WO2017154931A1 - 構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法 - Google Patents

構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法 Download PDF

Info

Publication number
WO2017154931A1
WO2017154931A1 PCT/JP2017/009086 JP2017009086W WO2017154931A1 WO 2017154931 A1 WO2017154931 A1 WO 2017154931A1 JP 2017009086 W JP2017009086 W JP 2017009086W WO 2017154931 A1 WO2017154931 A1 WO 2017154931A1
Authority
WO
WIPO (PCT)
Prior art keywords
cured product
combustion
curable composition
volume
group
Prior art date
Application number
PCT/JP2017/009086
Other languages
English (en)
French (fr)
Inventor
奈穂子 石原
池田 敦
齋藤 知紀
秀治 橋向
Original Assignee
セメダイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セメダイン株式会社 filed Critical セメダイン株式会社
Priority to JP2018504529A priority Critical patent/JP6825618B2/ja
Priority to CN201780015555.5A priority patent/CN108778424B/zh
Priority to KR1020187025709A priority patent/KR102407426B1/ko
Publication of WO2017154931A1 publication Critical patent/WO2017154931A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C2/00Fire prevention or containment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L43/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium or a metal; Compositions of derivatives of such polymers
    • C08L43/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/94Protection against other undesired influences or dangers against fire
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general

