and the blast furnace operation is stable. Is realized.
  • FIG. 1 is a diagram for defining the minor axis of coke particles.
  • FIG. 2 is a schematic view of a test apparatus used for measuring the relationship between the thickness of the coke layer and the cohesive zone ventilation resistance.
  • FIG. 3 is a diagram showing the relationship between the ratio of coke particles having a minor axis of 5 mm or less and the upper limit value of the coke mixing amount in the mixed raw material.
  • FIG. 4 is a diagram showing the relationship between the ratio of coke particles having a minor axis of 35 mm or less and the upper limit value of the coke mixing amount in the mixed raw material.
  • FIG. 5 is a graph showing the relationship between the ratio ⁇ when the upper limit value Mix is 50 kg / molten iron-ton and the minor axis ⁇ of the coke particles.
  • the present inventors for the purpose of stably ensuring the air permeability inside the blast furnace even if the coke content of the coke forming the coke layer changes, the ventilation resistance of the cohesive zone inside the blast furnace.
  • the test was performed using a test apparatus that can simulate the above.
  • the coke forming the coke layer is passed through a blast furnace after being sieved with a sieving machine having an opening size of 35 mm, and charged into the blast furnace. It is a well-known matter to those skilled in the art that if the coke has a mesh size of 35 mm and does not pass through a sieve, the air permeability of the cohesive zone inside the blast furnace can be secured.
  • coke particles having a size that should be sieved by a sieve having an opening size of 35 mm are also mixed in the coke after being sieved by a sieve having an opening size of 35 mm.
  • coke is pulverized by a drop impact during transportation to a blast furnace.
  • coke having a size that should be sieved by a sieve having an opening size of 35 mm and contained in coke forming the coke layer is referred to as “coke having a minor axis of 35 mm or less”.
  • coke having a size that should be sieved by a sieving machine having an opening size of ⁇ mm is referred to as “coke having a minor axis of ⁇ mm or less”.
  • the minor axis of coke particles means that, as shown in FIG. 1, the distance between the intersections of the straight line passing through the center of gravity of the coke particles and the intersection of the circumference of the projection surface is the shortest on the projection surface of the coke particles. It is defined by the distance between intersections.
  • the condition that the minor axis is in the range of 5 mm to 35 mm as a condition for ensuring the air permeability of the cohesive zone inside the blast furnace.
  • the relationship between the content ratio of coke particles having an arbitrary minor axis or less and the amount of coke mixed in the coke mixed ore layer was investigated.
  • FIG. 2 shows a schematic diagram of a test apparatus used for measuring the relationship between the thickness of the coke layer and the cohesive zone ventilation resistance.
  • reference numeral 1 denotes a sample heating furnace, and the sample heating furnace 1 includes a sample filling container 2 and a heating device 3 therein.
  • a sample filling layer 6 in which the coke layer 4 and the coke mixed ore layer 5 are filled in layers is formed inside the sample filling container 2.
  • the temperature of the sample packed layer 6 is controlled by the heating device 3.
  • Reference numeral 7 denotes a gas heating furnace, and the gas heating furnace 7 also includes a heating device 8 therein.
  • Reference numeral 9 is a gas mixer
  • 10 is a gas distribution pipe
  • 11 is a pressure gauge
  • 12 is a thermocouple
  • 13 is a holding plate
  • 14 is a pedestal
  • 15 is a connecting rod
  • this connecting rod 15 is made of graphite or metal. It is preferable to make it.
  • Reference numeral 16 denotes a load means. In this example of the test apparatus, a weight 16 is used as the load means. The weight 16 applies a load simulating the inside of the blast furnace to the sample packed layer 6.
  • this test apparatus has the greatest feature in that the sample heating furnace 1 and the gas heating furnace 7 are arranged in series. Thus, the series heating is performed in the gas heating furnace 7. The gas thus made enters the sample heating furnace 1 from the lateral direction.
  • the condition that the coke for forming the coke layer does not contain coke particles having a minor axis of 35 mm or less is defined as the reference condition.
  • the coke mixing amount of the coke mixed ore layer 5 under the standard condition is 200 kg / molten iron. -Tons.
  • the air permeability deteriorates as the content of the powdery coke in the coke for forming the coke layer 4 is increased, the coke mixed ore layer 5 is mixed in order to secure it.
  • the coke was allocated to the coke layer 4 under various conditions, and the air permeability was investigated.
  • the coke mixing ratio (kg / molten iron-ton) in the coke mixed ore layer 5 in the test in which the pressure loss in the test and the pressure loss under the standard conditions (conditions not containing coke particles having a minor axis of 35 mm or less) are equal. ) was determined according to the ratio of particles having a minor axis of 5 mm or less and the ratio of particles having a minor axis of 35 mm or less.
  • FIG. 3 and FIG. FIG. 3 shows the relationship between the ratio of coke particles having a minor axis of 5 mm or less and the upper limit of the amount of coke mixed in the mixed raw material in a test using coke in which the ratio of particles having a minor axis of 5 mm or less is changed.
  • FIG. 4 shows the relationship between the ratio of coke particles having a minor axis of 35 mm or less and the upper limit of the amount of coke mixed in the mixed raw material in a test using coke in which the ratio of particles having a minor axis of 35 mm or less is changed.
  • FIG. 3 and 4 the coke mixing ratio (kg / molten iron-ton) at which the pressure loss is equal to the pressure loss under the reference condition is displayed as the upper limit value.
  • the ratio of particles having a minor axis of 5 mm or less or 35 mm or less shown on the horizontal axis and the upper limit value of the coke mixing amount in the mixed raw material shown on the vertical axis are linearly related. It was. From this relationship, it is understood that the upper limit value of the coke mixing amount in the mixed raw material and the ratio of coke particles having a minor axis of 5 mm or less or 35 mm or less are expressed by a linear expression. Moreover, the influence of the ratio of the coke particles on the upper limit value of the coke mixing amount differs depending on whether the minor axis is 5 mm or less and the minor axis is 35 mm or less.
