WO2017159241A1 - 通信制御装置 - Google Patents

通信制御装置 Download PDF

Info

Publication number
WO2017159241A1
WO2017159241A1 PCT/JP2017/006454 JP2017006454W WO2017159241A1 WO 2017159241 A1 WO2017159241 A1 WO 2017159241A1 JP 2017006454 W JP2017006454 W JP 2017006454W WO 2017159241 A1 WO2017159241 A1 WO 2017159241A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
communication
wide area
wide
processing unit
Prior art date
Application number
PCT/JP2017/006454
Other languages
English (en)
French (fr)
Inventor
柚木▲崎▼ 穏宗
治彦 曽我部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to SG11201806593RA priority Critical patent/SG11201806593RA/en
Priority to US16/085,079 priority patent/US10375545B2/en
Priority to DE112017001391.7T priority patent/DE112017001391T5/de
Publication of WO2017159241A1 publication Critical patent/WO2017159241A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/48Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for in-vehicle communication

Definitions

  • the present disclosure relates to a communication control device that controls the operation of a communication module for performing vehicle-to-vehicle communication.
  • each of a plurality of vehicles sequentially broadcasts communication packets (hereinafter referred to as vehicle information packets) indicating vehicle information such as the current position, traveling speed, and traveling direction, and vehicle information packets transmitted from other vehicles.
  • vehicle information packets communication packets
  • a vehicle-to-vehicle communication system has been proposed that sequentially receives.
  • vehicles communicate vehicle information packets without going through a wide area communication network.
  • a mode of direct transmission / reception is assumed.
  • Direct wireless communication between vehicles is realized by adopting a CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance) method as an access control method.
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the vehicle information of other vehicles obtained by inter-vehicle communication is used for vehicle control that supports the driving operation of the driver, automatic driving, provision of information to the driver, and the like. Therefore, the vehicle information acquired by inter-vehicle communication needs to be real-time information as close as possible to the current situation.
  • the transmission cycle of the vehicle information packet is often set to several hundred milliseconds (more specifically, 100 milliseconds).
  • the hidden terminal problem is a problem in which radio signal interference occurs due to a positional relationship in which a plurality of vehicles cannot receive each other's signals.
  • shadowing means that even though the distance is communicable, radio waves are blocked by a large vehicle, and vehicle information packets cannot be received temporarily or the received signal strength is reduced. It means to do.
  • This disclosure is intended to provide a communication control device capable of suppressing communication charges while realizing real-time vehicle information sharing.
  • a communication control device is used in a vehicle and exists in the vicinity of the vehicle in cooperation with a narrow-area communication module for performing direct wireless communication with the outside without going through a wide-area communication network.
  • Wide area communication for wireless communication with a surrounding vehicle, a narrow area communication processing unit that performs direct vehicle-to-vehicle communication that is direct vehicle-to-vehicle communication not via the wide area communication network, and the outside via the wide area communication network
  • a wide area communication processing unit that performs indirect vehicle-to-vehicle communication that is indirect vehicle-to-vehicle communication with the surrounding vehicle via the wide-area communication network, and detection of sensors mounted on the vehicle
  • a vehicle data generation unit that generates vehicle data indicating the running state of the vehicle based on the result.
  • the narrow area communication processing unit wirelessly transmits a communication packet including the vehicle data from the narrow area communication module at a predetermined narrow area transmission cycle.
  • the wide area communication processing unit performs a process of transmitting a communication packet including the vehicle data to the surrounding vehicles at a predetermined wide area transmission cycle via the wide area communication module and the wide area communication network.
  • the communication control device is based on the vehicle data acquired by the narrow-area communication processing unit and the wide-area communication processing unit, and another vehicle corresponding to the surrounding vehicle exists within a predetermined range that is determined based on the position of the vehicle.
  • the vehicle further includes a surrounding vehicle determination unit that determines whether or not.
  • the wide area communication processing unit when the surrounding vehicle determination unit determines that the other vehicle does not exist within the predetermined range, as the wide area transmission period, a predetermined first longer than the narrow area transmission period. While adopting one wide-area transmission cycle, if it is determined by the surrounding vehicle determination unit that the other vehicle is within the predetermined range, set to a value equal to or smaller than the narrow-band transmission cycle The predetermined second wide area transmission cycle is adopted as the wide area transmission period.
  • Vehicle data is transmitted by indirect vehicle-to-vehicle communication in one wide-area transmission cycle.
  • vehicle data is transmitted by indirect vehicle-to-vehicle communication at a relatively short second wide-area transmission cycle.
  • the narrow area communication processing unit sequentially transmits vehicle data at a predetermined narrow area transmission cycle regardless of the determination result of the surrounding vehicle determination unit.
  • vehicle data is transmitted relatively densely in both direct type in-vehicle communication and indirect type in-vehicle communication. Therefore, even if the communication quality of direct-type vehicle-to-vehicle communication decreases due to shadowing or the like, real-time vehicle information sharing can be maintained by indirect-type vehicle-to-vehicle communication.
  • the wide area transmission cycle is set to the first wide area transmission period (that is, a relatively long time). Increasing the wide-area transmission cycle corresponds to suppressing the frequency of performing communication via the wide-area communication network, so that it is possible to suppress the communication amount and the communication fee.
  • the vehicle data of the own vehicle is not used by the other vehicle. For this reason, the necessity of frequently transmitting vehicle data is small.
  • the transmission of vehicle data is performed at the same frequency as when other vehicles exist in the surrounding area by direct type inter-vehicle communication that does not incur communication charges.
  • FIG. 1 is a block diagram showing an example of a schematic configuration of a vehicle-to-vehicle communication system
  • FIG. 2 is a block diagram showing an example of a schematic configuration of the in-vehicle system
  • FIG. 3 is a flowchart for explaining the wide area transmission cycle control process.
  • FIG. 4 is a diagram for explaining the operation of the communication control unit when the wide area transmission cycle is set to the first cycle.
  • FIG. 5 is a diagram for explaining the operation of the communication control unit when the wide-area transmission cycle is set to the second cycle.
  • FIG. 6 is a diagram showing another aspect of the second period, FIG.
  • FIG. 7 is a diagram showing another aspect of the second period
  • FIG. 8 is a diagram illustrating another aspect of the second period
  • FIG. 9 is a block diagram illustrating a schematic configuration of the communication control unit in the third modification.
  • FIG. 10 is a flowchart for explaining a wide-area transmission cycle control process performed by the communication control unit of the third modification.
  • FIG. 11 is a block diagram showing a modification of the configuration of the in-vehicle system.
  • FIG. 12 is a block diagram showing a modification of the configuration of the in-vehicle system.
  • FIG. 13 is a block diagram illustrating a modification of the configuration of the communication control unit.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a vehicle-to-vehicle communication system 100 according to the present disclosure.
  • the inter-vehicle communication system 100 includes a plurality of in-vehicle systems 1 constructed in each of a plurality of vehicles Ma and Mb, and a center 2.
  • FIG. 1 for convenience, only two vehicles Ma and Mb are illustrated as vehicles to which the in-vehicle system 1 is applied (hereinafter referred to as applicable vehicles), but there are actually three or more vehicles.
  • the in-vehicle system 1 constructed in the vehicle Ma is used as the in-vehicle system 1a
  • the in-vehicle system 1 constructed in the vehicle Mb is installed in the vehicle. It is described as a system 1b.
  • the inter-vehicle communication system 100 is a system for applying vehicles to each other for wireless communication.
  • the applicable vehicle is a vehicle that travels on a road.
  • the applicable vehicle may be a two-wheeled vehicle, a three-wheeled vehicle, etc. in addition to a four-wheeled vehicle.
  • motorcycles include motorbikes.
  • the applied vehicles Ma and Mb are assumed to be four-wheeled vehicles as an example.
  • Each applicable vehicle is configured to perform wireless communication (so-called vehicle-to-vehicle communication) without using the wide-area communication network 3 by using radio waves in a frequency band assigned in advance.
  • vehicle-to-vehicle communication that does not pass through the wide area communication network 3 is referred to as direct-type vehicle-to-vehicle communication here.
  • mold vehicle-to-vehicle communication becomes a limited range according to the transmission output of an electromagnetic wave. That is, the range in which the direct vehicle-to-vehicle communication can be performed is narrower than the communication via the wide area communication network. Therefore, direct vehicle-to-vehicle communication is sometimes referred to as narrow area communication.
  • the frequency band used for direct inter-vehicle communication may be designed as appropriate.
  • direct vehicle-to-vehicle communication may be realized using radio waves in the 760 MHz band.
  • the direct type inter-vehicle communication may be realized using radio waves of 2.4 GHz, 5.9 GHz band, and the like.
  • any communication standard for realizing direct vehicle-to-vehicle communication can be adopted.
  • each applicable vehicle is assumed to perform direct type vehicle-to-vehicle communication in conformity with the WAVE (Wireless Access in Vehicular Environment) standard disclosed in IEEE1609 and the like.
  • WAVE Wireless Access in Vehicular Environment
  • Each applicable vehicle transmits a communication packet (hereinafter referred to as a vehicle data packet) indicating its own vehicle data to a predetermined cycle (hereinafter referred to as a narrow region transmission cycle) Td with respect to other vehicles around the vehicle by direct type inter-vehicle communication.
  • the vehicle data includes transmission source information indicating the vehicle (that is, the transmission source vehicle) that transmitted the communication packet, the generation time of the data, the current position of the transmission source vehicle, the traveling direction, the traveling speed, the acceleration, and the like.
  • the transmission source information is identification information (so-called vehicle ID) assigned to the transmission source vehicle in advance to distinguish it from other vehicles.
  • each applicable vehicle is configured to be wirelessly connectable to the wide area communication network 3 by the in-vehicle system 1 mounted on each vehicle.
  • the wide area communication network 3 refers to a public communication network provided by a telecommunication carrier such as a mobile phone network or the Internet.
  • a base station 4 shown in FIG. 1 is a radio base station for connecting the in-vehicle system 1 to the wide area communication network 3.
  • Each applicable vehicle transmits a communication packet including the same vehicle data packet as the vehicle data packet to be broadcast by direct type inter-vehicle communication at a predetermined cycle (hereinafter referred to as a wide area transmission cycle) Tw and the base station 4 and the wide area communication.
  • the data is transmitted to the center 2 via the network 3.
  • a communication packet including vehicle data of a transmission source vehicle transmitted to the center 2 via the wide area communication network 3 is referred to as a wide area vehicle data packet so as to be distinguished from a vehicle data packet periodically transmitted by direct inter-vehicle communication. It describes.
  • a vehicle data packet that is periodically transmitted by direct inter-vehicle communication is referred to as a narrow-area vehicle data packet.
  • transmitting a communication packet addressed to another communication terminal (for example, the center 2) connected to the wide area communication network 3 is also expressed as wide area transmission, and a predetermined communication packet is transmitted by direct inter-vehicle communication. This is also expressed as narrowband transmission.
  • the center 2 plays a role of transferring a wide area vehicle data packet transmitted from a certain vehicle to other vehicles (that is, surrounding vehicles) existing around the transmission source vehicle.
  • the area around the transmission source vehicle is a range within a predetermined inter-vehicle distance from the vehicle. That is, the inter-vehicle distance for transfer functions as a parameter used to extract a vehicle (in other words, a surrounding vehicle for the transmission source vehicle) that is a transfer destination of the received wide area vehicle data packet from various applicable vehicles. To do.
  • the inter-vehicle distance for transfer may be a fixed value or may be dynamically determined according to the traveling speed of the transmission source vehicle.
  • the transfer inter-vehicle distance is set to a larger value as the traveling speed of the transmission source vehicle increases.
  • Other vehicles existing within the inter-vehicle distance for transmission from the transmission source vehicle correspond to surrounding vehicles.
  • the transfer inter-vehicle distance may be dynamically adjusted to a value according to the type of road on which the transmission source vehicle is traveling. For example, when the type of road on which the transmission source vehicle is traveling is an expressway, the inter-vehicle distance for transfer is set to a relatively large value (for example, 400 m), while the traveling road is a general road. Is set to a smaller value (for example, 200 m) than when the traveling road is an expressway.
  • the center 2 has a function of managing the current position of each applicable vehicle as a sub-function for determining the transfer destination of the received wide area vehicle data packet.
  • the management of the current position of each applicable vehicle may be realized using a database (not shown).
  • the current position of each applicable vehicle is stored in association with the vehicle ID or the like.
  • position management data For convenience, data representing the current position for each applicable vehicle is referred to as position management data.
  • the center 2 refers to the content of the wide area vehicle data packet and updates the current position of the transmission source vehicle registered in the database.
  • the center 2 When the center 2 receives a wide-area vehicle data packet transmitted from a certain application vehicle, the center 2 extracts a vehicle existing within the inter-vehicle distance for transfer at a linear distance from the transmission source vehicle based on the position management data. The received wide area vehicle data packet is transferred to the extracted vehicle.
  • the vehicle-to-vehicle communication system 100 provides indirect vehicle-to-vehicle communication via the wide area communication network 3.
  • indirect vehicle-to-vehicle communication via the wide-area communication network 3 is also referred to as indirect vehicle-to-vehicle communication in order to distinguish from direct vehicle-to-vehicle communication.
  • the configuration of the in-vehicle system 1 mounted on each vehicle will be described in more detail.
  • the configuration of the in-vehicle system 1 will be described taking the in-vehicle system 1a mounted in the applicable vehicle Ma as an example.
  • the in-vehicle system 1 constructed in another applicable vehicle for example, the vehicle Mb
  • the vehicle on which the vehicle-mounted system 1 is mounted that is, the vehicle Ma
  • the vehicle Ma is also described as the own vehicle in distinction from the vehicle mounted with the other vehicle-mounted system 1.
  • the in-vehicle system 1 includes a communication unit 10, a sensor 20, and a locator 30, as shown in FIG.
  • the communication unit 10 is connected to the sensor 20 and the locator 30 via a communication network (that is, LAN: Local Area Network) built in the vehicle.
  • a communication network that is, LAN: Local Area Network
  • the communication unit 10 is a unit for performing transmission / reception of vehicle data packets with surrounding vehicles.
  • the communication unit 10 includes a narrow area communication module 11, a wide area communication module 12, and a communication control unit 13 as finer elements.
  • Each of the narrow area communication module 11 and the wide area communication module 12 is connected to the communication control unit 13 so as to be able to communicate with each other.
  • the narrow-area communication module 11 is a communication module for carrying out direct wireless communication (that is, direct type inter-vehicle communication) with other vehicles using radio waves in a predetermined frequency band.
  • the narrow-area communication module 11 includes a narrow-area communication antenna and a narrow-area communication transmitter / receiver (not shown) as finer elements.
  • the narrow area communication antenna is an antenna for transmitting and receiving radio waves in a frequency band used for direct type vehicle-to-vehicle communication.
  • the transceiver for narrow area communication demodulates the signal received by the antenna for narrow area communication and provides it to the communication control section 13, and modulates the data input from the communication control section 13 and outputs it to the antenna for narrow area communication And wirelessly transmit.
  • the access control for direct inter-vehicle communication is performed by CSMA / CA (Carrier Sense Multiple Access / Collision Avoidance).
  • CSMA / CA Carrier Sense Multiple Access / Collision Avoidance
  • the access control processing based on CSMA / CA may be handled by the narrow-area communication transceiver unit or the communication control unit 13.
  • the wide-area communication module 12 is a communication module for wirelessly connecting to the wide-area communication network 3 so that the in-vehicle system 1 communicates with other communication devices via the wide-area communication network 3.
  • the wide area communication module 12 includes, as finer elements, a wide area communication antenna and a wide area communication transceiver unit (not shown).
  • the wide area communication antenna is an antenna for transmitting and receiving radio waves in a predetermined frequency band used for wireless communication with the base station 4.
  • the wide-area communication transceiver unit demodulates the signal received by the wide-area communication antenna and provides it to the communication control unit 13, modulates data input from the communication control unit 13, and outputs the modulated data to the wide-area communication antenna. Send.
  • the wide area communication module 12 outputs the received data to the communication control unit 13 and modulates the data input from the communication control unit 13 to external devices. It functions as a communication module that transmits to (for example, center 2).
  • the communication control unit 13 controls the operation of the narrow area communication module 11 and the wide area communication module 12. The details of the communication control unit 13 will be described later, but the outline is as follows.
  • the communication control unit 13 generates vehicle data based on information provided from the sensor 20 and the locator 30, and transmits a vehicle data packet including the vehicle data from the narrow area communication module 11 or from the wide area communication module 12. Or send it. Transmitting a communication packet from the narrow area communication module 11 corresponds to the above-mentioned narrow area transmission, and transmitting a communication packet from the wide area communication module 12 corresponds to the above-described wide area transmission.
  • the communication control part 13 receives the vehicle data packet transmitted from the surrounding vehicle by direct type vehicle-to-vehicle communication and indirect type vehicle-to-vehicle communication.
  • the sensor 20 is various sensors for detecting various state quantities related to the traveling of the host vehicle.
  • the state quantities related to the traveling of the host vehicle are, for example, a traveling speed, a yaw rate, a steering angle, an acceleration, a shift position, and the like. That is, the sensor 20 includes a speed sensor that detects a traveling speed, a yaw rate sensor that detects a yaw rate, a steering angle sensor that detects a steering angle, an acceleration sensor that detects acceleration acting on the vehicle Ma, a shift position sensor, and the like. . Note that position information indicating the current position of the host vehicle specified by a locator 30 described later is also included in the state quantity related to the traveling of the host vehicle.
  • the detection results of the various sensors 20 are sequentially provided to the communication unit 10 via the LAN.
  • the detection results of the various sensors 20 may be provided to the communication unit 10 via an arbitrary electronic control unit (ECU: Electronic Control Unit) or the like.
  • ECU Electronic Control Unit
  • the sensor corresponding to the sensor 20 is not limited to that described above. Moreover, it is not necessary to provide all the sensors mentioned above. The kind of sensor 20 should just be designed suitably.
  • Locator 30 is a device that identifies a point where the host vehicle is currently traveling on a road map.
  • the locator 30 includes a GNSS receiver 31 and a map storage unit 32 as finer components.