Definitions

  • the present invention relates to a fire prevention structure of a structure, a curable composition, a refractory material, and a fire prevention structure forming method.
  • a heat-expandable refractory material used for applications injected into a hollow portion of a resin frame member having a hollow portion in the longitudinal direction, wherein (i) a reactive curable resin component, (ii) a thermal expansion component, (iii) When a molding material comprising at least a liquid dispersant and (iv) an inorganic filler and made of the same resin as the resin frame material is immersed in the liquid dispersant (iii) at a temperature of 50 ° C.
  • the liquid dispersant There has been proposed a heat-expandable refractory material in which the weight change of the molded material before and after dipping in iii) is less than 1% (see, for example, Patent Document 1). According to the thermally expandable refractory material described in Patent Document 1, it is possible to provide a thermally expandable refractory material that exhibits stable fire resistance over a long period of time.
  • refractory materials used for structures and the like require various performances such as having fluidity corresponding to structures of various shapes and properly blocking the flame when exposed to flames.
  • various performances such as having fluidity corresponding to structures of various shapes and properly blocking the flame when exposed to flames.
  • it is difficult to improve a plurality of performances such as fluidity before curing and flame blocking performance after curing. is there.
  • the object of the present invention is to provide a fireproof structure, a curable composition, a refractory material of a structure having a suitable fluidity before curing, and a cured product that exhibits excellent fire resistance after curing, And providing a fire prevention structure forming method.
  • the present invention comprises a structure and a cured product of a curable composition provided on at least a part of the surface of the structure, and the curable composition has fluidity at room temperature.
  • the cured product has a durometer type A hardness of 40 or more required in accordance with JIS K6253-3 and is burned in air at 400 ° C. for 20 minutes, the volume of the cured product after combustion is
  • a fireproof structure having a structure that is 20 times or more the volume of the cured product before combustion and that the cured product after combustion has shape retention.
  • the combustion residue before lifting is 80% or more.
  • the curable composition comprises (A) a (meth) acrylic acid ester-based polymer containing at least one crosslinkable silicon group in one molecule, and (B) thermal expansion. It may contain refractory graphite.
  • the curable composition is different from (C) a (meth) acrylic acid ester-based polymer containing (A) at least one crosslinkable silicon group in one molecule.
  • An organic polymer containing at least one functional silicon group in one molecule may be contained.
  • the thermally expandable graphite contains at least two kinds of thermally expandable graphite having different particle diameters, and the particle diameter of one thermally expandable graphite and the other
  • the absolute value of the difference from the particle size of the thermally expandable graphite is preferably 100 ⁇ m or more.
  • the curable composition may include at least one of an epoxy resin and a phenol resin.
  • the present invention has fluidity at room temperature before curing, and the cured product after curing has a durometer type A hardness of 40 or more required in accordance with JIS K6253-3.
  • the volume of the cured product after combustion is 20 times or more of the volume of the cured product before combustion, and the cured product after combustion has shape retention.
  • a fire resistant curable composition is provided.
  • the fire-resistant curable composition contains (A) a (meth) acrylic acid ester-based polymer containing at least one crosslinkable silicon group in one molecule, and (B) thermally expandable graphite. It is preferable to do.
  • the refractory curable composition is different from (C) a (meth) acrylic acid ester-based polymer containing (A) at least one crosslinkable silicon group in one molecule.
  • An organic polymer containing at least one molecule in the molecule may be further contained.
  • the present invention is a refractory material comprising a cured product of a curable composition having fluidity at room temperature before curing, and the cured product is obtained in accordance with JIS K6253-3.
  • the durometer type A hardness is 40 or more and burned in air at 400 ° C. for 20 minutes
  • the volume of the cured product after combustion is 20 times or more of the volume of the cured product before combustion.
  • the present invention is a fire prevention structure forming method, which comprises applying a curable composition having fluidity at room temperature to at least a part of the surface of the structure, and curing. Curing step to form a cured product, and the cured product has a durometer type A hardness of 40 or more required in accordance with JIS K6253-3, in air at 400 ° C.
  • a fire prevention structure forming method in which when burned for 20 minutes, the volume of the cured product after combustion is 20 times or more of the volume of the cured product before combustion, and the cured product after combustion has shape retention.
  • the curable composition, the refractory material, and the fire prevention structure forming method of the structure according to the present invention it has appropriate fluidity before curing and exhibits excellent fire resistance performance after curing. It is possible to provide a fire prevention structure, a curable composition, a refractory material, and a fire prevention structure forming method using a cured product.
  • the fire prevention structure for a structure includes a structure and a cured product of a curable composition provided on at least a part of the surface of the structure.
  • a structure is a building composed of a plurality of members, a plurality of members constituting the building itself (for example, a sash, a frame, a book frame, a grind, a play, a hiring, a ventilation) Holes, etc.), members used for air conditioning equipment (exhaust ducts, etc.), members that have electrical circuits such as power distribution equipment, members that make up water and gas pipes, and other fires / combustion or fire spread from the outside It includes objects and members that are required to be prevented.
  • the fire prevention structure of the structure according to the present invention prevents the spread of fire and the like.
  • a gap in a region where the first structural member and the second structural member are combined is provided with a cured product according to the present invention.
  • a carbonized layer or a carbide is formed from the cured product and expands to close the gap.
  • the carbonized layer or carbide that closes the gap prevents the flame and / or heat from propagating through the gap. As a result, the spread of fire and the like are prevented for a predetermined time.
  • the curable composition according to the present invention can be applied to the inner wall of a hole of a building or the like, the applied curable composition can be cured, and a cured product can be provided on the inner wall.
  • a carbonized layer or a carbide is formed from the cured product by a flame such as a fire and / or heat, and the hole is blocked by expansion.
  • the fire prevention structure of a structure according to the present invention includes a structure and a cured product of a curable composition provided on at least a part of the surface of the structure, and the cured product has a normal temperature (that is, 23 ° C.). It is a cured product obtained by curing a fire-resistant curable composition having fluidity. Then, the cured product of the curable composition according to the present invention is cured after the curable composition is applied to the structure and cured, and then the cured product is burned more than the volume of the cured product before combustion after burning the cured product.
  • the hardness of the cured product according to the present invention is a durometer type A hardness calculated in accordance with JIS K6253-3 of 40 or more, and more preferably 50 or more.
  • the volume of the cured product after combustion is 20 times or more the volume of the cured product before combustion (that is, expansion of the volume after combustion after combustion). The rate is 20 times or more), and 25 times or more is more preferable.
  • cured material which concerns on this invention has the shape retainability which hold
  • the combustion residue after burning the cured product for 20 minutes in an atmosphere of 400 ° C. in air is lifted at a speed of 2.0 mm / s, its shape does not collapse
  • the volume of the combustion residue after lifting with respect to the volume of the combustion residue is 80% or more and the shape of the cured product is not collapsed before and after the combustion
  • the volume of the combustion residue after lifting relative to the volume of the combustion residue before lifting is preferably 80% or more, and more preferably 95% or more, from the viewpoint of preventing or suppressing the propagation of flame and heat.
  • the curable composition according to the present invention may be mainly referred to as (A) a (meth) acrylate polymer (hereinafter referred to as “component (A)”) containing at least one crosslinkable silicon group in one molecule. ) And (B) thermally expandable graphite (hereinafter sometimes referred to as “component (B)”). Further, (A) an organic polymer containing at least one crosslinkable silicon group in one molecule is different from (C) a (meth) acrylic acid ester polymer containing at least one crosslinkable silicon group in one molecule. It is also preferable to include a coalescence (hereinafter sometimes referred to as “component (C)”).
  • component (C) a coalescence
  • the curable composition can also contain either an epoxy resin or a phenol resin, or both.
  • the thermally expandable graphite contains at least two kinds of thermally expandable graphite having different particle diameters, and the particle diameter of one thermally expandable graphite and the particle diameter of the other thermally expandable graphite are The absolute value of the difference is preferably 100 ⁇ m or more.
  • the curable composition concerning this invention has fluidity
  • the curable composition has a viscosity of 0.1 Pa ⁇ s to 1,000 Pa ⁇ s before being cured.
  • the component (A) is a (meth) acrylate polymer that can contribute to maintaining the shape of the cured product when the cured product of the curable composition burns.
  • the crosslinkable silicon group of the component (A) is a group having a hydroxyl group or a hydrolyzable group bonded to a silicon atom and capable of crosslinking by forming a siloxane bond with moisture in the air or the like.
  • Examples of the crosslinkable silicon group include a group represented by the general formula (1).
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an aryl having 6 to 20 carbon atoms Group, an aralkyl group having 7 to 20 carbon atoms, a triorganosiloxy group represented by R 1 3 SiO— (R 1 is the same as above), or a —CH 2 OR 1 group (R 1 is the same as above) It is.
  • R 1 is a group in which at least one hydrogen atom on the 1st to 3rd carbon atoms is halogen, —OR 2 , —NR 3 R 4 , —N ⁇ R 5 , —SR 6 (R 2 , R 3 , R 4 and R 6 are each a hydrogen atom, or a hydrocarbon group having 1 to 20 carbon atoms or having no substituent, and R 5 is a divalent substitution having 1 to 20 carbon atoms.
  • R 1 is preferably a methyl group.
  • the plurality of R 1 may be the same or different.
  • X represents a hydroxyl group or a hydrolyzable group, and when two or more X exist, the plurality of X may be the same or different.
  • a is an integer of 0, 1, 2, or 3.
  • a is preferably 2 or more, more preferably 3.
  • Hydrolyzable groups and hydroxyl groups can be bonded to one silicon atom in the range of 1 to 3. When two or more hydrolyzable groups or hydroxyl groups are bonded to the crosslinkable silicon group, they may be the same or different.
  • the number of silicon atoms forming the crosslinkable silicon group may be one or two or more. In the case of silicon atoms linked by a siloxane bond or the like, there may be about 20 silicon atoms.
  • the hydrolyzable group represented by X is not particularly limited as long as it is other than F atom.
  • Examples thereof include an alkoxy group, an acyloxy group, an amino group, an amide group, an aminooxy group, and an alkenyloxy group.
  • an alkoxy group is preferable from the viewpoint of mild hydrolyzability and easy handling.
  • alkoxy groups a group having a smaller number of carbon atoms has higher reactivity, and the reactivity increases as the number of carbon atoms increases in the order of methoxy group> ethoxy group> propoxy group.
  • a methoxy group or an ethoxy group is usually used.
  • crosslinkable silicon group examples include a trialkoxysilyl group such as a trimethoxysilyl group and a triethoxysilyl group, a dialkoxysilyl group such as —Si (OR) 3 , a methyldimethoxysilyl group, and a methyldiethoxysilyl group; SiR 1 (OR) 2 may be mentioned.
  • R is an alkyl group such as a methyl group or an ethyl group.
  • a crosslinkable silicon group may be used by 1 type, or may be used together 2 or more types.
  • the crosslinkable silicon group may be bonded to the main chain, the side chain, or both.
  • the crosslinkable silicon group When the crosslinkable silicon group is present only at the end of the main chain of the molecular chain, the effective network length of the polymer component contained in the finally formed cured product is increased, resulting in high strength, high elongation, and low elastic modulus. It becomes easy to obtain a rubber-like cured product showing. From the viewpoint of excellent physical properties of the cured product such as tensile properties of the cured product of the curable composition, it is preferable that a crosslinkable silicon group is present at the molecular chain terminal.
  • the crosslinkable silicon group may be present in an average of 1.0 to 5 in one molecule of the polymer. Preferably, it is 1.1 or more and 3 or less. From the viewpoint of obtaining a rubber-like cured product having high strength, high elongation, and low elastic modulus, the average number of crosslinkable silicon groups contained in component (A) is 1.0 per molecule of the organic polymer. It is preferable that it exists above, and it is more preferable that it exists 1.1 or more and 5 or less. From the viewpoint of reducing the crosslinking density, an organic polymer having an average number of crosslinkable silicon groups contained in the molecule of 1.0 or less can be used in combination.
  • the main chain skeleton of the component (A) include (meth) acrylic acid ester polymers obtained by radical polymerization of monomers such as ethyl (meth) acrylate and butyl (meth) acrylate. These skeletons may be contained alone in the component (A), or two or more kinds may be contained in blocks or randomly.
  • (Meth) acrylate polymer has a relatively low glass transition temperature, and the resulting cured product has excellent cold resistance.
  • the (meth) acrylic acid ester-based polymer has high moisture permeability and excellent deep part curability when it is made into a one-component composition.
