JPWO2007037368A1 - 1成分型硬化性組成物 - Google Patents

1成分型硬化性組成物 Download PDF

Info

Publication number
JPWO2007037368A1
JPWO2007037368A1 JP2007537698A JP2007537698A JPWO2007037368A1 JP WO2007037368 A1 JPWO2007037368 A1 JP WO2007037368A1 JP 2007537698 A JP2007537698 A JP 2007537698A JP 2007537698 A JP2007537698 A JP 2007537698A JP WO2007037368 A1 JPWO2007037368 A1 JP WO2007037368A1
Authority
JP
Japan
Prior art keywords
group
titanium
polymer
weight
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007537698A
Other languages
English (en)
Other versions
JP5161578B2 (ja
Inventor
矢野 理子
理子 矢野
岡本 敏彦
敏彦 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2007537698A priority Critical patent/JP5161578B2/ja
Publication of JPWO2007037368A1 publication Critical patent/JPWO2007037368A1/ja
Application granted granted Critical
Publication of JP5161578B2 publication Critical patent/JP5161578B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J143/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Adhesives based on derivatives of such polymers
    • C09J143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/243Two or more independent types of crosslinking for one or more polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5435Silicon-containing compounds containing oxygen containing oxygen in a ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1018Macromolecular compounds having one or more carbon-to-silicon linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Sealing Material Composition (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

本発明は、有機錫触媒を使用せずに、良好な硬化性、接着性、貯蔵安定性を有する1成分型硬化性組成物を提供することを目的とする。本発明は(A)シロキサン結合を形成することにより架橋し得るケイ素含有基を有する有機重合体、(B)チタン触媒、(C)エポキシ基を有し、かつアルコキシ基を有するシラン化合物、を含有する硬化性組成物であって、かつ、組成物中に有機錫化合物と、1級アミノ基を有する化合物を実質的に含有していないことを特徴とする1成分型硬化性組成物に関する。

