WO2017150200A1 - 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池 - Google Patents

非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池 Download PDF

Info

Publication number
WO2017150200A1
WO2017150200A1 PCT/JP2017/005682 JP2017005682W WO2017150200A1 WO 2017150200 A1 WO2017150200 A1 WO 2017150200A1 JP 2017005682 W JP2017005682 W JP 2017005682W WO 2017150200 A1 WO2017150200 A1 WO 2017150200A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
active material
electrode
slurry
mass
Prior art date
Application number
PCT/JP2017/005682
Other languages
English (en)
French (fr)
Inventor
充 花▲崎▼
康宏 中川
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2018503022A priority Critical patent/JP6872525B2/ja
Priority to EP17759671.5A priority patent/EP3425708A4/en
Priority to CN201780006842.XA priority patent/CN108475788B/zh
Priority to US16/081,080 priority patent/US11101463B2/en
Priority to KR1020187020500A priority patent/KR102271754B1/ko
Publication of WO2017150200A1 publication Critical patent/WO2017150200A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a single or double bond to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous battery electrode binder copolymer, a non-aqueous battery electrode slurry, a non-aqueous battery electrode formed using the non-aqueous battery electrode slurry, and a non-aqueous battery including the non-aqueous battery electrode.
  • Non-aqueous batteries using non-aqueous electrolytes are superior to aqueous batteries in terms of higher voltage, smaller size, and lighter weight. Therefore, non-aqueous batteries are widely used as power sources for notebook computers, mobile phones, electric tools, and electronic / communication devices. Recently, non-aqueous batteries are also used for electric vehicles and hybrid vehicles from the viewpoint of environmental vehicle applications, but there is a strong demand for higher output, higher capacity, longer life, and the like.
  • a typical example of the non-aqueous battery is a lithium ion secondary battery.
  • the non-aqueous battery includes a positive electrode using a metal oxide or the like as an active material, a negative electrode using a carbon material such as graphite as an active material, and a non-aqueous electrolyte solvent mainly composed of carbonates or a flame-retardant ionic liquid. .
  • a non-aqueous battery is a secondary battery in which charge and discharge of a battery are performed as ions move between a positive electrode and a negative electrode.
  • the positive electrode can be obtained by applying a slurry made of a metal oxide and a binder to the surface of a positive electrode current collector such as an aluminum foil, drying it, and then cutting it to an appropriate size.
  • the negative electrode is obtained by applying a slurry made of a carbon material and a binder to the surface of a negative electrode current collector such as a copper foil, drying it, and then cutting it to an appropriate size.
  • the binder serves to bind the active materials to each other and the active material and the current collector in the positive electrode and the negative electrode, and to prevent the active material from peeling from the current collector.
  • PVDF polyvinylidene fluoride
  • NMP organic solvent N-methyl-2-pyrrolidone
  • SBR styrene-butadiene rubber
  • CMC carboxymethyl cellulose
  • the SBR binder needs to be used in combination with carboxymethyl cellulose which is a thickener, and the slurry preparation process is complicated. And even in this binder, when the active materials are not sufficiently bonded to each other and the active material and the current collector, and the electrode is produced with a small amount of the binder, a part of the active material is removed in the step of cutting the current collector. There was a problem of peeling.
  • Patent Document 4 discloses a hydrogel composition containing a sodium acrylate-N-vinylacetamide (55/45 (molar ratio)) copolymer. These sodium acrylate-N-vinylacetamide copolymers contain many components derived from N-vinylacetamide.
  • the present invention has sufficient internal resistance as a battery while ensuring sufficient binding between the active materials in the non-aqueous battery electrode and between the active material and the current collector. It is an object of the present invention to provide a non-aqueous battery electrode binder copolymer, a non-aqueous battery electrode slurry, a non-aqueous battery electrode, and a non-aqueous battery that can be reduced.
  • the present invention is as follows [1] to [11].
  • a copolymer for binders for non-aqueous battery electrodes wherein the structure derived from the monomer (A) with respect to the copolymer (P) is 0.5 to 20.0 mass%.
  • R 1 and R 2 each independently represents a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • the monomer mixture (M) further contains an ethylenically unsaturated monomer (C) having a polar functional group, and the binder for a non-aqueous battery electrode according to [1] Polymer.
  • the structure derived from the monomer (B) is 20.0 to 99.0% by mass
  • the non-aqueous battery electrode binder comprising the binder copolymer (P) for a non-aqueous battery electrode according to any one of [1] to [5] and an electrode active material. slurry.
  • the content of the non-aqueous battery electrode binder copolymer (P) in the non-aqueous battery electrode slurry is 0.1 to 5 parts by mass with respect to 100 parts by mass of the electrode active material.
  • the nonaqueous battery electrode according to [9] wherein the electrode active material is a negative electrode active material.
  • the binder for nonaqueous battery electrodes which can reduce internal resistance as a battery, ensuring sufficient binding property between the active materials in a nonaqueous battery electrode, and between an active material and a collector.
  • Copolymer, non-aqueous battery electrode slurry, non-aqueous battery electrode, and non-aqueous battery can be provided.
  • the non-aqueous battery electrode binder copolymer (P) according to the present embodiment (hereinafter, simply referred to as “binder copolymer (P)” or “copolymer (P)”) will be described later.
  • the electrode active materials are used to bind the electrode active materials to each other and the current collector.
  • the non-aqueous battery electrode binder copolymer (P) according to this embodiment includes at least a monomer (A) represented by the following general formula (1) and a (meth) acrylate monomer (B). Is a copolymer of a monomer mixture (M). In the copolymer (P), the structure derived from the monomer (A) is 0.5 to 20.0% by mass.
  • the monomer mixture (M) may further contain an ethylenically unsaturated monomer (C) having a polar functional group.
  • the copolymer (P) When the copolymer (P) is synthesized, it is preferably polymerized in an aqueous medium.
  • the polymerization may be performed in an aqueous medium using a radical polymerization initiator.
  • a radical polymerization initiator As the polymerization method, for example, a method in which all the components used for polymerization are charged all at once and polymerization is performed, a method in which each component used in the polymerization is continuously supplied, and the like are applied.
  • the polymerization is usually carried out at a temperature of 30 to 90 ° C.
  • the specific example of the polymerization method of a copolymer (P) is demonstrated in detail in the below-mentioned Example.
  • the weight average molecular weight of the copolymer (P) is from 1 million to 10 million, preferably from 3 million to 10 million, and more preferably from 5 million to 10 million.
  • the weight average molecular weight is a pullulan conversion value, and an example of a specific measurement method will be described in the examples described later.
  • R 1 and R 2 are each independently a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • R 1 and R 2 are preferably each independently a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, and R 1 and R 2 are more preferably each independently a hydrogen atom or a methyl group.
  • R 1 and R 2 include R 1 : H, R 2 : H (that is, the monomer (A) is N-vinylformamide), R 1 : H, R 2 : CH 3 ( That is, examples of the monomer (A) include N-vinylacetamide.
  • the structure derived from the monomer (A) is 0.5 to 20.0% by mass.
  • the content is preferably 0.5 to 15.0% by mass, and more preferably 0.5 to 10.0% by mass.
  • the content of the monomer (A) contained in the monomer mixture (M) is 0.5 to 20.0% by mass.
  • the content is preferably 0.5 to 15.0% by mass, and more preferably 0.5 to 10.0% by mass.
  • the (meth) acrylate monomer (B) is obtained, for example, by neutralizing (meth) acrylic acid with a hydroxide or aqueous ammonia. This is because neutralization is preferable.
  • the content of the monomer (B) in the monomer mixture (M) is 20.0 to 99.0% by mass. The content is preferably 25.0 to 99.0% by mass, and more preferably 30.0 to 99.0% by mass.
  • the monomer mixture (M) of this embodiment may further contain an ethylenically unsaturated monomer (C) having a polar functional group.
  • an ethylenically unsaturated monomer (C) having a polar functional group As the ethylenically unsaturated monomer (C), a compound having at least one polymerizable ethylenically unsaturated group and having a polar group such as a carboxyl group, a hydroxy group, an amide group or a cyano group is used. Can do. When the ethylenically unsaturated monomer (C) contains an amide group, the monomer (A) is excluded as the general formula (1).
  • Examples of the ethylenically unsaturated monomer having a carboxyl group include acrylic acid, methacrylic acid, itaconic acid and the like.
  • Examples of the ethylenically unsaturated monomer having a hydroxy group include 2-hydroxyethyl (meth) acrylate.
  • Examples of the ethylenically unsaturated monomer having an amide group include acrylamide, N-alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, and N-hydroxy whose alkyl group has 1 to 3 carbon atoms.
  • Examples of the ethylenically unsaturated monomer having a cyano group include (meth) acrylonitrile. Of these, acrylic acid, itaconic acid, 2-hydroxyethyl acrylate, and acrylamide are preferable from the viewpoint of availability.
  • the content of the ethylenically unsaturated monomer (C) in the monomer mixture (M) is 0.5 to 60.0% by mass.
  • the content is preferably 0.5 to 55.0% by mass, and more preferably 0.5 to 50.0% by mass.
  • radical polymerization initiator examples include, but are not limited to, ammonium persulfate, potassium persulfate, hydrogen peroxide, t-butyl hydroperoxide, and azo compounds.
  • a water-soluble polymerization initiator it is preferable to use a water-soluble polymerization initiator.
  • redox polymerization may be performed using a radical polymerization initiator in combination with a reducing agent such as sodium bisulfite, Rongalite, or ascorbic acid.
  • Aqueous medium used for polymerization water is used as the aqueous medium used for the polymerization.
  • a water-added hydrophilic solvent may be used as the aqueous medium. Good.
  • the hydrophilic solvent to be added to water include methanol, ethanol, N-methylpyrrolidone and the like.
  • Nonaqueous battery electrode slurry The slurry for non-aqueous battery electrodes according to the present embodiment (hereinafter sometimes simply referred to as “slurry”) is obtained by dissolving and dispersing a binder copolymer (P) and an electrode active material in an aqueous medium. is there.
  • the slurry of this embodiment may contain a thickener as an optional component as necessary, but it is preferable not to contain a thickener in order to simplify the slurry preparation process.
  • the method for preparing the slurry is not particularly limited, and examples thereof include a method of mixing necessary components using a mixing apparatus such as a stirring type, a rotary type, or a shaking type.
  • the content of the binder copolymer (P) contained in the slurry is 0.1 to 5.0% by mass with respect to the total mass of the electrode active material and the binder copolymer (P). Is preferred. If it is this range, it is sufficient quantity to ensure the binding property of an electrode active material and a collector, and internal resistance when it is set as a battery also becomes low.
  • the content of the binder copolymer (P) is more preferably 0.3 to 4.5% by mass, and most preferably 0.5 to 3.5% by mass.
  • the electrode active material may be any material that can be doped / undoped with lithium or the like.
  • examples of electrode active materials include conductive polymers such as polyacetylene and polypyrrole, or cokes such as coke, petroleum coke, pitch coke, and coal coke, polymer charcoal, carbon fiber, and acetylene.
  • Examples thereof include carbon black such as black, graphite such as artificial graphite and natural graphite, lithium titanate, and silicon.
  • carbon materials that is, coke such as coke, petroleum coke, pitch coke and coal coke, carbon black such as polymer charcoal, carbon fiber and acetylene black, and graphite such as artificial graphite and natural graphite,
  • coke such as coke, petroleum coke, pitch coke and coal coke
  • carbon black such as polymer charcoal
  • graphite such as artificial graphite and natural graphite
  • examples of the electrode active material include lithium cobalt oxide (LiCoO 2 ), Ni—Co—Mn lithium composite oxide, Ni—Mn—Al lithium composite oxide, Nickel-containing lithium composite oxides such as Ni—Co—Al-based lithium composite oxides, spinel-type lithium manganate (LiMn 2 O 4 ), olivine-type lithium iron phosphate, TiS 2 , MnO 2 , MoO 3 , V
  • chalcogen compounds such as 2 O 5 are used in combination.
  • Other alkali metal oxides can also be used.
  • Aqueous medium used for slurry for example, water or a hydrophilic solvent is further added in addition to the one used for the polymerization of the binder copolymer (P).
  • the hydrophilic solvent include methanol, ethanol and N-methylpyrrolidone.
  • the nonvolatile content of the slurry is measured by weighing about 1 g of a sample in an aluminum dish having a diameter of 5 cm, drying at 130 ° C. for 1 hour while circulating air in a dryer at atmospheric pressure, and weighing the remainder. Calculated.
