WO2017159196A1 - エンコーダ装置及びエンコーダ装置付き運動案内装置 - Google Patents

エンコーダ装置及びエンコーダ装置付き運動案内装置 Download PDF

Info

Publication number
WO2017159196A1
WO2017159196A1 PCT/JP2017/005630 JP2017005630W WO2017159196A1 WO 2017159196 A1 WO2017159196 A1 WO 2017159196A1 JP 2017005630 W JP2017005630 W JP 2017005630W WO 2017159196 A1 WO2017159196 A1 WO 2017159196A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
coil
encoder device
magnetic
reference mark
Prior art date
Application number
PCT/JP2017/005630
Other languages
English (en)
French (fr)
Inventor
良直 森行
敬史 押田
Original Assignee
Thk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk株式会社 filed Critical Thk株式会社
Priority to US16/084,164 priority Critical patent/US10591317B2/en
Priority to CN201780016419.8A priority patent/CN108779992B/zh
Priority to DE112017000908.1T priority patent/DE112017000908B4/de
Publication of WO2017159196A1 publication Critical patent/WO2017159196A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • G01D5/206Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element constituting a short-circuiting element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24428Error prevention
    • G01D5/24433Error prevention by mechanical means
    • G01D5/24438Special design of the sensing element or scale
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2454Encoders incorporating incremental and absolute signals
    • G01D5/2455Encoders incorporating incremental and absolute signals with incremental and absolute tracks on the same encoder
    • G01D5/2457Incremental encoders having reference marks