Description

本発明は、ケイ素原子に結合した水素基または加水分解性基を有し、シロキサン結合を形成することにより架橋し得るケイ素含有基(以下、「反応性ケイ素基」ともいう。)を有する有機重合体を含有する硬化性組成物に関する。
分子中に少なくとも1個の反応性ケイ素基を含有する有機重合体は、室温においても湿分等による反応性ケイ素基の加水分解反応等を伴うシロキサン結合の形成によって架橋し、ゴム状硬化物が得られるという性質を有することが知られている。
これらの反応性ケイ素基を有する重合体の中でも、主鎖骨格がポリオキシアルキレン系重合体またはメタ(アクリル)酸エステル系重合体である有機重合体は、特許文献1、特許文献2などに開示されており、既に工業的に生産され、シーリング材、接着剤、塗料などの用途に広く使用されている。
これらの反応性ケイ素基を有する有機重合体を含有する硬化性組成物は、シラノール縮合触媒を用いて硬化させており、通常、ジブチル錫ビス(アセチルアセトナート)やジブチル錫ジラウレートなどの、炭素−錫結合を有する有機錫化合物が広く使用されている。しかしながら、近年、有機錫化合物は内分泌撹乱物質として生体への毒性が懸念されており、これらに代わる実用的な硬化速度を持つ触媒の開発が求められていた。
この非有機錫化合物として、チタン触媒を使用する脱アルコール型シリコーン組成物は既に市販されており、多くの用途に広く使用されている。この技術は、特許文献3、特許文献4、特許文献5などに記載されている。
しかし、反応性ケイ素基を含有する有機重合体に、チタン触媒を添加した例は比較的少なく、特許文献6、特許文献7、特許文献8、特許文献9、特許文献10、特許文献11、特許文献12、特許文献13、特許文献14、特許文献15に開示されている。
反応性ケイ素基を含有する有機重合体を含む硬化性組成物は、接着剤やシーリング材として使用されることが多く、その場合にさまざまな種類の基材への接着が求められる。この接着性を確保するために、分子内に1級のアミノ基とアルコキシ基を有する、いわゆるアミノシランが通常用いられる。しかし、反応性ケイ素基を含有する有機重合体とチタン触媒を用いて、アミノシランを添加して1液型硬化性組成物を作成した場合、接着性は良好なものの、一定期間貯蔵した後では組成物の粘度が向上し、ひどい場合には容器内で硬化し、使用できないことがある。シーリング材や接着剤は、製造してすぐに使用されるとは限らず、倉庫や店頭で数ヶ月間保管されることが多く、硬化性や粘度が貯蔵前後において一定であることが望まれている。
特開昭52−73998号公報 特許第1780140号公報 特公昭39−27643号公報 米国特許第3175993号明細書 米国特許第3334067号明細書 特開昭58−17154号公報 特開平11−209538号公報 特開平5−311063号公報 特開2001−302929号公報 特開2001−302930号公報 特開2001−302931号公報 特開2001−302934号公報 特開2001−348528号公報 特開2002−249672号公報 特開2003−165916号公報
本発明は、反応性ケイ素基を有する有機重合体を主成分とする硬化性組成物であって、毒性が指摘されている有機錫化合物を用いずに、良好な硬化性、接着性を有し、長期間保存した後も良好な作業性が維持された硬化性組成物を提供することを目的とする。
本発明者等は、このような問題を解決するために鋭意検討した結果、(A)シロキサン結合を形成することにより架橋し得るケイ素含有基を有する有機重合体、(B)チタン触媒、(C)エポキシ基を有し、かつアルコキシ基を有するシラン化合物、を含有する硬化性組成物であって、かつ、組成物中に有機錫化合物と、1級アミノ基を有する化合物が含有されていない1成分型硬化性組成物にすることで、本発明を完成させた。
以下、本発明について詳しく説明する。
本発明に用いる反応性ケイ素基を有する有機重合体(A)の主鎖骨格は特に制限はなく、各種の主鎖骨格を持つものを使用することができる。
具体的には、ポリオキシエチレン、ポリオキシプロピレン、ポリオキシブチレン、ポリオキシテトラメチレン、ポリオキシエチレン−ポリオキシプロピレン共重合体、ポリオキシプロピレン−ポリオキシブチレン共重合体等のポリオキシアルキレン系重合体;エチレン−プロピレン系共重合体、ポリイソブチレン、イソブチレンとイソプレン等との共重合体、ポリクロロプレン、ポリイソプレン、イソプレンあるいはブタジエンとアクリロニトリルおよび/またはスチレン等との共重合体、ポリブタジエン、イソプレンあるいはブタジエンとアクリロニトリル及びスチレン等との共重合体、これらのポリオレフィン系重合体に水素添加して得られる水添ポリオレフィン系重合体等の炭化水素系重合体;アジピン酸等の2塩基酸とグリコールとの縮合、または、ラクトン類の開環重合で得られるポリエステル系重合体;エチル(メタ)アクリレート、ブチル(メタ)アクリレート等のモノマーをラジカル重合して得られる(メタ)アクリル酸エステル系重合体;(メタ)アクリル酸エステル系モノマー、酢酸ビニル、アクリロニトリル、スチレン等のモノマーをラジカル重合して得られるビニル系重合体;前記有機重合体中でのビニルモノマーを重合して得られるグラフト重合体;ポリサルファイド系重合体;ε−カプロラクタムの開環重合によるナイロン6、ヘキサメチレンジアミンとアジピン酸の縮重合によるナイロン6・6、ヘキサメチレンジアミンとセバシン酸の縮重合によるナイロン6・10、ε−アミノウンデカン酸の縮重合によるナイロン11、ε−アミノラウロラクタムの開環重合によるナイロン12、上記のナイロンのうち2成分以上の成分を有する共重合ナイロン等のポリアミド系重合体;たとえばビスフェノールAと塩化カルボニルより縮重合して製造されるポリカーボネート系重合体、ジアリルフタレート系重合体等が例示される。
さらに、ポリオキシアルキレン系重合体、(メタ)アクリル酸エステル系重合体は比較的ガラス転移温度が低く、得られる硬化物が耐寒性に優れることからより好ましい。
(A)成分である有機重合体のガラス転移温度は、特に限定は無いが、20℃以下であることが好ましく、0℃以下であることがより好ましく、−20℃以下であることが特に好ましい。ガラス転移温度が20℃を上回ると、冬季または寒冷地での粘度が高くなり作業性が悪くなる場合があり、また、硬化物の柔軟性が低下し、伸びが低下する場合がある。前記ガラス転移温度はDSC測定による値を示す。
また、本発明の(B)チタン触媒、および、(C)エポキシ基を有し、かつアルコキシ基を有するシラン化合物は、その添加量に応じて得られる組成物の深部硬化性が低下する傾向がある。従って、ポリオキシアルキレン系重合体および(メタ)アクリル酸エステル系重合体は、透湿性が高いために深部硬化性に優れることから特に好ましく、ポリオキシアルキレン系重合体は最も好ましい。また、(メタ)アクリル酸エステル系重合体を含有する硬化性組成物は、接着性や耐候性に優れることから好ましい。以上のバランスを考慮すると、ポリオキシアルキレン系重合体と(メタ)アクリル酸エステル系重合体を併用するのが最も好ましい。
本発明の反応性ケイ素基を有する有機重合体に含有される反応性ケイ素基は、ケイ素原子に結合した水酸基又は加水分解性基を有し、硬化触媒によって加速される反応により架橋しうる基である。反応性ケイ素基としては、一般式(4):
−SiR 3−a (4)
(式中、Rは、それぞれ独立に、炭素原子数1〜20のアルキル基、炭素原子数6〜20のアリール基、炭素原子数7〜20のアラルキル基または(R’)SiO−(R’は、それぞれ独立に、炭素原子数1〜20の置換あるいは非置換の1価の炭化水素基である)で示されるトリオルガノシロキシ基である。また、Xは、それぞれ独立に、水酸基または加水分解性基である。さらに、aは1、2、3のいずれかである)で表される基が挙げられる。
加水分解性基としては、特に限定されず、従来公知の加水分解性基であればよい。具体的には、例えば水素原子、ハロゲン原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミド基、酸アミド基、アミノオキシ基、メルカプト基、アルケニルオキシ基等が挙げられる。これらの内では、水素原子、アルコキシ基、アシルオキシ基、ケトキシメート基、アミド基、アミノオキシ基、メルカプト基およびアルケニルオキシ基が好ましく、加水分解性が穏やかで取扱いやすいという観点からアルコキシ基が特に好ましい。
加水分解性基や水酸基は、1個のケイ素原子に1〜3個の範囲で結合することができ、加水分解性基や水酸基が反応性ケイ素基中に2個以上結合する場合には、それらは同じであってもよいし、異なってもよい。
上記一般式(4)におけるaは、硬化性の点から、2または3であることが好ましく、3であることがより好ましい。
また上記一般式(4)におけるRの具体例としては、たとえばメチル基、エチル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、フェニル基等のアリール基、ベンジル基等のアラルキル基や、R’がメチル基、フェニル基等である(R’)SiO−で示されるトリオルガノシロキシ基等が挙げられる。これらの中ではメチル基が特に好ましい。
反応性ケイ素基のより具体的な例示としては、トリメトキシシリル基、トリエトキシシリル基、トリイソプロポキシシリル基、ジメトキシメチルシリル基、ジエトキシメチルシリル基、ジイソプロポキシメチルシリル基が挙げられる。活性が高く良好な硬化性が得られることから、トリメトキシシリル基、トリエトキシシリル基、ジメトキシメチルシリル基がより好ましく、トリメトキシシリル基が特に好ましい。また、貯蔵安定性の点からはジメトキシメチルシリル基が特に好ましい。また、トリエトキシシリル基は、反応性ケイ素基の加水分解反応に伴って生成するアルコールが、エタノールであり、より高い安全性を有することから特に好ましい。
反応性ケイ素基の導入は公知の方法で行えばよい。すなわち、例えば以下の方法が挙げられる。
(イ)分子中に水酸基等の官能基を有する有機重合体に、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させ、不飽和基を含有する有機重合体を得る。もしくは、不飽和基含有エポキシ化合物との共重合により不飽和基含有有機重合体を得る。ついで得られた反応生成物に反応性ケイ素基を有するヒドロシランを作用させてヒドロシリル化する。
(ロ)(イ)法と同様にして得られた不飽和基を含有する有機重合体にメルカプト基および反応性ケイ素基を有する化合物を反応させる。
(ハ)分子中に水酸基、エポキシ基やイソシアネート基等の官能基を有する有機重合体に、この官能基に対して反応性を示す官能基および反応性ケイ素基を有する化合物を反応させる。
以上の方法のなかで、(イ)の方法、または(ハ)のうち末端に水酸基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法は、比較的短い反応時間で高い転化率が得られる為に好ましい。更に、(イ)の方法で得られた反応性ケイ素基を有する有機重合体は、(ハ)の方法で得られる有機重合体よりも低粘度で作業性の良い硬化性組成物となること、また、(ロ)の方法で得られる有機重合体は、メルカプトシランに基づく臭気が強いことから、(イ)の方法が特に好ましい。
(イ)の方法において用いるヒドロシラン化合物の具体例としては、たとえば、トリクロロシラン、メチルジクロロシラン、ジメチルクロロシラン、フェニルジクロロシランのようなハロゲン化シラン類;トリメトキシシラン、トリエトキシシラン、メチルジエトキシシラン、メチルジメトキシシラン、フェニルジメトキシシラン、1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサンのようなアルコキシシラン類;メチルジアセトキシシラン、フェニルジアセトキシシランのようなアシロキシシラン類;ビス(ジメチルケトキシメート)メチルシラン、ビス(シクロヘキシルケトキシメート)メチルシランのようなケトキシメートシラン類などが挙げられるが、これらに限定されるものではない。これらのうちではとくにハロゲン化シラン類、アルコキシシラン類が好ましく、特にアルコキシシラン類は、得られる硬化性組成物の加水分解性が穏やかで取り扱いやすいために最も好ましい。アルコキシシラン類の中で、メチルジメトキシシランは、入手し易く、得られる有機重合体を含有する硬化性組成物の硬化性、貯蔵安定性、伸び特性、引張強度が高い為に特に好ましい。また、トリメトキシシランや1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサンは、硬化速度を速くできることから好ましく、さらに硬化触媒であるチタン触媒の使用量を減量できることから好ましい。
(ロ)の合成法としては、たとえば、メルカプト基および反応性ケイ素基を有する化合物を、ラジカル開始剤および/またはラジカル発生源存在下でのラジカル付加反応によって、有機重合体の不飽和結合部位に導入する方法等が挙げられるが、特に限定されるものではない。前記メルカプト基および反応性ケイ素基を有する化合物の具体例としては、たとえば、γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシランなどが挙げられるが、これらに限定されるものではない。
(ハ)の合成法のうち末端に水酸基を有する重合体とイソシアネート基および反応性ケイ素基を有する化合物を反応させる方法としては、たとえば、特開平3−47825号公報に示される方法等が挙げられるが、特に限定されるものではない。前記イソシアネート基および反応性ケイ素基を有する化合物の具体例としては、たとえば、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシランなどが挙げられるが、これらに限定されるものではない。
トリメトキシシラン等の一つのケイ素原子に3個の加水分解性基が結合しているシラン化合物は不均化反応が進行する場合がある。不均化反応が進むと、ジメトキシシランのようなかなり危険な化合物が生じる。しかし、γ−メルカプトプロピルトリメトキシシランやγ−イソシアネートプロピルトリメトキシシランでは、このような不均化反応は進行しない。このため、ケイ素含有基としてトリメトキシシリル基など3個の加水分解性基が一つのケイ素原子に結合している基を用いる場合には、(ロ)または(ハ)の合成法を用いることが好ましい。
一方、一般式(5):
H−(SiR O)SiR −R−SiX (5)
(式中、Xは前記に同じ。2m+2個のRは、それぞれ独立に、1価の炭化水素基であり、入手性およびコストの点から、炭素原子数1から20の1価の炭化水素基が好ましく、炭素原子数1から8の1価の炭化水素基がより好ましく、炭素原子数1から4の1価の炭化水素基が特に好ましい。Rは2価の有機基であり、入手性およびコストの点から、炭素原子数1から12の2価の炭化水素基が好ましく、炭素原子数2から8の2価の炭化水素基がより好ましく、炭素原子数2の2価の炭化水素基が特に好ましい。また、mは、0から19の整数であり、入手性およびコストの点から、1が好ましい。)で表されるシラン化合物は、不均化反応が進まない。このため、(イ)の合成法で、3個の加水分解性基が1つのケイ素原子に結合している基を導入する場合には、一般式(5)で表されるシラン化合物を用いることが好ましい。一般式(5)で表されるシラン化合物の具体例としては、1−[2−(トリメトキシシリル)エチル]−1,1,3,3−テトラメチルジシロキサン、1−[2−(トリメトキシシリル)プロピル]−1,1,3,3−テトラメチルジシロキサン、1−[2−(トリメトキシシリル)ヘキシル]−1,1,3,3−テトラメチルジシロキサン等が挙げられる。
反応性ケイ素基を有する有機重合体は直鎖状、または分岐を有してもよく、その数平均分子量はGPCにおけるポリスチレン換算において500〜100,000程度、より好ましくは1,000〜50,000であり、特に好ましくは3,000〜30,000ある。数平均分子量が500未満では、硬化物の伸び特性の点で不都合な傾向があり、100,000を越えると、高粘度となる為に作業性の点で不都合な傾向がある。特に限定されないが、具体的には、上記数平均分子量、分子量分布は、例えば、
送液システム:東ソー製HLC−8120GPC
カラム:東ソー製TSK−GEL Hタイプ
溶媒:THF
を用いて、ポリスチレン換算の値として測定することができる。
高強度、高伸びで、低弾性率を示すゴム状硬化物を得るためには、有機重合体に含有される反応性ケイ素基は重合体1分子中に平均して少なくとも1個、好ましくは1.1〜5個存在するのがよい。分子中に含まれる反応性ケイ素基の数が平均して1個未満になると、硬化性が不充分になり、良好なゴム弾性挙動を発現しにくくなる。反応性ケイ素基は、有機重合体分子鎖の主鎖の末端あるいは側鎖の末端にあってもよいし、また、両方にあってもよい。特に、反応性ケイ素基が分子鎖の主鎖の末端にのみあるときは、最終的に形成される硬化物に含まれる有機重合体成分の有効網目長が長くなるため、高強度、高伸びで、低弾性率を示すゴム状硬化物が得られやすくなる。
ポリオキシアルキレン系重合体は、本質的に一般式(6):
−R−O− (6)
(式中、Rは炭素原子数1〜14の直鎖状もしくは分岐アルキレン基である。)で示される繰り返し単位を有する重合体であり、一般式(6)におけるRは、炭素原子数2〜4の、直鎖状もしくは分岐アルキレン基が好ましい。一般式(6)で示される繰り返し単位の具体例としては、
−CHO−、−CHCHO−、−CHCH(CH)O−、−CHCH(C)O−、−CHC(CHO−、−CHCHCHCHO−
等が挙げられる。ポリオキシアルキレン系重合体の主鎖骨格は、1種類だけの繰り返し単位からなってもよいし、2種類以上の繰り返し単位からなってもよい。特にシーリング材等に使用される場合には、ポリオキシプロピレン系重合体等のプロピレンオキシド単量体単位を主成分とする(共)重合体から成るものが非晶質であることや比較的低粘度である点から好ましい。
ポリオキシアルキレン系重合体の合成法としては、例えば、KOHのようなアルカリ触媒による重合法、特開昭61−215623号公報に示される有機アルミニウム化合物とポルフィリンとを反応させて得られる錯体のような遷移金属化合物−ポルフィリン錯体触媒による重合法、特公昭46−27250号公報、特公昭59−15336号公報、米国特許第3278457号明細書、米国特許第3278458号明細書、米国特許第3278459号明細書、米国特許第3427256号明細書、米国特許第3427334号明細書、米国特許第3427335号明細書等に示される複合金属シアン化物錯体触媒による重合法、特開平10−273512号公報に例示されるポリホスファゼン塩からなる触媒を用いる重合法、特開平11−060722号公報に例示されるホスファゼン化合物からなる触媒を用いる重合法等、が挙げられるが、特に限定されるものではない。
本発明の反応性ケイ素基を有するポリオキシアルキレン系重合体の製造方法は、特公昭45−36319号公報、同46−12154号公報、特開昭50−156599号公報、同54−6096号公報、同55−13767号公報、同55−13468号公報、同57−164123号公報、特公平3−2450号公報、米国特許第3632557号明細書、米国特許第4345053号明細書、米国特許第4366307号明細書、米国特許第4960844号明細書等の各公報に提案されているもの、また特開昭61−197631号公報、同61−215622号公報、同61−215623号公報、同61−218632号公報、特開平3−72527号公報、特開平3−47825号公報、特開平8−231707号公報の各公報に提案されている数平均分子量6,000以上、Mw/Mnが1.6以下の高分子量で分子量分布が狭いポリオキシアルキレン系重合体が例示できるが、特にこれらに限定されるものではない。
上記の反応性ケイ素基を有するポリオキシアルキレン系重合体は、単独で使用してもよいし2種以上併用してもよい。
