WO2017146189A1 - 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法 - Google Patents

1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法 Download PDF

Info

Publication number
WO2017146189A1
WO2017146189A1 PCT/JP2017/007017 JP2017007017W WO2017146189A1 WO 2017146189 A1 WO2017146189 A1 WO 2017146189A1 JP 2017007017 W JP2017007017 W JP 2017007017W WO 2017146189 A1 WO2017146189 A1 WO 2017146189A1
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
catalyst layer
catalyst
gas
hydrogen
Prior art date
Application number
PCT/JP2017/007017
Other languages
English (en)
French (fr)
Inventor
真吾 野村
岡本 秀一
高木 洋一
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2018501782A priority Critical patent/JP6780696B2/ja
Priority to EP17756624.7A priority patent/EP3421444B1/en
Priority to CN201780013375.3A priority patent/CN108779048B/zh
Publication of WO2017146189A1 publication Critical patent/WO2017146189A1/ja
Priority to US16/105,513 priority patent/US10377686B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Definitions

  • the present invention relates to a method for producing 1-chloro-2,3,3,3-tetrafluoropropene.
  • GWP global warming potential
  • 1224yd has a Z isomer and an E isomer, which are geometric isomers, depending on the position of the substituent on the double bond.
  • a compound name or abbreviation of a compound is used without particular notice, at least one selected from a Z-form and an E-form is shown, and (E) or ( When Z) is attached, it indicates that each compound is an E-form or a Z-form.
  • 1224yd (Z) and 1224yd (E) indicate the Z-form and E-form of 1224yd, respectively.
  • Patent Document 1 1,1-dichloro-2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CCl 2 , CFO-1214ya; hereinafter also referred to as 1214ya). Is reduced by reacting with hydrogen in the presence of a palladium catalyst to obtain 2,3,3,3-tetrafluoropropene (CF 3 CF ⁇ CH 2 , HFO-1234yf), thereby obtaining 1224yd as an intermediate. It is described that In Patent Document 1, 1224yd obtained as an intermediate in the above reaction is used as a raw material compound for HFO-1234yf together with 1214ya.
  • Patent Document 1 there is a description of conditions and means for obtaining HFO-1234yf as a target substance in a high yield in a method of reducing 1214ya by reacting with hydrogen, but 1224yd, which is positioned as a byproduct, is efficiently obtained. There is no description of how to obtain. That is, in the method of Patent Document 1, 1224yd is also produced to some extent, but for 1224yd, HFO-1234yf, which is a hyperreductant, and 1,1,1,2-tetrafluoropropane (CF 3 CHFCH, which is a reductant thereof, are also used. 3. HFC-254eb) has a problem that a large amount is by-produced.
  • An object of the present invention is to provide an efficient production method of 1224yd that reduces by-products such as HFO-1234yf and HFC-254eb, which are hyperreductants, in a method of obtaining 1224yd by reducing 1214ya.
  • the present invention provides a method for producing 1224yd having the following configuration.
  • a palladium catalyst having a specific surface area of 40 m 2 / g or less is supported.
  • a process for producing 1-chloro-2,3,3,3-tetrafluoropropene [2] The production method according to [1], wherein the specific surface area is 6 to 33 m 2 / g.
  • the production method of the present invention is a method of obtaining 1224yd by reducing 1214ya for which a stable production method has been established, and is a method that is industrially easy to implement and can be carried out stably. Further, according to the method for producing 1224yd of the present invention, it is possible to produce 1224yd with a high reaction rate and high selectivity while reducing by-products such as HFO-1234yf and HFC-254eb which are hyperreductants.
  • the method for producing 1224yd according to the present invention is characterized in that 1214ya is reacted with hydrogen in the gas phase in the presence of a palladium catalyst-supported carrier in which a palladium catalyst having a specific surface area of 40 m 2 / g or less is supported on the carrier.
  • hydrogen refers to hydrogen in the state of molecules, sometimes referred to as with H 2 as necessary.
  • the reaction of 1214ya and hydrogen according to the production method of 1224yd of the present invention is represented by the following formula (1).
  • 1224yd obtained by the production method of the present invention may be a mixture of a Z-form and an E-form, may be a Z-form alone, or may be an E-form alone. 1224yd has a high proportion of halogen that suppresses flammability, and also has a carbon-carbon double bond that is easily decomposed by OH radicals in the atmosphere. There is little influence and GWP is small. Therefore, it is highly useful for cleaning agents, refrigerants, foaming agents, solvents, and aerosol applications.
  • the manufacturing method of 1224yd of the present invention uses 1214ya as a raw material.
  • 1214ya can be produced by a known method.
  • the method for obtaining 1214ya is not particularly limited.
  • HCFC-225ca can be produced by a dehydrofluorination reaction by contacting it with an alkaline aqueous solution in the presence of a phase transfer catalyst. .
  • the HCFC-225ca used in the reaction of the formula (2) can be used in the form of a dichloropentafluoropropane (HCFC-225) isomer mixture containing HCFC-225ca and its isomer.
  • HCFC-225 dichloropentafluoropropane
  • the phase transfer catalyst tetrabutylammonium bromide (TBAB) is preferred.
  • the HCFC-225 isomer mixture containing HCFC-225ca can be produced, for example, by reacting tetrafluoroethylene and dichlorofluoromethane in the presence of a catalyst such as aluminum chloride.
  • the HCFC-225 isomer mixture obtained by the reaction contains HCFC-225ca and HCFC-225cb as main components, and 2,2-dichloro-1,1,3,3,3-pentafluoropropane ( CHF 2 CCl 2 CF 3 , HCFC-225aa), 2,3-dichloro-1,1,2,3,3-pentafluoropropane (CHF 2 CClFCClF 2 , HCFC-225bb) and the like are included in a small amount.