  • the GNSS receiver 31 receives a navigation signal transmitted by a navigation satellite provided in a GNSS (Global Navigation Satellite System), which is a satellite navigation system, and sequentially calculates a current position based on the received navigation signal.
  • GNSS Global Navigation Satellite System
  • the map storage unit 32 stores road map data indicating road connection relations and road shapes (in other words, road structures).
  • the map storage unit 32 may be realized using a non-volatile storage medium such as a hard disk drive.
  • Locator 30 specifies the position of the host vehicle on the road map based on the current position detected by GNSS receiver 31.
  • the identification of the vehicle position on the road map is hereinafter referred to as mapping.
  • the mapping of the vehicle position may be performed with the aid of a known map matching technique commonly used in navigation devices.
  • the map matching technique is a technique for obtaining the vehicle travel locus from the traveling direction and the traveling speed of the vehicle at a plurality of time points, and comparing the vehicle travel locus and the road shape obtained from the map information to obtain the current position of the vehicle. .
  • Locator 30 sequentially provides position information indicating the current position to communication unit 10. Locator 30 only needs to have the above-described function. When a navigation device is mounted on the host vehicle, the navigation device may be used as locator 30.
  • the communication control unit 13 corresponds to a communication control device.
  • the communication control unit 13 is configured as a computer including a CPU, a RAM, a ROM, an I / O, and a bus line that connects these configurations.
  • the ROM stores a program (hereinafter referred to as a communication control program) for causing a normal computer to function as the communication control unit 13, a vehicle ID, and the like.
  • the above-described communication control program only needs to be stored in a non-transitory tangible storage medium, and the specific storage medium is not limited to the ROM.
  • the communication control program may be stored in a flash memory. Executing the communication control program by the CPU corresponds to executing a method corresponding to the communication control program.
  • the communication control unit 13 provides various functions shown in FIG. 2 when the CPU executes the communication control program stored in the ROM. That is, the communication control unit 13 includes a vehicle information acquisition unit F1, a vehicle data generation unit F2, a narrow area communication processing unit F3, a wide area communication processing unit F4, a reception data management unit F5, and a surrounding vehicle determination unit F6 as functional blocks. .
  • the communication control unit 13 includes a memory M1 that is realized using a rewritable storage medium such as a RAM.
  • some or all of the functional blocks included in the communication control unit 13 may be realized by using one or a plurality of ICs (in other words, as hardware). Further, some or all of the functional blocks included in the communication control unit 13 may be realized by a combination of software execution by the CPU and hardware members.
  • the vehicle information acquisition unit F1 acquires various information (that is, vehicle information) indicating the traveling state of the host vehicle from the sensor 20 and the locator 30 via the LAN. Specifically, the current position of the host vehicle, the traveling speed, the yaw rate, the traveling direction, and the like are acquired. Various information acquired by the vehicle information acquisition unit F1 is stored in the memory M1 for a certain period of time.
  • the vehicle data generation unit F2 generates vehicle data indicating the traveling state of the vehicle at the generation time with a predetermined generation cycle Tg based on various information stored in the memory M1.
  • the generation cycle Tg may be 100 milliseconds, for example.
  • the vehicle data generated by the vehicle data generation unit F2 corresponds to a data body portion (so-called payload) accommodated in the vehicle data packet.
  • the vehicle data generated by the vehicle data generation unit F2 is stored in the memory M1 and is provided to the narrow area communication processing unit F3 and the wide area communication processing unit F4.
  • the narrow area communication processing unit F3 generates a narrow area vehicle data packet including the vehicle data every time the vehicle data is provided from the vehicle data generation unit F2, and outputs the narrow area vehicle data packet to the narrow area communication module 11.
  • the narrow area communication module 11 modulates and transmits the narrow area vehicle data packet input from the narrow area communication processing unit F3.
  • the vehicle data generation unit F2 generates data at the generation cycle Tg as described above. Therefore, the period (that is, the narrow area transmission period) Td at which the narrow area communication processing unit F3 transmits the narrow area vehicle data packet is equal to the generation period Tg. In other words, in the present embodiment, the narrow band transmission cycle Td is set to coincide with the generation cycle Tg.
  • the narrow area communication processing unit F3 acquires data received by the narrow area communication module 11 (for example, a narrow area vehicle data packet from another vehicle).
  • the narrow area communication processing unit F3 provides the received data management unit F5 with the vehicle data indicated in the acquired narrow area vehicle data packet.
  • the vehicle data of other vehicles acquired by the narrow area communication processing unit F3 may be provided to other ECUs via the LAN.
  • the vehicle data generation unit F2 spontaneously generates vehicle data at a predetermined generation cycle Tg and provides the vehicle data to the narrow area communication processing unit F3, but the vehicle data generation unit F2 The operation is not limited to this.
  • the vehicle data generation unit F2 may generate a vehicle data packet based on a request from the narrow area communication processing unit F3.
  • the narrow area communication processing unit F3 requests the vehicle data generation unit F2 to generate vehicle data for each narrow area transmission period Td. Also in such a mode, the narrow area vehicle data packet is transmitted at the narrow area transmission period Td.
  • the wide area communication processing unit F4 generates a wide area vehicle data packet including the vehicle data generated by the vehicle data generation unit F2 at a predetermined wide area transmission cycle Tw. Note that the wide area communication processing unit F4 generates a wide area vehicle data packet so as to include the same vehicle data as the narrow area vehicle data packet transmitted at the timing when the wide area transmission cycle Tw expires.
  • the generated wide area vehicle data packet is output to the wide area communication module 12 and wirelessly transmitted. That is, the wide area communication processing unit F4 performs processing for transmitting wide area vehicle data packets at a predetermined wide area transmission cycle Tw.
  • the wide-area vehicle data packet transmitted from the wide-area communication module 12 is delivered to surrounding vehicles of the host vehicle via the base station 4, the wide-area communication network 3, and the center 2.
  • the period for generating and transmitting the wide area vehicle data packet (that is, the wide area transmission period) Tw itself is dynamically changed by the wide area communication processing unit F4.
  • first and second cycles Tw1 and Tw2 having different lengths are registered in advance in the ROM as set values that can be adopted as the wide-area transmission cycle Tw.
  • the wide area communication processing unit F4 selects the first cycle Tw1 and the second cycle Tw2 to be adopted as the wide area transmission cycle Tw based on the determination result of the surrounding vehicle determination unit F6 described later.
  • the first period Tw1 corresponds to a first wide area transmission period
  • the second period Tw2 corresponds to a second wide area transmission period.
  • 1st period Tw1 should just be set as a larger value compared with 2nd period Tw2.
  • the first period Tw1 is set to 10 times the narrow band transmission period Td (that is, 1 second)
  • the second period Tw2 is set to 1 time the narrow band transmission period Td (that is, 100 milliseconds).
  • the first period Tw1 may be 0.5 seconds, 0.8 seconds, 2 seconds, or the like.
  • both the first period Tw1 and the second period Tw2 are set to an integer multiple of the narrow band transmission period Td (in other words, the vehicle data generation period Tg). This is because the vehicle data indicated by the wide-area vehicle data packet transmitted over a wide area has the same content as the vehicle data indicated by the narrow-area vehicle data packet transmitted narrowly before and after the transmission time.
  • the first period Tw1 is a value set in the wide area transmission period Tw for the purpose of suppressing the traffic. Therefore, it is preferable that the first period Tw1 is set to a relatively large value from the viewpoint of suppressing traffic. This is because as the wide-area transmission cycle Tw is smaller, the amount of communication via the wide-area communication network 3 increases and the communication fee may increase.
  • the second period Tw2 is a value for setting the wide-area transmission period Tw when real-time information sharing between vehicles is required. Therefore, it is preferable to set it to a relatively small value (for example, 300 milliseconds or less) from the viewpoint of real-time information sharing.
  • the second period Tw2 may be set to 200 milliseconds or 300 milliseconds.
  • the second period Tw2 a value according to the request may be adopted as the second period Tw2.
  • the generation period Tg of the vehicle data and the narrow band transmission period Td are also set to the length according to the request.
  • the first period Tw1 may be designed to be a large value (for example, 10,000 seconds or more) such that the transmission of the wide area vehicle data packet is not substantially performed.
  • the first period Tw1 may be set to a value that is treated as infinite by the wide area communication processing unit F4.
  • the wide area communication processing unit F4 may be configured not to perform the transmission of the wide area vehicle data packet when the wide area transmission cycle is set to the first period Tw1.
  • the wide area communication processing unit F4 acquires data (specifically, wide area vehicle data packets from other vehicles) received by the wide area communication module 12.
  • the wide area communication processing unit F4 provides the vehicle data indicated in the acquired wide area vehicle data packet to the reception data management unit F5.
  • the vehicle data of other vehicles acquired by the wide area communication processing unit F4 may be provided to various ECUs via the LAN.
  • the reception data management unit F5 stores the vehicle data of the other vehicle acquired by the narrow area communication processing unit F3 and the wide area communication processing unit F4 in the memory M1 in association with the vehicle ID of the other vehicle. As a result, information about other vehicles existing around the host vehicle is managed separately for each vehicle. For convenience, the vehicle data for each vehicle stored in the memory M1 is referred to as surrounding vehicle data.
  • the reception data management unit F5 compares the vehicle data stored in the memory M1 with the vehicle data to be stored, and the same data is already stored. In this case, duplicate data is discarded without being saved. This is because there is no need to store duplicate data.
  • vehicle data is provided from the wide area communication processing unit F4
  • the vehicle data provided from the wide area communication processing unit F4 is discarded. .
  • Identical data here is data that has the same vehicle ID and the same data generation time.
  • the same vehicle data as the vehicle data provided from the wide area communication processing unit F4 is already stored in the memory M1, the same vehicle data is obtained from the narrow area communication processing unit F3 before the wide area communication processing unit F4. This is the case if already provided.
  • the same processing is executed to avoid storing duplicate data.
  • the reception data management unit F5 determines whether the acquisition route of the vehicle data is direct type vehicle-to-vehicle communication or indirect type vehicle-to-vehicle communication when storing certain vehicle data. , It shall be recorded using a flag or the like. For example, when the vehicle data provided from the narrow area communication processing unit F3 is stored, a flag indicating that the data is obtained by direct type inter-vehicle communication is set to ON. In addition, when the vehicle data provided from the wide area communication processing unit F4 is stored, a flag indicating that the data is acquired by indirect vehicle-to-vehicle communication is turned on. It is only necessary to turn on the respective flags for the data acquired by both routes.
  • the surrounding vehicle determination unit F6 determines whether or not another vehicle exists in a predetermined range (hereinafter referred to as a surrounding range) that can be regarded as the vicinity of the host vehicle, based on the surrounding vehicle data stored in the memory M1. To do. That is, the surrounding vehicle determination unit F6 is a functional block that determines whether there is another vehicle around the host vehicle, in other words, whether there is a surrounding vehicle. What is necessary is just to design the range made into the circumference
  • a range including a range in which direct-type vehicle-to-vehicle communication can be performed and a range in which indirect-type vehicle-to-vehicle communication can be performed is regarded as a peripheral range for the host vehicle.
  • the surrounding vehicle determination unit F6 determines whether or not a vehicle data packet of another vehicle has been received within a predetermined time (hereinafter, determination time) from the present time. Specifically, when the vehicle data packet of the other vehicle has not been received within the determination time from the present time, it is determined that there is no other vehicle around the own vehicle. On the other hand, when the vehicle data packet of the other vehicle is received within the determination time, it is determined that there is another vehicle around the own vehicle.
  • the determination time used here may be designed as appropriate. However, it is preferable that the determination time is longer than one time of the first period Tw1. For example, the determination time may be 1.5 times the first period Tw1.
  • the wide area transmission cycle control process is a process for controlling the wide area transmission period Tw.
  • This wide-area transmission cycle control process may be started sequentially (for example, every 100 milliseconds) while the power source of the vehicle (for example, the ignition power source) is on. Alternatively, it may be started at the timing when the wide area communication processing unit F4 outputs the wide area vehicle data packet to the wide area communication module 12.
  • step S1 the surrounding vehicle determination unit F6 accesses the memory M1, reads the surrounding vehicle data, and proceeds to step S2.
  • step S2 the surrounding vehicle determination unit F6 determines whether there is another vehicle around the host vehicle based on the surrounding vehicle data read in step S1. If it is determined that there is no other vehicle around the host vehicle, a negative determination is made in step S2 and the process proceeds to step S3. On the other hand, if it is determined that there is another vehicle around the host vehicle, an affirmative determination is made in step S2 and the process proceeds to step S4.
  • step S3 the wide area communication processing unit F4 sets the wide area transmission cycle Tw to the first period Tw1 and ends this flow. If the wide-area transmission cycle Tw has already been set to the first cycle Tw1, the setting may be maintained as it is.
  • step S4 the wide area communication processing unit F4 sets the transmission cycle to the second cycle Tw2 and ends this flow. If the wide-area transmission cycle Tw has already been set to the second cycle Tw2, the setting can be maintained as it is.
  • FIG. 4 is a diagram illustrating the operations of the vehicle data generation unit F2, the narrow communication processing unit F3, and the wide communication processing unit F4 when the wide transmission cycle Tw is set to the first cycle Tw1,
  • the horizontal axis represents the passage of time.
  • the downward triangle in the figure represents the timing at which the vehicle data generation unit F2 generates vehicle data.
  • the arrows provided on the horizontal axis corresponding to the narrow area communication processing unit F3 and the wide area communication processing unit F4 indicate the timings at which the vehicle data packets are transmitted.
  • the narrow area communication processing unit F3 transmits a vehicle data packet in synchronization with the generation of vehicle data by the vehicle data generation unit F2.
  • the wide area communication processing unit F4 when the wide area transmission cycle Tw is set to the first period Tw1 transmits the vehicle data packet once every time the narrow area communication processing unit F3 transmits the vehicle data packet 10 times.
  • the vehicle data packet transmitted by the wide area communication processing unit F4 contains the same vehicle data as the vehicle data packet transmitted by the narrow area communication processing unit F3 at the same timing.
  • FIG. 5 is a diagram illustrating operations of the vehicle data generation unit F2, the narrow area communication processing unit F3, and the wide area communication processing unit F4 when the wide area transmission period Tw is set to the second period Tw2.
  • the symbols in the figure have the same meaning as in FIG.
  • the wide area communication processing unit F4 when the wide area transmission cycle Tw is set to the second period Tw2 transmits the vehicle data packet at the same frequency as the narrow area communication processing unit F3. That is, information transmission to other vehicles is performed more densely than when the wide-area transmission cycle Tw is set to the first cycle Tw1.
  • the wide area transmission cycle Tw is set to the first cycle Tw1. Further, when it is determined by the surrounding vehicle determination unit F6 that there is another vehicle around the host vehicle, the wide area transmission cycle Tw is set to the second cycle Tw2.
  • the first period Tw1 is set to a relatively large value with respect to the narrow band transmission period Td and the second period Tw2 from the viewpoint of suppressing traffic.
  • the second period Tw2 is for realizing real-time performance comparable to direct-type vehicle-to-vehicle communication in indirect type vehicle-to-vehicle communication, in other words, to realize real-time information sharing as much as direct-type vehicle-to-vehicle communication.
  • it is set to a value comparable to the narrow band transmission cycle Td.
  • the wide area communication processing unit F4 sets the wide area transmission cycle Tw to a relatively short value when there is no other vehicle around the own vehicle, while the other vehicle exists around the own vehicle. Sets the wide transmission period Tw to a relatively long value. Note that the narrow area communication processing unit F3 sequentially transmits the narrow area vehicle data packets at a predetermined narrow area transmission cycle Td regardless of the determination result of the surrounding vehicle determination section F6.
  • the transmission of the vehicle data is performed relatively densely in both the direct type inter-vehicle communication and the indirect type inter-vehicle communication. Therefore, even if the communication quality of direct-type vehicle-to-vehicle communication decreases due to shadowing or a hidden terminal, real-time vehicle information sharing can be maintained through indirect-type vehicle-to-vehicle communication.
  • the wide-area transmission cycle is set to a relatively long first cycle Tw1.
  • Increasing the wide-area transmission cycle Tw corresponds to suppressing the frequency of performing communication via the wide-area communication network 3, so that the communication amount and communication charge can be suppressed.
  • the vehicle data of the own vehicle is not used by the other vehicle. For this reason, the necessity of frequently transmitting vehicle data is small. Further, the periodic transmission of vehicle data is performed at the same interval as when other vehicles exist around the host vehicle by direct inter-vehicle communication without using the wide area communication network 3.
  • the real-time property of information sharing between the vehicles is less likely to be impaired even if the wide-area transmission cycle Tw is increased. That is, according to the above configuration, it is possible to suppress communication charges generated by using the wide area communication network 3 while realizing real-time vehicle information sharing.
  • the other vehicle is in the vicinity of the own vehicle. It may be determined that the vehicle does not exist. In other words, even if the vehicle data packets of other vehicles are received by indirect type vehicle-to-vehicle communication or direct type vehicle-to-vehicle communication, if the distance between them and the host vehicle is greater than the surrounding judgment distance It may be determined that there is no other vehicle around the host vehicle. This corresponds to handling a range within a predetermined peripheral determination distance from the host vehicle as the predetermined range.
  • the periphery determination distance introduced in the first modification determines whether or not another vehicle that is directly or indirectly communicating with the host vehicle is regarded as another vehicle that exists in the vicinity of the host vehicle. It is a parameter that functions as a threshold value.
  • the peripheral determination distance may be the same parameter as the transfer inter-vehicle distance adopted by the center 2 or may be defined as a separate parameter. Further, the peripheral determination distance may be adjusted according to the content of the vehicle control that the host vehicle is about to execute based on the vehicle data of the other vehicle.
  • the contents of vehicle control executed based on the vehicle data of other vehicles include, for example, lane change, right / left turn, follow-up driving, and provision of information to the driver. For example, when performing follow-up traveling, a shorter value can be adopted as the peripheral determination distance than when lane change or the like is performed.
  • the peripheral determination distance according to the control content may be designed as appropriate.
