WO2017146244A1 - 結晶材料およびその製造方法 - Google Patents
結晶材料およびその製造方法 Download PDFInfo
- Publication number
- WO2017146244A1 WO2017146244A1 PCT/JP2017/007236 JP2017007236W WO2017146244A1 WO 2017146244 A1 WO2017146244 A1 WO 2017146244A1 JP 2017007236 W JP2017007236 W JP 2017007236W WO 2017146244 A1 WO2017146244 A1 WO 2017146244A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- oxide
- composition
- crystal
- raw material
- langasite
- Prior art date
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 90
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000463 material Substances 0.000 title claims description 22
- 239000000203 mixture Substances 0.000 claims abstract description 102
- 239000002994 raw material Substances 0.000 claims abstract description 41
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims abstract description 25
- 150000001342 alkaline earth metals Chemical class 0.000 claims abstract description 23
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 22
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 22
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims description 13
- 150000001768 cations Chemical class 0.000 claims description 9
- 239000002178 crystalline material Substances 0.000 claims description 9
- 229910052747 lanthanoid Inorganic materials 0.000 claims description 5
- 150000002602 lanthanoids Chemical class 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 229910052706 scandium Inorganic materials 0.000 claims description 5
- 229910052727 yttrium Inorganic materials 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- -1 alkaline earth metal carbonate Chemical class 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 abstract description 16
- 238000004458 analytical method Methods 0.000 description 10
- 239000011575 calcium Substances 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 7
- 230000008025 crystallization Effects 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000007858 starting material Substances 0.000 description 7
- 239000000155 melt Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 229910052761 rare earth metal Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 229910005191 Ga 2 O 3 Inorganic materials 0.000 description 2
- 229910000629 Rh alloy Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- PXXKQOPKNFECSZ-UHFFFAOYSA-N platinum rhodium Chemical compound [Rh].[Pt] PXXKQOPKNFECSZ-UHFFFAOYSA-N 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- FDEQQCOTLPPCAO-UHFFFAOYSA-N Cl.OC(O)=O Chemical compound Cl.OC(O)=O FDEQQCOTLPPCAO-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004857 zone melting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
- H10N30/8536—Alkaline earth metal based oxides, e.g. barium titanates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/24—Alkaline-earth metal silicates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/20—Silicates
- C01B33/26—Aluminium-containing silicates, i.e. silico-aluminates
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B15/00—Single-crystal growth by pulling from a melt, e.g. Czochralski method
- C30B15/08—Downward pulling
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/34—Silicates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/09—Forming piezoelectric or electrostrictive materials
- H10N30/093—Forming inorganic materials
- H10N30/095—Forming inorganic materials by melting
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/02—Particle morphology depicted by an image obtained by optical microscopy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
Definitions
- the present invention relates to a crystal material capable of obtaining a homogeneous single crystal of a langasite type oxide having a langasite type structure, which is expected to be used as a piezoelectric element material in a vibrator, a combustion pressure sensor, etc., and a method for producing the same About.
- langasite-based oxides containing rare earths and alkaline earth metals have been studied as materials for piezoelectric elements for various devices.
- This langasite-based oxide has characteristics such as a piezoelectric constant several times larger than that of quartz, a small rate of change in elastic surface liquid propagation speed due to temperature, and a large electromechanical coupling coefficient. It is suitable as a material for piezoelectric elements for piezoelectric devices such as next-generation compact vibrators and combustion pressure sensors.
- the Langasite oxide having such characteristics is used as a single crystal having a high piezoelectric constant and a uniform crystal orientation when applied to a piezoelectric element.
- the Czochralski method For the preparation of the above-mentioned langasite oxide single crystal, the Czochralski method, the Bridgeman method, the micro pull-down method, EFG (Edge-defined Film-fed) using high-frequency induction heating, resistance heating, infrared condensing heating, etc. (Growth) method, melt growth by floating zone melting method, etc. are used.
- each element constituting the target langasite oxide when the single crystal is grown using the crystal growth method described above were mixed and used at a ratio of a stoichiometric composition.
- the constituent element ratio of the actually grown single crystal (congruent composition) and the constituent element ratio of the starting material are different, There is a problem that impurities are generated as different composition parts in the grown crystal.
- “stoichiometric composition” means “stoichiometric composition”.
- the present invention has been made to solve the above-described problems, and can produce a langasite oxide having a desired congruent composition in a state where generation of impurities and an increase in cost are suppressed.