  • the non-volatile content of the slurry is preferably 30 to 70% by mass, more preferably 40 to 60% by mass.
  • the nonvolatile content of the slurry is adjusted by the amount of the aqueous medium (dispersion medium).
  • the viscosity of the slurry is measured at a liquid temperature of 23 ° C. and a rotation speed of 10 rpm using a Brookfield type rotational viscometer (for example, TV-25 manufactured by TOKI SANGYO).
  • the viscosity of the slurry is preferably 500 to 20,000 mPa ⁇ s, more preferably 5,000 to 20,000 mPa ⁇ s.
  • the viscosity of the slurry is adjusted by the amount of the dispersion medium and the thickener. If the non-volatile content and viscosity of the slurry are in a suitable range, the application property to the current collector plate is good, and the productivity of the electrode is excellent.
  • the pH of the slurry is preferably 2 to 10, more preferably 4 to 9, and still more preferably 6 to 9.
  • Non-aqueous battery electrode In the non-aqueous battery electrode of this embodiment, the electrode active material is formed on the surface of the current collector via the binder copolymer (P). For example, the slurry is applied onto a current collector and dried to form an electrode active material layer. Thereafter, the electrode is manufactured by cutting into an appropriate size.
  • Examples of the current collector used for the electrode include metals such as iron, copper, aluminum, nickel, and stainless steel, but are not particularly limited. Also, the shape of the current collector is not particularly limited, but a sheet having a thickness of 0.001 to 0.5 mm is usually used.
  • a general application method can be used, and it is not particularly limited. Examples thereof include a reverse roll method, a direct roll method, a doctor blade method, a knife method, an extrusion method, a curtain method, a gravure method, a bar method, a dip method, and a squeeze method.
  • the doctor blade method which is suitable for various physical properties such as the viscosity of the slurry used for the electrode of the nonaqueous battery and the drying property, and that it is possible to obtain a coating film having a good surface state. It is preferable to use a knife method or an extrusion method.
  • the slurry may be applied only to one side of the current collector, or may be applied to both sides. When the slurry is applied to both sides of the current collector, it may be applied sequentially on one side or on both sides simultaneously. The slurry may be applied continuously to the surface of the current collector or may be applied intermittently. The thickness, length and width of the coating film formed by applying the slurry can be appropriately determined according to the size of the battery.
  • the drying method of the applied slurry is not particularly limited, and for example, hot air, vacuum, (far) infrared, electron beam, microwave and low temperature air can be used alone or in combination.
  • the temperature for drying the coating film is usually in the range of 40 to 180 ° C., and the drying time is usually 1 to 30 minutes.
  • the current collector on which the active material layer is formed is cut to have an appropriate size and shape as an electrode.
  • the method for cutting the current collector on which the active material layer is formed is not particularly limited, and for example, a slit, laser, wire cut, cutter, Thomson, or the like can be used.
  • the non-aqueous battery Before or after cutting the current collector on which the active material layer is formed, it may be pressed as necessary. Accordingly, the non-aqueous battery can be made compact by firmly binding the electrode active material to the electrode and further thinning the electrode.
  • a pressing method a general method can be used, and it is particularly preferable to use a die pressing method or a roll pressing method.
  • the pressing pressure is not particularly limited, but is preferably 0.5 to 5 t / cm 2 , which is a range that does not affect the doping / undoping of lithium ions or the like to the electrode active material by pressing.
  • Non-aqueous battery includes a positive electrode, a negative electrode, an electrolytic solution, and parts such as a separator as required, which are housed in an exterior body.
  • the electrode produced by the above method is used. Examples of the shape of the electrode include a laminated body and a wound body, but are not particularly limited.
  • an alkali metal salt can be used and can be appropriately selected according to the type of the electrode active material.
  • the electrolyte for example, LiClO 4, LiBF 6, LiPF 6, LiCF 3 SO 3, LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiB 10 Cl 10, LiAlCl 4, LiCl, LiBr, LiB (C 2 H 5) 4 , CF 3 SO 3 Li, CH 3 SO 3 Li, LiCF 3 SO 3 , LiC 4 F 9 SO 3 , Li (CF 3 SO 2 ) 2 N, aliphatic lithium carboxylate, and the like.
  • the salt using another alkali metal can also be used.
  • carbonate ester such as ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), and dimethyl carbonate (DMC)
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • MEC methyl ethyl carbonate
  • DMC dimethyl carbonate
  • electrolytic solutions may be used alone or in combination of two or more.
  • Exterior body As the exterior body, a metal, an aluminum laminate material, or the like can be used as appropriate.
  • the shape of the battery may be any shape such as a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • the battery of this embodiment can be manufactured using a known manufacturing method.
  • Example 1 (Preparation of binder copolymer (P) (binder)) N-vinylacetamide (NVA) (manufactured by Showa Denko KK) is used as the monomer (A) represented by the general formula (1), and sodium acrylate (AaNa) is used as the (meth) acrylate monomer (B). ) (Prepared as a 28.5 mass% aqueous solution).
  • V-50 (2,2′-azobis (2-methylpropionamidine) dihydrochloride, manufactured by Wako Pure Chemical Industries, Ltd.
  • ammonium persulfate manufactured by Wako Pure Chemical Industries, Ltd.
  • a separable flask equipped with a condenser, a thermometer, a stirrer, and a dropping funnel 10 parts by weight of NVA, 315.8 parts by weight of 28.5% by weight AaNa aqueous solution (90 parts by weight as AaNa), V-50 0.2 parts by mass, 0.05 part by mass of ammonium persulfate, and 9.0 parts by mass of water were charged at 30 ° C. This was heated up to 80 degreeC and superposition
  • This negative electrode slurry was applied to one side of a 10 ⁇ m-thick copper foil serving as a current collector using a doctor blade so that the coating amount after drying was 4 mg / cm 2, and heated and dried at 60 ° C. for 2 minutes. Further, it was dried at 100 ° C. for 10 minutes to form an active material layer.
  • the material comprising the active material layer and the current collector was pressed at a press pressure of 1 t / cm 2 using a mold press to form a negative electrode active material-containing layer.
  • the obtained negative electrode active material-containing layer was cut out to 22 mm ⁇ 22 mm, and a conductive tab was attached to produce a negative electrode.
  • the positive electrode was produced as follows. First, 90 parts by mass of LiNi 1/3 Mn 1/3 Co 1/3 O 2 , 5 parts by mass of acetylene black as a conductive additive, and 5 parts by mass of polyvinylidene fluoride as a binder were mixed with N-methyl 100 parts by mass of pyrrolidone was added and further mixed to prepare a positive electrode slurry. The prepared positive electrode slurry was applied onto a 20 ⁇ m-thick aluminum foil as a current collector by a doctor blade method so that the thickness after roll press treatment was 100 ⁇ m, and dried at 120 ° C. for 5 minutes. Then, a positive electrode active material-containing layer was formed. The obtained positive electrode active material-containing layer was cut out to 20 mm ⁇ 20 mm, and a positive electrode was produced by attaching a conductive tab.
  • a lithium ion secondary battery was produced using the positive electrode and the negative electrode as follows. Moreover, the electrolyte solution used for a lithium ion secondary battery is mixed in a mixed solvent in which ethylene carbonate (EC) and tilmethyl carbonate (EMC) are mixed at a volume ratio of 40:60, and LiPF 6 is adjusted to a concentration of 1.0 mol / L. It dissolved and adjusted so that it might become. Inside the aluminum laminate outer package (battery pack) so that the active material of the positive electrode and the negative electrode face each other with a separator made of a polyolefin-based porous film interposed between the positive electrode and the negative electrode with a conductive tab Stored. An electrolyte solution was poured into the outer package and packed with a vacuum heat sealer to obtain a laminated battery.
  • EC ethylene carbonate
  • EMC tilmethyl carbonate
  • Examples 2 to 9 The production conditions of the samples of Examples 2 to 9 (binder copolymer, negative electrode slurry, electrode, battery) will be described only with respect to those of Example 1.
  • Example 2 the content of AaNa in the monomer mixture (M) is 75% by mass, and 15% by mass of acrylic acid (Aa) is further added as an ethylenically unsaturated monomer (C).
  • Copolymer P2 was synthesized (binder P2). The weight average molecular weight of the copolymer was 3.7 million.
  • Example 3 NVA in the monomer mixture (M) was 5 mass%, and the content of AaNa was 95 mass% (binder copolymer P3 (binder P3)). The weight average molecular weight of the copolymer was 8.5 million.
  • Example 4 NVA in the monomer mixture (M) was 2 mass%, and the content of AaNa was 98 mass% (binder copolymer P4 (binder P4)). The weight average molecular weight of the binder copolymer P4 was 9 million.
  • Example 5 NVA in the monomer mixture (M) was 1% by mass, and the content of AaNa was 99% by mass (binder copolymer P5 (binder P5)). The weight average molecular weight of the binder copolymer P5 was 7.7 million.
  • Example 6 the amount of the negative electrode active material in the negative electrode slurry was 97.0 parts by mass, and the amount of the binder copolymer P1 was 3.0 parts by mass.
  • Example 7 the amount of the negative electrode active material in the negative electrode slurry was 97.5 parts by mass, and the amount of the binder copolymer P1 was 2.5 parts by mass.
  • Example 8 the amount of the negative electrode active material in the negative electrode slurry was 98.0 parts by mass, and the amount of the binder copolymer P1 was 2.0 parts by mass.
  • Example 9 the amount of the negative electrode active material in the negative electrode slurry was 98.5 parts by mass, and the amount of the binder copolymer P1 was 1.5 parts by mass.
  • Comparative Examples 1 to 4 Regarding the preparation conditions of each sample of Comparative Examples 1 to 4 (binder, slurry for negative electrode, electrode, battery), only the differences from Example 1 will be described.
  • Comparative Example 1 only NVA was used as the monomer (binder P6).
  • Comparative Example 2 only AaNa was used as the monomer (binder P7).
  • Comparative Example 3 the content of NVA in the monomer mixture (M) was 80% by mass, and the content of AaNa was 20% by mass (binder P8).
  • the content of NVA in the monomer mixture (M) was 60% by mass, and the content of AaNa was 40% by mass (binder P9).
  • the binder P10 is made of styrene butadiene latex (SBR) and carboxycellulose soda (CMC) in a water dispersion state. 96.5 parts by mass of non-graphitizable carbon, 1.0 part by mass of carboxymethylcellulose (Nippon Paper Chemical Co., Ltd. trade name Metroz MAC350HC) and 49 parts by mass of water were added, and a stirring type mixing device (spinning rotation revolution stirring) The mixture was kneaded for 4 minutes at 2000 rpm.
  • SBR styrene butadiene latex
  • CMC carboxycellulose soda
  • the active material layer formed on the negative electrode current collector and the SUS plate are attached to a double-sided tape (NITTOTAPE Using No. 5), the peel strength was a value obtained by peeling 180 ° at a peel width of 25 mm and a peel speed of 100 mm / min.
  • the internal resistance (DCR ( ⁇ )) of the fabricated battery was measured as follows. A constant current of 0.2 C was charged from the rest potential to 3.6 V, and the state of charge (SOC) was 50%. Thereafter, discharging was performed at current values of 0.2C, 0.5C, 1C, and 2C for 60 seconds. The DCR ( ⁇ ) at SOC 50% was determined from the relationship between the four kinds of current values (values for 1 second) and the voltages.
  • Comparative Example 1 using an NVA homopolymer as a binder and Comparative Example 2 using an AaNa homopolymer as a binder the slurry had a lump in appearance.
  • the appearance of the produced electrode was streaked, and an electrode active material layer could not be formed on the electrode surface, and performance evaluation as a battery was impossible.
  • Comparative Example 5 using SBR / CMC as a binder, the internal resistance as a battery could not be sufficiently reduced.
  • Comparative Example 6 using PVDF as the binder, the peel strength as the electrode active material layer was insufficient, and the internal resistance when used as an electrode could not be sufficiently reduced.
  • the negative electrode active material layer obtained by applying the slurry containing the binder and negative electrode active material of the example to the current collector and drying has no problem in appearance, has sufficient peel strength, The internal resistance can be reduced sufficiently. Therefore, by using the binder copolymer according to this example as a binder for a non-aqueous battery negative electrode, sufficient binding between the negative electrode active materials in the non-aqueous battery negative electrode and between the negative electrode active material and the current collector is achieved. It was found that the internal resistance as a battery can be reduced while securing the wearing property.
  • binders can also be used as binders for positive electrode active materials (for non-aqueous battery positive electrodes), and have sufficient binding properties between the positive electrode active materials and between the positive electrode active material and the current collector. While ensuring, the internal resistance as a battery can be reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