  • (meth) acrylic acid ester monomer constituting the main chain of the (meth) acrylic acid ester polymer.
  • (meth) acrylic acid monomers such as acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid alkyl ester monomers such as stearyl acid; alicyclic (meth) acrylic acid ester monomers; aromatic (meth) acrylic acid ester monomers; (meth) acrylic acid 2-methoxyethyl (meth) ) Acrylic acid ester monomers; silyl group-containing (meth) acrylic acid ester monomers such as ⁇ - (methacryloyloxypropyl) trimethoxysilane, ⁇ - (methacryloyloxypropyl) dimethoxymethylsilane; (meth) acrylic acid alkyl ester mono
  • the following vinyl monomers can be copolymerized with the (meth) acrylate monomer.
  • vinyl monomers include styrene, maleic anhydride, vinyl acetate and the like.
  • acrylic acid and glycidyl acrylate may be contained as monomer units (hereinafter also referred to as other monomer units).
  • a polymer composed of a (meth) acrylic acid monomer is preferable.
  • the (meth) acrylic acid ester type polymer which used the 1 type (s) or 2 or more types (meth) acrylic-acid alkylester monomer and used together with the other (meth) acrylic acid monomer as needed is more preferable.
  • the number of silicon groups in the (meth) acrylic acid ester polymer can be controlled by using the silyl group-containing (meth) acrylic acid ester monomer in combination.
  • a methacrylic acid ester polymer comprising a methacrylic acid ester monomer is particularly preferred because of its good adhesion.
  • (meth) acrylic acid represents acrylic acid and / or methacrylic acid.
  • a radical polymerization method using a radical polymerization reaction can be used as a method for producing the (meth) acrylic acid ester polymer.
  • the radical polymerization method includes a radical polymerization method (free radical polymerization method) in which a predetermined monomer unit is copolymerized using a polymerization initiator, or a controlled radical capable of introducing a reactive silyl group at a controlled position such as a terminal.
  • a polymerization method is mentioned.
  • a polymer obtained by a free radical polymerization method using an azo compound, a peroxide or the like as a polymerization initiator generally has a large molecular weight distribution value of 2 or more and a high viscosity.
  • Examples of the controlled radical polymerization method include a free radical polymerization method and a living radical polymerization method using a chain transfer agent having a specific functional group. Living such as addition-cleavage transfer reaction (RAFT) polymerization method, radical polymerization method using transition metal complex (Transition Metal Mediated Radical Polymerization), atom transfer radical polymerization method (Atom Transfer Radical Polymerization; ATRP) It is preferable to employ a radical polymerization method.
  • RAFT addition-cleavage transfer reaction
  • ATRP atom transfer radical polymerization method
  • a radical polymerization method As a reaction for synthesizing a polymer whose main chain skeleton is a (meth) acrylic acid ester polymer and a part of which is a telechelic polymer (hereinafter referred to as “pseudo-telechelic polymer”), it is reactive.
  • Examples include a reaction using a thiol compound having a silyl group, a reaction using a thiol compound having a reactive silyl group, and a metallocene compound.
  • the pseudo telechelic polymer obtained by these reactions can also be used in the range which does not inhibit the function of the curable composition according to the present invention and the effect exerted.
  • the number average molecular weight of the (meth) acrylate polymer is such that when the glass transition temperature (Tg) of the (meth) acrylate polymer is less than 0 ° C., for example, the (meth) acrylate polymer is acrylic.
  • Tg glass transition temperature
  • the (meth) acrylate polymer is acrylic.
  • 20,000 or more is preferable, 30,000 or more is more preferable, 35,000 or more is further preferable, and 40,000 or more is particularly preferable.
  • the glass transition temperature (Tg) of the (meth) acrylate polymer is 0 ° C.
  • the number average molecular weight is preferably from 600 to 10,000, more preferably from 600 to 5,000, still more preferably from 1,000 to 4,500.
  • the (meth) acrylic acid ester polymer may be used alone or in combination of two or more.
  • the number average molecular weight based on this invention is a polystyrene conversion molecular weight by gel permeation chromatography.
  • (B) Thermally expandable graphite (B) The heat-expandable graphite is obtained by treating graphite with an inorganic acid such as sulfuric acid or nitric acid and a strong oxidizing agent such as concentrated nitric acid, perchloric acid or hydrogen peroxide, so that the acid is intercalated between the graphite layers. Layered material.
  • (B) Thermally expandable graphite has a property that an interlayer compound is gasified by heating and expands by gasification.
  • the volume of the cured product after combustion should be 20 times or more of the volume of the cured product before combustion.
  • (B) Thermally expandable graphite having a particle size that can be used is used.
  • the particle size is a particle size based on JIS standard Z8801-1982 “standard sieve”, and may be expressed as “ ⁇ m” or “mesh”.
  • thermally expandable graphite having different sizes From the viewpoint of increasing the volume of the cured product after combustion and filling the thermally expandable graphite in the cured product after combustion densely, it is preferable to mix a plurality of types of thermally expandable graphite having different sizes. Specifically, at least two types of thermally expandable graphite having different particle sizes are used. And it is preferable that the absolute value of the difference of the particle size of one thermally expansible graphite and the particle size of the other thermally expansible graphite is 100 micrometers or more. Further, when using at least two types of thermally expandable graphite having different particle diameters, for example, using both a thermally expandable graphite having a smaller particle diameter and a larger thermally expandable graphite improves shape retention. be able to.
  • the heat-expandable graphite having a smaller particle diameter may have a particle diameter of less than 100 ⁇ m, but preferably has a particle diameter of 100 ⁇ m or more, more preferably 150 ⁇ m or more.
  • the larger heat-expandable graphite preferably has a particle size of 200 ⁇ m or more, more preferably has a particle size of 250 ⁇ m or more, and still more preferably has a particle size of 300 ⁇ m or more.
  • the first thermally expandable graphite and the second thermally expandable graphite are different from each other in particle diameter.
  • a 1st thermally expansible graphite for example, when using a thermally expansible graphite with a particle size of 150 micrometers (100 mesh), as a 2nd thermally expansible graphite, a particle diameter is 250 micrometers (60 mesh) or more, for example. Thermally expandable graphite is used.
  • the second thermally expandable graphite has a particle diameter of 400 ⁇ m or more, or 500 ⁇ m (30 mesh) or more. Thermally expandable graphite is used.
  • the larger thermal expansion graphite preferably has a minimum particle size of 300 ⁇ m or more (in this case, the other thermal expansion graphite has a particle size of 200 ⁇ m or more).
  • the expandable graphite preferably has a maximum particle size of 400 ⁇ m or less (in this case, the particle size of the other thermally expandable graphite is 500 ⁇ m or less).
  • the content ratio of (B) thermally expandable graphite is 100 parts by mass of component (A) (when component (C) is included, component (A) and component (C) 10 parts by mass or more and 100 parts by mass or less is preferable with respect to 100 parts by mass).
  • the curable composition can also contain a component (C).
  • Component (C) is an organic polymer containing an average of at least one crosslinkable silicon group in one molecule, and the main chain may contain polysiloxane.
  • the component (C) is different from the component (A), and an organic polymer different from the (meth) acrylic acid ester polymer constitutes the main chain.
  • the crosslinkable silicon group of (C) component since it is the same as that of the crosslinkable silicon group of (A) component, detailed description is abbreviate
  • omitted is abbreviate
  • the main chain of component (C) is, for example, polyoxypropylene, polyoxytetramethylene, polyoxyethylene-polyoxypropylene copolymer, etc. from the viewpoint of good physical properties such as tensile adhesion after curing and modulus.
  • Polyoxyalkylene polymers such as ethylene-propylene copolymers, polyisobutylene, polyisoprene, polybutadiene, and hydrogenated polyolefin polymers obtained by hydrogenating these polyolefin polymers
  • Polyester polymers obtained by condensation of dibasic acids such as adipic acid and glycols or ring-opening polymerization of lactones; vinyl polymers obtained by radical polymerization of monomers such as vinyl acetate, acrylonitrile and styrene A graft polymer obtained by polymerizing a vinyl monomer in an organic polymer; Risarufaido polymer; polyamide polymer; polycarbonate-based polymer; diallyl phthalate polymers, and the like.
  • These skeletons may contain organosiloxane, and may be contained alone in the component (C), or two or more kinds may be contained in blocks or randomly.
  • saturated hydrocarbon polymers such as polyisobutylene, hydrogenated polyisoprene, hydrogenated polybutadiene, and polyoxyalkylene polymers have a relatively low glass transition temperature, and the resulting cured product has excellent cold resistance.
  • Polyoxyalkylene polymers are preferred because they have high moisture permeability and are excellent in deep part curability when made into a one-component composition.
  • organic polymers having a crosslinkable silicon group may be used alone or in combination of two or more. Specifically, an organic polymer obtained by blending two or more selected from the group consisting of a polyoxyalkylene polymer having a crosslinkable silicon group and a saturated hydrocarbon polymer having a crosslinkable silicon group is also used. Can do.
  • a polymer whose main chain skeleton is an oxyalkylene polymer and has a functional group such as a hydrolyzable group at the terminal (hereinafter referred to as “polyoxyalkylene polymer”) is a repeating unit represented by the general formula (2). It is a polymer having -R 7 -O- (2)
  • R 7 is a linear or branched alkylene group having 1 to 14 carbon atoms, preferably a linear or branched alkylene group having 1 to 14 carbon atoms, and having 2 to 4 carbon atoms.
  • the linear or branched alkylene group is more preferable.
  • the repeating unit represented by the general formula (2) include —CH 2 O—, —CH 2 CH 2 O—, —CH 2 CH (CH 3 ) O—, —CH 2 CH (C 2 H 5 ) O—, —CH 2 C (CH 3 ) 2 O—, —CH 2 CH 2 CH 2 CH 2 O— and the like.
  • the main chain skeleton of the polyoxyalkylene polymer may be composed of only one type of repeating unit, or may be composed of two or more types of repeating units.
  • a main chain skeleton composed of a polymer mainly composed of oxypropylene is preferable.
  • the molecular weight of the polyoxyalkylene polymer having a crosslinkable silicon group is preferably high in order to reduce the tensile modulus, which is the initial tensile property of the cured product, and to increase the elongation at break.
  • the lower limit of the number average molecular weight of the polyoxyalkylene polymer is preferably 15,000, more preferably 18,000 or more, and more preferably 20,000 or more.
  • a polymer partially including a polymer having a number average molecular weight of 20,000 or more is also preferable.
  • the upper limit of the number average molecular weight is preferably 50,000, and more preferably 40,000.
  • the number average molecular weight based on this invention is a polystyrene conversion molecular weight by gel permeation chromatography. From the viewpoint of sufficiently securing the tensile modulus and elongation at break of the cured product of the curable composition, the number average molecular weight is preferably 15,000 or more, the viscosity of the curable composition is set to an appropriate range, and good workability is achieved. From the viewpoint of ensuring, the number average molecular weight is preferably 50,000 or less.
  • the number of crosslinkable silicon groups is preferably 1.2 or more and 2.8 or less on average in one molecule of the polymer, and is 1.3 or more and 2.6 or less. More preferably, it is more preferably 1.4 or more and 2.4 or less.
  • the number of crosslinkable silicon groups contained in the molecule is preferably 1 or more, and from the viewpoint of ensuring good mechanical properties by forming a network structure with an appropriate density.
  • the number of silicon groups is preferably a predetermined number or less.
  • the crosslinkable silicon groups of the polymer should be present in an average of 1.2 or more and less than 1.9 in one molecule of the polymer. Is more preferable, 1.25 or more and 1.8 or less are more preferable, and 1.3 or more and less than 1.7 are more preferable.
  • the polyoxyalkylene polymer having a crosslinkable silicon group may be linear or branched. From the viewpoint of reducing the tensile modulus, the polyoxyalkylene polymer having a crosslinkable silicon group is preferably a linear polymer.
  • the molecular weight distribution (Mw / Mn) of the polyoxyalkylene polymer having a crosslinkable silicon group is preferably 2 or less, particularly 1.6 or less.
  • Examples of the method for synthesizing the polyoxyalkylene polymer include, but are not limited to, a polymerization method using an alkali catalyst such as KOH, a polymerization method using a double metal cyanide complex catalyst, and the like. According to the polymerization method using a double metal cyanide complex catalyst, a polyoxyalkylene polymer having a number average molecular weight of 6,000 or more and a high molecular weight of Mw / Mn of 1.6 or less and a narrow molecular weight distribution can be obtained.
  • the main chain skeleton of the polyoxyalkylene polymer may contain other components such as a urethane bond component.
  • a urethane bond component is obtained from a reaction between an aromatic polyisocyanate such as toluene (tolylene) diisocyanate and diphenylmethane diisocyanate; an aliphatic polyisocyanate such as isophorone diisocyanate and a polyoxyalkylene polymer having a hydroxyl group. Ingredients can be mentioned.
  • a compound having a functional group reactive to this functional group and a crosslinkable silicon group in a polyoxyalkylene polymer having a functional group such as an unsaturated group, a hydroxyl group, an epoxy group, or an isocyanate group in the molecule Can be introduced into a polyoxyalkylene polymer to introduce a crosslinkable silicon group (hereinafter referred to as a polymer reaction method).
  • hydrosilylation or mercaptosis is caused by allowing a hydrosilane having a crosslinkable silicon group or a mercapto compound having a crosslinkable silicon group to act on an unsaturated group-containing polyoxyalkylene polymer.
  • An unsaturated group-containing polyoxyalkylene-based polymer is obtained by reacting an organic polymer having a functional group such as a hydroxyl group with an organic compound having an active group and an unsaturated group that are reactive with the functional group.