  • the second cycle Tw2 is exemplified as the same value as the narrow-band transmission cycle Td.
  • the present invention is not limited to this.
  • it may be twice the narrow band transmission period Td.
  • it is good also as a half of the narrow region transmission period Td. That is, the second period Tw2 may be shorter than the narrow area transmission period Td.
  • the generation cycle Tg may be a value equal to the second cycle Tw2.
  • the wide area vehicle data packet may be generated so as to transmit the same vehicle data as the narrow area vehicle data packet.
  • the first period Tw1 and the second period Tw1 used as the wide area transmission period Tw are satisfied.
  • the period Tw2 is not necessarily an integer multiple of the narrow band transmission period Td.
  • the first period Tw1 may be set to 8.5 times the narrow band transmission period Td.
  • the vehicle data packet transmitted by the wide area communication processing unit F4 at time Tb only needs to include the vehicle data contained in the vehicle data packet transmitted by the narrow area communication processing unit F3 immediately before. That is, it is only necessary to include the vehicle data generated at time Ta.
  • the wide-area communication processing unit F4 has exemplified the aspect in which the wide-area transmission cycle is changed based only on the presence / absence of a surrounding vehicle.
  • the wide area communication processing unit F4 dynamically changes the wide area transmission cycle Tw based on whether or not the communication quality of direct type inter-vehicle communication is equal to or higher than a predetermined allowable level in addition to the presence or absence of surrounding vehicles. May be.
  • Such an embodiment is referred to as a third modification.
  • the third modification may be realized as follows.
  • the communication control unit 13 includes a communication quality determination unit F7 in addition to the various functions described above as an embodiment.
  • the communication quality determination unit F7 may be realized by a CPU executing a communication control program, or may be realized as hardware using one or a plurality of ICs.
  • the communication quality determination unit F7 is a functional block that determines whether or not the communication quality of direct type inter-vehicle communication is equal to or higher than a predetermined allowable level. Various methods can be adopted as a method for determining whether or not the communication quality of the direct type inter-vehicle communication is higher than the allowable level.
  • the state where the communication quality of the direct type inter-vehicle communication is above the allowable level is a state where the narrow-area vehicle data packet transmitted from the surrounding vehicle can be normally received, in other words, the data reception fails. This corresponds to a state where the probability is a predetermined threshold value (for example, 10%) or less.
  • the communication quality determination unit F7 has a communication quality that is less than an acceptable level when there is another vehicle that cannot receive the narrow-area vehicle data packet among other vehicles that should be present around the host vehicle. It is determined that Further, when the narrow-area vehicle data packet can be received from all other vehicles that should be present around the host vehicle, it is determined that the communication quality of the direct type inter-vehicle communication is higher than the allowable level. Other vehicles that should exist in the vicinity of the host vehicle may be specified based on the wide area vehicle data packet acquired by indirect vehicle-to-vehicle communication.
  • other vehicles used as surrounding vehicles in the communication quality determination process are preferably other vehicles that exist in a range where direct vehicle-to-vehicle communication should be sufficiently performed.
  • another vehicle existing within 100 m from the host vehicle may be adopted as a surrounding vehicle for determining the communication quality. That is, it is not necessary to use all other vehicles recognized by indirect type vehicle-to-vehicle communication as surrounding vehicles.
  • the method for determining whether or not the communication quality of the direct type inter-vehicle communication is at an acceptable level is not limited to the method described above. For example, based on the received signal strength (RSSI: Signal-Strength-Indication) of a narrow-area vehicle data packet acquired by direct type inter-vehicle communication, it may be determined whether the communication quality is equal to or higher than an acceptable level.
  • RSSI received signal strength
  • communication quality can be determined from RSSI by the following configuration and procedure.
  • the narrow area communication module 11 provides the RSSI of the received narrow area vehicle data packet to the narrow area communication processing section F3, and the narrow area communication processing section F3 receives the narrow area vehicle data packet together with the RSSI.
  • the reception data management unit F5 stores the RSSI of the vehicle data packet acquired by the direct vehicle-to-vehicle communication in the memory M1 in association with the vehicle data of the other vehicle.
  • what is necessary is just to implement
  • RSSI data Data indicating the estimated value of RSSI corresponding to the distance between vehicles (hereinafter referred to as RSSI data) may be registered in advance in the ROM or the like as part of the communication control program.
  • the communication quality determination unit F7 is such that the RSSI of the vehicle data packet that is actually received is a value that is smaller than the predetermined threshold by a value smaller than the expected RSSI value determined from the distance of the other vehicle to the host vehicle.
  • the communication quality of the direct type inter-vehicle communication is less than the allowable level.
  • the communication quality is It is determined that the tolerance level is exceeded.
  • the communication quality of direct type inter-vehicle communication can be determined without using vehicle data acquired by indirect type inter-vehicle communication.
  • the communication quality can be determined with higher accuracy when the communication quality is determined in combination with the above-described method.
  • the RSSI of the actually received vehicle data packet is smaller than the expected RSSI value determined from the distance between the vehicles when the shadowing due to a large vehicle occurs or when the periphery of the host vehicle is multipath.
  • the case where it is under environment is assumed. Both situations are situations in which the communication quality of direct vehicle-to-vehicle communication is likely to deteriorate (that is, situations in which direct-to-vehicle communication is not good).
  • step S101 the surrounding vehicle determination unit F6 accesses the memory M1, reads the surrounding vehicle data, and proceeds to step S102.
  • step S102 the surrounding vehicle determination unit F6 determines whether there is another vehicle around the host vehicle based on the surrounding vehicle data read in step S101. As a method for determining whether or not there is a vehicle around the host vehicle, the method mentioned in the first modification may be applied. If it is determined that there is another vehicle around the host vehicle, an affirmative determination is made in step S102 and the process proceeds to step S103. If it is determined that there is no other vehicle around the host vehicle, a negative determination is made in step S102, and the process proceeds to step S104.
  • step S103 the communication quality determination unit F7 determines whether or not the communication quality of the direct type inter-vehicle communication is equal to or higher than a predetermined allowable level. When it is determined that the communication quality of the direct type inter-vehicle communication is equal to or higher than the allowable level, an affirmative determination is made in step S103 and the process proceeds to step S104. On the other hand, if it is determined that the communication quality of the direct type inter-vehicle communication is less than the allowable level, a negative determination is made in step S103, and the process proceeds to step S105.
  • step S104 the wide area communication processing unit F4 sets the wide area transmission cycle Tw to the first period Tw1, and ends this flow.
  • the wide-area transmission cycle Tw is already set to the first cycle Tw1, the setting may be maintained as it is.
  • step S105 the wide area communication processing unit F4 sets the transmission cycle to the second cycle Tw2, and ends this flow.
  • the wide-area transmission cycle Tw is already set to the second cycle Tw2, the setting may be maintained as it is.
  • the wide area communication processing unit F4 in the modification 3 has a communication quality of direct inter-vehicle communication when the surrounding vehicle determination unit F6 determines that there is no other vehicle around the host vehicle or when the communication quality determination unit F7 If it is determined that the level is equal to or higher than the allowable level, the wide-area transmission cycle Tw is set to the first cycle Tw1. Further, it is determined by the surrounding vehicle determination unit F6 that there is another vehicle in the vicinity of the host vehicle, and the communication quality determination unit F7 determines that the communication quality of the direct inter-vehicle communication is less than the allowable level. In this case, the wide area transmission cycle Tw is set to the second cycle Tw2.
  • the wide area communication processing unit F4 in Modification 3 sets the wide area transmission cycle Tw to a relatively short value, the direct type vehicle-to-vehicle communication is performed even though there is another vehicle around the own vehicle. This is a case where the communication quality has not reached the acceptable level.
  • the communication quality of the direct type vehicle-to-vehicle communication is above an acceptable level, the real-time property of information sharing between vehicles is maintained by the direct type vehicle-to-vehicle communication. Therefore, when the communication quality of the direct type inter-vehicle communication is at an acceptable level, it is not necessary to shorten the wide area transmission cycle Tw, and it is preferable that the wide area transmission cycle Tw is long from the viewpoint of suppressing the traffic.
  • the surrounding vehicle can acquire the real-time vehicle information of the own vehicle by setting the wide area transmission cycle Tw to a relatively short time. It becomes like this. Shortening the wide area transmission cycle Tw is equivalent to increasing the frequency of transmission of vehicle data packets to the wide area communication network 3 and performing information transmission to other vehicles more closely. Since other vehicles operate in the same manner as the own vehicle, the own vehicle can also acquire real-time vehicle information of surrounding vehicles. That is, the real-time property of sharing vehicle data information between vehicles can be maintained as in the above-described embodiment.
  • the method for determining the communication quality of the direct type inter-vehicle communication by the communication quality determination unit F7 is not limited to the method disclosed in the third modification.
  • the reception failure rate (hereinafter referred to as the packet loss rate) of the narrow-area vehicle data packet is calculated. You may determine with the communication quality of communication being less than an acceptable level.
  • the packet loss rate for a certain other vehicle may be calculated as follows. First, the reception data management unit F5 registers the reception time in the memory M1 as a reception history when a narrow-area vehicle data packet from another vehicle can be received. That is, the memory M1 stores data indicating the reception history for each vehicle (hereinafter referred to as direct reception history data).
  • the communication quality determination unit F7 can receive a wide-area vehicle data packet from another vehicle, the communication quality determination unit F7 is based on the direct reception history data and has received a narrow-range transmission from the other vehicle within the past 1 second. The number of times the regional vehicle data packet has been received (hereinafter, the number of successful receptions) is specified.
  • the expected value of the number of times a vehicle data packet transmitted from another vehicle by direct type inter-vehicle communication is received per second (hereinafter referred to as an expected reception value) is a value obtained by dividing 1 second by the narrow area transmission cycle Td. Specifically, since the narrow band transmission cycle Td is set to 0.1 seconds here, the expected reception value is 10.
  • the number of reception failures which is the number of failed reception of vehicle data packets transmitted from a certain other vehicle by direct inter-vehicle communication, is obtained by subtracting the number of successful receptions for the other vehicle from the expected reception value. . Furthermore, a value obtained by dividing the number of reception failures for a certain other vehicle by the expected reception value corresponds to the packet loss rate for the other vehicle.
  • the communication quality determination unit F7 acquires a wide area vehicle data packet of a certain other vehicle
  • the communication quality determination unit F7 identifies the number of successful receptions from the direct reception history data for the other vehicle
  • a packet loss rate for the other vehicle is calculated based on the expected value.
  • the packet loss rate may be expressed as a percentage.
  • a value obtained by dividing the number of reception failures by the expected reception value is used as it is without being converted into a percentage.
  • the threshold value for determining whether or not the communication quality is equal to or higher than the allowable level from the packet loss rate is a value corresponding to the distance between the own vehicle and another vehicle to be subjected to the determination process May be set. This is because the packet loss rate tends to increase as the distance between the vehicles increases.
  • the second periodic request packet transmitted by the wide area communication processing unit F4 in cooperation with the wide area communication module 12 is transferred by the center 2 to surrounding vehicles.
  • the center 2 receives the second periodic request packet from the vehicle Ma, for example, the center 2 identifies the surrounding vehicle of the vehicle Ma and transfers the second periodic request packet to the identified surrounding vehicle.
  • the wide area communication processing unit F4 of each in-vehicle system 1 sets the wide area transmission period Tw to the second period Tw2.
  • the wide area communication processing unit F4 does not transmit the second periodic request packet when the wide area transmission period Tw is set to the second period Tw2 triggered by the reception of the second periodic request packet. And If the second periodic request packet is transmitted even when the wide-area transmission period Tw is set to the second period Tw2 along with the reception of the second periodic request packet, the second periodic request packet is spread in a chain. It is because it ends up.
  • the vehicle data packet is also transmitted to the surrounding vehicles at the second period Tw2. Can be made.
  • the wide area communication processing unit F4 It is assumed that a communication packet that permits returning the transmission cycle Tw to the first cycle Tw1 (hereinafter referred to as a return permission packet) is transmitted over a wide area.
  • the wide area communication processing unit F4 when the wide area communication processing unit F4 receives the second periodic request packet, the wide area communication processing unit F4 registers information (for example, vehicle ID) indicating the transmission source of the communication packet in the memory M1 as the request source vehicle. And when the return permission packet is received from all the request source vehicles, the wide area transmission cycle Tw is returned from the second cycle Tw2 to the first cycle Tw1. Of the transmission source vehicles of the second periodic request packet, a vehicle that can no longer receive the wide-area vehicle data packet is highly likely not to be a surrounding vehicle for the host vehicle. Therefore, the registration of the requesting vehicle may be canceled for the vehicle that cannot receive the wide area vehicle data packet.
  • information for example, vehicle ID
  • Modification 6 In the fifth modification described above, the mode in which the return permission packet is transmitted when the communication quality determination unit F7 determines that the communication quality of the direct type inter-vehicle communication is equal to or higher than the allowable level is illustrated, but the present invention is not limited thereto. . For example, based on the positional relationship with the intersection, it may be determined whether or not to transmit the return permission packet. Such an aspect is shown below as Modification 6.
  • the locator 30 in the modification 6 sequentially specifies the road on which the host vehicle is traveling (hereinafter referred to as the host vehicle traveling path) based on the result of mapping the host vehicle. And the road map information (henceforth, driving road information) regarding the specified own vehicle driving road is provided to the communication control part 13 one by one.
  • the travel road information may include information indicating the position of the road connection point existing on the own vehicle travel path and the road shape of the own vehicle travel path (hereinafter, road shape information).
  • the road connection point here is an intersection or a junction point to the main highway.
  • the communication control unit 13 in the modification 6 includes a road information acquisition unit F8 and a positional relationship determination unit F9 in addition to the various functions described above.
  • Each of the road information acquisition unit F8 and the positional relationship determination unit F9 may be realized by a CPU executing a communication control program, or may be realized as hardware using one or a plurality of ICs. good.
  • the road information acquisition unit F8 acquires travel road information from the locator 30.
  • the acquired traveling road information is provided to the positional relationship determination unit F9.
  • the positional relationship determination unit F9 determines the position of the road connection point existing ahead of the host vehicle from the position information of the road connection point included in the traveling road information acquired by the road information acquisition unit F8 and the current position of the host vehicle.
  • the nearest connection point hereinafter referred to as the forward connection point distance
  • the road connection point that exists behind the host vehicle Each distance from the existing road connection point (hereinafter, rear connection point distance) is specified.
  • the positional relationship determination unit F9 determines whether or not at least one of the front connection point distance and the rear connection point distance is equal to or less than a predetermined period change distance Dth. In other words, the positional relationship determination unit F9 determines whether or not the host vehicle exists in a range that is within the period change distance Dth from the road connection point.
  • Cycle change distance Dth is a parameter for determining whether or not the current position of the vehicle is near a road connection point.
  • the period change distance Dth may be a fixed value designed in advance, or may be dynamically determined (in other words, adjusted) according to the traveling speed of the host vehicle.
  • the positional relationship determination unit F9 sets the cycle change distance Dth to a larger value as the traveling speed of the host vehicle increases. For example, when the traveling speed of the host vehicle is equal to or less than the cruising speed of a general road (for example, 50 km / h), it is set to 200 m, and when the traveling speed is equivalent to the cruising speed of an expressway (for example 80 km / h) Set to 400m.
  • a specific value of the period change distance Dth corresponding to the traveling speed may be designed as appropriate.
  • the wide area communication processing unit F4 is determined by the positional relationship determination unit F9 that both the front connection point distance and the rear connection point distance are equal to or greater than the cycle change distance Dth. In this case, a return permission packet is transmitted.
  • the condition for the wide area communication processing unit F4 to transmit the return permission packet is not limited to this.
  • the positional relationship determination unit F9 determines that both the front connection point distance and the rear connection point distance are equal to or greater than the period change distance Dth, and the communication quality determination unit F7 When it is determined that the communication quality of the direct type inter-vehicle communication is higher than the allowable level, the return permission packet may be transmitted.
  • the wide area communication module 12 is provided outside the communication unit 10 including the communication control unit 13, and is configured so that the wide area communication module 12 and the communication control unit 13 are connected via a LAN. May be.
  • the narrow area communication module 11 may be provided outside the communication unit 10 including the communication control unit 13, and the narrow area communication module 11 and the communication control unit 13 may be connected via a LAN. .
  • both the narrow area communication module 11 and the wide area communication module 12 may be provided outside the unit 10 ⁇ / b> A including the communication control unit 13. That is, each of the narrow area communication module 11 and the wide area communication module 12 may be configured to be connected to the communication control unit 13 via the LAN.
  • each section is expressed as, for example, S1. Further, each section can be divided into a plurality of subsections, while a plurality of sections can be combined into one section. Further, each section configured in this manner can be referred to as a device, module, or means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両用通信制御装置は、直接型車車間通信を実施する狭域通信処理部(F3)と、間接型車車間通信を実施する広域通信処理部(F4)と、車両データ生成部(F2)とを備える。前記狭域通信処理部は、車両データを含む通信パケットを所定の狭域送信周期で無線送信する。前記広域通信処理部は、前記車両データを含む通信パケットを、所定の広域送信周期で前記周辺車両に送信する。通信制御装置は、前記車両データに基づいて、他車両が所定範囲内に存在するか否かを判定する周辺車両判定部(F6)をさらに備える。前記広域通信処理部は、前記他車両が前記所定範囲内に存在しない場合には、前記狭域送信周期よりも長い所定の第1広域送信周期を採用し、前記他車両が前記所定範囲内に存在する場合には、前記狭域送信周期と等しい又はそれよりも小さい所定の第2広域送信周期を採用する。