  • the upper limit of the amount of coke in the mixed raw material is set to Mix (kg / molten iron-ton), the short diameter of the coke particles is ⁇ (mm), and the short diameter is 5 mm or less or 35 mm or less.
  • mass%
  • these factors are expressed by the following formula (2).
  • 200 is the coke mixing amount (kg / molten iron-ton) under the standard conditions, and A and B are coefficients.
  • Mix [(9/10) ⁇ ⁇ 69 / 2] ⁇ ⁇ + 200 (1)
  • Mix is the upper limit value of the amount of coke in the mixed raw material (kg / molten iron-ton)
  • is the short diameter of the coke particles, and is an arbitrary value in the range of 5 mm to 35 mm.
  • is the ratio (% by mass) of coke particles having a minor axis of ⁇ mm or less.
  • the ratio of coke particles having a minor axis of 20 mm or less is changed, and the minor axis is 20 mm or less when the upper limit value Mix of the coke mixing amount is 50 kg / molten-ton.
  • the coke particle ratio ⁇ was determined. As a result, it was found that when the ratio ⁇ of coke particles having a minor axis of 20 mm or less was 28% by mass, the upper limit value Mix of the coke mixing amount was 50 kg / molten-ton.
  • each ratio ⁇ when the upper limit value Mix was 50 kg / molten iron-ton was compared.
  • the horizontal axis is the minor axis ⁇ (mm) of the coke particles
  • the vertical axis is the ratio ⁇ (mass%) when the upper limit value Mix is 50 kg / molten iron-ton.
  • the ratio ⁇ (mass%) when the upper limit value Mix is 50 kg / molten iron-ton and the minor axis ⁇ (mm) of the coke particles can be expressed by a linear relationship. all right. That is, it was confirmed that the expression (1) is appropriate as long as ⁇ is in the range of 5 to 35 mm.
  • the formula (1) indicates that the amount of coke mixed in the coke mixed ore layer when the ratio of coke particles having a minor axis of 35 mm or less in the coke for forming the coke layer is zero (standard condition) is 200 kg / In the case of hot metal-ton, it is not necessary to limit the amount of coke mixed under the standard condition to 200 kg / hot-ton in implementing the present invention.
  • the coke ratio (kg / molten iron-ton) required for the iron ore reduction reaction and the temperature rise of the molten iron produced is generally about 300 kg / molten iron-ton, but it depends on the operation status of each blast furnace. Will change accordingly.
  • the coke ratio is the total amount of coke charged (kg / molten iron-ton) blended in both the coke mixed ore layer and the coke layer.
  • the amount of coke blended in the coke mixed ore layer under the standard condition is an amount obtained by multiplying the coke ratio CR by a certain blend ratio ⁇ ( ⁇ ). (CR ⁇ ⁇ ) can be displayed.
  • the present invention has been made based on the above test results, and the raw material charging method to the blast furnace according to the present invention is that the mixed raw material mixed with iron ore and coke and coke are alternately charged from the top of the blast furnace. And a raw material charging method for forming a coke layer in the blast furnace, in which a coke mixed ore layer made of the mixed raw material and a coke layer made of the coke are formed in a layer in a furnace.
  • the particle size measurement sensor installed above the transport facility (such as a belt conveyor) for transporting, the minor axis of the particles contained in the coke transported by the transport facility is not more than an arbitrary minor axis in the range of 5 mm to 35 mm.
  • Coke ratio is measured, and based on the measured ratio, the amount of coke mixed in the mixed raw material is a standard condition of the coke layer having a short diameter of 35 mm or less.
  • the amount of coke that is less than the coke mixing amount when the ratio in the coke to form is zero, and the difference between the coke mixing amount under the reference condition and the coke mixing amount set based on the ratio Allocate as coke to form a layer.
  • the difference in coke amount from the coke mixing amount is blended as coke forming the coke layer.
  • the amount of coke mixed in the mixed raw material is calculated by substituting the measured ratio into the above formula (1). It is preferable to set it below the upper limit.
  • the air permeability of the coke layer deteriorates. Allocate the mixed coke to the coke layer to ensure air permeability inside the blast furnace. By adjusting the amount of coke in this way, the coke ratio (kg / molten iron-ton) is maintained at a predetermined value.
  • the object to be measured is imaged by an imaging device and imaged. Obtaining a blurred image obtained by performing a blurring process on the original image from the original image, and binarizing the blurred image, thereby measuring the particle size distribution of the measurement object having a predetermined particle size or more, and By performing a binarization process on the difference image formed by the difference between the captured original image and the blurred image, the distribution of the particle size of the measurement object smaller than the predetermined particle size is measured, and these two types of particle size measurement are performed. What is necessary is just to use the measuring apparatus etc. which utilized the particle size distribution measuring method "which measures the whole particle size distribution based on the measurement result of distribution. Specifically, a particle size measuring sensor capable of detecting the distance between intersections shown in FIG. 1 by image processing is used.
  • the coke transport facility to the blast furnace measures the particle size distribution of the coke forming the coke layer, and the coke to the coke mixed ore layer based on the measurement result of the particle size distribution. Since the mixing amount and the amount of coke added to the coke layer are controlled, air permeability in the blast furnace is ensured, and stabilization of the blast furnace operation is realized.
  • the gas utilization rate And the result of investigating the pressure loss in the packed bed is shown in comparison.
  • a particle size measuring sensor for measuring the particle size distribution of coke a measuring device using the particle size distribution measuring method disclosed in publication 1 is used, and this measuring device conveys coke for forming a coke layer to a blast furnace. Installed above the belt conveyor.
  • the ratio of coke particles having a minor axis of 5 mm or less was measured by a particle size measuring sensor.
  • the ratio of coke particles having a minor axis of 35 mm or less was measured by a particle size measuring sensor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