非水系電池電極における活物質同士、及び活物質と集電体との間で十分な結着性を確保しつつ、電池としての内部抵抗が低減できるバインダー用共重合体、バインダー用組成物、非水系電池電極用スラリー、非水系電池電極、及び非水系電池を提供すること。バインダー用共重合体は、少なくとも、一般式(1)で表す単量体(A)と、(メタ)アクリル酸塩単量体(B)とを含む単量体混合物(M)の共重合体(P)であって、前記共重合体(P)に対する前記単量体(A)由来の構造が0.5~20.0質量%とする。 (式中、R、Rは各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。)

Description

非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池
 本発明は、非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、該非水系電池電極用スラリーを用いて形成された非水系電池電極、及び該非水系電池電極を備える非水系電池に関する。
 本願は、2016年3月4日に、日本に出願された特願2016-042855号に基づき優先権を主張し、その内容をここに援用する。
 非水系電解質を用いる非水系電池は高電圧化、小型化、軽量化の面において水系電池よりも優れている。そのため、非水系電池は、ノート型パソコン、携帯電話、電動工具、電子・通信機器の電源として広く使用されている。また、最近では環境車両適用の観点から電気自動車やハイブリッド自動車用にも非水系電池が使用されているが、高出力化、高容量化、長寿命化等が強く求められてきている。非水系電池としてリチウムイオン二次電池が代表例として挙げられる。
 非水系電池は、金属酸化物などを活物質とした正極と、黒鉛等の炭素材料を活物質とした負極と、カーボネート類または難燃性のイオン液体を中心した非水系電解液溶剤とを備える。非水系電池は、イオンが正極と負極との間を移動することにより電池の充放電が行われる二次電池である。詳細には、正極は、金属酸化物とバインダーから成るスラリーをアルミニウム箔などの正極集電体表面に塗布し、乾燥させた後に、適当な大きさに切断することにより得られる。負極は、炭素材料とバインダーから成るスラリーを銅箔などの負極集電体表面に塗布し、乾燥させた後に、適当な大きさに切断することにより得られる。バインダーは、正極及び負極において活物質同士及び活物質と集電体を結着させ、集電体からの活物質の剥離を防止させる役割がある。
 バインダーとして、有機溶剤系のN-メチル-2-ピロリドン(NMP)を溶剤としたポリフッ化ビニリデン(PVDF)系バインダーがよく知られている(特許文献1)。しかしながら、このバインダーは活物質同士及び活物質と集電体との結着性が低く、実際に使用するには多量のバインダーを必要とする。そのため、非水系電池の容量が低下する欠点がある。また、バインダーに高価な有機溶剤であるNMPを使用しているため、最終製品の価格、及びスラリーまたは集電体作成時の作業環境保全にも問題があった。
 これらの問題を解決する方法として、従来から水分散系バインダーの開発が進められており、たとえば、増粘剤としてカルボキシメチルセルロース(CMC)を併用したスチレン-ブタジエンゴム(SBR)系の水分散体が知られている(特許文献2)。このSBR系分散体は、水分散体であるため安価であり、作業環境保全の観点から有利である。また、活物質同士及び活物質と集電体との結着性が比較的良好である。そのため、PVDF系バインダーよりも少ない使用量で電極の生産が可能であり、非水系電池の高出力化、及び高容量化ができるという利点がある。これらのことから、SBR系分散体は、非水系電池電極用バインダーとして広く使用されている。
 しかしながら、SBR系バインダーは増粘剤であるカルボキシメチルセルロースを併用する必要があり、スラリー作製工程が複雑である。かつこのバインダーにおいても活物質同士、及び活物質と集電体との結着性が足りず、少量のバインダーで電極を生産した場合に、集電体を切断する工程で活物質の一部が剥離する問題があった。
 特許文献3では、アクリル酸ナトリウム-N-ビニルアセトアミド共重合体(共重合比:アクリル酸ナトリウム/N-ビニルアセトアミド=40/60質量比)を含む貼付材用粘着剤組成物が開示されている。また、特許文献4では、アクリル酸ナトリウム-N-ビニルアセトアミド(55/45(モル比))共重合体を含む含水ゲル体用組成物が開示されている。これらのアクリル酸ナトリウム-N-ビニルアセトアミド共重合体では、N-ビニルアセトアミド由来の成分を多く含んでいる。このような重合体を負極活物質(難黒鉛化炭素)及び水と混合して非水系電池電極用スラリーとした場合、スラリーに凝集物があり、電池としての内部抵抗を低減できなかった(後述する比較例3及び4)。
特開平10-298386号公報 特開平8-250123号公報 特開2005-336166号公報 特開2006-321792号公報
 本発明は、上記のような問題を解決するため、非水系電池電極における活物質同士、及び活物質と集電体との間で十分な結着性を確保しつつ、電池としての内部抵抗が低減できる非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、及び非水系電池を提供することを目的とする。
 上記課題を解決するために、本発明は以下の[1]~[11]の通りである。
[1] 少なくとも、一般式(1)で表す単量体(A)と、(メタ)アクリル酸塩単量体(B)とを含む単量体混合物(M)の共重合体(P)であって、
 前記共重合体(P)に対する前記単量体(A)由来の構造が0.5~20.0質量%であることを特徴とする非水系電池電極用バインダー用共重合体。
Figure JPOXMLDOC01-appb-C000002
                  
(式中、R、Rは各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。)
[2]前記単量体混合物(M)は、さらに極性官能基を有するエチレン性不飽和単量体(C)を含むことを特徴とする[1]に記載の非水系電池電極用バインダー用共重合体。
[3] 前記単量体(A)が、N-ビニルホルムアミドまたはN-ビニルアセトアミドであることを特徴とする[1]または[2]に記載の非水系電池電極用バインダー用共重合体。
[4] 前記共重合体(P)の重量平均分子量が、100万~1000万の範囲であることを特徴とする[1]~[3]のいずれかに記載の非水系電池電極用バインダー用共重合体。
[5] 前記共重合体(P)において、
 前記単量体(B)由来の構造が20.0~99.0質量%であり、
 前記単量体(C)由来の構造が0.5~60.0質量%であることを特徴とする[2]~[4]のいずれかに記載の非水系電池電極用バインダー用共重合体。
[6] [1]~[5]のいずれか1項に記載の前記非水系電池電極用バインダー用共重合体(P)と、電極活物質とを含むことを特徴とする非水系電池電極用スラリー。
[7] 前記電極活物質が、負極活物質であることを特徴とする[6]に記載の非水系電池電極用スラリー。
[8] 前記非水系電池電極用スラリーにおける前記非水系電池電極用バインダー用共重合体(P)の含有量は、電極活物質100質量部に対して0.1~5質量部であることを特徴とする[6]または[7]に記載の非水系電池電極用スラリー。
[9] 集電体と、前記集電体において形成された電極活物質層と
を有し、前記電極活物質層は、[1]~[5]のいずれかに記載の非水系電池電極用バインダー用共重合体(P)と電極活物質とを含むことを特徴とする非水系電池電極。
[10]前記電極活物質が、負極活物質であることを特徴とする[9]に記載の非水系電池電極。
[11] [9]または[10]に記載の非水系電池電極を備えることを特徴とする非水系電池。
 本発明によれば、非水系電池電極における活物質同士、及び活物質と集電体との間で十分な結着性を確保しつつ、電池としての内部抵抗が低減できる非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、及び非水系電池を提供することができる。
<1.非水系電池電極用バインダー用共重合体(P)>
 本実施形態にかかる非水系電池電極用バインダー用共重合体(P)(以下、単に「バインダー用共重合体(P)」又は「共重合体(P)」とすることもある)は、後述する非水系電池の電極において電極活物質同士及び電極活物質と集電体とを結着させるために用いられる。本実施形態にかかる非水系電池電極用バインダー用共重合体(P)は、少なくとも、下記一般式(1)で表す単量体(A)と(メタ)アクリル酸塩単量体(B)とを含む単量体混合物(M)の共重合体である。共重合体(P)において単量体(A)由来の構造が0.5~20.0質量%である。
Figure JPOXMLDOC01-appb-C000003
                  
