WO2017159107A1 - パワーステアリング装置 - Google Patents

パワーステアリング装置 Download PDF

Info

Publication number
WO2017159107A1
WO2017159107A1 PCT/JP2017/004003 JP2017004003W WO2017159107A1 WO 2017159107 A1 WO2017159107 A1 WO 2017159107A1 JP 2017004003 W JP2017004003 W JP 2017004003W WO 2017159107 A1 WO2017159107 A1 WO 2017159107A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
output shaft
power steering
shaft
steering
Prior art date
Application number
PCT/JP2017/004003
Other languages
English (en)
French (fr)
Inventor
達雄 松村
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to JP2018505329A priority Critical patent/JP6563113B2/ja
Priority to DE112017001413.1T priority patent/DE112017001413T5/de
Priority to US16/085,924 priority patent/US10988167B2/en
Priority to CN201780012944.2A priority patent/CN108698631B/zh
Publication of WO2017159107A1 publication Critical patent/WO2017159107A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/008Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/065Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by specially adapted means for varying pressurised fluid supply based on need, e.g. on-demand, variable assist
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/08Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of steering valve used
    • B62D5/083Rotary valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle
    • B62D5/10Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle characterised by type of power unit
    • B62D5/12Piston and cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/02Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to vehicle speed

Definitions

  • the present invention relates to a power steering device capable of automatic steering that performs steering assist with hydraulic pressure supplied and discharged by opening and closing a rotary valve based on a steering torque of a driver or a driving torque of a motor.
  • Patent Document 1 As a conventional power steering device capable of automatic steering, for example, the one described in Patent Document 1 below is known.
  • this power steering device is a rack and pinion type hydraulic power steering device, and the input shaft and the torsion bar are connected to the outer periphery of the lower end of the input shaft connected to the steering wheel.
  • a rotary valve is provided between the output shaft and the output shaft connected so as to be relatively rotatable, and a hollow motor is attached to the outer peripheral portion on the upper end side of the input shaft.
  • the first resolver is provided on the outer periphery of the input shaft and detects the rotation angle of the input shaft
  • the second resolver is provided on the outer periphery of the output shaft and detects the rotation angle of the output shaft. Steering assist control and automatic driving control can be performed based on the detection result of the torque sensor and the output signal of the vehicle speed sensor or the like.
  • the present invention has been devised by paying attention to such a technical problem, and an object thereof is to provide a power steering device capable of acquiring the rotation angle of the output shaft without depending on the sensor on the output shaft side.
  • the present invention includes an input shaft that rotates in response to a steering operation of a steering wheel, an intermediate shaft that is connected to the input shaft via a first torsion bar, and an output that is connected to the intermediate shaft via a second torsion bar.
  • a steering shaft having a shaft, a hydraulic actuator having a pair of pressure chambers separated by a piston, and converting the rotational motion of the steering shaft into motion in the moving direction of the piston, and steering operation of the steering wheel
  • the hydraulic fluid supplied from the pump mounted on the vehicle is selectively supplied to the pair of pressure chambers according to the conversion mechanism for transmitting the power to the steered wheels and the twist amount and twist direction of the second torsion bar.
  • a control valve an electric motor for applying a rotational force to the intermediate shaft, a control unit having a microcomputer, and the control unit. And the rotation angle of the output shaft based on the rotation angle signal of the input shaft, the rotation angle signal of the intermediate shaft, the torsion spring constant of the first torsion bar, and the torsion spring constant of the second torsion bar.
  • An output shaft rotation angle estimation unit for estimating the motor, and a motor drive control unit that is provided in the control unit and that drives and controls the electric motor based on the rotation angle of the output shaft.
  • the rotation angle of the output shaft can be acquired without depending on the sensor on the output shaft side.
  • FIG. 1 is a schematic view showing the integral type power steering device
  • FIG. 2 is a longitudinal sectional view of the power steering device.
  • the side linked to the steering wheel 1 in the direction of the rotation axis Z of the steering shaft 10 in each drawing will be described as “one end”, and the side linked to the piston 16 will be described as “the other end”.
  • This power steering device has one end facing the outside of the housing 20 and linked to the steering wheel 1, and the other end linked to the steering shaft 10 accommodated in the housing 20, and one end linked to a pair of steered wheels 2R and 2L.
  • a sector shaft 17 which is a transmission mechanism for turning in accordance with an axial movement of a piston 16 which will be described later provided on the outer periphery of the other end of the steering shaft 10 and a substantially cylinder slidably accommodated in the housing 20.
  • a power cylinder 18 that is a hydraulic actuator for generating assist torque that assists steering torque, and is formed by separating the first and second pressure chambers P1 and P2 that are a pair of pressure chambers by a piston 16 ,
  • a power steering apparatus main body (hereinafter simply referred to as “apparatus main body”) DB, and a rotor 31 to be described later are disposed outside the steering shaft 10.
  • a hollow motor 30 that is an electric motor provided for steering assist, automatic operation, etc. by applying rotational torque to the steering shaft 10 and an electronic component such as a microcomputer.
  • the control unit (ECU) 60 is a control unit that drives and controls the hollow motor 30 based on the steering state and the like.
  • One end of the steering shaft 10 is linked to the steering wheel 1 and is connected to the input shaft 11 for inputting a steering torque of the driver, and one end is connected to the input shaft 11 via a first torsion bar 12 so as to be relatively rotatable.
  • the intermediate shaft 13 used for driving torque input of the hollow motor 30 connected to the outer periphery and one end side of the intermediate shaft 13 are connected to the intermediate shaft 13 via the second torsion bar 14 so as to be relatively rotatable, and the steering is input from the intermediate shaft 13.
  • an output shaft 15 that outputs torque to the piston 16 via a ball screw mechanism 24 as a conversion mechanism.
  • the ball screw mechanism 24 includes an output shaft 15 as a screw shaft in which a ball groove 24a, which is a spiral groove, is formed on the outer peripheral portion on the other end side, and an inner side provided on the outer peripheral side of the output shaft 15.
  • the piston 16 as a nut in which a ball groove 24b which is a spiral groove corresponding to the ball groove 24a is formed in the peripheral portion, and a plurality of balls 24c provided between the piston 16 and the output shaft 15 Has been.
  • the input shaft 11 is inserted and accommodated in an opening recess 13a having the other end portion drilled on one end side of the intermediate shaft 13, and is rotatable by a needle bearing Bn as a bearing interposed between the overlapping portions. It is supported by.
  • the intermediate shaft 13 is inserted and accommodated in an opening recess 15a formed in the one end side enlarged diameter portion of the output shaft 15, and the shafts 13 and 15 are interposed between the shafts 13 and 15 in the overlapping portion.
  • the hydraulic fluid supplied by the pump 3 mounted on the vehicle is selectively supplied to the first and second pressure chambers P1 and P2 according to the twist amount and twist direction of the second torsion bar 14 derived from the relative rotation angle of the first to second pressure chambers.
  • a known rotary valve 19 is configured as a control valve to be supplied to the motor.
  • the pump 3 is driven by an engine of the vehicle, and is configured as an engine-driven pump that sucks hydraulic fluid in the reservoir tank 4 and discharges it to the rotary valve 19.
  • the housing 20 has a substantially cylindrical shape in which one end side is opened and the other end side is closed, and a first housing 21 that serves to define the first and second pressure chambers P1 and P2, and one end of the first housing 21.
  • the second housing 22 is provided so as to close the opening and accommodates the rotary valve 19 therein, and the first and second housings 21 and 22 are arranged at predetermined circumferential positions. Fastened with a plurality of bolts (not shown).
  • Shaft accommodating portion 21b formed so as to face 21a, and piston 16 linked to the other end side of output shaft 15 and the outer periphery thereof is accommodated in cylinder constituting portion 21a.
  • the first pressure chamber P1 on one end side and the second pressure chamber P2 on the other end side are separated by the piston 16, and one end side in the axial direction is linked to the piston 16 in the shaft housing portion 21b.
  • a sector shaft 17 whose end side is linked to the steered wheels 2R and 3L via a pitman arm (not shown) is accommodated.
  • the outer peripheral portions of the piston 16 and the sector shaft 17 are provided with tooth portions 16a and 17a that can mesh with each other, and the tooth portions 16a and 17a mesh with each other to move the piston 16 in the axial direction.
  • the sector shaft 17 is rotated, whereby the pitman arm is pulled in the vehicle body width direction, whereby the directions of the steered wheels 2R and 2L are changed.
  • the working fluid in the first pressure chamber P1 is guided to the shaft accommodating portion 21b, and is used for lubrication between the tooth portions 16a and 17a.
  • the large-diameter portion on one end side is provided with a bearing Bb that rotatably supports the output shaft 15.
  • an introduction port 26 communicating with the pump 3 a supply / exhaust port 27 for supplying and discharging the hydraulic pressure introduced from the introduction port 26 to the pressure chambers P1, P2,
  • a discharge port 28 for discharging the hydraulic fluid discharged from the pressure chambers P1 and P2 through the supply / discharge port 27 to the reservoir tank 4 is provided.
  • the supply / discharge port 27 communicates with the first pressure chamber P ⁇ b> 1 via a first supply / discharge passage L ⁇ b> 1 provided at the one end side enlarged diameter portion of the output shaft 15 and is provided inside the first housing 21.
  • the second pressure chamber P2 communicates with the second supply / discharge passage L2 and the like.
  • the hollow motor 30 is a three-phase alternating current brushless motor, and is externally fitted to the outer peripheral portion of the intermediate shaft 13 facing the outside of the housing 20 via a substantially cylindrical coupling member 33 so as to be integrally rotatable.
  • a motor element composed of a motor stator 32 disposed on the outer peripheral side of the motor rotor 31 with a predetermined gap and electrically connected to an external control device 60;
  • a substantially cylindrical motor housing 40 whose other end is fixed to the housing 20 (second housing 22) via the adapter member 23, and is housed and held in the motor housing 40, and is connected to one end of the coupling member 33.
  • a first bearing B1 and a second bearing B2 that rotatably support the other end sides, respectively, and one end side of the motor housing 40 that is one end side of the motor element.
  • the first resolver 51 which is a first rotation angle sensor for detecting the rotation angle of the input shaft 11, and the other end side of the motor housing 40, which is the other end side of the motor element, are arranged to rotate the intermediate shaft 13.
  • a second resolver 52 serving as a second rotation angle sensor for detecting corners, and a cover member 34 for protecting built-in components including the first resolver 51 by closing one end side opening of the motor housing 40; , And a seal member 35 for sealing the space between the cover member 34 and the input shaft 11 in a liquid-tight manner.
  • the motor housing 40 is divided into two parts by a predetermined metal material such as an aluminum alloy.
  • the motor housing 40 accommodates the first bearing B1 and the first resolver 51 in the inner peripheral portion on one end side, and the above-mentioned on the other end side.
  • a first motor housing 41 serving as a cylindrical portion for accommodating the motor element, and a second bearing B2 and a second resolver 52 for accommodating the second bearing B2 and the second resolver 52 in the inner peripheral portion thereof are closed.
  • 2 motor housing 42 is a predetermined metal material such as an aluminum alloy.
  • the first resolver 51 is disposed on the outer periphery of the first resolver rotor 53 so as to rotate integrally with the outer periphery of the input shaft 11, and the rotational position of the first resolver rotor 53. And a first resolver stator 54 to be detected.
  • the first resolver stator 54 is electrically connected to the control device 60 via the first sensor output wiring 57, and outputs the detection result to the control device 60.
  • the second resolver 52 is disposed on the outer periphery of the second resolver rotor 55 so as to rotate integrally with the outer periphery of the coupling member 33 and the second resolver rotor 55. And a second resolver stator 56 to be detected.
  • the second resolver 52 can detect the rotational position of the motor rotor 31 by detecting the rotational angle of the coupling member 33 that rotates synchronously with the intermediate shaft 13.
  • the second resolver stator 56 is configured to output the detection result to the control device 60 by being electrically connected to the control device 60 via the second sensor output wiring 58.
  • the control device 60 includes a steering assist control for driving and controlling the hollow motor 30 according to the state of manual steering by the driver, various sensors, a radar, a camera, and predetermined driving information grasping means (not shown) for parking and lane keeping. ), Various control processes such as automatic operation control for driving and controlling the hollow motor 30 are performed.
  • FIG. 3 is a control block diagram showing an arithmetic circuit configuration of the control device 60.
  • the controller 60 determines whether or not the vehicle is traveling straight ahead, and a detected value of the first resolver 51 when the straight traveling judgment unit 61 determines that the vehicle is traveling straight ahead.
  • the steering absolute angle estimator 62 that estimates the input shaft rotation angle ⁇ h that is the steering absolute angle of the steering wheel 1 with reference to the above, and the output shaft rotation angle ⁇ g that is a signal of the rotation angle of the output shaft 15 from the input shaft rotation angle ⁇ h and the like
  • torque command calculation unit 65 for automatic operation for calculating * and torque command value Tm (manual) * for manual operation which is a motor torque command value for manual operation Torque command calculation unit 66 during dynamic driving, a steering intention determination unit 67 that determines whether the driver intends to steer during automatic driving, and an automatic / manual driving switching determination unit used for switching between automatic driving and manual driving 68, and a motor drive control unit 69 that controls the drive of the hollow motor 30 based on the motor torque command value Tm (auto) * or Tm (manual) *.
  • the straight travel determination unit 61 travels straight based on the vehicle speed Vs taken into the control device 60, the rotational speed difference Rd between the pair of steered wheels 2R and 2L, and the steering torque Tr calculated by the steering torque calculation unit 64. Determine if it is in the middle.
  • the straight travel determination unit 61 determines that the vehicle speed Vs is equal to or greater than a predetermined value, the rotational speed difference Rd between the pair of steered wheels 2R and 2L is equal to or less than a predetermined value close to 0, and the steering torque. Only when Tr is equal to or less than a predetermined value close to 0, it is determined that the vehicle is traveling straight ahead. The determination result is output to the steering absolute angle estimation unit 62.
  • the steering absolute angle estimator 62 uses the detected value of the first resolver 51 when the signal indicating that the vehicle is traveling straight ahead is input from the straight traveling determination unit 61 as the neutral position of the steering wheel 1, that is, the input shaft. Learning is made as a reference position at which the rotation angle ⁇ h is 0 degree. Then, based on the fluctuation amount of the detected value of the first resolver 51 from the reference position, that is, the rotation amount of the input shaft 11, the input is an absolute steering angle of the steering wheel 1 corresponding to the turning angle of the steered wheels 2R and 2L. The shaft rotation angle ⁇ h is estimated. At this time, by correcting the detection value of the second resolver 52 based on the relative rotation angle of the first resolver 51 and the second resolver 52, an absolute angle can be obtained for the intermediate shaft rotation angle ⁇ m.
  • the output shaft rotation angle estimator 63 determines the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m, and the q-axis motor actual current Iq derived from a later-described three-phase two-phase converter 71 of the motor drive controller 69. From the motor torque Tm obtained by multiplying the torque constant, the output shaft rotation angle ⁇ g is estimated on the basis of the following equation for calculating the output shaft rotation angle ⁇ g (formula (6) described later) (see FIG. 4).
  • the output shaft rotation angle ⁇ g is obtained by subtracting the torsion angle of the second torsion bar 14 from the intermediate shaft rotation angle ⁇ m
  • the torsion torque of the second torsion bar 14 is ⁇ T2
  • the torsion of the second torsion bar 14 is When the spring constant is g2, it can be expressed by the following equation (1).
  • the torsional torque ⁇ T2 of the second torsion bar 14 is a torque acting on the upstream side (steering wheel 1 side) of the second torsion bar 14, that is, a steering torque Th that is generated on the input shaft 11, and the hollow motor 30.
  • the intermediate shaft 13 that rotates based on the torque acting on the downstream side of the second torsion bar 14, that is, the torques Th and Tm, from the sum of the motor torque Tm applied to the intermediate shaft 13. It is obtained by reducing the gear torque Tg generated in the output shaft 15. That is, the torsion torque ⁇ T2 can be expressed by the following equation (2).
  • the torsion torque ⁇ T 1 acts on the downstream side of the first torsion bar 12 from the steering torque Th acting on the upstream side of the first torsion bar 12. Is obtained by subtracting the motor torque Tm and the gear torque Tg, and can be expressed by the following equation (3).
  • the torsion torque ⁇ T2 of the second torsion bar 14 can also be expressed by the following equation (4).
  • the torsion torque ⁇ T1 of the first torsion bar 12 is also expressed by the following equation (5) based on the input shaft rotation angle ⁇ h, the intermediate shaft rotation angle ⁇ m, and the torsion spring constant g1 of the first torsion bar 12. Can do.
  • the output shaft rotation angle estimation unit 63 estimates the output shaft rotation angle ⁇ g based on the acquired input shaft rotation angle ⁇ h, intermediate shaft rotation angle ⁇ m, and motor torque Tm.
  • the steering torque calculator 64 twists the first torsion bar 12 into the difference between the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m (the difference between the detected value of the first resolver 51 and the detected value of the second resolver 52). By multiplying the spring constant g1, the steering torque Tr input to the steering wheel 1 by the driver is calculated.