高炉内に、コークス混合鉱石層とコークス層とを形成して行う高炉操業において、コークス層を形成するコークス中の粉状コークスの含有量に応じて、コークス混合鉱石層のコークス混合量を適正に制御し、高炉内部の通気性を確保する。 コークス混合鉱石層とコークス層とを層状に形成する高炉への原料装入方法であって、コークス層を形成するコークスを搬送する搬送設備の上方に設置された粒度測定センサーで、コークス中の短径が5mmから35mmの範囲の任意の短径以下であるコークス粒子の比率を測定し、コークス層を形成するためのコークスが、短径を35mm以下とするコークス粒子を含有しない条件を基準条件と定義したとき、測定された比率に基づき、混合原料中のコークス混合量を、基準条件でのコークス混合量よりも少なく設定し、基準条件との差分の量のコークスを、コークス層を形成するコークスとして配合する。

Description

高炉への原料装入方法
 本発明は、高炉への原料装入方法に関する。詳しくは、高炉内に、コークス混合鉱石層とコークス層とを、層状に形成して行う高炉操業において、コークス層を形成するコークスの性状に応じてコークス混合鉱石層のコークス混合量を適正に制御し、高炉内部の通気性を確保する、高炉への原料装入方法に関する。
 近年、地球温暖化防止の観点からCO削減が求められている。鉄鋼業においては、CO排出量の約70質量%が銑鉄を製造する高炉から排出されており、高炉からのCO排出量の削減が求められている。高炉におけるCO削減は、高炉で使用する還元材(コークス、微粉炭、天然ガスなど)を削減することによって可能である。尚、高炉では、通常、原料である鉄鉱石(単に、「鉱石」とも記す)と、還元材であるコークスとを、それぞれが交互に層状となるように炉頂から装入し、高炉内に鉱石層とコークス層とを形成している。
 一方で、還元材、特にコークスを削減する場合、炉内の通気性を担保しているコークスが減少することから、高炉炉内の通気抵抗が増加する。一般的な高炉では、炉頂から装入された鉄鉱石が軟化を開始する温度に到達すると、鉱石層は、上部に存在する原料の自重によって空隙を埋めながら変形する。そのため、高炉下部では、鉱石層の通気抵抗は非常に大きく、ガスがほとんど流れない融着した層(「融着帯」という)が形成する。この融着帯の通気性が、高炉全体の通気性に大きく影響を及ぼしており、高炉における生産性を律速している。
 融着帯の通気抵抗を改善する手段として、高炉内に、鉱石と相対的に粒径の小さいコークスとを混合した原料(「混合原料」という)と、相対的に粒径の大きいコークスとを、交互に装入し、混合原料からなるコークス混合鉱石層と、相対的に粒径の大きいコークスからなるコークス層とを、層状に形成することが、有効であると知られている。つまり、鉱石層にコークスを混合することが有効であると知られており、コークス混合鉱石層を形成するための多くの技術が提案されている。
 例えば、特許文献1には、ベルレス式高炉において、鉱石ホッパーのうち下流側のホッパーにコークスを装入し、コンベア上で鉱石の上にコークスを堆積させた後、炉頂バンカーに装入して、鉱石とコークスとを旋回シュートを介して高炉内に装入する技術が提案されている。
 特許文献2には、ベルレス式高炉において、複数の炉頂バンカーに貯留したコークスまたは鉱石を、炉内半径方向で炉中心部から炉壁部へ向けて装入するときに、前記炉頂バンカーの1つに貯留したコークスの該炉頂バンカーからの排出量が、1バッチ分のコークス装入量の5~50質量%間の所定量に到達した時点から、別の炉頂バンカーに貯留した鉱石の排出を開始し、コークスと鉱石とを同時に装入する技術が提案されている。これにより、コークスの通常装入用バッチ、コークスの中心装入用バッチ及び混合装入用バッチの3通りを同時に行うことができるとしている。
 特許文献3には、高炉操業における融着帯形状の不安定化及び中心部付近におけるガス利用率の低下を防止し、安定操業及び熱効率の向上を図るために、全鉱石と全コークスとを完全混合した後に高炉内に装入する原料装入技術が提案されている。
 また、特許文献4には、混合したコークスによる反応性向上効果を享受する手段として、高反応コークスとJIS還元性が低い鉱石とを混合することで、低反応性鉱石を高効率に反応させ、高炉の反応性を向上させる技術が提案されている。
 一方、コークスの炉内への装入量(「コークス比」ともいう)は、ほぼ一定であることから、鉱石へのコークス混合を行った場合は、相対的にコークス層の厚みが低下する。高炉においてコークス層の厚みが低下すると、鉱石が軟化溶融する融着帯における通気抵抗が上昇し、安定な操業を阻害することが、経験的に知られている。
 このようなコークス層厚みの低下による通気抵抗の上昇を防止するために、幾つかの提案がなされている。例えば、特許文献5には、局所的なコークス層厚みの低下を防止するために、炉口部でのコークスの装入範囲を、炉半径方向において炉壁側から40%以上の領域にするとともに、炉口部での1層のコークス平均層厚みを60cm以上とする技術が提案されている。また、特許文献6には、炉腹部のコークス層厚みが平均で250mm以上となるように、炉頂におけるコークスの装入量を調整する技術が提案されている。
 特許文献5及び特許文献6は、コークスを鉱石中に多量に混合しない場合の操業条件であり、コークスを鉱石中に多量に混合すればコークス混合鉱石層(鉱石層)の通気性が改善することから、コークス層厚みの下限値は緩和できると考えられる。
特開平3-211210号公報 特開2004-107794号公報 特開昭53-152800号公報 特開昭64-36710号公報 特開平7-18310号公報 特開平11-506393号公報
 ところで、コークス層を形成するコークスは、所定の目開き寸法の篩分器で篩われた後に使用されるが、篩分器の目開き寸法以下のサイズのコークス(以下、「粉状コークス」とも記す)が全て篩い落とされることはない。したがって、通常の高炉操業においては、コークス層を形成するコークスの性状は変動しており、このコークスの性状に応じてコークス層中の粉状コークスの含有量は変化する。