  • HCFC-225 isomer mixture containing HCFC-225ca a commercially available product may be used.
  • commercially available products include Asahiklin AK225 (manufactured by Asahi Glass Co., Ltd., trade name: 48 mol% of HCFC-225ca and 52 mol% of HCFC-225cb).
  • ⁇ Palladium catalyst support> 1214ya obtained by the above method and hydrogen are reacted in the gas phase in the presence of a palladium catalyst-supported carrier in which a palladium catalyst having a specific surface area of 40 m 2 / g or less is supported.
  • a palladium catalyst-supported carrier in which a palladium catalyst having a specific surface area of 40 m 2 / g or less is supported on a carrier is referred to as a palladium catalyst-supported carrier (X).
  • the reaction of the above formula (1) is carried out in the presence of the palladium catalyst-supported carrier (X), thereby reducing the by-products such as HFO-1234yf and HFC-254eb, which are hyperreductants, and This makes it possible to manufacture 1224yd with high selectivity.
  • the palladium catalyst-supported carrier (X) thereby reducing the by-products such as HFO-1234yf and HFC-254eb, which are hyperreductants, and This makes it possible to manufacture 1224yd with high selectivity.
  • the palladium catalyst in the palladium catalyst-supported carrier (X) means a metal catalyst mainly containing palladium. Containing mainly palladium means that the ratio of the metal other than palladium to 100 parts by mass of palladium in the palladium catalyst is 50 parts by mass or less. The ratio of the metal other than palladium to 100 parts by mass of palladium is preferably 30 parts by mass or less, and more preferably 10 parts by mass or less. It is particularly preferable that the palladium catalyst does not contain a metal other than palladium, that is, it is a simple substance of palladium because a high catalytic activity is obtained.
  • the palladium catalyst may contain other than palladium
  • metals that the palladium catalyst may contain other than palladium include Group 8 elements such as iron, ruthenium and osmium; Group 9 elements such as cobalt, rhodium and iridium; Group 10 elements such as nickel and platinum; Gold Group 11 elements such as silver and copper; rhenium, zinc, cadmium, tin, lead, antimony, bismuth and the like. These metals other than palladium may be one kind or two or more kinds.
  • the palladium catalyst may be an alloy of palladium and another metal, or may be a mixture of palladium and another metal. Examples of the palladium alloy catalyst include a palladium / platinum alloy catalyst and a palladium / rhodium alloy catalyst.
  • a palladium catalyst containing a metal other than palladium has higher catalyst durability than a palladium catalyst composed of palladium alone.
  • the specific surface area of the palladium catalyst used in the palladium-catalyst-loaded support (X) is less than 40 m 2 / g.
  • the specific surface area of the palladium catalyst is, 6 ⁇ 33m 2 / g is preferred from the viewpoint of enhancing the production efficiency of 1224Yd, more preferably 6 ⁇ 20m 2 / g.
  • the specific surface area of the palladium catalyst means a specific surface area measured by the following method using the palladium catalyst-supported carrier (X) as a sample.
  • MSA The specific surface area (MSA) of the palladium catalyst is calculated from the following formula (3).
  • MSA (V ⁇ a) / w Formula (3) w: Mass of palladium catalyst (g) in the palladium catalyst-supported carrier (X)
  • V CO adsorption amount (mL)
  • w is calculated from the product of the mass (g) of the palladium catalyst-supported support (X) and the palladium catalyst content (mass%).
  • the palladium catalyst is used as a palladium catalyst-supported carrier (X) supported on a carrier.
  • the carrier include activated carbon and metal oxides such as alumina, zirconia, silica, and titania. Among these, activated carbon is preferable from the viewpoint of catalytic activity, durability, and reaction selectivity.
  • Examples of the activated carbon include those prepared using wood, charcoal, fruit husk, coconut husk, peat, lignite, coal, etc. as raw materials, those obtained from plant materials are preferred over mineral materials, and coconut shell activated carbon is particularly preferred. preferable.
  • Examples of the shape of the activated carbon include formed coal having a length of about 2 to 5 mm, crushed coal having a size of about 4 to 50 mesh, and granular coal. Of these, 4-20 mesh crushed coal or formed coal is preferable.
  • the amount of palladium catalyst supported on the palladium catalyst-supported carrier (X) is preferably 0.1 to 10% by mass, more preferably 0.5 to 1% by mass, based on the carrier.
  • the amount of the palladium catalyst supported is equal to or greater than the lower limit, the reaction rate between 1214ya and hydrogen is improved. If the supported amount of the palladium catalyst is not more than the upper limit, it is easy to suppress an excessive temperature rise of the catalyst layer (described later) due to reaction heat, and it is easy to reduce the production of by-products.
  • a method for supporting a metal catalyst on a carrier can be used without any particular limitation.
  • the activated carbon is impregnated with an aqueous solution of a palladium salt such as palladium chloride (II), palladium nitrate (II), tetraamine palladium (II) chloride, and dried. After depositing a palladium salt on the surface of the activated carbon, palladium ions in the palladium salt are reduced to obtain a palladium-supported activated carbon.
  • a palladium salt such as palladium chloride (II), palladium nitrate (II), tetraamine palladium (II) chloride
  • the palladium catalyst-supported carrier (X) When the palladium catalyst-supported carrier (X) is produced by such a method, the specific surface area of the palladium catalyst is reduced as described above, and the carrier carrying the palladium catalyst is heated in an inert gas. Can be adjusted. In the above, for example, by setting the temperature of the heat treatment to 400 to 800 ° C. and the time to 1 to 20 hours, the palladium catalyst-supported carrier (X) in which the specific surface area of the palladium catalyst is adjusted to the above range can be obtained.
  • the inert gas include nitrogen, carbon dioxide, helium, and argon.