  • the automatic driving torque command calculation unit 65 is a turning angle command ⁇ s * calculated by a control unit or the like different from the control device 60 based on information acquired by the various sensors, radar, camera, and predetermined driving information grasping means. Then, the automatic operation torque command value Tm (auto) * is calculated from the steering angle estimated value ⁇ s calculated based on the output shaft rotation angle ⁇ g estimated by the output shaft rotation angle estimation unit 63.
  • the manual operation torque command calculation unit 66 calculates a manual operation torque command value Tm (manual) * based on the steering torque Tr calculated by the steering torque calculation unit 64 and the vehicle speed Vs.
  • the steering intention determination unit 67 performs motor rotation angle control calculated based on the input shaft rotation angle ⁇ h, the intermediate shaft rotation angle ⁇ m, the output shaft rotation angle ⁇ g signal, or the turning angle command ⁇ s * during automatic driving. Whether or not the driver intends to steer is determined from the target ⁇ m * or the like. In this embodiment, the steering intention is determined based on signals of the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m. .
  • the former is driven mainly by the hollow motor 30 due to the configuration of the steering shaft 10, so that the input shaft 11 is accompanied by the intermediate shaft 13.
  • the phase of the intermediate shaft rotation angle ⁇ m precedes the phase of the input shaft rotation angle ⁇ h, while the latter overrides (overwrites) the input of the hollow motor 30 by the driver's input. Therefore, the phase of the input shaft rotation angle ⁇ h precedes the phase of the intermediate shaft rotation angle ⁇ m.
  • the steering intention determination unit 67 determines that the driver has a steering intention when the phase of the input shaft rotation angle ⁇ h precedes the phase of the intermediate shaft rotation angle ⁇ m.
  • the steering intention determination is performed based on the flowchart shown in FIG.
  • the steered wheels 2R and 2L are to be steered to the right.
  • a description will be given assuming that a positive value is shown when acting in the direction of turning, and a negative value is shown when acting in the direction of turning to the left.
  • the steering torque Tr is calculated by the same method as the steering torque calculation unit 64 (step S101), and this steering torque Tr is a predetermined value Tx. It is determined whether or not the above is true (step S102). If it is determined No, it is determined that the driver does not intend to steer (step S109), and the steering intention determination process is terminated. If it is determined Yes, the input shaft rotation angle ⁇ h. Then, the input shaft angular velocity ⁇ h and the intermediate shaft angular velocity ⁇ m are calculated by differentiating the intermediate shaft rotation angle ⁇ m with respect to time (steps S103 and S104), and then the process proceeds to step S105.
  • step S105 and later-described step S107 it is determined whether or not the phase of the input shaft rotation angle ⁇ h precedes the phase of the intermediate shaft rotation angle ⁇ m.
  • step S105 the input shaft angular velocity ⁇ h input to the steering wheel 1 based on the steering operation of the steering wheel 1 by the driver is greater than 0, and the intermediate shaft input from the hollow motor 30 to the intermediate shaft 13 It is determined whether or not the angular velocity is greater than ⁇ m, that is, whether or not the phase of the input shaft rotation angle ⁇ h precedes the phase of the intermediate shaft rotation angle ⁇ m in the clockwise direction of the rotation axis Z. If it is determined that the driver has steered the steering wheel 1 clockwise with a steering intention (step S106), the steering intention determination process is terminated. If the determination is No, the process proceeds to step S107.
  • step S107 whether or not the input shaft angular velocity ⁇ h is smaller than 0 and smaller than the intermediate shaft angular velocity ⁇ m, that is, the phase of the input shaft rotational angle ⁇ h is the rotational axis Z with respect to the phase of the intermediate shaft rotational angle ⁇ m. It is determined whether or not the vehicle is ahead in the counterclockwise direction. If the determination is Yes, it is determined that the driver has steered the steering wheel 1 to the left with the intention of steering (step S108), and No is determined. If it is determined that the driver does not intend to steer (step S109), the steering intention determination process ends.
  • the automatic / manual operation switching determination unit 68 basically performs manual operation when the signal SigA requesting automatic operation is not input, and performs automatic operation when the signal SigA is input. Even when the signal SigA is input, when the steering intention determination unit 67 determines that the driver has a steering intention, the operation is switched to manual driving.
  • the motor drive control unit 69 uses the current command calculation unit 70 to generate a motor torque command value Tm * (automatic operation torque command value Tm (auto) * or manual operation torque command value Tm (manual) *), From the motor rotation speed Nm calculated based on the intermediate shaft rotation angle ⁇ m that is the rotation angle of the hollow motor 30 (intermediate shaft 13) output from the second resolver 52, the d-axis and q-axis current command values Id *, Iq * Is calculated.
  • the motor drive control unit 69 uses the three-phase / two-phase converter 71 to detect the actual current flowing through the hollow motor 30 and outputs the actual u-phase and v-phase motors output from the motor current detection units 72u and 72v.
  • the d-axis and q-axis motor actual currents Id and Iq are obtained from the currents Iu and Iv and the intermediate shaft rotation angle ⁇ m.
  • the motor drive control unit 69 determines the values necessary for the d-axis and q-axis motor actual currents Id and Iq to follow the d-axis and q-axis current command values Id * and Iq *, that is, the d-axis current command. After calculating the difference between the value Id * and the d-axis motor actual current Id and the difference between the q-axis current command value Iq * and the q-axis motor actual current Iq, the d-axis and q-axis voltages are applied to the PI control. Command values Vd * and Vq * are obtained.
  • the two-phase / three-phase converter 73 the U-phase, V-phase, and W-phase voltage command values Vu *, Vv *, Vq *, Vq * and the intermediate shaft rotation angle ⁇ m are used. After calculating Vw *, these voltage command values Vu *, Vv *, Vw * are converted from an analog waveform to a PWM waveform by the PWM converter 74 and output to the inverter circuit 75, and the hollow motor is passed through the inverter circuit 75. 30 is driven and controlled.
  • the calibration of the relative angle between the resolver on the input shaft side and the resolver on the output shaft side can be performed only after the assembly of the power steering device is completed, which may lead to complicated manufacturing processes. There is also.
  • the output shaft is surrounded by the hydraulic chamber, it is structurally difficult to provide a resolver on the output shaft side. Further, in order to estimate the rotation angle of the output shaft from the rotation angle of the sector shaft, the angular resolution becomes rough because the sector shaft has a large gear ratio with respect to the output shaft, so the output It is difficult to accurately calculate the rotation angle of the shaft.
  • the steering shaft 10 is configured such that the input shaft 11, the intermediate shaft 13, and the output shaft 15 are linked by the two torsion bars 12, 14, and the input shaft 11. And the intermediate shaft 13 are provided with first and second resolvers 51 and 52, respectively.
  • the output shaft rotation angle estimation unit 63 provided in the control device 60 detects the signals of the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m detected by the first and second resolvers 51 and 52, and the first and first The output shaft rotation angle ⁇ g which is the rotation angle of the output shaft 15 can be estimated from the torsion spring constants g1 and g2 of the two torsion bars 12 and 14.
  • automatic operation control using the output shaft rotation angle ⁇ g by the control device 60 can be performed without providing a sensor such as a resolver on the output shaft 15 side.
  • the present embodiment it is possible to suppress the occurrence of problems such as the complexity of the wiring work based on the lengthening of the electric wiring and the deterioration of the layout, and the first and second resolvers 51, Since both 52 are accommodated in the hollow motor 30, it is possible to calibrate the relative positions of each other before the assembly of the power steering device. Furthermore, the output shaft rotation angle ⁇ g can be easily acquired even with an integral type power steering apparatus as in this embodiment.
  • the steering intention determination unit 67 is provided in the control device 60 and the steering intention determination unit 67 can determine whether or not the driver intends to steer during automatic driving, there is no steering intention. If it is determined that the automatic driving control is continued, it is possible to perform smooth driving state switching control such as switching to manual driving immediately if it is determined that there is an intention to steer.
  • the steering intention determination unit uses the structural characteristics of the steering shaft 10 such that the phase of the input shaft rotation angle ⁇ h precedes the phase of the intermediate shaft rotation angle ⁇ m. Therefore, the presence or absence of the driver's steering intention can be determined with high accuracy.
  • the straight travel determination unit 61 and the steering absolute angle estimation unit 62 can calculate the input shaft rotation angle ⁇ h that is the steering absolute angle of the steering wheel 1 from the detection value of the first resolver 51. Therefore, since it is not necessary to use the steering absolute angle sensor for detecting the steering absolute angle, it is possible to reduce the number of parts, thereby reducing the manufacturing cost.
  • the hollow motor 30 provided so as to surround the intermediate shaft 13 is applied as an electric motor for steering assist, automatic driving, and the like, a rotational force is applied to the intermediate shaft 13 via a reduction gear or the like.
  • the power steering device can be downsized as compared with the case where an electric motor for transmitting the power is applied.
  • the power steering device using the ball screw mechanism 24 for power transmission between the output shaft 15 and the piston 16 as in the present embodiment is generally mounted on a large and heavy vehicle such as a truck or a bus. .
  • a steering assist function such as automatic driving can be added to such large and heavy vehicles, the safety of these vehicles can be dramatically improved.
  • the steering intention determination unit 67 is configured to determine whether or not the driver intends to steer based on signals of the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m. Even if the angle ⁇ m is replaced with the output shaft rotation angle ⁇ g, which is the rotation angle of the output shaft 15, the steering intention determination can be similarly performed.
  • the input shaft rotation angle ⁇ h is directly calculated by inputting the detection value of the first resolver 51 to the steering absolute angle estimation unit 62.
  • the intermediate shaft rotation angle ⁇ m is first made an absolute angle, and the steering absolute is indirectly based on the relative rotation angle of the first and second resolvers 51, 52 from the intermediate shaft rotation angle ⁇ m. It is also possible to calculate the input shaft rotation angle ⁇ h, which is an angle.
  • the second embodiment of the present invention shown in FIG. 6 adds a function to determine the presence or absence of disturbance from the road surface such as road surface vibration to the steering intention determination unit 67 and performs control.
  • the apparatus 60 is provided with a disturbance correction processing unit 76 for correcting the torque command value Tm (Auto) * for automatic driving based on the determination result of the steering intention determination unit 67.
  • a disturbance correction processing unit 76 for correcting the torque command value Tm (Auto) * for automatic driving based on the determination result of the steering intention determination unit 67.
  • the steering intention determination unit 67 performs a steering intention determination based on the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m during automatic driving, as well as the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m. Based on the output shaft rotation angle ⁇ g and the motor rotation angle control target ⁇ m *, the presence / absence of disturbance from the road surface is determined according to the flowchart shown in FIG.
  • the steering torque Tr is calculated based on the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m (step S201), and it is determined whether or not the steering torque Tr is equal to or greater than a predetermined value Tx. (Step S202).
  • step S210 it is determined that no disturbance from the road surface has occurred (step S210), and the process in the steering intention determination unit 67 is terminated, whereas if it is determined as Yes, After calculating the input shaft angular velocity ⁇ h, the output shaft angular velocity ⁇ g, and the motor angular velocity control target ⁇ m * by differentiating the input shaft rotational angle ⁇ h, the output shaft rotational angle ⁇ g, and the motor rotational angle control target ⁇ m * with respect to time (steps S203 to S205), the process proceeds to step S206.
  • step S206 the output shaft angular velocity ⁇ g is smaller than 0 and smaller than the input shaft angular velocity ⁇ h, that is, the phase of the output shaft rotational angle ⁇ g is counterclockwise with respect to the phase of the input shaft rotational angle ⁇ h.
  • the rotation direction of the output shaft 15 and the drive direction of the hollow motor 30 do not match, that is, the sign of the output shaft angular velocity ⁇ g and the motor angular velocity control target ⁇ m * do not match ( ⁇ g ⁇ ⁇ m * ⁇ 0 ) Or not.
  • the driver does not intend to steer and automatic operation is continued by the hollow motor 30, but the output shaft against the driving direction of the hollow motor 30 due to disturbance from the road surface.
  • Step S207 While the disturbance determination process is terminated, if it is determined No, the process proceeds to Step S208.
  • step S208 the output shaft angular velocity ⁇ g is greater than 0 and greater than the input shaft angular velocity ⁇ h, that is, the phase of the output shaft rotational angle ⁇ g is clockwise with respect to the phase of the input shaft rotational angle ⁇ h.
  • the driver does not intend to steer and automatic operation is continued by the hollow motor 30, but the output shaft against the driving direction of the hollow motor 30 due to disturbance from the road surface.
  • step S209 if it is determined No, it is determined that no disturbance from the road surface has occurred (step S210), and the disturbance determination process is terminated.
  • the disturbance correction processing unit 76 When the steering intention determination unit 67 determines that a disturbance in the clockwise direction has occurred on the output shaft 15, the disturbance correction processing unit 76 outputs the torque command value Tm (auto) * during automatic operation to the output shaft 15. When the steering intention determination unit 67 determines that a disturbance in the counterclockwise direction has occurred on the output shaft 15, the torque command for automatic operation is corrected. The value Tm (auto) * is corrected so that the steering torque in the clockwise direction of the output shaft 15 increases. In other words, the disturbance correction processing unit 76 corrects the torque command value Tm (auto) * for automatic operation so as to cancel the influence of the disturbance generated on the output shaft 15.
  • a correction value used for correcting the torque command value Tm (auto) * during automatic driving a fixed value obtained in advance by a vehicle test or the like may be used, and the intermediate shaft rotation angle ⁇ m and the output A variation value calculated from a phase difference of the shaft rotation angle ⁇ g may be used.
  • the operation effect similar to that of the first embodiment can be obtained, and the steering intention determination unit 67 is configured to be able to determine disturbance from the road surface.
  • the output shaft rotation angle ⁇ g or the like is sometimes changed, it can be determined whether this is based on the driver's steering intention or due to the influence of disturbance from the road surface.
  • the driving state is suddenly switched from automatic driving to manual driving, and the safety of the vehicle can be improved.
  • the disturbance correction processing unit 76 is provided in the control device 60, and the disturbance correction processing unit 76 can suppress the influence of disturbance from the road surface during automatic driving. The property can be further improved.
  • FIG. 8 shows a modification of the flow of the disturbance determination process performed by the steering intention determination unit 67 as a modification of the second embodiment described above.
  • step S203 in the second embodiment is abolished, and step S206 and step S208 are replaced with step S211 and step S212 described later, respectively.
  • step S211 the rotation direction of the output shaft 15 and the driving direction of the hollow motor 30 are coincident, that is, the output shaft angular velocity ⁇ g and the motor angular velocity control target ⁇ m * coincide with each other ( ⁇ g ⁇ ⁇ m *> 0), and the output
  • step S212 the rotation direction of the output shaft 15 and the driving direction of the hollow motor 30 coincide, that is, the output shaft angular velocity ⁇ g and the motor angular velocity control target ⁇ m * coincide with each other ( ⁇ g ⁇ ⁇ m *> 0), and
  • the output shaft angular velocity ⁇ g is greater than 0 and greater than the motor angular velocity control target ⁇ m *, that is, the phase of the output shaft rotation angle ⁇ g is clockwise with respect to the phase of the motor rotation angle control target ⁇ m *. It is determined whether or not it is in a state of preceding the process, and if Yes is determined, the process proceeds to step S209, whereas if No is determined, the process proceeds to step S210.
  • the presence or absence of a disturbance from the road surface can be determined by the steering intention determination unit 67, so that the same operational effects as those of the second embodiment described above can be obtained.
  • a function for actively determining whether or not automatic driving control is performed is added to the steering intention determination unit 67, and FIG. 9 is a flowchart showing the determination processing. .
  • the steering torque Tr is calculated based on the input shaft rotation angle ⁇ h and the intermediate shaft rotation angle ⁇ m (step S301), and it is determined whether or not the steering torque Tr is equal to or greater than a predetermined value Tx. (Step S302). If it is determined No, the process is terminated without performing the operation determination of the automatic operation control. On the other hand, if it is determined Yes, the output shaft rotation angle ⁇ g and the motor rotation angle control target ⁇ m * are set. After calculating the output shaft angular velocity ⁇ g and the motor angular velocity control target ⁇ m * by differentiating each time (steps S303 and S304), the process proceeds to step S305.
  • step S305 the rotation direction of the output shaft 15 coincides with the drive direction of the hollow motor 30, that is, the output shaft angular velocity ⁇ g and the motor angular velocity control target ⁇ m * coincide with each other ( ⁇ g ⁇ ⁇ m *> 0), and the motor
  • step S306 it is determined that the automatic operation state, that is, the output shaft 15 is normally rotated by the rotational force of the hollow motor 30 (step S306), and the operation of the automatic operation control is determined. On the other hand, if the determination process is finished, the process proceeds to step S307.
  • step S307 the sign of the output shaft angular velocity ⁇ g and the motor angular velocity control target ⁇ m * match ( ⁇ g ⁇ ⁇ m *> 0), the motor angular velocity control target ⁇ m * is greater than 0, and is greater than the output shaft angular velocity ⁇ g. It is determined whether it is in a large state, that is, whether the phase of the motor rotation angle control target ⁇ m * precedes the phase of the output shaft rotation angle ⁇ g in the clockwise direction of the rotation axis Z.