一方、(メタ)アクリル酸エステル系重合体の主鎖を構成する(メタ)アクリル酸エステル系モノマーとしては特に限定されず、各種のものを用いることができる。例示するならば、(メタ)アクリル酸、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert−ブチル、(メタ)アクリル酸n−ペンチル、(メタ)アクリル酸n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸n−ヘプチル、(メタ)アクリル酸n−オクチル、(メタ)アクリル酸2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル、(メタ)アクリル酸トルイル、(メタ)アクリル酸ベンジル、(メタ)アクリル酸2−メトキシエチル、(メタ)アクリル酸3−メトキシブチル、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸2−ヒドロキシプロピル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸グリシジル、(メタ)アクリル酸2−アミノエチル、γ−(メタクリロイルオキシプロピル)トリメトキシシラン、γ−(メタクリロイルオキシプロピル)ジメトキシメチルシラン、(メタ)アクリル酸のエチレンオキサイド付加物、(メタ)アクリル酸トリフルオロメチルメチル、(メタ)アクリル酸2−トリフルオロメチルエチル、(メタ)アクリル酸2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロエチル−2−パーフルオロブチルエチル、(メタ)アクリル酸パーフルオロエチル、(メタ)アクリル酸トリフルオロメチル、(メタ)アクリル酸ビス(トリフルオロメチルメチル)、(メタ)アクリル酸2−トリフルオロメチル−2−パーフルオロエチルエチル、(メタ)アクリル酸2−パーフルオロヘキシルエチル、(メタ)アクリル酸2−パーフルオロデシルエチル、(メタ)アクリル酸2−パーフルオロヘキサデシルエチル等の(メタ)アクリル酸系モノマーが挙げられる。前記(メタ)アクリル酸エステル系重合体では、(メタ)アクリル酸エステル系モノマーとともに、以下のビニル系モノマーを共重合することもできる。該ビニル系モノマーを例示すると、スチレン、ビニルトルエン、α−メチルスチレン、クロルスチレン、スチレンスルホン酸及びその塩等のスチレン系モノマー;パーフルオロエチレン、パーフルオロプロピレン、フッ化ビニリデン等のフッ素含有ビニルモノマー;ビニルトリメトキシシラン、ビニルトリエトキシシラン等のケイ素含有ビニル系モノマー;無水マレイン酸、マレイン酸、マレイン酸のモノアルキルエステル及びジアルキルエステル;フマル酸、フマル酸のモノアルキルエステル及びジアルキルエステル;マレイミド、メチルマレイミド、エチルマレイミド、プロピルマレイミド、ブチルマレイミド、ヘキシルマレイミド、オクチルマレイミド、ドデシルマレイミド、ステアリルマレイミド、フェニルマレイミド、シクロヘキシルマレイミド等のマレイミド系モノマー;アクリロニトリル、メタクリロニトリル等のニトリル基含有ビニル系モノマー;アクリルアミド、メタクリルアミド等のアミド基含有ビニル系モノマー;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル、桂皮酸ビニル等のビニルエステル類;エチレン、プロピレン等のアルケン類;ブタジエン、イソプレン等の共役ジエン類;塩化ビニル、塩化ビニリデン、塩化アリル、アリルアルコール等が挙げられる。これらは、単独で用いても良いし、複数を共重合させても構わない。なかでも、生成物の物性等から、スチレン系モノマー及び(メタ)アクリル酸系モノマーからなる重合体が好ましい。より好ましくは、アクリル酸エステルモノマー及びメタクリル酸エステルモノマーからなる(メタ)アクリル系重合体であり、特に好ましくはアクリル酸エステルモノマーからなるアクリル系重合体である。一般建築用等の用途においては配合物の低粘度、硬化物の低モジュラス、高伸び、耐候、耐熱性等の物性が要求される点から、アクリル酸ブチル系モノマーが更に好ましい。一方、自動車用途等の耐油性等が要求される用途においては、アクリル酸エチルを主とした共重合体が更に好ましい。このアクリル酸エチルを主とした重合体は耐油性に優れるが低温特性(耐寒性)にやや劣る傾向があるため、その低温特性を向上させるために、アクリル酸エチルの一部をアクリル酸ブチルに置き換えることも可能である。ただし、アクリル酸ブチルの比率を増やすに伴いその良好な耐油性が損なわれていくので、耐油性を要求される用途にはその比率は40%以下にするのが好ましく、更には30%以下にするのがより好ましい。また、耐油性を損なわずに低温特性等を改善するために側鎖のアルキル基に酸素が導入されたアクリル酸2−メトキシエチルやアクリル酸2−エトキシエチル等を用いるのも好ましい。ただし、側鎖にエーテル結合を持つアルコキシ基の導入により耐熱性が劣る傾向にあるので、耐熱性が要求されるときには、その比率は40%以下にするのが好ましい。各種用途や要求される目的に応じて、必要とされる耐油性や耐熱性、低温特性等の物性を考慮し、その比率を変化させ、適した重合体を得ることが可能である。例えば、限定はされないが耐油性や耐熱性、低温特性等の物性バランスに優れている例としては、アクリル酸エチル/アクリル酸ブチル/アクリル酸2−メトキシエチル(重量比で40〜50/20〜30/30〜20)の共重合体が挙げられる。本発明においては、これらの好ましいモノマーを他のモノマーと共重合、更にはブロック共重合させても構わなく、その際は、これらの好ましいモノマーが重量比で40%以上含まれていることが好ましい。なお上記表現形式で例えば(メタ)アクリル酸とは、アクリル酸および/あるいはメタクリル酸を表す。
(メタ)アクリル酸エステル系重合体の合成法としては、特に限定されず、公知の方法で行えばよい。但し、重合開始剤としてアゾ系化合物、過酸化物などを用いる通常のフリーラジカル重合法で得られる重合体は、分子量分布の値が一般に2以上と大きく、粘度が高くなるという問題を有している。従って、分子量分布が狭く、粘度の低い(メタ)アクリル酸エステル系重合体であって、高い割合で分子鎖末端に架橋性官能基を有する(メタ)アクリル酸エステル系重合体を得るためには、リビングラジカル重合法を用いることが好ましい。
「リビングラジカル重合法」の中でも、有機ハロゲン化物あるいはハロゲン化スルホニル化合物等を開始剤、遷移金属錯体を触媒として(メタ)アクリル酸エステル系モノマーを重合する「原子移動ラジカル重合法」は、上記の「リビングラジカル重合法」の特徴に加えて、官能基変換反応に比較的有利なハロゲン等を末端に有し、開始剤や触媒の設計の自由度が大きいことから、特定の官能基を有する(メタ)アクリル酸エステル系重合体の製造方法としてはさらに好ましい。この原子移動ラジカル重合法としては例えば、Matyjaszewskiら、ジャーナル・オブ・アメリカン・ケミカルソサエティー(J.Am.Chem.Soc.)1995年、117巻、5614頁などが挙げられる。
反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体の製法としては、たとえば、特公平3−14068号公報、特公平4−55444号公報、特開平6−211922号公報等に、連鎖移動剤を用いたフリーラジカル重合法を用いた製法が開示されている。また、特開平9−272714号公報等に、原子移動ラジカル重合法を用いた製法が開示されているが、特にこれらに限定されるものではない。
上記の反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体は、単独で使用してもよいし2種以上併用してもよい。
これらの反応性ケイ素基を有する有機重合体は、単独で使用してもよいし2種以上併用してもよい。具体的には、反応性ケイ素基を有するポリオキシアルキレン系重合体と、反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体も使用できる。
反応性ケイ素基を有するポリオキシアルキレン系重合体と反応性ケイ素基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法は、特開昭59−122541号公報、特開昭63−112642号公報、特開平6−172631号公報、特開平11−116763号公報等に提案されているが、特にこれらに限定されるものではない。好ましい具体例は、反応性ケイ素基を有し分子鎖が実質的に、下記一般式(7):
−CH−C(R10)(COOR11)− (7)
(式中、R10は水素原子またはメチル基、R11は炭素原子数1〜8のアルキル基を示す)で表される炭素原子数1〜8のアルキル基を有する(メタ)アクリル酸エステル単量体単位と、下記一般式(8):
−CH−C(R10)(COOR12)− (8)
(式中、R10は前記に同じ、R12は炭素原子数9以上のアルキル基を示す)で表される炭素原子数9以上のアルキル基を有する(メタ)アクリル酸エステル単量体単位からなる共重合体に、反応性ケイ素基を有するポリオキシアルキレン系重合体をブレンドして製造する方法である。
前記一般式(7)のR11としては、たとえばメチル基、エチル基、プロピル基、n−ブチル基、t−ブチル基、2−エチルヘキシル基等の炭素原子数1〜8、好ましくは1〜4、さらに好ましくは1〜2のアルキル基が挙げられる。なお、R11のアルキル基は単独でもよく、2種以上混合していてもよい。
前記一般式(8)のR12としては、たとえば、ラウリル基、トリデシル基、セチル基、ステアリル基、ベヘニル基等の炭素原子数9以上、通常は10〜30、好ましくは10〜20の長鎖のアルキル基が挙げられる。なお、R12のアルキル基はR11の場合と同様、単独でもよく、2種以上混合したものであってもよい。
該(メタ)アクリル酸エステル系共重合体の分子鎖は実質的に式(7)及び式(8)の単量体単位からなるが、ここでいう「実質的に」とは該共重合体中に存在する式(7)及び式(8)の単量体単位の合計が50重量%を超えることを意味する。式(7)及び式(8)の単量体単位の合計は好ましくは70重量%以上である。
また式(7)の単量体単位と式(8)の単量体単位の存在比は、重量比で95:5〜40:60が好ましく、90:10〜60:40がさらに好ましい。
該共重合体に含有されていてもよい式(7)及び式(8)以外の単量体単位としては、たとえばアクリル酸、メタクリル酸等のアクリル酸;アクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N−メチロールメタクリルアミド等のアミド基、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基、ジエチルアミノエチルアクリレート、ジエチルアミノエチルメタクリレート等のアミノ基を含む単量体;その他アクリロニトリル、スチレン、α−メチルスチレン、アルキルビニルエーテル、塩化ビニル、酢酸ビニル、プロピオン酸ビニル、エチレン等に起因する単量体単位が挙げられる。
さらに、反応性ケイ素官能基を有する(メタ)アクリル酸エステル系重合体をブレンドしてなる有機重合体の製造方法としては、他にも、反応性ケイ素基を有するポリオキシプロピレン系重合体の存在下で(メタ)アクリル酸エステル系単量体の重合を行う方法が利用できる。この製造方法は、特開昭59−78223号公報、特開昭60−228516号公報、特開昭60−228517号公報等の各公報に具体的に開示されているが、これらに限定されるものではない。
一方、本発明の有機重合体の主鎖骨格中には発明の効果を大きく損なわない範囲でウレタン結合成分等の他の成分を含んでいてもよい。
前記ウレタン結合成分としては特に限定されないが、イソシアネート基と活性水素基との反応により生成する基(以下、アミドセグメントともいう)を挙げることができる。
前記アミドセグメントは一般式(9):
−NR13−C(=O)− (9)
(R13は水素原子または置換あるいは非置換の有機基を表す)で表される基である。
前記アミドセグメントとしては、具体的には、イソシアネート基と水酸基との反応により生成するウレタン基;イソシアネート基とアミノ基との反応により生成する尿素基;イソシアネート基とメルカプト基との反応により生成するチオウレタン基などを挙げることができる。また、本発明では、上記ウレタン基、尿素基、及び、チオウレタン基中の活性水素が、更にイソシアネート基と反応して生成する基も、一般式(9)の基に含まれる。
アミドセグメントと反応性ケイ素基を有する有機重合体の工業的に容易な製造方法を例示すると、末端に活性水素含有基を有する有機重合体に、過剰のポリイソシアネート化合物を反応させて、ポリウレタン系主鎖の末端にイソシアネート基を有する重合体とした後、あるいは同時に、該イソシアネート基の全部または一部に一般式(10)
W−R14−SiR 3−c (10)
(ただし、式中、R、X、cは前記と同じ。R14は、2価の有機基であり、より好ましくは炭素原子数1〜20の置換もしくは非置換の2価の炭化水素基である。Wは水酸基、カルボキシル基、メルカプト基およびアミノ基(非置換または一置換)から選ばれた活性水素含有基である。)で表されるケイ素化合物のW基を反応させる方法により製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特公昭46−12154号公報(米国特許第3632557号明細書)、特開昭58−109529号公報(米国特許第4374237号明細書)、特開昭62−13430号公報(米国特許第4645816号明細書)、特開平8−53528号公報(欧州特許出願公開第0676403号明細書)、特開平10−204144号公報(欧州特許出願公開第0831108号明細書)、特表2003−508561号公報(米国特許第6197912号明細書)、特開平6−211879号公報(米国特許第5364955号明細書)、特開平10−53637号公報(米国特許第5756751号明細書)、特開平11−100427号公報、特開2000−169544号公報、特開2000−169545号公報、特開2002−212415号公報、特許第3313360号公報、米国特許第4067844号明細書、米国特許第3711445号明細書、特開2001−323040号公報、などが挙げられる。
また、末端に活性水素含有基を有する有機重合体に一般式(11)
O=C=N−R14−SiR 3−c (11)
(ただし、式中R、R14、X、cは前記に同じ。)で示される反応性ケイ素基含有イソシアネート化合物とを反応させることにより製造されるものを挙げることができる。この製造方法に関連した、有機重合体の公知の製造法を例示すると、特開平11−279249号公報(米国特許第5990257号明細書)、特開2000−119365号公報(米国特許第6046270号明細書)、特開昭58−29818号公報(米国特許第4345053号明細書)、特開平3−47825号公報(米国特許第5068304号明細書)、特開平11−60724号公報、特開2002−155145号公報、特開2002−249538号公報、国際公開第03/018658号パンフレット、国際公開第03/059981号パンフレットなどが挙げられる。
末端に活性水素含有基を有する有機重合体としては、末端に水酸基を有するオキシアルキレン重合体(ポリエーテルポリオール)、ポリアクリルポリオールが挙げられる。これらの中でも、ポリエーテルポリオールは、得られる有機重合体の粘度が低く作業性が良好であり、接着性、深部硬化性が良好である為により好ましい。また、ポリアクリルポリオールは、得られる有機重合体の硬化物の耐候性・耐熱性が良好である為により好ましい。
ポリエーテルポリオールとしては、いかなる製造方法において製造されたものでも使用することが出来るが、全分子平均で分子末端当り少なくとも0.7個の水酸基を末端に有するものが好ましい。具体的には、従来のアルカリ金属触媒を使用して製造したオキシアルキレン重合体や、複合金属シアン化物錯体やセシウムの存在下、少なくとも2つの水酸基を有するポリヒドロキシ化合物などの開始剤に、アルキレンオキシドを反応させて製造されるオキシアルキレン重合体などが挙げられる。
上記の各重合法の中でも、複合金属シアン化物錯体を使用する重合法は、より低不飽和度で、分子量分布が狭く、より低粘度でかつ、高耐酸性、高耐候性のオキシアルキレン重合体を得ることが可能であるため好ましい。
前記ポリアクリルポリオールとしては、(メタ)アクリル酸アルキルエステル(共)重合体を骨格とし、かつ、分子内にヒドロキシル基を有するポリオールを挙げることができる。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001−207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。具体的には、東亞合成(株)製のアルフォンUH−2000、UH−2130等が挙げられる。
前記ポリイソシアネート化合物の具体例としては、トルエン(トリレン)ジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族系ポリイソシアネート;イソフォロンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族系ポリイソシアネートなどを挙げることができる。
一般式(10)のケイ素化合物としては特に限定はないが、具体的に例示すると、γ−アミノプロピルトリメトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−(N−フェニル)アミノプロピルトリメトキシシラン、N−エチルアミノイソブチルトリメトキシシラン、(N−シクロヘキシルアミノメチル)トリエトキシシラン、(N−シクロヘキシルアミノメチル)ジエトキシメチルシラン、(N−フェニルアミノメチル)トリメトキシシラン、等のアミノ基含有シラン類;γ−ヒドロキシプロピルトリメトキシシラン等のヒドロキシ基含有シラン類;γ−メルカプトプロピルトリメトキシシラン等のメルカプト基含有シラン類;等が挙げられる。また、特開平6−211879号公報(米国特許第5364955号明細書)、特開平10−53637号公報(米国特許第5756751号明細書)、特開平10−204144号公報(欧州特許出願公開第0831108号明細書)、特開2000−169544号公報、特開2000−169545号公報に記載されている様に、各種のα,β−不飽和カルボニル化合物と一級アミノ基含有シランとのMichael付加反応物、または、各種の(メタ)アクリロイル基含有シランと一級アミノ基含有化合物とのMichael付加反応物もまた、一般式(10)のケイ素化合物として用いることができる。
一般式(11)の反応性ケイ素基含有イソシアネート化合物としては特に限定はないが、具体的に例示すると、γ−トリメトキシシリルプロピルイソシアネート、γ−トリエキシシリルプロピルイソシアネート、γ−メチルジメトキシシリルプロピルイソシアネート、γ−メチルジエキシシリルプロピルイソシアネート、トリメトキシシリルメチルイソシアネート、ジメトキシメチルシリルメチルイソシアネート等が挙げられる。また、特開2000−119365号公報(米国特許第6046270号明細書)に記載されている様に、一般式(10)のケイ素化合物と、過剰の前記ポリイソシアネート化合物を反応させて得られる化合物もまた、一般式(11)の反応性ケイ素基含有イソシアネート化合物として用いることができる。
本発明の有機重合体の主鎖骨格中にアミドセグメントが多いと、有機重合体の粘度が高くなり、作業性の悪い組成物となる場合がある。一方、有機重合体の主鎖骨格中のアミドセグメントによって、本発明の組成物の硬化性が向上する傾向がある。主鎖骨格中にアミドセグメントを有する有機重合体を(A)成分として用いた場合、本発明の(B)成分と組合せた組成物は、非有機錫触媒を用いながらより速硬化性を有する為に好ましい。従って、有機重合体の主鎖骨格中にアミドセグメントを含む場合、アミドセグメントは1分子あたり平均で、1〜10個が好ましく、1.5〜7個がより好ましく、2〜5個が特に好ましい。1個よりも少ない場合には、硬化性が十分ではない場合があり、10個よりも大きい場合には、有機重合体が高粘度となり作業性の悪い組成物となる場合がある。
本発明では、(B)成分として、チタン触媒を使用する。このチタン触媒は、(A)成分である有機重合体の硬化触媒として機能する。
従来、(A)成分である反応性ケイ素基を有する有機重合体の硬化触媒として、ジブチル錫ジラウレートやジブチル錫ジアセチルアセトネートなどの有機錫化合物が用いられているが、これらの有機錫化合物の毒性が指摘されている。有機錫化合物はその添加量に応じて毒性または環境への負荷が大きくなるため、本発明の組成物は組成物中に有機錫化合物を実質的に含有していないことを特徴とする。ここで「実質的に含有していない」とは、有機重合体(A)100重量部に対する有機錫化合物の含有量が0.5重量部以下であることを意味する。上記有機錫化合物の含有量は、0.1重量部以下であるのが好ましく、0.01重量部以下であるのがより好ましい。特に好ましくは、有機錫化合物を全く含有していないことである。
ここで、本発明における「有機錫化合物」とは、炭素とスズの直接結合をもつ化合物をいい、一般式R15 SnY4−n(n=1〜4、R15はアルキル基、アリール基などの炭化水素基を表す。またYは例えばハロゲン、OH、OR16、OCOR16など(R16はアルキル基、アリール基などの炭化水素基)の官能基である)で表されるものである。
本発明のチタン触媒(B)を用いることにより、有機錫化合物を使用した場合とほぼ同等の硬化特性を有する硬化性組成物が得られる。また、有機錫触媒などの他の硬化触媒を用いた場合と比較して、アクリル樹脂などの難接着有機系被着体に対する接着性を高めることができる。
なお、(A)成分の硬化触媒として機能しないTiOなどの化合物は、本発明の(B)成分に含まれない。
前記チタン触媒は、水酸基または置換あるいは非置換のアルコキシ基と結合したチタン原子を有する化合物であり、前記チタン触媒の好ましい具体例としては、一般式(1):
Ti(OR (1)
(式中、Rは有機基であり、より好ましくは炭素原子数1から20の置換あるいは非置換の1価の炭化水素基である。4個のRは相互に同一であっても、異なっていてもよい。)で表される化合物が挙げられる。なかでもチタニウムアルコキシドが代表的な化合物として例示できる。その他に一般式(1)で表される化合物としては、一般式(1)中の4個のOR基の一部または全部が一般式(12):
−OCOR17 (12)
(式中、R17は有機基であり、より好ましくは炭素原子数1から20の置換あるいは非置換の1価の炭化水素基である。)で表されるアシルオキシ基であるチタニウムカルボキシレートが挙げられる。
また、一般式(1)で表されるチタン触媒以外の他のチタン触媒としては、一般式(13):
TiX 4−a(OR18 (13)
(式中、Xはハロゲン原子であり、(4−a)個のXは相互に同一であっても、異なっていてもよい。R18は有機基であり、より好ましくは炭素原子数1から20の置換あるいは非置換の1価の炭化水素基であり、a個のR18は相互に同一であっても、異なっていてもよい。aは1、2、3のいずれかである。)で表されるハロゲン化チタニウムアルコキシドが挙げられる。
これらの中でも、チタニウムアルコキシドは、湿分に対する安定性、および、硬化性の点から好ましい。
前記一般式(1)で表されるチタン触媒の中でも、チタニウムキレートが好ましく、なかでも、一般式(2):
Figure 2007037368
[式中、n個のRは、それぞれ独立に炭素原子数1から20の置換あるいは非置換の1価の炭化水素基である。(4−n)個のRは、それぞれ独立に水素原子または炭素原子数1から8の置換あるいは非置換の1価の炭化水素基である。(4−n)個のAおよび(4−n)個のAは、それぞれ独立に−Rまたは−ORである(ここでRは炭素原子数1から8の置換あるいは非置換の1価の炭化水素基である)。nは0、1、2、3のいずれかである。]で表されるチタニウムキレートおよび/または一般式(3):
Figure 2007037368
(式中、R、A、Aは前記と同じ。Rは、炭素原子数1から20の置換あるいは非置換の2価の炭化水素基である。)で表されるチタニウムキレートが、(A)成分との相溶性、触媒活性の高さ、および、貯蔵安定性の点から、より好ましい。一般式(2)のチタニウムキレートは、触媒活性が高いことから、特に好ましい。一般式(2)のnが2であるチタニウムキレートは、比較的結晶性(融点)が低く、作業性が良好で、触媒活性が高い為、最も好ましい。