- the purpose is to.
- the crystal material according to the present invention is AE 3 ME 1 + a (Ga 1-x Al x ) 3 + b Si 2 + c O 14
- AE alkaline earth metal
- ME is Nb or Ta
- the method for producing a crystalline material according to the present invention comprises: AE 3 ME 1 + a (Ga 1-x RE x ) 3 + b Si 2 + c O 14 (AE is an alkaline earth metal, ME is Nb or Ta, RE is , Y, Sc, and at least one of lanthanoids, 0 ⁇ x ⁇ 1, ⁇ 0.5 ⁇ a ⁇ 0.5, ⁇ 0.5 ⁇ b ⁇ 0.5, ⁇ 0.5 ⁇ c ⁇ 0 .5) in a state where the ratio of each cation represented by any desired composition is any of alkaline earth metal or carbonate or oxide thereof, Nb or Ta or oxide thereof, carbonate of RE or A first step of mixing an oxide, an oxide of Ga, and Si or an oxide thereof to form a mixed raw material, a second step of melting the mixed raw material, and cooling the molten mixed raw material to make it desired And a third step of forming a crystal material composed of a langasite oxide having a composition.
- the crystal material according to the present invention includes AE 3 ME 1 + a (Ga 1-x RE x ) 3 + b Si 2 + c O 14
- AE is an alkaline earth metal
- ME is Nb or Ta
- RE is At least one of Y, Sc, and lanthanoid, 0 ⁇ x ⁇ 1, ⁇ 0.5 ⁇ a ⁇ 0.5, ⁇ 0.5 ⁇ b ⁇ 0.5, ⁇ 0.5 ⁇ c ⁇ 0. 5
- FIG. 1 is a flowchart for explaining a method for producing a crystal material according to an embodiment of the present invention.
- FIG. 2A is a photograph showing the state of a single crystal actually produced using the micro-pulling-down method.
- FIG. 2B is a photograph showing the state of a single crystal actually produced using the micro-pulling-down method.
- FIG. 3 is a photograph showing a backscattered electron image of an actually produced single crystal (CNGS).
- FIG. 4A is a photograph showing a reflected electron image of CTGSS actually produced.
- FIG. 4B is a photograph showing a reflected electron image of the actually produced CTGSS.
- FIG. 4C is a photograph showing a backscattered electron image of the actually produced CTGSS.
- FIG. 1 is a flowchart for explaining a method for producing a crystal material according to an embodiment of the present invention.
- an alkaline earth metal carbonate or oxide, an oxide of Nb or Ta, an oxide of Ga, an oxide of Al, and an oxide of Si are mixed to obtain a mixed raw material.
- the alkaline earth metal may be any one of Ca, Sr, Ba, and Ra.
- the above composition is a congruent composition (coincident melt composition in the phase diagram).
- the numerical values shown in the above chemical formula indicate the composition ratio of each element, and indicate the composition ratio of each element when AE is 3.
- the composition ratio of oxygen may deviate from 14 in order to maintain the charge neutrality of the entire crystal.
- the mixed raw material is melted in the second step S102.
- the molten mixed raw material is cooled to form a crystalline material made of a langasite oxide having the desired composition.
- the mixed raw material is calcined at 1200 ° C. for several hours and filled in a platinum-rhodium alloy crucible.
- carbon dioxide (CO 2 ) gas is released from CaCO 3 to form calcium oxide.
- an insulating material of alumina is provided outside and above the platinum-rhodium alloy crucible filled with the calcined mixed raw material to constitute a hot zone.
- a quartz tube for sealing and a high-frequency work coil for heating are installed outside the heat insulating material. In this state, the crucible is heated by high frequency, and the mixed raw material filled in the crucible is melted at a temperature equal to or higher than the melting point (crystal growth).
- the raw material melt flows downward from a ⁇ 0.5 mm hole opened in the center of the ⁇ 3 mm nozzle located at the bottom of the crucible, and the raw material melt spreads on the nozzle bottom surface.
- the raw material melt spread on the bottom surface of the nozzle is gradually brought closer to the seed crystal placed under the crucible, and the upper part of the seed crystal is brought into contact with the raw material melt.
- the seed crystal was unidirectionally solidified and grown at a downward speed of 0.05 mm / min.
- the after-heater installed under the crucible is cylindrical, and the bottom of the nozzle, the raw material melt, and the upper surface of the grown crystal are picked up from one of the 3mm x 4mm viewing windows installed in four places on the after-heater. Make observations.