  • the automatic operation state that is, the output shaft 15 is normally rotated by the rotational force of the hollow motor 30, and the process ends (step S308). If it is determined No, it is determined that an operation other than automatic driving is being performed (step S309), and the process ends.
  • the steering intention determination unit 67 not only determines the presence or absence of the steering intention of the driver, but also automatic driving. Since it can be actively determined whether or not the control is performed, switching between automatic operation and manual operation according to the situation can be performed with higher accuracy.
  • the output of the hollow motor 30 can be adjusted in accordance with the hydraulic torque generated by the power cylinder 18.
  • control device 60 in addition to the configuration of the first embodiment, supplies the pump discharge amount P that is the amount of hydraulic fluid supplied from the pump 3 to the rotary valve 19.
  • a calculation unit 77 and a hydraulic actuator torque calculation unit 78 for estimating the hydraulic torque Tp generated by the power cylinder 18 based on the hydraulic fluid amount estimated by the supply liquid amount calculation unit 77 are further provided.
  • the supply liquid amount calculation unit 77 estimates the pump discharge amount P of the pump 3 based on the engine speed Ne. More specifically, the supply liquid amount calculation unit 77 multiplies the engine speed Ne by the gear ratio G1 between the engine and the pump and the pump specific discharge amount d1, and then pumps the value obtained thereby.
  • the pump discharge amount P is estimated by applying to the adjustment flow rate limiter 79 set according to the specification of No. 3.
  • the hydraulic actuator torque calculator 78 first obtains the valve operating angle ⁇ r of the rotary valve 19 by subtracting the output shaft rotational angle ⁇ g from the intermediate shaft rotational angle ⁇ m. Then, an assist pressure estimated value Pow is calculated with reference to an assist pressure estimation map 80 prepared in advance from the valve operating angle ⁇ r and the pump discharge amount P estimated by the supply liquid amount calculation unit 77.
  • the hydraulic actuator torque calculation unit 78 has a cylinder cross-sectional area Ss of the power cylinder 18 with respect to the assist pressure estimated value Pow, a distance PCR from the rotation center of the sector shaft 17 to the tooth contact surface of the piston 16, and
  • the hydraulic torque Tp is obtained by multiplying the gear ratio G2 between the piston 16 and the sector shaft 17. Since the hydraulic torque Tp obtained at this time is a scalar value of only magnitude, a positive / negative sign is added by the direction determination unit 81 that determines the action direction of the hydraulic torque Tp based on the valve action angle ⁇ r. Become.
  • the final hydraulic torque Tp is calculated by multiplying the hydraulic torque Tp to which the positive / negative sign is added by a correction coefficient set in advance based on a vehicle test or the like.
  • the motor drive control unit 69 is configured so that, during automatic operation, the hydraulic actuator torque calculation unit 78 uses the automatic operation torque command value Tm (auto) * output from the automatic operation torque command calculation unit 65. A value obtained by subtracting the calculated hydraulic torque Tp is received as a motor torque command value Tm *, and drive control of the hollow motor 30 is performed.
  • the automatic operation can be performed by cooperative control of the hydraulic torque Tp generated by the power cylinder 18 and the drive torque output by the hollow motor 30, and therefore, for example, the engine speed Ne is low and the hydraulic torque is low. Even when Tp cannot be secured, the steering assist force can be maintained by increasing the drive torque of the hollow motor 30. On the other hand, since it is possible to suppress the application of excessive steering assist force during automatic driving, it is possible to improve the accuracy of steering related to automatic driving and reduce power and hydraulic loss to save energy. Can be achieved.
  • the pump 3 is an engine-driven pump
  • the supply liquid amount calculation unit 77 is configured to estimate the pump discharge amount P based on the engine rotational speed Ne. Can be detected with high accuracy.
  • cooperative control of automatic operation by the power cylinder 18 and the hollow motor 30 can be performed with higher accuracy.
  • the pump 3 in the fourth embodiment is changed from an engine-driven pump to a motor-driven pump 83 driven by an electric motor 82 for driving the pump, and the pump is driven.
  • the electric motor 82 is driven and controlled based on the hydraulic torque Tp generated by the power cylinder 18.
  • FIG. 11 is a schematic view showing a power steering apparatus according to the present embodiment.
  • the motor-driven pump 83 is based on a command voltage output from the pump ECU 84 by the pump drive electric motor 82 electrically connected to the pump ECU 84 that is a control unit different from the control device 60. By being driven to rotate, the pump action is performed.
  • the pump ECU 84 generates the command voltage based on the flow rate control signal SigP for setting the pump discharge amount P of the motor-driven pump 83 as a target value.
  • the pump ECU 84 generates the flow rate control signal SigP by the control device 60. It is supposed to be.
  • FIG. 12 is a control block diagram showing the arithmetic circuit configuration of the control device 60 according to the present embodiment.
  • control device 60 of the present embodiment generates a flow control signal SigP based on the hydraulic torque Tp estimated by the hydraulic actuator torque calculator 78 in addition to the configuration of the fourth embodiment, and sends this to the pump ECU 84. Is further provided.
  • the flow rate control signal generation unit 85 basically generates the flow rate control signal SigP based only on the hydraulic torque Tp. Under certain circumstances, the flow rate control signal generation unit 85 adds and subtracts a correction value to the hydraulic torque Tp. A control signal SigP is generated.
  • the flow rate control signal generation unit 85 may be configured so that the steering amount during automatic operation is small and the valve operating angle ⁇ r of the rotary valve 19 is small, that is, even if the motor-driven pump 83 discharges a large amount of hydraulic fluid.
  • a flow rate control signal that suppresses the pump discharge amount P more than usual by subtracting and correcting the hydraulic torque Tp. SigP is generated.
  • the hydraulic torque Tp of the torque used for automatic operation decreases, while the driving torque of the hollow motor 30 increases in a manner that compensates for this decrease in torque.
  • the flow rate control signal generation unit 85 performs flow rate control such that the pump discharge amount P is increased more than usual by adding and correcting the hydraulic torque Tp when the hollow motor 30 is overheated due to high rotation driving. A signal SigP is generated. As a result, the ratio of the hydraulic torque Tp in the torque used for automatic operation increases, and the driving torque of the hollow motor 30 decreases.
  • the flow control signal generator 85 reduces the torque output sharing ratio of one of the hollow motor 30 and the motor-driven pump 83 when the malfunction or inefficiency occurs.
  • the other torque output sharing ratio is increased.
  • the hydraulic actuator torque calculation unit 78 in the present embodiment acquires information on the pump discharge amount P directly from the pump ECU 84, and based on the information on the pump discharge amount P, the assist pressure estimated value Pow is obtained. Estimated.
  • the pump that discharges the hydraulic fluid to the rotary valve 19 is an engine-driven pump, the hydraulic fluid is discharged according to the engine speed Ne regardless of the valve operating angle ⁇ r of the rotary valve 19.
  • the rotational speed Ne is high and the valve operating angle ⁇ r is small, the hydraulic fluid discharged from the engine drive pump is discharged to the reservoir tank 4 without being used to generate the hydraulic torque Tp, and the pump efficiency There is a risk of worsening of this.
  • a motor drive pump 83 is employed as the pump, and the motor drive pump 83 is driven and controlled based on the flow rate control signal SigP generated by the flow rate control signal generation unit 85 from the hydraulic torque Tp. Since it did in this way, the excess discharge of the hydraulic fluid by the motor drive pump 83 can be suppressed, and pump efficiency can be improved.
  • the flow rate control signal generation unit 85 determines that either the hollow motor 30 or the motor-driven pump 83 is malfunctioning or inefficient, the torque output sharing ratio of the one is decreased. And since it comprised so that the other torque output share rate might be raised, efficient control is realizable, aiming at protection of an apparatus.
  • the motor-driven pump 83 driven by the pump driving electric motor 82 is used as the pump.
  • the sixth embodiment of the present invention shown in FIG. 13 is a load estimation unit that estimates the load M, which is a load on the vehicle based on the weight of the load loaded on the vehicle, in the control device 60 in the fifth embodiment.
  • a load capacity estimating unit 86 is further provided.
  • the load load estimating unit 86 obtains the valve operating angle ⁇ r of the rotary valve 19 by subtracting the output shaft rotation angle ⁇ g from the intermediate shaft rotation angle ⁇ m. Then, the load load M is estimated from the valve operating angle ⁇ r and the vehicle speed Vs with reference to the load load estimation map 87 prepared in advance.
  • the load load estimation unit 86 when the load load M obtained by the above-described estimation process is equal to or greater than a predetermined value, is a torque command for automatic operation that is provided to rotate the hollow motor 30 by the output correction unit 88.
  • the value Tm (auto) * and the flow rate control signal SigP used for rotational driving of the pump driving electric motor 82 are appropriately increased and corrected.
  • the load load estimation unit 86 transmits this information to a traction controller, ESC controller, or the like when the load M obtained by the above-described estimation process is a predetermined value or more.
  • Various coordinated controls such as lowering the vehicle speed and suppressing understeer during turning are possible.
  • the control device 60 is provided with a load load estimating unit 86 that estimates the load load M, and when the load load M estimated by the load load estimating unit 86 is equal to or greater than a predetermined value, Since the hydraulic torque Tp and the driving torque of the hollow motor 30 are increased and corrected, the behavioral instability associated with the increase in the load M during automatic operation is suppressed, and the steering control corresponding to the load M is performed. Can be realized.
  • the control device 60 in the fifth embodiment further includes a road resistance estimation unit 89 that is a load estimation unit that estimates a load on the vehicle based on the road resistance ⁇ . Is.
  • the road surface resistance estimation unit 89 calculates a vehicle slip angle ⁇ c based on a vehicle slip angle calculation map 90 prepared in advance from the rotational speed difference Rd between the pair of steered wheels 2R and 2L, and calculates the vehicle slip angle from the output shaft rotation angle ⁇ g. After obtaining the steered wheel slip angle ⁇ w by subtracting ⁇ c, the road surface resistance ⁇ is estimated based on the road surface resistance estimation map 91 prepared in advance from the steered wheel slip angle ⁇ w.
  • the road surface resistance estimation unit 89 when the road surface resistance ⁇ obtained by the above-described estimation process is equal to or greater than a predetermined value, is a torque command for automatic operation that is supplied to the rotational drive of the hollow motor 30 by the output correction unit 92.
  • the value Tm (auto) * and the flow rate control signal SigP used for rotational driving of the pump driving electric motor 82 are appropriately increased and corrected.
  • the road surface resistance estimation unit 89 transmits the road surface resistance ⁇ obtained by the above-described estimation processing to a traction controller, an ESC controller, and the like, and cooperates with the controllers and the like to provide a vehicle.
  • the stability of can be improved.
  • the control device 60 is provided with a road surface resistance estimation unit 89 that estimates the road surface resistance ⁇ , and when the road surface resistance ⁇ estimated by the road surface resistance estimation unit 89 is a predetermined value or more, Since the hydraulic torque Tp and the driving torque of the hollow motor 30 are increased and corrected, the instability of the behavior during automatic driving accompanying the increase in the road resistance ⁇ is suppressed, and the steering control according to the road resistance ⁇ is performed. Can be realized.
  • the present invention is not limited to the configuration exemplified in the above-described embodiment.
  • the rack and pinion type power steering device used for ordinary passenger cars, etc.
  • the present invention can be applied to other types of power steering devices as long as they include the invention specific matters of the present invention such as the first and second torsion bars 12 and 14 and the hollow motor 30.
  • the output shaft rotation angle ⁇ g is estimated by the output shaft rotation angle estimation unit 63 to obtain the output shaft rotation angle ⁇ g without depending on the sensor.
  • the output shaft rotation angle ⁇ g estimated by the output shaft rotation angle estimator 63 is used as a backup when the function of the sensor fails, so that the fail-safe property is improved or the sensor detects.
  • the output shaft rotation angle ⁇ g estimated by the output shaft rotation angle estimation unit 63 is mainly used for automatic operation control.
  • the estimated output shaft rotation angle ⁇ g is manually used.
  • an input shaft that rotates in response to a steering operation of a steering wheel
  • an intermediate shaft that is connected to the input shaft via a first torsion bar, the intermediate shaft and a second torsion bar
  • a steering shaft having an output shaft connected thereto, a hydraulic actuator having a pair of pressure chambers separated by a piston, and converting rotational motion of the steering shaft into motion in the movement direction of the piston.
  • the conversion mechanism for transmitting the steering operation of the steering wheel to the steered wheels, and the hydraulic fluid supplied from the pump mounted on the vehicle according to the twist amount and twist direction of the second torsion bar are selectively selected.
  • a control valve that supplies a pair of pressure chambers, an electric motor that applies a rotational force to the intermediate shaft, and a microcomputer.
  • a roll unit and a control unit provided on a rotation angle signal of the input shaft, a rotation angle signal of the intermediate shaft, a torsion spring constant of the first torsion bar, and a torsion spring constant of the second torsion bar
  • An output shaft rotation angle estimation unit that estimates a rotation angle of the output shaft; and a motor drive control unit that is provided in the control unit and that drives and controls the electric motor based on the rotation angle of the output shaft.
  • the power steering device is provided in the control unit, and the input shaft rotation angle signal, the intermediate shaft rotation angle signal, the output shaft rotation angle signal, or A steering intention determination unit that determines whether or not the driver intends to steer based on a signal of the rotation angle of the electric motor.
  • the steering intention determination unit may determine the phase of the rotation angle of the input shaft from the phase of the rotation angle of the intermediate shaft or the phase of the rotation angle of the output shaft. Is preceded, it is determined that the driver has a steering intention.
  • the steering intention determination unit includes a phase of a rotation angle of the output shaft that precedes a phase of a rotation angle of the input shaft, and the output shaft.
  • the steering intention determination unit is configured such that a rotation direction of the output shaft matches a driving direction of the electric motor, and a phase of a rotation angle of the output shaft. Is preceded by the phase of the rotation angle of the electric motor, it is determined that the rotation of the output shaft is due to disturbance from the road surface.
  • the steering intention determination unit may match a rotation direction of the output shaft with a drive direction of the electric motor and a phase of a rotation angle of the electric motor. Is preceded by the phase of the rotation angle of the output shaft, it is determined that the rotation of the output shaft is due to the rotational force of the electric motor.
  • the steering intention determination unit is configured such that the phase of the rotation angle of the output shaft is the phase of the rotation angle of the input shaft or the phase of the rotation angle of the electric motor.
  • the output shaft is determined to be due to the influence of a disturbance from the road surface, and the motor drive control unit drives the electric motor to suppress the rotation of the output shaft due to the disturbance. Control.
  • control unit includes a supply liquid amount calculation unit that estimates the amount of hydraulic fluid supplied from the pump to the control valve, and the intermediate shaft.
  • a hydraulic actuator torque calculator that estimates the generated torque of the hydraulic actuator based on the rotation angle signal, the output shaft rotation angle signal, and the amount of hydraulic fluid.
  • the pump is an engine-driven pump driven by a vehicle engine, and the amount of the hydraulic fluid is estimated based on the number of revolutions of the engine. Is done.
  • the pump is a motor-driven pump driven by an electric motor for driving a pump or a variable discharge pump capable of adjusting a discharge amount of hydraulic fluid by an electromagnetic solenoid.
  • the electric motor for driving the pump or the electromagnetic solenoid is driven and controlled based on the torque generated by the hydraulic actuator.
  • control unit adjusts a ratio of the magnitude of the driving torque of the electric motor and the generated torque of the hydraulic actuator, and based on the adjustment result,
  • the electric motor and the motor-driven pump or the electromagnetic solenoid are driven and controlled.
  • the electric motor is driven and controlled based on torque generated by the hydraulic actuator.
  • control unit is mounted on the vehicle based on the rotation angle signal of the intermediate shaft, the rotation angle signal of the output shaft, and the vehicle speed.
  • a load estimating unit for estimating the weight of the load is mounted on the vehicle based on the rotation angle signal of the intermediate shaft, the rotation angle signal of the output shaft, and the vehicle speed.
  • control unit is configured to estimate a road surface resistance based on a rotational angle signal of the output shaft and a rotational speed difference between the pair of steered wheels. It has an estimation part.
  • the control unit includes a rotation angle signal of the input shaft, a rotation angle signal of the intermediate shaft, and a torsion spring constant of the first torsion bar.
  • the steering torque calculation unit that calculates the steering torque, the vehicle speed, the rotational speed difference between the pair of steered wheels, and the straight traveling that determines whether the vehicle is traveling straight based on the steering torque
  • a steering unit corresponding to a turning angle of the steered wheel based on a rotation amount of the input shaft or a rotation amount of the intermediate shaft from a state in which the determination unit and the straight traveling determination unit determine that the vehicle is traveling straight ahead.
  • a steering absolute angle estimating unit for estimating a steering absolute angle.
  • the conversion mechanism is formed in a cylindrical shape so as to surround the screw shaft provided on the output shaft and the screw shaft. And a plurality of balls provided between the screw shaft and the nut, and a ball screw mechanism.
  • the electric motor is a hollow motor provided so as to surround the intermediate shaft.

