WO2004010566A1 - リニアモータ装置 - Google Patents

リニアモータ装置 Download PDF

Info

Publication number
WO2004010566A1
WO2004010566A1 PCT/JP2003/008623 JP0308623W WO2004010566A1 WO 2004010566 A1 WO2004010566 A1 WO 2004010566A1 JP 0308623 W JP0308623 W JP 0308623W WO 2004010566 A1 WO2004010566 A1 WO 2004010566A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
scale
armature
linear encoder
linear motor
Prior art date
Application number
PCT/JP2003/008623
Other languages
English (en)
French (fr)
Inventor
Tatsuhiko Koba
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Publication of WO2004010566A1 publication Critical patent/WO2004010566A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors

Definitions

  • the present invention uses a permanent magnet, which is a part of the motor, as a linear scale component.
  • the linear motor is resistant to dust, has excellent environmental resistance, is effective in reducing component costs, and is easy to set up. Equipment related.
  • linear motors are often used as driving sources for constant-speed feeding or high-speed positioning feed in the fields of machine-to-machine transfer devices and component transfer devices.
  • high positioning accuracy can be obtained by feedback control of the linear motor.
  • the linear motor positioning device of the feedback control type is provided with a linear encoder for detecting the movement of the linear motor mover.
  • this linear encoder for example, a high-precision and high-priced rare-type optical backward encoder is used.
  • FIG. 4 is a front sectional view of a coreless linear motor equipped with a conventional optical linear encoder.
  • 1 is a base portion
  • 2 is a linear guide, which is composed of a guide rail 2A and a slider 2B.
  • Reference numeral 7 denotes a table
  • 10 denotes a field yoke that forms a stator of a linear motor
  • 11 denotes a permanent magnet fixed to the field yoke
  • 12 denotes an armature that forms a mover of a linear motor.
  • the c 1 3 of an armature coil is installed not to head portion to the scale of the optical type linear encoder
  • 1 4 shows the scale of the Riniaenko one da.
  • FIG. 5 is a block diagram showing a conventional linear motor drive system.
  • 15 is an AZD converter and 9 is a servo driver.
  • the scale head 13 of the linear encoder provided on the mover side of the return motor irradiates light to the scale 14 of the linear encoder, and detects the transmitted or reflected light to obtain the scale.
  • the mover from part 14 The sensor signal (analog signal) indicating the current position of the armature 1 is read, and the analog signal is converted into a pulse train signal by the AZD converter 15. Calculates the current command, sends the current controlled from the servo driver to the mover via the feeder line, and operates the mover.
  • linear motors using optical linear encoders of the prior art have weak detection sensitivity if dust or dirt is present, and are not sufficiently environmentally resistant.
  • the longer the linear scale the higher the cost.
  • a magnetic linear encoder having a magnetic scale part on which a magnetic pole pattern for detecting the position of the mover is formed and a scale head for detecting the magnetic pole pattern of the magnetic scale part is provided.
  • the longer the mover is the longer the length of the magnetic scale attached to the fixed side is, and the problems of cost and assembling workability are still not solved.
  • the present invention has been made in order to solve the above problems, and has an object to provide a linear motor device that is strong in environmental resistance, low-cost, and does not require setting as a magnetic linear encoder. I do.
  • a linear motor device includes a field yoke in which a plurality of permanent magnets are arranged side by side so as to have alternately different polarities; a magnet row of the permanent magnets and a magnetic gap. And a magnetic linear encoder for position detection, wherein one of the field shock and the armature is a stator, and the other is a mover.
  • a permanent motor wherein the permanent magnet is a magnetic field of a linear motor and a magnetic scale portion which is a detected object of the magnetic linear encoder; And the pitch interval of the permanent magnet is provided to be the scale pitch of the magnetic scale portion.
  • the scale head of the linear encoder is provided in the longitudinal direction of the armature, and has a plurality of Hall elements arranged so that the phase is shifted by 90 ° in electrical angle.
  • the encoder includes a serial converter that converts a two-phase sine wave analog signal output from the Hall element into serial data, and a servo that calculates a current command based on a position command and a current position signal obtained by the serial converter. It is connected to a driver.
  • FIGS. 1A and 1B show a linear motor adopting a magnetic linear encoder according to an embodiment of the present invention.
  • FIG. 1A is a front sectional view of the linear motor
  • FIG. 1B is a perspective view of a linear motor stator shown in FIG. (A) shows the induced voltage of the armature coil and the time change of the A-phase and B-phase signals of the encoder
  • (b) shows the Hall element.
  • FIG. 3 is a block diagram showing a linear motor drive system according to an embodiment of the present invention
  • FIG. 4 is a front sectional view of a coreless linear motor equipped with a conventional optical encoder
  • FIG. 5 is a block diagram showing a conventional linear motor drive system.
  • FIGS. 1A and 1B show a linear motor employing a magnetic linear encoder according to an embodiment of the present invention.