Definitions

  • the present invention relates to an encoder device for detecting a relative linear position or a rotational position of two members that are relatively movable.
  • the encoder device is used to detect the linear position or the rotational position of the second member that moves relative to the first member.
  • Encoder devices include an incremental type that outputs a number of pulses corresponding to the amount of movement, and an absolute type that outputs data of the absolute position of the detection position.
  • the incremental encoder device includes a scale attached to the first member and a head attached to the second member and reading the scale. As the second member moves relative to the first member, the incremental encoder device outputs an A-phase signal and a B-phase signal that are out of phase by ⁇ / 2.
  • the incremental encoder device outputs an origin signal (Z phase signal) in addition to the A phase signal and the B phase signal. This is because the incremental encoder device has a problem that the current position cannot be immediately known even if the power is turned off and the power is turned on again.
  • a reference mark (made of magnet or iron) is attached to the origin position of the first member, and a magnetic sensor for reading the reference mark is attached to the second member. ing. Then, the signal obtained from the magnetic sensor is compared with a predetermined threshold value to generate an origin signal pulse, and the origin signal is output based on this pulse.
  • an object of the present invention is to provide an encoder device that can reduce interference between the magnetic field of the reference mark and the magnetic field of the scale.
  • one aspect of the present invention is an encoder device including a reference mark and a head, and the reference mark is electrically connected to the first scale coil and the first scale coil.
  • the second scale coil, and the head transmits the electromagnetic wave in a non-contact manner to the first scale coil
  • the reception coil receives the electromagnetic wave in a non-contact manner from the second scale coil
  • An electric circuit that generates a pulse for generating an origin signal from an electromagnetic wave received by the receiving coil when the transmitting coil faces the first scale coil and the receiving coil faces the second scale coil Device.
  • pulses for generating an origin signal can be generated using electromagnetic induction.
  • the magnetic field generated in the reference mark by electromagnetic induction and the magnetic field generated in the scale can be separated by frequency. Therefore, interference between the magnetic field of the reference mark and the magnetic field of the scale can be reduced.
  • a scale is not restricted to a magnetic scale,
  • an optical scale may be sufficient.
  • FIGS. 6A and 6A are comparative examples
  • FIGS. 6B1 and 6B2 are diagrams illustrating comparison of head sizes in the present embodiment and a comparative example. Shows form).
  • the encoder device of the motion guide device of the present invention can be embodied in various forms, and is not limited to the embodiments described in the specification. This embodiment is provided with the intention of enabling those skilled in the art to fully understand the scope of the invention by fully disclosing the specification.
  • FIG. 1 shows an external perspective view of a motion guide apparatus with an encoder apparatus to which the encoder apparatus of this embodiment is attached.
  • Reference numeral 3 is a motion guide device, and reference numeral 6 is an encoder device.
  • the motion guide device 3 includes a track rail 1 and a carriage 2 that is assembled to the track rail 1 so as to be movable in its length direction.
  • the track rail 1 is attached to a base (not shown), and the carriage 2 is attached to a movable body such as a table (not shown).
  • the motion guide device 3 is incorporated in a machine tool, a semiconductor manufacturing device, a liquid crystal manufacturing device, a robot, or the like, and guides a movable body such as a table to move linearly.
  • a large number of rolling elements are interposed between the track rail 1 and the carriage 2 so as to be capable of rolling motion. When the carriage 2 moves relative to the track rail 1, the rolling elements roll between them. By utilizing the rolling of the rolling elements, the carriage 2 can be moved with high accuracy and lightness. Since the structure of the exercise
  • the encoder device 6 includes an incremental magnetic scale (hereinafter simply referred to as a magnetic scale 4), a reference mark 7 (see FIG. 2), and a head 5.
  • the encoder device 6 outputs an A-phase and B-phase incremental signal and an origin signal (Z-phase signal) as the carriage 2 moves.
  • the magnetic scale 4 is provided for generating A-phase and B-phase incremental signals.
  • the reference mark 7 is provided for generating an origin signal.
  • the magnetic scale 4 and the reference mark 7 are attached to the track rail 1 in an overlapped state.
  • the head 5 is attached to the carriage 2.
  • the magnetic scale 4 has a rectangular cross section and is elongated along the track rail 1.
  • the surface of the magnetic scale 4 is magnetized so that N poles and S poles appear alternately at equal intervals in the length direction.
  • the magnetic scale 4 is fitted in the groove on the upper surface of the track rail 1.
  • the attachment of the magnetic scale 4 is not limited to this.
  • the magnetic scale 4 can be attached to a track rail without a groove, or can be attached to a side surface of the track rail.
  • a reference mark 7 is attached to the upper surface of the magnetic scale 4. As shown in the side view of FIG. 3, the reference mark 7 is attached to the flat upper surface 4 a of the magnetic scale 4. If a dent corresponding to the thickness of the reference mark 7 is provided on the upper surface 4a of the magnetic scale 4, the amount of magnetism changes between the portion with the dent and the portion without the dent. For this reason, the magnetic scale 4 is not provided with a recess.
  • the reference mark 7 is formed of a rectangular flexible printed board elongated in the length direction of the magnetic scale 4.
  • the reference mark 7 includes a substrate 7a made of an insulator and a pattern 7b made of a conductor formed on the surface of the substrate 7a.
  • the pattern 7 b includes a rectangular frame-shaped first scale coil 7 b 1, and a rectangular shape that is spaced apart from the first scale coil 7 b 1 by a predetermined pitch P 1 in the moving direction of the head 5.
  • Frame-shaped second scale coil 7b 2 and parallel wiring 7b 3 connected to first scale coil 7b 1 and second scale coil 7b 2 .
  • the first scale coil 7b 1 , the second scale coil 7b 2 , and the parallel wiring 7b 3 constitute a closed circuit.
  • the head 5 includes a transmission coil 8 and a reception coil 9. Transmitting coil 8, while facing the first scale coils 7b 1, and transmits the electromagnetic wave without contact to the first scale coils 7b 1.
  • the center-to-center pitch between the transmission coil 8 and the reception coil 9 in the moving direction of the head 5 is P2.
  • the P2 is equal to the center-to-center pitch P1 between the first scale coils 7b 1 and the second scale coils 7b 2.