Abstract

入力軸11と、入力軸と第1トーションバー12を介して接続される中間軸13と、中間軸と第2トーションバー14を介して接続される出力軸15と、を有する操舵軸10と、中間軸に回転力を付与する中空モータ30と、マイクロコンピュータを備えた制御装置60と、を有するパワーステアリング装置において、制御装置に、入力軸回転角θh及び中間軸回転角θmの信号、第1トーションバーの捩りバネ定数g1、第2トーションバーの捩りバネ定数g2に基づき出力軸回転角θgを推定する出力軸回転角推定部63と、出力軸回転角に基づき中空モータを制御するモータ駆動制御部69と、を備えた。

Description

パワーステアリング装置
 本発明は、運転者の操舵トルクないしモータの駆動トルクに基づきロータリバルブを開閉することで給排される液圧をもって操舵アシストを行う自動操舵可能なパワーステアリング装置に関する。
 従来の自動操舵可能なパワーステアリング装置としては、例えば以下の特許文献1に記載されたものが知られている。
 概略を説明すれば、このパワーステアリング装置は、ラック・ピニオン型の液圧パワーステアリング装置であって、ステアリングホイールと接続する入力軸の下端側外周部に、当該入力軸とこれにトーションバーを介し相対回転可能に連結される出力軸との間にロータリバルブが設けられると共に、前記入力軸の上端側外周部に、中空モータが取り付けられている。そして、入力軸の外周に設けられて該入力軸の回転角を検出する第1レゾルバと、出力軸の外周に設けられて該出力軸の回転角を検出する第2レゾルバと、により構成されたトルクセンサの検出結果や車速センサ等の出力信号に基づいて操舵アシスト制御や自動運転制御が行えるようになっている。
特開2005-96767号公報
 しかしながら、前記従来のパワーステアリング装置では、例えば前記第2レゾルバの角度検出機能が失陥した場合において、トルクセンサによるトルクの検出を正しく行うことができず、この検出結果に基づく操舵アシスト制御や自動運転制御が適切に行えなくなるおそれがあった。
 本発明は、かかる技術的課題に着目して案出されたもので、出力軸側のセンサに依存することなく出力軸の回転角を取得可能なパワーステアリング装置を提供することを目的としている。
 本発明は、ステアリングホイールの操舵操作に伴い回転する入力軸と、前記入力軸と第1トーションバーを介して接続される中間軸と、前記中間軸と第2トーションバーを介して接続される出力軸と、を有する操舵軸と、ピストンによって隔成された1対の圧力室を有する油圧アクチュエータと、前記操舵軸の回転運動を前記ピストンの移動方向運動に変換すると共に、前記ステアリングホイールの操舵操作を転舵輪に伝達する変換機構と、前記第2トーションバーの捩れ量および捩れの方向に応じて車両に搭載されたポンプから供給される作動液を選択的に前記1対の圧力室に供給するコントロールバルブと、前記中間軸に回転力を付与する電動モータと、マイクロコンピュータを備えたコントロールユニットと、前記コントロールユニットに設けられ、前記入力軸の回転角の信号、前記中間軸の回転角の信号、第1トーションバーの捩りバネ定数、および前記第2トーションバーの捩りバネ定数に基づき前記出力軸の回転角を推定する出力軸回転角推定部と、前記コントロールユニットに設けられ、前記出力軸の回転角に基づき前記電動モータを駆動制御するモータ駆動制御部と、を有することを特徴としている。
 本発明によれば、出力軸側のセンサに依存することなく出力軸の回転角を取得することができる。
本発明に係るパワーステアリング装置を示す概略図である。 同パワーステアリング装置の縦断面図である。 本発明の第1実施形態に係る制御装置の演算回路構成を示す制御ブロック図である。 本実施形態に係る出力軸回転角推定部の詳細を示すブロック図である。 本実施形態に係る操舵意図判断部の操舵意図判断処理を示すフローチャートである。 本発明の第2実施形態に係る制御装置の演算回路構成を示す制御ブロック図である。 第2実施形態の操舵意図判断部の外乱判断処理を示すフローチャートである。 第2実施形態の変形例における操舵意図判断部の外乱判断処理を示すフローチャートである。 第3実施形態の操舵意図判断部の自動運転判断処理を示すフローチャートである。 第4実施形態に係る制御装置の演算回路構成を示す制御ブロック図である。 第5実施形態のパワーステアリング装置を示す概略図である。 第5実施形態に係る制御装置の演算回路構成を示す制御ブロック図である。 第6実施形態に係る制御装置の演算回路構成を示す制御ブロック図である。 第7実施形態に係る制御装置の演算回路構成を示す制御ブロック図である。
 以下、本発明に係るパワーステアリング装置の実施形態を、図面に基づいて説明する。なお、下記の実施形態では、このパワーステアリング装置を、大型車両等に用いられるインテグラル型のパワーステアリング装置として適用した例を示している。
 図1は前記インテグラル型のパワーステアリング装置を示す概略図、図2は前記パワーステアリング装置の縦断面図である。なお、以下では、各図中における操舵軸10の回転軸Z方向のうちステアリングホイール1に連係する側を「一端」とし、ピストン16に連係する側を「他端」として説明する。
 このパワーステアリング装置は、一端側がハウジング20外に臨んでステアリングホイール1に連係され、他端側がハウジング20内に収容される操舵軸10と、一端側が1対の転舵輪2R,2Lに連係され、前記操舵軸10の他端側外周に設けられた後述のピストン16の軸方向移動に伴って転舵に供する伝達機構であるセクタシャフト17と、ハウジング20内において摺動自在に収容されたほぼ筒状のピストン16が1対の圧力室である第1、第2圧力室P1,P2を隔成することによって構成され、操舵トルクを補助するアシストトルクの生成に供する油圧アクチュエータであるパワーシリンダ18と、を備えたパワーステアリング装置本体(以下、単に「装置本体」と略称する。)DBと、後述するロータ31が操舵軸10の外周に嵌着されるかたちで設けられ、該操舵軸10に対し回転トルクを付与することによって操舵アシストや自動運転等に供する電動モータである中空モータ30と、マイクロコンピュータ等の電子部品を備えて構成され、操舵状況等に基づき中空モータ30を駆動制御するコントロールユニットである制御装置(ECU)60と、から主として構成されている。
 前記操舵軸10は、一端側がステアリングホイール1に連係され、運転者の操舵トルク入力に供する入力軸11と、一端側が第1トーションバー12を介して入力軸11と相対回転可能に連結されると共に、外周に連結される中空モータ30の駆動トルク入力に供する中間軸13と、一端側が第2トーションバー14を介して中間軸13と相対回転可能に連結され、この中間軸13より入力される操舵トルクを、変換機構であるボールねじ機構24を介してピストン16に出力する出力軸15と、から構成される。なお、前記ボールねじ機構24については、他端側の外周部に螺旋溝であるボール溝24aが形成されたねじ軸としての前記出力軸15と、該出力軸15の外周側に設けられて内周部に前記ボール溝24aに対応する螺旋溝であるボール溝24bが形成されたナットとしての前記ピストン16と、該ピストン16と出力軸15の間に設けられた複数のボール24cと、から構成されている。
 そして、前記入力軸11は、他端部が中間軸13の一端側に穿設された開口凹部13a内に挿入収容され、かかる重合部間に介装された軸受としてのニードルベアリングBnにより回転自在に支持されている。一方、前記中間軸13は、出力軸15の一端側拡径部に穿設された開口凹部15a内に挿入収容され、かかる重合部における両軸13,15間には、該両軸13,15の相対回転角より導き出される第2トーションバー14の捩れ量および捩れの方向に応じて車両に搭載されたポンプ3により供給される作動液を第1、第2圧力室P1,P2へと選択的に供給するコントロールバルブとしての周知のロータリバルブ19が構成されている。なお、前記ポンプ3は、車両のエンジンにより駆動され、リザーバタンク4内の作動液を吸入してロータリバルブ19に吐出するエンジン駆動ポンプとして構成されている。
 前記ハウジング20は、一端側が開口し他端側が閉塞されてなるほぼ筒状を呈し、第1、第2圧力室P1,P2の画成に供する第1ハウジング21と、該第1ハウジング21の一端開口部を閉塞するように設けられ、内部にロータリバルブ19を収容する第2ハウジング22と、から構成され、前記第1、第2ハウジング21,22同士は、所定の周方向位置に配置される図示外の複数のボルトをもって締結されている。
 前記第1ハウジング21の内部には、操舵軸10の回転軸Z方向に沿って形成されたシリンダ構成部21aと、該シリンダ構成部21aとほぼ直交するように、かつ、一部がシリンダ構成部21aへと臨むように形成されたシャフト収容部21bと、が設けられていて、前記シリンダ構成部21a内には、出力軸15の他端側及びその外周に連係するピストン16が収容されることで、該ピストン16をもって一端側の第1圧力室P1と他端側の第2圧力室P2とが隔成され、前記シャフト収容部21b内には、軸方向一端側がピストン16に連係すると共に他端側が図示外のピットマンアームを介して転舵輪2R,3Lに連係されるセクタシャフト17が収容されている。
 前記ピストン16及びセクタシャフト17の各外周部には、相互に噛合可能な歯部16a,17aが設けられていて、該両歯部16a,17aが噛合することによりピストン16の軸方向移動に伴ってセクタシャフト17が回動し、これによって前記ピットマンアームが車体幅方向に引っ張られることで、転舵輪2R,2Lの向きが変更される構成となっている。なお、この際、シャフト収容部21bには、第1圧力室P1内の作動液が導かれる構成となっていて、これによって前記両歯部16a,17a間の潤滑に供されている。
 前記第2ハウジング22の内周側には、前記重合した両軸13,15が挿通する軸挿通孔22aが、一端側から他端側へと回転軸Z方向に沿って段差縮径状に貫通形成されている。そして、一端側の大径部には出力軸15を回転自在に支持する軸受Bbが設けられている。一方、他端側の小径部には、前記ポンプ3と連通する導入ポート26と、該導入ポート26より導入された液圧を前記各圧力室P1,P2に給排する給排ポート27と、該給排ポート27を通じて前記各圧力室P1,P2から排出された作動液をリザーバタンク4へ排出する排出ポート28と、が設けられている。なお、前記給排ポート27は、出力軸15の一端側拡径部に設けられた第1給排通路L1を介して第1圧力室P1と連通すると共に、第1ハウジング21内部に設けられた第2給排通路L2等を介して第2圧力室P2と連通している。
 以上のような構成から、前記パワーステアリング装置は、ステアリングホイール1が操舵されると、ポンプ3より圧送された作動液がロータリバルブ19を介して操舵方向に応じた一方側の圧力室P1,P2に供給されると共に、他方側の圧力室P1,P2から前記供給量に対応する作動液(余剰分)がリザーバタンク4へと排出され、当該液圧によりピストン16が駆動される結果、当該ピストン16に作用する液圧に基づいたアシストトルクがセクタシャフト17へと付与されることとなる。
 前記中空モータ30は、3相交流式のブラシレスモータであって、ハウジング20外に臨む中間軸13の外周部にほぼ筒状の結合部材33を介して一体回転可能に外嵌されるモータロータ31と、該モータロータ31の外周側に所定の隙間を隔てて配置され、かつ外部の制御装置60に電気的に接続されたモータステータ32とから構成されるモータ要素と、一端側にモータ要素を収容し、他端側がアダプタ部材23を介してハウジング20(第2ハウジング22)に固定されるほぼ筒状のモータハウジング40と、該モータハウジング40内に収容保持され、前記結合部材33の一端側を及び他端側をそれぞれ回転自在に支持する第1軸受B1及び第2軸受B2と、前記モータ要素の一端側となるモータハウジング40の一端側に配設され、入力軸11の回転角の検出に供する第1回転角センサである第1レゾルバ51と、前記モータ要素の他端側となるモータハウジング40の他端側に配設され、中間軸13の回転角の検出に供する第2回転角センサである第2レゾルバ52と、モータハウジング40の一端側開口部を閉塞することによって、前記第1レゾルバ51をはじめとする内蔵部品を保護するカバー部材34と、該カバー部材34と入力軸11との間を液密にシールするシール部材35と、を備えている。
 前記モータハウジング40は、アルミニウム合金など所定の金属材料により2分割に構成されてなるもので、一端側の内周部に第1軸受B1及び第1レゾルバ51を収容すると共に、他端側に前記モータ要素を収容する筒状部としての第1モータハウジング41と、該第1モータハウジング41の他端側開口部を閉塞し、内周部に第2軸受B2及び第2レゾルバ52を収容する第2モータハウジング42と、から構成される。
 前記第1レゾルバ51は、入力軸11の外周に一体回転可能に嵌着される第1レゾルバロータ53と、該第1レゾルバロータ53の外周側に配置されて第1レゾルバロータ53の回転位置を検出する第1レゾルバステータ54と、から構成されている。そして、前記第1レゾルバステータ54は、第1センサ出力配線57を介して制御装置60と電気的に接続されることをもって、前記検出結果を制御装置60に出力するようになっている。
 前記第2レゾルバ52は、結合部材33の外周に一体回転可能に嵌着される第2レゾルバロータ55と、この第2レゾルバロータ55の外周側に配置されて第2レゾルバロータ55の回転位置を検出する第2レゾルバステータ56と、から構成されている。なお、当該第2レゾルバ52については、中間軸13と同期回転する結合部材33の回転角を検出することにより、モータロータ31の回転位置についても検出可能となっている。
 そして、前記第2レゾルバステータ56は、第2センサ出力配線58を介して制御装置60と電気的に接続されることをもって、前記検出結果を制御装置60に出力するようになっている。
 前記制御装置60は、運転者の手動操舵の状態に応じて中空モータ30を駆動制御する操舵アシスト制御や、駐車やレーンキープ等に際して各種センサやレーダー、カメラと所定の運転情報把握手段(図示外)からの情報に基づいて中空モータ30を駆動制御する自動運転制御といった各種制御処理を行う。
 図3は、前記制御装置60の演算回路構成を示す制御ブロック図である。
 前記制御装置60は、車両が直進走行中であるか否かを判断する直進走行判断部61と、該直進走行判断部61が直進走行中であると判断した際の第1レゾルバ51の検出値を基準としてステアリングホイール1の操舵絶対角である入力軸回転角θhを推定する操舵絶対角推定部62と、入力軸回転角θh等から出力軸15の回転角の信号である出力軸回転角θgを推定する出力軸回転角推定部63と、ステアリングホイール1に入力された操舵トルクTrを演算する操舵トルク演算部64と、自動運転時におけるモータトルク指令値である自動運転時トルク指令値Tm(auto)*を演算する自動運転時トルク指令演算部65と、手動運転時におけるモータトルク指令値である手動運転時トルク指令値Tm(manual)*を演算する手動運転時トルク指令演算部66と、自動運転時における運転者の操舵意図の有無を判断する操舵意図判断部67と、自動運転と手動運転との切り換えに供される自動・手動運転切換判定部68と、モータトルク指令値Tm(auto)*あるいはTm(manual)*に基づき中空モータ30を駆動制御するモータ駆動制御部69と、から主として構成されている。