  • FIG. 1A is a front sectional view thereof
  • FIG. 1B is a perspective view of the linear motor stator of FIG. .
  • Fig. 2 illustrates the principle of the magnetic linear encoder of the present invention.
  • Fig. 2 (a) shows the induced voltage of the armature coil and the time change of the waveforms of the A-phase and B-phase signals of the encoder.
  • FIG. 3 is a plan view showing an arrangement relationship between a hall element and an armature coil.
  • the coreless linear motor according to the present embodiment is the same as the prior art in that a field yoke having a permanent magnet is provided on both sides of the armature.
  • reference numeral 3 denotes a field yoke constituting a stator of a linear motor
  • 4 denotes a permanent magnet fixed to the field yoke 3
  • 5 denotes an armature constituting a mover of the linear motor
  • 6 is the scale head of the magnetic linear encoder.
  • 61 is a Hall element and 51 is a 6 shows an armature coil of the armature 5 shown.
  • the linear motor device includes a magnetic scale unit having a conventionally known magnetic pole pattern for detecting the position of a mover, and a magnetic linear encoder including a scale head for detecting a magnetic pole pattern of the magnetic scale unit.
  • the permanent magnet 4 is configured as shown in FIG. 1 (a) so as to serve both as the field of the linear motor and the magnetic scale portion which is the object to be detected of the magnetic linear encoder. ), The pitch interval between the permanent magnets 4 is set to be equal to the scale pitch of the magnetic scale portion.
  • the scale head of the magnetic linear encoder is provided along the longitudinal direction (perpendicular to the paper) of the armature 5 as shown in Fig. 1 (a), and two Hall elements 61 are arranged. It is a point that did.
  • FIG. 2 shows an example in which four Hall elements are provided in addition to the example in which two Hall elements are provided. With such an arrangement, the third harmonic component can be eliminated.
  • FIG. 3 is a block diagram showing a drive system for a lower motor according to an embodiment of the present invention.
  • reference numeral 6 denotes a scale head of a magnetic linear encoder, which is different from the mounting position of the scale head in FIG. 8 is a serial converter, 9 is a servo driver, and the linear motor device is a serial converter 8 that converts an analog signal indicating the current position of the mover read from the scale head 6 into serial data.
  • a servo driver 9 for calculating a current command based on the current position signal obtained by the serial converter 8 is provided.
  • the Hall element constituting the scale head 6 provided on the mover side moves from the permanent magnet 4 by detecting the magnetic field strength of the alternating magnetic field generated in the magnetic circuit between the permanent magnets 4.
  • Reads a two-phase sine wave signal (analog signal) of sin and cos indicating the current position of the slave 1 converts the analog signal to serial data by the serial converter 8, and performs servo control using the position command and the current position signal.
  • the current command is calculated by the driver 9, and the current controlled by the servo driver 9 is sent to the mover via the power supply line to operate the mover.
  • the reducer motor includes a conventionally known magnetic scale portion on which a magnetic pole pattern for detecting the position of the mover is formed, and a scale head for detecting the magnetic pole pattern of the magnetic scale portion.
  • the permanent magnet 4 is configured to also serve as the magnetic field of the linear motor and the magnetic scale portion to be detected by the magnetic linear encoder, and the pitch interval of the permanent magnet 4 is reduced.
  • the magnetic linear encoder is provided so as to have a scale pitch of the magnetic scale portion, and the scale head 6 of the magnetic linear encoder is provided in the longitudinal direction of the armature 5 and has a phase shift of 90 ° in electrical angle.
  • a plurality of Hall elements 6 1 are arranged, and the magnetic linear encoder is a two-phase sine wave analog signal output from the Hall element 61. Since the serial converter 8 for converting to serial data and the servo driver 9 for calculating the current command based on the position command and the current position signal obtained by the serial converter 8 are connected, the motor is used as a linear scale part. By using a part of the permanent magnet, it is possible to obtain a linear motor device that is resistant to dust and has excellent environmental resistance. Even if the mover has a long stroke, the only component is the scale head of the magnetic linear encoder, which is effective in reducing component costs. Further, the setting as a linear encoder is not required, and assembling can be performed only by assembling a motor. Therefore, a linear motor device which can be easily set can be provided.
  • the serial converter 8 is used in place of the conventional AZD converter as a mode for outputting the two-phase sine wave analog signal output from the Hall element 61 to the servo driver 9.
  • the resolution of the analog signal output can be increased.
  • the present invention is useful, for example, as a linear motor device provided with a magnetic linear encoder used for high-speed repetitive positioning in the field of an in-machine transfer device and a component transfer device in which the accuracy can be neglected to some extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Non-Mechanical Conveyors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