  • the catalyst layer is usually formed by filling the reactor with a palladium catalyst-supported carrier (X).
  • the packing density of the palladium catalyst-loaded support (X) in the catalyst layer is preferably 0.3 ⁇ 1g / cm 3, more preferably 0.4 ⁇ 0.8g / cm 3. If the packing density of the palladium catalyst-carrying support (X) is equal to or higher than the lower limit, the amount of palladium catalyst-carrying support (X) per unit volume is large, and the amount of gas to be reacted can be increased, thereby improving productivity. To do.
  • the packing density of the palladium catalyst-carrying support (X) is not more than the upper limit value, it is easy to suppress an excessive temperature rise of the catalyst layer due to the heat of reaction, and it is easy to reduce the production of by-products.
  • gaseous 1214ya and hydrogen are introduced from one side of the catalyst layer.
  • the introduced 1214ya and hydrogen gas react in the gas phase while passing through the catalyst layer to produce 1224yd.
  • the product gas containing 1224yd is discharged from the side of the catalyst layer opposite to the side where 1214ya and hydrogen are introduced.
  • the side of the catalyst layer where 1214ya and hydrogen are introduced is referred to as a “gas introduction part”, and the side where the product gas is discharged is referred to as a “gas discharge part”.
  • the ratio of 1214ya and hydrogen introduced into the catalyst layer is the ratio of the number of moles of hydrogen to the number of moles of 1214ya (hereinafter referred to as the mole ratio) from the viewpoint of reducing by-products such as HFO-1234yf and HFC-254eb that are overreduced substances. (Represented by (H 2 / 1214ya)), the ratio is preferably set to 1.4 or less. The smaller the molar ratio (H 2 / 1214ya), the easier it is to reduce by-products such as HFO-1234yf and HFC-254eb, and it is more preferably 1.2 or less and even more preferably 1.0 or less. In addition, the molar ratio (H 2 / 1214ya) is preferably 0.2 or more, and more preferably 0.4 or more, from the viewpoint of the yield of 1224yd.
  • the ratio of 1214ya introduced into the catalyst layer and the total amount of hydrogen introduced into the catalyst layer is 1 in molar ratio (H 2 / 1214ya).
  • a ratio of 4 or less is preferable, 1.2 or less is more preferable, and 1.0 or less is more preferable.
  • the molar ratio (H 2 / 1214ya) is preferably 0.2 or more, and more preferably 0.4 or more.
  • the reaction temperature at which 1214ya reacts with hydrogen is a gas phase reaction, and therefore a mixed gas of 1214ya and hydrogen used for the reaction, but when an inert gas is used, The temperature exceeds the dew point of the active gas mixture.
  • 200 degreeC or less is preferable and reaction temperature is 130 degrees C or less more preferable.
  • the reaction temperature in the production method of the present invention is specifically indicated by the temperature in the reaction zone of the catalyst layer described below.
  • the temperature of the reaction zone of the catalyst layer that is, the maximum temperature of the catalyst layer, within the above reaction temperature range, it is possible to improve the reactivity and suppress the production of by-products.
  • the temperature of the catalyst layer has a problem that even if the initial temperature is set to a predetermined temperature, it gradually decreases with the progress of the deterioration of the catalyst, and the reaction rate of the reaction catalyzed thereby decreases. Therefore, it is preferable to perform an operation of keeping the temperature of the catalyst layer at a predetermined temperature so that a high reaction rate can be maintained. For example, when the temperature is maintained by heating the catalyst layer from the outside with a heating medium or the like, the temperature drop of the catalyst layer can be prevented by gradually increasing the temperature of the heating medium.
  • the temperature of the catalyst layer refers to the temperature of the catalyst layer that is maintained by external heating or the like.
  • 1214ya and hydrogen react in a partial region of the catalyst layer, and the reaction zone (region where 1214ya and hydrogen react) becomes higher in temperature than the other catalyst layer regions due to the generation of reaction heat. Since the catalytic activity of the reaction zone decreases with time, the reaction zone usually gradually moves from the vicinity of the gas introduction portion to the downstream side in the gas flow direction. Further, a product gas having a high temperature generated in the reaction zone flows on the downstream side of the reaction zone, and usually becomes higher than the temperature of the catalyst layer, and gradually decreases as the distance from the reaction zone increases.
  • the temperature of the catalyst layer refers to the temperature on the upstream side of the reaction zone, that is, the temperature of the catalyst layer that is heated from the outside with a heating medium or the like to maintain the temperature.
  • the maximum temperature of the catalyst layer is not more than the upper limit value of the reaction temperature.
  • the temperature in the reaction zone where 1214ya reacts with hydrogen and the downstream region thereof become higher than the temperature of the catalyst layer in the other region due to the heat of reaction.
  • the maximum temperature of the catalyst layer during the reaction means the maximum temperature of the catalyst layer region that is higher than the other regions due to the generation of the reaction heat.
  • the following measuring method using an insertion type thermometer is mentioned, for example.
  • the catalyst in the vicinity of the gas introduction part into which these are introduced in the form of gas contributes to the reaction.
  • the reaction zone in the catalyst layer gradually moves toward the gas discharge side. That is, since the portion showing the maximum temperature of the catalyst layer moves with the movement of the reaction zone of 1214ya and hydrogen, the measurement part of the insertion type thermometer is positioned in the gas introduction part of the catalyst layer in advance. The maximum temperature of the catalyst layer can be measured by moving the measuring unit as the reaction proceeds.
  • Divided introduction of hydrogen means that 1214ya and a part of a predetermined amount of hydrogen used in this production method are introduced into the gas introduction part of the catalyst layer and between the gas introduction part and the gas discharge part of the catalyst layer.
  • the total amount of hydrogen introduced from two or more places in this way becomes the predetermined amount of hydrogen.