一般式(1)で表される化合物のうち、チタニウムアルコキシドを具体的に例示すると、チタニウムテトラメトキシド、チタニウムテトラエトキシド、チタニウムテトラアリルオキシド、チタニウムテトラn−プロポキシド、チタニウムテトライソプロポキシド、チタニウムテトラn−ブトキシド、チタニウムテトライソブトキシド、チタニウムテトラsec−ブトキシド、チタニウムテトラt−ブトキシド、チタニウムテトラn−ペンチルオキシド、チタニウムテトラシクロペンチルオキシド、チタニウムテトラヘキシルオキシド、チタニウムテトラシクロヘキシルオキシド、チタニウムテトラベンジルオキシド、チタニウムテトラオクチルオキシド、チタニウムテトラキス(2−エチルヘキシルオキシド)、チタニウムテトラデシルオキシド、チタニウムテトラドデシルオキシド、チタニウムテトラステアリルオキシド、チタニウムテトラブトキシドダイマー、チタニウムテトラキス(8−ヒドロキシオクチルオキシド)、チタニウムジイソプロポキシドビス(2−エチル−1,3−ヘキサンジオラト)、チタニウムビス(2−エチルヘキシルオキシ)ビス(2−エチル−1,3−ヘキサンジオラト)、チタニウムテトラキス(2−クロロエトキシド)、チタニウムテトラキス(2−ブロモエトキシド)、チタニウムテトラキス(2−メトキシエトキシド)、チタニウムテトラキス(2−エトキシエトキシド)、チタニウムブトキシドトリメトキシド、チタニウムジブトキシドジメトキシド、チタニウムブトキシドトリエトキシド、チタニウムジブトキシドジエトキシド、チタニウムブトキシドトリイソプロポキシド、チタニウムジブトキシドジイソプロポキシド、チタニウムテトラフェノキシド、チタニウムテトラキス(o−クロロフェノキシド)、チタニウムテトラキス(m−ニトロフェノキシド)、チタニウムテトラキス(p−メチルフェノキシド)、チタニウムテトラキス(トリメチルシリルオキシド)、などが挙げられる。
一般式(1)中の4個のOR基の一部または全部が一般式(12)で表される基であるチタニウムカルボキシレートを具体的に例示すると、チタニウムアクリレートトリイソプロポキシド、チタニウムメタクリレートトリイソプロポキシド、チタニウムジメタクリレートジイソプロポキシド、チタニウムイソプロポキシドトリメタクリレート、チタニウムヘキサノエートトリイソプロポキシド、チタニウムステアレートトリイソプロポキシド、などが挙げられる。
一般式(13)のハロゲン化チタニウムアルコキシドを具体的に例示すると、チタニウムクロライドトリイソプロポキシド、チタニウムジクロライドジイソプロポキシド、チタニウムイソプロポキシドトリクロライド、チタニウムブロマイドトリイソプロポキシド、チタニウムフルオライドトリイソプロポキシド、チタニウムクロライドトリエトキシド、チタニウムクロライドトリブトキシド、などが挙げられる。
一般式(2)または一般式(3)のチタニウムキレートを具体的に例示すると、チタニウムジメトキシドビス(エチルアセトアセテート)、チタニウムジメトキドビス(アセチルアセトネート)、チタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジエトキドビス(アセチルアセトネート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(メチルアセトアセテート)、チタニウムジイソプロポキシドビス(t−ブチルアセトアセテート)、チタニウムジイソプロポキシドビス(メチル−3−オキソ−4,4−ジメチルヘキサノエート)、チタニウムジイソプロポキシドビス(エチル−3−オキソ−4,4,4−トリフルオロブタノエート)、チタニウムジイソプロポキシドビス(アセチルアセトネート)、チタニウムジイソプロポキシドビス(2,2,6,6−テトラメチル−3,5−ヘプタンジオネート)、チタニウムジ−n−ブトキシドビス(エチルアセトアセテート)、チタニウムジ−n−ブトキシドビス(アセチルアセトネート)、チタニウムジイソブトキシドビス(エチルアセトアセテート)、チタニウムジイソブトキシドビス(アセチルアセトネート)、チタニウムジ−t−ブトキシドビス(エチルアセトアセテート)、チタニウムジ−t−ブトキシドビス(アセチルアセトネート)、チタニウムジ−2−エチルヘキソキシドビス(エチルアセトアセテート)、チタニウムジ−2−エチルヘキソキシドビス(アセチルアセトネート)、チタニウムビス(1−メトキシ−2−プロポキシド)ビス(エチルアセトアセテート)、チタニウムビス(3−オキソ−2−ブトキシド)ビス(エチルアセトアセテート)、チタニウムビス(3−ジエチルアミノプロポキシド)ビス(エチルアセトアセテート)、チタニウムトリイソプロポキシド(エチルアセトアセテート)、チタニウムトリイソプロポキシド(ジエチルマロネート)、チタニウムトリイソプロポキシド(アリルアセトアセテート)、チタニウムトリイソプロポキシド(メタクリロキシエチルアセトアセテート)、1,2−ジオキシエタンチタニウムビス(エチルアセトアセテート)、1,3−ジオキシプロパンチタニウムビス(エチルアセトアセテート)、2,4−ジオキシペンタンチタニウムビス(エチルアセトアセテート)、2,4−ジメチル−2,4−ジオキシペンタンチタニウムビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(トリエタノールアミネート)、チタニウムテトラキス(エチルアセトアセテート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(トリメチルシロキシ)ビス(エチルアセトアセテート)、チタニウムビス(トリメチルシロキシ)ビス(アセチルアセトナート)、などが挙げられる。これらの中でもチタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジエトキドビス(アセチルアセトネート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(アセチルアセトネート)、チタニウムジブトキシドビス(エチルアセトアセテート)、チタニウムジブトキシドビス(アセチルアセトネート)が、入手性および触媒活性の点から好ましく、チタニウムジエトキシドビス(エチルアセトアセテート)、チタニウムジイソプロポキシドビス(エチルアセトアセテート)、チタニウムジブトキシドビス(エチルアセトアセテート)がより好ましく、チタニウムジイソプロポキシドビス(エチルアセトアセテート)が最も好ましい。チタニウムジイソプロポキシドビス(エチルアセトアセテート)は、松本製薬工業(株)から商品名オルガチックスTC−750として、またデュポン(株)から商品名タイザーDCとして市販されており、容易に入手できる。
また、上記以外のチタン触媒を具体的に記載すると、チタニウムトリス(ジオクチルフォスフェート)イソプロポキシド、チタニウムトリス(ドデシルベンゼンスルフォネート)イソプロポキシド、ジヒドロキシチタニウムビスラクテート、などが挙げられる。
また、前記チタニウムキレートのキレート配位子を形成し得るキレート試薬の具体例としては、アセチルアセトン、2,2,4,4−テトラメチル−3,5−ヘプタンジオンなどのβ−ジケトン;アセト酢酸メチル、アセト酢酸エチル、アセト酢酸t−ブチル、アセト酢酸アリル、アセト酢酸(2−メタクリロキシエチル)、3−オキソ−4,4−ジメチルヘキサン酸メチル、3−オキソ−4,4,4−トリフルオロブタン酸エチルなどのβ−ケトエステル;マロン酸ジメチル、マロン酸ジエチルなどのβ−ジエステル;が硬化性の点から好ましい。これらのなかでも、β−ジケトンおよびβ−ケトエステルが硬化性および貯蔵安定性の点からより好ましく、β−ケトエステルが特に好ましい。また、硬化性、貯蔵安定性および入手性の点から、アセチルアセトン、アセト酢酸メチル、アセト酢酸エチルがより好ましく、アセト酢酸エチルが特に好ましい。また、キレート配位子が2個以上存在する場合、それぞれのキレート配位子は同一であっても異なっていてもよい。
前記チタニウムキレートを添加する方法として、上記に例示したチタニウムキレートを直接添加する以外に、チタニウムテトライソプロポキシドやチタニウムジクロライドジイソプロポキシドなどのキレート試薬と反応し得るチタン化合物と、アセト酢酸エチルなどのキレート試薬を、本発明の組成物にそれぞれ添加し、組成物中にてキレート化させる方法も適用し得る。
チタン触媒(B)の配合量は、有機重合体(A)100重量部に対して2〜20重量部程度が好ましく、4〜15重量部程度がより好ましく、6〜10重量部程度が特に好ましい。(B)成分の配合量が2重量部未満であると、実用的な硬化速度が得られない場合があり、また硬化反応が充分に進行し難くなる場合がある。一方、(B)成分の配合量が20重量部を越えると、可使時間が短くなり過ぎて作業性が悪くなる傾向がある。
本発明の硬化触媒としてチタン触媒を使用するが、本発明の効果を低下させない程度に他の硬化触媒を併用することもできる。具体例としては、2−エチルヘキサン酸錫、バーサチック酸錫、2−エチルヘキサン酸ビスマス等のカルボン酸金属塩が挙げられる。2−エチルヘキサン酸錫、バーサチック酸錫は、2価の無機錫であり、有機錫化合物ではない。
本発明では、(C)成分として、エポキシ基を有し、かつアルコキシ基を有するシラン化合物を使用する。上記アルコキシ基はケイ素原子上に存在するものである。(C)成分の具体例としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン等のエポキシ基含有シラン類を挙げることができる。
これらのうち、良好な接着性を確保するためには、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、γ−グリシドキシプロピルメチルジメトキシシランが好ましく、中でもγ−グリシドキシプロピルトリメトキシシランが特に好ましい。
前記(C)成分であるエポキシ基を有するシラン化合物の配合量は、(A)成分の有機重合体100重量部に対して0.1〜20重量部が好ましく、更に1〜10重量部がより好ましい。(C)成分の配合量が0.1重量部未満であると十分な接着性を得ることが困難であり、一方、20重量部を越えると硬化性が長くなり過ぎる。
本発明の組成物には、(C)成分以外の、シランカップリング剤、シランカップリング剤の反応物、またはシランカップリング剤以外の化合物を接着性付与剤として添加することができる。シランカップリング剤の具体例としては、γ−イソシアネートプロピルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−イソシアネートプロピルメチルジエトキシシラン、γ−イソシアネートプロピルメチルジメトキシシラン、(イソシアネートメチル)トリメトキシシラン、(イソシアネートメチル)ジメトキシメチルシラン、(イソシアネートメチル)トリエトキシシラン、(イソシアネートメチル)ジエトキシメチルシラン等のイソシアネート基含有シラン類;γ−メルカプトプロピルトリメトキシシラン、γ−メルカプトプロピルトリエトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、メルカプトメチルトリエトキシシラン、メルカプトメチルトリメトキシシラン、メルカプトメチルトリエトキシシラン等のメルカプト基含有シラン類;β−カルボキシエチルトリエトキシシラン、β−カルボキシエチルフェニルビス(2−メトキシエトキシ)シラン、N−β−(カルボキシメチル)アミノエチル−γ−アミノプロピルトリメトキシシラン等のカルボキシシラン類;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロイルオキシプロピルメチルジメトキシシラン、γ−アクリロイルオキシプロピルトリエトキシシラン、メタクリロイルオキシメチルトリメトキシシラン等のビニル型不飽和基含有シラン類;γ−クロロプロピルトリメトキシシラン等のハロゲン含有シラン類;トリス(3−トリメトキシシリルプロピル)イソシアヌレート等のイソシアヌレートシラン類等を挙げることができる。また、上記シラン類を部分的に縮合した縮合体も使用できる。シランカップリング剤の反応物としては、アミノシランとエポキシシランの反応物、アミノシランとイソシアネートシランの反応物、各種シランカップリング剤の部分縮合体等を挙げる事ができるが、この場合、1級アミノ基が残存しないようにすることが必要である。
通常、シーリング材や接着剤の接着性付与剤として、分子内に1級のアミノ基とアルコキシ基を有するシラン化合物が使用されるが、本発明の組成物においては、貯蔵安定性を低下させることから実質的に使用しない。しかし、貯蔵安定性を低下させない程度であれば使用してもよく、1級アミノ基とアルコキシ基を有するシラン化合物の使用量は、有機重合体(A)100重量部に対して0.5重量部以下が好ましく、0.1重量部以下がより好ましく、0.01重量部以下がさらに好ましい。特に好ましくは、含有していないことである。
2級アミノ基及び/又は3級アミノ基を有するシランカップリング剤は、貯蔵安定性を悪化させることなく、基剤への接着性を向上させ得るので、使用するのが好ましい。具体的には、N−フェニル−γ−アミノプロピルトリメトキシシラン、N−ベンジル−γ−アミノプロピルトリメトキシシラン、N−ビニルベンジル−γ−アミノプロピルトリエトキシシラン、N−シクロヘキシルアミノメチルトリエトキシシラン、N−シクロヘキシルアミノメチルジエトキシメチルシラン、N−フェニルアミノメチルトリメトキシシラン、N,N’−ビス[3−(トリメトキシシリル)プロピル]エチレンジアミン、ビス(3−トリメトキシシリルプロピル)アミン、N−エチル−γ−アミノイソブチルトリメトキシシラン等のアミノ基含有シラン類;N−(1,3−ジメチルブチリデン)−3−(トリエトキシシリル)−1−プロパンアミン、N−(1,3−ジメチルブチリデン)−3−(トリメトキシシリル)−1−プロパンアミン等のケチミン型シラン類等が使用できる。この中でも、ビス(3−トリメトキシシリルプロピル)アミン、N−エチル−γ−アミノイソブチルトリメトキシシランは、硬化性をさらに向上させる点で特に好ましい。
本発明に用いるシランカップリング剤、シランカップリング剤の反応物、またはシランカップリング剤以外の化合物は、通常、反応性ケイ素基を有する有機重合体(A)100重量部に対して、0.1〜20重量部の範囲で使用される。特に、0.5〜10重量部の範囲で使用するのが好ましい。上記シランカップリング剤の使用量が0.1重量部未満の場合、1成分型硬化性組成物が長期にわたって保管した場合に容器内で粘度が高くなったり、固まって使用できなくなる場合があり、また20重量部を超える場合には硬化速度が非常に遅くなる場合がある。
本発明の硬化性組成物に添加されるシランカップリング剤の効果は、各種被着体、すなわち、ガラス、アルミニウム、ステンレス、亜鉛、銅、モルタルなどの無機基材や、塩ビ、アクリル、ポリエステル、ポリエチレン、ポリプロピレン、ポリカーボネートなどの有機基材に用いた場合、ノンプライマー条件またはプライマー処理条件下で、著しい接着性改善効果を示す。ノンプライマー条件下で使用した場合には、各種被着体に対する接着性を改善する効果が特に顕著である。シランカップリング剤以外の化合物の具体例としては、特に限定されないが、例えば、エポキシ樹脂、フェノール樹脂、硫黄、アルキルチタネート類、芳香族ポリイソシアネート等が挙げられる。上記接着性付与剤は1種類のみで使用しても良いし、2種類以上混合使用しても良い。これら接着性付与剤は添加することにより被着体に対する接着性を改善することができる。
また、官能基として加水分解性ケイ素基のみを有する化合物を使用することができ、これらは脱水剤、架橋剤、または、物性調整剤等として機能し得る化合物である。この成分としては、官能基として反応性ケイ素基のみを有し、分子量が100〜1000の化合物であれば特に限定は無く、各種の化合物を使用することができる。
具体例としては、テトラメトキシシラン、テトラエトキシシラン、エトキシトリメトキシシラン、ジメトキシジエトキシシラン、メトキシトリエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシランなどのテトラアルコキシシラン(テトラアルキルシリケート);メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリフェノキシシラン、エチルトリメトキシシラン、ブチルトリメトキシシラン、フェニルトリメトキシシランなどのトリアルコキシシラン;ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシランなどのジアルコキシシラン;トリメチルメトキシシラン、トリフェニルメトキシシランなどのモノアルコキシシラン;ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシランなどのアルキルイソプロペノキシシラン;および、それらの部分加水分解縮合物が挙げられる。
オルガノシリケート化合物の部分加水分解縮合物は、市販のものを用いることができる。このような縮合物としては、例えば、メチルシリケート51、エチルシリケート40(いずれもコルコート(株)製)等が挙げられる。
本発明では、1級アミノ基を含有する化合物を実質的に使用しない。ここで「実質的に含有していない」とは、本発明の硬化性組成物の貯蔵安定性を低下させない程度の量を意味し、具体的には有機重合体(A)100重量部に対する1級アミノ基を有する化合物の含有量が0.5重量部以下であることを意味する。上記1級アミノ基を有する化合物の含有量は0.1重量部以下であるのが好ましく、0.01重量部以下であるのがより好ましい。特に好ましくは、全く含有していないことである。
本発明の組成物には充填剤を添加することができる。充填剤としては、フュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸、およびカーボンブラックの如き補強性充填剤;重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、シラスバルーン、ガラスミクロバルーン、フェノール樹脂や塩化ビニリデン樹脂の有機ミクロバルーン、PVC粉末、PMMA粉末など樹脂粉末の如き充填剤;石綿、ガラス繊維およびフィラメントの如き繊維状充填剤等が挙げられる。充填剤を使用する場合、その使用量は(A)成分の重合体100重量部に対して1〜250重量部、好ましくは10〜200重量部である。
前記充填剤は、特開2001−181532号公報に記載されているように、酸化カルシウムなどの脱水剤と均一に混合した後、気密性素材で構成された袋に封入し、適当な時間放置することにより予め脱水乾燥することも可能である。この低水分量充填剤を使用することにより、さらに貯蔵安定性を改良することができる。
また、透明性の高い組成物を得る場合には、特開平11−302527号公報に記載されているように、メタクリル酸メチルなどの重合体を原料とした高分子粉体や、非晶質シリカなどを充填剤として使用することができる。また、特開2000−38560号公報に記載されているように、その表面に疎水基が結合した二酸化珪素微粉末である疎水性シリカなどを充填剤として使用することにより透明性の高い組成物を得ることができる。二酸化珪素微粉末の表面は、一般的にシラノール基(−SiOH)となっているが、このシラノール基に有機珪素ハロゲン化物やアルコール類等を反応させることによって、(−SiO−疎水基)を生成させたものが疎水性シリカである。具体的には、二酸化珪素微粉末の表面に存在するシラノール基に、ジメチルシロキサン,ヘキサメチルジシラザン,ジメチルジクロルシラン,トリメトキシオクチルシラン,トリメチルシラン等を反応結合させたものである。なお、表面がシラノール基(−SiOH)で形成されている二酸化珪素微粉末は、親水性シリカ微粉末と呼ばれる。
これら充填剤の使用により強度の高い硬化物を得たい場合には、主にヒュームシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸およびカーボンブラック、表面処理微細炭酸カルシウム、焼成クレー、クレー、および活性亜鉛華などから選ばれる充填剤が好ましく、反応性ケイ素基を有する有機重合体(A)100重量部に対し、1〜200重量部の範囲で使用すれば好ましい結果が得られる。また、低強度で破断伸びが大である硬化物を得たい場合には、主に酸化チタン、重質炭酸カルシウムなどの炭酸カルシウム、炭酸マグネシウム、タルク、酸化第二鉄、酸化亜鉛、およびシラスバルーンなどから選ばれる充填剤を、反応性ケイ素基を有する有機重合体(A)100重量部に対して5〜200重量部の範囲で使用すれば好ましい結果が得られる。なお、一般的に炭酸カルシウムは、比表面積の値が大きいほど硬化物の破断強度、破断伸び、接着性の改善効果は大きくなる。もちろんこれら充填剤は1種類のみで使用してもよいし、2種類以上混合使用してもよい。炭酸カルシウムを使用する場合、表面処理微細炭酸カルシウムと重質炭酸カルシウムなどの粒径が大きい炭酸カルシウムを併用することが望ましい。表面処理微細炭酸カルシウムの粒径は0.5μm以下が好ましく、表面処理は脂肪酸や脂肪酸塩で処理されていることが好ましい。また、粒径が大きい炭酸カルシウムの粒径は1μm以上が好ましく表面処理されていないものを用いることができる。
組成物の作業性(キレなど)向上や硬化物表面を艶消し状にするために、有機バルーン、無機バルーンの添加が好ましい。これらの充填剤は表面処理することもでき、1種類のみで使用しても良いし、2種類以上混合使用することもできる。作業性(キレなど)向上には、バルーンの粒径は0.1mm以下が好ましい。硬化物表面を艶消し状にするためには、5〜300μmが好ましい。
本発明の組成物は硬化物の耐薬品性が良好であるなどの理由により、サイジングボード、特に窯業系サイジングボード、など住宅の外壁の目地や外壁タイルの接着剤、外壁タイルの接着剤であって目地に接着剤がそのまま残るものなどに好適に用いられるが、外壁の意匠とシーリング材の意匠が調和することが望ましい。特に、外壁としてスパッタ塗装、着色骨材などの混入により高級感のある外壁が用いられるようになっている。本発明の組成物に直径が0.1mm以上、好ましくは0.1〜5.0mm程度の鱗片状または粒状の物質が配合されていると、硬化物はこのような高級感のある外壁と調和し、耐薬品性がすぐれるためこの硬化物の外観は長期にわたって持続するすぐれた組成物となる。粒状の物質を用いると砂まき調あるいは砂岩調のざらつき感がある表面となり、鱗片状物質を用いると鱗片状に起因する凹凸状の表面となる。