- a single crystal is grown by stable crystal growth until all the raw materials filled in the crucible are pulled down.
- a crystal rod having a diameter of 3 mm was obtained.
- the congruent composition crystal shown in FIG. 2A actually produced as described above is very high since no single crystal produced from a mixed raw material in which the amount of each raw material is adjusted in a stoichiometric composition state is confirmed. It had transparency. A part of the rod was cut at right angles to the growth direction, and the cross section was observed with a polarizing microscope. However, no impurities were found inside the obtained single crystal. On the other hand, the crystal of the stoichiometric composition actually produced [FIG. 2B] showed low transparency because impurities could be confirmed on the crystal surface. Further, a part of the rod was cut at right angles to the growth direction, and the cross section was confirmed with a polarizing microscope. Generation of impurities was confirmed inside the single crystal.
- composition analysis of the produced congruent composition crystal was performed by high frequency inductively coupled plasma (ICP) emission spectroscopy or electron beam microanalyzer (EPMA).
- ICP inductively coupled plasma
- EPMA electron beam microanalyzer
- composition analysis results are shown in Table 2 below. “+” In the table means that the composition analysis result showed a value larger than the stoichiometric composition, and “ ⁇ ” means a value smaller than the stoichiometric composition.
- the composition analysis results which do not agree with the stoichiometric composition in all the compositions are shown. In the composition analysis results, when at least one of a, b, and c is larger than 0.5 or smaller than ⁇ 0.5, impurities are precipitated, and good crystal quality cannot be obtained. .
- FIG. 3 shows the result of observation of the produced crystal (CNGAS) with a reflection electron image by a scanning electron microscope.
- CNGAS produced crystal
- FIG. 3A no crystal structure other than the CNGAS crystal having the desired congruent composition is confirmed in the crystal cross section of the congruent composition.
- FIG. 3B a composition other than the CNGAS crystal was confirmed in the crystal section of the stoichiometric composition.
- AE 3 ME 1 + a (Ga 1 -x RE x ) 3 + b Si 2 + c O 14 (AE is an alkaline earth metal, ME is Nb or Ta , RE is at least one of Y, Sc, and lanthanoid, 0 ⁇ x ⁇ 1, ⁇ 0.5 ⁇ a ⁇ 0.5, ⁇ 0.5 ⁇ b ⁇ 0.5, ⁇ 0.5 ⁇ c ⁇ 0.5) in a state where the ratio of each cation represented by any desired composition is selected, an alkaline earth metal or carbonate or oxide thereof, Nb or Ta or oxide thereof, RE Carbonate or oxide, Ga oxide, and Si or oxide thereof are mixed to obtain a mixed raw material.
- RE is a so-called rare earth. It is more preferable that ⁇ 0.1 ⁇ a ⁇ 0, 0 ⁇ b ⁇ 0.05, and 0 ⁇ c ⁇ 0.1.
- the mixed raw material is melted in the second step, and the molten mixed raw material is cooled in the third step, as in the above-described embodiment.
- a crystal material composed of a langasite oxide having a composition is formed.
- composition analysis of the produced congruent composition crystal was performed by high frequency inductively coupled plasma (ICP) emission spectroscopy or electron beam microanalyzer (EPMA).
- ICP inductively coupled plasma
- EPMA electron beam microanalyzer
- composition analysis results are shown in Table 4 below.
- the symbols in the table are the same as those in the previous embodiment.
- the composition analysis results which do not agree with the stoichiometric composition in all the compositions are shown.
- impurities are precipitated, and good crystal quality cannot be obtained. .
- FIG. 4A for the results of the prepared crystalline Ca 3 Ta 0.98 (Ga 0.9 Sc 0.1) 3.03 Si 2.07 O 14.1 (CTGSS) was observed in the reflected electron image by a scanning electron microscope, FIG. 4B, FIG. 4C.
- CTGSS crystalline Ca 3 Ta 0.98
- FIG. 4B, FIG. 4C As shown in FIG. 4A, no crystal structure other than the CTGSS crystal having the desired congruent composition is confirmed in the crystal cross section of the congruent composition.
- FIG. 4B a composition other than the CTGSS crystal was confirmed in the crystal section of the stoichiometric composition.
- a starting composition in which at least one of a, b, and c was greater than 0.5 was selected, a composition other than the CTGSS crystal was confirmed (FIG. 4C).