 コークス層において、粉状コークスの含有量が増加すれば通気性が悪化することから、この場合には、コークス層の厚みを増やしてコークス層の通気性、つまり、高炉の通気性を確保することが必要となる。但し、コークス層の厚みを増やした場合は、混合原料へのコークス混合量を低下することが必要となる。これは、混合原料へのコークス混合量を低下しない場合は、還元材が過剰になり、CO排出量が増大するのみならず、製造コストが上昇するからである。
 つまり、安定な高炉操業を実施するためには、コークス層を形成するコークス中の粉状コークスの含有量を事前に検知し、検知した粉状コークスの含有量に応じて、コークス層の厚みを増大または減少すると同時に、混合原料へのコークス混合量を減少するまたは増加する必要がある。しかしながら、上記特許文献1~6は、この点について何ら考慮していない。
 本発明は上記事情に鑑みてなされたもので、その目的とするところは、高炉内に、コークス混合鉱石層とコークス層とを層状に形成する高炉への原料装入方法において、コークス層を形成するコークス中の粉状コークスの含有量に応じて、コークス層の厚みを増減し、且つ、コークス混合鉱石層のコークス混合量を適正に制御し、これによって、高炉内部の通気性を確保することのできる、高炉への原料装入方法を提供することである。
 上記課題を解決するための本発明の要旨は以下のとおりである。
[1]鉄鉱石及びコークスが混合された混合原料とコークスとを高炉炉頂から交互に装入し、
 前記混合原料からなるコークス混合鉱石層と前記コークスからなるコークス層とを炉内に層状に形成する高炉への原料装入方法であって、
 前記コークス層を形成するためのコークスを高炉に搬送する搬送設備の上方に設置された粒度測定センサーで、前記搬送設備で搬送されるコークスに含まれる粒子の短径が5mmから35mmの範囲の任意の短径以下であるコークス粒子の比率を測定し、
 前記コークス層を形成するためのコークスが、短径が35mm以下のコークス粒子を含有しない条件を基準条件と定義したとき、測定された前記比率に基づき、前記混合原料中のコークス混合量を、基準条件での混合原料中のコークス混合量よりも少なく設定し、
 基準条件でのコークス混合量と前記比率に基づいて設定したコークス混合量との差分の量のコークスを、コークス層を形成するコークスとして割り振りする、高炉への原料装入方法。
[2]前記混合原料中のコークス混合量を、測定された前記比率を下記の(1)式に代入して算出されるコークス混合量の上限値以下に設定する、上記[1]に記載の高炉への原料装入方法。
Mix=[(9/10)×α-69/2]×β+200・・・(1)
 ここで、(1)式において、Mixは、混合原料中のコークス混合量の上限値(kg/溶銑-トン)、αは、コークス粒子の短径であり、5mmから35mmの範囲の任意の値、βは、短径がαmm以下のコークス粒子の比率(質量%)である。
 本発明では、コークス混合鉱石層と、コークス層とを、層状に形成する高炉への原料装入方法において、高炉へのコークス搬送設備で、コークス層を形成するためのコークスの粒度分布を測定する。そして、この粒度分布の測定結果に基づいて、コークス混合鉱石層へのコークス混合量を設定し、設定したコークス混合量と、基準条件である、短径が35mm以下のコークス粒子の、コークス層を形成するためのコークス中での比率がゼロの場合におけるコークス混合量と、の差分のコークス量を、コークス層を形成するコークスとして割り振りする。これにより、細粒のコークス含有量が多いコークスの場合には、コークス層の厚みが増大し、その結果、コークス層の通気性、つまり、高炉炉内の通気性が確保され、高炉操業の安定化が実現される。
図1は、コークス粒子の短径を定義する図である。 図2は、コークス層の厚みと融着帯通気抵抗との関係を測定するために用いた試験装置の概略図である。 図3は、短径が5mm以下のコークス粒子の比率と、混合原料中のコークス混合量の上限値との関係を示す図である。 図4は、短径が35mm以下のコークス粒子の比率と、混合原料中のコークス混合量の上限値との関係を示す図である。 図5は、上限値Mixが50kg/溶銑-トンとなるときの比率βと、コークス粒子の短径αとの関係を示す図である。
 以下、本発明を詳細に説明する。
 高炉内に、鉄鉱石とコークスとを混合した混合原料からなるコークス混合鉱石層と、コークス層とを、層状に形成して行う高炉操業において、コークス層を形成するコークス中の粉状コークス(篩分器の目開き寸法以下のサイズのコークス)の含有量が増加すれば、コークス層の通気性、つまり高炉内部の通気性が悪化する。したがって、この場合には、コークス混合鉱石層へのコークス混合量を減らし、この減らした分に相当する分をコークス層として装入し、コークス層の厚みを増やし、これによって高炉内部の通気性を確保することが必要となる。
 本発明者らは、コークス層を形成するコークスの粉状コークスの含有量が変化しても、高炉内部の通気性を安定して確保することを目的として、高炉内部の融着帯の通気抵抗を模擬することのできる試験装置を用いて試験した。
 通常、コークス層を形成するコークスは、目開き寸法が35mmの篩分器で篩われた後に高炉に搬送され、高炉内に装入される。目開き寸法が35mmの篩分器を通過しないサイズのコークスであれば、高炉内部の融着帯の通気性が確保できることは、当業者に周知の事項である。但し、目開き寸法が35mmの篩分器で篩われた後のコークスにも、目開き寸法が35mmの篩分器によって篩わられるべきサイズのコークス粒子が混入している。また、高炉への搬送途中の落下衝撃などによってもコークスは粉状化する。
 本明細書では、コークス層を形成するコークスに含有される、目開き寸法が35mmの篩分器によって篩わられるべきサイズのコークスを、「短径が35mm以下のコークス」と称す。同様に、目開き寸法がαmmの篩分器によって篩わられるべきサイズのコークスを、「短径がαmm以下のコークス」と称す。ここで、「コークス粒子の短径」とは、図1に示すように、コークス粒子の投影面において、コークス粒子の重心を通る直線と投影面の周の交点との交点間距離が最短となるときの交点間距離で定義する。
 試験では、コークス層を形成するコークスにおける、短径が35mm以下のコークス粒子の含有量に着目し、高炉内部の融着帯の通気性を確保する条件として、短径が5mmから35mmの範囲の任意の短径以下であるコークス粒子の含有比率と、コークス混合鉱石層中のコークス混合量との関係を調査した。