鱗片状または粒状の物質の好ましい直径、配合量、材料などは特開平9−53063号公報に記載されているように次の通りである。
直径は0.1mm以上、好ましくは0.1〜5.0mm程度であり、外壁の材質、模様等に合わせて適当な大きさのものが使用される。0.2mm〜5.0mm程度や0.5mm〜5.0mm程度のものも使用可能である。鱗片状の物質の場合には、厚さが直径の1/10〜1/5程度の薄さ(0.01〜1.00mm程度)とされる。鱗片状または粒状の物質は、シーリング主材内に予め混合されてシーリング材として施工現場に運搬されるか、使用に際して、施工現場にてシーリング主材内に混合される。
鱗片状または粒状の物質は、シーリング材組成物や接着剤組成物等の組成物100重量部に対して、1〜200重量部程度が配合される。配合量は、個々の鱗片状または粒状の物質の大きさ、外壁の材質、模様等によって、適当に選定される。
鱗片状または粒状の物質としては、ケイ砂、マイカ等の天然物、合成ゴム、合成樹脂、アルミナ等の無機物が使用される。目地部に充填した際の意匠性を高めるために、外壁の材質、模様等に合わせて、適当な色に着色される。
好ましい仕上げ方法などは特開平9−53063号公報に記載されている。
また、同様の目的でバルーン(好ましくは平均粒径が0.1mm以上のもの)を用いれば砂まき調あるいは砂岩調のざらつき感がある表面になり、かつ軽量化を図ることができる。バルーンの好ましい直径、配合量、材料などは特開平10−251618号公報に記載されているように次の通りである。
バルーンは、球状体充填剤で内部が中空のものである。このバルーンの材料としては、ガラス、シラス、シリカなどの無機系の材料、および、フェノール樹脂、尿素樹脂、ポリスチレン、サランなどの有機系の材料が挙げられるが、これらのみに限定されるものではなく、無機系の材料と有機系の材料とを複合させたり、また、積層して複数層を形成させたりすることもできる。無機系の、あるいは有機系の、またはこれらを複合させるなどしたバルーンを使用することができる。また、使用するバルーンは、同一のバルーンを使用しても、あるいは異種の材料のバルーンを複数種類混合して使用しても差し支えがない。さらに、バルーンは、その表面を加工ないしコーティングしたものを使用することもできるし、またその表面を各種の表面処理剤で処理したものを使用することもできる。たとえば、有機系のバルーンを炭酸カルシウム、タルク、酸化チタンなどでコーティングしたり、無機系のバルーンをシランカップリング剤で表面処理することなどが挙げられる。
砂まき調あるいは砂岩調のざらつき感がある表面を得るには、バルーンは粒径が0.1mm以上であることが好ましい。0.2mm〜5.0mm程度や0.5mm〜5.0mm程度のものも使用可能である。0.1mm未満のものでは、多量に配合しても組成物の粘度を上昇させるだけで、ざらつき感が発揮されない場合がある。バルーンの配合量は目的とする砂まき調あるいは砂岩調のざらつき感の程度によって容易に定めることができる。通常、粒径が0.1mm以上のものを組成物中の容積濃度で5〜25vol%の範囲となる割合で配合することが望ましい。バルーンの容積濃度が5vol%未満であるとざらつき感がなく、また25vol%を超えると、シーリング材や接着剤の粘度が高くなり作業性が悪く、硬化物のモジュラスも高くなり、シーリング材や接着剤の基本性能が損なわれる傾向にある。シーリング材の基本性能とのバランスが特に好ましい容積濃度は8〜22vol%である。
バルーンの具体例は特開平2−129262号公報、特開平4−8788号公報、特開平4−173867号公報、特開平5−1225号公報、特開平7−113073号公報、特開平9−53063号公報、特開平10−251618号公報、特開2000−154368号公報、特開2001−164237号公報、国際公開第97/05201号パンフレットなどの各公報に記載されている。
また、特開2004−51701号公報または特開2004−66749号公報などに記載の熱膨張性微粒中空体を使用することができる。熱膨張性微粒中空体とは、炭素原子数1から5の炭化水素などの低沸点化合物を高分子外殻材(塩化ビニリデン系共重合体、アクリロニトリル系共重合体、または塩化ビニリンデン−アクリロニトリル共重合体)で球状に包み込んだプラスチック球体である。本組成物を用いた接着部分を加熱することによって、熱膨張性微粒中空体の殻内のガス圧が増し、高分子外殻材が軟化することで体積が劇的に膨張し、接着界面を剥離させる役割を果たす。熱膨張性微粒中空体の添加により、不要時には加熱するだけで簡単に材料の破壊を伴わずに剥離でき、且つ有機溶剤を一切用いないで加熱剥離可能な接着性組成物が得られる。
本発明の組成物がシーリング材硬化物粒子を含む場合も硬化物は表面に凹凸を形成し意匠性を向上させることができる。シーリング材硬化物粒子の好ましい直径、配合量、材料などは特開2001−115142号公報に記載されているように次の通りである。直径は0.1mm〜1mm、さらには0.2〜0.5mm程度が好ましい。配合量は硬化性組成物中に5〜100重量%、さらには20〜50重量%が好ましい。材料は、ウレタン樹脂、シリコーン、変成シリコーン、多硫化ゴム等を挙げることができシーリング材に用いられるものであれば限定されないが、変成シリコーン系のシーリング材が好ましい。
本発明の組成物には粘着性付与剤を添加することができる。粘着性付与樹脂としては、特に限定されないが、常温で固体、液体を問わず通常使用されるものを使用することができる。具体例としては、スチレン系ブロック共重合体、その水素添加物、フェノール樹脂、変性フェノール樹脂(例えば、カシューオイル変性フェノール樹脂、トール油変性フェノール樹脂等)、テルペンフェノール樹脂、キシレン−フェノール樹脂、シクロペンタジエン−フェノール樹脂、クマロンインデン樹脂、ロジン系樹脂、ロジンエステル樹脂、水添ロジンエステル樹脂、キシレン樹脂、低分子量ポリスチレン系樹脂、スチレン共重合体樹脂、石油樹脂(例えば、C5炭化水素樹脂、C9炭化水素樹脂、C5C9炭化水素共重合樹脂等)、水添石油樹脂、テルペン系樹脂、DCPD樹脂石油樹脂等が挙げられる。これらは単独で用いても良く、2種以上を併用しても良い。スチレン系ブロック共重合体及びその水素添加物としては、スチレン−ブタジエン−スチレンブロック共重合体(SBS)、スチレン−イソプレン−スチレンブロック共重合体(SIS)、スチレン−エチレンブチレン−スチレンブロック共重合体(SEBS)、スチレン−エチレンプロピレ−スチレンブロック共重合体(SEPS)、スチレン−イソブチレン−スチレンブロック共重合体(SIBS)等が挙げられる。上記粘着性付与樹脂は単独で用いてもよく、2種以上併用してもよい。
粘着性付与樹脂は有機重合体(A)100重量部に対して、5〜1,000重量部、好ましくは10〜100重量部の範囲で使用される。
本発明の組成物には可塑剤を添加することができる。可塑剤の添加により、硬化性組成物の粘度やスランプ性および組成物を硬化して得られる硬化物の引張り強度、伸びなどの機械特性が調整できる。可塑剤の例としては、ジブチルフタレート、ジヘプチルフタレート、ジ(2−エチルヘキシル)フタレート、ブチルベンジルフタレート等のフタル酸エステル類;ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシル等の非芳香族二塩基酸エステル類;オレイン酸ブチル、アセチルリシリノール酸メチル等の脂肪族エステル類;トリクレジルホスフェート、トリブチルホスフェート等のリン酸エステル類;トリメリット酸エステル類;塩素化パラフィン類;アルキルジフェニル、部分水添ターフェニル、等の炭化水素系油;プロセスオイル類;エポキシ化大豆油、エポキシステアリン酸ベンジル等のエポキシ可塑剤類を挙げることができる。
また、高分子可塑剤を使用することができる。高分子可塑剤を使用すると重合体成分を分子中に含まない可塑剤である低分子可塑剤を使用した場合に比較して、初期の物性を長期にわたり維持する。更に、該硬化物にアルキド塗料を塗布した場合の乾燥性(塗装性ともいう)を改良できる。高分子可塑剤の具体例としては、ビニル系モノマーを種々の方法で重合して得られるビニル系重合体;ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステル等のポリアルキレングリコールのエステル類;セバシン酸、アジピン酸、アゼライン酸、フタル酸等の2塩基酸とエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール等の2価アルコールから得られるポリエステル系可塑剤;分子量500以上、さらには1000以上のポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のポリエーテルポリオールあるいはこれらポリエーテルポリオールの水酸基をエステル基、エーテル基などに変換した誘導体等のポリエーテル類;ポリスチレンやポリ−α−メチルスチレン等のポリスチレン類;ポリブタジエン、ポリブテン、ポリイソブチレン、ブタジエン−アクリロニトリル、ポリクロロプレン等が挙げられるが、これらに限定されるものではない。
これらの高分子可塑剤のうちで、(A)成分の重合体と相溶するものが好ましい。この点から、ポリエーテル類やビニル系重合体が好ましい。また、ポリエーテル類を可塑剤として使用すると、表面硬化性および深部硬化性が改善され、貯蔵後の硬化遅延も起こらないことから好ましく、中でもポリプロピレングリコールがより好ましい。また、相溶性および耐候性、耐熱性の点からビニル系重合体が好ましい。ビニル系重合体の中でもアクリル系重合体および/又はメタクリル系重合体が好ましく、ポリアクリル酸アルキルエステルなどアクリル系重合体がさらに好ましい。この重合体の合成法は、分子量分布が狭く、低粘度化が可能なことからリビングラジカル重合法が好ましく、原子移動ラジカル重合法がさらに好ましい。また、特開2001−207157号公報に記載されているアクリル酸アルキルエステル系単量体を高温、高圧で連続塊状重合によって得た、いわゆるSGOプロセスによる重合体を用いるのが好ましい。具体的には、東亞合成(株)製のアルフォンUP−1000、UP−1010、UP−1020、UP−1110等が挙げられる。
高分子可塑剤の数平均分子量は、好ましくは500〜15000であるが、より好ましくは800〜10000であり、さらに好ましくは1000〜8000、特に好ましくは1000〜5000である。最も好ましくは1000〜3000である。分子量が低すぎると熱や降雨により可塑剤が経時的に流出し、初期の物性を長期にわたり維持できず、アルキド塗装性が改善できない。また、分子量が高すぎると粘度が高くなり、作業性が悪くなる。高分子可塑剤の分子量分布は特に限定されないが、狭いことが好ましく、具体的にはMw/Mn(重量平均分子量/数平均分子量)の値が1.80未満であるのが好ましい。Mw/Mnの値は1.70以下であるのがより好ましく、1.50以下であるのがさらに好ましく、1.30以下であるのが最も好ましい。
数平均分子量はビニル系重合体の場合はGPC法で、ポリエーテル系重合体の場合は末端基分析法で測定される。また、分子量分布(Mw/Mn)はGPC法(ポリスチレン換算)で測定される。具体的には、特に限定されないが、具体的には、上記数平均分子量、分子量分布は、例えば、
送液システム:東ソー製HLC−8120GPC
カラム:東ソー製TSK−GEL Hタイプ
溶媒:THF
を用いて、ポリエチレン換算の値として測定することができる。
また、高分子可塑剤は、反応性ケイ素基を有しないものでよいが、反応性ケイ素基を有してもよい。反応性ケイ素基を有する場合、反応性可塑剤として作用し、硬化物からの可塑剤の移行を防止できる。反応性ケイ素基を有する場合、1分子あたり平均して1個以下、さらには0.8個以下が好ましい。反応性ケイ素基を有する可塑剤、特に反応性ケイ素基を有するオキシアルキレン重合体を使用する場合、その数平均分子量は(A)成分の重合体より低いことが必要である。
可塑剤は、単独で使用してもよく、2種以上を併用してもよい。また低分子可塑剤と高分子可塑剤を併用してもよい。なおこれら可塑剤は、重合体製造時に配合することも可能である。
可塑剤の使用量は、(A)成分の重合体100重量部に対して0〜150重量部、好ましくは0〜120重量部、さらに好ましくは0〜100重量部である。可塑剤量が150重量部を越えると硬化物の機械強度が不足する。
本発明の硬化性組成物には、必要に応じて、加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物を添加しても良い。この化合物は硬化物の表面のべたつきを悪化させずに硬化物のモジュラスを低下させる作用を有する。特にトリメチルシラノールを生成する化合物が好ましい。加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物としては、特開平5−117521号公報に記載されている化合物を挙げることができる。また、ヘキサノール、オクタノール、デカノールなどのアルキルアルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物、特開平11−241029号公報に記載されているトリメチロールプロパン、グリセリン、ペンタエリスリトールあるいはソルビトールなどの水酸基数が3以上の多価アルコールの誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物を挙げることができる。(Rは、水素原子または炭素原子数1から8の置換あるいは非置換の1価の炭化水素基である。)
また、特開平7−258534号公報に記載されているようなオキシプロピレン重合体の誘導体であって加水分解によりトリメチルシラノールなどのRSiOHを生成するシリコン化合物を生成する化合物も挙げることができる。さらに特開平6−279693号公報に記載されている架橋可能な加水分解性ケイ素含有基と加水分解によりモノシラノール含有化合物となりうるケイ素含有基を有する重合体を使用することもできる。
加水分解により分子内に1価のシラノール基を有する化合物を生成する化合物は、反応性ケイ素基を有する有機重合体(A)100重量部に対して、0.1〜20重量部、好ましくは0.5〜10重量部の範囲で使用される。
本発明の硬化性組成物には、必要に応じて垂れを防止し、作業性を良くするためにチクソ性付与剤(垂れ防止剤)を添加しても良い。垂れ防止剤としては特に限定されないが、例えば、ポリアミドワックス類;水添ヒマシ油誘導体類;ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウム等の金属石鹸類等が挙げられる。また、特開平11−349916号公報に記載されているような粒子径10〜500μmのゴム粉末や、特開2003−155389号公報に記載されているような有機質繊維を用いると、チクソ性が高く作業性の良好な組成物が得られる。これらチクソ性付与剤(垂れ防止剤)は単独で用いてもよく、2種以上併用してもよい。チクソ性付与剤は反応性ケイ素基を有する有機重合体(A)100重量部に対して、0.1〜20重量部の範囲で使用される。
本発明の組成物には光硬化性物質を使用できる。光硬化性物資を使用すると硬化物表面に光硬化性物質の皮膜が形成され、硬化物のべたつきや耐候性を改善できる。光硬化性物質とは、光の作用によってかなり短時間に分子構造が化学変化をおこし、硬化などの物性的変化を生ずるものである。この種の化合物には有機単量体、オリゴマー、樹脂或いはそれらを含む組成物等多くのものが知られており、市販の任意のものを採用し得る。代表的なものとしては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類あるいはアジド化樹脂等が使用できる。不飽和アクリル系化合物としては、アクリル系又はメタクリル系不飽和基を1ないし数個有するモノマー、オリゴマー或いはそれ等の混合物であって、プロピレン(又はブチレン、エチレン)グリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の単量体又は分子量10,000以下のオリゴエステルが例示される。具体的には、例えば特殊アクリレート(2官能)のアロニックスM−210,アロニックスM−215,アロニックスM−220,アロニックスM−233,アロニックスM−240,アロニックスM−245;(3官能)のアロニックスM−305,アロニックスM−309,アロニックスM−310,アロニックスM−315,アロニックスM−320,アロニックスM−325,及び(多官能)のアロニックスM−400などが例示できるが、特にアクリル官能基を含有する化合物が好ましく、また1分子中に平均して3個以上の同官能基を含有する化合物が好ましい。(以上アロニックスはいずれも東亞合成(株)の製品である。)
ポリケイ皮酸ビニル類としては、シンナモイル基を感光基とする感光性樹脂でありポリビニルアルコールをケイ皮酸でエステル化したものの他、多くのポリケイ皮酸ビニル誘導体が例示される。アジド化樹脂は、アジド基を感光基とする感光性樹脂として知られており、通常はジアジド化合物を感光剤として加えたゴム感光液の他、「感光性樹脂」(昭和47年3月17日出版、印刷学会出版部発行、第93頁〜、第106頁〜、第117頁〜)に詳細な例示があり、これらを単独又は混合し、必要に応じて増感剤を加えて使用することができる。なお、ケトン類、ニトロ化合物などの増感剤やアミン類などの促進剤を添加すると、効果が高められる場合がある。光硬化性物質は反応性ケイ素基を有する有機重合体(A)100重量部に対して0.1〜20重量部、好ましくは0.5〜10重量部の範囲で使用するのがよく、0.1重量部未満では耐候性を高める効果はなく、20重量部を超えると硬化物が硬くなりすぎて、ヒビ割れを生じる傾向がある。
本発明の組成物には酸素硬化性物質を使用することができる。酸素硬化性物質には空気中の酸素と反応し得る不飽和化合物を例示でき、空気中の酸素と反応して硬化物の表面付近に硬化皮膜を形成し表面のべたつきや硬化物表面へのゴミやホコリの付着を防止するなどの作用をする。酸素硬化性物質の具体例には、キリ油、アマニ油などで代表される乾性油や、該化合物を変性してえられる各種アルキッド樹脂;乾性油により変性されたアクリル系重合体、エポキシ系樹脂、シリコン樹脂;ブタジエン、クロロプレン、イソプレン、1,3−ペンタジエンなどのジエン系化合物を重合または共重合させて得られる1,2−ポリブタジエン、1,4−ポリブタジエン、C5〜C8ジエンの重合体などの液状重合体や、これらジエン系化合物と共重合性を有するアクリロニトリル、スチレンなどの単量体とをジエン系化合物が主体となるように共重合させてえられるNBR、SBRなどの液状共重合体や、さらにはそれらの各種変性物(マレイン化変性物、ボイル油変性物など)などが挙げられる。これらは単独で用いてもよく、2種以上併用してもよい。これらのうちではキリ油や液状ジエン系重合体がとくに好ましい。又、酸化硬化反応を促進する触媒や金属ドライヤーを併用すると効果が高められる場合がある。これらの触媒や金属ドライヤーとしては、ナフテン酸コバルト、ナフテン酸鉛、ナフテン酸ジルコニウム、オクチル酸コバルト、オクチル酸ジルコニウム等の金属塩が例示される。酸素硬化性物質の使用量は、反応性ケイ素基を有する有機重合体(A)100重量部に対して0.1〜20重量部の範囲で使用するのがよく、さらに好ましくは0.5〜10重量部である。前記使用量が0.1重量部未満になると汚染性の改善が充分でなくなり、20重量部をこえると硬化物の引張り特性などが損なわれる傾向が生ずる。特開平3−160053号公報に記載されているように酸素硬化性物質は光硬化性物質と併用して使用するのがよい。
本発明の組成物には、酸化防止剤を使用することが望ましい。酸化防止剤を使用すると硬化物の耐熱性を高めることができる。酸化防止剤としてはヒンダードフェノール系、モノフェノール系、ビスフェノール系、ポリフェノール系が例示できるが、特にヒンダードフェノール系が好ましい。ヒンダードフェノール系酸化防止剤の具体例としては、IRGANOX 1010,IRGANOX 1076,IRGANOX 245(以上いずれもチバ・スペシャルティ・ケミカルズ(株)製);アデカスタブAO−20、アデカスタブAO−40(以上いずれも旭電化工業(株)製)等を挙げることができる。
同様に、チヌビン622LD,チヌビン144,CHIMASSORB 944FDL,CHIMASSORB 119FL(以上いずれもチバ・スペシャルティ・ケミカルズ(株)製);アデカスタブLA−57,アデカスタブLA−62,アデカスタブLA−63,アデカスタブLA−67,アデカスタブLA−68(以上いずれも旭電化工業(株)製);サノールLS−770,サノールLS−765,サノールLS−292,サノールLS−2626,サノールLS−1114,サノールLS−744(以上いずれも三共ライフテック(株)製)に示されるヒンダードアミン系光安定剤や、TINUVIN 120(チバ・スペシャルティ・ケミカルズ(株)製)に示されるベンゾエート系光安定剤を使用することもできる。酸化防止剤および光安定剤の使用量は、反応性ケイ素基を有する有機重合体(A)100重量部に対してそれぞれ0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。
本発明の組成物には紫外線吸収剤を使用することができる。紫外線吸収剤を使用すると硬化物の表面耐候性を高めることができる。紫外線吸収剤としてはベンゾフェノン系、ベンゾトリアゾール系、サリシレート系、置換トリル系及び金属キレート系化合物等が例示できるが、特にベンゾトリアゾール系が好ましい。紫外線吸収剤の使用量は、反応性ケイ素基を有する有機重合体(A)100重量部に対して0.1〜10重量部の範囲で使用するのがよく、さらに好ましくは0.2〜5重量部である。フェノール系やヒンダードフェノール系酸化防止剤とヒンダードアミン系光安定剤とベンゾトリアゾール系紫外線吸収剤を併用して使用するのが好ましい。