  • a polyoxyalkylene polymer containing can be obtained.
  • polymer reaction method examples include a method of reacting a polyoxyalkylene polymer having a hydroxyl group at the terminal with a compound having an isocyanate group and a crosslinkable silicon group, or a polyoxyalkylene having an isocyanate group at the terminal.
  • examples include a method of reacting an alkylene polymer with a compound having an active hydrogen group such as a hydroxyl group or an amino group, and a crosslinkable silicon group.
  • an isocyanate compound is used, a polyoxyalkylene polymer having a crosslinkable silicon group can be easily obtained.
  • the polyoxyalkylene polymer having a crosslinkable silicon group may be used alone or in combination of two or more.
  • the component (C) of the curable composition according to the present invention one or more crosslinkable silicon groups are preferably present on average in one molecule of the organic polymer, and more preferably two or more.
  • the component (C) in the curable composition is 0.4 relative to the unit mass part of the component (A). It is preferably contained twice or more, and more preferably twice or more.
  • epoxy resin Various epoxy resins can be used as the epoxy resin.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin and epoxy resins hydrogenated with these, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, alicyclic epoxy Resin, aliphatic epoxy resin, novolak type epoxy resin, urethane modified epoxy resin having urethane bond, fluorinated epoxy resin, rubber modified epoxy resin (for example, polybutadiene, styrene butadiene rubber (SBR), nitrile rubber (NBR), and CTBN) And a flame-retardant epoxy resin such as tetrabromobisphenol A glycidyl ether.
  • SBR styrene butadiene rubber
  • NBR nitrile rubber
  • CTBN flame-retardant epoxy resin
  • These epoxy resins can be used alone or in combination of two or more.
  • the epoxy resin can contribute
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, bisphenol AD type epoxy are used from the viewpoint of balance of workability, curability, adhesive strength, adherend versatility, water resistance, durability and the like.
  • Resins, bisphenol S type epoxy resins and epoxy resins hydrogenated with these are preferred, bisphenol A type epoxy resins and bisphenol F type epoxy resins are more preferred, and bisphenol A type epoxy resins are most preferred.
  • the molecular weight of the epoxy resin is not particularly limited, but the number average molecular weight is preferably from 300 to 1,000, more preferably from 350 to 600. Moreover, it is preferable to use an epoxy resin that is liquid at room temperature in terms of ease of handling.
  • the blending ratio of the epoxy resin is 100 parts by mass of the component (A) (when the component (C) is contained, the combined amount of the component (A) and the component (C)) 100 parts by mass) to 0.5 parts by mass to 20 parts by mass, and preferably 1 part by mass to 15 parts by mass.
  • phenol resin various phenol resins such as novolac type phenol resin and resol type phenol resin can be used.
  • the phenolic resin it is preferable to use a novolak type phenolic resin or the like that can prevent the generation of formaldehyde from the viewpoint of indoor air quality countermeasures.
  • the phenol resin can contribute to shape retention of the residue after the cured product of the curable composition burns.
  • the mixing ratio of the phenol resin is 100 parts by mass of the component (A) (when the component (C) is contained, the amount of the component (A) and the component (C) combined). 100 parts by mass) to 0.01 part by mass to 20 parts by mass, and preferably 3 parts by mass to 10 parts by mass.
  • the fire-resistant curable composition according to the present invention is an inorganic filler, an anti-aging agent, a moisture absorbing material, an adhesion-imparting agent, a curing catalyst, within a range that does not impair the effect of the fire-proof structure of the structure according to the present invention.
  • Various substances such as a solvent such as alcohol may be further blended, and other compatible polymers may be blended.
  • the curable composition concerning this invention can improve the adhesiveness with respect to various adherends, such as a metal of a hardened
  • silane coupling agents which are alkoxy group-containing silanes can be used.
  • Amino group-containing silanes such as 3-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 1,3-diaminoisopropyltrimethoxysilane; 3-trimethoxysilyl-
  • silane coupling agents such as ketimine group-containing silanes such as N- (1,3-dimethyl-butylidene) propylamine; mercapto group-
  • the blending ratio of the adhesion-imparting agent is not particularly limited, but 100 parts by mass of component (A) (when component (C) is contained, the total amount of component (A) and component (C) is 100 parts by mass. 0.2 mass part or more and 20 mass parts or less is preferable, 0.3 mass part or more and 15 mass parts or less are more preferable, and 0.5 mass part or more and 10 mass parts or less are still more preferable.
  • These adhesion-imparting agents may be used alone or in combination of two or more.
  • the curing catalyst examples include dibutyltin dilaurate, dibutyltin diacetate, a reaction product of dioctyltin oxide and a silicate compound, an organic tin compound such as a reaction product of dibutyltin oxide and phthalate ester; tin carboxylate, carboxylic acid Carboxylic acid metal salts such as bismuth and iron carboxylate; aliphatic amines and aromatic amines; carboxylic acids such as versatic acid; titanium compounds such as diisopropoxytitanium bis (ethylacetocetate); alkoxy such as aluminum compounds Metals; inorganic acids; boron trifluoride complexes such as boron trifluoride ethylamine complex; metal chelate compounds such as aluminum monoacetylacetonate bis (ethylacetoacetate) can also be used. Of these, organotin compounds are preferred.
  • an epoxy resin curing catalyst may be further added.
  • the curing catalyst for example, one or more epoxy resin curing agents can be selected and used.
  • examples of such a curing catalyst include primary amines such as alicyclic amines, aliphatic amines containing aromatic rings, aromatic amines, and modified amines; secondary amines such as linear secondary amines; Acid anhydrides such as aliphatic acid anhydrides, cycloaliphatic acid anhydrides, aliphatic acid anhydrides; other curing agents such as polyamide resins, organic acid hydrazides, synthetic resin initial condensates, polyvinylphenols; amino groups ketimines And the like.
  • component (A) when component (C) is included, the combined amount of component (A) and component (C) is 100 parts by mass), It is preferably 0.5 parts by mass or more and 20 parts by mass or less, and preferably 1 part by mass or more and 15 parts by mass or less.
  • the curable composition according to the present invention can be a one-component type or a two-component type.
  • the curable composition according to the present invention can be used as an application requiring fire resistance, such as an adhesive, a potting material, a coating material, a sealing material, an adhesive material, a paint, a putty material, and / or a primer.
  • the curable composition according to the present invention can be used as the refractory material by using the curable composition itself as a refractory material, or by providing the curable composition according to the present invention on a member having fire resistance.
  • the curable composition according to the present invention can be applied to, for example, structures such as various buildings, automobiles, civil engineering, and various electric / electronic fields.
  • a fireproof structure can be formed using the curable composition according to the present invention. That is, the fire prevention structure forming method according to the present invention includes a coating step of applying the curable composition according to the present invention to at least a part of the surface of the structure, and curing the curable composition into a cured product. A curing step. As an example, a combination of a sealing material containing the curable composition according to the present invention and a wall material having fire resistance can pass a V-0 fire resistance test described in the flammability UL94 standard. A fire prevention structure can be formed.
  • the coating step is performed according to the present invention at a portion where a first structural member having fire resistance (for example, a wall member constituting a wall) and a second structural member combined with the first structural member are combined. It is a step of applying a curable composition.
  • a structural member has an opening part
  • the curable composition which concerns on this invention can also be apply
  • the curable composition is cured, whereby a fire-resistant cured product is provided in a portion where the first structural member and the second structural member are combined.
  • the curable composition which concerns on this invention can also be beforehand apply
  • the fire prevention structure of the structure according to the present embodiment When the fire prevention structure of the structure according to the present embodiment is exposed to a flame or high temperature, the cured product of the curable composition forms a carbonized layer as a heat insulating layer, and is also exposed to the flame or high temperature. It expands to a volume of 20 times or more of the volume. Thereby, according to the fire prevention structure of the structure according to the present embodiment, the gaps, openings or holes between the members constituting the structure are closed by the combustion residue of the hardened material, flame, heat, smoke, and Gas or the like generated by combustion can be shut off. Therefore, the fire prevention structure of the structure according to the present embodiment can exhibit excellent fire resistance and shielding performance such as flame, heat, smoke, and / or gas.
  • the cured product since the cured product has a predetermined hardness and flexibility, it does not deform excessively even when force is applied from the outside, and returns to its original shape when the force is removed. . Therefore, even if the structure has irregularities, the cured product of the curable composition according to the present embodiment provided in the structure can maintain a shape corresponding to the irregularities. Thereby, the fire prevention structure of the structure concerning this embodiment can maintain long-term fire resistance.
  • Example 1 The fire-resistant curable composition according to Example 1 was prepared as follows. First, as shown in Table 1, the component (A), the component (B), the inorganic filler, and the curing catalyst were mixed in the amounts shown in Table 1. And the fireproof curable composition which concerns on Example 1 was prepared by stirring a mixture. Subsequently, the fire-resistant curable composition according to Example 1 and the properties of the cured product were evaluated. The results are shown in Table 1. In Table 1, the unit of the compounding amount of each compounding substance is “g”. The details of the compounding substances are as follows.
  • Thermally expandable graphite B2 Product name “Expanded” Graphite 9950200 ”(small particle size: +50 mesh 80% or more, corresponding to particle size 300 ⁇ m), manufactured by Ito Graphite Industries Co., Ltd. [component (C)] * 4 Organic polymer containing at least one crosslinkable silicon group in one molecule, which is different from component (A): Product name “Sylyl EST280” (silyl-terminated polymer), manufactured by Kaneka Corporation [epoxy resin] * 5 Epoxy resin: Product name “DER331” (bisphenol A type epoxy resin), manufactured by Dow Chemical Japan Ltd.
  • Phenol resin Product name “PR-HF-3” (Novolac type phenol resin), softening point 80 ° C., manufactured by Sumitomo Bakelite Co., Ltd.
  • Inorganic filler * 7 Aluminum hydroxide: Product name “Almorix B350”, Sakai Kogyo Co., Ltd.
  • Curing catalyst Product name “Neostan U-700ES” (reaction product of dibutyltin oxide and normal ethyl silicate), Nitto Kasei Co., Ltd. * 9 Curing catalyst: Product name “X12-812H” (methyl isobutyl ketone (MIBK) ) And 3-aminopropyltrimethoxysilane), manufactured by Shin-Etsu Chemical Co., Ltd.
  • the characteristics of the refractory curable composition according to Example 1 were evaluated as follows.
  • Viscosity The viscosity of the curable composition according to Example 1 is a BS viscometer no. It was measured at 7 rotors x 20 revolutions.
  • Hardness of cured product The hardness of the cured product obtained by curing the curable composition of Example 1 under curing condition 1 was measured with a durometer type A in accordance with JIS K6253-3.
  • the volume of the combustion residue was calculated by measuring the size (length, width, and thickness) of the combustion residue using a ruler at 23 ° C. and 50% RH. When the combustion residue has irregularities, the average value of the concave portion and the convex portion was used as the measurement result.
  • the combustion residue was lifted with a 5.0 cm finger in the vertical direction at a speed of 2.0 mm / s to confirm the ease of collapse. Furthermore, the volume of the combustion residue after lifting was calculated by measuring the size of the combustion residue after lifting using a ruler. Then, the ratio of the volume of the combustion residue after lifting to the volume of the combustion residue before lifting was calculated. In addition, the force of the finger when lifting the combustion residue with a finger is a force that does not substantially deform the combustion residue by the force.
  • the shape retention was evaluated according to the following criteria.
  • The shape after combustion was not collapsed, and the volume remained 80% or more and less than 95% without being collapsed even when lifted with a finger.
  • The shape after combustion was not collapsed, but collapsed during the lifting, and the volume remained less than 80%.
  • X The shape after combustion has collapsed.
  • Example 4 Expansion rate after combustion
  • the curable composition according to Example 1 was cured under curing condition 1 to obtain a cured product having a size of 10 mm long ⁇ 10 mm wide ⁇ 1.6 mm thick. And this hardened
  • the expansion rate after combustion was evaluated according to the following criteria.
  • Double-circle The expansion rate after combustion is 25 times or more.
  • The expansion rate after combustion is 20 times or more and less than 25 times.
  • delta The expansion rate after combustion is 15 times or more and less than 20 times.
  • X The expansion rate after combustion is less than 15 times.
  • Tack For the cured product obtained by curing the curable composition according to Example 1 under curing condition 1, tack was measured in accordance with JIS A1439 (5.19 tack-free test) (Tack of cured product). The time required for curing is not measured. And the surface of the hardened
  • Examples 2 to 9, Comparative Examples 1 to 4 The curable compositions according to Examples 2 to 9 and Comparative Examples 1 to 4 were prepared in the same manner as in Example 1 except that the compounding substances were changed as shown in Table 1 in Example 1. The characteristics were evaluated in the same manner as in Example 1. The results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Architecture (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Public Health (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