  • a gap g is provided between the transmission coil 8 and the reception coil 9 and the reference mark 7.
  • the head 5 is movable with respect to the reference mark 7. As each transmission coil 8 and the receiving coil 9 is opposed to the first scale coils 7b 1 and the second scale coils 7b 2, respectively, electromagnetic wave transmission coil 8 has radiation is received by the receiving coil 9. When the head 5 moves from this facing position, the electromagnetic wave received by the receiving coil 9 gradually decreases.
  • a magnetic sensor 11 that reads the magnetic scale 4 is disposed between the transmission coil 8 and the reception coil 9.
  • the magnetic sensor 11 is opposed to the magnetic scale 4 with a gap, and detects the magnetic field of the magnetic scale 4.
  • the magnetic sensor 11 includes an MR (Magneto-Resistance) element.
  • the MR element changes its resistance in accordance with a change in the strength and / or direction of the magnetic field of the magnetic scale 4.
  • the magnetic sensor 11 outputs two sine wave signals (a phase signal and b phase signal) that are 90 degrees out of phase with the movement of the head 5.
  • FIG. 5 shows a block diagram of the encoder device 6.
  • the output of the oscillation circuit 12 that oscillates at a predetermined frequency is input to the transmission coil 8.
  • the oscillation frequency of the oscillation circuit 12 is set to 10 times or more the frequency of the magnetic field of the magnetic scale 4.
  • the frequency of the magnetic field of the magnetic scale 4 is obtained from V / P.
  • V is the speed (mm / sec) of the carriage 2
  • P is the pitch (mm) between the magnetic poles of the magnetic scale 4 (between N pole and N pole).
  • the transmission coil 8 receives an input from the oscillation circuit 12 and radiates electromagnetic waves.
  • the transmission coil 8 faces the first scale coil 7b 1 of the reference mark 7, the electromagnetic wave is captured by the first scale coil 7b 1 , and the electromagnetic wave is transmitted to the first scale coil 7b 1 .
  • a first scale coils 7b 1 and the second scale coils 7b 2 constitutes a closed circuit.
  • the first scale coil 7b 1 receives the electromagnetic wave
  • the second scale coil 7b 2 radiates the electromagnetic wave.
  • the receiving coil 9 receives the electromagnetic wave.
  • the electromagnetic wave received by the receiving coil 9 is detected and rectified by the detection / rectification circuit 13.
  • the detection circuit detects an electromagnetic wave, extracts an alternating current generated by the electromagnetic wave by dividing the alternating current generated by the electromagnetic wave using a filter and the alternating current generated by the magnetic scale 4 by frequency.
  • the frequency of alternating current generated by the electromagnetic wave is in the order of MHz, whereas the frequency of alternating current generated by the magnetic scale 4 (the above V / P) is in the order of kHz. For this reason, both can be separated by a filter.
  • the rectifying circuit rectifies alternating current of electromagnetic waves into direct current.
  • the comparator 14 compares the DC voltage rectified by the detection / rectifier circuit 13 with a predetermined threshold value, and generates a pulse for generating an origin signal.
  • the comparator 14 generates an H (High) level signal when the DC voltage is greater than or equal to a predetermined threshold, and generates an L (Low) level signal when the DC voltage is less than the predetermined threshold.
  • Pulses for generating an origin signal indicates that a state in which each transmission coil 8 and the receiving coil 9 are opposed to the 2 each first scale coils 7b 1 and the second scale coils 7b.
  • the pulse for generating the origin signal is input to the Z-phase generation circuit 15.
  • the width of the pulse for generating the origin signal is relatively wide.
  • the Z-phase generation circuit 15 is used to generate an origin signal having a narrow pulse width from an origin signal generation pulse.
  • the Z-phase generation circuit 15 generates a narrow-width pulse each time the polarity of the magnetic scale 4 changes from the a-phase signal and the b-phase signal output from the magnetic sensor 11, and the narrow-width pulse and An origin signal having a narrow pulse width is generated by a logical product with the origin signal generation pulse.
  • An example of the Z-phase generation circuit 15 is described in Japanese Patent No. 5717787 proposed by the applicant, but the Z-phase generation circuit 15 is not particularly limited.
  • the interpolator 16 is used to improve the resolution of the magnetic sensor 11.
  • the interpolator 16 passes the a-phase signal and the b-phase signal output from the magnetic sensor 11 to the A / D converter, and designates an address in the ROM table based on the A / D conversion data obtained thereby. Get the insertion data. An A-phase and B-phase incremental signal with high resolution is obtained based on the interpolation data. Since the configuration of the interpolator 16 is well known, detailed description thereof is omitted.
  • the origin signal, the A-phase and B-phase incremental signals obtained as described above are output from the line driver 17 to a necessary control device.
  • the magnetic field generated in the reference mark 7 by electromagnetic induction and the magnetic field generated in the magnetic scale 4 can be separated by frequency. Therefore, interference between the magnetic field of the reference mark 7 and the magnetic field of the magnetic scale 4 can be reduced.
  • Incremental detection is magnetic (incremental signal is generated by magnetic scale 4 and magnetic sensor 11), and origin detection is electromagnetic induction (origin signal is generated by reference mark 7 and transmission / reception coils 8 and 9).
  • origin detection is electromagnetic induction (origin signal is generated by reference mark 7 and transmission / reception coils 8 and 9).
  • the magnetic scale 4 and the reference mark 7 are arranged so as to overlap the track rail 1, the mounting space for these can be reduced, and the head 5 is also in the width direction (the left-right direction orthogonal to the length direction of the track rail 1). Can be made compact.
  • the magnetic scale 4 and the reference mark 7 are arranged on the track rail 1 so as to overlap each other, so that the small-sized motion guide device (b1) and the large-sized motion guide.
  • the head 5 can be shared by the device (b2).
  • FIGS. 6A1 and 6A2 of the comparative example when the magnetic scale 4 ′ and the reference mark 7 ′ are arranged on the left and right of the bolt insertion hole 1a ′ of the track rail 1 ′, the small-sized motion guide The head 5 'cannot be shared by the device (a1) and the large-sized motion guide device (a2).
  • the magnetic sensor 11 is disposed between the transmission coil 8 and the reception coil 9, the head 5 including these can be reduced in size, and the electromagnetic waves of the transmission / reception coils 8 and 9 can adversely affect the magnetic sensor 11. Can be prevented.
  • the encoder device detects the linear position of the carriage of the motion guide device, but it can also detect the rotational position of the rotating shaft of the motor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