- an alkaline earth metal or a carbonate or oxide thereof, Nb or Ta, or Nb or Ta so as to have each cation ratio of a langasite oxide having a desired congruent composition Since these oxides, Ga or oxide thereof, Al or oxide thereof, and Si or oxide thereof are mixed to obtain a mixed raw material, it is desired in a state where generation of impurities and cost increase are suppressed.
- a langasite oxide having a congruent composition can be produced. According to the present invention, the yield and the crystal production speed can be improved.
- an alkaline earth metal or a carbonate or oxide thereof, Nb or Ta or an oxide thereof such that each cation ratio of the langasite oxide having a desired congruent composition is obtained.
- Ga or its oxide, rare earth element or its chlorine carbonate or oxide, and Si or its oxide are mixed to make a mixed raw material.
- a langasite oxide having a composition can be produced. According to the present invention, the yield and the crystal production speed can be improved.
- the thus obtained langasite oxide has a high quality without impurities inside the crystal.
- the langasite oxide having a congruent composition has a higher uniformity of sound velocity than the langasite oxide having a stoichiometric composition. Therefore, when applied to piezoelectric device elements such as vibrators and combustion pressure sensors, improvement in the stability of piezoelectric characteristics can be expected.
- the crystallization rate in each composition of Ca 3 ME 1 + a (Ga 1-x Al x ) 3 + b Si 2 + c O 14 , and AE 3 ME 1 + a (Ga 1-x RE x ) 3 The crystallization ratio in each composition of + b Si 2 + c O 14 is shown in Tables 6 and 7 below.
- the crystallization rate is a value obtained by dividing the mass of the produced crystal by the mass of the melt filled in the crucible.
- a higher crystallization ratio is obtained by setting ⁇ 0.1 ⁇ a ⁇ 0, 0 ⁇ b ⁇ 0.05, and 0 ⁇ c ⁇ 0.1. The higher the crystallization rate, the higher the productivity.
- the composition of the raw material melt does not gradually change during crystal growth, which contributes to the cost reduction of the piezoelectric crystal element by improving the yield.
- impurities are inevitably generated inside the crystal.
- a langasite type oxide having a congruent composition in the present invention should be used as a starting material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Luminescent Compositions (AREA)
- Catalysts (AREA)
Abstract
Description
Claims (8)
- AE3ME1+a(Ga1-xAlx)3+bSi2+cO14(AEはアルカリ土類金属、MEはNbまたはTa、0≦x≦1、-0.5<a≦0または0<a<0.5、-0.5<b≦0または0<b<0.5、-0.5<c≦0または0<c<0.5、ただしa=b=c=0の場合を除く)のいずれかの所望とする組成で示される各陽イオンの比となる状態に、アルカリ土類金属またはその炭酸塩もしくは酸化物、NbまたはTaまたはそれらの酸化物、Gaまたはその酸化物,Alまたはその酸化物,およびSiまたはその酸化物を混合して混合原料とする第1工程と、
前記混合原料を溶融する第2工程と、
溶融した前記混合原料を冷却することで、所望とする前記組成のランガサイト系酸化物からなる結晶材料を形成する第3工程と
を備えることを特徴とする結晶材料の製造方法。 - AE3ME1+a(Ga1-xAlx)3+bSi2+cO14(AEはアルカリ土類金属、MEはNbまたはTa、0≦x≦1、-0.5<a≦0または0<a<0.5、-0.5<b≦0または0<b<0.5、-0.5<c≦0または0<c<0.5、ただしa=b=c=0の場合を除く)のいずれかの組成とされたランガサイト型構造の酸化物から構成されていることを特徴とする結晶材料。
- 請求項2記載の結晶材料において、