本発明の組成物にはエポキシ樹脂を添加することができる。エポキシ樹脂を添加した組成物は特に接着剤、殊に外壁タイル用接着剤として好ましい。エポキシ樹脂としてはエピクロルヒドリン−ビスフェノールA型エポキシ樹脂、エピクロルヒドリン−ビスフェノールF型エポキシ樹脂、テトラブロモビスフェノールAのグリシジルエーテルなどの難燃型エポキシ樹脂、ノボラック型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールAプロピレンオキシド付加物のグリシジルエーテル型エポキシ樹脂、p−オキシ安息香酸グリシジルエーテルエステル型エポキシ樹脂、m−アミノフェノール系エポキシ樹脂、ジアミノジフェニルメタン系エポキシ樹脂、ウレタン変性エポキシ樹脂、各種脂環式エポキシ樹脂、N,N−ジグリシジルアニリン、N,N−ジグリシジル−o−トルイジン、トリグリシジルイソシアヌレート、ポリアルキレングリコールジグリシジルエーテル、グリセリンなどのごとき多価アルコールのグリシジルエーテル、ヒダントイン型エポキシ樹脂、石油樹脂などのごとき不飽和重合体のエポキシ化物などが例示されるが、これらに限定されるものではなく、一般に使用されているエポキシ樹脂が使用されうる。エポキシ基を少なくとも分子中に2個含有するものが、硬化に際し反応性が高く、また硬化物が3次元的網目をつくりやすいなどの点から好ましい。さらに好ましいものとしてはビスフェノールA型エポキシ樹脂類またはノボラック型エポキシ樹脂などが挙げ挙げられる。これらのエポキシ樹脂と反応性ケイ素基を有する有機重合体(A)の使用割合は、重量比で(A)/エポキシ樹脂=100/1〜1/100の範囲である。(A)/エポキシ樹脂の割合が1/100未満になると、エポキシ樹脂硬化物の衝撃強度や強靱性の改良効果が得られがたくなり、(A)/エポキシ樹脂の割合が100/1を超えると、有機系重合体硬化物の強度が不十分となる。好ましい使用割合は、硬化性樹脂組成物の用途などにより異なるため一概には決められないが、たとえばエポキシ樹脂硬化物の耐衝撃性、可撓性、強靱性、剥離強度などを改善する場合には、エポキシ樹脂100重量部に対して(A)成分を1〜100重量部、さらに好ましくは5〜100重量部使用するのがよい。一方、(A)成分の硬化物の強度を改善する場合には、(A)成分100重量部に対してエポキシ樹脂を1〜200重量部、さらに好ましくは5〜100重量部使用するのがよい。
エポキシ樹脂を添加する場合、本発明の組成物には、エポキシ樹脂を硬化させる硬化剤を併用できることは当然である。使用し得るエポキシ樹脂硬化剤としては、一般に使用されているエポキシ樹脂硬化剤を使用できるが、1級アミノ基を有する化合物を用いることはできない。具体的には、トリプロピルアミン、N,N−ジメチルプロピルアミン、N,N,N’,N’−テトラメチルヘキサメチレンジアミン、N−メチルピロリジン、N,N’−ジメチルピペラジン、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、のような3級アミン類、及び、これら3級アミン類の塩類;ポリアミド樹脂類;イミダゾール類;ジシアンジアミド類;三弗化硼素錯化合物類;無水フタル酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ドデシニル無水琥珀酸、無水ピロメリット酸、無水クロレン酸等のような無水カルボン酸類;アルコール類;フェノール類;カルボン酸類;アルミニウム又はジルコニウムのジケトン錯化合物等の化合物を例示することができるが、これらに限定されるものではない。また、硬化剤も単独でも2種以上併用してもよい。
エポキシ樹脂の硬化剤を使用する場合、その使用量はエポキシ樹脂100重量部に対し、0.1〜300重量部の範囲である。
エポキシ樹脂の硬化剤としてケチミンを用いることができる。ケチミンは、エポキシ樹脂の潜在性硬化剤としてよく知られており、空気中の湿気と反応し、分解してアミン化合物を生成する。1級アミノ基を有する化合物と、メチルイソブチルケトンを原料として反応させたケチミンは市販されており、簡単に入手できる。ケチミンの例として、エピキュアH−3、エピキュアH−30(以上はいずれもジャパンエポキシレジン(株)の製品である。)や、アデカハードナーEH−235R、アデカハードナーEH−235R−2、アデカハードナーEH−235X(以上はいずれも旭電化工業(株)の製品である。)等が挙げられる。これらのケチミンは、単独で用いてもよく、二種類以上を併用して用いてもよく、エポキシ樹脂100重量部に対し、1〜100重量部使用され、その使用量はエポキシ樹脂およびケチミンの種類によって異なる。
本発明の硬化性組成物には、ポリリン酸アンモニウム、トリクレジルホスフェートなどのリン系可塑剤、水酸化アルミニウム、水酸化マグネシウム、および、熱膨張性黒鉛などの難燃剤を添加することができる。上記難燃剤は単独で用いてもよく、2種以上併用してもよい。
難燃剤は(A)成分100重量部に対して、5〜200質量部、好ましくは10〜100質量部の範囲で使用される。
本発明の組成物には、組成物の粘度を低減し、チクソ性を高め、作業性を改善する目的で、溶剤を使用することができる。溶剤としては、特に限定は無く、各種の化合物を使用することができる。具体例としては、トルエン、キシレン、ヘプタン、ヘキサン、石油系溶媒等の炭化水素系溶剤、トリクロロエチレン等のハロゲン系溶剤、酢酸エチル、酢酸ブチル等のエステル系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン系溶剤、エーテル系溶剤、メタノール、エタノール、イソプロパノール等のアルコール系溶剤、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン等のシリコーン系溶剤が例示される。溶剤を使用する場合、組成物を屋内で使用した時の空気への汚染の問題から、溶剤の沸点は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が特に好ましい。これらの溶剤は、単独で使用してもよく、2種以上併用してもよい。
但し、溶剤の配合量が多い場合には、人体への毒性が高くなる場合があり、また、硬化物の体積収縮などが見られる場合がある。従って、溶剤の配合量は、(A)成分の有機重合体100重量部に対して、3重量部以下であることが好ましく、1重量部以下であることがより好ましく、溶剤を実質的に含まないことが最も好ましい。
本発明の硬化性組成物には、硬化性組成物又は硬化物の諸物性の調整を目的として、必要に応じて各種添加剤を添加してもよい。このような添加物の例としては、例えば、難燃剤、硬化性調整剤、ラジカル禁止剤、金属不活性化剤、オゾン劣化防止剤、リン系過酸化物分解剤、滑剤、顔料、発泡剤、防蟻剤、溶剤、防かび剤などが挙げられる。これらの各種添加剤は単独で用いてもよく、2種類以上を併用してもよい。本明細書に挙げた添加物の具体例以外の具体例は、例えば、特公平4−69659号公報、特公平7−108928号公報、特開昭63−254149号公報、特開昭64−22904号公報、特開2001−72854号公報の各公報などに記載されている。
本発明の1成分型硬化性組成物は、すべての配合成分を予め配合密封保存し、施工後空気中の湿気により硬化する。すべての配合成分が予め配合される1成分型硬化性組成物であるため、水分を含有する配合成分は予め脱水乾燥してから使用するか、また配合混練中に減圧などにより脱水するのが好ましい。脱水、乾燥方法としては粉状などの固状物の場合は加熱乾燥法、液状物の場合は減圧脱水法または合成ゼオライト、活性アルミナ、シリカゲル、生石灰、酸化マグネシウムなどを使用した脱水法が好適である。また、イソシアネート化合物を少量配合してイソシアネート基と水とを反応させて脱水してもよい。また、3−エチル−2−メチル−2−(3−メチルブチル)−1,3−オキサゾリジンなどのオキサゾリジン化合物を配合して水と反応させて脱水してもよい。かかる脱水乾燥法に加えてメタノール、エタノールなどの低級アルコール;n−プロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、メチルシリケート、エチルシリケート、γ−メルカプトプロピルメチルジメトキシシラン、γ−メルカプトプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリメトキシシランなどのアルコキシシラン化合物を添加することにより、さらに貯蔵安定性は向上する。
脱水剤、特にビニルトリメトキシシランなどの水と反応し得るケイ素化合物の使用量は反応性ケイ素基を有する有機重合体(A)100重量部に対して、0.1〜20重量部、好ましくは0.5〜10重量部の範囲が好ましい。
本発明の硬化性組成物の調製法には特に限定はなく、例えば上記した成分を配合し、ミキサーやロールやニーダーなどを用いて常温または加熱下で混練したり、適した溶剤を少量使用して成分を溶解させ、混合したりするなどの通常の方法が採用されうる。
本発明の硬化性組成物は、大気中に暴露されると水分の作用により、三次元的に網状組織を形成し、ゴム状弾性を有する固体へと硬化する。
本発明の1成分型硬化性組成物は、有害な有機錫化合物を使用せず、硬化性と接着性と貯蔵安定性に優れる。
つぎに実施例および比較例によって本発明を具体的に説明するが、本発明はこれに限定されるものではない。
(合成例1)
分子量約2,000のポリオキシプロピレンジオールを開始剤とし、亜鉛ヘキサシアノコバルテートグライム錯体触媒にてプロピレンオキシドの重合を行い、末端が水酸基である数平均分子量約25,500(送液システムとして東ソー製HLC−8120GPCを用い、カラムは東ソー製TSK−GEL Hタイプを用い、溶媒はTHFを用いて測定したポリスチレン換算分子量)のポリプロピレンオキシド(P−1)を得た。続いて、この水酸基末端ポリプロピレンオキシド(P−1)の水酸基に対して1.2倍当量のNaOMeのメタノール溶液を添加してメタノールを留去し、更に塩化アリルを添加して末端の水酸基をアリル基に変換した。未反応の塩化アリルを減圧脱揮により除去した。得られた未精製のアリル基末端ポリプロピレンオキシド100重量部に対し、n−ヘキサン300重量部と、水300重量部を混合攪拌した後、遠心分離により水を除去し、得られたヘキサン溶液に更に水300重量部を混合攪拌し、再度遠心分離により水を除去した後、ヘキサンを減圧脱揮により除去した。以上により、末端がアリル基である数平均分子量約25,500の2官能ポリプロピレンオキシド(P−2)を得た。
得られたアリル末端ポリプロピレンオキシド(P−2)100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、トリメトキシシラン1.1重量部と90℃で5時間反応させ、トリメトキシシリル基末端ポリオキシプロピレン系重合体(A−1)を得た。H−NMR(日本電子製JNM−LA400を用いて、CDCl溶媒中で測定)の測定により、末端のトリメトキシシリル基は1分子あたり平均して1.3個であった。
(合成例2)
合成例1で得られたアリル末端ポリプロピレンオキシド(P−2)100重量部に対し、白金ビニルシロキサン錯体の白金含量3wt%のイソプロパノール溶液150ppmを触媒として、下記化学式:
HSi(CHOSi(CHSi(OCH
で表されるシラン化合物と、下記化学式:
HSi(CHOSi(CHCH(CH)Si(OCH
で表されるシラン化合物との84/16(mol比)の混合液2.1重量部と90℃で2時間反応させ、ジメチルジシロキサン変性したトリメトキシシリル基末端ポリオキシプロピレン系重合体(A−2)を得た。得られたトリメトキシシリル基末端ポリオキシプロピレン系重合体(A−2)は、下記化学式:
−Si(CHOSi(CHSi(OCH
で表される基(a)と、下記化学式:
−Si(CHOSi(CHCH(CH)Si(OCH
で表される基(b)とを有し、(a)/(b)のモル比が84/16である。また、H−NMR(日本電子製JNM−LA400を用いて、CDCl溶媒中で測定)による測定により、末端のトリメトキシシリル基は1分子あたり平均して約1.2個であった。
(合成例3)
攪拌機、加熱装置、温度計、窒素ガス導入口を備えた四つ口フラスコにイソブタノール200gを入れ、窒素ガスを流して20分間バブリングしながら攪拌することによって、系内から酸素を除去した後、105℃に加熱した。この中に、アクリル酸ブチル264g、メタクリル酸メチル56g、メタクリル酸ステアリル62g、γ−メタクリロキシプロピルトリメトキシシラン18gおよびイソブタノール60gの混合物に重合開始剤として和光純薬製V−59を4.0g溶かした溶液を4時間かけて滴下した。その後、イソブタノール20gにV−59を0.4g溶かした溶液を投入して後重合を2時間行った後、室温まで冷却し重合を終了させた。固形分濃度60%で、ゲル浸透クロマトグラフィー(ポリスチレン換算)による数平均分子量が10,000のアクリル重合体(A−3)を得た。
(実施例1)
合成例1で得られたトリメトキシシリル基末端ポリオキシプロピレン系重合体(A−1)100重量部に対して、表面処理膠質炭酸カルシウム(白石工業(株)製、商品名:白艶華CCR)50重量部、重質炭酸カルシウム(白石カルシウム(株)商品名:ホワイトンSB)50重量部、タレ防止剤(楠本化成(株)製、商品名:ディスパロン6500)2重量部、ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ(株)製、商品名:イルガノックス1010)1重量部、ベンゾエート系紫外線吸収剤(住友化学(株)製、商品名:スミソーブ400)1重量部、ヒンダードアミン系光安定剤(三共ライフテック(株)製、商品名:サノールLS−765)1重量部を計量、混合して充分混練りした後、3本ペイントロールに3回通して分散させた。この後、120℃で2時間減圧脱水を行い、50℃以下に冷却後、接着付与剤としてγ−グリシドキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、商品名:A−187)4重量部、ビス(3−トリメトキシシリルプロピル)アミン(東レ・ダウコーニング(株)製、商品名:A−1170)0.89重量部、硬化触媒としてチタニウムジイソプロポキシドビス(エチルアセトアセテート)(松本製薬工業(株)製、商品名:オルガチックスTC−750)4重量部を加えて混練し、実質的に水分の存在しない状態で混練した後、防湿性の容器であるカートリッジに密閉し、1成分型硬化性組成物を得た。
(実施例2)
実施例1における重合体(A−1)の代わりに、合成例2で得られたトリメトキシシリル末端ポリオキシプロピレン系重合体(A−2)を100重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(実施例3)
実施例1におけるA−1170の代わりに、N−エチル−γ−アミノイソブチルトリメトキシシラン(GE Silicones Corp.製、商品名:Silquest A−Link15)を1.24重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(実施例4)
実施例1におけるA−1170の代わりに、(N−フェニル−γ−アミノプロピル)トリメトキシシラン(東レ・ダウコーニング(株)製、商品名:Y−9669)を1.43重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(実施例5)
実施例1におけるA−1170を用いないこと以外は、実施例1と同様にして硬化性組成物を得た。
(実施例6)
合成例1で得られたトリメトキシシリル基末端ポリオキシプロピレン系重合体(A−1)80重量部と、合成例3で得られたトリメトキシシリル基含有アクリル重合体(A−3)のイソブタノール溶液を33.3重量部(固形分で20重量部)をよく混合し、ロータリーエバポレーターを用いて、120℃加熱、減圧を2時間実施してイソブタノールを完全に取り除いた。この混合したポリマー100重量部を、実施例5における重合体(A−1)の代わりに用いた以外は、実施例1と同様にして硬化性組成物を得た。
(比較例1)
実施例1におけるA−1170の代わりに、γ−アミノプロピルトリメトキシシラン(東レ・ダウコーニング(株)製、商品名:A−1110)を3重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(比較例2)
比較例1における重合体(A−1)の代わりに、合成例2で得られたトリメトキシシリル末端ポリオキシプロピレン系重合体(A−2)を100重量部用い、さらにA−1110の使用量を1重量部に変更した以外は、比較例1と同様にして硬化性組成物を得た。
(比較例3)
実施例1におけるA−187とA−1170を使用しない代わりに、γ−グリシドキシプロピルトリメトキシシランとγ−アミノプロピルトリエトキシシラン(ただしγ−アミノプロピルトリエトキシシランが過剰)との反応物(チッソ(株)製、商品名:サイラエースXS−1104)を4.4重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(比較例4)
実施例1におけるA−1170の代わりに、イソプロピルトリ(N−アミドエチル・アミノエチル)チタネート(味の素ファインテクノ(株)製、商品名:プレンアクトKR−44)を2重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(比較例5)
実施例1におけるA−187とA−1170を使用しないこと以外は、実施例1と同様にして硬化性組成物を得た。
(比較例6)
実施例1におけるA−187とA−1170を使用しない代わりに、ビニルトリメトキシシラン(東レ・ダウコーニング(株)製、商品名:A−171)を4重量部用いた以外は、実施例1と同様にして硬化性組成物を得た。
(比較例7)
比較例1におけるTC−750を使用しない代わりに、ジブチル錫ジラウレート(三共有機合成(株)製、商品名:STANN BL)を0.2重量部用いた以外は、比較例1と同様にして硬化性組成物を得た。
(硬化性)
23℃、50%R.H.条件下にて上記硬化性組成物を厚みが約3mmになるよう伸ばし、ミクロスパテュラを用いてときどき硬化性組成物の表面に軽く触れ、組成物がミクロスパテュラに付着しなくなるまでの時間を測定した。結果を表3及び表4に示す。
(貯蔵後の硬化性)
貯蔵後の安定性を評価するために、各1成分型硬化性組成物を50℃の乾燥機に28日間入れ、取り出して23℃50%R.H.条件に1日以上置いた後、上記と同様に硬化性評価を行い、初期値との比較を行った。貯蔵後の硬化性の値が初期の硬化性に比較して全く変化ないもの、すなわち変化率が1.0を◎、変化率が0.7〜1.3のものを○、変化率が0.7未満または1.3より大きいものを△、変化率が3.0より大きいものを×と表記した。
(貯蔵前後の粘度変化)
上記と同様に、初期、貯蔵後のそれぞれの硬化性組成物について、BM型粘度計((株)東京計器製)、ローターNo.7を使用して、23℃における2rpm粘度を測定した。貯蔵後の粘度の値を初期値で割ったものを、貯蔵後の粘度上昇率として計算し、粘度上昇率が1.0〜1.4のものを○、1.4より大きく2.0未満のものを△、2.0以上を×、ゲル化して測定できなかったのものを××と記した。
(硬化物の接着性)
硬化性組成物を4種の被着体(陽極酸化アルミ、ステンレス鋼板、ガラス、アクリル板)上にそれぞれ密着するように乗せ、23℃50%RHの恒温恒湿条件下で7日養生した後、硬化物と基材の界面にカミソリ刃で切り込みを入れ、90度方向に引張った後、硬化物の破壊状態を観察し、凝集破壊率(CF率)を測定した。
結果を表3及び表4に示す。表中、CF率100%を○、50%以上100%未満を△、50%未満を×と表記した。接着性の総合評価として、4種類の基材に対する接着性の×の合計が0個のものを○、×の合計が1〜2個のものを△、×の合計が3〜4個のものを×とした。
(環境適合性)
有機錫化合物を使用していないものを○、使用しているものを×と記した。
Figure 2007037368
Figure 2007037368
Figure 2007037368
Figure 2007037368
実施例1〜6に示すように、(A)反応性ケイ素基を有する有機重合体と(B)チタン触媒と(C)エポキシシランを使用し、1級アミノ基を有する化合物を有さない硬化性組成物は、硬化性が速く、貯蔵前後で粘度変化が小さく安定性が良好で、基材との接着性も良好であり、有機錫化合物を含有していないことから、環境にも優しい組成物である。一方、1級アミノ基を有する化合物を添加した比較例1〜4は、貯蔵後に粘度が上昇しており、安定性に欠ける。シランカップリング剤を全く含んでいない比較例5は、初期の硬化性は早いものの、基材との接着性が悪く、また貯蔵後にカートリッジ内で硬化しており、物性の安定性が悪い。エポキシシランの代わりにビニルシランを用いた比較例6は、貯蔵前後における物性の安定性は良好であるものの、基材との接着性が悪い。有機錫化合物を用いた比較例7は、硬化性、貯蔵後の安定性は良好なものの、接着性が不充分であり、また、環境への負荷があり、環境適合性が悪い。
本発明の硬化性組成物は、粘着剤、建造物・船舶・自動車・道路などのシーリング材、接着剤、型取剤、防振材、制振材、防音材、発泡材料、塗料、吹付材などに使用できる。本発明の硬化性組成物を硬化して得られる硬化物は、柔軟性および接着性に優れることから、これらの中でも、シーリング材または接着剤として用いることがより好ましい。
また、太陽電池裏面封止材などの電気・電子部品材料、電線・ケーブル用絶縁被覆材などの電気絶縁材料、弾性接着剤、コンタクト型接着剤、スプレー型シール材、クラック補修材、タイル張り用接着剤、粉体塗料、注型材料、医療用ゴム材料、医療用粘着剤、医療機器シール材、食品包装材、サイジングボード等の外装材の目地用シーリング材、コーティング材、プライマー、電磁波遮蔽用導電性材料、熱伝導性材料、ホットメルト材料、電気電子用ポッティング剤、フィルム、ガスケット、各種成形材料、および、網入りガラスや合わせガラス端面(切断部)の防錆・防水用封止材、自動車部品、電機部品、各種機械部品などにおいて使用される液状シール剤等の様々な用途に利用可能である。更に、単独あるいはプライマーの助けをかりてガラス、磁器、木材、金属、樹脂成形物などの如き広範囲の基質に密着しうるので、種々のタイプの密封組成物および接着組成物としても使用可能である。また、本発明の硬化性組成物は、内装パネル用接着剤、外装パネル用接着剤、タイル張り用接着剤、石材張り用接着剤、天井仕上げ用接着剤、床仕上げ用接着剤、壁仕上げ用接着剤、車両パネル用接着剤、電気・電子・精密機器組立用接着剤、ダイレクトグレージング用シーリング材、複層ガラス用シーリング材、SSG工法用シーリング材、または、建築物のワーキングジョイント用シーリング材、としても使用可能である。