硬化前には適切な流動性を有し、硬化後には優れた耐火性能を発揮する硬化物を用いた構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法を提供する。構造物の防火構造体は、構造物と、構造物の表面の少なくとも一部に設けられる硬化性組成物の硬化物とを備え、硬化性組成物が、常温で流動性を有し、硬化物が、JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の硬化物の体積が燃焼前の硬化物の体積の20倍以上であると共に、燃焼後の硬化物が形状保持性を有する。

Description

構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法
 本発明は、構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法に関する。
 建築物等の構造物の内部や外部で火災が発生した場合に備え、構造物は、火災の延焼を防止する機能を有することが要求される。そこで、従来、様々な耐火材料を用いた防火構造が提案されている。例えば、長手方向に中空部を有する樹脂枠材の中空部に注入される用途に用いられる熱膨張性耐火材料であって、(i)反応硬化性樹脂成分、(ii)熱膨張成分、(iii)液状分散剤、及び(iv)無機充填材を少なくとも含み、樹脂枠材と同じ樹脂からなる成形材を液状分散剤(iii)に50℃の温度下に5日間浸漬した際、液状分散剤(iii)に浸漬する前と浸漬した後の成形材の重量変化が1%未満である熱膨張性耐火材料が提案されている(例えば、特許文献1参照。)。特許文献1に記載の熱膨張性耐火材料によれば、長期間安定した防火性を示す熱膨張性耐火材料を提供できる。
国際公開第2014/162718号
 しかしながら、構造物等に用いられる耐火材料には、様々な形状の構造物に対応する流動性を有すること、及び炎に曝された場合に適切に炎を遮断すること等の様々な性能が要求されるところ、特許文献1に記載の熱膨張性耐火材料を含む従来の耐火材料においては、硬化前の流動性、硬化後の炎の遮断性能等の複数の性能を良好にすることが困難である。
 したがって、本発明の目的は、硬化前には適切な流動性を有し、硬化後には優れた耐火性能を発揮する硬化物を用いた構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法を提供することにある。
 本発明は、上記目的を達成するため、構造物と、構造物の表面の少なくとも一部に設けられる硬化性組成物の硬化物とを備え、硬化性組成物が、常温で流動性を有し、硬化物が、JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の硬化物の体積が燃焼前の硬化物の体積の20倍以上であると共に、燃焼後の硬化物が形状保持性を有する構造物の防火構造体が提供される。
 また、上記構造物の防火構造体において、空気中、400℃の雰囲気下で硬化物を20分間燃焼させた後の燃焼残渣を速度2.0mm/sで持ち上げた場合に、持ち上げ前の燃焼残渣の体積に対する持ち上げ後の燃焼残渣の体積が80%以上であることが好ましい。
 また、上記構造物の防火構造体において、硬化性組成物が、(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体と、(B)熱膨張性黒鉛とを含有していてもよい。
 また、上記構造物の防火構造体において、硬化性組成物が、(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体とは異なる(C)架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体を含有してもよい。
 また、上記構造物の防火構造体において、(B)熱膨張性黒鉛が、互いに粒径の異なる少なくとも2種類の熱膨張性黒鉛を含有すると共に、一方の熱膨張性黒鉛の粒径と他方の熱膨張性黒鉛の粒径との差の絶対値が100μm以上であることが好ましい。
 また、上記構造物の防火構造体において、硬化性組成物が、エポキシ樹脂、又はフェノール樹脂のいずれか一方を少なくとも含むこともできる。
 また、本発明は、上記目的を達成するため、硬化前に常温で流動性を有し、硬化後の硬化物が、JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の硬化物の体積が燃焼前の硬化物の体積の20倍以上であると共に、燃焼後の硬化物が形状保持性を有する耐火性の硬化性組成物が提供される。
 また、上記耐火性の硬化性組成物が、(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体と、(B)熱膨張性黒鉛とを含有することが好ましい。
 また、上記耐火性の硬化性組成物が、(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体とは異なる(C)架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体を更に含有することもできる。
 また、本発明は、上記目的を達成するため、硬化前に常温で流動性を有する硬化性組成物の硬化物を備える耐火材であって、硬化物が、JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の硬化物の体積が燃焼前の硬化物の体積の20倍以上であると共に、燃焼後の硬化物が形状保持性を有する耐火材が提供される。
 また、本発明は、上記目的を達成するため、防火構造体形成工法であって、構造物の表面の少なくとも一部に、常温で流動性を有する硬化性組成物を塗布する塗布工程と、硬化性組成物を硬化させて硬化物にする硬化工程とを備え、硬化物が、JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の硬化物の体積が燃焼前の硬化物の体積の20倍以上であると共に、燃焼後の硬化物が形状保持性を有する防火構造体形成工法が提供される。
 本発明に係る構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法によれば、硬化前には適切な流動性を有し、硬化後には優れた耐火性能を発揮する硬化物を用いた構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法を提供できる。
[構造物の防火構造体の概要]
 本発明に係る構造物の防火構造体は、構造物と、構造物の表面の少なくとも一部に設けられる硬化性組成物の硬化物とを備える。本発明において構造物は、複数の部材を用いて構成される建築物、建築物を構成する複数の部材自体(例えば、サッシ、さね、本ざね、すりあわせ、相じゃくり、雇いざね、換気孔等)、空調設備に用いる部材(排気ダクト等)、配電設備等の電気回線を有する部材、水道やガス管等を構成する部材、その他の火災・燃焼若しくは外部からの炎の延焼・類焼を防止することが要求される物体や部材等を含む。そして、本発明に係る硬化物は、高温に曝された場合に炭化層を形成すると共に膨張し、膨張後の形状をある程度保持する。これにより、本発明に係る構造物の防火構造体は、延焼・類焼を防止する。
 例えば、構造物が第1の構造部材と第1の構造部材に組み合わされる第2の構造部材とを有している場合に、第1の構造部材と第2の構造部材とを組み合わせる領域の間隙に本発明に係る硬化物を設ける。この硬化物が火災等により高温に曝された場合、硬化物から炭化層若しくは炭化物が形成されると共に膨張して間隙を塞ぐ。そして、間隙を塞いだ炭化層若しくは炭化物は、炎、及び/又は熱が間隙を伝搬することを防止する。これにより、延焼や類焼が所定の時間、防止される。また、例えば、本発明に係る硬化性組成物を建造物等の孔の内壁に塗布し、塗布した硬化性組成物を硬化させ、この内壁に硬化物を設けることもできる。この場合、火災等の炎、及び/又は熱によりこの硬化物から炭化層若しくは炭化物が形成され、膨張することで孔が塞がれる。これにより、本発明に係る硬化物によれば、炎、熱、煙、及び/又は火災によって発生するガス等の伝搬を防止できる。
[構造物の防火構造体の詳細]
 本発明に係る構造物の防火構造体は、構造物と、構造物の表面の少なくとも一部に設けられる硬化性組成物の硬化物とを備え、この硬化物が、常温(すなわち、23℃)で流動性を有する耐火性の硬化性組成物を硬化させて得られる硬化物である。そして、本発明に係る硬化性組成物の硬化物は、硬化性組成物を構造物に塗布して硬化させた後、硬化物を燃焼した後に燃焼前の硬化物の体積よりも燃焼後の硬化物の方が大きな体積になることで熱や炎を遮断する特性、外力が加わった場合に変形しすぎず、かつ外力がなくなった後に元の形状に復元しやすい硬度、外力が加わった場合に変形しすぎないことに基づき、炎や高温に曝された場合に充分に膨張するサイズを保つことができる特性、及び硬化物を燃焼した後に形状を保持し得る形状保持性を有する。
 具体的に、本発明に係る硬化物の硬度は、JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、50以上がより好ましい。また、空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の硬化物の体積が燃焼前の硬化物の体積の20倍以上(すなわち、燃焼後の燃焼前に対する体積の膨張率が20倍以上)であり、25倍以上がより好ましい。そして、本発明に係る硬化物は、燃焼後であっても、燃焼前の形状を予め定められた範囲で保持する形状保持性を有する。
 すなわち、本発明においては、空気中、400℃の雰囲気下で硬化物を20分間燃焼させた後の燃焼残渣を速度2.0mm/sで持ち上げた場合に、その形状が崩れず、持ち上げ前の燃焼残渣の体積に対する持ち上げ後の燃焼残渣の体積が80%以上であり、燃焼前後で硬化物の形が崩れていない場合に、燃焼前の形状を予め定められた範囲で保持する形状保持性を有するとする。なお、持ち上げ前の燃焼残渣の体積に対する持ち上げ後の燃焼残渣の体積は、炎や熱の伝搬を防止若しくは抑制する観点から、80%以上が好ましく、95%以上がより好ましい。
[硬化性組成物の詳細]
 本発明に係る硬化性組成物は、主として(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体(以下、「(A)成分」という場合がある)と、(B)熱膨張性黒鉛(以下、「(B)成分」という場合がある)とを含有する。また、(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体とは異なる(C)架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体を含むことも好ましい(以下、「(C)成分」という場合がある。)。更に、硬化性組成物は、エポキシ樹脂、若しくはフェノール樹脂のいずれか一方、又は双方を含むこともできる。そして、(B)熱膨張性黒鉛は、互いに粒径の異なる少なくとも2種類の熱膨張性黒鉛を含有すると共に、一方の熱膨張性黒鉛の粒径と他方の熱膨張性黒鉛の粒径との差の絶対値が100μm以上であることが好ましい。また、本発明に係る硬化性組成物は、23℃において流動性を有することが好ましく、液状塗布可能な流動性を有することが好ましい。例えば、硬化性組成物は、硬化前において、0.1Pa・s以上1,000Pa・s以下の粘度を有する。
[(A)架橋性ケイ素基を1分子中に少なくとも1個する(メタ)アクリル酸エステル系重合体]
 (A)成分としては、主鎖が実質的に(メタ)アクリル酸エステル系重合体であり、架橋性ケイ素基を1分子中に平均して少なくとも1個以上含有する有機重合体を用いることができる。(A)成分は、硬化性組成物の硬化物が燃焼した場合に、硬化物の形状保持に寄与し得る(メタ)アクリル酸エステル系重合体である。
 (A)成分の架橋性ケイ素基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、空気中等の湿分によりシロキサン結合を形成することで架橋し得る基である。架橋性ケイ素基としては、例えば、一般式(1)で示される基が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Rは、炭素数が1~20の炭化水素基、炭素数が1~20のアルキル基、炭素数が3~20のシクロアルキル基、炭素数が6~20のアリール基、炭素数が7~20のアラルキル基、R SiO-(Rは、前記と同じ)で示されるトリオルガノシロキシ基、若しくは-CHOR基(Rは、前記と同じ)である。また、Rは、1位から3位の炭素原子上の少なくとも1個の水素原子が、ハロゲン、-OR、-NR、-N=R、-SR(R、R、R、Rはそれぞれ水素原子、又は炭素数が1~20の置換基を有するか若しくは置換基を有さない炭化水素基、Rは炭素数が1~20の2価の置換基を有するか若しくは置換基を有さない炭化水素基である。)、炭素数が1~20のペルフルオロアルキル基、若しくはシアノ基で置換された炭素数が1~20の炭化水素基を示す。これらの中でRは、メチル基が好ましい。Rが2個以上存在する場合、複数のRは同一であっても、異なっていてもよい。Xは水酸基、又は加水分解性基を示し、Xが2個以上存在する場合、複数のXは同一であっても、異なっていてもよい。aは0、1、2又は3の整数のいずれかである。硬化性を考慮し、十分な硬化速度を有する硬化性組成物を得るためには、式(1)においてaは2以上が好ましく、3がより好ましい。
 加水分解性基や水酸基は1個のケイ素原子に1~3個の範囲で結合することができる。加水分解性基や水酸基が架橋性ケイ素基中に2個以上結合する場合には、それらは同一であっても、異なっていてもよい。架橋性ケイ素基を形成するケイ素原子は1個でもよく、2個以上であってもよいが、シロキサン結合等により連結されたケイ素原子の場合には、20個程度あってもよい。
 Xで示される加水分解性基としては、F原子以外であれば特に限定されない。例えば、アルコキシ基、アシルオキシ基、アミノ基、アミド基、アミノオキシ基、アルケニルオキシ基等が挙げられる。これらの中では、加水分解性が穏やかで取り扱いやすいという観点からアルコキシ基が好ましい。アルコキシ基の中では炭素数の少ない基の方が反応性が高く、メトキシ基>エトキシ基>プロポキシ基の順のように炭素数が多くなるほど反応性が低くなる。目的や用途に応じて選択できるが、通常、メトキシ基やエトキシ基が用いられる。
 架橋性ケイ素基としては、例えば、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基、-Si(OR)、メチルジメトキシシリル基、メチルジエトキシシリル基等のジアルコキシシリル基、-SiR(OR)が挙げられる。ここでRはメチル基やエチル基等のアルキル基である。また、架橋性ケイ素基は1種で用いても、2種以上併用してもよい。架橋性ケイ素基は、主鎖又は側鎖、若しくは双方に結合していてもよい。架橋性ケイ素基が分子鎖の主鎖の末端にのみある場合、最終的に形成される硬化物に含まれる重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。そして、硬化性組成物の硬化物の引張特性等の硬化物の物性が優れる観点からは、架橋性ケイ素基が分子鎖末端に存在することが好ましい。
 また、(A)成分において、架橋性ケイ素基は、硬化後の引張接着性、モジュラス等の物性の観点から、重合体1分子中に平均して1.0個以上5個以下存在することが好ましく、1.1個以上3個以下存在することがより好ましい。高強度、高伸びで、低弾性率を示すゴム状硬化物を得る観点からは、(A)成分に含有される架橋性ケイ素基は、有機重合体1分子中に平均して1.0個以上存在することが好ましく、1.1個以上5個以下存在することがより好ましい。なお、架橋密度を低下させる観点からは、分子中に含まれる架橋性ケイ素基の数が平均して1.0個以下の有機重合体を併用することもできる。
 (A)成分の主鎖骨格としては、具体的には、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体が挙げられる。これらの骨格は、(A)成分の中に単独で含まれていても、2種類以上がブロック若しくはランダムに含まれていてもよい。
 (メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れる。また、(メタ)アクリル酸エステル系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れる。