(式中、R、Rは各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。)
 また、単量体混合物(M)はさらに極性官能基を有するエチレン性不飽和単量体(C)を含んでもよい。
 共重合体(P)を合成する際は、水性媒質中で重合することが好ましい。重合は、水性媒質中において、ラジカル重合開始剤を用いて行うとよい。重合法としては、例えば、重合に使用する成分を全て一括して仕込んで重合する方法や、重合に使用する各成分を連続供給しながら重合する方法等が適用される。重合は、通常30~90℃の温度で行う。なお、共重合体(P)の重合方法の具体的な例は、後述の実施例において詳しく説明する。
 共重合体(P)の重量平均分子量は、100万~1000万であるが、300万~1000万であることが好ましく、500万~1000万であることがより好ましい。ここで、重量平均分子量とは、プルラン換算値であり、具体的な測定方法の一例を後述の実施例にて説明する。
<1-1.単量体(A)>
 単量体(A)は、一般式(1)において、R、Rは各々独立に水素原子または炭素数1以上5以下のアルキル基である。R、Rは各々独立に水素原子または炭素数1以上3以下のアルキル基であることが好ましく、R、Rは各々独立に水素原子またはメチル基であることがより好ましい。
 R、Rの組み合わせとして好ましい具体例としては、R:H、R:H(すなわち、単量体(A)はN-ビニルホルムアミド)、R:H、R:CH(すなわち、単量体(A)はN-ビニルアセトアミド)が挙げられる。
 また、共重合体(P)において、単量体(A)由来の構造が0.5~20.0質量%である。0.5~15.0質量%であることが好ましく、0.5~10.0質量%であることがより好ましい。
 単量体混合物(M)に含まれている単量体(A)の含有量は0.5~20.0質量%である。0.5~15.0質量%であることが好ましく、0.5~10.0質量%であることがより好ましい。
<1-2.(メタ)アクリル酸塩単量体(B)>
 (メタ)アクリル酸塩単量体(B)としては、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸カリウム、(メタ)アクリル酸アンモニウムが好ましい。その中でも、(メタ)アクリル酸ナトリウム、(メタ)アクリル酸アンモニウムがより好ましく、アクリル酸ナトリウムが最も好ましい。(メタ)アクリル酸塩単量体(B)は、例えば、(メタ)アクリル酸を水酸化物やアンモニア水などで中和して得られるが、中でも入手容易性の点から、水酸化ナトリウムで中和することが好ましいためである。
 単量体混合物(M)における単量体(B)の含有量は20.0~99.0質量%である。25.0~99.0質量%であることが好ましく、30.0~99.0質量%であることがより好ましい。
<1-3.エチレン性不飽和単量体(C)>
 本実施形態の単量体混合物(M)はさらに極性官能基を有するエチレン性不飽和単量体(C)を含んでもよい。
 エチレン性不飽和単量体(C)は、少なくとも1つの重合可能なエチレン性不飽和基を有し、かつ、カルボキシル基、ヒドロキシ基、アミド基、シアノ基などの極性基を有する化合物を用いることができる。なお、エチレン性不飽和単量体(C)がアミド基を含む場合には、一般式(1)として単量体(A)は除外するものとする。カルボキシル基を有するエチレン性不飽和単量体としては例えば、アクリル酸、メタクリル酸、イタコン酸等が挙げられる。ヒドロキシ基を有するエチレン性不飽和単量体としては例えば、(メタ)アクリル酸-2-ヒドロキシエチル等が挙げられる。アミド基を有するエチレン性不飽和単量体としては、例えば、アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、アルキル基の炭素数が1~3であるN‐ヒドロキシアルキル(メタ)アクリルアミド、ダイアセトン(メタ)アクリルアミド、及びジメチルアミノ基を除く部分のアルキル基の炭素数が1~5であるジメチルアミノアルキル(メタ)アクリルアミド、(メタ)アクリルアミド-2-メチルプロパンスルホン酸が挙げられる。シアノ基を有するエチレン性不飽和単量体としては例えば、(メタ)アクリロニトリル等が挙げられる。中でも入手容易性の点から、アクリル酸、イタコン酸、アクリル酸-2-ヒドロキシエチル、アクリルアミドが好ましい。
 単量体混合物(M)におけるエチレン性不飽和単量体(C)の含有量は0.5~60.0質量%である。0.5~55.0質量%であることが好ましく、0.5~50.0質量%であることがより好ましい。
<1-4.重合開始剤>
 重合の際に用いられるラジカル重合開始剤としては、例えば、過硫酸アンモニウム、過硫酸カリウム、過酸化水素、t-ブチルハイドロパーオキサイド、アゾ系化合物等が挙げられるが、これに限られない。重合を水中で行う場合は、水溶性の重合開始剤を用いることが好ましい。また、必要に応じて、重合の際にラジカル重合開始剤と、重亜硫酸ナトリウム、ロンガリット、アスコルビン酸等の還元剤とを併用して、レドックス重合してもよい。
<1-5.重合に用いる水性媒質>
 本実施形態においては、重合に用いる水性媒質として水を用いるが、得られるバインダー用共重合体の重合安定性を損なわない限り、水に親水性の溶媒を添加したものを水性媒質として用いてもよい。水に添加する親水性の溶媒としては、メタノール、エタノール及びN‐メチルピロリドン等が挙げられる。
<2.非水系電池電極用スラリー>
 本実施形態の非水系電池電極用スラリー(以下、単に「スラリー」とすることもある)は、バインダー用共重合体(P)と電極活物質とを、水性媒質に溶解、分散させたものである。本実施形態のスラリーは、必要に応じて任意成分である増粘剤を含んでもよいが、スラリー作製工程の簡単化するためには、増粘剤を含まないほうが好ましい。スラリーを調製する方法としては、特に限定されないが、例えば、攪拌式、回転式、または振とう式などの混合装置を使用して必要な成分を混合する方法が挙げられる。
<2-1.非水系電池電極用バインダー用共重合体(P)の含有量>
 スラリーに含まれるバインダー用共重合体(P)の含有量は、電極活物質とバインダー用共重合体(P)とを合計した質量に対して、0.1~5.0質量%であることが好ましい。この範囲であれば、電極活物質と集電体との結着性を確保するのに十分な量であり、電池としたときの内部抵抗も低くなる。バインダー用共重合体(P)の含有量として、さらに好ましくは0.3~4.5質量%、最も好ましくは0.5~3.5質量%である。
<2-2.電極活物質>
 電極活物質は、リチウム等をドープ/脱ドープ可能な材料であればよい。スラリーが負極形成用のものである場合、電極活物質の例として、ポリアセチレン、ポリピロール等の導電性ポリマー、あるいはコークス、石油コークス、ピッチコークス、石炭コークス等のコークス類、ポリマー炭、カーボンファイバー、アセチレンブラック等のカーボンブラック、人造黒鉛、天然黒鉛等の黒鉛類、チタン酸リチウム、シリコン等が挙げられる。これら活物質の中でも、体積当たりのエネルギー密度が大きい点から、カーボンブラック、グラファイト、天然黒鉛、チタン酸リチウム、シリコン等を用いることが好ましい。中でも、炭素材料、すなわち、コークス、石油コークス、ピッチコークス、石炭コークス等のコークス類、ポリマー炭、カーボンファイバー、アセチレンブラック等のカーボンブラック、および人造黒鉛、天然黒鉛等の黒鉛類であると、本実施形態のバインダー用共重合体(P)による結着性を向上させる効果が顕著である。
 スラリーが正極形成用のものである場合、電極活物質の例として、コバルト酸リチウム(LiCoO)、Ni-Co-Mn系のリチウム複合酸化物、Ni-Mn-Al系のリチウム複合酸化物、Ni-Co-Al系のリチウム複合酸化物などのニッケルを含むリチウム複合酸化物や、スピネル型マンガン酸リチウム(LiMn)、オリビン型燐酸鉄リチウム、TiS、MnO、MoO、V、などのカルコゲン化合物のうちの1種、あるいは複数種が組み合わせて用いられる。また、その他のアルカリ金属の酸化物も使用することが出来る。
<2-3.スラリーに用いる水性媒質>
 スラリーに用いる水性媒質としては、例えば、バインダー用共重合体(P)の重合に用いたものに加え、水または親水性の溶媒をさらに添加する。親水性の溶媒としては、メタノール、エタノール及びN‐メチルピロリドン等が挙げられる。
<2-4.スラリーの性質>
 スラリーの不揮発分は、本実施形態では直径5cmのアルミ皿にサンプルを約1g秤量し、大気圧、乾燥器内で空気を循環させながら130℃で1時間乾燥させ、残分を秤量することで算出される。スラリーの不揮発分は、好ましくは30~70質量%、より好ましくは40~60質量%である。スラリーの不揮発分は、水性媒質(分散媒)の量により調整する。
 また、スラリーの粘度は、本実施形態ではブルックフィールド型回転粘度計(例えば、TOKI SANGYO社製 TV-25)を用いて、液温23℃、回転数10rpmにて測定する。スラリーの粘度は、好ましくは500~20,000mPa・sであり、より好ましくは5,000~20,000mPa・sである。スラリーの粘度は、分散媒の量や増粘剤により調整する。スラリーの不揮発分や粘度が好適な範囲にあれば、集電板への塗布性が良好で、電極の生産性に優れる。電池の耐久性などの観点から、スラリーのpHは、2~10であることが好ましく、4~9であることがより好ましく、6~9であることがさらに好ましい。