永久磁石(4)は、リニアモータの界磁と磁気式リニアエンコーダの被検出体である磁気スケール部を兼用して構成すると共に、永久磁石(4)のピッチ間隔が当該磁気スケール部のスケールピッチとなるように設けてある。磁気式リニアエンコーダのスケールヘッド(6)は、電機子(5)の長手方向に設けられ、電気角で位相が90°ずれるようにした複数個のホール素子(61)を配置するようにした。さらに、磁気式リニアエンコーダは、ホール素子(61)から出力される2相正弦波のアナログ信号をシリアルデータに変換するシリアル変換器と、位置指令と該シリアル変換器で得られた現在位置の信号によって電流指令を演算するサーボドライバとを接続してある。上記手段により、耐環境性に強く、ローコストで、磁気式リニアエンコーダとしてのセッティングが不要であるリニアモータ装置を提供することができる。

Description

明細書
リニアモータ装置
[技術分野]
本発明は、 リニアスケール部品としてモータの一部である永久磁石を利用す ることにより、 塵芥等に強く、 耐環境性に優れ、 部品コストの削減に効果があ り、 セッティングが容易なリニアモータ装置に関する。
. [背景技術]
従来、 機械內搬送装置、 部品搬送装置などの分野で、 一定速送りあるいは高 速位置決め送りの駆動源としてリニアモータが多く用いられている。 このよう な用途に用いられるリユアモータにおいて、 リニアモータをフィードバック制 御すると、 高い位置決め精度が得られる。フィードバック制御方式のリニアモ —タ位置決め装置にはリニアモータ可動子の移動を検出するためのリニアェ ンコーダが設けられている。このリニアエンコーダとしては、例えば高精度で 高価格なリユア形の光学式リユアエンコーダが用いられており、それを用いた
—例は図 4のようになっている。
図 4は、従来の光学式リニァエンコーダを搭載したコアレス形リニアモータ の正断面図である。
図 4において、 1はベース部、 2はリニアガイ ドで、 ガイ ドレール 2 Aとス ライダ 2 Bで構成される。 7はテーブル、 1 0はリニアモータの固定子を構成 する界磁ヨーク、 1 1は界磁ヨーク 1 0に固定された永久磁石、 1 2はリニア モータの可動子を構成する電機子で、図示しない電機子コイルを装着している c 1 3は光学式のリニアエンコーダのスケールへッド部、 1 4はリニアェンコ一 ダのスケール部を示している。なお、 リニアエンコーダのスケールへッド部 1
3は図示のようにテーブル 7に取り付けられている。
また、 図 5は従来のリニアモータのドライブシステムを示すプロック図であ る。 1 5は AZD変換器、 9はサーボドライバである。
図 5の構成において、 リユアモータの可動子側に設けたリニアエンコーダの スケールヘッド部 1 3は、 リニアエンコーダのスケール部 1 4に光を当て、 そ の透過若しくは反射する光を検出することで、 スケール部 1 4から可動子であ る電機子 1の現在位置を示すセンサー信号 (アナログ信号) を読み取り、 該ァ ナログ信号を AZD変換器 1 5によりパルス列の信号に変換し、位置指令と現 在位置の信号によってサーボドライノく 9で電流指令を演算し、 サーボドライノく 9から制御された電流を給電線を介して可動子に送り、 可動子を動作させるよ うになっている。
ところが、 従来技術の光学式リニアエンコーダを用いたリニアモータは、 塵 芥が付着したり、汚れなどがあると検出感度が弱くなり、 耐環境性が十分では ないこと、 また、 可動子がロングストロークになればなるほどリニアスケール の長さも長くなるためコストアップになること。 さらにはリニアスケールの組 立精度が厳しく要求されるため、 セッティングが困難という問題があった。 それから、 光学式リニアエンコーダの他に、 可動子の位置検出のための磁極 パターンが形成された磁気スケール部と、磁気スケール部の磁極パターンを検 出するスケールへッドを有する磁気式リニアエンコーダーが従来から公知で あるが、可動子がロングストロークになればなるほどそれに応じて固定側に取 り付ける磁気スケール部の長さも長くなり、コストと組立作業性の問題は依然 解消されない。