 (メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては、各種のモノマーを用いることができる。例えば、アクリル酸等の(メタ)アクリル酸系モノマー;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル系モノマー;脂環式(メタ)アクリル酸エステル系モノマー;芳香族(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸2-メトキシエチル等の(メタ)アクリル酸エステル系モノマー;γ-(メタクリロイルオキシプロピル)トリメトキシシラン、γ-(メタクリロイルオキシプロピル)ジメトキシメチルシラン等のシリル基含有(メタ)アクリル酸エステル系モノマー;(メタ)アクリル酸の誘導体;フッ素含有(メタ)アクリル酸エステル系モノマー等が挙げられる。
 (メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーと共に、以下のビニル系モノマーを共重合することもできる。ビニル系モノマーを例示すると、スチレン、無水マレイン酸、酢酸ビニル等が挙げられる。また、単量体単位(以下、他の単量体単位とも称する)として、これら以外にアクリル酸、グリシジルアクリレートを含有してもよい。
 これらは、単独で用いても、複数を共重合させてもよい。生成物の物性等の観点からは、(メタ)アクリル酸系モノマーからなる重合体が好ましい。また、1種又は2種以上の(メタ)アクリル酸アルキルエステルモノマーを用い、必要に応じて他の(メタ)アクリル酸モノマーを併用した(メタ)アクリル酸エステル系重合体がより好ましい。更に、シリル基含有(メタ)アクリル酸エステル系モノマーを併用することで、(メタ)アクリル酸エステル系重合体中のケイ素基の数を制御できる。接着性が良いことからメタクリル酸エステルモノマーからなるメタクリル酸エステル系重合体が特に好ましい。また、低粘度化、柔軟性の付与、粘着性の付与をする場合、アクリル酸エステルモノマーを適宜用いることが好ましい。なお、本発明において、(メタ)アクリル酸とは、アクリル酸及び/又はメタクリル酸を表す。
 (メタ)アクリル酸エステル系重合体の製造方法は、例えば、ラジカル重合反応を用いたラジカル重合法を用いることができる。ラジカル重合法としては、重合開始剤を用いて所定の単量体単位を共重合させるラジカル重合法(フリーラジカル重合法)や、末端等の制御された位置に反応性シリル基を導入できる制御ラジカル重合法が挙げられる。ただし、重合開始剤としてアゾ系化合物、過酸化物等を用いるフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなる。したがって、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得る場合には、制御ラジカル重合法を用いることが好ましい。
 制御ラジカル重合法としては、特定の官能基を有する連鎖移動剤を用いたフリーラジカル重合法やリビングラジカル重合法が挙げられる。付加-開裂移動反応(Reversible Addition Fragmentationchain Transfer;RAFT)重合法、遷移金属錯体を用いたラジカル重合法(Transition Metal Mediated Living Radical Polymerization)、原子移動ラジカル重合法(Atom Transfer Radical Polymerization;ATRP)等のリビングラジカル重合法を採用することが好ましい。なお、主鎖骨格が(メタ)アクリル酸エステル系重合体であって、その一部がテレケリックポリマーである重合体(以下、「疑似テレケリックポリマー」という。)を合成する反応として、反応性シリル基を有するチオール化合物を用いた反応や、反応性シリル基を有するチオール化合物、及びメタロセン化合物を用いた反応が挙げられる。これらの反応により得られる疑似テレケリックポリマーも、本発明に係る硬化性組成物の機能、及び奏する効果を阻害しない範囲で用いることができる。
 (メタ)アクリル酸エステル系重合体の数平均分子量は、(メタ)アクリル酸エステル系重合体のガラス転移温度(Tg)が0℃未満の場合、例えば(メタ)アクリル酸エステル系重合体がアクリル酸ブチル単量体単位から主として構成される場合、20,000以上が好ましく、30,000以上がより好ましく、35,000以上が更に好ましく、40,000以上が特に好ましい。また、(メタ)アクリル酸エステル系重合体のガラス転移温度(Tg)が0℃以上の場合、例えば(メタ)アクリル酸エステル系重合体がメタクリル酸メチル単量体単位から主として構成される場合、数平均分子量は、600以上10,000以下が好ましく、600以上5,000以下がより好ましく、1,000以上4,500以下が更に好ましい。数平均分子量をこの範囲とすることにより、(C)成分を用いる場合であって(C)成分に架橋性ケイ素基を有するポリオキシアルキレン系重合体が含まれている場合、このポリオキシアルキレン系重合体との相溶性が向上する。(メタ)アクリル酸エステル系重合体は、単独で用いても、2種以上併用してもよい。なお、本発明に係る数平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算分子量である。
[(B)熱膨張性黒鉛]
 (B)熱膨張性黒鉛は、グラファイトを硫酸、硝酸等の無機酸と、濃硝酸、過塩素酸、過酸化水素等の強酸化剤とで処理することによりグラファイトの層間に酸等がインターカレートされた層状物質である。(B)熱膨張性黒鉛は、加熱により層間の化合物がガス化し、ガス化によって膨張する性質を有する。本発明においては、本発明に係る硬化物に熱、及び/又は炎の遮断能力を発揮させる観点から、燃焼後の硬化物の体積を燃焼前の硬化物の体積の20倍以上にすることができる粒径を有する(B)熱膨張性黒鉛を用いる。なお、本発明において粒径はJIS規格のZ8801-1982「標準ふるい」に準拠した粒径であり、「μm」で表記すると共に「mesh」でも表記する場合がある。
 燃焼後の硬化物の体積をより大きくすると共に、燃焼後の硬化物内の熱膨張性黒鉛を密集させて充填させる観点から、サイズの異なる複数種類の熱膨張性黒鉛を混合させることが好ましい。具体的には、互いに粒径の異なる少なくとも2種類の熱膨張性黒鉛を用いる。そして、一方の熱膨張性黒鉛の粒径と他方の熱膨張性黒鉛の粒径との差の絶対値が100μm以上であることが好ましい。また、互いに粒径の異なる少なくとも2種類の熱膨張性黒鉛を用いる場合、例えば、粒径が小さい方の熱膨張性黒鉛と大きい方の熱膨張性黒鉛とを併用すると、形状保持性を向上させることができる。
 また、粒径が小さい方の熱膨張性黒鉛は、100μm未満の粒径を有していてもよいが、100μm以上の粒径を有することが好ましく、150μm以上の粒径を有することがより好ましい。そして、粒径が大きい方の熱膨張性黒鉛は、200μm以上の粒径を有することが好ましく、250μm以上の粒径を有することがより好ましく、300μm以上の粒径を有することが更に好ましい。
 すなわち、一例として2種類の熱膨張性黒鉛を用いる場合、第1の熱膨張性黒鉛と第1の熱膨張性黒鉛とは粒径の異なる第2の熱膨張性黒鉛とを用いる。そして、第1の熱膨張性黒鉛として、例えば、粒径が150μm(100mesh)の熱膨張性黒鉛を用いる場合、第2の熱膨張性黒鉛としては、例えば、粒径が250μm(60mesh)以上の熱膨張性黒鉛を用いる。同様に、第1の熱膨張性黒鉛として粒径が300μm(50mesh)の熱膨張性黒鉛を用いる場合、第2の熱膨張性黒鉛としては、粒径が400μm以上、又は500μm(30mesh)以上の熱膨張性黒鉛を用いる。
 なお、燃焼後の硬化物の体積をより大きくすると共に、燃焼後の硬化物内の熱膨張性黒鉛を密集させて充填させて炎、及び/又は熱の遮断性能をより向上させる観点から、粒径の大きい方の熱膨張性黒鉛は最小で300μm以上の粒径を有することが好ましく(この場合、他方の熱膨張性黒鉛の粒径は200μm以上になる。)、粒径の小さい方の熱膨張性黒鉛は最大で400μm以下の粒径を有することが好ましい(この場合、他方の熱膨張性黒鉛の粒径は500μm以下になる。)。
 本発明に係る硬化性組成物において(B)熱膨張性黒鉛の含有割合は、(A)成分100質量部((C)成分を含有する場合には、(A)成分と(C)成分とを合わせた量を100質量部とする)に対して10質量部以上100質量部以下が好ましい。
[(C)架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体]
 硬化物の表面タックを抑制若しくは消去する観点から、硬化性組成物は(C)成分を含有することもできる。(C)成分は、架橋性ケイ素基を1分子中に平均して少なくとも1個含有する有機重合体であって、主鎖がポリシロキサンを含んでいてもよい有機重合体である。(C)成分は、(A)成分と異なり、(メタ)アクリル酸エステル系重合体とは異なる有機重合体が主鎖を構成する。なお、(C)成分の架橋性ケイ素基については、(A)成分の架橋性ケイ素基と同様であるので詳細な説明は省略する。
 (C)成分の主鎖としては、硬化後の引張接着性、モジュラス等の物性が良好である観点から、例えば、ポリオキシプロピレン、ポリオキシテトラメチレン、ポリオキシエチレン-ポリオキシプロピレン共重合体等のポリオキシアルキレン系重合体;エチレン-プロピレン系共重合体、ポリイソブチレン、ポリイソプレン、ポリブタジエン、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、又は、ラクトン類の開環重合で得られるポリエステル系重合体;酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ポリアミド系重合体;ポリカーボネート系重合体;ジアリルフタレート系重合体等が挙げられる。これらの骨格は、オルガノシロキサンを含有していてもよく、(C)成分の中に単独で含まれていても、2種類以上がブロック若しくはランダムに含まれていてもよい。
 更に、ポリイソブチレン、水添ポリイソプレン、水添ポリブタジエン等の飽和炭化水素系重合体や、ポリオキシアルキレン系重合体等は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることから好ましい。また、ポリオキシアルキレン系重合体は、透湿性が高く1液型組成物にした場合に深部硬化性に優れることから好ましい。
 これらの架橋性ケイ素基を有する有機重合体は、単独で用いても、2種以上併用してもよい。具体的には、架橋性ケイ素基を有するポリオキシアルキレン系重合体、及び架橋性ケイ素基を有する飽和炭化水素系重合体からなる群から選択される2種以上をブレンドした有機重合体も用いることができる。
 主鎖骨格がオキシアルキレン系重合体であり末端に加水分解性基等の官能基を有するポリマー(以下、「ポリオキシアルキレン系重合体」という。)は、一般式(2)で示される繰り返し単位を有する重合体である。
 -R-O-・・・(2)
 一般式(2)中、Rは炭素数が1~14の直鎖状若しくは分岐アルキレン基であり、炭素数が1~14の直鎖状若しくは分岐アルキレン基が好ましく、炭素数が2~4の直鎖状若しくは分岐アルキレン基が更に好ましい。
 一般式(2)で示される繰り返し単位の具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にオキシプロピレンを主成分とする重合体からなる主鎖骨格が好ましい。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体の分子量は、硬化物の初期の引張特性である引張モジュラスを小さくし、破断時伸びを大きくするため高い分子量が好ましい。本発明においては、ポリオキシアルキレン系重合体の数平均分子量の下限としては15,000が好ましく、18,000以上が更に好ましく、20,000以上がより好ましい。分子量が高くなると重合体の粘度が上昇して硬化性組成物の粘度も上昇するので、数平均分子量が20,000以上の重合体を一部に含む重合体も好ましい。また、数平均分子量の上限は50,000、更には40,000が好ましい。なお、本発明に係る数平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算分子量である。硬化性組成物の硬化物の引張モジュラスや破断時伸びを十分に確保する観点から、数平均分子量は15,000以上が好ましく、硬化性組成物の粘度を適切な範囲にし、良好な作業性を確保する観点から、数平均分子量は50,000以下が好ましい。
 ポリオキシアルキレン系重合体において架橋性ケイ素基の含有量を適度に低下させると、硬化物における架橋密度が低下するので、初期においてより柔軟な硬化物になり、モジュラス特性が小さくなると共に破断時伸び特性が大きくなる。ポリオキシアルキレン系重合体において架橋性ケイ素基は、重合体1分子中に平均して1.2個以上2.8個以下存在することが好ましく、1.3個以上2.6個以下存在することがより好ましく、1.4個以上2.4個以下存在することが更に好ましい。十分な硬化性を確保する観点からは、分子中に含まれる架橋性ケイ素基の数は1個以上が好ましく、適切な密度の網目構造にして良好な機械的特性を確保する観点から、架橋性ケイ素基の数は所定数以下が好ましい。そして、主鎖骨格が直鎖である2官能の重合体の場合、当該重合体の架橋性ケイ素基は、重合体1分子中に平均して1.2個以上1.9個未満存在することが好ましく、1.25個以上1.8個以下存在することがより好ましく、1.3個以上1.7個未満存在することが更に好ましい。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体は直鎖状でも分岐を有してもよい。引張モジュラスを小さくする観点からは、架橋性ケイ素基を有するポリオキシアルキレン系重合体は直鎖状の重合体が好ましい。また、架橋性ケイ素基を有するポリオキシアルキレン系重合体の分子量分布(Mw/Mn)は2以下、特には1.6以下が好ましい。
 ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、例えば、複金属シアン化物錯体触媒による重合法等が挙げられるが、特に限定されない。複金属シアン化物錯体触媒による重合法によれば数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体を得ることができる。
 ポリオキシアルキレン系重合体の主鎖骨格中にはウレタン結合成分等の他の成分を含んでいてもよい。ウレタン結合成分としては、例えば、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート等の脂肪族系ポリイソシアネートと水酸基を有するポリオキシアルキレン系重合体との反応から得られる成分を挙げることができる。
 分子中に不飽和基、水酸基、エポキシ基、又はイソシアネート基等の官能基を有するポリオキシアルキレン系重合体に、この官能基に対して反応性を有する官能基、及び架橋性ケイ素基を有する化合物を反応させることで、ポリオキシアルキレン系重合体へ架橋性ケイ素基を導入できる(以下、高分子反応法という)
 高分子反応法の例として、不飽和基含有ポリオキシアルキレン系重合体に架橋性ケイ素基を有するヒドロシランや、架橋性ケイ素基を有するメルカプト化合物を作用させてヒドロシリル化やメルカプト化し、架橋性ケイ素基を有するポリオキシアルキレン系重合体を得る方法を挙げることができる。不飽和基含有ポリオキシアルキレン系重合体は水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基及び不飽和基を有する有機化合物を反応させ、不飽和基を含有するポリオキシアルキレン系重合体を得ることができる。
 また、高分子反応法の他の例として、末端に水酸基を有するポリオキシアルキレン系重合体とイソシアネート基、並びに架橋性ケイ素基を有する化合物とを反応させる方法や、末端にイソシアネート基を有するポリオキシアルキレン系重合体と水酸基やアミノ基等の活性水素基、並びに架橋性ケイ素基を有する化合物とを反応させる方法を挙げることができる。イソシアネート化合物を用いると、架橋性ケイ素基を有するポリオキシアルキレン系重合体を容易に得ることができる。
 架橋性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用しても、2種以上併用してもよい。
 本発明に係る硬化性組成物の(C)成分において、架橋性ケイ素基は、有機重合体1分子中に平均して1個以上存在することが好ましく、2個以上存在することがより好ましい。また、本発明に係る硬化性組成物において硬化物の表面タックを抑制若しくは消去する観点から、硬化性組成物中の(C)成分は、(A)成分の単位質量部に対して0.4倍以上含まれることが好ましく、2倍以上含まれることが更に好ましい。
[エポキシ樹脂]