 図2に、コークス層の厚みと融着帯通気抵抗との関係を測定するために用いた試験装置の概略図を示す。図中、符号1は、試料加熱炉であり、この試料加熱炉1は、その内部に試料充填容器2及び加熱装置3を備えている。また、試料充填容器2の内部には、コークス層4及びコークス混合鉱石層5を層状に充填した試料充填層6が形成されている。そして、試料充填層6は、加熱装置3によってその温度が制御される。符号7は気体加熱炉であり、この気体加熱炉7もその内部に加熱装置8を備えている。尚、符号9はガス混合器、10はガス流通用配管、11は圧力計、12は熱電対、13は押え板、14は台座、15は接続棒であり、この接続棒15は黒鉛または金属製とすることが好ましい。そして、符号16は負荷手段であり、この試験装置の例では、負荷手段として錘16を用いている。そして、この錘16により、高炉内を模擬した荷重を試料充填層6に付与する。
 この試験装置は、図示したように、試料加熱炉1と気体加熱炉7とを直列配置としたところに最大の特徴があり、このように、直列配置としたことで、気体加熱炉7で加熱された気体は、試料加熱炉1に横方向から侵入することになる。
 この試験装置において、短径が5mm以下の粒子の比率を0~5.0質量%の範囲に調整したコークス、及び、短径が35mm以下の粒子の比率を0~50質量%に調整したコークスを用いてコークス層4を形成し、且つ、コークス混合鉱石層5のコークス混合量を種々変更し、通気性を調査した。本明細書では、コークス層を形成するためのコークスが、短径が35mm以下のコークス粒子を含有しない条件を基準条件と定義した。
 具体的には、短径が35mm以下のコークス粒子の、コークス層を形成するためのコークス中での比率がゼロの場合、つまり、基準条件におけるコークス混合鉱石層5のコークス混合量を200kg/溶銑-トンとした。その上で、コークス層4を形成するためのコークス中の粉状コークスの含有量の増加に伴って通気性が悪化することから、それを担保するために、コークス混合鉱石層5に混合していたコークスを、コークス層4に種々の条件で割り振り、通気性を調査した。そして、試験での圧損と、基準条件(短径が35mm以下のコークス粒子を含有しない条件)での圧損とが等しくなる試験における、コークス混合鉱石層5でのコークス混合率(kg/溶銑-トン)を、短径が5mm以下の粒子の比率、及び、短径が35mm以下の粒子の比率に応じて求めた。
 試験で得られた結果を、図3及び図4に示す。図3は、短径が5mm以下の粒子の比率を変更したコークスを使用した試験における、短径が5mm以下のコークス粒子の比率と、混合原料中のコークス混合量の上限値との関係を示す図である。図4は、短径が35mm以下の粒子の比率を変更したコークスを使用した試験における、短径が35mm以下のコークス粒子の比率と、混合原料中のコークス混合量の上限値との関係を示す図である。図3及び図4では、基準条件の圧損と等しい圧損になるコークス混合率(kg/溶銑-トン)を上限値として表示している。
 図3及び図4に示すように、横軸に示す、短径が5mm以下または35mm以下の粒子の比率と、縦軸に示す、混合原料中のコークス混合量の上限値とは直線関係であった。この関係から、混合原料中のコークス混合量の上限値と、短径が5mm以下または35mm以下のコークス粒子の比率とは一次式で表されることがわかる。また、短径が5mm以下の場合と、短径が35mm以下の場合とで、コークス混合量の上限値に及ぼすコークス粒子の比率の影響が異なる。
 これらのことから、混合原料中のコークス混合量の上限値をMix(kg/溶銑-トン)とし、コークス粒子の短径をα(mm)とし、且つ、短径が5mm以下または35mm以下のコークス粒子の比率をβ(質量%)とすると、これらの因子は下記の(2)式で表される。尚、(2)式の200は、基準条件でのコークス混合量(kg/溶銑-トン)であり、A、Bは係数である。
 Mix=(A×α+B)×β+200・・・(2)
 図3の短径5mm以下のコークス粒子の比率βが5質量%のときにMixが50kg/溶銑-トンとなる条件、及び、図4の短径35mm以下のコークス粒子の比率βが50質量%のときにMixが50kg/溶銑-トンとなる条件を(2)式に代入して、係数A及び係数Bを求めると、A=9/10、B=-69/2が得られる。つまり、(2)式は、下記の(1)式で表される。
 Mix=[(9/10)×α-69/2]×β+200・・・(1)
 ここで、(1)式において、Mixは、混合原料中のコークス混合量の上限値(kg/溶銑-トン)、αは、コークス粒子の短径であり、5mmから35mmの範囲の任意の値、βは、短径がαmm以下のコークス粒子の比率(質量%)である。
 (1)式の妥当性を確認するために、短径が20mm以下のコークス粒子の比率を変更し、コークス混合量の上限値Mixが50kg/溶銑-トンになるときの、短径が20mm以下のコークス粒子の比率βを求めた。その結果、短径が20mm以下のコークス粒子の比率βが28質量%のときに、コークス混合量の上限値Mixが50kg/溶銑-トンとなることがわかった。
 そこで、α=5mm、α=20mm、α=35mmの各試験において、上限値Mixが50kg/溶銑-トンとなるときのそれぞれの比率βについて比較した。図5は、横軸をコークス粒子の短径α(mm)とし、縦軸を上限値Mixが50kg/溶銑-トンとなるときの比率β(質量%)として、比率βと短径αとの関係を示す図である。図5に示すように、上限値Mixが50kg/溶銑-トンとなるときの比率β(質量%)と、コークス粒子の短径α(mm)とは、一次式の関係で表されることがわかった。つまり、(1)式は、αが5~35mmの範囲である限り、妥当であることが確認できた。
 尚、(1)式は、コークス層を形成するためのコークス中の、短径が35mm以下のコークス粒子の比率がゼロの場合(基準条件)のコークス混合鉱石層でのコークス混合量を200kg/溶銑-トンとした場合であるが、本発明を実施するにあたり、基準条件でのコークス混合量を200kg/溶銑-トンに限定する必要はない。