リファレンスマークに発生する磁界とスケールに発生する磁界との干渉を低減できるエンコーダ装置を提供する。 エンコーダ装置(6)は、リファレンスマーク(7)と、ヘッド(5)と、を備える。リファレンスマーク(7)は、第一スケールコイル(7b)と、第一スケールコイル(7b)に電気的に接続される第二スケールコイル(7b)と、を有する。ヘッド(5)は、第一スケールコイル(7b)に非接触で電磁波を送信する送信コイル(8)と、第二スケールコイル(7b)から非接触で電磁波を受信する受信コイル(9)と、第一スケールコイル(7b)に送信コイル(8)が対向し、第二スケールコイル(7b)に受信コイル(9)が対向する場合、受信コイル(9)が受信した電磁波から原点信号生成用のパルスを生成する電気回路(13,14)と、を有する。

Description

エンコーダ装置及びエンコーダ装置付き運動案内装置
 本発明は、相対移動可能な二部材の相対的な直線位置又は回転位置を検出するためのエンコーダ装置に関する。
 エンコーダ装置は、第一部材に対して相対移動する第二部材の直線位置又は回転位置を検出するために用いられる。エンコーダ装置には、移動量に応じた数のパルスを出力するインクリメンタル型と、検出位置の絶対位置をデータ出力するアブソリュート型がある。
 インクリメンタル型のエンコーダ装置は、第一部材に取り付けられるスケールと、第二部材に取り付けられ、スケールを読み取るヘッドと、を備える。第一部材に対する第二部材の相対移動に伴って、インクリメンタル型のエンコーダ装置は、π/2だけ位相がずれたA相信号及びB相信号を出力する。
 インクリメンタル型のエンコーダ装置は、A相信号及びB相信号に加えて原点信号(Z相信号)を出力する。インクリメンタル型のエンコーダ装置には、電源を切って再度通電しても直ちに現在位置がわからないという課題があるからである。
 原点信号を出力するために、特許文献1に記載のエンコーダ装置では、第一部材の原点位置にリファレンスマーク(磁石又は鉄からなる)を取り付け、第二部材にこのリファレンスマークを読み取る磁気センサを取り付けている。そして、磁気センサから得た信号を所定の閾値と比較して原点信号用のパルスを生成し、このパルスに基づいて原点信号を出力している。
国際公開第2009/053719号
 しかし、特許文献1に記載のエンコーダ装置にあっては、スケールが磁気スケールであるので、磁石又は鉄からなるリファレンスマークに発生する磁界とスケールに発生する磁界とが干渉し合い、測定誤差が生ずるおそれがあるという課題がある。
 そこで、本発明は、リファレンスマークの磁界とスケールの磁界との干渉を低減できるエンコーダ装置を提供することを目的とする。
 上記課題を解決するために、本発明の一態様は、リファレンスマークとヘッドとを備えるエンコーダ装置であって、前記リファレンスマークは、第一スケールコイルと、前記第一スケールコイルに電気的に接続される第二スケールコイルと、を有し、前記ヘッドは、前記第一スケールコイルに非接触で電磁波を送信する送信コイルと、前記第二スケールコイルから非接触で電磁波を受信する受信コイルと、前記第一スケールコイルに前記送信コイルが対向し、前記第二スケールコイルに前記受信コイルが対向する場合、前記受信コイルが受信した電磁波から原点信号生成用のパルスを生成する電気回路と、を有するエンコーダ装置である。
 本発明によれば、電磁誘導を利用して原点信号生成用のパルスを生成することができる。電磁誘導によってリファレンスマークに発生する磁界とスケールに発生する磁界とは、周波数で切り分けることができる。したがって、リファレンスマークの磁界とスケールの磁界との干渉を低減できる。
 なお、本発明は、スケールが磁気スケールである場合に好適であるが、スケールは磁気スケールに限られることはなく、例えば光学式スケールでもよい。
本発明の一実施形態のエンコーダ装置が取り付けられたエンコーダ装置付き運動案内装置の外観斜視図である。 本実施形態のエンコーダ装置の内部構造を示す斜視図である。 本実施形態のエンコーダ装置の内部構造を示す側面図である。 リファレンスマークの平面図である。 本実施形態のエンコーダ装置のブロック図である。 本実施形態と比較例とでヘッドの大きさを比較した図である(図6(a1)、図6(a2)は比較例を示し、図6(b1)、図6(b2)は本実施形態を示す)。
 以下、添付図面を参照して、本発明の一実施形態のエンコーダ装置を詳細に説明する。ただし、本発明の運動案内装置のエンコーダ装置は種々の形態で具体化することができ、明細書に記載される実施形態に限定されるものではない。本実施形態は、明細書の開示を十分にすることによって、当業者が発明の範囲を十分に理解できるようにする意図をもって提供されるものである。
 図1は、本実施形態のエンコーダ装置が取り付けられたエンコーダ装置付き運動案内装置の外観斜視図を示す。符号3が運動案内装置、符号6がエンコーダ装置である。