-0.1<a<0、0<b<0.05、0<c<0.1とされていることを特徴とする結晶材料。 - AE3ME1+a(Ga1-xREx)3+bSi2+cO14(AEはアルカリ土類金属、MEはNbまたはTa、REは、Y,Sc,およびランタノイドの中の少なくとも1つ、0≦x≦1、-0.5<a<0.5、-0.5<b<0.5,-0.5<c<0.5)のいずれかの所望とする組成で示される各陽イオンの比となる状態に、アルカリ土類金属の炭酸塩もしくは酸化物、NbまたはTaの酸化物またはNbの酸化物とTaの酸化物との混合物、Gaの酸化物,REの炭酸塩または酸化物,およびSiまたはその酸化物を混合して混合原料とする第1工程と、
前記混合原料を溶融する第2工程と、
溶融した前記混合原料を冷却することで、所望とする前記組成のランガサイト系酸化物からなる結晶材料を形成する第3工程と
を備えることを特徴とする結晶材料の製造方法。 - 請求項4記載の結晶材料の製造方法において、
AE=CaかつME=TaかつRE=Scであり、a≠0.0かつb≠0.0かつc≠0.0であることを特徴とする結晶材料の製造方法。 - AE3ME1+a(Ga1-xREx)3+bSi2+cO14(AEはアルカリ土類金属、MEはNbまたはTa、REは、Y,Sc,およびランタノイドの中の少なくとも1つ、0≦x≦1、-0.5<a<0.5、-0.5<b<0.5,-0.5<c<0.5)のいずれかの組成とされたランガサイト型構造の酸化物から構成されていることを特徴とする結晶材料。
- 請求項6記載の結晶材料において、
AE=CaかつME=TaかつRE=Scであり、a≠0.0かつb≠0.0かつc≠0.0であることを特徴とする結晶材料。 - 請求項6記載の結晶材料において、
-0.1<a<0、0<b<0.05、0<c<0.1とされていることを特徴とする結晶材料。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19167373.0A EP3543379A1 (en) | 2016-02-25 | 2017-02-24 | Langasite-type oxide crystal material and method of manufacturing the same |
EP17756678.3A EP3421647B9 (en) | 2016-02-25 | 2017-02-24 | Crystal material and method for producing the same |
JP2018501818A JP6718161B2 (ja) | 2016-02-25 | 2017-02-24 | 結晶材料およびその製造方法 |
US16/079,522 US11158784B2 (en) | 2016-02-25 | 2017-02-24 | Crystal material and method of manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016034145 | 2016-02-25 | ||
JP2016-034145 | 2016-02-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2017146244A1 true WO2017146244A1 (ja) | 2017-08-31 |
WO2017146244A8 WO2017146244A8 (ja) | 2017-11-02 |
Family
ID=59685331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/007236 WO2017146244A1 (ja) | 2016-02-25 | 2017-02-24 | 結晶材料およびその製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11158784B2 (ja) |
EP (2) | EP3543379A1 (ja) |
JP (1) | JP6718161B2 (ja) |
WO (1) | WO2017146244A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10635978B2 (en) | 2017-10-26 | 2020-04-28 | SparkCognition, Inc. | Ensembling of neural network models |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348197A (ja) * | 2001-05-24 | 2002-12-04 | Tdk Corp | 圧電単結晶材料及び該圧電単結晶材料を用いた圧電デバイス |
JP2003246698A (ja) * | 2002-02-22 | 2003-09-02 | Tdk Corp | 圧電単結晶材料及び該圧電単結晶材料を用いた圧電デバイス |
JP2007176794A (ja) * | 2007-03-12 | 2007-07-12 | Mitsubishi Materials Corp | 圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた弾性表面波デバイス |
JP2008019122A (ja) * | 2006-07-12 | 2008-01-31 | Nec Tokin Corp | 圧電単結晶組成物 |
CN104695018A (zh) * | 2013-12-05 | 2015-06-10 | 中国科学院上海硅酸盐研究所 | 一种硅酸铝镓钽钙压电晶体及其制备方法 |
JP2016047786A (ja) * | 2014-08-27 | 2016-04-07 | 株式会社C&A | 結晶材料およびその製造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002271171A (ja) * | 2001-03-07 | 2002-09-20 | Tdk Corp | 弾性表面波装置用圧電基板および弾性表面波装置 |
RU2552476C2 (ru) | 2010-10-13 | 2015-06-10 | Тдк Корпорейшн | Оксидный материал лангаситного типа, способ его получения и сырьевой материал, используемый в способе получения |
-
2017
- 2017-02-24 EP EP19167373.0A patent/EP3543379A1/en active Pending
- 2017-02-24 JP JP2018501818A patent/JP6718161B2/ja active Active
- 2017-02-24 WO PCT/JP2017/007236 patent/WO2017146244A1/ja active Application Filing
- 2017-02-24 US US16/079,522 patent/US11158784B2/en active Active