<3.非水系電池用電極>
 本実施形態の非水系電池用電極は、集電体の表面上に、電極活物質がバインダー用共重合体(P)を介して形成されている。例えば、上記スラリーを集電体上に塗布し、乾燥させて電極活物質層が形成される。その後、適当な大きさに切断することにより電極が製造される。
 電極に用いられる集電体の例としては、鉄、銅、アルミニウム、ニッケル、ステンレスなどの金属が挙げられるが、特に限定されない。また、集電体の形状についても特に限定されないが、通常、厚さ0.001~0.5mmのシート状のものが用いられる。
 スラリーを集電体上に塗布する方法としては、一般的な塗布方法を用いることができ、特に限定されない。例えば、リバースロール法、ダイレクトロール法、ドクターブレード法、ナイフ法、エクストルージョン法、カーテン法、グラビア法、バー法、ディップ法およびスクイーズ法などを挙げることができる。これらの中でも、非水系電池の電極に用いられるスラリーの粘性等の諸物性及び乾燥性に対して好適であり、良好な表面状態の塗布膜を得ることが可能である点で、ドクターブレード法、ナイフ法、又はエクストルージョン法を用いることが好ましい。
 スラリーは、集電体の片面にのみ塗布してもよいし、両面に塗布してもよい。スラリーを集電体の両面に塗布する場合は、片面ずつ逐次塗布してもよいし、両面同時に塗布してもよい。また、スラリーは、集電体の表面に連続して塗布してもよいし、間欠で塗布してもよい。スラリーを塗布してなる塗布膜の厚さ、長さや幅は、電池の大きさなどに応じて、適宜、決定できる。
 塗布されたスラリーの乾燥方法は、特に限定されないが、例えば、熱風、真空、(遠)赤外線、電子線、マイクロ波および低温風を単独あるいは組み合わせて用いることができる。塗布膜を乾燥させる温度は、通常40~180℃の範囲であり、乾燥時間は、通常1~30分である。
 活物質層が形成された集電体は、電極として適当な大きさや形状にするために切断される。活物質層の形成された集電体の切断方法は特に限定されないが、例えば、スリット、レーザー、ワイヤーカット、カッター、トムソン等を用いることができる。
 活物質層が形成された集電体を切断する前または後に、必要に応じてそれをプレスしてもよい。それによって電極活物質を電極により強固に結着させ、さらに電極を薄くすることによる非水系電池のコンパクト化が可能になる。プレスの方法としては、一般的な方法を用いることができ、特に金型プレス法やロールプレス法を用いることが好ましい。プレス圧は、特に限定されないが、プレスによる電極活物質へのリチウムイオン等のドープ/脱ドープに影響を及ぼさない範囲である0.5~5t/cmとすることが好ましい。
<4.非水系電池>
 本実施形態にかかる非水系電池は、正極と、負極と、電解液と、必要に応じてセパレータ等の部品とが外装体に収容されたものであり、正極と負極のうちの一方または両方に上記の方法により作製された電極を用いる。電極の形状としては、例えば、積層体や捲回体が挙げられるが、特に限定されない。
<4-1.電解液>
 電解液としては、イオン伝導性を有する非水系の溶液を使用する。溶液としては、電解質を溶解した有機溶媒や、イオン液体などが例として挙げられる。 
 電解質としては、アルカリ金属塩を用いることができ、電極活物質の種類等に応じ適宜選択できる。電解質としては、例えば、LiClO、LiBF、LiPF、LiCFSO、LiCFCO、LiAsF、LiSbF、LiB10Cl10、LiAlCl、LiCl、LiBr、LiB(C、CFSOLi、CHSOLi、LiCFSO、LiCSO、Li(CFSON、脂肪族カルボン酸リチウム、等が挙げられる。また、その他のアルカリ金属を用いた塩を用いることもできる。
 電解質を溶解する有機溶媒としては、特に限定されないが、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、ジメチルカーボネート(DMC)等の炭酸エステル化合物、アセトニトリル等のニトリル化合物が挙げられる。
 これらの電解液は、1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
<4-2.外装体>
 外装体としては、金属やアルミラミネート材などを適宜使用できる。電池の形状は、コイン型、ボタン型、シート型、円筒型、角型、扁平型等、いずれの形状であってもよい。
本実施形態の電池は、公知の製造方法を用いて製造できる。
 以下にバインダー用共重合体(P)(バインダー)、負極用スラリー、電極、電池についての実施例および比較例を示して本発明をさらに詳細に説明する。各実施例及び比較例のバインダーの成分、スラリーの配合比及び各サンプルの評価結果は表1の通りである。
なお、本発明はこれらによって限定されるものではない。
<実施例1>
 (バインダー用共重合体(P)(バインダー)の作製)
 一般式(1)で表す単量体(A)としてN-ビニルアセトアミド(NVA)(昭和電工(株)製)を、(メタ)アクリル酸塩単量体(B)として、アクリル酸ナトリウム(AaNa)(28.5質量%水溶液として調製したもの)を用いた。また、重合触媒としてV-50(2,2’-アゾビス(2- メチルプロピオンアミジン)2塩酸塩、和光純薬工業社製)を、重合開始剤として過硫酸アンモニウム(和光純薬工業社製)を用いた。
 冷却管、温度計、攪拌機、滴下ロートが組みつけられたセパラブルフラスコに、NVAを10質量部、28.5質量%AaNa水溶液を315.8質量部(AaNaとして90質量部)、V-50を0.2質量部、過硫酸アンモニウムを0.05質量部、水を9.0質量部を30℃で仕込んだ。これを、80℃に昇温し、4時間重合を行った。その後、室温まで冷却し、乾燥し、粉砕して粉末状のバインダー用共重合体P1(バインダーP1)を得た。
 得られたバインダー用共重合体P1の重量平均分子量(プルラン換算値)を測定した。測定された重量平均分子量は550万であった。
 (重量平均分子量の測定)
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定した。
 GPC装置: GPC‐101(昭和電工(株)製))
 溶媒:0.1M NaNO水溶液
 サンプルカラム:Shodex Column Ohpak SB-806 HQ(8.0mmI.D. x 300mm) ×2
 リファレンスカラム:Shodex Column Ohpak SB-800 RL(8.0mmI.D. x 300mm) ×2
 カラム温度:40℃
 試料濃度:0.1質量%
 検出器:RI-71S(株式会社島津製作所製)
 ポンプ:DU-H2000(株式会社島津製作所製)
 圧力:1.3MPa
 流量:1ml/min
 分子量スタンダード:プルラン(P‐5、P-10、P‐20、P-50、P‐100、P-200、P-400、P-800、P-1300、P-2500(昭和電工(株)製))
 (負極用スラリーの作製)
 次に、負極活物質として難黒鉛化性炭素を96.5部、バインダー用共重合体P1を3.5部、水を69部加えて、攪拌式混合装置(自転公転撹拌ミキサー)を用いて2000回転/分で4分間固練りを行った。さらに水を16部加え、さらに2000回転/分で4分間混ぜ、負極用スラリーを作製した。
 (負極の作製)
 この負極用スラリーを集電体となる厚さ10μmの銅箔の片面に乾燥後の塗布量が4mg/cmとなるようにドクターブレードを用いて塗布し、60℃で2分加熱乾燥後、さらに100℃で10分乾燥して活物質層を形成した。この活物質層と集電体からなる材料を金型プレスを用いてプレス圧1t/cmでプレスして負極活物質含有層を形成した。
 得られた負極活物質含有層を22mm×22mmに切り出しに導電タブをつけて負極を作製した。
 (正極の作製)
 また、正極は以下のように作製した。まず、LiNi1/3Mn1/3Co1/3を90質量部、導電助剤としてアセチレンブラックを5質量部、バインダーとしてポリフッ化ビニリデン5質量部とを混合したものに、N-メチルピロリドンを100質量部添加して、さらに混合して正極用スラリーを作製した。
 作製した正極用スラリーを、ドクターブレード法により集電体である厚さ20μmのアルミニウム箔上にロールプレス処理後の厚さが100μmになるように塗布し、120℃で5分乾燥、プレス工程を経て正極活物質含有層を形成した。得られた正極活物質含有層を20mm×20mmに切り出し、導電タブをつけて正極を作製した。
 (電池の作製)
 上記の正極と負極を用いて以下のようにしてリチウムイオン二次電池を作製した。
 また、リチウムイオン二次電池に用いる電解液を、エチレンカーボネート(EC)とチルメチルカーボネート(EMC)とを体積比40:60で混合した混合溶媒に、LiPFを1.0mol/Lの濃度になるように溶解して調整した。
 導電タブがつけられた正極と負極との間にポリオレフィン系の多孔性フィルムからなるセパレータを介在させて、正極と負極との活物質が互いに対向するようにアルミラミネート外装体(電池パック)の中に収納した。この外装体中に電解液を注入し、真空ヒートシーラーでパッキングし、ラミネート型電池を得た。
Figure JPOXMLDOC01-appb-T000004
                  