 前記直進走行判断部61は、制御装置60に取り込まれた車両速度Vs、一対の転舵輪2R,2Lの回転速度差Rd及び操舵トルク演算部64により算出される操舵トルクTrに基づき車両が直進走行中であるか否かを判断する。
 より詳しくは、前記直進走行判断部61は、車両速度Vsが予め規定された所定値以上でかつ、一対の転舵輪2R,2Lの回転速度差Rdが0に近い所定値以下でかつ、操舵トルクTrが0に近い所定値以下となる場合にのみ車両が直進走行中であると判断する。そして、前記判断結果を操舵絶対角推定部62に出力するようになっている。
 前記操舵絶対角推定部62は、直進走行判断部61から車両が直進走行中であることを示す信号が入力された際の第1レゾルバ51の検出値をステアリングホイール1の中立位置、すなわち入力軸回転角θhが0度となる基準位置として学習する。そして、この基準位置からの第1レゾルバ51の検出値の変動量、つまり入力軸11の回転量に基づき、転舵輪2R,2Lの転舵角に相当するステアリングホイール1の操舵絶対角である入力軸回転角θhを推定するようになっている。なお、このとき第1レゾルバ51と第2レゾルバ52の相対回転角に基づき第2レゾルバ52の検出値を補正することで、中間軸回転角θmについても絶対角が得られるようになっている。
 前記出力軸回転角推定部63は、入力軸回転角θhと中間軸回転角θm、及びモータ駆動制御部69の後述する3相2相変換器71が導出するq軸モータ実電流Iqに所定のトルク定数を乗じることで得られるモータトルクTmから、以下に示す出力軸回転角θgの推定演算式(後述の(6)式)に基づいて出力軸回転角θgを推定する(図4参照)。
 以下、この出力軸回転角θgの推定演算式の導出過程を示す。
 まず、前記出力軸回転角θgは、中間軸回転角θmから第2トーションバー14の捩れ角を減じたものであるから、第2トーションバー14の捩れトルクをΔT2、第2トーションバー14の捩りバネ定数をg2とした場合に以下の(1)式で表すことができる。
Figure JPOXMLDOC01-appb-M000001
 前記第2トーションバー14の捩れトルクΔT2は、該第2トーションバー14よりも上流側(ステアリングホイール1側)に作用するトルク、すなわち入力軸11に発生するトルクであるステアリングトルクThと中空モータ30が中間軸13に付与するモータトルクTmの和から、第2トーションバー14よりも下流側に作用するトルク、すなわち前記各トルクTh,Tmに基づき回転する中間軸13に追従して回転することで出力軸15に生じるギアトルクTgを減じることで求められる。すなわち、前記捩れトルクΔT2は、以下の(2)式によって表すことができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、前記第1トーションバー12の捩れトルクΔT1について考えると、該捩れトルクΔT1は、第1トーションバー12よりも上流側に作用するステアリングトルクThから第1トーションバー12よりも下流側に作用するモータトルクTmとギアトルクTgとを減じることで求められ、以下の(3)式によって表すことができる。
Figure JPOXMLDOC01-appb-M000003
 この(2)式と(3)式から、前記第2トーションバー14の捩れトルクΔT2は、以下の(4)式によっても表すことができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、前記第1トーションバー12の捩れトルクΔT1は、入力軸回転角θhと中間軸回転角θm、及び第1トーションバー12の捩りバネ定数g1に基づき以下の(5)式によっても表すことができる。
Figure JPOXMLDOC01-appb-M000005
 そして、前記(1)式に(4)式及び(5)式の内容を反映させることにより、出力軸回転角θgの推定演算式である以下の(6)式を得ることができる。
Figure JPOXMLDOC01-appb-M000006
 ここで、上記(6)式によれば、第1,第2トーションバー12,14の捩りバネ定数g1,g2は既知の値であることから、入力軸回転角θhと中間軸回転角θm及びモータトルクTmさえ得られれば出力軸回転角θgを推定することができる。
 このようにして、前記出力軸回転角推定部63では、取り込んだ入力軸回転角θh、中間軸回転角θm及びモータトルクTmの信号に基づいて出力軸回転角θgが推定される。
 前記操舵トルク演算部64は、入力軸回転角θhと中間軸回転角θmとの差分(第1レゾルバ51の検出値と第2レゾルバ52の検出値との差分)に第1トーションバー12の捩りバネ定数g1を乗ずることにより、運転者がステアリングホイール1に入力した操舵トルクTrを算出する。
 前記自動運転時トルク指令演算部65は、前記各種センサやレーダー、カメラと所定の運転情報把握手段が取得した情報に基づき制御装置60とは異なるコントロールユニット等によって算出された転舵角指令θs*と、出力軸回転角推定部63により推定された出力軸回転角θgに基づき算出された転舵角推定値θsと、から自動運転時トルク指令値Tm(auto)*を演算する。
 前記手動運転時トルク指令演算部66は、操舵トルク演算部64により演算された操舵トルクTrと車両速度Vsとに基づいて手動運転時トルク指令値Tm(manual)*を演算する。
 前記操舵意図判断部67は、自動運転時において、入力軸回転角θhや、中間軸回転角θm、出力軸回転角θgの信号、または転舵角指令θs*に基づき算出されるモータ回転角制御目標θm*などから運転者の操舵意図の有無を判断するものであって、本実施形態では、入力軸回転角θh及び中間軸回転角θmの信号に基づき操舵意図判断を行うようになっている。
 ここで、自動運転時、つまりステアリングホイール1に運転者からの入力がない場合における入力軸回転角θh及び中間軸回転角θmの位相と、運転者がステアリングホイール1を転舵した場合の入力軸回転角θh及び中間軸回転角θmの位相とを比較すると、操舵軸10の構成上、前者は中空モータ30が主体となって操舵操作が行われることから、中間軸13に入力軸11が連れ回されるかたちで回動され、中間軸回転角θmの位相が入力軸回転角θhの位相に対して先行することとなる一方、後者は運転者の入力によって中空モータ30の入力がオーバーライド(上書き)されることから、入力軸11に中間軸13が連れ回されるかたちで回動され、入力軸回転角θhの位相が中間軸回転角θmの位相に先行することとなる。
 これに鑑み、前記操舵意図判断部67は、入力軸回転角θhの位相が中間軸回転角θmの位相に先行する場合に運転者に操舵意図があると判断するようになっており、具体的には以下の図5に示すフローチャートに基づき操舵意図判断を行うようになっている。
 なお、以下では、入力軸回転角θhや中間軸回転角θmの信号といった各種回転角信号や、該回転角信号から導出される角速度等については、転舵輪2R,2Lを右側に転舵しようとする方向へ作用する場合に正の値を示し、左側に転舵しようとする方向へ作用する場合に負の値を示すものとして説明する。
 すなわち、本実施形態の操舵意図判断部67における操舵意図判断フローでは、まず、操舵トルク演算部64と同様の方法にて操舵トルクTrを演算し(ステップS101)、この操舵トルクTrが所定値Tx以上であるか否かを判断する(ステップS102)。ここでNoと判断された場合には、運転者に操舵意図がないものと判断し(ステップS109)、操舵意図判断処理を終了する一方、Yesと判断された場合には、入力軸回転角θhと中間軸回転角θmとをそれぞれ時間微分することにより入力軸角速度Δθhと中間軸角速度Δθmとを算出した後(ステップS103,S104)、ステップS105に移行する。
 ステップS105及び後述のステップS107では、入力軸回転角θhの位相が中間軸回転角θmの位相に対して先行しているか否かを判断する。
 すなわち、前記ステップS105では、運転者によるステアリングホイール1の操舵操作に基づき該ステアリングホイール1に入力される入力軸角速度Δθhが0よりも大きく、かつ中空モータ30から中間軸13に入力される中間軸角速度Δθmよりも大きいか否か、つまり入力軸回転角θhの位相が中間軸回転角θmの位相に対して回転軸Zの右回り方向へ先行しているか否かを判断し、Yesと判断された場合には運転者が操舵意図をもってステアリングホイール1を右回りに操舵したと判断し(ステップS106)、操舵意図判断処理を終了する一方、Noと判断された場合にはステップS107に移行する。そして、ステップS107では、入力軸角速度Δθhが0よりも小さく、かつ中間軸角速度Δθmよりも小さいか否か、つまり入力軸回転角θhの位相が中間軸回転角θmの位相に対して回転軸Zの左回り方向へ先行しているか否かを判断し、Yesと判断された場合には運転者が操舵意図をもってステアリングホイール1を左側に操舵したと判断する一方(ステップS108)、Noと判断された場合には運転者に操舵意図がないものと判断し(ステップS109)、それぞれ操舵意図判断処理を終了する。
 前記自動・手動運転切換判定部68は、基本的に自動運転を要求する信号SigAが入力されていない場合に手動運転とし、信号SigAが入力されている場合に自動運転とするものであるが、信号SigAが入力されている場合であっても、操舵意図判断部67が運転者に操舵意図があるものと判断した場合にあっては手動運転に切り換えるようになっている。
 前記モータ駆動制御部69は、まず、電流指令演算部70によって、モータトルク指令値Tm*(自動運転時トルク指令値Tm(auto)*または手動運転時トルク指令値Tm(manual)*)と、第2レゾルバ52から出力される中空モータ30(中間軸13)の回転角である中間軸回転角θmに基づき算出されたモータ回転数Nmと、からd軸,q軸電流指令値Id*,Iq*を演算する。また、前記モータ駆動制御部69は、これと同時に3相2相変換器71によって、中空モータ30に流れる実電流を検出するモータ電流検出部72u,72vから出力されたu相,v相モータ実電流Iu,Ivと中間軸回転角θmとからd軸,q軸モータ実電流Id,Iqを得る。
 続いて、前記モータ駆動制御部69は、d軸,q軸モータ実電流Id,Iqがd軸,q軸電流指令値Id*,Iq*を追従するのに必要な値、すなわちd軸電流指令値Id*とd軸モータ実電流Idとの差分及びq軸電流指令値Iq*とq軸モータ実電流Iqとの差分を算出した後、これらをPI制御にかけることによってd軸,q軸電圧指令値Vd*,Vq*を得る。そして、2相3相変換器73によって、前記d軸,q軸電圧指令値Vd*,Vq*と中間軸回転角θmとからU相,V相,W相電圧指令値Vu*,Vv*,Vw*を算出した後、これら電圧指令値Vu*,Vv*,Vw*をPWM変換器74によってアナログ波形からPWM波形に変換してインバータ回路75に出力し、このインバータ回路75を介して中空モータ30を駆動制御するようになっている。
〔本実施形態の作用効果〕
 前記従来のパワーステアリング装置のような出力軸側に該出力軸の回転角を検出するレゾルバを有するパワーステアリング装置にあっては、前述したように、出力軸側のレゾルバの角度検出機能が失陥した場合に操舵アシスト制御や自動運転制御が適切に行えなくなるおそれがあるほか、必然的に前記レゾルバと電動モータとが離間した位置に配置されることから、前記レゾルバと電動モータとを接続する際の電気配線が長尺となり、該電気配線に係る配線作業の煩雑化やレイアウト性の低下を招来してしまうおそれがある。
 また、入力軸側のレゾルバと出力軸側のレゾルバとの相対角度のキャリブレーションについても、前記パワーステアリング装置の組み付けが完了してからでないと行えないことから、製造工程の煩雑化を招来するおそれもある。
 さらに、本実施形態のようなインテグラル型のパワーステアリング装置においては、出力軸が油圧室によって囲まれていることから前記出力軸側にレゾルバを設けることが構造上困難となっている。また、セクタシャフトの回転角から前記出力軸の回転角を推定しようにも、前記セクタシャフトが前記出力軸に対して大きなギア比を有していることで角度分解能が粗くなることから、前記出力軸の回転角を精度良く算出することは困難である。
 これに対して、本実施形態のパワーステアリング装置では、操舵軸10を、入力軸11と中間軸13及び出力軸15が2つのトーションバー12,14によって連係される構成にすると共に、入力軸11と中間軸13とにそれぞれ第1,第2レゾルバ51,52を設けることとした。また、制御装置60に設けられた出力軸回転角推定部63によって、第1,第2レゾルバ51,52によって検出される入力軸回転角θh及び中間軸回転角θmの信号と、第1,第2トーションバー12,14の捩りバネ定数g1,g2と、から出力軸15の回転角である出力軸回転角θgを推定できるようにした。これにより、本実施形態では、出力軸15側にレゾルバ等のセンサを設けずとも、制御装置60による出力軸回転角θgを用いた自動運転制御を行うことができる。
 このため、本実施形態では、前述した電気配線の長尺化に基づく配線作業の煩雑化やレイアウト性の低下といった問題の発生を抑制することができ、また、前記第1,第2レゾルバ51,52がいずれも中空モータ30内に収容されたものであるから、前記パワーステアリング装置の組み立て前に互いの相対位置のキャリブレーションを行うことが可能となる。さらに、本実施形態のようなインテグラル型のパワーステアリング装置であっても容易に出力軸回転角θgを取得することが可能となる。
 また、本実施形態では、制御装置60に操舵意図判断部67を設け、該操舵意図判断部67によって自動運転時における運転者の操舵意図の有無を判断できるようにしたことから、操舵意図が無いと判断した場合には自動運転制御を継続し、操舵意図が有ると判断した場合にはすぐさま手動運転に切り換えるといったスムーズな運転状態の切換制御を行うことができる。
 さらに、本実施形態では、運転者がステアリングホイール1を操舵操作すると入力軸回転角θhの位相が中間軸回転角θmの位相に先行する、といった操舵軸10の構成上の特性を操舵意図判断部67による操舵意図判断の判断基準に用いたことから、運転者の操舵意図の有無を高精度に判断できる。
 また、本実施形態では、直進走行判断部61と操舵絶対角推定部62とによって第1レゾルバ51の検出値からステアリングホイール1の操舵絶対角である入力軸回転角θhを算出できるようにしたことから、前記操舵絶対角を検出するための操舵絶対角センサを用いる必要がなくなるため、部品点数を削減し、もって製造コストの削減を図ることができる。
 さらに、本実施形態では、操舵アシストや自動運転等に供する電動モータとして中間軸13を包囲するように設けられた中空モータ30を適用したことから、減速機等を介して中間軸13に回転力を伝達する電動モータを適用する場合に比べて前記パワーステアリング装置の小型化を図ることができる。
 ところで、本実施形態のような出力軸15とピストン16との間の動力伝達にボールねじ機構24を用いるパワーステアリング装置は、一般にトラックやバスといった大型・大重量の車両に搭載されることが多い。本実施形態によれば、このような大型・大重量の車両に対しても自動運転等の操舵補助機能を付加できることから、これらの車両の安全性を飛躍的に向上させることができる。