- 2017-02-24 EP EP17756678.3A patent/EP3421647B9/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348197A (ja) * | 2001-05-24 | 2002-12-04 | Tdk Corp | 圧電単結晶材料及び該圧電単結晶材料を用いた圧電デバイス |
JP2003246698A (ja) * | 2002-02-22 | 2003-09-02 | Tdk Corp | 圧電単結晶材料及び該圧電単結晶材料を用いた圧電デバイス |
JP2008019122A (ja) * | 2006-07-12 | 2008-01-31 | Nec Tokin Corp | 圧電単結晶組成物 |
JP2007176794A (ja) * | 2007-03-12 | 2007-07-12 | Mitsubishi Materials Corp | 圧電デバイス用基板の製造方法と圧電デバイス用基板、及びこれを用いた弾性表面波デバイス |
CN104695018A (zh) * | 2013-12-05 | 2015-06-10 | 中国科学院上海硅酸盐研究所 | 一种硅酸铝镓钽钙压电晶体及其制备方法 |
JP2016047786A (ja) * | 2014-08-27 | 2016-04-07 | 株式会社C&A | 結晶材料およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3421647A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP3421647B9 (en) | 2022-12-07 |
EP3421647A1 (en) | 2019-01-02 |
WO2017146244A8 (ja) | 2017-11-02 |
US20190140160A1 (en) | 2019-05-09 |
US11158784B2 (en) | 2021-10-26 |
EP3543379A1 (en) | 2019-09-25 |
EP3421647A4 (en) | 2019-09-04 |
JP6718161B2 (ja) | 2020-07-08 |
JPWO2017146244A1 (ja) | 2019-01-10 |
EP3421647B1 (en) | 2022-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103180492B (zh) | 硅酸镓镧型氧化物材料、其制造方法及该制造方法中使用的原材料 | |
JP2011510898A (ja) | 三元系の圧電性結晶の作成方法 | |
JP2002293693A (ja) | テルビウム・アルミニウム・ガーネット単結晶及びその製造方法 | |
JP5341415B2 (ja) | 圧電単結晶、及び、その製造方法 | |
Xu et al. | Structural defects of Pb (Mg1/3Nb2/3) O3–PbTiO3 single crystals grown by a Bridgman method | |
JP6489574B2 (ja) | 結晶材料およびその製造方法 | |
CN106637405A (zh) | 无限混熔的铁电固溶体单晶铌钪酸铅-铌镁酸铅-钛酸铅及其制备方法 | |
WO2017146244A1 (ja) | 結晶材料およびその製造方法 | |
JP2001226196A (ja) | テルビウム・アルミニウム・ガーネット単結晶およびその製造方法 | |
JP2001233697A (ja) | 炭化珪素単結晶 | |
Jung et al. | Ca3Ga2Ge4O14 (CGG)-type Sr3Nb0. 95Ga3. 083Si2O14 single crystal grown by the Czochralski method for piezoelectric applications | |
JP2008239352A (ja) | 単結晶製造装置及び製造方法 | |
Jung et al. | Crystal growth by micro-pulling-down of Ca3Ga2Ge4O14 (CGG) type-Sr3Nb1− xGa3+ (5/3) xSi2O14 compounds | |
US5900054A (en) | Method of manufacturing oxide single crystal | |
Wu | Bridgman growth of langasite‐type piezoelectric crystals | |
JP2005089223A (ja) | 単結晶及びその製造方法 | |
JPH04243998A (ja) | β−メタホウ酸バリウム単結晶の製造方法 | |
JP2017149613A (ja) | CaMgZr置換型ガドリニウム・ガリウム・ガーネット(SGGG)単結晶の育成方法 | |
JP2008201618A (ja) | 希土類バナデイト単結晶の製造方法 | |
JP2741747B2 (ja) | 酸化物単結晶とその製造方法 | |
RU2194808C1 (ru) | Способ получения шихты для выращивания монокристаллов галлосиликатов со структурой галлогерманата кальция | |
JP2000044391A (ja) | 単結晶材料とその製造方法及びこれを用いた成膜用基板と電子デバイス | |
RU2296824C1 (ru) | Способ получения шихты для выращивания монокристаллов на основе оксидов редкоземельных, рассеянных и тугоплавких металлов или кремния | |
JPH09328399A (ja) | ニオブ酸カリウム単結晶の製造方法 | |
Xu | FLUX BRIDGMAN GROWTH OF FUNCTIONAL OXIDE SINGLE CRYSTALS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2018501818 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017756678 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017756678 Country of ref document: EP Effective date: 20180925 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756678 Country of ref document: EP Kind code of ref document: A1 |