 運動案内装置3は、軌道レール1と、軌道レール1にその長さ方向に移動可能に組み付けられるキャリッジ2と、を備える。軌道レール1が図示しないベースに取り付けられ、キャリッジ2が図示しないテーブル等の可動体に取り付けられる。運動案内装置3は、工作機械、半導体製造装置、液晶製造装置、ロボット等に組み込まれ、テーブル等の可動体が直線運動するのを案内する。軌道レール1とキャリッジ2との間には、転がり運動可能に多数の転動体が介在する。軌道レール1に対してキャリッジ2が移動すると、転動体がこれらの間を転がる。転動体の転がりを利用することで、キャリッジ2を高精度にかつ軽快に移動させることができる。運動案内装置3の構成は周知であるので、これ以上の詳しい説明を省略する。
 エンコーダ装置6は、インクリメンタル型磁気スケール(以下、単に磁気スケール4という)と、リファレンスマーク7(図2参照)と、ヘッド5と、を備える。エンコーダ装置6は、キャリッジ2の移動に伴って、A相、B相のインクリメンタル信号、原点信号(Z相信号)を出力する。磁気スケール4は、A相、B相のインクリメンタル信号を生成するために設けられる。リファレンスマーク7は、原点信号を生成するために設けられる。磁気スケール4とリファレンスマーク7とは、重ねた状態で、軌道レール1に取り付けられる。ヘッド5は、キャリッジ2に取り付けられる。
 磁気スケール4は、断面矩形で軌道レール1に沿って細長い。磁気スケール4の表面は、長さ方向に交互にN極及びS極が等間隔に現れるように着磁される。磁気スケール4は、軌道レール1の上面の溝に嵌められる。なお、磁気スケール4の取り付けはこれに限定されるものではなく、例えば磁気スケール4を溝のない軌道レールに取り付けることもでき、軌道レールの側面に取り付けることもできる。
 図2に示すように、磁気スケール4の上面には、リファレンスマーク7が貼り付けられる。図3の側面図に示すように、リファレンスマーク7は、磁気スケール4の平坦な上面4aに貼り付けられる。磁気スケール4の上面4aにリファレンスマーク7の厚さに相当する凹みを設けると、凹みのある部分とない部分とで磁気量が変わってしまう。このため、磁気スケール4には凹みは設けられていない。リファレンスマーク7は、磁気スケール4の長さ方向に細長い矩形状のフレキシブルプリント基板からなる。リファレンスマーク7は、絶縁体からなる基板7aと、基板7aの表面に形成された導体からなるパターン7bと、を備える。
 図4の平面図に示すように、パターン7bは、四角形の枠状の第一スケールコイル7bと、第一スケールコイル7bからヘッド5の移動方向に所定ピッチP1だけ離れて配置された四角形の枠状の第二スケールコイル7bと、第一スケールコイル7bと第二スケールコイル7bとに接続される平行配線7bと、を備える。第一スケールコイル7b、第二スケールコイル7b、及び平行配線7bは、閉回路を構成する。
 図2に示すように、ヘッド5は、送信コイル8と、受信コイル9と、を備える。送信コイル8は、第一スケールコイル7bに対向した状態で、第一スケールコイル7bに非接触で電磁波を送信する。受信コイル9は、第二スケールコイル7bに対向した状態で、第二スケールコイル7bから非接触で電磁波を受信する。図3に示すように、ヘッド5の移動方向における送信コイル8と受信コイル9との中心間ピッチは、P2である。このP2は、第一スケールコイル7bと第二スケールコイル7bとの中心間ピッチP1に等しい。送信コイル8、受信コイル9とリファレンスマーク7との間には、隙間gが設けられる。
 ヘッド5は、リファレンスマーク7に対して移動可能である。送信コイル8及び受信コイル9それぞれが第一スケールコイル7b及び第二スケールコイル7bそれぞれに対向すると、送信コイル8が放射した電磁波が受信コイル9に受信される。この対向位置からヘッド5が移動すると、受信コイル9が受信する電磁波が徐々に小さくなる。
 図2に示すように、送信コイル8と受信コイル9との間には、磁気スケール4を読み取る磁気センサ11が配置される。磁気センサ11は、磁気スケール4に隙間を空けて対向し、磁気スケール4の磁界を検出する。磁気センサ11は、MR(Magneto-Resistance)素子を備える。MR素子は、磁気スケール4の磁界の強度及び/又は方向の変化に応じてその抵抗を変化させる。ヘッド5が磁気スケール4に対して移動すると、磁気センサ11は、ヘッド5の移動に伴って90度位相が異なる2つの正弦波信号(a相信号及びb相信号)を出力する。
 図5は、エンコーダ装置6のブロック図を示す。所定の周波数を発振する発振回路12の出力は、送信コイル8に入力される。発振回路12の発振周波数は、磁気スケール4の磁界の周波数の10倍以上に設定される。磁気スケール4の磁界の周波数はV/Pから求められる。Vはキャリッジ2の速度(mm/sec)であり、Pは磁気スケール4の磁極間(N極-N極間)ピッチ(mm)である。
 送信コイル8は、発振回路12からの入力を受けて、電磁波を放射する。リファレンスマーク7の第一スケールコイル7bに送信コイル8が対向すると、電磁波は第一スケールコイル7bによって捕捉され、電磁波が第一スケールコイル7bに送信される。
 第一スケールコイル7bと第二スケールコイル7bとは、閉回路を構成する。第一スケールコイル7bが電磁波を受信すると、第二スケールコイル7bが電磁波を放射する。第二スケールコイル7bに受信コイル9が対向すると、受信コイル9が電磁波を受信する。