 エポキシ樹脂としては、様々なエポキシ樹脂を用いることができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂やこれらを水添したエポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、ノボラック型エポキシ樹脂、ウレタン結合を有するウレタン変性エポキシ樹脂、フッ素化エポキシ樹脂、ゴム変性エポキシ樹脂(例えば、ポリブタジエン、スチレンブタジエンゴム(SBR)、ニトリルゴム(NBR)、及びCTBNのいずれかのゴムで変性したエポキシ樹脂等)、テトラブロモビスフェノールAのグリシジルエーテル等の難燃型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも、2種以上併用することもできる。エポキシ樹脂は、硬化性組成物の硬化物の燃焼後の形状保持性に寄与し得る。
 これらエポキシ樹脂の中では、作業性や硬化性、接着強度、被着体汎用性、耐水性、耐久性等のバランスの観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂やこれらを水添したエポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂より好ましく、ビスフェノールA型エポキシ樹脂が最も好ましい。
 エポキシ樹脂の分子量は特に制限はないが、数平均分子量300以上1000以下が好ましく、350以上600以下がより好ましい。また、取り扱いやすさの面から常温で液状のエポキシ樹脂を用いることが好ましい。
 本発明に係る硬化性組成物においてエポキシ樹脂の配合割合は、(A)成分100質量部((C)成分を含有する場合には、(A)成分と(C)成分とを合わせた量を100質量部とする)に対して、0.5質量部以上20質量部以下であり、1質量部以上15質量部以下が好ましい。
[フェノール樹脂]
 フェノール樹脂としては、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等の様々なフェノール樹脂を用いることができる。フェノール樹脂としては室内空気質汚染対策の観点から、ホルムアルデヒドの発生を防止し得るノボラック型フェノール樹脂等を用いることが好ましい。フェノール樹脂は、硬化性組成物の硬化物が燃焼した後の残渣の形状保持に寄与し得る。
 本発明に係る硬化性組成物においてフェノール樹脂の配合割合は、(A)成分100質量部((C)成分を含有する場合には、(A)成分と(C)成分とを合わせた量を100質量部とする)に対して、0.01質量部以上20質量部以下であり、3質量部以上10質量部以下が好ましい。
[その他の配合物]
 本発明に係る耐火性の硬化性組成物は、本発明に係る構造物の防火構造体の効果を阻害しない範囲で、無機充填剤、老化防止剤、水分吸収材、接着付与剤、硬化触媒、充填剤、希釈剤、紫外線吸収剤、酸化防止剤、物性調整剤、可塑剤、揺変剤、難燃剤、粘着付与剤、垂れ防止剤、ラジカル重合開始剤、着色剤等、及び/又はトルエンやアルコール等の溶剤等の各種物質を更に配合してもよく、また、相溶する他の重合体をブレンドしてもよい。
[接着付与剤]
 本発明に係る硬化性組成物は、接着付与剤を配合することにより、硬化物の金属、プラスチック、ガラス等の様々な被着体に対する接着性を向上させることができる。
 接着付与剤は、アルコキシ基含有シランである様々なシランカップリング剤を用いることができる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、1,3-ジアミノイソプロピルトリメトキシシラン等のアミノ基含有シラン類;3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン等のケチミン基含有シラン類;3-メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類等の様々なシランカップリング剤を用いることができる。
 接着付与剤の配合割合は特に制限はないが、(A)成分100質量部((C)成分を含有する場合には、(A)成分と(C)成分とを合わせた量を100質量部とする)に対し、0.2質量部以上20質量部以下が好ましく、0.3質量部以上15質量部以下がより好ましく、0.5質量部以上10質量部以下が更に好ましい。これら接着付与剤は単独で用いてもよく、2種以上を併用してもよい。
[硬化触媒]
 硬化触媒としては、例えば、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジオクチル錫オキサイドとシリケート化合物との反応物、ジブチル錫オキサイドとフタル酸エステルとの反応物等の有機錫化合物;カルボン酸錫、カルボン酸ビスマス、カルボン酸鉄等のカルボン酸金属塩;脂肪族アミン類、芳香族アミン類;バーサチック酸等のカルボン酸;ジイソプロポキシチタンビス(エチルアセトセテート)等のチタン化合物、アルミニウム化合物類等のアルコキシ金属;無機酸;三フッ化ホウ素エチルアミン錯体等の三フッ化ホウ素錯体;アルミニウムモノアセチルアセトネートビス(エチルアセトアセテート)等の金属キレート化合物等を用いることもできる。これらの中では有機錫化合物が好ましい。
 硬化性組成物にエポキシ樹脂を添加する場合、エポキシ樹脂の硬化触媒を更に添加してもよい。また、硬化触媒としては、例えば、エポキシ樹脂硬化剤を1種又は複数種選択して用いることができる。このような硬化触媒としては、例えば、脂環族アミン、芳香環を含む脂肪族アミン、芳香族アミン、変性アミン等の第一級アミン;直鎖第二級アミン等の第二級アミン;芳香族酸無水物、環状脂肪族酸無水物、脂肪族酸無水物等の酸無水物類;ポリアミド樹脂、有機酸ヒドラジッド、合成樹脂初期縮合物、ポリビニルフェノール等のその他の硬化剤;アミノ基をケチミン化した化合物等を挙げることができる。
 硬化触媒を用いる場合、(A)成分100質量部((C)成分を含有する場合には、(A)成分と(C)成分とを合わせた量を100質量部とする)に対して、0.5質量部以上20質量部以下であり、1質量部以上15質量部以下の範囲で用いることが好ましい。
 本発明に係る硬化性組成物は、1液型若しくは2液型にすることもできる。本発明に係る硬化性組成物は、耐火性が要求される用途として用いることができ、例えば、接着剤、ポッティング材、コーティング材、シーリング材、粘着材、塗料、パテ材、及び/又はプライマー等として用いることができる。また、本発明に係る硬化性組成物は、当該硬化性組成物自体を耐火材として用いること、又は耐火性を有する部材に本発明に係る硬化性組成物を設けた耐火材として用いることもできる。本発明に係る硬化性組成物は、例えば、各種建築物等の構造物用、自動車用、土木用、各種電気・電子分野用等に適用できる。
[防火構造体形成工法]
 本発明に係る硬化性組成物を用い、防火構造体を形成できる。すなわち、本発明に係る防火構造体形成工法は、構造物の表面の少なくとも一部に、本発明に係る硬化性組成物を塗布する塗布工程と、硬化性組成物を硬化させて硬化物にする硬化工程とを備える。一例として、本発明に係る硬化性組成物を含有するシーリング材と、耐火性を有する壁材とを組み合わせることで、燃焼性UL94規格に記載されているV-0級の耐火試験に合格し得る防火構造体を形成できる。
 塗布工程は、例えば、耐火性を有する第1の構造部材(例えば、壁を構成する壁部材)と、第1の構造部材に組み合わされる第2の構造部材とが組み合わされる部分に本発明に係る硬化性組成物を塗布する工程である。また、構造部材が開口部を有する場合、開口部の内側に本発明に係る硬化性組成物を塗布することもできる。塗布工程後、硬化性組成物を硬化させることで、第1の構造部材と第2の構造部材とが組み合わされた部分に耐火性の硬化物が設けられる。なお、第1の構造部材の第2の構造部材が組合わされる領域に予め本発明に係る硬化性組成物を塗布し、硬化させておくこともできる。この場合、第1の構造部材の硬化物が設けられている領域を挟むように、第1の構造部材と第2の構造部材とが組み合わされ、一体化する。
(実施の形態の効果)
 本実施形態に係る構造物の防火構造体は、火炎や高温に曝された場合に、硬化性組成物の硬化物が断熱層としての炭化層を形成すると共に、火炎や高温に曝される前の体積の20倍以上の体積に膨張する。これにより、本実施形態に係る構造物の防火構造体によれば、構造物を構成する部材間の間隙や開口若しくは孔等が硬化物の燃焼残渣により塞がれ、炎、熱、煙、及び/又は燃焼により発生するガス等を遮断することができる。したがって、本実施形態に係る構造物の防火構造体は、優れた耐火性能、及び炎、熱、煙、及び/又はガス等の遮断性能を発揮することができる。
 また、本実施形態においては、硬化物が所定の硬度と柔軟性とを有しているので外部から力が加わっても変形しすぎないと共に力が除去されると元の形状に戻る性質を有する。したがって、構造物に凹凸が存在している場合であっても、この構造物に設けられた本実施形態に係る硬化性組成物の硬化物は、凹凸に応じた形状を保持できる。これにより、本実施形態に係る構造物の防火構造体は、長期間の耐火性を維持できる。
 以下、本発明に係る構造物の防火構造体の硬化性組成物、及び硬化物について、実施例を用いて詳細に説明する。
(実施例1)
 実施例1に係る耐火性の硬化性組成物は以下のように調製した。まず、表1に示すように(A)成分と、(B)成分と、無機充填材と、硬化触媒とを表1記載の量で混合した。そして、混合物を撹拌することで実施例1に係る耐火性の硬化性組成物を調製した。続いて、実施例1に係る耐火性の硬化性組成物、及び硬化物の特性を評価した。その結果を表1に示す。なお、表1において、各配合物質の配合量の単位は「g」である。また、配合物質の詳細は下記の通りである。
[(A)成分]
 *1 架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体:製品名「SE-09」(シリル基末端を有するアクリルポリマー)、綜研化学株式会社製
[(B)成分]
 *2 熱膨張性黒鉛B1:製品名「膨張黒鉛9532400A」(粒径大:+32mesh 75%以上、粒径500μmに該当)、伊藤黒鉛工業株式会社製
 *3 熱膨張性黒鉛B2:製品名「膨張黒鉛9950200」(粒径小:+50mesh 80%以上、粒径300μmに該当)、伊藤黒鉛工業株式会社製
[(C)成分]
 *4 (A)成分とは異なる、架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体:製品名「サイリルEST280」(シリル末端ポリマー)、株式会社カネカ製
[エポキシ樹脂]
 *5 エポキシ樹脂:製品名「DER331」(ビスフェノールA型エポキシ樹脂)、ダウ・ケミカル日本株式会社製
[フェノール樹脂]
 *6 フェノール樹脂:製品名「PR-HF-3」(ノボラック型フェノール樹脂)、軟化点80℃、住友ベークライト株式会社製
[無機充填材]
 *7 水酸化アルミニウム:製品名「アルモリックスB350」、巴工業株式会社製
[硬化触媒]
 *8 硬化触媒:製品名「ネオスタンU―700ES」(ジブチル錫オキシドと正珪酸エチルとの反応生成物)、日東化成株式会社
 *9 硬化触媒:製品名「X12-812H」(メチルイソブチルケトン(MIBK)と3-アミノプロピルトリメトキシシランとの反応物)、信越化学工業株式会社製
Figure JPOXMLDOC01-appb-T000002
 実施例1に係る耐火性の硬化性組成物の特性は以下のように評価した。
1)粘度
 実施例1に係る硬化性組成物の粘度は、23℃50%RH下において、BS型粘度計 No.7ローター×20回転で測定した。
2)硬化物の硬度
 実施例1の係る硬化性組成物を硬化条件1で硬化させて得られた硬化物の硬度を、JIS K6253-3に準拠してデュロメータタイプAにて測定した。
3)燃焼後の形状保持性
 実施例1に係る硬化性組成物を硬化条件1で硬化させ、サイズが縦10mm×横10mm×厚さ1.6mmの硬化物を得た。そして、この硬化物を電気炉(ヤマト科学株式会社製 品番:FO300型)内に載置し、空気中、400℃雰囲気下で20分間燃焼させた。燃焼後、電気炉内を23℃に保ち12時間放置した。その後、硬化物(以下、「燃焼残渣」と言う。)の状態を23℃50%RH下にて目視で確認した。確認事項は、燃焼残渣の形状、及び体積である。燃焼残渣の体積は、23℃50%RH下で定規を用い、燃焼残渣のサイズ(縦、横、及び厚さ)を測定することにより算出した。なお、燃焼残渣に凹凸がある場合、凹部分と凸部分との平均値を測定結果にした。
 そして、燃焼残渣を2.0mm/sの速度で鉛直方向に5.0cm指で持ち上げて崩れやすさを確認した。更に、持ち上げた後の燃焼残渣のサイズを定規を用いて測定することにより、燃焼残渣の持ち上げ後の体積を算出した。そして、持ち上げ前の燃焼残渣の体積に対する持ち上げ後の燃焼残渣の体積の割合を算出した。なお、燃焼残渣を指で持ち上げる場合の指の力は、当該力によって燃焼残渣が実質的に変形しない程度の力である。
 形状保持性は以下の基準に則って評価した。
 ◎:燃焼後の形が崩れておらず、指で持ち上げても崩れず体積が95%以上残った。
 ○:燃焼後の形が崩れておらず、指で持ち上げても崩れず体積が80%以上95%未満残った。
 △:燃焼後の形は崩れていないが、持ち上げている最中に崩れて、体積が80%未満残った。
 ×:燃焼後の形が崩れている。
4)燃焼後の膨張率
 実施例1に係る硬化性組成物を硬化条件1で硬化させ、サイズが縦10mm×横10mm×厚さ1.6mmの硬化物を得た。そして、この硬化物を電気炉(ヤマト科学株式会社製 品番:FO300型)内に載置し、空気中、400℃雰囲気下で20分間燃焼させた。燃焼後、電気炉内を23℃に保ち12時間放置した。その後、燃焼残渣の体積を算出した。体積は、23℃50%RH下で定規を用い、燃焼残渣のサイズ(縦、横、及び厚さ)を測定することにより算出した。なお、燃焼残渣に凹凸がある場合、凹部分と凸部分との平均値を測定結果にした。そして、以下の式のように、燃焼後の硬化物の体積(燃焼残渣の体積)を燃焼前の硬化物の体積で除すことにより、燃焼後の膨張率(倍)を算出した。
  燃焼後の膨張率(倍)=燃焼後の硬化物の体積/燃焼前の硬化物の体積
 また、燃焼後の膨張率は以下の基準に則って評価した。
 ◎:燃焼後の膨張率が25倍以上である。
 ○:燃焼後の膨張率が20倍以上25倍未満である。
 △:燃焼後の膨張率が15倍以上20倍未満である。
 ×:燃焼後の膨張率が15倍未満である。
5)耐圧縮性
 実施例1に係る硬化性組成物を用い、硬化条件1で硬化させ、縦12mm×横12mm×厚さ4.5mmの硬化物を準備した。そして、この硬化物の上に500gのおもりを12mm×12mmの面積に荷重がかかるように置き、30秒放置した。おもりを置いた状態で定規を用いて硬化物の変形を確認した。耐圧縮性は以下の基準に則って評価した。
 〇:硬化物の厚さに変化が生じない(0mm変形)。
 △:硬化物の厚さが0mm以上0.2mm未満で変形した。
 ×:硬化物の厚さが0.2mm以上変形した。
6)タック
 実施例1に係る硬化性組成物を硬化条件1で硬化させて得られた硬化物について、JIS A1439(5.19 タックフリー試験)に準拠してタックを測定した(硬化物のタックを評価しているため、硬化に要した時間は測定していない。)。そして、23℃50%RH下にて硬化物の表面を指で触り、べたつきを確認した。タックは以下の基準に則って評価した。
 ○:表面にべたつきがない。
 △:表面にややべたつきがある。
 ×:表面にべたつきがある。
(実施例2~9、比較例1~4)
 実施例1とは配合物質を表1に示すように代えた以外は実施例1と同様にして、実施例2~9、及び比較例1~4に係る硬化性組成物を調整した。そして、実施例1と同様に特性を評価した。それらの結果を表1に示す。
 表1を参照すると分かるように、実施例に係る硬化性組成物はいずれも、良好な粘度、適切な硬度、優れた燃焼後の形状保持性、大きな燃焼後の膨張率、優れた耐圧縮性、及び優れたタックを兼ね備えていることが示された。一方、比較例においては実施例とは異なり、これらの特性を全て兼ね備えている例はなかった。また、例えば、比較例1においては、燃焼により膨張が見られず、かつ、燃焼残渣が崩れてしまい、体積の測定が不可能であり、比較例2においては、燃焼後、燃焼残渣がぼろぼろに崩壊した。
 以上、本発明の実施の形態及び実施例を説明したが、上記に記載した実施の形態及び実施例は特許請求の範囲に係る発明を限定するものではない。また、実施の形態及び実施例の中で説明した特徴の組み合わせの全てが発明の課題を解決するための手段に必須であるとは限らない点、及び本発明の技術思想から逸脱しない限り種々の変形が可能である点に留意すべきである。