Description

通信制御装置 関連出願の相互参照
 本出願は、2016年3月18日に出願された日本特許出願番号2016-55976号に基づくもので、ここにその記載内容を援用する。
 本開示は、車車間通信を実施するための通信モジュールの動作を制御する通信制御装置に関するものである。
 近年、複数の車両のそれぞれが、現在位置や、走行速度、進行方向などの車両情報を示す通信パケット(以降、車両情報パケット)を逐次同報送信するとともに、他車両から送信された車両情報パケットを逐次受信する車車間通信システムが提案されている。
 そのような車車間通信システムにおける車両同士の通信(つまり車車間通信)の態様としては、特許文献1に開示されているように、広域通信網を経由せずに、車両同士が車両情報パケットを直接送受信する態様が想定されている。車両同士の直接的な無線通信は、アクセス制御方式としてCSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)方式を採用することで実現される。
 また、車車間通信によって得られた他車両の車両情報は、ドライバの運転操作を支援する車両制御や、自動運転、ドライバへの情報提供などに用いられる。そのため、車車間通信によって取得される車両情報は、現在の状況とできるだけ近いリアルタイムな情報である必要がある。そのような要求を鑑みて、車両情報パケットの送信周期は数百ミリ秒(より具体的には100ミリ秒)に設定される場合が多い。
特開2013-5186号公報
 車両同士がCSMA/CAで直接無線通信を実施する場合には、隠れ端末問題やトラックなどの大型車両によるシャドウイングといった周知の課題を考慮する必要がある。隠れ端末問題とは、複数の車両が互いの信号を受信できない位置関係となっていることに起因して無線信号の混信が生じてしまう問題である。また、シャドウイングとは、距離的には通信可能な距離となっているにも関わらず、大型車両によって電波を遮られてしまい、一時的に車両情報パケットが受信できなかったり受信信号強度が低下したりすることを指す。
 そのような課題を解決する1つの解決策としては、車両同士が広域通信網を介して車両情報パケットを送受信する構成を採用することも考えられる。しかしながら、車両同士が広域通信網を経由して通信する場合には、通信量に応じた通信料が発生する恐れがある。したがって、広域通信網を介して車車間通信を実施する場合には、通信料を抑制するために車両情報パケットの送信頻度を抑えたいという要求と、リアルタイムな車両情報を互いに共有させるために車両情報パケットの送信間隔を短くしたいという要求の、互いに相反する要求が存在する。
 本開示は、リアルタイムな車両情報の共有を実現しつつ、通信料を抑制可能な通信制御装置を提供することを目的とする。
 本開示の態様において、通信制御装置は、車両で用いられ、広域通信網を介さずに外部と直接無線通信を実施するための狭域通信モジュールと協働して、前記車両の周辺に存在する周辺車両と、前記広域通信網を介さない直接的な車車間通信である直接型車車間通信を実施する狭域通信処理部と、前記広域通信網を介して外部と無線通信するための広域通信モジュールと協働して、前記周辺車両と前記広域通信網を介した間接的な車車間通信である間接型車車間通信を実施する広域通信処理部と、前記車両に搭載されているセンサの検出結果に基づいて、前記車両の走行状態を示す車両データを生成する車両データ生成部とを備える。前記狭域通信処理部は、前記車両データを含む通信パケットを所定の狭域送信周期で前記狭域通信モジュールから無線送信させる。前記広域通信処理部は、前記車両データを含む通信パケットを、前記広域通信モジュール及び前記広域通信網を介して、所定の広域送信周期で前記周辺車両に送信する処理を行う。通信制御装置は、前記狭域通信処理部及び前記広域通信処理部が取得する前記車両データに基づいて、前記周辺車両に相当する他車両が前記車両の位置を基準として定まる所定範囲内に存在するか否かを判定する周辺車両判定部をさらに備える。前記広域通信処理部は、前記周辺車両判定部によって前記他車両が前記所定範囲内に存在しないと判定されている場合には、前記広域送信周期として、前記狭域送信周期よりも長い所定の第1広域送信周期を採用する一方、前記周辺車両判定部によって前記他車両が前記所定範囲内に存在すると判定されている場合には、前記狭域送信周期と等しい値又はそれよりも小さい値に設定されている所定の第2広域送信周期を前記広域送信周期として採用する。
 以上の通信制御装置では、周辺車両判定部によって他車両が自車両の周辺と見なすことができる所定の範囲(以降、周辺範囲)内に存在すると判定されている場合には、相対的に長い第1広域送信周期で間接型車車間通信による車両データの送信を実施する。一方、周辺車両判定部によって他車両が周辺範囲に存在する場合には、相対的に短い第2広域送信周期で間接型車車間通信による車両データの送信を実施する。なお、狭域通信処理部は、周辺車両判定部の判定結果に依らず、所定の狭域送信周期で車両データを逐次送信させる。
 このような態様によれば、例えば周辺車両が存在する場合には、直接型車車間通信と間接型車車間通信の両方で車両データの送信が相対的に密に実施される。したがって、仮にシャドウイング等に起因して直接型車車間通信の通信品質が低下したとしても、間接型車車間通信によってリアルタイムな車両情報の共有を維持することができる。
 また、他車両が自車両の周辺範囲に存在しない場合には、広域送信周期を第1広域送信周期(つまり、相対的に長い時間)に設定する。広域送信周期を長くするということは、広域通信網を介した通信を実施する頻度を抑制することに相当するため、通信量及び通信料を抑制することができる。なお、他車両が自車両の周辺範囲に存在しない場合、自車両の車両データは他車両によって利用されない。そのため、車両データを頻繁に送信する必要性が小さい。また、車両データの送信は、通信料がかからない直接型車車間通信によって他車両が周辺範囲に存在する場合と同じ頻度で実施されている。
 したがって、他車両が自車両の周辺範囲に存在しない場合には広域送信周期を長くしても車両間における情報共有のリアルタイム性が損なわれる恐れは小さい。つまり、以上の構成によれば、リアルタイムな車両情報の共有を実現しつつ、通信料を抑制することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、車車間通信システムの概略的な構成の一例を示すブロック図であり、 図2は、車載システムの概略的な構成の一例を示すブロック図であり、 図3は、広域送信周期制御処理を説明するためのフローチャートであり、 図4は、広域送信周期を第1周期に設定している場合の通信制御部の作動を説明するための図であり、 図5は、広域送信周期を第2周期に設定している場合の通信制御部の作動を説明するための図であり、 図6は、第2周期の他の態様を示す図であり、 図7は、第2周期の他の態様を示す図であり、 図8は、第2周期の他の態様を示す図であり、 図9は、変形例3における通信制御部の概略的な構成を示すブロック図であり、 図10は、変形例3の通信制御部が実施する広域送信周期制御処理を説明するためのフローチャートであり、 図11は、車載システムの構成の変形例を示すブロック図であり、 図12は、車載システムの構成の変形例を示すブロック図であり、 図13は、通信制御部の構成の変形例を示すブロック図である。
 以下、本開示の実施形態について図を用いて説明する。図1は、本開示に係る車車間通信システム100の概略的な構成の一例を示す図である。図1に示すように、車車間通信システム100は、複数の車両Ma,Mbの各々に構築されている複数の車載システム1と、センタ2と、を備える。
 なお、図1では、便宜上、車載システム1が適用されている車両(以降、適用車両)として、車両Maと車両Mbの2台しか図示していないが、実際には3台以上存在する。以降において、車両Ma,Mbに構築されている各車載システム1を区別する場合には、車両Maに構築されている車載システム1を車載システム1a、車両Mbに構築されている車載システム1を車載システム1bと記載する。
 <全体の概要>
 車車間通信システム100は、適用車両が互いに無線通信を実施するためのシステムである。適用車両は、道路上を走行する車両である。適用車両は、四輪自動車のほか、二輪自動車、三輪自動車等であってもよい。二輪自動車には原動機付き自転車も含まれる。本実施形態では一例として適用車両Ma,Mbは、四輪自動車とする。
 各適用車両は、予め割り当てられた周波数帯の電波を用いて、広域通信網3を介さない無線通信(いわゆる車車間通信)を実施するように構成されている。便宜上、広域通信網3を介さない車車間通信のことを、ここでは直接型車車間通信と記載する。なお、直接型車車間通信を実施可能な範囲は、電波の送信出力に応じた限定的な範囲となる。つまり、直接型車車間通信を実施可能な範囲は、広域通信網を介した通信に比べて狭い範囲となる。そのため、直接型車車間通信は狭域通信とも呼ばれることがある。
 直接型車車間通信に用いられる周波数帯は、適宜設計されれば良い。例えば直接型車車間通信は、760MHz帯の電波を用いて実現されればよい。もちろん、その他、直接型車車間通信は2.4GHz、5.9GHz帯などの電波を用いて実現されてもよい。
 直接型車車間通信を実現するための通信規格は任意のものを採用することができる。ここでは一例として各適用車両は、IEEE1609等にて開示されているWAVE(Wireless Access in Vehicular Environment)の規格に準拠して直接型車車間通信を実施するものとする。
 各適用車両は、自分自身の車両データを示す通信パケット(以降、車両データパケット)を、直接型車車間通信によって自車両周辺の他車両に対して所定の周期(以降、狭域送信周期)Tdで同報送信する。車両データには、その通信パケットを送信した車両(つまり送信元車両)を示す送信元情報、当該データの生成時刻、送信元車両の現在位置、進行方向、走行速度、加速度などが含まれる。送信元情報とは、送信元車両に対して予め割り当てられた、他の車両と区別するための識別情報(いわゆる車両ID)である。
 また、各適用車両は、それぞれに搭載されている車載システム1によって広域通信網3に無線接続可能に構成されている。なお、ここでの広域通信網3とは、携帯電話網やインターネット等の、電気通信事業者によって提供される公衆通信ネットワークを指す。図1に示す基地局4は、車載システム1が広域通信網3に接続するための無線基地局である。
 各適用車両は、直接型車車間通信によって同報送信する車両データパケットと同一の車両データを含む通信パケットを、所定の周期(以降、広域送信周期とする)Twで、基地局4及び広域通信網3を介してセンタ2へ送信する。
 以降では、直接型車車間通信で定期送信する車両データパケットと区別するために、広域通信網3経由でセンタ2に送信される送信元車両の車両データを含む通信パケットのことを広域車両データパケットと記載する。また、直接型車車間通信で定期送信する車両データパケットのことを狭域車両データパケットと記載する。ただし、広域車両データパケットと狭域車両データパケットのそれぞれを区別しない場合には単に車両データパケットと記載する。また、以降では、広域通信網3に接続する他の通信端末(例えばセンタ2)宛に通信パケットを送信することを広域送信とも表現するとともに、直接型車車間通信で所定の通信パケットを送信することを狭域送信とも表現する。
 センタ2は、或る車両から送信された広域車両データパケットを、その送信元車両の周辺に存在する他車両(つまり周辺車両)に転送する役割を担う。送信元車両の周辺とする領域は、その車両から所定の転送用車間距離以内となる範囲とする。つまり、転送用車間距離は、種々の適用車両の中から、受信した広域車両データパケットの転送先とする車両(換言すれば送信元車両にとっての周辺車両)を抽出するために用いられるパラメータとして機能する。
 転送用車間距離は、一定値としてもよいし、送信元車両の走行速度などに応じて動的に決定されてもよい。ここでは一例として転送用車間距離は、送信元車両の走行速度が大きいほど大きい値に設定する。送信元車両から転送用車間距離以内に存在する他車両が周辺車両に相当する。
 なお、他の態様として転送用車間距離は、送信元車両が走行している道路の種別に応じた値に動的に調整されてもよい。例えば、送信元車両が走行している道路の種別が高速道路である場合には、転送用車間距離を相対的に大きい値(例えば400m)に設定する一方、走行道路が一般道路である場合には、走行道路が高速道路である場合よりも小さい値(例えば200m)に設定する。
 センタ2は、受信した広域車両データパケットの転送先を決定するためのサブ機能として、各適用車両の現在位置を管理する機能を備える。各適用車両の現在位置の管理は、図示しないデータベースを用いて実現されればよい。当該データベースにおいて各適用車両の現在位置は、車両IDなどと対応付けられて保存されている。便宜上、適用車両毎の現在位置を表したデータを位置管理データと称する。センタ2は、広域車両データパケットを受信する度に、その広域車両データパケットの内容を参照して、データベースに登録されている送信元車両の現在位置を更新する。
 センタ2は、或る適用車両から送信された広域車両データパケットを受信した場合に、位置管理データに基づいて、その送信元車両から直線距離において転送用車間距離以内に存在する車両を抽出し、その抽出した車両に向けて受信した広域車両データパケットを転送する。
 このようにして、車車間通信システム100は広域通信網3を介した間接的な車車間通信を提供する。直接型車車間通信と区別するため、以降では広域通信網3を介した間接的な車車間通信のことを、間接型車車間通信とも記載する。以降では、各車両に搭載される車載システム1の構成について、より詳細に述べる。
 <車載システム1の構成について>
 ここでは、適用車両Maに搭載されている車載システム1aを例にとって車載システム1の構成について述べる。なお、他の適用車両(例えば車両Mb)に構築されている車載システム1も同様の構成となっている。便宜上、車載システム1にとって自分自身が搭載されている車両(つまり車両Ma)のことを、他の車載システム1が搭載されている車両と区別して自車両とも記載する。
 車載システム1は、図2に示すように、通信ユニット10、センサ20、及びロケータ30を備える。通信ユニット10は、車両内に構築された通信ネットワーク(つまり、LAN:Local Area Network)を介して、センサ20、及びロケータ30と接続されている。
 通信ユニット10は周辺車両と車両データパケットの送受信を実施するためのユニットである。通信ユニット10は、より細かい要素として、狭域通信モジュール11、広域通信モジュール12、及び通信制御部13を備える。狭域通信モジュール11及び広域通信モジュール12はそれぞれ通信制御部13と相互通信可能に接続されている。
 狭域通信モジュール11は、所定の周波数帯の電波を用いて他車両と直接無線通信(つまり直接型車車間通信)を実施するための通信モジュールである。この狭域通信モジュール11は、より細かい要素として、図示しない狭域通信用アンテナ及び狭域通信用送受信部を備える。
 狭域通信用アンテナは、直接型車車間通信に用いられる周波数帯の電波を送受信するためのアンテナである。狭域通信用送受信部は、狭域通信用アンテナで受信した信号を復調して通信制御部13に提供するとともに、通信制御部13から入力されたデータを変調して狭域通信用アンテナに出力し、無線送信する。なお、直接型車車間通信のアクセス制御は、CSMA/CA(Carrier Sense Multiple Access/Collision Avoidance)によって実施される。CSMA/CAに基づいたアクセス制御処理は、狭域通信用送受信部が担当してもよいし、通信制御部13が担当してもよい。
 広域通信モジュール12は、広域通信網3に無線接続し、車載システム1が広域通信網3を介して他の通信装置と通信するための通信モジュールである。この広域通信モジュール12は、より細かい要素として、図示しない広域通信用アンテナ及び広域通信用送受信部を備える。