  • the amount of 1214ya and hydrogen introduced into the gas introduction part of the catalyst layer is a part of the hydrogen introduced into the catalyst layer and the total amount of 1214ya.
  • Residual hydrogen is introduced into the catalyst layer downstream in the gas flow direction from the hydrogen introduction part, and hydrogen (usually a product gas after a part of 1214ya has reacted with hydrogen) flowing through the catalyst layer at the introduction position is hydrogen.
  • the unreacted 1214ya reacts with hydrogen in the catalyst layer downstream from the hydrogen introduction position, and is generated from the gas discharge part of the catalyst layer (located on the most downstream side in the gas flow direction in the catalyst layer). Exhaust the gas.
  • the hydrogen introduction part on the most downstream side in the gas flow direction is a catalyst layer between the hydrogen introduction part and the gas discharge part, and the position where hydrogen introduced from the hydrogen introduction part can sufficiently react with 1214ya. It is preferable to provide in.
  • the introduction of hydrogen in the method (A) may be divided and introduced into two places or may be introduced into three or more places. From the viewpoint of simplifying the process, it is preferable to introduce hydrogen from two places. It is preferable that the amount of hydrogen introduced separately in two or more places in the catalyst layer is equal to the amount of each hydrogen introduced separately in that the maximum temperature of the catalyst layer can be easily maintained low.
  • hydrogen can be dividedly introduced by introducing a part of hydrogen into the catalyst layer on the most upstream side (first stage) together with 1214ya and the remaining part downstream from the first stage.
  • stage after the side is mentioned.
  • method (B) As a method for controlling the maximum temperature of the catalyst layer other than the method (A), there is a method (method (B)) in which an inert gas is allowed to flow through the catalyst layer together with 1214ya and hydrogen.
  • an inert gas By causing the inert gas to flow and adjusting the concentration of 1214ya and hydrogen flowing in the catalyst layer, an excessive temperature rise of the catalyst layer due to reaction heat can be suppressed.
  • a diluent gas other than the inert gas can be used instead of the inert gas or together with the inert gas.
  • inert gas examples include nitrogen, rare gases (such as helium and argon), carbon dioxide, and chlorofluorocarbons inert to the hydrogenation reaction.
  • diluent gas other than the inert gas examples include hydrogen chloride.
  • the amount of the inert gas introduced into the catalyst layer is less than 1 mol of 1214ya because it is easy to maintain the maximum temperature of the catalyst layer low, to easily reduce the formation of by-products, and to suppress deterioration of the catalyst. 0.5 mol or more is preferable, and 1.0 mol or more is more preferable. Moreover, the introduction amount of the inert gas is preferably 10 mol or less and more preferably 4 mol or less with respect to 1 mol of 1214ya from the viewpoint of the recovery rate of the inert gas.
  • the yield of 1224yd decreases due to an increase in the production of by-products in which 1224yd is excessively reduced. It is preferable that it is higher than the dew point of the mixed gas. More preferably, it is higher than the dew point and lower than 200 ° C., more preferably higher than the dew point and 150 ° C. or lower.
  • the temperature of the catalyst layer is 1214ya and hydrogen mixed gas used for the reaction, but when an inert gas is used.
  • the method (method (C)) which makes lower temperature the dew point of the mixed gas of 1214ya, hydrogen, and an inert gas as a minimum is mentioned.
  • the lower the temperature of the catalyst layer the more advantageous it is to suppress the production of by-products that are difficult to separate from the target product 1224yd, and in the reaction in a state where the raw material is liquefied
  • the temperature of the catalyst layer is preferably higher than the dew point of the above mixed gas from the viewpoint that the yield of 1224yd decreases due to an increase in the production of by-products in which 1224yd is excessively reduced. More preferably, it is higher than the dew point and lower than 50 ° C., more preferably higher than the dew point and not higher than 30 ° C.
  • the reaction pressure is preferably normal pressure from the viewpoint of handleability.
  • the reaction time is preferably 0.4 to 400 seconds, more preferably 1 to 400 seconds, and most preferably 4 to 400 seconds.
  • the reaction time is specifically the contact time of 1214ya with respect to the palladium catalyst-supported support (X). This contact time is calculated from the volume of 1214ya introduced into the reactor and the volume of the catalyst layer.
  • the linear velocity u of 1214ya represented by the following formula (4) in the catalyst layer is preferably 0.1 to 100 cm / sec, more preferably 0.1 to 30 cm / sec, Most preferred is ⁇ 10 cm / sec.
  • productivity is improved and 1214ya tends to flow uniformly through the catalyst layer.
  • the linear velocity u is 100 cm / sec or less, the reaction rate between 1214ya and hydrogen is improved, and if the linear velocity u is 30 cm / sec or less, temperature control near the reaction point by heat generation becomes easy.
  • the linear velocity u is calculated by the following equation (4) from the amount of gas of 1214ya introduced into the reactor and the volume of the catalyst layer.
  • u (W / 100) ⁇ V / S Equation (4)
  • W 1214ya concentration (mol%) in the total gas flowing through the catalyst layer
  • V the total gas flowing through the catalyst layer flow (cm 3 / sec)
  • S Cross-sectional area of the catalyst layer with respect to the gas flow direction (cm 2 )
  • the gaseous components to be introduced into the catalyst layer include, in addition to 1214ya, hydrogen, an inert gas as an optional component, and a dilution gas, other components within a range that does not impair the effects of the present invention. It may be included. Examples of the other components include a component that is brought together with 1214ya as an impurity when 1214ya is prepared.
  • Examples of the reactor used in the production method of the present invention include known reactors that can be filled with a catalyst-supporting carrier to form a catalyst layer.
  • Examples of the material for the reactor include glass, iron, nickel, and alloys containing these as main components.