 高炉操業において、鉄鉱石の還元反応及び生成する溶銑の昇温に必要なコークス比(kg/溶銑-トン)は、一般的には300kg/溶銑-トン程度であるが、各高炉の操業状況に応じて変化する。尚、コークス比とは、コークス混合鉱石層とコークス層との双方に配合される合計のコークス装入量(kg/溶銑-トン)である。つまり、コークス比をCR(kg/溶銑-トン)とすれば、基準条件におけるコークス混合鉱石層に配合されるコークスの量は、コークス比CRに、或る配合比γ(-)を乗算した量(CR×γ)で表示することができる。
 本発明は、上記試験結果に基づきなされたものであり、本発明に係る高炉への原料装入方法は、鉄鉱石及びコークスが混合された混合原料とコークスとを高炉炉頂から交互に装入し、前記混合原料からなるコークス混合鉱石層と前記コークスからなるコークス層とを炉内に層状に形成する高炉への原料装入方法であって、前記コークス層を形成するためのコークスを高炉に搬送する搬送設備(ベルトコンベアなど)の上方に設置された該粒度測定センサーで、前記搬送設備で搬送されるコークスに含まれる粒子の短径が5mmから35mmの範囲の任意の短径以下であるコークスの比率を測定し、測定された前記比率に基づき、前記混合原料中のコークス混合量を、基準条件である、短径が35mm以下のコークス粒子の、前記コークス層を形成するためのコークス中での比率がゼロの場合におけるコークス混合量よりも少なくし、基準条件でのコークス混合量と前記比率に基づいて設定したコークス混合量との差分の量のコークスを、コークス層を形成するコークスとして割り振りする。つまり、コークス比(kg/溶銑-トン)を一定とする高炉操業において、基準条件でのコークス混合量と、コークス層4を形成するためのコークス中の粉状コークスの含有量に基づいて設定したコークス混合量との差分のコークス量を、コークス層を形成するコークスとして配合する。
 尚、差分のコークス量をコークス混合層からコークス層へ振り替えることが還元材比の増減もなく通気性を確保することができて好ましいが、振り替え量に±5kg/溶銑-トンを持たせることは可能である。
 コークス混合層に配合していたコークスをコークス層に振り替える場合に、前記混合原料中のコークス混合量を、測定された前記比率を上記の(1)式に代入して算出されるコークス混合量の上限値以下に設定することが好ましい。
 即ち、本発明においては、コークス層を形成するコークスに含まれる細粒(短径35mm以下)が増加すると、コークス層の通気性が悪化するので、それを担保するように、コークス混合鉱石層に配合していたコークスをコークス層に割り振りして、高炉内部の通気性を確保する。このようにしてコークス量を調整することで、コークス比(kg/溶銑-トン)は或る所定の値に維持される。
 コークスの粒度分布を測定する粒度測定センサーとしては、例えば、刊行物1(刊行物1;特開2003-83868号公報)に開示される、「測定対象物を撮像装置により撮像し、撮像された原画像から、当該原画像にぼかし処理を行ったぼかし画像を得て、当該ぼかし画像を2値化処理することにより、所定粒径以上の測定対象物の粒径の分布を測定するとともに、前記撮像された原画像とぼかし画像の差分により形成された差分画像を2値化処理することにより、前記所定粒径未満の測定対象物の粒径の分布を測定し、これら2種類の粒径測定分布の測定結果に基づいて、全体の粒径分布を測定する粒度分布測定方法」を利用した測定装置などを使用すればよい。具体的には、図1に示す交点間距離を画像処理によって検出することのできる粒度測定センサーを使用する。
 以上説明したように、本発明によれば、高炉へのコークス搬送設備で、コークス層を形成するコークスの粒度分布を測定し、この粒度分布の測定結果に基づいて、コークス混合鉱石層へのコークス混合量及びコークス層へのコークス配合量を制御するので、高炉炉内の通気性が確保され、高炉操業の安定化が実現される。
 実機高炉において、同一コークス比及び同一出銑比の条件で、本発明を適用して原料装入を実施した場合と、本発明の範囲外で原料装入を行った場合とで、ガス利用率及び充填層における圧力損失を調査した結果を比較して示す。コークスの粒度分布を測定する粒度測定センサーとしては、刊行物1に開示される粒度分布測定方法を利用した測定装置を使用し、この測定装置を、コークス層を形成するためのコークスを高炉に搬送するベルトコンベアの上方に設置した。
 コークス層を形成するためのコークスにおいて、短径が5mm以下のコークス粒子の比率を粒度測定センサーによって測定した。混合原料中のコークス混合量(kg/溶銑-トン)を、短径が5mm以下のコークス粒子の比率の測定値を(1)式に代入して算出されるコークス混合量の上限値Mix(kg/溶銑-トン)以下に調整した場合(本発明例1、2)と、混合原料中のコークス混合量(kg/溶銑-トン)を(1)式による上限値を超える値にした場合(比較例1、2)とを、比較して表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、コークス層を形成するためのコークスにおいて、短径が35mm以下のコークス粒子の比率を粒度測定センサーによって測定した。混合原料中のコークス混合量(kg/溶銑-トン)を、短径が35mm以下のコークス粒子の比率の測定値を(1)式に代入して算出されるコークス混合量の上限値Mix(kg/溶銑-トン)以下に調整した場合(本発明例3、4)と、混合原料中のコークス混合量(kg/溶銑-トン)を(1)式による上限値を超える値にした場合(比較例3、4)とを、比較して表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、本発明を適用した場合には、ガス利用率が向上し、且つ、充填層における圧力損失が低下することが確認できた。つまり、本発明を適用することで、安定した高炉操業が可能になることが確認できた。
 1 試料加熱炉
 2 試料充填容器
 3 加熱装置
 4 コークス層
 5 コークス混合鉱石層
 6 試料充填層
 7 気体加熱炉
 8 加熱装置
 9 ガス混合器
 10 ガス流通用配管
 11 圧力計
 12 熱電対
 13 押え板
 14 台座
 15 接続棒
 16 錘