本発明は、上記課題を解決するためになされたものであり、耐環境性に強く、 且つ、 ローコス トで、 磁気式リニアエンコーダとしてのセッティングが不要で あるリニアモータ装置を提供することを目的とする。
[発明の開示]
上記課題を解決するために、 本発明に係るリニアモータ装置は、 交互に極性 が異なるように複数個の永久磁石を隣り合わせに並べて配置した界磁ヨーク と、 前記永久磁石の磁石列と磁気的空隙を介して対向配置された電機子コイル を有する電機子と、 位置検出用の磁気式リニアエンコーダを備え、 前記界磁ョ —クと前記電機子の何れか一方を固定子に、 他方を可動子として、 前記界磁ョ —クと前記電機子を相対的に走行するようにしたリユアモータ装置において、 前記永久磁石が、 リニアモータの界磁と前記磁気式リニアエンコーダの被検出 体である磁気スケール部を兼用して構成すると共に、前記永久磁石のピツチ間 隔が当該磁気スケール部のスケールピッチとなるように設けてあり、前記磁気 式リニアエンコーダのスケールへッドは、 前記電機子の長手方向に設けられる と共に、電気角で位相が 9 0 ° ずれるようにした複数個のホール素子を配置し たものであり、 前記磁気式リニアエンコーダは、 前記ホール素子から出力され る 2相正弦波のアナログ信号をシリアルデータに変換するシリアル変換器と、 位置指令と前記シリアル変換器で得られた現在位置の信号によって電流指令 を演算するサーボドライバとを接続したものである。
[図面の簡単な説明]
図 1は本発明の実施例を示す磁気式リニアエンコーダを採用したリニァモ ータで(a ) はその正断面図、 (b ) は(a ) のリニアモータ固定子の斜視図、 図 2は本発明の磁気式リニアエンコーダの原理を説明したもので、 (a ) は電 機子コィルの誘起電圧とエンコーダの A相、 B相信号の波形の時間変化を示し た図、 (b ) はホール素子と電機子コイルの配置関係を示した平面図、 図 3は 本発明の実施例によるリニァモータのドライブシステムを示すブロック図、図 4は従来の光学式エンコーダを搭載したコアレスリニアモータの正断面図、図 5は従来のリニアモータのドライブシステムを示すブロック図である。
[発明を実施するための最良の形態]
以下、 本発明の実施例を図に基づいて説明する。
図 1は本発明の実施例を示す磁気式リニアエンコーダを採用したリニァモ ータであって、 (a ) はその正断面図、 (b ) は (a ) のリニアモータ固定子 の斜視図である。 図 2は本発明の磁気式リニアエンコーダの原理を説明したも ので、 (a ) は電機子コイルの誘起電圧とエンコーダの A相、 B相信号の波形 の時間変化を示した図、 (b ) はホール素子と電機子コイルの配置関係を示し た平面図である。 なお、 本実施例によるコアレス形リニアモータは、 永久磁石 を備えた界磁ヨークが電機子の両側にある構成とする点は、従来技術と同じで ある。
図 1において、 3はリニアモータの固定子を構成する界磁ヨーク、 4は界磁 ヨーク 3に固定された永久磁石、 5はリニアモータの可動子を構成する電機子 で、 図示しない電機子コイルを装着している。 6は磁気式リニアエンコーダの スケールへッドである。 また、 図において、 6 1はホール素子、 5 1は図 1に 示された電機子 5の電気子コイルである。
本発明が従来と異なる点を以下説明する。
リニァモータ装置は、従来公知である可動子の位置検出のための磁極パター ンが形成された磁気スケール部と、磁気スケール部の磁極パターンを検出する スケールへッドよりなる磁気式リニァエンコーダを備える構成に替えて、永久 磁石 4が図 1 ( a ) において、 リニアモータの界磁と磁気式リニアエンコーダ の被検出体である磁気スケール部を兼用して構成されると共に、 また、 図 1 ( b ) に示すように永久磁石 4のピッチ間隔が当該磁気スケール部のスケール ピッチとなるように設けた点である。
また、 磁気式リニアエンコーダのスケールヘッドは、 図 1 ( a ) に示すよう に電機子 5の内部の長手方向 (紙面と垂直方向) に沿って設けられると共に、 2個のホール素子 6 1を配置した点である。