 なお、本実施形態では、前記操舵意図判断部67を、入力軸回転角θh及び中間軸回転角θmの信号に基づき運転者の操舵意図の有無を判断するように構成したが、前記中間軸回転角θmを出力軸15の回転角である出力軸回転角θgに置き換えても同様に操舵意図判断を行うことが可能である。
 また、本実施形態では、操舵絶対角推定部62に第1レゾルバ51の検出値を入力することで直接的に入力軸回転角θhを算出しているが、操舵絶対角推定部62に第2レゾルバ52の検出値を入力することで先に中間軸回転角θmを絶対角とし、この中間軸回転角θmから第1,第2レゾルバ51,52の相対回転角に基づいて間接的に操舵絶対角である入力軸回転角θhを算出することも可能である。
〔第2実施形態〕
 図6に示す本発明の第2実施形態は、前記第1実施形態の構成に加えて、操舵意図判断部67に路面振動等の路面からの外乱の有無を判断する機能を追加すると共に、制御装置60に操舵意図判断部67の判断結果に基づき自動運転時トルク指令値Tm(Auto)*を補正する外乱補正処理部76を設けたものである。なお、本実施形態では、前記第1実施形態と同じ構成については同一の符号を付すことにより、具体的な説明を省略する(以下の各実施形態に同じ)。
 すなわち、本実施形態における操舵意図判断部67は、自動運転時において入力軸回転角θhと中間軸回転角θmとに基づく操舵意図判断を行うほか、入力軸回転角θhと、中間軸回転角θm、出力軸回転角θg、及びモータ回転角制御目標θm*に基づき、以下の図7に示すフローチャートに則って路面からの外乱の有無の判断を行うようになっている。
 すなわち、本フローでは、まず、入力軸回転角θhと中間軸回転角θmとに基づき操舵トルクTrを演算し(ステップS201)、この操舵トルクTrが所定値Tx以上であるか否かを判断する(ステップS202)。ここでNoと判断された場合には、路面からの外乱は発生していないものと判断し(ステップS210)、操舵意図判断部67における処理を終了する一方、Yesと判断された場合には、入力軸回転角θhと出力軸回転角θg及びモータ回転角制御目標θm*をそれぞれ時間微分することにより入力軸角速度Δθhと出力軸角速度Δθg及びモータ角速度制御目標Δθm*を算出した後(ステップS203~S205)、ステップS206に移行する。
 ステップS206では、出力軸角速度Δθgが0よりも小さくかつ入力軸角速度Δθhよりも小さい状態、つまり出力軸回転角θgの位相が入力軸回転角θhの位相に対して回転軸Zの左回り方向へ先行している状態にあってかつ、出力軸15の回転方向と中空モータ30の駆動方向が不一致、つまり出力軸角速度Δθgとモータ角速度制御目標Δθm*の正負符号が不一致(Δθg×Δθm*<0)であるか否かを判断する。ここで、Yesと判断された場合には、運転者に操舵の意図がなく、中空モータ30によって自動運転が継続されているものの、路面からの外乱によって中空モータ30の駆動方向に反して出力軸15が転舵輪2R,2Lを左側に転舵する方向へと回転している状態、すなわち出力軸15が外乱の影響によって回転軸Zに対して左回りに回転している状態にあると判断し(ステップS207)、外乱判断処理を終了する一方、Noと判断された場合には続いてステップS208に移行する。
 ステップS208では、出力軸角速度Δθgが0よりも大きくかつ入力軸角速度Δθhよりも大きい状態、つまり出力軸回転角θgの位相が入力軸回転角θhの位相に対して回転軸Zの右回り方向へ先行している状態にあってかつ、出力軸角速度Δθgとモータ角速度制御目標Δθm*の正負符号が不一致(Δθg×Δθm*<0)であるか否かを判断する。ここで、Yesと判断された場合には、運転者に操舵の意図がなく、中空モータ30によって自動運転が継続されているものの、路面からの外乱によって中空モータ30の駆動方向に反して出力軸15が転舵輪2R,2Lを右側に転舵する方向へと回転している状態、すなわち出力軸15が外乱の影響によって回転軸Zに対して右回りに回転している状態にあると判断する一方(ステップS209)、Noと判断された場合には路面からの外乱は発生していないものとして(ステップS210)、それぞれ外乱判断処理を終了する。
 前記外乱補正処理部76は、操舵意図判断部67が出力軸15に右回り方向への外乱が発生していると判断した場合に、自動運転時トルク指令値Tm(auto)*を出力軸15の左回り方向への操舵トルクが増大するように補正する一方、操舵意図判断部67が出力軸15に左回り方向への外乱が発生していると判断した場合には、自動運転時トルク指令値Tm(auto)*を出力軸15の右回り方向への操舵トルクが増大するように補正する。すなわち、前記外乱補正処理部76は、出力軸15に生じた外乱の影響を打ち消すように自動運転時トルク指令値Tm(auto)*に補正をかけるようになっている。なお、このとき自動運転時トルク指令値Tm(auto)*の補正に供される補正値については、予め車両試験等によって求めた固定値を用いてもよく、また、中間軸回転角θmと出力軸回転角θgの位相差などから算出される変動値を用いてもよい。
 したがって、本実施形態によれば、前記第1実施形態と同様の作用効果を得られるのは勿論のこと、操舵意図判断部67を路面からの外乱についても判別可能に構成したことから、自動運転時に出力軸回転角θg等に変動がみられた場合において、これが運転者の操舵意図に基づくものであるか、あるいは路面からの外乱の影響によるものであるかを判別することができる。これによって、前記路面からの外乱の影響を運転者の操舵意図と誤認して運転状態が自動運転から手動運転に突如切り換えられるといった不具合を抑制でき、車両の安全性を向上させることができる。
 また、本実施形態では、制御装置60に外乱補正処理部76を設け、この外乱補正処理部76によって自動運転時における路面からの外乱の影響を抑制できるようにしたことから、該自動運転における安定性をより一層向上させることができる。
 図8は、前述した第2実施形態の変形例として、操舵意図判断部67による外乱判断処理のフロー内容を一部変更したものである。
 すなわち、図8に示す変形例にかかるフローでは、前記第2実施形態におけるステップS203が廃止されていると共に、ステップS206及びステップS208がそれぞれ後述のステップS211及びステップS212に置き換えられている。
 ステップS211では、出力軸15の回転方向と中空モータ30の駆動方向が一致、つまり出力軸角速度Δθgとモータ角速度制御目標Δθm*の正負符号が一致し(θg×θm*>0)、かつ、出力軸角速度Δθgが0よりも小さくかつモータ角速度制御目標Δθm*よりも小さい状態、つまり出力軸回転角θgの位相がモータ回転角制御目標θm*の位相(中空モータ30の回転角の位相)に対して回転軸Zの左回り方向へ先行している状態にあるか否かを判断し、Yesと判断された場合にはステップS207に移行する一方、Noと判断された場合にはステップS210に移行する。
 また、ステップS212では、出力軸15の回転方向と中空モータ30の駆動方向が一致、つまり出力軸角速度Δθgとモータ角速度制御目標Δθm*の正負符号が一致し(θg×θm*>0)、かつ、出力軸角速度Δθgが0よりも大きくかつモータ角速度制御目標Δθm*よりも大きい状態、つまり出力軸回転角θgの位相がモータ回転角制御目標θm*の位相に対して回転軸Zの右回り方向へ先行している状態にあるか否かを判断し、Yesと判断された場合にはステップS209に移行する一方、Noと判断された場合にはステップS210に移行するようになっている。
 したがって、この変形例においても、操舵意図判断部67によって路面からの外乱の有無を判断できることから、前述した第2実施形態と同様の作用効果を得ることができる。
〔第3実施形態〕
 本発明の第3実施形態は、操舵意図判断部67に自動運転制御が行われているか否かを能動的に判断する機能を追加したものであり、図9はその判断処理を示すフローチャートである。
 すなわち、本フローでは、まず、入力軸回転角θhと中間軸回転角θmとに基づき操舵トルクTrを演算し(ステップS301)、この操舵トルクTrが所定値Tx以上であるか否かを判断する(ステップS302)。ここでNoと判断された場合には、自動運転制御の動作判断を行うことなく処理を終了する一方、Yesと判断された場合には、出力軸回転角θgとモータ回転角制御目標θm*をそれぞれ時間微分することにより出力軸角速度Δθgとモータ角速度制御目標Δθm*を算出した後(ステップS303,S304)、ステップS305に移行する。
 ステップS305では、出力軸15の回転方向と中空モータ30の駆動方向が一致、つまり出力軸角速度Δθgとモータ角速度制御目標Δθm*の正負符号が一致し(θg×θm*>0)、かつ、モータ角速度制御目標Δθm*が0よりも小さくかつ出力軸角速度Δθgよりも小さい状態、つまりモータ回転角制御目標θm*の位相が出力軸回転角θgの位相に対して回転軸Zの左回り方向へ先行している状態にあるか否かを判断する。ここで、Yesと判断された場合には、自動運転状態、すなわち出力軸15が中空モータ30の回転力によって正常に回転駆動される状態にあると判断し(ステップS306)、自動運転制御の動作判断処理が終了する一方、Noと判断された場合にはステップS307に移行する。
 ステップS307では、出力軸角速度Δθgとモータ角速度制御目標Δθm*の正負符号が一致し(θg×θm*>0)、かつ、モータ角速度制御目標Δθm*が0よりも大きくかつ出力軸角速度Δθgよりも大きい状態、つまりモータ回転角制御目標θm*の位相が出力軸回転角θgの位相に対して回転軸Zの右回り方向へ先行している状態にあるか否かを判断する。ここで、Yesと判断された場合には、自動運転状態、すなわち出力軸15が中空モータ30の回転力によって正常に回転駆動される状態にあると判断して処理が終了する一方(ステップS308)、Noと判断された場合には、自動運転以外の動作中にあると判断し(ステップS309)、処理が終了する。
 したがって、本実施形態によれば、前記第1実施形態と同様の作用効果を得られるのは勿論のこと、操舵意図判断部67によって運転者の操舵意図の有無を判断するのみならず、自動運転制御が行われているか否かを能動的に判断できることから、状況に応じた自動運転と手動運転との切り換えをより精度良く行うことができる。
〔第4実施形態〕
 図10に示す本発明の第4実施形態は、パワーシリンダ18が生成する油圧トルクに応じて中空モータ30の出力を調整できるようにしたものである。
 すなわち、本実施形態にかかる制御装置60は、前記第1実施形態の構成に加えて、ポンプ3からロータリバルブ19に供給される作動液の液量であるポンプ吐出量Pを推定する供給液量演算部77と、該供給液量演算部77が推定した作動油の液量等に基づきパワーシリンダ18が生成する油圧トルクTpを推定する油圧アクチュエータトルク演算部78と、をさらに備えている。
 前記供給液量演算部77は、ポンプ3が車両のエンジンにより駆動されるエンジン駆動ポンプであることから、エンジン回転数Neに基づきポンプ3のポンプ吐出量Pを推定する。より具体的には、前記供給液量演算部77は、エンジン回転数Neに対してエンジンとポンプとの間のギア比G1とポンプ固有吐出量d1を乗じた後、これにより得られる値をポンプ3の仕様に応じて設定される調整流量リミッタ79にかけることでポンプ吐出量Pを推定するようになっている。
 前記油圧アクチュエータトルク演算部78は、まず、中間軸回転角θmから出力軸回転角θgを減ずることによりロータリバルブ19のバルブ作用角Δθrを得る。そして、このバルブ作用角Δθrと供給液量演算部77によって推定されたポンプ吐出量Pとから、予め用意されたアシスト圧推定マップ80を参照してアシスト圧推定値Powを算出する。
 続いて、前記油圧アクチュエータトルク演算部78は、アシスト圧推定値Powに対してパワーシリンダ18のシリンダ断面積Ssと、セクタシャフト17の回転中心からピストン16との歯当たり面までの距離PCRと、ピストン16とセクタシャフト17との間のギア比G2とを乗ずることにより油圧トルクTpを得る。なお、このとき得られる油圧トルクTpは、あくまで大きさのみのスカラー値であるから、バルブ作用角Δθrに基づき油圧トルクTpの作用方向を判定する方向判定部81によって正負符号が付加されることとなる。そして、この正負符号が付加された油圧トルクTpに対して車両試験等に基づき予め設定された補正係数を乗ずることにより、最終的な油圧トルクTpを算出するようになっている。
 また、本実施形態に係るモータ駆動制御部69は、自動運転時において、自動運転時トルク指令演算部65から出力された自動運転時トルク指令値Tm(auto)*から油圧アクチュエータトルク演算部78によって算出した油圧トルクTpを減じたものをモータトルク指令値Tm*として受け取り、中空モータ30の駆動制御を行うようになっている。
 したがって、本実施形態によれば、自動運転をパワーシリンダ18の生成する油圧トルクTpと中空モータ30が出力する駆動トルクとの協調制御によって行うことができることから、例えばエンジン回転数Neが低く油圧トルクTpが確保できない場合であっても中空モータ30の駆動トルクを増大させることで操舵アシスト力を維持することができる。また、その一方で、自動運転の際に余剰な操舵アシスト力が付与されることも抑制できることから、自動運転に係る転舵の正確性を向上できると共に、電力や油圧のロスを低減して省エネルギー化を図ることができる。
 さらに、本実施形態では、ポンプ3がエンジン駆動ポンプであり、供給液量演算部77を、エンジン回転数Neに基づいてポンプ吐出量Pを推定するように構成したことから、該ポンプ吐出量Pを精度良く検出することができる。この結果、パワーシリンダ18と中空モータ30とによる自動運転の協調制御をより高精度に行うことができる。
〔第5実施形態〕
 図11及び図12に示す本発明の第5実施形態は、前記第4実施形態におけるポンプ3をエンジン駆動ポンプからポンプ駆動用電動モータ82によって駆動されるモータ駆動ポンプ83に変更すると共に、ポンプ駆動用電動モータ82をパワーシリンダ18の生成する油圧トルクTpに基づいて駆動制御するようにしたものである。
 図11は、本実施形態に係るパワーステアリング装置を示す概略図である。
 すなわち、本実施形態に係るモータ駆動ポンプ83は、制御装置60とは別のコントロールユニットであるポンプECU84と電気的に接続されたポンプ駆動用電動モータ82がポンプECU84から出力された指令電圧に基づき回転駆動することにより、ポンプ作用を行うようになっている。
 前記ポンプECU84は、モータ駆動ポンプ83のポンプ吐出量Pを目標値とするための流量制御信号SigPに基づき前記指令電圧を生成し、本実施形態では、当該流量制御信号SigPを制御装置60によって生成するようになっている。
 図12は、本実施形態に係る制御装置60の演算回路構成を示す制御ブロック図である。
 すなわち、本実施形態の制御装置60は、前記第4実施形態の構成に加えて、油圧アクチュエータトルク演算部78によって推定された油圧トルクTpに基づき流量制御信号SigPを生成し、これをポンプECU84へと出力する流量制御信号生成部85をさらに備えている。