Claims (8)

  1. (A)シロキサン結合を形成することにより架橋し得るケイ素含有基を有する有機重合体、
    (B)チタン触媒、
    (C)エポキシ基を有し、かつアルコキシ基を有するシラン化合物、
    を含有する硬化性組成物であって、かつ、組成物中に有機錫化合物と、1級アミノ基を有する化合物を実質的に含有していないことを特徴とする1成分型硬化性組成物。
  2. 有機重合体(A)の主鎖骨格が、ポリオキシアルキレン系重合体、および(メタ)アクリル酸エステル系重合体からなる群から選択される少なくとも1種である請求項1に記載の硬化性組成物。
  3. ポリオキシアルキレン系重合体がポリオキシプロピレン系重合体である請求項1または請求項2に記載の硬化性組成物。
  4. チタン触媒(B)が、一般式(1):
    Ti(OR (1)
    (式中、Rは有機基であり、4個のRは相互に同一であっても、異なっていてもよい。)で表される化合物である請求項1〜3のいずれかに記載の硬化性組成物。
  5. 前記一般式(1)で表される化合物が、が、一般式(2):
    Figure 2007037368
    [式中、n個のRは、それぞれ独立に炭素原子数1から20の置換あるいは非置換の1価の炭化水素基である。(4−n)個のRは、それぞれ独立に水素原子または炭素原子数1から8の置換あるいは非置換の1価の炭化水素基である。(4−n)個のAおよび(4−n)個のAは、それぞれ独立に−Rまたは−ORである(ここでRは炭素原子数1から8の置換あるいは非置換の1価の炭化水素基である)。nは0、1、2、3のいずれかである。]で表されるチタニウムキレートおよび/または一般式(3):
    Figure 2007037368
    (式中、R、A、Aは前記と同じ。Rは、炭素原子数1から20の置換あるいは非置換の2価の炭化水素基である。)で表されるチタニウムキレートである請求項4に記載の硬化性組成物。
  6. (C)成分のエポキシ基を有し、かつアルコキシ基を有するシラン化合物が、γ−グリシドキシプロピルトリメトキシシランである請求項1〜6のいずれかに記載の硬化性組成物。
  7. 請求項1〜6のいずれかに記載の硬化性組成物を用いてなるシーリング材。
  8. 請求項1〜6のいずれかに記載の硬化性組成物を用いてなる接着剤。
JP2007537698A 2005-09-30 2006-09-29 1成分型硬化性組成物 Active JP5161578B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007537698A JP5161578B2 (ja) 2005-09-30 2006-09-29 1成分型硬化性組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005289016 2005-09-30
JP2005289016 2005-09-30
PCT/JP2006/319457 WO2007037368A1 (ja) 2005-09-30 2006-09-29 1成分型硬化性組成物
JP2007537698A JP5161578B2 (ja) 2005-09-30 2006-09-29 1成分型硬化性組成物