ホール素子 6 1を図 2で具体的に説明すると、 ホール素子 6 1は、 リニアモ ータ正方向進み時 (U相→V相→W相の転流時) において、 電機子コイル 5 1 の U相誘起電圧の立ち上がりゼロクロスでエンコーダの A相、 B相信号がク口 スするように電気角で 9 0 ° 位相がずれるように 2個配置してある。こうする ことで、モータの電気角とモータの進行方向を検出する事が可能となる。また、 図 2において、 2個のホール素子を設けた例の他に 4個のホール素子を設けた 例を示したが、 このように配置すると三次高調波成分を消すことができる。 図 3は本発明の実施例によるリユアモータのドライブシステムを示すプロ ック図である。
図において、 6は磁気式リニアエンコーダのスケールヘッドで、 図 1のスケ 一ルへッドの取付位置とは異なり、 電機子 5の端部に設けた例を示している。 8はシリアル変換器、 9はサーボドライバであり、 リニアモータ装置はスケー ルへッド 6から読み取った可動子の現在位置を示すアナログ信号をシリアル データに変換するシリアル変換器 8と、位置指令と当該シリアル変換器 8で得 られた現在位置の信号によって電流指令を演算するサ一ボドライバ 9とを備 えている。
次に動作についてする。 図 3において、 可動子側に設けたスケールへッド 6を構成するホール素子は、 永久磁石 4、 4間の磁気回路内で生じる交番磁界の磁界強度を検出することで、 永久磁石 4から可動子 1の現在位置を示す s i n、 c o sの 2相正弦波信号 (アナログ信号) を読み取り、 該アナログ信号をシリアル変換器 8によりシリ アルデータに変換し、位置指令と現在位置の信号によつてサーボドライバ 9で 電流指令を演算し、 サーボドライバ 9から制御された電流を、 給電線を介して 可動子に送り、 可動子を動作させる。
したがって、 本発明の実施例に係るリユアモータは、従来公知である可動子 の位置検出のための磁極パターンが形成された磁気スケール部と、磁気スケー ル部の磁極パターンを検出するスケールへッドを有する磁気式リニアェンコ ーダ一に替えて、永久磁石 4が、 リニァモータの界磁と磁気式リニアェンコ一 ダの被検出体である磁気スケール部を兼用して構成すると共に、永久磁石 4の ピツチ間隔が当該磁気スケ一ル部のスケールピッチとなるように設け、 また、 磁気式リニアエンコーダのスケールへッド 6は、電機子 5の長手方向に設けら れると共に、 電気角で位相が 9 0 ° ずれるようにした複数個のホール素子 6 1 を配置するようにし、 さらに、 磁気式リニアエンコーダは、 ホール素子 6 1か ら出力される 2相正弦波のアナログ信号をシリアルデータに変換するシリァ ル変換器 8と、位置指令と前記シリアル変換器 8で得られた現在位置の信号^ よって電流指令を演算するサーボドライバ 9とを接続したので、 リニアスケー ル部品としてモータの一部である永久磁石を利用することで塵芥等に強く、耐 環境性に優れたリニアモータ装置を得ることができる。 また、 可動子がロング ス トロークになっても部品は磁気式リニアエンコーダのスケールへッドのみ であり、 部品コス トの削減に効果がある。 さらにリニアエンコーダとしてのセ ッティングが不要であり、 組立はモータを組むだけすむので、 セッティングが 容易であるリニァモータ装置を提供することができる。
また、 本実施例は、 ホール素子 6 1から出力される 2相正弦波のアナログ信 号をサーボドライバ 9に出力する形態として、従来の AZD変換器に替えてシ リアル変換器 8を用いたので、該アナログ信号出力を高分解能化することがで さる。 なお、 本実施例によるリニアモータは、 永久磁石を備えた界磁ヨークが電機子 の両側に位置する構成を用いて説明したが、 永久磁石を備えた界磁ヨークが電機 子の片側のみに位置する構成にしても構わない。
[産業上の利用可能性]
以上のように本発明は、例えば、精度がある程度無視できる機械内搬送装置、 部品搬送装置などの分野で、特に高速繰返し位置決めとして用いられる磁気式 リニアエンコーダを備えたリニアモータ装置として有用である。