 広域通信用アンテナは、基地局4との無線通信に用いられる所定の周波数帯の電波を送受信するためのアンテナである。広域通信用送受信部は、広域通信用アンテナで受信した信号を復調して通信制御部13に提供するとともに、通信制御部13から入力されたデータを変調して広域通信用アンテナに出力し、無線送信する。
 これら広域通信用アンテナ及び広域通信用送受信部の協働により、広域通信モジュール12は、受信したデータを通信制御部13に出力するとともに、通信制御部13から入力されたデータを変調して外部装置(例えばセンタ2)に送信する通信モジュールとして機能する。
 通信制御部13は、狭域通信モジュール11及び広域通信モジュール12の作動を制御する。この通信制御部13の詳細については別途後述するが、概略的には次の通りである。通信制御部13は、センサ20及びロケータ30から提供される情報に基づいて車両データを生成し、当該車両データを含む車両データパケットを、狭域通信モジュール11から送信させたり、広域通信モジュール12から送信させたりする。狭域通信モジュール11から通信パケットを送信させることが前述の狭域送信に相当し、広域通信モジュール12から通信パケットを送信させることが前述の広域送信に相当する。また、通信制御部13は、周辺車両から送信された車両データパケットを、直接型車車間通信及び間接型車車間通信によって受信する。
 センサ20は、自車両の走行に関する種々の状態量を検出するための種々のセンサである。自車両の走行に関する状態量とは、例えば、走行速度、ヨーレート、操舵角、加速度、シフト位置などである。つまり、走行速度を検出する速度センサや、ヨーレートを検出するヨーレートセンサ、操舵角を検出する操舵角センサ、車両Maに作用する加速度を検出する加速度センサ、シフトポジションセンサ等が、センサ20に含まれる。なお、後述するロケータ30によって特定される自車両の現在位置を示す位置情報もまた、自車両の走行に関する状態量に含まれる。
 種々のセンサ20の検出結果は、LANを介して通信ユニット10に逐次提供される。なお、種々のセンサ20の検出結果は、任意の電子制御装置(ECU:Electronic Control Unit)等を介して通信ユニット10に提供される構成となっていても良い。センサ20に該当するセンサは上述したものに限らない。また、上述した全てのセンサを備えている必要もない。センサ20の種類は適宜設計されればよい。
 ロケータ30は、道路地図上において、自車両が現在走行している地点を特定する装置である。ロケータ30は、より細かい構成要素として、GNSS受信機31及び地図記憶部32を備える。
 GNSS受信機31は、衛星航法システムであるGNSS(Global Navigation Satellite System)が備える航法衛星が送信する航法信号を受信し、受信した航法信号に基づいて現在位置を逐次算出する。
 地図記憶部32は、道路の接続関係や、道路の形状(換言すれば道路構造)を示す道路地図データを記憶している。地図記憶部32は、ハードディスクドライブ等の不揮発性の記憶媒体を用いて実現されればよい。
 ロケータ30は、GNSS受信機31が検出している現在位置に基づいて、道路地図上における自車両の位置を特定する。道路地図上における車両位置を特定することを、以降ではマッピングとも記載する。車両位置のマッピングは、ナビゲーション装置で慣用されている既知のマップマッチング技術を援用して実施すれば良い。マップマッチング技術は、複数時点における車両の進行方向や走行速度から車両の走行軌跡を求め、この車両の走行軌跡と地図情報から得た道路形状とを比較して車両の現在位置を求める技術である。
 ロケータ30は、現在位置を示す位置情報を通信ユニット10に逐次提供する。なお、ロケータ30は上述した機能を備えていればよく、自車両にナビゲーション装置が搭載されている場合には、そのナビゲーション装置をロケータ30として利用してもよい。
 <通信ユニット10の構成について>
 次に通信ユニット10について説明する。通信制御部13が通信制御装置に相当する。通信制御部13は、CPU、RAM、ROM、I/O、及びこれらの構成を接続するバスラインなどを備えたコンピュータとして構成されている。ROMには、通常のコンピュータを通信制御部13として機能させるためのプログラム(以降、通信制御プログラム)や車両ID等が格納されている。
 なお、上述の通信制御プログラムは、非遷移的実体的記録媒体(non- transitory tangible storage medium)に格納されていればよく、その具体的な記憶媒体はROMに限らない。例えば通信制御プログラムはフラッシュメモリに保存されていても良い。CPUが通信制御プログラムを実行することは、通信制御プログラムに対応する方法が実行されることに相当する。
 この通信制御部13は、CPUがROMに格納されている上述の通信制御プログラムを実行することによって、図2に示す種々の機能を提供する。すなわち、通信制御部13は機能ブロックとして、車両情報取得部F1、車両データ生成部F2、狭域通信処理部F3、広域通信処理部F4、受信データ管理部F5、及び周辺車両判定部F6を備える。また、通信制御部13は、RAM等の書き換え可能な記憶媒体を用いて実現されるメモリM1を備える。
 なお、通信制御部13が備える機能ブロックの一部又は全部は、一つあるいは複数のIC等を用いて(換言すればハードウェアとして)実現してもよい。また、通信制御部13が備える機能ブロックの一部又は全部は、CPUによるソフトウェアの実行とハードウェア部材の組み合わせによって実現されてもよい。
 車両情報取得部F1は、LANを介してセンサ20及びロケータ30から、自車両の走行状態を示す種々の情報(つまり車両情報)を取得する。具体的には、自車両の現在位置や、走行速度、ヨーレート、進行方向などを取得する。車両情報取得部F1が取得した種々の情報はメモリM1に一定時間保存される。
 車両データ生成部F2は、メモリM1に保存されている種々の情報に基づき、所定の生成周期Tgで、その生成時点における車両の走行状態を示す車両データを生成する。生成周期Tgは例えば100ミリ秒とすれば良い。車両データ生成部F2によって生成される車両データは、車両データパケットに収容されるデータ本体部分(いわゆるペイロード)に相当する。車両データ生成部F2が生成した車両データはメモリM1に保存されるとともに狭域通信処理部F3及び広域通信処理部F4に提供される。
 狭域通信処理部F3は、車両データ生成部F2から車両データが提供される度に、当該車両データを含む狭域車両データパケットを生成して、狭域通信モジュール11へ出力する。狭域通信モジュール11は、狭域通信処理部F3から入力された狭域車両データパケットを変調して同報送信する。
 なお、車両データ生成部F2は前述の通り生成周期Tgでデータを生成する。そのため、狭域通信処理部F3が狭域車両データパケットを送信する周期(つまり狭域送信周期)Tdは、生成周期Tgと等しくなる。換言すれば、本実施形態において狭域送信周期Tdは生成周期Tgと一致するように設定されている。
 また、狭域通信処理部F3は狭域通信モジュール11が受信したデータ(例えば他車両からの狭域車両データパケット)を取得する。狭域通信処理部F3は、取得した狭域車両データパケットに示される車両データを受信データ管理部F5に提供する。狭域通信処理部F3が取得した他車両の車両データは、LANを介して他のECUに提供されてもよい。
 なお、本実施形態では一例として車両データ生成部F2が所定の生成周期Tgで自発的に車両データを生成し、狭域通信処理部F3等に提供する態様とするが、車両データ生成部F2の作動は、これに限らない。
 他の態様として車両データ生成部F2は、狭域通信処理部F3からの要求に基づいて車両データパケットを生成する態様してもよい。その場合、狭域通信処理部F3は、狭域送信周期Td毎に車両データ生成部F2に対して車両データを生成するように要求するものとする。そのような態様によっても、狭域車両データパケットが狭域送信周期Tdで送信される。
 広域通信処理部F4は、車両データ生成部F2が生成した車両データを含む広域車両データパケットを、所定の広域送信周期Twで生成する。なお、広域通信処理部F4は、広域送信周期Twが満了するタイミングで送信される狭域車両データパケットと同一の車両データを含むように広域車両データパケットを生成する。
 そして、その生成した広域車両データパケットを広域通信モジュール12へ出力し、無線送信させる。つまり、広域通信処理部F4は、所定の広域送信周期Twで広域車両データパケットを送信するための処理を実施する。なお、広域通信モジュール12から送信された広域車両データパケットは、基地局4、広域通信網3及びセンタ2を介して自車両の周辺車両に届けられる。
 広域車両データパケットの生成及び送信を実施する周期(つまり広域送信周期)Tw自体は、広域通信処理部F4によって動的に変更される。本実施形態においては、ROMには広域送信周期Twとして採用可能な設定値として、それぞれ長さが異なる第1周期Tw1と第2周期Tw2が予め登録されている。広域通信処理部F4は、後述する周辺車両判定部F6の判定結果に基づいて、第1周期Tw1と第2周期Tw2のうち、広域送信周期Twとして採用するものを選択する。第1周期Tw1が第1広域送信周期に相当し、第2周期Tw2が第2広域送信周期に相当する。
 第1周期Tw1は、第2周期Tw2に比べて大きい値に設定されていればよい。ここでは一例として第1周期Tw1は、狭域送信周期Tdの10倍(つまり1秒)とし、第2周期Tw2は、狭域送信周期Tdの1倍(つまり100ミリ秒)に設定されているものとする。もちろん、第1周期Tw1は0.5秒や、0.8秒、2秒などであっても良い。
 ただし、第1周期Tw1及び第2周期Tw2は何れも狭域送信周期Td(換言すれば車両データの生成周期Tg)の整数倍に設定されていることが好ましい。これは広域送信される広域車両データパケットが示す車両データを、その送信時点前後において狭域送信される狭域車両データパケットが示す車両データと同一の内容とするためである。
 また、第1周期Tw1は、通信量の抑制を目的として広域送信周期Twに設定される値である。したがって、第1周期Tw1は、通信量抑制の観点から相対的に大きい値に設定されていることが好ましい。広域送信周期Twが小さい程、広域通信網3を介した通信の量が増加し、通信料が高くなる場合があるためである。
 一方、第2周期Tw2は、車両間におけるリアルタイムな情報共有が要求される場合において広域送信周期Twに設定するための値である。したがって、リアルタイムな情報共有の観点から相対的に小さい値(例えば300ミリ秒以下)に設定されていることが好ましい。例えば、第2周期Tw2は200ミリ秒や300ミリ秒に設定されていても良い。
 なお、従来の車車間通信システムにおける車両データパケットの送信周期としては、数百ミリ秒程度の値が想定されている。つまり、本実施形態のように送信周期を100ミリ秒とすれば十分に車車間通信のリアルタイム性は確保される。換言すれば、リアルタイムな車両情報の共有を実現するためには、数百ミリ毎に互いの車両情報を交換できれば良いとされている。
 もちろん、将来的に、より車両間における情報共有のリアルタイム性が要求されるようになった場合には、その要求に応じた値を第2周期Tw2として採用すれば良い。ただし、その場合には、車両データの生成周期Tgや狭域送信周期Tdも、その要求に応じた長さに設定されているものとする。
 ところで、他の態様として第1周期Tw1は、広域車両データパケットの送信が実質的に実施されなくなるほど大きい値(例えば10000秒以上)に設計されてもよい。換言すれば、第1周期Tw1は広域通信処理部F4によって無限大として取り扱われる値に設定されていてもよい。また、広域通信処理部F4は、広域送信周期が第1周期Tw1に設定されている場合には広域車両データパケットの送信を実施しないように構成されていてもよい。
 また、広域通信処理部F4は広域通信モジュール12が受信したデータ(具体的には他車両からの広域車両データパケット)を取得する。広域通信処理部F4は、取得した広域車両データパケットに示される車両データを、受信データ管理部F5に提供する。また、広域通信処理部F4が取得した他車両の車両データは、LANを介して種々のECUに提供されてもよい。
 受信データ管理部F5は、狭域通信処理部F3及び広域通信処理部F4が取得した他車両の車両データを、その他車両の車両IDと対応付けてメモリM1に保存する。これによって、自車両周辺に存在する他車両についての情報が、車両毎に区別して管理される。便宜上、メモリM1に保存されている車両毎の車両データを周辺車両データと称する。
 また、受信データ管理部F5は、車両データをメモリM1に保存する場合、メモリM1に保存されている車両データと、保存しようとしている車両データとを比較し、既に同じデータが保存されている場合には、重複するデータは保存せずに破棄する。重複するデータを保存する必要はないためである。
 例えば、広域通信処理部F4から車両データが提供された場合、その車両データと同一のデータが既にメモリM1に保存されている場合には、広域通信処理部F4から提供された車両データは破棄する。
 ここでの同一のデータとは、車両IDが一致しており、且つ、データの生成時刻も一致しているデータである。広域通信処理部F4から提供された車両データと同一のデータが既にメモリM1に保存されている場合とは、広域通信処理部F4よりも先に、狭域通信処理部F3から同一の車両データを既に提供されている場合である。もちろん、狭域通信処理部F3から車両データが提供された場合にも、同様の処理を実行することで、重複するデータの保存を回避する。
 なお、本実施形態ではより好ましい態様として受信データ管理部F5は、或る車両データを保存する場合、その車両データの取得経路が直接型車車間通信であるか間接型車車間通信であるかを、フラグ等を用いて記録するものとする。例えば、狭域通信処理部F3から提供された車両データを保存する場合には、直接型車車間通信によって取得したデータであることを示すフラグをオンに設定する。また、広域通信処理部F4から提供された車両データを保存する場合には、間接型車車間通信によって取得したデータであることを示すフラグをオンにする。両方の経路で取得できたデータに対してはそれぞれのフラグをオンとすれば良い。
 周辺車両判定部F6は、メモリM1に保存されている周辺車両データに基づいて、自車両の周辺と見なすことができる所定範囲(以降、周辺範囲)に、他車両が存在するか否かを判定する。つまり、周辺車両判定部F6は、自車両周辺に他車両が存在するか否か、換言すれば周辺車両が存在するか否かを判定する機能ブロックである。自車両の周辺とする範囲は適宜設計されればよい。ここでは一例として直接型車車間通信を実施可能な範囲と間接型車車間通信を実施可能な範囲を合わせた範囲を自車両にとっての周辺範囲と見なす。
 周辺車両判定部F6は、現在から所定の時間(以降、判定用時間)以内に他車両の車両データパケットを受信したか否かを判定する。具体的には、現在から判定用時間以内に他車両の車両データパケットを受信していない場合には、自車両の周辺に他車両は存在しないと判定する。一方、判定用時間以内に他車両の車両データパケットを受信している場合には、自車両周辺に他車両が存在すると判定する。
 ここで用いる判定用時間は、適宜設計されれば良い。ただし、判定用時間は第1周期Tw1の1倍よりも長くすることが好ましい。例えば判定用時間は第1周期Tw1の1.5倍などとすれば良い。
 <広域送信周期制御処理>
 次に、通信制御部13が実施する広域送信周期制御処理について図3に示すフローチャートを用いて述べる。広域送信周期制御処理は、広域送信周期Twを制御する処理である。この広域送信周期制御処理は、車両の電源(例えばイグニッション電源)がオンとなっている間、逐次(例えば100ミリ秒毎に)開始されればよい。或いは、広域通信処理部F4が広域車両データパケットを広域通信モジュール12へ出力したタイミングで開始されてもよい。
 まず、ステップS1では周辺車両判定部F6が、メモリM1にアクセスし、周辺車両データを読みだしてステップS2に移る。ステップS2では周辺車両判定部F6が、ステップS1で読み出した周辺車両データに基づいて、自車両周辺に他車両が存在するか否かを判定する。自車両周辺に他車両が存在しないと判定した場合にはステップS2が否定判定されてステップS3に移る。一方、自車両周辺に他車両が存在すると判定した場合にはステップS2が肯定判定されてステップS4に移る。