Claims (2)

  1.  鉄鉱石及びコークスが混合された混合原料とコークスとを高炉炉頂から交互に装入し、
     前記混合原料からなるコークス混合鉱石層と前記コークスからなるコークス層とを炉内に層状に形成する高炉への原料装入方法であって、
     前記コークス層を形成するためのコークスを高炉に搬送する搬送設備の上方に設置された粒度測定センサーで、前記搬送設備で搬送されるコークスに含まれる粒子の短径が5mmから35mmの範囲の任意の短径以下であるコークス粒子の比率を測定し、
     前記コークス層を形成するためのコークスが、短径が35mm以下のコークス粒子を含有しない条件を基準条件と定義したとき、測定された前記比率に基づき、前記混合原料中のコークス混合量を、基準条件での混合原料中のコークス混合量よりも少なく設定し、
     基準条件でのコークス混合量と前記比率に基づいて設定したコークス混合量との差分の量のコークスを、コークス層を形成するコークスとして割り振りする、高炉への原料装入方法。
  2.  前記混合原料中のコークス混合量を、測定された前記比率を下記の(1)式に代入して算出されるコークス混合量の上限値以下に設定する、請求項1に記載の高炉への原料装入方法。
     Mix=[(9/10)×α-69/2]×β+200・・・(1)
     ここで、(1)式において、
     Mixは、混合原料中のコークス混合量の上限値(kg/溶銑-トン)、
     αは、コークス粒子の短径であり、5mmから35mmの範囲の任意の値、
     βは、短径がαmm以下のコークス粒子の比率(質量%)である。
PCT/JP2017/010058 2016-03-16 2017-03-14 高炉への原料装入方法 WO2017159641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017541884A JP6354074B2 (ja) 2016-03-16 2017-03-14 高炉への原料装入方法
KR1020187026183A KR102182443B1 (ko) 2016-03-16 2017-03-14 고로에 대한 원료 장입 방법
BR112018068563-1A BR112018068563B1 (pt) 2016-03-16 2017-03-14 Método para carregar matérias-primas em alto forno
CN201780017142.0A CN109072318B (zh) 2016-03-16 2017-03-14 向高炉装入原料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016051952 2016-03-16
JP2016-051952 2016-03-16