Claims

請求の範囲
1 . 交互に極性が異なるように複数個の永久磁石を隣り合わせに並べて配置し た界磁ヨークと、 前記永久磁石の磁石列と磁気的空隙を介して対向配置された 電機子コイルを有する電機子と、位置検出用の磁気式リニアエンコーダを備え、 前記界磁ヨークと前記電機子の何れか一方を固定子に、 他方を可動子として、 前記界磁ヨークと前記電機子を相対的に走行するようにしたリニアモータ装 置において、
前記永久磁石が、 リユアモータの界磁と前記磁気式リユアエンコーダの被検 出体である磁気スケール部を兼用して構成すると共に、前記永久磁石のピツチ 間隔が当該磁気スケール部のスケールピッチとなるように設けてあり、 前記磁気式リニアエンコーダのスケールへッドは、前記電機子の長手方向に設 けられると共に、 電気角で位相が 9 0 ° ずれるようにした複数個のホール素子 を配置したものであり、
前記磁気式リニアエンコーダは、前記ホール素子から出力される 2相正弦波 のアナ口グ信号をシリアルデータに変換するシリアル変換器と、位置指令と前 記シリアル変換器で得られた現在位置の信号によって電流指令を演算するサ ーボドライバとを接続してあることを特徴とするリニアモータ装置。
PCT/JP2003/008623 2002-07-18 2003-07-07 リニアモータ装置 WO2004010566A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002209480A JP2004056892A (ja) 2002-07-18 2002-07-18 リニアモータ装置
JP2002-209480 2002-07-18

Publications (1)

Publication Number Publication Date
WO2004010566A1 true WO2004010566A1 (ja) 2004-01-29

Family

ID=30767684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008623 WO2004010566A1 (ja) 2002-07-18 2003-07-07 リニアモータ装置

Country Status (2)

Country Link
JP (1) JP2004056892A (ja)
WO (1) WO2004010566A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362720B2 (en) 2007-05-31 2013-01-29 Thk Co., Ltd. Linear motor position detection system

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4403537B2 (ja) * 2003-12-02 2010-01-27 Smc株式会社 リニアスライド装置
JP2005278280A (ja) * 2004-03-24 2005-10-06 Yaskawa Electric Corp ムービングコイル形リニアスライダ
JP4647395B2 (ja) * 2005-05-25 2011-03-09 株式会社タイテック リニアモータ
JP5072060B2 (ja) * 2005-11-15 2012-11-14 学校法人東京電機大学 シャフト型リニアモータの位置検出装置
JP2008148484A (ja) * 2006-12-12 2008-06-26 Nippon Pulse Motor Co Ltd シャフト型リニアモータの位置決め装置
JP5412043B2 (ja) * 2007-04-05 2014-02-12 株式会社ワコー技研 リニアモータ
US7830109B2 (en) 2007-04-05 2010-11-09 Wako Giken Co., Ltd Method of setting the origin of a linear motor
US8129984B2 (en) * 2007-06-27 2012-03-06 Brooks Automation, Inc. Multiple dimension position sensor
WO2009057442A1 (ja) * 2007-10-31 2009-05-07 Thk Co., Ltd. リニアモータ及びリニアモータシステム
JP5439762B2 (ja) * 2008-08-07 2014-03-12 シンフォニアテクノロジー株式会社 搬送装置
JP5443718B2 (ja) * 2008-08-28 2014-03-19 Thk株式会社 リニアモータシステム及び制御装置
JP5415819B2 (ja) * 2009-04-30 2014-02-12 東芝機械株式会社 リニアモータおよびリニアモータ装置
JP5486874B2 (ja) * 2009-08-28 2014-05-07 Thk株式会社 分散配置リニアモータおよび分散配置リニアモータの制御方法
JP5421709B2 (ja) * 2009-09-30 2014-02-19 Thk株式会社 リニアモータの駆動システム及び制御方法
US20120194108A1 (en) * 2009-10-06 2012-08-02 Honda Motor Co., Ltd. Motor system
JP5649914B2 (ja) * 2010-11-05 2015-01-07 東芝機械株式会社 リニアモータの制御判断方法および制御装置
JP7223955B2 (ja) 2018-06-08 2023-02-17 パナソニックIpマネジメント株式会社 リニアモータおよびこれを備えたレンズ鏡筒、撮像装置
KR102164594B1 (ko) * 2018-11-15 2020-10-12 한국기계연구원 리니어 모터 및 그 제어 시스템
CN116261502A (zh) * 2020-12-22 2023-06-13 日本电气硝子株式会社 板玻璃加工装置以及板玻璃的制造方法
JP2022107427A (ja) 2021-01-08 2022-07-21 キヤノントッキ株式会社 搬送装置及びキャリア