  • the HCl contained in the product gas can be removed by, for example, blowing the product gas into an alkaline aqueous solution to neutralize it.
  • alkali used in the alkaline aqueous solution include sodium hydroxide and potassium hydroxide.
  • a method for recovering 1224yd from the product gas for example, a known method such as fractional distillation can be employed.
  • the obtained 1224yd is usually a mixture of E-form and Z-form of 1224yd.
  • a separation and purification method such as distillation may be used.
  • 1214ya is reacted with hydrogen in the gas phase in the presence of a palladium catalyst-supported carrier in which a palladium catalyst having a specific surface area of 40 m 2 / g or less is supported on the carrier.
  • By-products such as HFO-1234yf, HFC-254eb, HFC-263fb, and HFO-1243zf which are reductants are reduced.
  • the amount of 1224yd, which is the target in the product gas increases, so that high-purity 1224yd can be produced efficiently.
  • the manufacturing method of this invention is industrially easy to implement, and the method which can be implemented stably. I can say that.
  • Examples 1 to 4 are examples, and examples 5 to 8 are comparative examples.
  • the palladium catalyst-supported carrier used in each example was prepared as follows.
  • the palladium catalyst-supported carriers (X1) to (X3) are palladium catalyst-supported carriers according to the present invention, and the palladium catalyst-supported carriers (Cf1) to (Cf3) are palladium catalyst-supported carriers for comparative examples.
  • palladium-supported activated carbon in which 0.5% by mass of palladium is supported on 100% by mass of coconut shell activated carbon having a particle size of 4 to 8 mesh (manufactured by N.E. Hereinafter referred to as “palladium-supported activated carbon (A)”). It was 198 m ⁇ 2 > / g as a result of measuring the specific surface area of the supported palladium catalyst (palladium simple substance) in palladium carrying activated carbon (A) by the above-mentioned specific surface area measuring method.
  • Preparation Example 2 Except for changing the heat treatment temperature in Preparation Example 1 to 600 ° C., the same procedure as in Preparation Example 1 was performed to obtain a palladium catalyst-supported carrier (X2) having a supported palladium specific surface area of 20 m 2 / g.
  • Preparation Example 3 Except for changing the heat treatment temperature in Preparation Example 1 to 550 ° C., the same procedure as in Preparation Example 1 was performed to obtain a palladium catalyst-supported carrier (X3) having a supported palladium specific surface area of 33 m 2 / g.
  • Preparation Example 4 Except for changing the heat treatment temperature in Preparation Example 1 to 500 ° C. is performed in the same manner as in Preparation Example 1, the specific surface area of supported palladium to obtain a palladium catalyst supporting carrier (Cf1) is 41m 2 / g.
  • Preparation Example 5 Except for changing the heat treatment temperature in Preparation Example 1 to 400 ° C., the same procedure as in Preparation Example 1 was performed to obtain a palladium catalyst-supported carrier (Cf2) having a supported palladium specific surface area of 88 m 2 / g.
  • Example 1 The production of 1224yd was carried out by the above method (B) using the reaction apparatus 100 shown schematically in FIG.
  • the reaction apparatus 100 includes a single reaction tube 8 and an oil bath 9 in which the reaction tube 8 is immersed.
  • the reaction tube 8 has, on the outlet 11 side, a catalyst layer 10 having a height of 40 cm filled with the palladium catalyst-supported carrier (X1) prepared as described above at a packing density of 0.73 g / cm 3 .
  • the reaction apparatus 100 has a 1214ya gas storage container 1, a hydrogen gas storage container 2, and a nitrogen gas storage container 3, and each container is connected to the inlet 7 of the reaction tube 8 through pipes 4, 5, and 6, respectively. ing.
  • the gas discharged from the outlet 11 of the reaction tube 8 is transferred to the alkali cleaning tank 14 through the pipe 13 and is recovered in the product gas storage container 16 through the pipe 15 after the alkali cleaning.
  • the gas discharged from the outlet 11 of the reaction tube 8 is referred to as “outlet gas”, and the gas obtained by alkali cleaning the outlet gas is referred to as “product gas”.
  • reaction tube 8 was immersed in an oil bath 9 whose temperature was adjusted to 100 ° C. so that the catalyst layer 10 was all immersed, and the catalyst layer 10 was heated to 100 ° C.
  • 1214ya gas, hydrogen gas and nitrogen gas were passed through the reaction tube 8, and the discharged outlet gas was washed with alkali to obtain a product gas.
  • the contact time of 1214ya gas with respect to the palladium catalyst support (X1) filled in the catalyst layer 10 is 12 seconds, and the ratio between the number of moles of 1214ya gas and the number of moles of the total amount of hydrogen gas introduced into the catalyst layer, molar ratio (H 2 / 1214ya) was 1.0. Further, the number of moles of 1214ya gas, the ratio of the moles of the total introduced amount of the nitrogen gas to be introduced into the catalyst layer, the molar ratio (N 2 / 1214ya) was 2.0. The linear velocity u of 1214ya was 0.8 cm / second.
  • reaction temperature the maximum temperature (reaction temperature) of the catalyst layer 10 during the reaction was measured with a plug-type thermometer 12 inserted into the catalyst layer, and found to be 88 ° C. Note that the temperature of the catalyst layer changes by circulating 1214ya gas, hydrogen gas, and nitrogen gas, and may show a temperature different from the oil bath temperature. Actually, under such circumstances, the maximum temperature of the catalyst layer 10 was measured and used as the reaction temperature.
  • the alkali of the outlet gas was washed with a 20% by mass aqueous sodium hydroxide solution at a temperature of 15 ° C.