Publications (1)

Publication Number Publication Date
WO2017159641A1 true WO2017159641A1 (ja) 2017-09-21

Family

ID=59850852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/010058 WO2017159641A1 (ja) 2016-03-16 2017-03-14 高炉への原料装入方法

Country Status (5)

Country Link
JP (1) JP6354074B2 (ja)
KR (1) KR102182443B1 (ja)
CN (1) CN109072318B (ja)
BR (1) BR112018068563B1 (ja)
WO (1) WO2017159641A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114599802B (zh) * 2019-10-31 2024-03-29 杰富意钢铁株式会社 高炉操作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283804A (ja) * 1995-02-15 1996-10-29 Sumitomo Metal Ind Ltd 高炉の操業方法
JP2002221481A (ja) * 2001-01-29 2002-08-09 Nkk Corp 粒度測定装置
WO2013172035A1 (ja) * 2012-05-17 2013-11-21 Jfeスチール株式会社 高炉への原料装入方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53152800U (ja) 1977-04-30 1978-12-01
JPH0776366B2 (ja) 1987-07-31 1995-08-16 新日本製鐵株式会社 高炉操業方法
JP2820478B2 (ja) 1990-01-16 1998-11-05 川崎製鉄株式会社 ベルレス高炉における原料装入方法
JP2945820B2 (ja) 1993-07-07 1999-09-06 新日本製鐵株式会社 高炉装入物分布制御方法
TW300861B (ja) 1995-05-02 1997-03-21 Baker Refractories
JP4269847B2 (ja) 2002-08-30 2009-05-27 Jfeスチール株式会社 ベルレス高炉の原料装入方法
JP5834922B2 (ja) * 2011-02-21 2015-12-24 Jfeスチール株式会社 高炉操業方法
CN104302786A (zh) * 2012-05-18 2015-01-21 杰富意钢铁株式会社 向高炉装入原料的方法
CN102851417B (zh) * 2012-07-10 2014-01-08 莱芜钢铁集团有限公司 一种控制高炉入炉干基焦炭质量稳定的方法、装置及系统
CN103146860B (zh) * 2013-03-15 2014-08-20 郑州大学 一种高炉入料粒度全自动检测控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08283804A (ja) * 1995-02-15 1996-10-29 Sumitomo Metal Ind Ltd 高炉の操業方法
JP2002221481A (ja) * 2001-01-29 2002-08-09 Nkk Corp 粒度測定装置
WO2013172035A1 (ja) * 2012-05-17 2013-11-21 Jfeスチール株式会社 高炉への原料装入方法

Also Published As

Publication number Publication date
CN109072318B (zh) 2020-11-03
KR102182443B1 (ko) 2020-11-24
CN109072318A (zh) 2018-12-21
JPWO2017159641A1 (ja) 2018-03-29
JP6354074B2 (ja) 2018-07-11
BR112018068563B1 (pt) 2022-05-31
KR20180112829A (ko) 2018-10-12
BR112018068563A2 (pt) 2019-02-12

Similar Documents

Publication Publication Date Title
JP5522331B2 (ja) 高炉への原料装入方法
JP6354074B2 (ja) 高炉への原料装入方法
JP6747232B2 (ja) 高炉の原料混合比率推定方法
JP2020012132A (ja) 高炉用コークスの品質管理方法
JP5515288B2 (ja) 高炉への原料装入方法
JP6852679B2 (ja) フェロコークス用成型物の製造方法およびフェロコークスの製造方法
JP6102495B2 (ja) 高炉の原料装入装置及び高炉の原料装入方法
JP5834922B2 (ja) 高炉操業方法
JP6489092B2 (ja) 焼結鉱の製造方法および焼結鉱の製造設備列
JP5338309B2 (ja) 高炉への原料装入方法
JP5842738B2 (ja) 高炉操業方法
KR101642908B1 (ko) 원료 장입 장치 및 원료 장입 방법
JP6102497B2 (ja) ベルレス高炉の原料装入方法
JP2018178165A (ja) 高炉操業方法
WO2019187997A1 (ja) 高炉の原料装入方法
JP2011068926A (ja) 高炉の原料装入方法
JP6769507B2 (ja) 高炉の原料装入方法
JP6558518B1 (ja) 高炉の原料装入方法
JP6834720B2 (ja) 焼結用配合原料の製造方法
JP2010150642A (ja) 高炉への原料装入方法
JP2018178164A (ja) 高炉操業方法
JPWO2019187997A1 (ja) 高炉の原料装入方法
US20210087000A1 (en) Pneumtic conveyance method for methionine
JP2018150565A (ja) 粉体原料の使用方法及び溶融金属の溶製方法
JP2017020084A (ja) 焼結原料粒の装入方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017541884

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187026183

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187026183

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018068563

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018068563

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20180913

122 Ep: pct application non-entry in european phase

Ref document number: 17766640

Country of ref document: EP

Kind code of ref document: A1