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318038A (en) * 1978-11-15 1982-03-02 Nippon Electric Co., Ltd. Moving-coil linear motor
JP2596793Y2 (ja) * 1993-07-16 1999-06-21 日本トムソン株式会社 リニア直流モータ
JP2002159166A (ja) * 2000-11-17 2002-05-31 Yaskawa Electric Corp リニアモータ用ポールセンサ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4318038A (en) * 1978-11-15 1982-03-02 Nippon Electric Co., Ltd. Moving-coil linear motor
JP2596793Y2 (ja) * 1993-07-16 1999-06-21 日本トムソン株式会社 リニア直流モータ
JP2002159166A (ja) * 2000-11-17 2002-05-31 Yaskawa Electric Corp リニアモータ用ポールセンサ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8362720B2 (en) 2007-05-31 2013-01-29 Thk Co., Ltd. Linear motor position detection system

Also Published As

Publication number Publication date
JP2004056892A (ja) 2004-02-19

Similar Documents

Publication Publication Date Title
WO2004010566A1 (ja) リニアモータ装置
KR100965342B1 (ko) 리니어 모터의 원점 설정 방법
US6573623B2 (en) Sliding means with built-in moving-magnet linear motor
US8872449B2 (en) Distributed-arrangement linear motor and control method of distributed-arrangement linear motor
JPH1151693A (ja) リニアエンコーダ装置
JP2596793Y2 (ja) リニア直流モータ
CN1298096C (zh) 齿轮减速器
KR20200056809A (ko) 리니어 모터 및 그 제어 시스템
WO2010024234A1 (ja) 分散配置リニアモータおよび分散配置リニアモータの駆動システム
CN111600446A (zh) 一种用于直线电机的编码器、直线电机及其位置检测方法
JPH0746895B2 (ja) ブラシレス直流リニアモータ
JP3125230B2 (ja) リニア直流モ−タ内へのリニア磁気エンコ−ダの組込み形成方法
JPH07322596A (ja) 駆動ユニット及びこれに装備されるべきスケールの製造方法
JP5863361B2 (ja) アクチュエータ
JP6234497B2 (ja) エンコーダ装置及びエンコーダ装置付き運動案内装置
JP3136921B2 (ja) 磁気センサおよび磁気センサを搭載したモータ
JPWO2008117345A1 (ja) リニアモータ及びその制御方法
JP2011050225A (ja) リニアモータおよびリニアモータ駆動システム
CN212543593U (zh) 一种用于直线电机的编码器和直线电机
TWI618668B (zh) 動磁式移載平台
JP2001086727A (ja) リニアモータ
JP2011050224A (ja) リニアモータおよびリニアモータ駆動システム
KR20030044165A (ko) 리니어 펄스 모터의 위치검출장치
JPWO2008123400A1 (ja) 磁極検出方法および駆動案内システム
JPH01110042A (ja) 2つの可動子を持つ可動マグネット型リニアdcブラシレスモータ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)