 受信コイル9に受信された電磁波は、検波・整流回路13によって検波・整流される。検波回路は、電磁波を検出し、フィルタを用いて電磁波によって発生する交流と磁気スケール4によって発生する交流とを周波数で切り分け、電磁波によって発生する交流を抽出する。電磁波によって発生する交流の周波数はMHzオーダであるのに対し、磁気スケール4によって発生する交流の周波数(上記のV/P)はkHzオーダである。このため、フィルタで両者を切り分けることができる。整流回路は、電磁波の交流を直流に整流する。
 コンパレータ14は、検波・整流回路13が整流した直流電圧を所定の閾値と比較し、原点信号生成用のパルスを生成する。コンパレータ14は、直流電圧が所定の閾値以上のとき、H(High)レベルの信号を生成し、直流電圧が所定の閾値未満のとき、L(Low)レベルの信号を生成する。原点信号生成用のパルスは、送信コイル8及び受信コイル9それぞれが第一スケールコイル7b及び第二スケールコイル7bそれぞれに対向している状態にあることを表す。
 原点信号生成用のパルスは、Z相生成用回路15に入力される。原点信号生成用のパルスの幅は比較的広い。Z相生成用回路15は、原点信号生成用のパルスから狭小なパルス幅の原点信号を生成するために用いられる。例えば、Z相生成用回路15は、磁気センサ11が出力するa相信号及びb相信号から磁気スケール4の極性が変化するごとに狭小な幅のパルスを生成し、この狭小な幅のパルスと原点信号生成用のパルスとの論理積によって、狭小なパルス幅の原点信号を生成する。Z相生成用回路15の一例は、出願人が提案した特許第5717787号に記載されているが、Z相生成用回路15は特に限定されるものではない。
 インターポレータ16は、磁気センサ11の分解能を向上させるために用いられる。インターポレータ16は、磁気センサ11が出力するa相信号及びb相信号それぞれをA/Dコンバータに通し、これにより得たA/D変換データに基づいてROMテーブル内のアドレスを指定し、内挿データを得る。そして、この内挿データに基づいて高分解能化されたA相、B相のインクリメンタル信号を得る。インターポレータ16の構成は周知であるので、詳しい説明は省略する。
 上記のようにして得られた原点信号、A相、B相のインクリメンタル信号は、ラインドライバ17から必要な制御装置に出力される。
 以上に本発明のエンコーダ装置6の構成を説明した。本実施形態のエンコーダ装置6によれば、以下の効果を奏する。
 電磁誘導によってリファレンスマーク7に発生する磁界と磁気スケール4に発生する磁界とは、周波数で切り分けることができる。したがって、リファレンスマーク7の磁界と磁気スケール4の磁界との干渉を低減できる。
 インクリメンタル検出が磁気式(磁気スケール4と磁気センサ11とでインクリメンタル信号を生成)であり、原点検出が電磁誘導式(リファレンスマーク7と送受信コイル8,9とで原点信号を生成)なので、耐異物性に優れた(異物が検出精度に悪影響を及ぼしにくい)エンコーダ装置6が得られる。
 磁気スケール4とリファレンスマーク7とを軌道レール1に重ねて配置するので、これらの取り付けスペースを低減することができるし、ヘッド5も幅方向(軌道レール1の長さ方向に直交する左右方向)にコンパクトにすることができる。
 また、図6(b1)(b2)に示すように、軌道レール1に磁気スケール4とリファレンスマーク7とを重ねて配置することで、小型型番の運動案内装置(b1)と大型型番の運動案内装置(b2)とで、ヘッド5を共通化することができる。なお、比較例の図6(a1)(a2)に示すように、磁気スケール4´とリファレンスマーク7´とを軌道レール1´のボルト挿入穴1a´の左右に配置すると、小型型番の運動案内装置(a1)と大型型番の運動案内装置(a2)とで、ヘッド5´を共通化することができない。
 送信コイル8と受信コイル9との間に磁気センサ11を配置するので、これらを備えるヘッド5を小型にすることができると共に、送受信コイル8,9の電磁波が磁気センサ11に悪影響を及ぼすのを防止できる。
 第一スケールコイル7bと第二スケールコイル7bとがキャリッジ2の移動方向に離れているので、リファレンスマーク7の幅を小さくすることができる。
 なお、本発明は上記実施形態に具現化されるのに限られることはなく、本発明の要旨を変更しない範囲でさまざまな実施形態に具現化可能である。
 例えば、上記実施形態では、エンコーダ装置が運動案内装置のキャリッジの直線位置を検出しているが、モータの回転軸の回転位置を検出することもできる。
 本明細書は、2016年3月15日出願の特願2016-050530に基づく。この内容はすべてここに含めておく。
1…軌道レール、2…キャリッジ、3…運動案内装置、4…インクリメンタル型磁気スケール、5…ヘッド、6…エンコーダ装置、7…リファレンスマーク、7b…第一スケールコイル、7b…第二スケールコイル、8…送信コイル、9…受信コイル、11…磁気センサ、12…発振回路、13…検波・整流回路(電気回路)、14…コンパレータ(電気回路)