  • Example 2 A product gas was obtained in the same manner as in Example 1 except that the palladium catalyst-supported support (X1) was changed to a palladium catalyst-supported support (X2) having a specific surface area of palladium of 20 m 2 / g. It was 123 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
  • Example 3 The product gas was the same as in Example 1 except that the palladium catalyst-supported support (X1) was changed to a palladium catalyst-supported support (X3) with a specific surface area of palladium of 33 m 2 / g and the temperature of the oil bath 9 was changed to 80 ° C. Got.
  • the maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted in the catalyst layer, and found to be 146 ° C.
  • Example 4 A product gas was obtained in the same manner as in Example 3 except that the temperature of the oil bath 9 was changed to 100 ° C. The maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted into the catalyst layer, and found to be 189 ° C.
  • Example 5 Palladium catalyst-loaded support palladium catalyst carrying carrier (X1) a specific surface area of the palladium is 41m 2 / g (Cf1), except for changing the temperature of the oil bath 9 to 80 ° C., the product gas in the same manner as in Example 3 Got.
  • the maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-type thermometer 12 inserted into the catalyst layer, and found to be 161 ° C.
  • Example 6 A product gas was obtained in the same manner as in Example 1 except that the palladium catalyst-supported support (X1) was changed to a palladium catalyst-supported support (Cf2) having a palladium specific surface area of 88 m 2 / g.
  • the maximum temperature of the catalyst layer 10 during the reaction was measured by a plug-in thermometer 12 inserted into the catalyst layer, and found to be 159 ° C.
  • Example 7 The product gas was the same as in Example 1 except that the palladium catalyst support (X1) was changed to a palladium catalyst support (Cf3) with a palladium specific surface area of 198 m 2 / g and the temperature of the oil bath 9 was changed to 80 ° C. Got. It was 165 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
  • the palladium catalyst support (X1) was changed to a palladium catalyst support (Cf3) with a palladium specific surface area of 198 m 2 / g and the temperature of the oil bath 9 was changed to 80 ° C. Got. It was 165 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
  • Example 8 A product gas was obtained in the same manner as in Example 7 except that the temperature of the oil bath 9 was changed to 100 ° C. It was 185 degreeC when the maximum temperature of the catalyst layer 10 during reaction was measured with the insertion type thermometer 12 inserted in the catalyst layer.
  • Table 1 shows the area ratio in the GC analysis of the product gas as a molar ratio (unit: mol%).
  • support carrier in Table 1 shows only a code
  • Examples 1 to 4 which are examples of the present invention, are 1224 yd compared to Examples 5 to 8 where the specific surface area of the palladium catalyst in the palladium catalyst-supported carrier is outside the scope of the present invention. High results were obtained for the sum of the selectivity X to (Z) and the selectivity Y to 1224yd (E), as well as the 1224yd yield.
  • Examples 1 to 4 in Examples 1 and 2 where the specific surface area of the palladium catalyst on the palladium catalyst-supported carrier is 6 to 20 m 2 / g, the selectivity X to 1224yd (Z) and the selectivity Y to 1224yd (E) As well as the 1224 yd yield is a particularly high result.