 ステップS3では広域通信処理部F4が、広域送信周期Twを第1周期Tw1に設定して本フローを終了する。なお、既に広域送信周期Twが第1周期Tw1に設定されている場合には、そのままの設定を維持すればよい。
 ステップS4では広域通信処理部F4が、送信周期を第2周期Tw2に設定して本フローを終了する。なお、既に広域送信周期Twが第2周期Tw2に設定されている場合には、そのままの設定を維持すればよい。
 図4は、広域送信周期Twを第1周期Tw1に設定している場合の車両データ生成部F2、狭域通信処理部F3、及び広域通信処理部F4のそれぞれの作動を表した図であり、横軸は時間の経過を表している。図中の下向き三角は、車両データ生成部F2が車両データを生成するタイミングを表している。狭域通信処理部F3や広域通信処理部F4に対応する横軸上に設けた矢印は、それぞれが車両データパケットを送信するタイミングを表している。
 図4に示すように、狭域通信処理部F3は車両データ生成部F2による車両データの生成と同期して車両データパケットを送信する。一方、広域送信周期Twが第1周期Tw1に設定されている場合の広域通信処理部F4は、狭域通信処理部F3が車両データパケットを10回送信する毎に1回車両データパケットを送信する。なお、広域通信処理部F4が送信する車両データパケットには、同一タイミングで狭域通信処理部F3が送信する車両データパケットと同じ車両データが収容されている。
 図5は、広域送信周期Twを第2周期Tw2に設定している場合の車両データ生成部F2、狭域通信処理部F3、及び広域通信処理部F4のそれぞれの作動を表した図である。図中の記号は図4と同じ意味で用いている。
 図5に示すように、広域送信周期Twが第2周期Tw2に設定されている場合の広域通信処理部F4は、狭域通信処理部F3と同じ頻度で車両データパケットを送信する。つまり、広域送信周期Twが第1周期Tw1に設定されている場合よりも他車両への情報発信をより密に実施する。
 <実施形態のまとめ>
 以上の構成では、周辺車両判定部F6によって自車両の周辺に他車両は存在しないと判定されている場合には、広域送信周期Twを第1周期Tw1に設定する。また、周辺車両判定部F6によって自車両の周辺に他車両が存在すると判定されている場合には、広域送信周期Twを第2周期Tw2に設定する。
 第1周期Tw1は、通信量抑制の観点から、狭域送信周期Tdや第2周期Tw2に対して相対的に大きい値に設定されている。第2周期Tw2は、間接型車車間通信において直接型車車間通信と同程度のリアルタイム性を実現するために、換言すれば、直接型車車間通信と同程度にリアルタイムな情報共有を実現するために、狭域送信周期Tdと同程度の値に設定されている。
 つまり、広域通信処理部F4は、自車両の周辺に他車両が存在しない場合には、広域送信周期Twを相対的に短い値に設定する一方、自車両の周辺に他車両が存在する場合には広域送信周期Twを相対的に長い値に設定する。なお、狭域通信処理部F3は、周辺車両判定部F6の判定結果に依らず、所定の狭域送信周期Tdで狭域車両データパケットを逐次送信させる。
 したがって、以上の構成によれば自車両の周辺に他車両が存在する場合には、直接型車車間通信と間接型車車間通信の両方で車両データの送信が相対的に密に実施される。そのため、仮にシャドウイングや隠れ端末によって直接型車車間通信の通信品質が低下したとしても、間接型車車間通信によってリアルタイムな車両情報の共有を維持できる。
 また、自車両の周辺に他車両が存在しない場合には、広域送信周期を相対的に長い第1周期Tw1に設定する。広域送信周期Twを長くするということは、広域通信網3を介した通信を実施する頻度を抑制することに相当するため、通信量及び通信料を抑制することができる。なお、自車両の周辺範囲に他車両が存在しない場合、自車両の車両データは他車両によって利用されない。そのため、車両データを頻繁に送信する必要性が小さい。また、車両データの定期送信は、広域通信網3を介さない直接型車車間通信によって、他車両が自車両周辺に存在する場合と同じ間隔で実施される。
 したがって、他車両が自車両周辺に存在しない場合には広域送信周期Twを長くしても車両間における情報共有のリアルタイム性が損なわれる恐れは小さい。つまり、以上の構成によれば、リアルタイムな車両情報の共有を実現しつつ、広域通信網3を利用することで発生する通信料を抑制することができる。
 以上、本開示の実施形態を説明したが、本開示は上述の実施形態に限定されるものではなく、以降で述べる種々の変形例も本開示の技術的範囲に含まれる。種々の変形例は適宜組み合わせて実施することができる。さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。例えば、ロケータ30が備える機能の一部を通信制御部13が備える態様としても良い。
 なお、前述の実施形態で述べた部材と同一の機能を有する部材については、同一の符号を付し、その説明を省略する。また、構成の一部のみに言及している場合、他の部分については先に説明した実施形態の構成を適用することができる。
 [変形例1]
 上述した実施形態では一例として、現在から判定用時間以内に他車両の車両データパケットを受信している場合には、自車両周辺に他車両が存在すると判定する態様を例示したが、これに限らない。
 受信した車両データに示されている他車両の位置と、その受信時点における自車両の位置との距離が、所定の周辺判定距離以上となっている場合には、当該他車両は自車両の周辺に存在する車両ではないと判定してもよい。つまり、間接型車車間通信や直接型車車間通信によって他車両の車両データパケットを受信している場合であっても、それらと自車両との距離が周辺判定距離以上となっている場合には自車両の周辺に他車両は存在しないと判定してもよい。これは、自車両から所定の周辺判定距離以内となる範囲を、所定範囲として取り扱うことに相当する。
 この変形例1で導入する周辺判定距離は、自車両と直接的又は間接的に車車間通信している他車両を、自車両の周辺に存在している他車両と見なすか否かを判定するための閾値として機能するパラメータである。周辺判定距離は、センタ2が採用している転送用車間距離と同一のパラメータであっても良いし、別途独立したパラメータとして定義されていても良い。また、周辺判定距離は、他車両の車両データに基づいて自車両が実行しようとしている車両制御の内容に応じて調整されても良い。
 他車両の車両データに基づいて実行される車両制御の内容としては、例えば、車線変更や、右左折、追従走行、ドライバへの情報提供などがある。例えば追従走行を実施する場合には、車線変更などを実施する場合によりも短い値を周辺判定距離として採用することができる。制御内容に応じた周辺判定距離は、適宜設計されれば良い。
 [変形例2]
 前述の実施形態では第2周期Tw2を狭域送信周期Tdと同じ値とする態様を例示したがこれに限らない。例えば図6に示すように狭域送信周期Tdの2倍としてもよい。また、図7に示すように、狭域送信周期Tdの半分としてもよい。つまり、第2周期Tw2は狭域送信周期Tdよりも短くしてもよい。その場合、生成周期Tgは、第2周期Tw2に等しい値とすればよい。
 また、広域車両データパケットは、狭域車両データパケットと同一の車両データを送信するように生成されればよく、その制約を満たす限りにおいて、広域送信周期Twとして用いられる第1周期Tw1や第2周期Tw2は、必ずしも狭域送信周期Tdの整数倍でなくともよい。例えば図8に示すように第1周期Tw1は狭域送信周期Tdの8.5倍に設定されていてもよい。この場合、時刻Tbにおいて広域通信処理部F4が送信する車両データパケットには、その直前に狭域通信処理部F3が送信した車両データパケットに収容されている車両データが含まれていれば良い。つまり、時刻Taにおいて生成された車両データが含まれていれば良い。
 [変形例3]
 上述した実施形態では、広域通信処理部F4は周辺車両の有無にのみ基づいて広域送信周期を変更する態様を例示したが、これに限らない。広域通信処理部F4は、周辺車両の有無に加えて、直接型車車間通信の通信品質が所定の許容レベル以上となっているか否かにも基づいて、広域送信周期Twを動的に変更してもよい。そのような態様を変形例3とする。この変形例3は例えば次のように実現されれば良い。
 変形例3における通信制御部13は図9に示すように、実施形態として上述した種々の機能に加えて通信品質判定部F7を備える。通信品質判定部F7は、CPUが通信制御プログラムを実行することで実現されてもよいし、1つ又は複数のICなどを用いたハードウェアとして実現されていても良い。
 通信品質判定部F7は、直接型車車間通信の通信品質が所定の許容レベル以上となっているか否かを判定する機能ブロックである。直接型車車間通信の通信品質が許容レベル以上であるか否かの判定方法としては種々の方法を採用することができる。なお、直接型車車間通信の通信品質が許容レベル以上となっている状態とは、周辺車両から送信された狭域車両データパケットを正常に受信できる状態、換言すれば、データの受信に失敗する確率が所定の閾値(例えば10%)以下となる状態に相当する。
 ここでは一例として、通信品質判定部F7は、自車両の周辺に存在するはずの他車両の中に狭域車両データパケットを受信できていない他車両が存在する場合に、通信品質が許容レベル未満であると判定する。また、自車両の周辺に存在するはずの全ての他車両から狭域車両データパケットを受信できている場合には、直接型車車間通信の通信品質が許容レベル以上となっていると判定する。自車両の周辺に存在するはずの他車両は、間接型車車間通信によって取得した広域車両データパケットに基づいて特定されれば良い。
 なお、通信品質の判定処理において周辺車両として用いる他車両は、自車両と直接型車車間通信が十分に実施できるはずの範囲に存在する他車両とすることが好ましい。例えば自車両から100m以内に存在する他車両を、通信品質を判定する上での周辺車両として採用すれば良い。つまり、間接型車車間通信によって認識している全ての他車両を周辺車両として用いる必要はない。
 また、直接型車車間通信の通信品質が許容レベルとなっているか否かの判定方法は、上述した方法に限らない。例えば、直接型車車間通信によって取得した狭域車両データパケットの受信信号強度(RSSI:Received Signal Strength Indication)に基づいて、通信品質が許容レベル以上であるか否かを判定してもよい。
 具体的には、次のような構成及び手順によってRSSIから通信品質を判定することができる。まず、狭域通信モジュール11は、受信した狭域車両データパケットのRSSIを狭域通信処理部F3に提供し、狭域通信処理部F3は、狭域車両データパケットをそのRSSIとともに受信データ管理部F5に提供する。受信データ管理部F5は、直接型車車間通信によって取得した車両データパケットのRSSIを、当該他車両の車両データと対応付けてメモリM1に保存していく。なお、RSSIの特定は、RSSI回路として周知の構成を用いて実現すれば良い。
 一般的にRSSIと通信端末間との距離には相関があり、通信端末間の距離が短いほどRSSIは大きくなる。そのため、車両間の距離に応じたRSSIの想定値は予め設計しておくことができる。車両間の距離に応じたRSSIの想定値を示すデータ(以降、RSSIデータ)は予めROM等に、通信制御プログラムの一部として登録しておけばよい。
 そのような構成において通信品質判定部F7は、他車両の自車両との距離から定まるRSSIの想定値よりも、実際に受信した車両データパケットのRSSIが所定の閾値以上小さい値となっている他車両が存在している場合に、直接型車車間通信の通信品質が許容レベル未満であると判定する。また、他車両の自車両との距離から定まるRSSI想定値よりも、実際に受信した車両データパケットのRSSIが所定の閾値以上小さい値となっている他車両が存在しない場合には、通信品質が許容レベル以上となっていると判定する。このような判定手法によれば、間接型車車間通信によって取得した車両データを用いなくても、直接型車車間通信の通信品質を判定することができる。もちろん、上述した手法と組み合わせて通信品質を判定したほうが、より精度よく通信品質を判定できることは言うまでもない。
 なお、車両同士の距離から定まるRSSIの想定値に対して、実際に受信した車両データパケットのRSSIが小さくなる場合とは、大型車両によるシャドウイングが生じている場合や、自車両周辺がマルチパス環境下となっている場合等が想定される。いずれの状況も、直接的な車車間通信の通信品質が低下しやすい状況(つまり直接型車車間通信が苦手とする状況)である。
 <変形例3における広域送信周期制御処理>
 次に、変形例3における通信制御部13が実施する広域送信周期制御処理について図10に示すフローチャートを用いて述べる。まず、ステップS101では周辺車両判定部F6が、メモリM1にアクセスし、周辺車両データを読み出してステップS102に移る。ステップS102では周辺車両判定部F6が、ステップS101で読み出した周辺車両データに基づいて、自車両周辺に他車両が存在するか否かを判定する。自車両周辺に車両がいるか否かの判断方法は前述の変形例1で言及した方法を適用してもよい。自車両周辺に他車両が存在すると判定した場合にはステップS102が肯定判定されてステップS103に移る。自車両周辺に他車両は存在しないと判定した場合にはステップS102が否定判定されてステップS104に移る。
 ステップS103では通信品質判定部F7が、直接型車車間通信の通信品質が所定の許容レベル以上となっているか否かを判定する。直接型車車間通信の通信品質が許容レベル以上となっていると判定した場合にはステップS103が肯定判定されてステップS104に移る。一方、直接型車車間通信の通信品質が許容レベル未満であると判定した場合にはステップS103が否定判定されてステップS105に移る。
 ステップS104では広域通信処理部F4が、広域送信周期Twを第1周期Tw1に設定して本フローを終了する。もちろん、既に広域送信周期Twが第1周期Tw1に設定されている場合には、そのままの設定を維持すればよい。
 ステップS105では広域通信処理部F4が、送信周期を第2周期Tw2に設定して本フローを終了する。もちろん、既に広域送信周期Twが第2周期Tw2に設定されている場合には、そのままの設定を維持すればよい。
 <変形例3のまとめ>
 変形例3における広域通信処理部F4は、周辺車両判定部F6によって自車両の周辺に他車両が存在しないと判定されている場合や、通信品質判定部F7によって直接型車車間通信の通信品質が許容レベル以上であると判定されている場合には、広域送信周期Twを第1周期Tw1に設定する。また、周辺車両判定部F6によって自車両の周辺に他車両が存在すると判定されており、かつ、通信品質判定部F7によって直接型車車間通信の通信品質が許容レベル未満であると判定されている場合に、広域送信周期Twを第2周期Tw2に設定する。
 つまり、変形例3における広域通信処理部F4が広域送信周期Twを相対的に短い値に設定する場合とは、自車両の周辺に他車両が存在するにも関わらず、直接型車車間通信の通信品質が許容レベルに達していない場合である。
 直接型車車間通信の通信品質が許容レベル以上となっている場合には、直接型車車間通信によって車両間における情報共有のリアルタイム性は維持されている。したがって、直接型車車間通信の通信品質が許容レベルとなっている場合には、広域送信周期Twを短くする必要がなく、通信量抑制の観点からは広域送信周期Twは長いほうが好ましい。
 つまり、以上の構成によれば、前述の実施形態に比べて、広域送信周期Twを第2周期Tw2に設定する場面がより限定的となるため、より一層通信料を抑制することができる。