 この流量制御信号生成部85は、基本的には油圧トルクTpのみに基づいて流量制御信号SigPを生成するものであるが、特定の状況下においては油圧トルクTpに補正値を加減算したうえで流量制御信号SigPを生成する。
 例えば、前記流量制御信号生成部85は、自動運転時における操舵量が小さく、ロータリバルブ19のバルブ作用角Δθrが小さなものとなる場合、すなわちモータ駆動ポンプ83が作動液を多量に吐出したとしても、その多くが油圧トルクTpの生成に供されることなくリザーバタンク4へ排出されてしまう場合において、油圧トルクTpを減算補正することにより、通常よりもポンプ吐出量Pを抑えるような流量制御信号SigPを生成する。これにより、自動運転に供されるトルクのうち、油圧トルクTpが減少する一方、このトルクの減少を補うかたちで中空モータ30の駆動トルクが上昇することとなる。
 また、前記流量制御信号生成部85は、中空モータ30が高回転駆動に基づき過熱した場合等において、油圧トルクTpを加算補正することにより、通常よりもポンプ吐出量Pを増大させるような流量制御信号SigPを生成するようになっている。これにより、自動運転に供されるトルクのうち油圧トルクTpが占める割合が大きくなり、中空モータ30の駆動トルクが減少することとなる。
 このように、前記流量制御信号生成部85は、中空モータ30あるいはモータ駆動ポンプ83のいずれか一方が不調であったり効率の面で劣ったりする場合において、該一方のトルク出力分担率を下げ、他方のトルク出力分担率を上げるようになっている。
 なお、本実施形態における油圧アクチュエータトルク演算部78は、ポンプECU84から直接的にポンプ吐出量Pの情報を取得するようになっており、このポンプ吐出量Pの情報に基づきアシスト圧推定値Powを推定するようになっている。
 ロータリバルブ19に作動液を吐出するポンプがエンジン駆動ポンプであると、ロータリバルブ19のバルブ作用角Δθrの大小にかかわらずエンジン回転数Neに応じて作動液を吐出してしまうことから、例えばエンジン回転数Neが高回転かつバルブ作用角Δθrが僅かである場合において、前記エンジン駆動ポンプが吐出した作動液が油圧トルクTpの生成に供されることなくリザーバタンク4へ排出されてしまい、ポンプ効率の悪化が招来されてしまうおそれがある。
 これに対して、本実施形態では、前記ポンプとしてモータ駆動ポンプ83を採用すると共に、このモータ駆動ポンプ83を油圧トルクTpから流量制御信号生成部85が生成した流量制御信号SigPに基づき駆動制御するようにしたことから、モータ駆動ポンプ83による作動油の余剰な吐出を抑制し、ポンプ効率を向上させることができる。
 また、本実施形態では、流量制御信号生成部85を、中空モータ30あるいはモータ駆動ポンプ83のいずれか一方が不調あるいは非効率的であると判断した場合において、該一方のトルク出力分担率を下げ、他方のトルク出力分担率を上げるように構成したことから、機器の保護を図りつつ効率のよい制御を実現できる。
 なお、本実施形態では、前記ポンプとしてポンプ駆動用電動モータ82によって駆動されるモータ駆動ポンプ83を用いることとしたが、これの代わりに作動液の吐出量を電磁ソレノイドによって調整可能な可変吐出量ポンプとすることもできる。この場合も、油圧トルクTpから流量制御信号生成部85が生成した流量制御信号SigPに基づき電磁ソレノイドを駆動することで同様の作用効果を得ることが可能となる。
〔第6実施形態〕
 図13に示す本発明の第6実施形態は、前記第5実施形態における制御装置60に、車両に積載された荷物の重量に基づく車両への負荷である積載荷重Mを推定する負荷推定部である積載荷重推定部86をさらに備えたものである。
 前記積載荷重推定部86は、中間軸回転角θmから出力軸回転角θgを減ずることによりロータリバルブ19のバルブ作用角Δθrを得る。そして、このバルブ作用角Δθrと車両速度Vsとから、予め用意された積載荷重推定マップ87を参照して積載荷重Mを推定する。
 また、前記積載荷重推定部86は、前述の推定処理によって得た積載荷重Mが所定値以上である場合には、出力補正部88によって中空モータ30の回転駆動に供される自動運転時トルク指令値Tm(auto)*やポンプ駆動用電動モータ82の回転駆動に供される流量制御信号SigPを適宜増量補正するようになっている。
 なお、図示はしていないが、前記積載荷重推定部86は、前述の推定処理によって得た積載荷重Mが所定値以上である場合に、この情報をトラクションコントローラやESCコントローラ等へ送信することで、旋回時に車速を低下させてアンダーステアを抑制するといった各種協調制御が行えるようになっている。
 一般に、車両の積載荷重Mが大きくなると油圧トルクTpや中空モータ30の駆動トルクに見合った転舵角が得られず、自動運転時における挙動が不安定となることが知られている。
 これに対して、本実施形態では、制御装置60に積載荷重Mを推定する積載荷重推定部86を設けると共に、この積載荷重推定部86が推定した積載荷重Mが所定値以上の場合には、油圧トルクTpや中空モータ30の駆動トルクを増量補正するようにしたことから、自動運転時の積載荷重Mの増大に伴う挙動の不安定化を抑制し、当該積載荷重Mに応じた操舵制御を実現することができる。
〔第7実施形態〕
 図14に示す本発明の第7実施形態は、前記第5実施形態における制御装置60に、路面抵抗μに基づく車両への負荷を推定する負荷推定部である路面抵抗推定部89をさらに備えたものである。
 前記路面抵抗推定部89は、一対の転舵輪2R,2Lの回転速度差Rdから予め用意された車両スリップ角算出マップ90に基づき車両スリップ角θcを算出し、出力軸回転角θgから車両スリップ角θcを減じることにより転舵輪スリップ角θwを得た後、この転舵輪スリップ角θwから予め用意された路面抵抗推定マップ91に基づき路面抵抗μを推定するようになっている。
 また、前記路面抵抗推定部89は、前述の推定処理によって得た路面抵抗μが所定値以上である場合には、出力補正部92によって中空モータ30の回転駆動に供される自動運転時トルク指令値Tm(auto)*やポンプ駆動用電動モータ82の回転駆動に供される流量制御信号SigPを適宜増量補正するようになっている。
 なお、図示はしていないが、前記路面抵抗推定部89は、前述の推定処理によって得た路面抵抗μをトラクションコントローラやESCコントローラ等へ送信し、該各コントローラ等との協調を図ることで車両の安定性を向上できるようになっている。
 一般に、路面抵抗μが大きくなると油圧トルクTpや中空モータ30の駆動トルクに見合った転舵角が得られず、自動運転時における挙動が不安定となることが知られている。
 これに対して、本実施形態では、制御装置60に路面抵抗μを推定する路面抵抗推定部89を設けると共に、この路面抵抗推定部89が推定した路面抵抗μが所定値以上の場合には、油圧トルクTpや中空モータ30の駆動トルクを増量補正するようにしたことから、路面抵抗μの増大に伴う自動運転時の挙動の不安定化を抑制し、当該路面抵抗μに応じた操舵制御を実現することができる。
 本発明は、前記実施形態に例示の構成に限定されるものではなく、前記インテグラル型のパワーステアリング装置以外にも、例えば普通乗用車等に用いられるラック・ピニオン型のパワーステアリング装置など、前記第1,第2トーションバー12,14や中空モータ30等といった本発明の発明特定事項を具備するものであれば、他の形式のパワーステアリング装置についても適用可能である。
 また、本発明は、出力軸回転角θgを出力軸回転角推定部63によって推定することでセンサに依らずに出力軸回転角θgが得られるものであるが、これを出力軸回転角θgや転舵角を検出するセンサが設けられたパワーステアリング装置に適用することも当然に可能である。このような場合、前記出力軸回転角推定部63によって推定される出力軸回転角θgを前記センサの機能が失陥した際のバックアップとして用いることでフェイルセーフ性を向上させたり、前記センサが検出した出力軸回転角θgと前記出力軸回転角推定部63によって推定される出力軸回転角θgとの両方に基づいて中空モータ30を駆動させることで該中空モータ30の制御の精度を向上させたりすることが可能となる。
 なお、前記各実施形態では、出力軸回転角推定部63によって推定した出力軸回転角θgは、自動運転制御に主として供されるようになっているが、この推定した出力軸回転角θgを手動運転制御に適用することも当然に可能である。
 以上説明した各実施形態に基づくパワーステアリング装置としては、例えば以下に述べる態様のものが考えられる。
 パワーステアリング装置は、その一つの態様において、ステアリングホイールの操舵操作に伴い回転する入力軸と、前記入力軸と第1トーションバーを介して接続される中間軸と、前記中間軸と第2トーションバーを介して接続される出力軸と、を有する操舵軸と、ピストンによって隔成された1対の圧力室を有する油圧アクチュエータと、前記操舵軸の回転運動を前記ピストンの移動方向運動に変換すると共に、前記ステアリングホイールの操舵操作を転舵輪に伝達する変換機構と、前記第2トーションバーの捩れ量および捩れの方向に応じて車両に搭載されたポンプから供給される作動液を選択的に前記1対の圧力室に供給するコントロールバルブと、前記中間軸に回転力を付与する電動モータと、マイクロコンピュータを備えたコントロールユニットと、前記コントロールユニットに設けられ、前記入力軸の回転角の信号、前記中間軸の回転角の信号、第1トーションバーの捩りバネ定数、および前記第2トーションバーの捩りバネ定数に基づき前記出力軸の回転角を推定する出力軸回転角推定部と、前記コントロールユニットに設けられ、前記出力軸の回転角に基づき前記電動モータを駆動制御するモータ駆動制御部と、を有する。
 前記パワーステアリング装置の好ましい態様において、前記パワーステアリング装置は、前記コントロールユニットに設けられ、前記入力軸の回転角の信号、前記中間軸の回転角の信号、前記出力軸の回転角の信号、または前記電動モータの回転角の信号に基づき、運転者の操舵意図の有無を判断する操舵意図判断部を有する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記操舵意図判断部は、前記中間軸の回転角の位相または前記出力軸の回転角の位相より前記入力軸の回転角の位相が先行する場合、運転者に操舵意図があるものと判断する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記操舵意図判断部は、前記出力軸の回転角の位相が前記入力軸の回転角の位相よりも先行し、かつ前記出力軸の回転方向と前記電動モータの駆動方向とが不一致のとき、前記出力軸の回転は路面からの外乱によるものであると判断する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記操舵意図判断部は、前記出力軸の回転方向と前記電動モータの駆動方向が一致し、かつ前記出力軸の回転角の位相が前記電動モータの回転角の位相より先行するとき、前記出力軸の回転は路面からの外乱によるものであると判断する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記操舵意図判断部は、前記出力軸の回転方向と前記電動モータの駆動方向が一致し、かつ前記電動モータの回転角の位相が前記出力軸の回転角の位相より先行するとき、前記出力軸の回転は前記電動モータの回転力によるものであると判断する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記操舵意図判断部は、前記出力軸の回転角の位相が前記入力軸の回転角の位相または前記電動モータの回転角の位相よりも先行するとき、前記出力軸の回転が路面からの外乱の影響によるものであると判断し、前記モータ駆動制御部は、外乱による前記出力軸の回転を抑制するように前記電動モータを駆動制御する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記コントロールユニットは、前記ポンプから前記コントロールバルブに供給される作動液の液量を推定する供給液量演算部と、前記中間軸の回転角の信号、前記出力軸の回転角の信号、および前記作動液の液量に基づき前記油圧アクチュエータの発生トルクを推定する油圧アクチュエータトルク演算部と、を有する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記ポンプは車両のエンジンにより駆動されるエンジン駆動ポンプであって、前記作動液の液量は、前記エンジンの回転数に基づき推定される。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記ポンプは、ポンプ駆動用電動モータによって駆動されるモータ駆動ポンプまたは作動液の吐出量を電磁ソレノイドによって調整可能な可変吐出量ポンプであって、前記ポンプ駆動用電動モータまたは前記電磁ソレノイドは、前記油圧アクチュエータの発生トルクに基づき駆動制御される。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記コントロールユニットは、前記電動モータの駆動トルクと前記油圧アクチュエータの発生トルクの大きさの割合を調整し、その調整結果に基づき前記電動モータおよび前記モータ駆動ポンプまたは前記電磁ソレノイドを駆動制御する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記電動モータは、前記油圧アクチュエータの発生トルクに基づき駆動制御される。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記コントロールユニットは、前記中間軸の回転角の信号、前記出力軸の回転角の信号、および車両速度に基づき車両に積載された荷物の重量を推定する負荷推定部を有する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記コントロールユニットは、前記出力軸の回転角の信号および1対の前記転舵輪同士の回転速度差に基づき路面抵抗を推定する負荷推定部を有する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記コントロールユニットは、前記入力軸の回転角の信号、前記中間軸の回転角の信号、および前記第1トーションバーの捩りバネ定数に基づき、操舵トルクを演算する操舵トルク演算部と、車両速度、1対の前記転舵輪同士の回転速度差、および前記操舵トルクに基づき車両が直進走行中であるか否かを判定する直進走行判断部と、前記直進走行判断部が直進走行中であると判断した状態からの前記入力軸の回転量または前記中間軸の回転量に基づき前記転舵輪の転舵角に相当する前記ステアリングホイールの操舵絶対角を推定する操舵絶対角推定部と、を有する。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記変換機構は、前記出力軸に設けられたねじ軸と、前記ねじ軸を包囲するように筒状に形成されて内周側に螺旋溝が形成されたナットと、前記ねじ軸と前記ナットの間に設けられた複数のボールと、から構成されたボールねじ機構である。
 別の好ましい態様では、前記パワーステアリング装置の態様のいずれかにおいて、前記電動モータは、前記中間軸を包囲するように設けられた中空モータである。