  • high purity 1224yd can be produced by suppressing the production of reductants such as HFO-1234yf and HFC-254eb in the method of obtaining 1224yd by reducing 1214ya.
  • 1224yd obtained by the method of the present invention has a small global warming potential (GWP), and is useful as a substitute for chlorofluorocarbons for cleaning agents, refrigerants, foaming agents, solvents, aerosols, and the like.
  • GWP global warming potential

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(1214ya)を還元して1-クロロ-2,3,3,3-テトラフルオロプロペン(1224yd)を得る方法において、過還元体である2,3,3,3-テトラフルオロプロペンや1,1,1,2-テトラフルオロプロパン等の副生を低減した効率的な1224ydの製造方法を提供する。比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを水素と反応させることを特徴とする1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法。

Description

1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
 本発明は、1-クロロ-2,3,3,3-テトラフルオロプロペンを製造する方法に関する。
 1-クロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CHCl、HCFO-1224yd。以下、1224ydとも記す。)は、3,3-ジクロロ-1,1,1,2,2-ペンタフルオロプロパン(CF-CF-CHCl、HCFC-225ca)や1,3-ジクロロ-1,1,2,2,3-ペンタフルオロプロパン(CClF-CF-CClFH、HCFC-225cb)等のクロロフルオロカーボンに代わって、新たに洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途等に有用とされる、地球温暖化係数(GWP)が小さく地球環境に負荷の少ない化合物である。 
 本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、本明細書では必要に応じて化合物名に代えてその略称を用いる。
 1224ydは二重結合上の置換基の位置により、幾何異性体であるZ体とE体が存在する。本明細書中では特に断らずに化合物名や化合物の略称を用いた場合には、Z体およびE体から選ばれる少なくとも1種を示し、化合物名や化合物の略称の後ろに(E)または(Z)を付した場合には、其々の化合物のE体またはZ体であることを示す。例えば、1224yd(Z)および1224yd(E)は、それぞれ1224ydのZ体およびE体を示す。
 1224ydの製造例としては、例えば、特許文献1に、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFCF=CCl、CFO-1214ya。以下、1214yaとも記す。)をパラジウム触媒の存在下、水素と反応させて還元することで2,3,3,3-テトラフルオロプロペン(CFCF=CH、HFO-1234yf)を得る際に、中間体として1224ydが得られることが記載されている。特許文献1では、上記反応において中間体として得られる1224ydを1214yaとともに、HFO-1234yfの原料化合物として使用している。
 上記特許文献1には、1214yaを水素と反応させて還元する方法において、目的物質であるHFO-1234yfを高収率で得る条件や手段の記載はあるが、副生物として位置づけられる1224ydを効率よく得る方法について記載はない。すなわち、特許文献1の方法では、1224ydも多少生成されるが、1224ydにとっては過還元体であるHFO-1234yfやさらにその還元体である1,1,1,2-テトラフルオロプロパン(CFCHFCH、HFC-254eb)が多量に副生する問題がある。
国際公開第2011/162341号
 本発明は、1214yaを還元して1224ydを得る方法において、過還元体であるHFO-1234yfやHFC-254eb等の副生を低減した効率的な1224ydの製造方法を提供することを目的とする。
 本発明は、以下に示す構成の1224ydの製造方法を提供する。
[1]比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(1214ya)を水素と反応させることを特徴とする1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法。
[2]前記比表面積が6~33m/gである[1]に記載の製造方法。
[3]前記比表面積が6~20m/gである、[1]に記載の製造方法。
[4]前記パラジウム触媒におけるパラジウム100質量部に対するパラジウム以外の金属の割合が50質量部以下である、[1]~[3]のいずれかに記載の製造方法。
[5]前記担体に対する前記パラジウム触媒の質量割合が、0.1~10質量%である[1]~[3]のいずれかに記載の製造方法。
[6]前記パラジウム触媒がパラジウム単体である[1]~[5]のいずれかに記載の製造方法。
[7]前記担体が活性炭である[1]~[6]のいずれかに記載の製造方法。
[8]前記活性炭がヤシ殻活性炭である、[7]に記載の製造方法。
[9]前記1214yaのモル数に対する前記水素の分子のモル数の比が1.4以下である、[1]~[8]のいずれかに記載の製造方法。
 本発明の製造方法は、安定した製造方法が確立されている1214yaを還元して1224ydを得る方法であり、工業的に実施しやすく、安定に実施可能な方法である。また、本発明の1224ydの製造方法によれば、過還元体であるHFO-1234yfやHFC-254eb等の副生を低減した、高反応率および高選択率での1224ydの製造が可能である。
実施例に使用した反応装置を示した模式図である。
 本発明の1224ydの製造方法は、比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1214yaを水素と反応させることを特徴とする。本明細書において、特に断りのない限り、水素は分子の状態の水素をいい、必要に応じてHと記すこともある。本発明の1224ydの製造方法に係る1214yaと水素の反応は下式(1)で示される。
Figure JPOXMLDOC01-appb-C000001
 本発明の製造方法で得られる1224ydは、Z体およびE体の混合物であってもよく、Z体のみであってもよく、E体のみでもよい。1224ydは、燃焼性を抑えるハロゲンの割合が高いうえに、大気中のOHラジカルによって分解され易い炭素―炭素二重結合を分子内に有していることから、燃焼性が低く、オゾン層への影響が少なく、かつGWPが小さい。したがって、洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途として有用性が高い。
<1214ya>
 本発明の1224ydの製造方法は1214yaを原料とする。1214yaは、公知の方法により製造できる。1214yaの入手方法は特に限定されず、例えば、式(2)に示されるとおり、HCFC-225caを相間移動触媒の存在下にアルカリ水溶液と接触させて脱フッ化水素反応させる方法により製造可能である。
Figure JPOXMLDOC01-appb-C000002