Publications (2)

Publication Number Publication Date
JPWO2007037368A1 true JPWO2007037368A1 (ja) 2009-04-16
JP5161578B2 JP5161578B2 (ja) 2013-03-13

Family

ID=37899789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007537698A Active JP5161578B2 (ja) 2005-09-30 2006-09-29 1成分型硬化性組成物

Country Status (2)

Country Link
JP (1) JP5161578B2 (ja)
WO (1) WO2007037368A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398975B2 (ja) * 2007-05-07 2014-01-29 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 硬化性組成物
JP2010215715A (ja) * 2009-03-13 2010-09-30 Shin-Etsu Chemical Co Ltd 接着促進剤及び硬化性樹脂組成物
JP2010285462A (ja) * 2009-06-09 2010-12-24 Konishi Co Ltd 難燃性湿気硬化型接着剤組成物
WO2012057281A1 (ja) * 2010-10-27 2012-05-03 セメダイン株式会社 硬化性組成物
JP5887786B2 (ja) * 2010-10-27 2016-03-16 セメダイン株式会社 硬化性組成物
JP5991523B2 (ja) * 2011-08-25 2016-09-14 セメダイン株式会社 常温湿気硬化性接着剤組成物
JP6108514B2 (ja) * 2011-09-06 2017-04-05 セメダイン株式会社 硬化性組成物
JP5698422B1 (ja) * 2013-04-24 2015-04-08 積水フーラー株式会社 硬化性組成物及びこれを用いてなる目地構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438039A (en) * 1980-07-02 1984-03-20 General Electric Company Titanium chelate catalyst for silicone compositions
NL8402732A (nl) * 1984-09-07 1986-04-01 Gen Electric Polysiloxaan mengsel.
JPS62151453A (ja) * 1985-12-25 1987-07-06 Toshiba Silicone Co Ltd シ−リング材組成物
JPS6346271A (ja) * 1986-08-12 1988-02-27 Sanyo Chem Ind Ltd 屋外木工用塗料
JP3325307B2 (ja) * 1992-06-05 2002-09-17 積水化学工業株式会社 室温硬化性組成物
JP2002105265A (ja) * 2000-07-26 2002-04-10 Kanegafuchi Chem Ind Co Ltd 一液型硬化性組成物
GB0028254D0 (en) * 2000-11-21 2001-01-03 Dow Corning Sa Organopolysiloxane compositions and their preparation
JP3793031B2 (ja) * 2001-02-23 2006-07-05 日東化成株式会社 湿気硬化型組成物
JP2005281617A (ja) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The 液状ガスケットシール剤用組成物

Also Published As

Publication number Publication date
WO2007037368A1 (ja) 2007-04-05
JP5161578B2 (ja) 2013-03-13

Similar Documents

Publication Publication Date Title
JP4819675B2 (ja) 硬化性組成物
JP5226218B2 (ja) 硬化性組成物
JP5349959B2 (ja) 硬化性組成物
JP5284797B2 (ja) 硬化性組成物
JP2014114434A (ja) 硬化性組成物
JP5161578B2 (ja) 1成分型硬化性組成物
JP4480457B2 (ja) 硬化性組成物
JP2014234396A (ja) 室温硬化性組成物およびその硬化物
JP5028139B2 (ja) 硬化性組成物
JP5210685B2 (ja) 反応性ケイ素基含有有機重合体組成物の製造方法および流動性調整方法および該有機重合体組成物を用いた目地構造体
JP2007131798A (ja) 硬化性組成物
JP2009215331A (ja) SiF基を有する重合体を含有する硬化性組成物
JP2018197329A (ja) 室温硬化性組成物
JP4777732B2 (ja) オルガノシロキサン変性ポリオキシアルキレン系重合体および/または(メタ)アクリル酸エステル系重合体、および、該重合体を含有する硬化性組成物
JP2012102154A (ja) 硬化性組成物
JP5564312B2 (ja) 硬化性組成物
JP2009215330A (ja) SiF基を有する重合体を含有する1液型硬化性組成物
JP5232446B2 (ja) 反応性ケイ素基を有する有機重合体を含む組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090730

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Ref document number: 5161578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250