Claims (17)

  1.  ステアリングホイールの操舵操作に伴い回転する入力軸と、前記入力軸と第1トーションバーを介して接続される中間軸と、前記中間軸と第2トーションバーを介して接続される出力軸と、を有する操舵軸と、
     ピストンによって隔成された1対の圧力室を有する油圧アクチュエータと、
     前記操舵軸の回転運動を前記ピストンの移動方向運動に変換すると共に、前記ステアリングホイールの操舵操作を転舵輪に伝達する変換機構と、
     前記第2トーションバーの捩れ量および捩れの方向に応じて車両に搭載されたポンプから供給される作動液を選択的に前記1対の圧力室に供給するコントロールバルブと、
     前記中間軸に回転力を付与する電動モータと、
     マイクロコンピュータを備えたコントロールユニットと、
     前記コントロールユニットに設けられ、前記入力軸の回転角の信号、前記中間軸の回転角の信号、第1トーションバーの捩りバネ定数、および前記第2トーションバーの捩りバネ定数に基づき前記出力軸の回転角を推定する出力軸回転角推定部と、
     前記コントロールユニットに設けられ、前記出力軸の回転角に基づき前記電動モータを駆動制御するモータ駆動制御部と、
     を有することを特徴とするパワーステアリング装置。
  2.  請求項1に記載のパワーステアリング装置は、
     前記コントロールユニットに設けられ、前記入力軸の回転角の信号、前記中間軸の回転角の信号、前記出力軸の回転角の信号、または前記電動モータの回転角の信号に基づき、運転者の操舵意図の有無を判断する操舵意図判断部を有することを特徴とするパワーステアリング装置。
  3.  請求項2に記載のパワーステアリング装置において、
     前記操舵意図判断部は、前記中間軸の回転角の位相または前記出力軸の回転角の位相より前記入力軸の回転角の位相が先行する場合、運転者に操舵意図があるものと判断することを特徴とするパワーステアリング装置。
  4.  請求項2に記載のパワーステアリング装置において、
     前記操舵意図判断部は、前記出力軸の回転角の位相が前記入力軸の回転角の位相よりも先行し、かつ前記出力軸の回転方向と前記電動モータの駆動方向とが不一致のとき、前記出力軸の回転は路面からの外乱によるものであると判断することを特徴とするパワーステアリング装置。
  5.  請求項2に記載のパワーステアリング装置において、
     前記操舵意図判断部は、前記出力軸の回転方向と前記電動モータの駆動方向が一致し、かつ前記出力軸の回転角の位相が前記電動モータの回転角の位相より先行するとき、前記出力軸の回転は路面からの外乱によるものであると判断することを特徴とするパワーステアリング装置。
  6.  請求項2に記載のパワーステアリング装置において、
     前記操舵意図判断部は、前記出力軸の回転方向と前記電動モータの駆動方向が一致し、かつ前記電動モータの回転角の位相が前記出力軸の回転角の位相より先行するとき、前記出力軸の回転は前記電動モータの回転力によるものであると判断することを特徴とするパワーステアリング装置。
  7.  請求項2に記載のパワーステアリング装置において、
     前記操舵意図判断部は、前記出力軸の回転角の位相が前記入力軸の回転角の位相または前記電動モータの回転角の位相よりも先行するとき、前記出力軸の回転が路面からの外乱の影響によるものであると判断し、
     前記モータ駆動制御部は、外乱による前記出力軸の回転を抑制するように前記電動モータを駆動制御することを特徴とするパワーステアリング装置。
  8.  請求項1に記載のパワーステアリング装置において、
     前記コントロールユニットは、前記ポンプから前記コントロールバルブに供給される作動液の液量を推定する供給液量演算部と、前記中間軸の回転角の信号、前記出力軸の回転角の信号、および前記作動液の液量に基づき前記油圧アクチュエータの発生トルクを推定する油圧アクチュエータトルク演算部と、を有することを特徴とするパワーステアリング装置。
  9.  請求項8に記載のパワーステアリング装置において、
     前記ポンプは車両のエンジンにより駆動されるエンジン駆動ポンプであって、前記作動液の液量は、前記エンジンの回転数に基づき推定されることを特徴とするパワーステアリング装置。
  10.  請求項8に記載のパワーステアリング装置において、
     前記ポンプは、ポンプ駆動用電動モータによって駆動されるモータ駆動ポンプまたは作動液の吐出量を電磁ソレノイドによって調整可能な可変吐出量ポンプであって、
     前記ポンプ駆動用電動モータまたは前記電磁ソレノイドは、前記油圧アクチュエータの発生トルクに基づき駆動制御されることを特徴とするパワーステアリング装置。
  11.  請求項10に記載のパワーステアリング装置において、
     前記コントロールユニットは、前記電動モータの駆動トルクと前記油圧アクチュエータの発生トルクの大きさの割合を調整し、その調整結果に基づき前記電動モータおよび前記モータ駆動ポンプまたは前記電磁ソレノイドを駆動制御することを特徴とするパワーステアリング装置。
  12.  請求項8に記載のパワーステアリング装置において、
     前記電動モータは、前記油圧アクチュエータの発生トルクに基づき駆動制御されることを特徴とするパワーステアリング装置。
  13.  請求項1に記載のパワーステアリング装置において、
     前記コントロールユニットは、前記中間軸の回転角の信号、前記出力軸の回転角の信号、および車両速度に基づき車両に積載された荷物の重量を推定する負荷推定部を有することを特徴とするパワーステアリング装置。
  14.  請求項1に記載のパワーステアリング装置において、
     前記コントロールユニットは、前記出力軸の回転角の信号および1対の前記転舵輪同士の回転速度差に基づき路面抵抗を推定する負荷推定部を有することを特徴とするパワーステアリング装置。
  15.  請求項1に記載のパワーステアリング装置において、
     前記コントロールユニットは、前記入力軸の回転角の信号、前記中間軸の回転角の信号、および前記第1トーションバーの捩りバネ定数に基づき、操舵トルクを演算する操舵トルク演算部と、車両速度、1対の前記転舵輪同士の回転速度差、および前記操舵トルクに基づき車両が直進走行中であるか否かを判定する直進走行判断部と、前記直進走行判断部が直進走行中であると判断した状態からの前記入力軸の回転量または前記中間軸の回転量に基づき前記転舵輪の転舵角に相当する前記ステアリングホイールの操舵絶対角を推定する操舵絶対角推定部と、を有することを特徴とするパワーステアリング装置。
  16.  請求項1に記載のパワーステアリング装置において、
     前記変換機構は、前記出力軸に設けられたねじ軸と、前記ねじ軸を包囲するように筒状に形成されて内周側に螺旋溝が形成されたナットと、前記ねじ軸と前記ナットの間に設けられた複数のボールと、から構成されたボールねじ機構であることを特徴とするパワーステアリング装置。
  17.  請求項16に記載のパワーステアリング装置において、
     前記電動モータは、前記中間軸を包囲するように設けられた中空モータであることを特徴とするパワーステアリング装置。
PCT/JP2017/004003 2016-03-18 2017-02-03 パワーステアリング装置 WO2017159107A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018505329A JP6563113B2 (ja) 2016-03-18 2017-02-03 パワーステアリング装置
DE112017001413.1T DE112017001413T5 (de) 2016-03-18 2017-02-03 Servolenkungsvorrichtung
US16/085,924 US10988167B2 (en) 2016-03-18 2017-02-03 Power steering apparatus
CN201780012944.2A CN108698631B (zh) 2016-03-18 2017-02-03 动力转向装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-055859 2016-03-18
JP2016055859 2016-03-18

Publications (1)

Publication Number Publication Date
WO2017159107A1 true WO2017159107A1 (ja) 2017-09-21

Family

ID=59850781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004003 WO2017159107A1 (ja) 2016-03-18 2017-02-03 パワーステアリング装置

Country Status (5)

Country Link
US (1) US10988167B2 (ja)
JP (1) JP6563113B2 (ja)
CN (1) CN108698631B (ja)
DE (1) DE112017001413T5 (ja)
WO (1) WO2017159107A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141255A1 (ja) * 2014-03-19 2017-04-06 日立オートモティブシステムズ株式会社 パワーステアリング装置
DE102018220560A1 (de) * 2018-11-29 2019-12-19 Thyssenkrupp Ag Antriebsanordnung mit einem bewegbaren Schienensegment
JP2020028963A (ja) * 2018-08-24 2020-02-27 国立大学法人横浜国立大学 制御装置、パワーアシスト装置、制御方法およびプログラム
JP2020045004A (ja) * 2018-09-19 2020-03-26 いすゞ自動車株式会社 補正装置及び補正方法
JP2020090134A (ja) * 2018-12-04 2020-06-11 トヨタ自動車株式会社 転舵システム、操舵支援装置
JPWO2020170579A1 (ja) * 2019-02-18 2021-12-16 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
WO2022014073A1 (ja) * 2020-07-16 2022-01-20 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11738802B2 (en) * 2018-12-20 2023-08-29 Hl Mando Corporation Steering control system and control method thereof
CN111098920B (zh) * 2019-12-20 2021-10-26 重庆长安工业(集团)有限责任公司深圳分公司 无人履带车辆的转向扭矩分配方法及相关装置
CN113917176A (zh) * 2021-10-19 2022-01-11 王水英 用于变速器输入轴的测速装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051990A1 (de) * 2006-11-03 2008-05-08 Trw Automotive U.S. Llc, Livonia Closed-Center Lenksystem
JP2008184049A (ja) * 2007-01-30 2008-08-14 Toyota Motor Corp ステアリング装置
JP2011031638A (ja) * 2009-07-29 2011-02-17 Jtekt Corp 車両用操舵装置
JP2012101691A (ja) * 2010-11-10 2012-05-31 Nsk Ltd 電動パワーステアリング装置
JP2014051263A (ja) * 2012-09-10 2014-03-20 Hyundai Motor Company Co Ltd ハイブリッドステアリングシステム及びその制御方法
JP2015009682A (ja) * 2013-06-28 2015-01-19 株式会社ジェイテクト 車両用操舵装置
JP2015145184A (ja) * 2014-02-04 2015-08-13 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562017A (en) * 1995-04-17 1996-10-08 Trw Inc. Reusable press fit connection of a hydraulic power apparatus and method of assembly
US6122912A (en) * 1997-10-16 2000-09-26 Techco Corporation Electro-hydraulic power steering systems having improved efficiency
JP3922265B2 (ja) * 2003-06-09 2007-05-30 ユニシア ジェーケーシー ステアリングシステム株式会社 インテグラル型パワーステアリング装置
JP4351583B2 (ja) * 2004-05-21 2009-10-28 株式会社日立製作所 パワーステアリング装置
JP3914946B2 (ja) 2004-12-14 2007-05-16 株式会社ジェイテクト 車両のステアリング装置
CN1948072A (zh) * 2006-10-18 2007-04-18 江苏罡阳股份有限公司 汽车动力转向器内置自控液压平衡装置
JP2009057017A (ja) * 2007-09-03 2009-03-19 Denso Corp 電動パワーステアリング装置
JP5617524B2 (ja) * 2010-10-22 2014-11-05 株式会社ジェイテクト 油圧式パワーステアリング装置
JP5429142B2 (ja) * 2010-11-18 2014-02-26 日本精工株式会社 電動パワーステアリング装置
JP5592319B2 (ja) * 2011-08-22 2014-09-17 日立オートモティブシステムズステアリング株式会社 インテグラル型パワーステアリング装置
JP2013184622A (ja) * 2012-03-09 2013-09-19 Hitachi Automotive Systems Steering Ltd 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置
JP6024969B2 (ja) * 2012-12-12 2016-11-16 株式会社ジェイテクト 回転角検出装置およびそれを備えた電動パワーステアリング装置
WO2014103556A1 (ja) * 2012-12-28 2014-07-03 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006051990A1 (de) * 2006-11-03 2008-05-08 Trw Automotive U.S. Llc, Livonia Closed-Center Lenksystem
JP2008184049A (ja) * 2007-01-30 2008-08-14 Toyota Motor Corp ステアリング装置
JP2011031638A (ja) * 2009-07-29 2011-02-17 Jtekt Corp 車両用操舵装置
JP2012101691A (ja) * 2010-11-10 2012-05-31 Nsk Ltd 電動パワーステアリング装置
JP2014051263A (ja) * 2012-09-10 2014-03-20 Hyundai Motor Company Co Ltd ハイブリッドステアリングシステム及びその制御方法
JP2015009682A (ja) * 2013-06-28 2015-01-19 株式会社ジェイテクト 車両用操舵装置
JP2015145184A (ja) * 2014-02-04 2015-08-13 日立オートモティブシステムズステアリング株式会社 パワーステアリング装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141255A1 (ja) * 2014-03-19 2017-04-06 日立オートモティブシステムズ株式会社 パワーステアリング装置
JP2020028963A (ja) * 2018-08-24 2020-02-27 国立大学法人横浜国立大学 制御装置、パワーアシスト装置、制御方法およびプログラム
JP7108298B2 (ja) 2018-08-24 2022-07-28 国立大学法人横浜国立大学 制御装置、パワーアシスト装置、制御方法およびプログラム
JP2020045004A (ja) * 2018-09-19 2020-03-26 いすゞ自動車株式会社 補正装置及び補正方法
JP7213646B2 (ja) 2018-09-19 2023-01-27 クノールブレムゼステアリングシステムジャパン株式会社 補正装置及び補正方法
DE102018220560A1 (de) * 2018-11-29 2019-12-19 Thyssenkrupp Ag Antriebsanordnung mit einem bewegbaren Schienensegment
JP2020090134A (ja) * 2018-12-04 2020-06-11 トヨタ自動車株式会社 転舵システム、操舵支援装置
JP7180334B2 (ja) 2018-12-04 2022-11-30 トヨタ自動車株式会社 転舵システム、操舵支援装置
US11697455B2 (en) 2018-12-04 2023-07-11 Toyota Jidosha Kabushiki Kaisha Turning system
JPWO2020170579A1 (ja) * 2019-02-18 2021-12-16 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
JP7358449B2 (ja) 2019-02-18 2023-10-10 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置
WO2022014073A1 (ja) * 2020-07-16 2022-01-20 クノールブレムゼステアリングシステムジャパン株式会社 ステアリング装置

Also Published As

Publication number Publication date
JPWO2017159107A1 (ja) 2019-01-10
JP6563113B2 (ja) 2019-08-21
CN108698631A (zh) 2018-10-23
DE112017001413T5 (de) 2018-12-06
US10988167B2 (en) 2021-04-27
US20190111965A1 (en) 2019-04-18
CN108698631B (zh) 2021-04-06

Similar Documents

Publication Publication Date Title
JP6563113B2 (ja) パワーステアリング装置
EP2070804B1 (en) Vehicle steering device
US10759471B2 (en) Power steering device
US20070100524A1 (en) Control device for electric power steering system
CN110168867B (zh) 无刷电机
US20190168802A1 (en) Power steering apparatus
EP3715219A1 (en) Steering control device
US20130079992A1 (en) Power steering system
US9079609B2 (en) Hydraulic power steering system
EP3647161A1 (en) Steering control device
US9415801B2 (en) Power steering system
US8813902B2 (en) Hydraulic power steering system
EP3647159A1 (en) Steering control device
EP2557019B1 (en) Hydraulic power steering system
JP4639146B2 (ja) パワーステアリング装置
JP6511673B2 (ja) パワーステアリング裝置
EP2597015B1 (en) Hydraulic power steering system
JP2012086594A (ja) 車両用操舵装置
EP3505423B1 (en) Steering control device
US8509995B2 (en) Power steering device
JP7213697B2 (ja) ステアリング装置
JP6020881B2 (ja) 油圧式パワーステアリング装置
WO2022014073A1 (ja) ステアリング装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018505329

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17766115

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17766115

Country of ref document: EP

Kind code of ref document: A1