<実施例2~9>
 実施例2~9の各サンプル(バインダー用共重合体、負極用スラリー、電極、電池)の作製条件について、実施例1に対して異なる部分のみ説明する。
 実施例2では、単量体混合物(M)中のAaNaの含有量を75質量%にして、さらにエチレン性不飽和単量体(C)としてアクリル酸(Aa)15質量%を加えてバインダー用共重合体P2を合成した(バインダーP2)。共重合体の重量平均分子量は370万であった。
 実施例3では、単量体混合物(M)中のNVAを5質量%、AaNaの含有量を95質量%にした(バインダー用共重合体P3(バインダーP3))。共重合体の重量平均分子量は850万であった。実施例4では、単量体混合物(M)中のNVAを2質量%、AaNaの含有量を98質量%にした(バインダー用共重合体P4(バインダーP4))。バインダー用共重合体P4の重量平均分子量は900万であった。実施例5では、単量体混合物(M)中のNVAを1質量%、AaNaの含有量を99質量%にした(バインダー用共重合体P5(バインダーP5))。バインダー用共重合体P5の重量平均分子量は770万であった。
 実施例6では、負極用スラリー中の負極活物質の配合量を97.0質量部、バインダー用共重合体P1の配合量を3.0質量部とした。実施例7では、負極用スラリー中の負極活物質の配合量を97.5質量部、バインダー用共重合体P1の配合量を2.5質量部とした。実施例8では、負極用スラリー中の負極活物質の配合量を98.0質量部、バインダー用共重合体P1の配合量を2.0質量部とした。実施例9では、負極用スラリー中の負極活物質の配合量を98.5質量部、バインダー用共重合体P1の配合量を1.5質量部とした。
<比較例1~4>
 比較例1~4の各サンプル(バインダー、負極用スラリー、電極、電池)の作製条件については、実施例1に対して異なる部分のみ説明する。
 比較例1では、単量体としてNVAのみを用いた(バインダーP6)。比較例2では、単量体としてAaNaのみを用いた(バインダーP7)。比較例3では、単量体混合物(M)中のNVAの含有量を80質量%、AaNaの含有量を20質量%にした(バインダーP8)。比較例4では、単量体混合物(M)中のNVAの含有量を60質量%、AaNaの含有量を40質量%にした(バインダーP9)。
<比較例5>
 比較例5において、バインダーP10は、水分散状態のスチレンブタジエンラテックス(SBR)とカルボキシセルロスソーダ(CMC)からなる。
 難黒鉛化性炭素を96.5質量部、カルボキシメチルセルロース(日本製紙ケミカル(株)製商品名メトローズMAC350HC)を1.0質量部、水を49質量部加えて、攪拌式混合装置(自転公転撹拌ミキサー)を用いて2000回転/分で4分間固練りを行った。
 その後、SBR40質量%の水分散液を6.25質量部(SBR2.5質量部、水3.75質量部)、水を32質量部加え、さらに2000回転/分で4分間混ぜ、負極用スラリーを作製した。
 この負極用スラリーを用いて、実施例1と同様に負極を作製した。さらに、この負極と、実施例1と同様の方法で作製した正極とを用いて、実施例1と同様に電池を作製した。
<比較例6>
 比較例6では、バインダーP11としてポリフッ化ビニリデン(PVDF)を用いた。
 次に、負極活物質として難黒鉛化性炭素を95質量部、非水系電池電極用バインダー用共重合体P11を5.0質量部、水を69質量部加えて、攪拌式混合装置(自転公転撹拌ミキサー)を用いて2000回転/分で4分間固練りを行った。さらに水を16質量部加え、さらに2000回転/分で4分間混ぜ、負極用スラリーを作製した。
 この負極用スラリーを用いて、実施例1と同様に負極を作製した。さらに、この負極と、実施例1と同様の方法で作製した正極とを用いて、実施例1と同様に電池を作製した。
<実施例及び比較例の評価方法>
 各実施例及び比較例の負極用スラリー外観、電極性能、電池性能を評価した。評価方法は以下の通りで、評価結果は表1に示した通りである。
 (スラリー外観)
 スラリーを目視して外観を確認し、凝集物及び塊のサイズをマイクロメーターで測定した。スラリー中に凝集物(1mm~27mm)や塊(27mm以上)がある場合を×、それ以外の場合を○と判断した。
(負極外観)
 電極を目視して外観を確認し、凝集物及び塊のサイズをマイクロメーターで測定した。
凝集物(1mm~27mm)や塊(27mm以上)が確認された場合、また、電極に筋が入った場合を×、それ以外を○と判断した。
(負極活物質層の剥離強度)
 負極の集電体上に形成された活物質層とSUS板とを両面テープ(NITTOTAPE
 No5)を用いて貼り合わせ、剥離幅25mm、剥離速度100mm/minで180°剥離して得られた値を剥離強度とした。
 (電池性能)
 作製された電池の内部抵抗(DCR(Ω))を以下のように測定した。
 レストポテンシャルから3.6Vまで0.2Cの定電流充電し、充電状態(SOC)を50%にした。その後、0.2C、0.5C、1Cおよび2Cの各電流値で60秒間放電を行った。4種の電流値(1秒間での値)と電圧の関係からSOC50%でのDCR(Ω)を決定した。
<実施例及び比較例の評価結果>
 表1からわかるように、実施例1~9においては、電極(負極)の外観が良好で、負極活物質層の剥離強度(mN/mm)も十分な値を示している。また、電池としたときの内部抵抗(Ω)も十分に低い値である。
 一方、NVAの単独重合体をバインダーに用いた比較例1、及びAaNaの単独重合体をバインダーに用いた比較例2では、スラリーの外観は塊があった。また、作製した電極の外観は筋が入り、電極表面に電極活物質層を形成できず、電池としての性能評価は不可能であった。
 単量体混合物(M)に過剰のNVAを含む比較例3及び4では、スラリーの外観は凝集物があった。また、作製した電極の外観は凝集物があり、電池としての内部抵抗が十分に低減できていなかった。
 バインダーとしてSBR/CMCを用いた比較例5では、電池としての内部抵抗が十分に低減できていなかった。また、バインダーとしてPVDFを用いた比較例6では、電極活物質層としての剥離強度が不十分であり、電極としたときの内部抵抗も十分に低減できなかった。
 以上の評価結果から、実施例のバインダーと負極活物質とを含むスラリーを集電体に塗布、乾燥して得られる負極活物質層は、外観上問題なく、剥離強度も十分であり、電池としたときの内部抵抗も十分に低減できている。
 したがって、本実施例にかかるバインダー用共重合体を非水系電池負極用のバインダーとして用いることにより、非水系電池負極における負極活物質同士、及び負極活物質と集電体との間で十分な結着性を確保しつつ、電池としての内部抵抗が低減できることがわかった。
 また、これらバインダーは正極活物質のため(非水系電池正極用の)のバインダーとしても用いることができ、正極活物質同士、及び正極活物質と集電体との間で十分な結着性を確保しつつ、電池としての内部抵抗が低減できる。