Claims (8)

  1.  リファレンスマークとヘッドとを備えるエンコーダ装置であって、
     前記リファレンスマークは、第一スケールコイルと、前記第一スケールコイルに電気的に接続される第二スケールコイルと、を有し、
     前記ヘッドは、前記第一スケールコイルに非接触で電磁波を送信する送信コイルと、前記第二スケールコイルから非接触で電磁波を受信する受信コイルと、前記第一スケールコイルに前記送信コイルが対向し、前記第二スケールコイルに前記受信コイルが対向する場合、前記受信コイルが受信した電磁波から原点信号生成用のパルスを生成する電気回路と、を有するエンコーダ装置。
  2.  前記エンコーダ装置は、インクリメンタル型磁気スケールを備え、
     前記ヘッドは、前記インクリメンタル型磁気スケールの磁界を読み取る磁気センサを備えることを特徴とする請求項1に記載のエンコーダ装置。
  3.  前記リファレンスマークと前記インクリメンタル型磁気スケールとが重ねて配置されることを特徴とする請求項2に記載のエンコーダ装置。
  4.  前記磁気センサは、前記送信コイルと前記受信コイルとの間に配置されることを特徴とする請求項2又は3に記載のエンコーダ装置。
  5.  前記電気回路は、
     前記受信コイルが受信した電磁波を検波し、電磁波の交流を直流に整流する検波・整流回路と、
     前記検波・整流回路が整流した直流電圧を所定の閾値と比較し、前記原点信号生成用のパルスを生成するコンパレータと、を備えることを特徴とする請求項1ないし4のいずれか1項に記載のエンコーダ装置。
  6.  前記エンコーダ装置は、第一部材に対して相対移動する第二部材の位置を検出し、
     前記第一スケールコイルと前記第二スケールコイルとが、前記第二部材の相対移動方向に離れて配置されることを特徴とする請求項1ないし5のいずれか1項に記載のエンコーダ装置。
  7.  前記送信コイルが送信する電磁波の周波数は、前記インクリメンタル型磁気スケールの磁界の周波数の10倍以上であることを特徴とする請求項2ないし4のいずれか1項に記載のエンコーダ装置。
     ここで、前記インクリメンタル型磁気スケールの磁界の周波数はV/Pから求められ、前記エンコーダ装置は第一部材に対して相対移動する第二部材の位置を検出し、前記Vは前記第一部材に対する前記第二部材の相対速度であり、前記Pは前記インクリメンタル型磁気スケールの磁極間ピッチである。
  8.  請求項1ないし7のいずれか1項に記載のエンコーダ装置と、
     前記リファレンスマークが取り付けられる軌道レールと、
     前記ヘッドが取り付けられ、前記軌道レールに移相対動可能に組み付けられるキャリッジと、を備えるエンコーダ装置付き運動案内装置。
PCT/JP2017/005630 2016-03-15 2017-02-16 エンコーダ装置及びエンコーダ装置付き運動案内装置 WO2017159196A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/084,164 US10591317B2 (en) 2016-03-15 2017-02-16 Encoder apparatus and motion guide apparatus with encoder apparatus
CN201780016419.8A CN108779992B (zh) 2016-03-15 2017-02-16 编码器装置以及带编码器装置的运动引导装置
DE112017000908.1T DE112017000908B4 (de) 2016-03-15 2017-02-16 Encodervorrichtung und Bewegungsführungsvorrichtung mit Encodervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016050530A JP6234497B2 (ja) 2016-03-15 2016-03-15 エンコーダ装置及びエンコーダ装置付き運動案内装置
JP2016-050530 2016-03-15

Publications (1)

Publication Number Publication Date
WO2017159196A1 true WO2017159196A1 (ja) 2017-09-21

Family

ID=59851117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005630 WO2017159196A1 (ja) 2016-03-15 2017-02-16 エンコーダ装置及びエンコーダ装置付き運動案内装置

Country Status (6)

Country Link
US (1) US10591317B2 (ja)
JP (1) JP6234497B2 (ja)
CN (1) CN108779992B (ja)
DE (1) DE112017000908B4 (ja)
TW (1) TWI646310B (ja)
WO (1) WO2017159196A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI702772B (zh) * 2019-12-03 2020-08-21 東元電機股份有限公司 應用於增量型編碼器之外接供電裝置及其供電方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102758A (ja) * 1996-06-18 1998-01-06 Sony Precision Technol Inc 位置検出装置
JP2005124376A (ja) * 2003-10-20 2005-05-12 Central Japan Railway Co 移動体の位置検知装置
JP2011089898A (ja) * 2009-10-22 2011-05-06 Tokai Rika Co Ltd 回転角度検出装置
JP2013255331A (ja) * 2012-06-06 2013-12-19 Thk Co Ltd リニアエンコーダ