Claims (11)

  1.  構造物と、
     前記構造物の表面の少なくとも一部に設けられる硬化性組成物の硬化物と
    を備え、
     前記硬化性組成物が、常温で流動性を有し、
     前記硬化物が、
     JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、
     空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の前記硬化物の体積が燃焼前の前記硬化物の体積の20倍以上であると共に、燃焼後の前記硬化物が形状保持性を有する構造物の防火構造体。
  2.  空気中、400℃の雰囲気下で前記硬化物を20分間燃焼させた後の燃焼残渣を速度2.0mm/sで持ち上げた場合に、持ち上げ前の前記燃焼残渣の体積に対する持ち上げ後の前記燃焼残渣の体積が80%以上である請求項1に記載の構造物の防火構造体。
  3.  前記硬化性組成物が、
     (A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体と、
     (B)熱膨張性黒鉛と
    を含有する請求項1又は2に記載の構造物の防火構造体。
  4.  前記硬化性組成物が、前記(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体とは異なる(C)架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体を含有する請求項3に記載の構造物の防火構造体。
  5.  前記(B)熱膨張性黒鉛が、互いに粒径の異なる少なくとも2種類の熱膨張性黒鉛を含有すると共に、一方の熱膨張性黒鉛の粒径と他方の熱膨張性黒鉛の粒径との差の絶対値が100μm以上である請求項3又は4に記載の構造物の防火構造体。
  6.  前記硬化性組成物が、エポキシ樹脂、又はフェノール樹脂のいずれか一方を少なくとも含む請求項1~5のいずれか1項に記載の構造物の防火構造体。
  7.  硬化前に常温で流動性を有し、硬化後の硬化物が、
     JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、
     空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の前記硬化物の体積が燃焼前の前記硬化物の体積の20倍以上であると共に、燃焼後の前記硬化物が形状保持性を有する耐火性の硬化性組成物。
  8.  (A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体と、
     (B)熱膨張性黒鉛と
    を含有する請求項7に記載の耐火性の硬化性組成物。
  9.  前記(A)架橋性ケイ素基を1分子中に少なくとも1個含有する(メタ)アクリル酸エステル系重合体とは異なる(C)架橋性ケイ素基を1分子中に少なくとも1個含有する有機重合体を更に含有する請求項7又は8に記載の耐火性の硬化性組成物。
  10.  硬化前に常温で流動性を有する硬化性組成物の硬化物を備える耐火材であって、
     前記硬化物が、
     JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、
     空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の前記硬化物の体積が燃焼前の前記硬化物の体積の20倍以上であると共に、燃焼後の前記硬化物が形状保持性を有する耐火材。
  11.  防火構造体形成工法であって、
     構造物の表面の少なくとも一部に、常温で流動性を有する硬化性組成物を塗布する塗布工程と、
     前記硬化性組成物を硬化させて硬化物にする硬化工程と
    を備え、
     前記硬化物が、
     JIS K6253-3に準拠して求められるデュロメータタイプA硬度が40以上であり、
     空気中、400℃の雰囲気下で20分間燃焼させた場合に、燃焼後の前記硬化物の体積が燃焼前の前記硬化物の体積の20倍以上であると共に、燃焼後の前記硬化物が形状保持性を有する防火構造体形成工法。
PCT/JP2017/009086 2016-03-07 2017-03-07 構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法 WO2017154931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018504529A JP6825618B2 (ja) 2016-03-07 2017-03-07 構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法
CN201780015555.5A CN108778424B (zh) 2016-03-07 2017-03-07 构造物的防火构造体、耐火性的固化性组合物
KR1020187025709A KR102407426B1 (ko) 2016-03-07 2017-03-07 구조물의 방화 구조체, 경화성 조성물, 내화재, 및 방화 구조체 형성 공법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-043872 2016-03-07
JP2016043872 2016-03-07

Publications (1)

Publication Number Publication Date
WO2017154931A1 true WO2017154931A1 (ja) 2017-09-14

Family

ID=59790640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/009086 WO2017154931A1 (ja) 2016-03-07 2017-03-07 構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法

Country Status (4)

Country Link
JP (1) JP6825618B2 (ja)
KR (1) KR102407426B1 (ja)
CN (1) CN108778424B (ja)
WO (1) WO2017154931A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778424A (zh) * 2016-03-07 2018-11-09 思美定株式会社 构造物的防火构造体、固化性组合物、耐火材料及防火构造体形成方法
JP2019104817A (ja) * 2017-12-12 2019-06-27 積水化学工業株式会社 耐火性エポキシ樹脂組成物
JP2019189779A (ja) * 2018-04-26 2019-10-31 積水化学工業株式会社 耐火材及びその製造方法、建具
CN111601854A (zh) * 2018-01-25 2020-08-28 思美定株式会社 形成方法、以及具有耐火性的一液常温湿气固化型反应性热熔组合物
JP2020139058A (ja) * 2019-02-28 2020-09-03 積水化学工業株式会社 耐火材
JP2022026587A (ja) * 2020-07-31 2022-02-10 デンカ株式会社 耐火材
JP7323677B1 (ja) 2022-05-26 2023-08-08 デンカ株式会社 熱膨張性パテ組成物、及び目地材

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6697173B1 (ja) * 2019-07-12 2020-05-20 株式会社 静科 不燃吸音パネル

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087819A (ja) * 2004-09-27 2006-04-06 Denki Kagaku Kogyo Kk 防火用目地材およびガスケット
JP2011241390A (ja) * 2010-04-23 2011-12-01 Mie Univ 貯蔵安定性の改善された接着性を有する硬化性組成物
JP2013023838A (ja) * 2011-07-15 2013-02-04 Sekisui Chem Co Ltd 防火区画貫通部構造
WO2014162718A1 (ja) * 2013-03-31 2014-10-09 積水化学工業株式会社 熱膨張性耐火材料およびそれを用いた樹脂サッシの防火構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102407426B1 (ko) * 2016-03-07 2022-06-10 세메다인 가부시키 가이샤 구조물의 방화 구조체, 경화성 조성물, 내화재, 및 방화 구조체 형성 공법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087819A (ja) * 2004-09-27 2006-04-06 Denki Kagaku Kogyo Kk 防火用目地材およびガスケット
JP2011241390A (ja) * 2010-04-23 2011-12-01 Mie Univ 貯蔵安定性の改善された接着性を有する硬化性組成物
JP2013023838A (ja) * 2011-07-15 2013-02-04 Sekisui Chem Co Ltd 防火区画貫通部構造
WO2014162718A1 (ja) * 2013-03-31 2014-10-09 積水化学工業株式会社 熱膨張性耐火材料およびそれを用いた樹脂サッシの防火構造

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778424A (zh) * 2016-03-07 2018-11-09 思美定株式会社 构造物的防火构造体、固化性组合物、耐火材料及防火构造体形成方法
CN108778424B (zh) * 2016-03-07 2019-12-17 思美定株式会社 构造物的防火构造体、耐火性的固化性组合物
JP2019104817A (ja) * 2017-12-12 2019-06-27 積水化学工業株式会社 耐火性エポキシ樹脂組成物
CN111601854A (zh) * 2018-01-25 2020-08-28 思美定株式会社 形成方法、以及具有耐火性的一液常温湿气固化型反应性热熔组合物
CN111601854B (zh) * 2018-01-25 2022-12-20 思美定株式会社 形成方法、以及具有耐火性的一液常温湿气固化型反应性热熔组合物
JP2019189779A (ja) * 2018-04-26 2019-10-31 積水化学工業株式会社 耐火材及びその製造方法、建具
JP7065682B2 (ja) 2018-04-26 2022-05-12 積水化学工業株式会社 耐火材及びその製造方法、建具
JP2020139058A (ja) * 2019-02-28 2020-09-03 積水化学工業株式会社 耐火材
JP7221733B2 (ja) 2019-02-28 2023-02-14 積水化学工業株式会社 耐火材
JP2022026587A (ja) * 2020-07-31 2022-02-10 デンカ株式会社 耐火材
JP7323677B1 (ja) 2022-05-26 2023-08-08 デンカ株式会社 熱膨張性パテ組成物、及び目地材

Also Published As

Publication number Publication date
JPWO2017154931A1 (ja) 2019-01-31
KR20180132624A (ko) 2018-12-12
KR102407426B1 (ko) 2022-06-10
CN108778424B (zh) 2019-12-17
CN108778424A (zh) 2018-11-09
JP6825618B2 (ja) 2021-02-03

Similar Documents

Publication Publication Date Title
JP6825618B2 (ja) 構造物の防火構造体、硬化性組成物、耐火材、及び防火構造体形成工法
JP5317258B2 (ja) 硬化性組成物
JP5607298B2 (ja) 熱伝導材料
KR101683739B1 (ko) 난연성 발포폴리스티렌 제조용 에멀젼 접착제 조성물 및 그 제조방법
WO2008041768A1 (fr) Composition durcissable
WO2005007745A1 (ja) 硬化性組成物
JP7373129B2 (ja) 形成方法、及び耐火性を有する一液常温湿気硬化型反応性ホットメルト組成物
WO2019159972A1 (ja) ワーキングジョイント用1成分型硬化性組成物
TW200831650A (en) Photocurable sealant composition and article having sealed layer
JP2014024958A (ja) 硬化性組成物。
JP5569720B2 (ja) 湿気硬化性組成物の製造方法
JP2016172442A (ja) 防水構造および防水構造の形成方法
JPWO2007037368A1 (ja) 1成分型硬化性組成物
JP2005082750A (ja) 接着性に優れた硬化性組成物
JP5999464B1 (ja) 目地構造を有する壁、及び目地施工方法
CN107142073A (zh) 改良密封胶组合物及其制备方法
JP5999463B1 (ja) 目地構造を有する壁、目地施工方法、及び一液常温湿気硬化型シーリング材組成物
JP6763160B2 (ja) 目地構造を有する壁、目地施工方法、及び一液常温湿気硬化型シーリング材組成物
JP2018053026A (ja) 機械的強度に優れるポリマー微粒子含有硬化性組成物
JP7368676B2 (ja) 耐火用硬化性組成物
KR102666685B1 (ko) 내화용 경화성 조성물
JP7129176B2 (ja) 一液常温湿気硬化型シーリング材組成物
JP4738746B2 (ja) 耐火構造体用硬化性組成物、シーリング材及びそれを用いた耐火工法
JP4331948B2 (ja) 制振性樹脂組成物及びそれを用いた制振・遮音材
JP2005264126A (ja) 接着剤及びそれを用いた床構造体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018504529

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187025709

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17763271

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17763271

Country of ref document: EP

Kind code of ref document: A1