Claims (11)

  1.  少なくとも、一般式(1)で表す単量体(A)と、(メタ)アクリル酸塩単量体(B)とを含む単量体混合物(M)の共重合体(P)であって、
     前記共重合体(P)に対する前記単量体(A)由来の構造が0.5~20.0質量%であることを特徴とする非水系電池電極用バインダー用共重合体。
    Figure JPOXMLDOC01-appb-C000001
                      
    (式中、R、Rは各々独立に水素原子または炭素数1以上5以下のアルキル基を表す。)
  2.  前記単量体混合物(M)は、さらに極性官能基を有するエチレン性不飽和単量体(C)を含むことを特徴とする請求項1に記載の非水系電池電極用バインダー用共重合体。
  3.  前記単量体(A)が、N-ビニルホルムアミドまたはN-ビニルアセトアミドであることを特徴とする請求項1または2に記載の非水系電池電極用バインダー用共重合体。
  4.  前記共重合体(P)の重量平均分子量が、100万~1000万の範囲であることを特徴とする請求項1~3のいずれか1項に記載の非水系電池電極用バインダー用共重合体。
  5.  前記共重合体(P)において、
     前記単量体(B)由来の構造が20.0~99.0質量%であり、
     前記単量体(C)由来の構造が0.5~60.0質量%であることを特徴とする請求項2~4のいずれか1項に記載の非水系電池電極用バインダー用共重合体。
  6.  請求項1~5のいずれか1項に記載の前記非水系電池電極用バインダー用共重合体(P)と、
     電極活物質と
     を含むことを特徴とする非水系電池電極用スラリー。
  7.  前記電極活物質が、負極活物質であることを特徴とする請求項6に記載の非水系電池電極用スラリー。
  8.  前記非水系電池電極用スラリーにおける前記非水系電池電極用バインダー用共重合体(P)の含有量は、電極活物質100質量部に対して0.1~5質量部であることを特徴とする請求項6または7に記載の非水系電池電極用スラリー。
  9.  集電体と、
     前記集電体において形成された電極活物質層と
    を有し、
     前記電極活物質層は、請求項1~5のいずれか1項に記載の非水系電池電極用バインダー用共重合体(P)と電極活物質とを含む
    ことを特徴とする非水系電池電極。
  10.  前記電極活物質が、負極活物質であることを特徴とする請求項9に記載の非水系電池電極。
  11.  請求項9または10に記載の非水系電池電極を備えることを特徴とする非水系電池。
PCT/JP2017/005682 2016-03-04 2017-02-16 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池 WO2017150200A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018503022A JP6872525B2 (ja) 2016-03-04 2017-02-16 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池
EP17759671.5A EP3425708A4 (en) 2016-03-04 2017-02-16 COPOLYMERS FOR BINDERS FOR NONAQUEOUS ELECTROLYTE BATTERY ELECTRODES, THICK SUSPENSION FOR NONAQUEOUS ELECTROLYTE BATTERY ELECTRODES, NONAQUEOUS ELECTROLYTE BATTERY ELECTRODE, AND NONAQUEOUS ELECTROLYTE BATTERY
CN201780006842.XA CN108475788B (zh) 2016-03-04 2017-02-16 非水系电池电极用粘合剂用共聚物、非水系电池电极用浆料、非水系电池电极及非水系电池
US16/081,080 US11101463B2 (en) 2016-03-04 2017-02-16 Copolymer for binders for nonaqueous battery electrodes, slurry for nonaqueous battery electrodes, nonaqueous battery electrode, and nonaqueous battery
KR1020187020500A KR102271754B1 (ko) 2016-03-04 2017-02-16 비수계 전지 전극용 바인더용 공중합체, 비수계 전지 전극용 슬러리, 비수계 전지 전극, 및 비수계 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016042855 2016-03-04
JP2016-042855 2016-03-04

Publications (1)

Publication Number Publication Date
WO2017150200A1 true WO2017150200A1 (ja) 2017-09-08

Family

ID=59743809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/005682 WO2017150200A1 (ja) 2016-03-04 2017-02-16 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池

Country Status (7)

Country Link
US (1) US11101463B2 (ja)
EP (1) EP3425708A4 (ja)
JP (3) JP6872525B2 (ja)
KR (1) KR102271754B1 (ja)
CN (1) CN108475788B (ja)
TW (1) TWI627789B (ja)
WO (1) WO2017150200A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107187A1 (ja) * 2017-12-01 2019-06-06 昭和電工株式会社 非水系電池電極用スラリーの製造方法
WO2020017442A1 (ja) 2018-07-19 2020-01-23 昭和電工株式会社 非水系電池電極用バインダー用共重合体、および非水系電池電極製造用スラリー
WO2021044968A1 (ja) 2019-09-05 2021-03-11 昭和電工株式会社 電極バインダー用共重合体及びリチウムイオン二次電池
WO2021131279A1 (ja) 2019-12-24 2021-07-01 昭和電工株式会社 非水系二次電池電極バインダー、及び非水系二次電池電極
WO2021131278A1 (ja) 2019-12-24 2021-07-01 昭和電工株式会社 非水系二次電池電極、電極スラリー、及び非水系二次電池
WO2021246364A1 (ja) 2020-06-05 2021-12-09 昭和電工株式会社 非水系二次電池電極用バインダー及び非水系二次電池電極用スラリー
KR20240014467A (ko) 2021-05-28 2024-02-01 가부시끼가이샤 레조낙 비수계 이차 전지 전극 결합제 및 비수계 이차 전지 전극