 なお、直接型車車間通信の通信品質が許容レベルに達していない場合には、自車両の周辺に存在する他車両から狭域送信された狭域車両データパケットを受信できていない可能性がある。そこで、直接型車車間通信の通信品質が許容レベルに達していない場合には、広域送信周期Twを相対的に短い時間に設定することで、自車両のリアルタイムな車両情報を周辺車両が取得できるようになる。広域送信周期Twを短くするということは、広域通信網3への車両データパケットの送信頻度を多くし、他車両への情報発信をより密に実施することに相当するためである。また、他車両も自車両と同様に作動するため、自車両もまた周辺車両のリアルタイムな車両情報を取得できる。つまり、車両間における車両データの情報共有のリアルタイム性を前述の実施形態と同様に維持することができる。
 [変形例4]
 通信品質判定部F7による直接型車車間通信の通信品質の判定方法は、変形例3にて開示した方法に限らない。他車両毎に、狭域車両データパケットの受信失敗率(以降、パケットロス率)を算出し、パケットロス率が所定の閾値以上となっている他車両が存在する場合には、直接型車車間通信の通信品質が許容レベル未満であると判定してもよい。
 或る他車両についてのパケットロス率は次のようにして算出されればよい。まず、受信データ管理部F5は、他車両からの狭域車両データパケットを受信できた場合には、その受信時刻を受信履歴としてメモリM1に登録していく。つまり、メモリM1は、車両毎の受信履歴を示すデータ(以降、直接受信履歴データ)を記憶している。
 通信品質判定部F7は、他車両からの広域車両データパケットを受信できた場合には、直接受信履歴データに基づいて、その受信時点から過去1秒間以内に当該他車両から狭域送信された狭域車両データパケットを受信できた回数(以降、受信成功数)を特定する。
 直接型車車間通信によって他車両から送信される車両データパケットを1秒間に受信する回数の期待値(以降、受信期待値)は、1秒間を狭域送信周期Tdで除算した値となる。具体的には、ここでは狭域送信周期Tdは0.1秒に設定されているため、受信期待値は10となる。
 また、或る他車両から直接型車車間通信によって送信された車両データパケットの受信に失敗した数である受信失敗数は、受信期待値から当該他車両についての受信成功数を減算して得られる。さらに、或る他車両についての受信失敗数を受信期待値で除算した値が、当該他車両についてのパケットロス率に相当する。
 つまり、通信品質判定部F7は、或る他車両の広域車両データパケットを取得した場合に、当該他車両についての直接受信履歴データから、受信成功数を特定し、その特定した受信成功数と受信期待値とに基づいて当該他車両についてのパケットロス率を算出する。なお、パケットロス率は、百分率で表されてもよい。ここでは受信失敗数を受信期待値で除算した値を百分率に変換せずにそのまま用いることとする。
 そのようにして算出されたパケットロス率が所定の閾値(例えば0.2)以下となっている場合に、通信品質が許容レベル未満であると判定すればよい。なお、パケットロス率から通信品質が許容レベル以上であるか否かを判定するための閾値(以降、ロス率閾値)は、自車両と判定処理の対象とする他車両との距離に応じた値に設定されていてもよい。これは、車両間の距離が離れる程パケットロス率は上昇してしまう傾向があるためである。
 [変形例5]
 通信制御部13は、周辺車両判定部F6の判定結果に基づいて広域送信周期Twを第1周期Tw1から第2周期Tw2に変更する場合、周辺車両に対して広域送信周期Twを第2周期Tw2に設定するように要求する通信パケット(以降、第2周期化要求パケット)を広域送信してもよい。第2周期化要求パケットの生成及び送信は広域通信処理部F4によって実施される。
 広域通信処理部F4が広域通信モジュール12と協働して送信した第2周期化要求パケットは、センタ2によって周辺車両へ転送される。センタ2は、例えば車両Maからの第2周期化要求パケットを受信した場合には、車両Maの周辺車両を特定し、その特定した周辺車両に対して第2周期化要求パケットを転送する。各車載システム1の広域通信処理部F4は、第2周期化要求パケットを受信した場合、広域送信周期Twを第2周期Tw2に設定する。
 なお、広域通信処理部F4は、第2周期化要求パケットの受信したことをトリガとして広域送信周期Twを第2周期Tw2に設定した場合には、第2周期化要求パケットの送信は実施しないものとする。仮に第2周期化要求パケットの受信に伴って広域送信周期Twを第2周期Tw2に設定した場合にも第2周期化要求パケットを送信すると、第2周期化要求パケットが連鎖的に拡散していってしまうためである。
 この変形例5として開示の構成によれば、自車両が直接型車車間通信の通信品質が許容レベル未満であると判定した場合には、周辺車両にも第2周期Tw2で車両データパケットを送信させることができる。
 なお、広域通信処理部F4は、第2周期化要求パケットを送信した後において、通信品質判定部F7によって直接型車車間通信の通信品質が許容レベル以上であると判定された場合には、広域送信周期Twを第1周期Tw1に戻すことを許可する通信パケット(以降、復帰許可パケット)を広域送信するものとする。
 また、広域通信処理部F4は、第2周期化要求パケットを受信した場合、その通信パケットの送信元を示す情報(例えば車両ID)を、メモリM1に要求元車両として登録しておく。そして、全ての要求元車両から復帰許可パケットを受信した場合に、広域送信周期Twを第2周期Tw2から第1周期Tw1に戻す。なお、第2周期化要求パケットの送信元車両のうち、その後、広域車両データパケットを受信できなくなった車両については、自車両にとっての周辺車両ではなくなった可能性が高い。そのため、広域車両データパケットを受信できなくなった車両については、要求元車両としての登録を抹消すればよい。
 [変形例6]
 上述した変形例5では、通信品質判定部F7によって直接型車車間通信の通信品質が許容レベル以上であると判定されている場合に、復帰許可パケットを送信する態様を例示したがこれに限らない。例えば、交差点との位置関係に基づいて、復帰許可パケットを送信するか否かを決定してもよい。そのような態様を変形例6として以下に示す。
 まず、前提として、変形例6におけるロケータ30は、自車両に対するマッピングの結果に基づき、自車両が走行している道路(以降、自車走行路)を逐次特定する。そして、その特定した自車走行路に関する道路地図情報(以降、走行道路情報)を通信制御部13に逐次提供する。走行道路情報には、自車走行路上に存在する道路接続点の位置や、自車走行路の道路形状を示す情報(以降、道路形状情報)が含まれていればよい。ここでの道路接続点とは、交差点や、高速道路本線への合流地点などである。
 また、変形例6における通信制御部13は図13に示すように、上述した種々の機能に加えて道路情報取得部F8及び位置関係判定部F9を備える。道路情報取得部F8及び位置関係判定部F9のそれぞれは、CPUが通信制御プログラムを実行することで実現されてもよいし、1つ又は複数のICなどを用いたハードウェアとして実現されていても良い。
 道路情報取得部F8は、ロケータ30から走行道路情報を取得する。取得した走行道路情報は位置関係判定部F9に提供される。
 位置関係判定部F9は、道路情報取得部F8が取得した走行道路情報に含まれる道路接続点の位置情報と、自車両の現在位置とから、自車両前方に存在する道路接続点のうち、自車両から最も近い位置に存在する道路接続点(以降、直近接続点)までの距離(以降、前方接続点距離)と、自車両後方に存在する道路接続点のうち、自車両から最も近い位置に存在する道路接続点からの距離(以降、後方接続点距離)のそれぞれを特定する。
 そして、位置関係判定部F9は、前方接続点距離と後方接続点距離の少なくとも何れか一方が、所定の周期変更距離Dth以下となっているか否かを判定する。換言すれば、位置関係判定部F9は、道路接続点から周期変更距離Dth以内となる範囲に自車両が存在しているか否かを判定する。
 周期変更距離Dthは、自車両の現在位置が道路接続点付近であるか否かを判定するためのパラメータである。周期変更距離Dthは、予め設計された一定の値としてもよいし、自車両の走行速度に応じて動的に決定(換言すれば調整)されてもよい。ここではより好ましい態様として、位置関係判定部F9は、自車両の走行速度が大きいほど周期変更距離Dthを大きい値に設定するものとする。例えば、自車両の走行速度が一般道路の巡航速度(例えば50km/h)以下である場合には200mに設定し、高速道路の巡航速度(例えば80km/h)相当となっている場合には、400mなどに設定する。走行速度に応じた周期変更距離Dthの具体的な値は適宜設計されればよい。
 そして、広域通信処理部F4は、第2周期化要求パケットを送信した後において、位置関係判定部F9によって前方接続点距離と後方接続点距離の両方が周期変更距離Dth以上であると判定された場合に、復帰許可パケットを送信する。
 もちろん、広域通信処理部F4が復帰許可パケットを送信する条件は、これに限らない。例えば第2周期化要求パケットを送信した後において、位置関係判定部F9によって前方接続点距離と後方接続点距離の両方が周期変更距離Dth以上であると判定され、かつ、通信品質判定部F7によって直接型車車間通信の通信品質が許容レベル以上であると判定された場合に、復帰許可パケットを送信してもよい。
 [変形例7]
 以上では、広域通信モジュール12と通信制御部13とが同一に筐体に収容されている態様を例示したが、これに限らない。図11に示すように、広域通信モジュール12は、通信制御部13を備える通信ユニット10の外部に設けられ、広域通信モジュール12と通信制御部13とがLANを介して接続するように構成されていてもよい。
 また、狭域通信モジュール11が、通信制御部13を備える通信ユニット10の外部に設けられ、狭域通信モジュール11と通信制御部13とがLANを介して接続するように構成されていてもよい。
 さらに、図12に示すように、狭域通信モジュール11及び広域通信モジュール12の両方が通信制御部13を備えるユニット10Aの外部に設けられていてもよい。つまり、狭域通信モジュール11及び広域通信モジュール12のそれぞれが通信制御部13とLANを介して接続するように構成されていてもよい。
 ここで、この出願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のセクション(あるいはステップと言及される)から構成され、各セクションは、たとえば、S1と表現される。さらに、各セクションは、複数のサブセクションに分割されることができる、一方、複数のセクションが合わさって一つのセクションにすることも可能である。さらに、このように構成される各セクションは、デバイス、モジュール、ミーンズとして言及されることができる。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  車両で用いられ、
     広域通信網を介さずに外部と直接無線通信を実施するための狭域通信モジュールと協働して、前記車両の周辺に存在する周辺車両と、前記広域通信網を介さない直接的な車車間通信である直接型車車間通信を実施する狭域通信処理部(F3)と、
     前記広域通信網を介して外部と無線通信するための広域通信モジュールと協働して、前記周辺車両と前記広域通信網を介した間接的な車車間通信である間接型車車間通信を実施する広域通信処理部(F4)と、
     前記車両に搭載されているセンサの検出結果に基づいて、前記車両の走行状態を示す車両データを生成する車両データ生成部(F2)と、を備え、
     前記狭域通信処理部は、前記車両データを含む通信パケットを所定の狭域送信周期で前記狭域通信モジュールから無線送信させ、
     前記広域通信処理部は、前記車両データを含む通信パケットを、前記広域通信モジュール及び前記広域通信網を介して、所定の広域送信周期で前記周辺車両に送信する処理を行うものであり、
     前記狭域通信処理部及び前記広域通信処理部が取得する前記車両データに基づいて、前記周辺車両に相当する他車両が前記車両の位置を基準として定まる所定範囲内に存在するか否かを判定する周辺車両判定部(F6)をさらに備え、
     前記広域通信処理部は、
     前記周辺車両判定部によって前記他車両が前記所定範囲内に存在しないと判定されている場合には、前記広域送信周期として、前記狭域送信周期よりも長い所定の第1広域送信周期を採用する一方、
     前記周辺車両判定部によって前記他車両が前記所定範囲内に存在すると判定されている場合には、前記狭域送信周期と等しい値又はそれよりも小さい値に設定されている所定の第2広域送信周期を前記広域送信周期として採用する通信制御装置。
  2.  請求項1において、
     前記狭域通信処理部が提供する前記直接型車車間通信の通信品質が所定の許容レベル以上となっているか否かを判定する通信品質判定部(F7)をさらに備え、
     前記広域通信処理部は、前記周辺車両判定部によって前記他車両が前記所定範囲内に存在すると判定されており、かつ、前記通信品質判定部によって前記直接型車車間通信の通信品質が前記許容レベル未満であると判定されている場合に、前記広域送信周期として前記第2広域送信周期を採用する通信制御装置。
  3.  請求項2において、
     前記広域通信処理部は、前記周辺車両判定部によって前記他車両が前記所定範囲内に存在すると判定されている場合であっても、前記通信品質判定部によって前記直接型車車間通信の通信品質が前記許容レベル以上であると判定されている場合には、前記広域送信周期として前記第1広域送信周期を採用する通信制御装置。
  4.  請求項2又は3において、
     前記通信品質判定部は、前記直接型車車間通信によって取得する通信パケットの受信信号強度又はパケットロス率に基づいて、前記直接型車車間通信の通信品質が前記許容レベル以上となっているか否かを判定する通信制御装置。
  5.  請求項2から4の何れか1項において、
     前記広域通信処理部は、前記周辺車両判定部によって前記他車両が前記所定範囲内に存在すると判定されたことに基づいて前記広域送信周期を前記第1広域送信周期から前記第2広域送信周期に変更する場合には、前記間接型車車間通信によって前記周辺車両に対して、前記広域送信周期を前記第2広域送信周期に設定するように要求する通信パケットである第2周期化要求パケットを送信する通信制御装置。
  6.  請求項5において、
     前記広域通信処理部は、前記間接型車車間通信によって前記第2周期化要求パケットを受信した場合には、前記広域送信周期を前記第2広域送信周期に設定する通信制御装置。
  7.  請求項6において、
     前記広域通信処理部は、前記第2周期化要求パケットを送信した時点以降において、前記通信品質判定部によって前記直接型車車間通信の通信品質が前記許容レベル以上であると判定された場合には、前記広域送信周期を前記第1広域送信周期に戻すことを許可する通信パケットである復帰許可パケットを送信する通信制御装置。
  8.  請求項7において、
     前記車両が走行している道路である自車走行路が他の道路と接続する点である道路接続点の位置を含む道路情報を取得する道路情報取得部(F8)と、
     前記道路情報取得部が取得した前記道路情報に基づいて、前記車両と前記道路接続点との距離が所定の周期変更距離以上となっているか否かを判定する位置関係判定部(F9)と、をさらに備え、
     前記広域通信処理部は、前記第2周期化要求パケットを送信した時点以降において、前記位置関係判定部によって前記道路接続点からの距離が前記周期変更距離以上であると判定され、かつ、前記通信品質判定部によって前記直接型車車間通信の通信品質が前記許容レベル以上であると判定された場合に、前記復帰許可パケットを送信する通信制御装置。
  9.  請求項7又は8において、
     前記広域通信処理部は、
     前記第2周期化要求パケットの受信に基づいて前記広域送信周期を前記第2広域送信周期に設定している場合において、受信した前記第2周期化要求パケットの送信元に相当する全ての車両から前記復帰許可パケットを受信した場合には、前記広域送信周期を前記第1広域送信周期に設定する通信制御装置。
  10.  請求項1から6の何れか1項において、
     前記車両データは、前記車両の現在位置を示す位置情報、走行速度、進行方向、及び、当該車両データを生成した生成時刻を含む通信制御装置。
     