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024023B2 (ja) 1980-06-26 1985-06-11 澁谷工業株式会社 紙容器の処理装置
JPH01502452A (ja) * 1987-02-24 1989-08-24 レニショウ パブリック リミテッド カンパニー 位置決め装置用スケール
DE3826561A1 (de) 1988-08-04 1990-02-08 Rexroth Mannesmann Gmbh Kapazitiver wegaufnehmer
US6002250A (en) * 1996-05-13 1999-12-14 Mitutoyo Corporation Electronic linear scale using a self-contained, low-power inductive position transducer
JPH10239002A (ja) 1997-02-24 1998-09-11 Zexel Corp 直線変位センサのコア構造およびその製造方法
DE19730259C1 (de) 1997-07-09 1999-02-04 Siemens Ag Verfahren und Anordnung zum Prüfen eines Doppelsensorsystems
FR2779519B1 (fr) 1998-06-09 2000-07-21 Suisse Electronique Microtech Capteur magnetique inductif avec index de reference
JP3506613B2 (ja) * 1998-09-21 2004-03-15 株式会社ミツトヨ 原点検出方式
DE19922363A1 (de) 1999-05-14 2000-11-23 Rexroth Star Gmbh Einrichtung zur Ermittlung der Relativposition zweier relativ zueinander beweglicher Körper und Verfahren zur Herstellung einer solchen Einrichtung
US6335618B1 (en) * 1999-10-05 2002-01-01 Mitutoyo Corporation Position transducer having position-dependent amplitude encoding applying first and second modulations
JP3668406B2 (ja) * 2000-03-13 2005-07-06 株式会社ミツトヨ 電磁誘導型位置検出装置
DE50011024D1 (de) * 2000-06-16 2005-09-29 Amo Automatisierung Mestechnik Induktives Längenmesssystem
US7830109B2 (en) * 2007-04-05 2010-11-09 Wako Giken Co., Ltd Method of setting the origin of a linear motor
GB0720972D0 (en) * 2007-10-25 2007-12-05 Renishaw Plc Magnetic encoder
JP5224838B2 (ja) 2008-02-04 2013-07-03 株式会社ミツトヨ 電磁誘導式エンコーダ
JP5885382B2 (ja) 2010-04-19 2016-03-15 株式会社ミツトヨ 電磁誘導式直線型エンコーダ
JP5798397B2 (ja) 2011-07-22 2015-10-21 株式会社ミツトヨ 電磁誘導式絶対位置測定用エンコーダ
WO2013157279A1 (ja) 2012-04-17 2013-10-24 三菱電機株式会社 多回転エンコーダ
JP5717787B2 (ja) 2013-05-09 2015-05-13 Thk株式会社 リニアエンコーダ装置、及び基準位置検出方法
WO2015078860A1 (en) * 2013-11-26 2015-06-04 Renishaw Plc Metrological scale
JP6361189B2 (ja) 2014-03-14 2018-07-25 Thk株式会社 運動案内装置
JP2016050530A (ja) 2014-08-29 2016-04-11 三菱マヒンドラ農機株式会社 作業車両
JP2017003742A (ja) * 2015-06-09 2017-01-05 オリンパス株式会社 レンズ駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102758A (ja) * 1996-06-18 1998-01-06 Sony Precision Technol Inc 位置検出装置
JP2005124376A (ja) * 2003-10-20 2005-05-12 Central Japan Railway Co 移動体の位置検知装置
JP2011089898A (ja) * 2009-10-22 2011-05-06 Tokai Rika Co Ltd 回転角度検出装置
JP2013255331A (ja) * 2012-06-06 2013-12-19 Thk Co Ltd リニアエンコーダ

Also Published As

Publication number Publication date
CN108779992A (zh) 2018-11-09
TWI646310B (zh) 2019-01-01
US20190346286A1 (en) 2019-11-14
DE112017000908B4 (de) 2019-11-07
US10591317B2 (en) 2020-03-17
CN108779992B (zh) 2020-06-02
DE112017000908T5 (de) 2018-10-31
JP2017166883A (ja) 2017-09-21
TW201805601A (zh) 2018-02-16
JP6234497B2 (ja) 2017-11-22

Similar Documents

Publication Publication Date Title
US6002250A (en) Electronic linear scale using a self-contained, low-power inductive position transducer
US5973494A (en) Electronic caliper using a self-contained, low power inductive position transducer
US8664943B2 (en) Position detecting apparatus
US11293744B2 (en) Method for increasing the position measurement accuracy using inductive position sensor
US20150048817A1 (en) Position detection device and a drive device
CN109883305B (zh) 感应的位置测量装置
US20170353130A1 (en) Device for correcting hall sensor installation position error of bldc motor having linear hall sensor, and method thereof
JPH1151693A (ja) リニアエンコーダ装置
WO2004010566A1 (ja) リニアモータ装置
JP2006112815A (ja) 誘導型変位検出装置
WO2013172315A1 (ja) 位置検出装置
CN1312461A (zh) 磁导率位置检测器
JP6234497B2 (ja) エンコーダ装置及びエンコーダ装置付き運動案内装置
US9709423B2 (en) Electromagnetic-induction-type position detector and detection method
US11152823B2 (en) Translation unit for wireless power transfer
CN113272627A (zh) 用于长行程线性永磁电机的位置传感器
JP7415624B2 (ja) 発電デバイスおよびセンサ付き軸受
JP2018054573A (ja) エンコーダ装置、駆動装置、ステージ装置、及びロボット装置
JP7294902B2 (ja) 電磁誘導式エンコーダ
CN113091778B (zh) 电磁感应型编码器及其使用方法
JP2020056754A (ja) 電磁誘導式エンコーダ
JP2005077150A (ja) 誘導型位置検出装置
TWI817561B (zh) 多感測器位置量測系統
US20220333954A1 (en) Multi-sensor position measurement system
JP2010025605A (ja) 静電型エンコーダおよびリニアモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 112017000908

Country of ref document: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766203

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766203

Country of ref document: EP

Kind code of ref document: A1