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310736B1 (de) 2015-06-17 2019-01-30 Clariant International Ltd Wasserlösliche oder wasserquellbare polymere als wasserverlustreduzierer in zementschlämmen
WO2017220512A1 (en) * 2016-06-20 2017-12-28 Clariant International Ltd Compound comprising certain level of bio-based carbon
EP3551163B1 (en) 2016-12-12 2021-02-17 Clariant International Ltd Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition
EP3551680A1 (en) 2016-12-12 2019-10-16 Clariant International Ltd Polymer comprising certain level of bio-based carbon
WO2018108664A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
US11339241B2 (en) 2016-12-15 2022-05-24 Clariant International Ltd. Water-soluble and/or water-swellable hybrid polymer
US11542343B2 (en) 2016-12-15 2023-01-03 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
WO2018108663A1 (en) 2016-12-15 2018-06-21 Clariant International Ltd Water-soluble and/or water-swellable hybrid polymer
CN111087518B (zh) * 2019-11-29 2022-03-11 合肥国轩高科动力能源有限公司 一种水性粘结剂及其制备方法和锂离子电池
CN112805856B (zh) * 2019-12-24 2023-02-17 昭和电工株式会社 非水系二次电池电极粘合剂及非水系二次电池电极
JP6868751B1 (ja) * 2019-12-24 2021-05-12 昭和電工株式会社 非水系二次電池電極、電極スラリー、及び非水系二次電池
JPWO2021132522A1 (ja) * 2019-12-27 2021-07-01
CN112687887A (zh) * 2020-12-29 2021-04-20 长沙迅洋新材料科技有限公司 一种镁金属空气电池正极催化剂及其连续涂覆制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250123A (ja) 1995-03-07 1996-09-27 Japan Synthetic Rubber Co Ltd 電池電極形成用水系バインダー
JPH10298386A (ja) 1997-04-28 1998-11-10 Kureha Chem Ind Co Ltd 電池用バインダー、バインダー溶液、電極合剤、電極構造体および電池
JP2005336166A (ja) 2004-04-27 2005-12-08 Showa Denko Kk 貼付剤用粘着剤及びその製造方法
JP2006321792A (ja) 2005-04-18 2006-11-30 Showa Denko Kk 含水ゲル体及びその製造方法
JP2014120411A (ja) * 2012-12-19 2014-06-30 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014235798A (ja) * 2013-05-31 2014-12-15 三菱レイヨン株式会社 非水電解質二次電池電極用バインダ樹脂、非水電解質二次電池電極用スラリー組成物、非水電解質二次電池用電極、非水電解質二次電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3046346B2 (ja) * 1990-03-12 2000-05-29 昭和電工株式会社 外用剤基剤又は補助剤とそれを含有する人又は動物の外用剤
JP3452505B2 (ja) 1999-04-02 2003-09-29 ダイヤニトリックス株式会社 抄紙用粘剤、抄紙方法および紙
EP1069634A2 (en) * 1999-07-13 2001-01-17 Sanyo Electric Co., Ltd. Hydrogen absorbing alloy electrode and nickel-metal hydride battery
CN103339757B (zh) 2010-11-30 2015-11-25 日本瑞翁株式会社 二次电池多孔膜浆料、二次电池多孔膜、二次电池电极、二次电池隔板、二次电池以及二次电池多孔膜的制造方法
JP6079238B2 (ja) * 2011-12-02 2017-02-15 三菱レイヨン株式会社 非水二次電池電極用バインダ樹脂、非水二次電池電極用バインダ樹脂組成物、非水二次電池電極用スラリー組成物、非水二次電池用電極、非水二次電池
WO2013105623A1 (ja) 2012-01-11 2013-07-18 三菱レイヨン株式会社 二次電池電極用バインダ樹脂組成物、二次電池電極用スラリー、二次電池用電極、リチウムイオン二次電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250123A (ja) 1995-03-07 1996-09-27 Japan Synthetic Rubber Co Ltd 電池電極形成用水系バインダー
JPH10298386A (ja) 1997-04-28 1998-11-10 Kureha Chem Ind Co Ltd 電池用バインダー、バインダー溶液、電極合剤、電極構造体および電池
JP2005336166A (ja) 2004-04-27 2005-12-08 Showa Denko Kk 貼付剤用粘着剤及びその製造方法
JP2006321792A (ja) 2005-04-18 2006-11-30 Showa Denko Kk 含水ゲル体及びその製造方法
JP2014120411A (ja) * 2012-12-19 2014-06-30 Toyo Ink Sc Holdings Co Ltd 二次電池電極形成用組成物、二次電池電極、及び二次電池
JP2014235798A (ja) * 2013-05-31 2014-12-15 三菱レイヨン株式会社 非水電解質二次電池電極用バインダ樹脂、非水電解質二次電池電極用スラリー組成物、非水電解質二次電池用電極、非水電解質二次電池

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11631855B2 (en) 2017-12-01 2023-04-18 Showa Denko K. K. Method for producing slurry for nonaqueous battery electrodes
KR20200093537A (ko) 2017-12-01 2020-08-05 쇼와 덴코 가부시키가이샤 비수계 전지 전극용 슬러리의 제조 방법
JPWO2019107187A1 (ja) * 2017-12-01 2020-12-03 昭和電工株式会社 非水系電池電極用スラリーの製造方法
JP7272272B2 (ja) 2017-12-01 2023-05-12 株式会社レゾナック 非水系電池電極用スラリーの製造方法
WO2019107187A1 (ja) * 2017-12-01 2019-06-06 昭和電工株式会社 非水系電池電極用スラリーの製造方法
WO2020017442A1 (ja) 2018-07-19 2020-01-23 昭和電工株式会社 非水系電池電極用バインダー用共重合体、および非水系電池電極製造用スラリー
CN112437782A (zh) * 2018-07-19 2021-03-02 昭和电工株式会社 用于非水系电池电极用粘合剂的共聚物及用于制造非水系电池电极的浆料
KR20210032386A (ko) 2018-07-19 2021-03-24 쇼와 덴코 가부시키가이샤 비수계 전지 전극용 바인더용 공중합체, 및 비수계 전지 전극 제조용 슬러리
CN112437782B (zh) * 2018-07-19 2024-01-23 株式会社力森诺科 用于非水系电池电极用粘合剂的共聚物及用于制造非水系电池电极的浆料
WO2021044968A1 (ja) 2019-09-05 2021-03-11 昭和電工株式会社 電極バインダー用共重合体及びリチウムイオン二次電池
KR20210030374A (ko) 2019-09-05 2021-03-17 쇼와 덴코 가부시키가이샤 전극 바인더용 공중합체 및 리튬 이온 이차 전지
KR20210084421A (ko) 2019-12-24 2021-07-07 쇼와 덴코 가부시키가이샤 비수계 이차 전지 전극, 전극 슬러리 및 비수계 이차 전지
JP6915190B1 (ja) * 2019-12-24 2021-08-04 昭和電工株式会社 非水系二次電池電極バインダー、及び非水系二次電池電極
KR102316285B1 (ko) 2019-12-24 2021-10-21 쇼와 덴코 가부시키가이샤 비수계 이차 전지 전극 바인더, 및 비수계 이차 전지 전극
KR20210084434A (ko) 2019-12-24 2021-07-07 쇼와 덴코 가부시키가이샤 비수계 이차 전지 전극 바인더, 및 비수계 이차 전지 전극
WO2021131278A1 (ja) 2019-12-24 2021-07-01 昭和電工株式会社 非水系二次電池電極、電極スラリー、及び非水系二次電池
WO2021131279A1 (ja) 2019-12-24 2021-07-01 昭和電工株式会社 非水系二次電池電極バインダー、及び非水系二次電池電極
WO2021246364A1 (ja) 2020-06-05 2021-12-09 昭和電工株式会社 非水系二次電池電極用バインダー及び非水系二次電池電極用スラリー
KR20230003133A (ko) 2020-06-05 2023-01-05 쇼와 덴코 가부시키가이샤 비수계 이차 전지 전극용 바인더 및 비수계 이차 전지 전극용 슬러리
KR20240014467A (ko) 2021-05-28 2024-02-01 가부시끼가이샤 레조낙 비수계 이차 전지 전극 결합제 및 비수계 이차 전지 전극

Also Published As

Publication number Publication date
JP2021114472A (ja) 2021-08-05
US11101463B2 (en) 2021-08-24
EP3425708A1 (en) 2019-01-09
KR102271754B1 (ko) 2021-06-30
JP7338749B2 (ja) 2023-09-05
EP3425708A4 (en) 2019-11-20
JP7106710B2 (ja) 2022-07-26
KR20180095040A (ko) 2018-08-24
CN108475788A (zh) 2018-08-31
CN108475788B (zh) 2022-03-29
JP2022140477A (ja) 2022-09-26
TWI627789B (zh) 2018-06-21
JP6872525B2 (ja) 2021-05-19
TW201743493A (zh) 2017-12-16
US20190058195A1 (en) 2019-02-21
JPWO2017150200A1 (ja) 2018-12-27

Similar Documents

Publication Publication Date Title
JP7338749B2 (ja) 非水系電池電極用バインダー用共重合体、非水系電池電極用スラリー、非水系電池電極、および非水系電池
JP6890736B1 (ja) 電極バインダー用共重合体及びリチウムイオン二次電池
CN107925085A (zh) 非水电解质电池用粘结剂组合物、以及使用其的非水电解质电池用浆料组合物、非水电解质电池负极及非水电解质电池
JP7272272B2 (ja) 非水系電池電極用スラリーの製造方法
JP6462125B2 (ja) 非水系電池電極用バインダー用組成物、非水系電池電極用バインダー、非水系電池電極用組成物、非水系電池電極、及び非水系電池
JP7415924B2 (ja) 非水系電池電極用バインダー用共重合体、および非水系電池電極製造用スラリー
WO2018101134A1 (ja) 非水電解質電池電極用バインダー組成物およびそれを原料とするハイドロゲル、並びにそれを用いた非水電解質電池電極用スラリー組成物、非水電解質電池負極、及び非水電解質電池
CN115552666A (zh) 非水系二次电池电极用粘合剂和非水系二次电池电极用浆料
WO2021246376A1 (ja) 非水系二次電池電極用バインダー及び非水系二次電池電極用スラリー
CN107925084A (zh) 非水电解质电池用粘结剂组合物、以及使用其的非水电解质电池用浆料组合物、非水电解质电池负极及非水电解质电池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018503022

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187020500

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020500

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017759671

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017759671

Country of ref document: EP

Effective date: 20181004

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17759671

Country of ref document: EP

Kind code of ref document: A1