     
PCT/JP2017/006454 2016-03-18 2017-02-22 通信制御装置 WO2017159241A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201806593RA SG11201806593RA (en) 2016-03-18 2017-02-22 Communication control device
US16/085,079 US10375545B2 (en) 2016-03-18 2017-02-22 Communication control device
DE112017001391.7T DE112017001391T5 (de) 2016-03-18 2017-02-22 Kommunikationssteuervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016055976A JP6520781B2 (ja) 2016-03-18 2016-03-18 通信制御装置
JP2016-055976 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159241A1 true WO2017159241A1 (ja) 2017-09-21

Family

ID=59851229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006454 WO2017159241A1 (ja) 2016-03-18 2017-02-22 通信制御装置

Country Status (5)

Country Link
US (1) US10375545B2 (ja)
JP (1) JP6520781B2 (ja)
DE (1) DE112017001391T5 (ja)
SG (1) SG11201806593RA (ja)
WO (1) WO2017159241A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616733B2 (en) 2016-03-18 2020-04-07 Denso Corporation Communication control device
US10789841B2 (en) 2016-03-18 2020-09-29 Denso Corporation System for communication between mobile bodies, mobile body transmission control device, and mobile body receiving control device
US10812953B2 (en) 2016-03-18 2020-10-20 Denso Corporation Communication control device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016147623A1 (ja) * 2015-03-18 2018-01-25 日本電気株式会社 運転制御装置、運転制御方法および車車間通信システム
DE102017208854A1 (de) * 2017-05-24 2018-11-29 Volkswagen Aktiengesellschaft Verfahren, Vorrichtungen und computerlesbares Speichermedium mit Instruktionen zum Ermitteln von geltenden Verkehrsregeln für ein Kraftfahrzeug
FR3076651B1 (fr) * 2018-01-09 2020-02-07 Vulog Procede de mise a jour d'un indicateur de disponibilite d'un vehicule pour sa reservation
JP7337998B2 (ja) * 2020-06-22 2023-09-04 ソフトバンク株式会社 移動体及びプログラム
JP7096862B2 (ja) * 2020-06-22 2022-07-06 ソフトバンク株式会社 サーバ、通信システム、通信制御方法及びプログラム
US11302181B2 (en) 2020-07-16 2022-04-12 Toyota Motor North America, Inc. Methods and systems for enhancing vehicle data access capabilities
JP7116761B2 (ja) * 2020-07-27 2022-08-10 本田技研工業株式会社 車両制御システム、車両制御方法、及び車両制御サーバー
CN113613201A (zh) * 2021-08-02 2021-11-05 腾讯科技(深圳)有限公司 应用于车辆间的数据分享方法、装置、介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114435A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Limited 交通システムにおける無線通信方法並びに無線基地局及び無線端末
JP2009003822A (ja) * 2007-06-25 2009-01-08 Hitachi Ltd 車車間通信装置
JP2010028637A (ja) * 2008-07-23 2010-02-04 Fujitsu Ltd 基地局、移動局、通信制御方法
JP2013118522A (ja) * 2011-12-02 2013-06-13 Denso Corp 車車間通信システムおよび車車間通信機

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6813561B2 (en) * 2003-03-25 2004-11-02 Ford Global Technologies, Llc Relative positioning for vehicles using GPS enhanced with bluetooth range finding
US8742987B2 (en) * 2009-12-10 2014-06-03 GM Global Technology Operations LLC Lean V2X security processing strategy using kinematics information of vehicles
JP5644689B2 (ja) 2011-06-15 2014-12-24 株式会社デンソー 車両用無線通信装置および通信システム
US9069080B2 (en) * 2013-05-24 2015-06-30 Advanced Scientific Concepts, Inc. Automotive auxiliary ladar sensor
JP5923802B2 (ja) 2014-09-09 2016-05-25 東芝エレベータ株式会社 エレベータの群管理システム
JP6424853B2 (ja) 2016-03-18 2018-11-21 株式会社デンソー 通信制御装置
JP6447554B2 (ja) 2016-03-18 2019-01-09 株式会社デンソー 移動体間通信システムおよび移動体用受信制御装置
JP6428687B2 (ja) 2016-03-18 2018-11-28 株式会社デンソー 通信制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114435A1 (ja) * 2007-03-20 2008-09-25 Fujitsu Limited 交通システムにおける無線通信方法並びに無線基地局及び無線端末
JP2009003822A (ja) * 2007-06-25 2009-01-08 Hitachi Ltd 車車間通信装置
JP2010028637A (ja) * 2008-07-23 2010-02-04 Fujitsu Ltd 基地局、移動局、通信制御方法
JP2013118522A (ja) * 2011-12-02 2013-06-13 Denso Corp 車車間通信システムおよび車車間通信機

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10616733B2 (en) 2016-03-18 2020-04-07 Denso Corporation Communication control device
US10789841B2 (en) 2016-03-18 2020-09-29 Denso Corporation System for communication between mobile bodies, mobile body transmission control device, and mobile body receiving control device
US10812953B2 (en) 2016-03-18 2020-10-20 Denso Corporation Communication control device

Also Published As

Publication number Publication date
SG11201806593RA (en) 2018-09-27
DE112017001391T5 (de) 2018-12-20
US10375545B2 (en) 2019-08-06
JP6520781B2 (ja) 2019-05-29
US20190098470A1 (en) 2019-03-28
JP2017173906A (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
WO2017159241A1 (ja) 通信制御装置
WO2017159240A1 (ja) 通信制御装置
CN110392336B (zh) 用于在连接的车辆间提供协同感知的方法、系统和计算机可读介质
JP5644689B2 (ja) 車両用無線通信装置および通信システム
US10812953B2 (en) Communication control device
JP6340891B2 (ja) 車載通信端末、及び移動体通信システム
US10789841B2 (en) System for communication between mobile bodies, mobile body transmission control device, and mobile body receiving control device
JP2000090395A (ja) 車両間通信の送信装置及び方法
US20180034144A1 (en) Vehicle ubiquitous dedicated short range communication antenna integration
KR102419309B1 (ko) 차량 대 차량 통신을 위한 방법
JP5104372B2 (ja) 車車間通信システム、車車間通信装置
CN107005812B (zh) 移动体通信系统、车载终端
WO2017195520A1 (ja) 車両制御システムおよび車両制御装置
US10512090B2 (en) Wireless communication apparatus
WO2020003814A1 (ja) 車車間通信システム、車両用通信装置
US20240160219A1 (en) Automated platooning system and method thereof
JP5741525B2 (ja) 車両用無線通信装置および車車間情報通信システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11201806593R

Country of ref document: SG

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766246

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766246

Country of ref document: EP

Kind code of ref document: A1