 なお、式(2)の反応に用いるHCFC-225caは、HCFC-225caとその異性体を含むジクロロペンタフルオロプロパン(HCFC-225)異性体混合物の状態で使用できる。HCFC-225異性体混合物を用いる場合、相間移動触媒によりHCFC-225異性体混合物中のHCFC-225caのみが選択的に脱フッ化水素される。反応後、得られた1214yaは蒸留等の公知の方法により分離回収できる。相間移動触媒としては、テトラブチルアンモニウムブロマイド(TBAB)が好ましい。
 HCFC-225caを含むHCFC-225異性体混合物は、例えば、テトラフルオロエチレンとジクロロフルオロメタンを、塩化アルミニウム等の触媒の存在下で反応させることにより製造できる。該反応により得られるHCFC-225異性体混合物には、HCFC-225caとHCFC-225cbが主成分として含まれ、他に2,2-ジクロロ-1,1,3,3,3-ペンタフルオロプロパン(CHFCClCF、HCFC-225aa)、2,3-ジクロロ-1,1,2,3,3-ペンタフルオロプロパン(CHFCClFCClF、HCFC-225bb)等が少量含まれる。
 HCFC-225caを含むHCFC-225異性体混合物は、市販品を用いてもよい。市販品としては、アサヒクリンAK225(旭硝子社製、商品名、HCFC-225caの48モル%と、HCFC-225cbの52モル%の混合物)等が挙げられる。
<パラジウム触媒担持担体>
 本発明の製造方法においては、上記の方法等で入手した1214yaと水素を比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で反応させる。以下、比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体をパラジウム触媒担持担体(X)という。
 本発明は、上記式(1)の反応をパラジウム触媒担持担体(X)の存在下で行うことで、過還元体であるHFO-1234yfやHFC-254eb等の副生を低減した高反応率および高選択率での1224ydの製造を可能とするものである。
 本発明において、パラジウム触媒担持担体(X)におけるパラジウム触媒は、パラジウムを主として含有する金属触媒を意味する。パラジウムを主として含有するとは、パラジウム触媒におけるパラジウム100質量部に対するパラジウム以外の金属の割合が50質量部以下であることをいう。パラジウム100質量部に対するパラジウム以外の金属の割合は30質量部以下が好ましく、10質量部以下がさらに好ましい。パラジウム触媒はパラジウム以外の金属を含有しない、すなわちパラジウム単体であることが高い触媒活性が得られる点で特に好ましい。
 パラジウム触媒がパラジウム以外に含有してもよい金属としては、鉄、ルテニウム、オスミウム等の第8族元素;コバルト、ロジウム、イリジウム等の第9族元素;ニッケル、白金等の第10族元素;金、銀、銅等の第11族元素;レニウム、亜鉛、カドミウム、錫、鉛、アンチモン、ビスマス等が挙げられる。これらパラジウム以外の金属は、1種であっても、2種以上であってもよい。パラジウム触媒は、パラジウムと他の金属との合金であってもよく、パラジウムと他の金属との混合物であってもよい。パラジウム合金触媒としては、パラジウム/白金合金触媒やパラジウム/ロジウム合金触媒などが挙げられる。パラジウム以外の金属を含有するパラジウム触媒は、パラジウム単体からなるパラジウム触媒よりも触媒耐久性が高くなる。
 パラジウム触媒担持担体(X)に用いるパラジウム触媒の比表面積は40m/g以下である。パラジウム触媒の比表面積は、1224ydの生産効率をより高める観点から6~33m/gが好ましく、6~20m/gがより好ましい。
 なお、本明細書において、パラジウム触媒の比表面積は、パラジウム触媒担持担体(X)を試料として、以下の方法で測定される比表面積をいう。
[比表面積測定方法]
 パラジウム触媒担持担体(X)20gを秤量し、SUS316製のカラムに充填する。前処理として、40℃、ガス流量300mL/分の条件で、カラムにヘリウムガスを30分間、次いで水素ガスを30分間、最後にヘリウムガスを30分間流す。次いで、カラムにCOガスを一定量パルスで吸着が平衡に達するまで流し、平衡に達したときのCO吸着量を見積もる。吸着が平衡に達したかどうかの確認はガスクロマトグラフィー(TCD)で行う。
 パラジウム触媒の比表面積(MSA)は以下の式(3)から算出する。
 MSA = (V×a)/w   式(3)
w:パラジウム触媒担持担体(X)中のパラジウム触媒質量(g)
V:CO吸着量(mL)
a:COが吸着した時に占めるCOの単位体積あたりのパラジウム触媒表面積(=4.35m/mL)
wはパラジウム触媒担持担体(X)質量(g)とパラジウム触媒含有率(質量%)の積から算出する。
 本発明の製造方法において、上記パラジウム触媒は、担体に担持されたパラジウム触媒担持担体(X)として用いられる。担体としては、活性炭や、アルミナ、ジルコニア、シリカ、チタニア等の金属酸化物等が挙げられる。これらのうちでも触媒活性、耐久性、反応選択性の観点から活性炭が好ましい。
 活性炭としては、木材、木炭、果実殻、ヤシ殻、泥炭、亜炭、石炭等を原料として調製したものが挙げられ、鉱物質原料よりも植物原料から得られたものが好ましく、ヤシ殻活性炭が特に好ましい。活性炭の形状としては、長さ2~5mm程度の成形炭、4~50メッシュ程度の破砕炭、粒状炭等が挙げられる。なかでも、4~20メッシュの破砕炭、または成形炭が好ましい。
 パラジウム触媒担持担体(X)におけるパラジウム触媒の担持量は、担体に対して、0.1~10質量%が好ましく、0.5~1質量%がより好ましい。上記パラジウム触媒の担持量が下限値以上であれば、1214yaと水素の反応率が向上する。上記パラジウム触媒の担持量が上限値以下であれば、反応熱による触媒層(後述する)の過剰な温度上昇を抑制しやすく、副生物の生成を低減しやすい。
 パラジウム触媒を担体に担持させる方法としては、一般に金属触媒を担体に担持させる方法が特に制限なく使用可能である。例えば、パラジウム単体をパラジウム触媒とし担体を活性炭とする場合、塩化パラジウム(II)、硝酸パラジウム(II)、塩化テトラアミンパラジウム(II)等のパラジウム塩の水溶液を活性炭に含浸させ、乾燥することで活性炭の表面にパラジウム塩を析出させた後、パラジウム塩中のパラジウムイオンを還元することでパラジウム担持活性炭が得られる。
 このような方法でパラジウム触媒担持担体(X)を作製する場合、パラジウム触媒の比表面積は、上記のように還元を行い、パラジウム触媒を担持させた担体を、不活性ガス中で加熱処理することにより調整できる。上記において、例えば、加熱処理の温度を400~800℃、時間を1~20時間とすることでパラジウム触媒の比表面積が上記範囲に調整されたパラジウム触媒担持担体(X)が得られる。不活性ガスとしては、窒素、二酸化炭素、ヘリウム、アルゴン等が挙げられる。
<1224ydの製造>
 本発明の製造方法において、パラジウム触媒担持担体(X)の存在下、気相で1214yaを水素と反応させる方法として、具体的には、パラジウム触媒担持担体(X)を充填した触媒層を形成し、該触媒層に1214yaと水素をガス状で導入する方法が挙げられる。
 本発明において触媒層は、通常、パラジウム触媒担持担体(X)を反応器に充填することによって形成される。触媒層におけるパラジウム触媒担持担体(X)の充填密度は、0.3~1g/cmが好ましく、0.4~0.8g/cmがより好ましい。パラジウム触媒担持担体(X)の充填密度が下限値以上であれば、単位容積あたりのパラジウム触媒担持担体(X)の充填量が多く、反応させるガス量を多くすることができるため生産性が向上する。パラジウム触媒担持担体(X)の充填密度が上限値以下であれば、反応熱による触媒層の過剰な温度上昇を抑制しやすく、副生物の生成を低減しやすい。パラジウム触媒担持担体(X)の充填部分、すなわち触媒層は、反応器内に1つあってもよく、2つ以上あってもよい。
 このような触媒層を用いて本発明の製造方法を行うには、上記触媒層の一方の側からガス状の1214yaと水素を導入する。該導入された1214yaと水素のガスは触媒層を通過しながら気相で反応し1224ydを生成する。そして、触媒層の1214yaと水素が導入された側とは反対側から1224ydを含む生成ガスが排出される。以下、触媒層を用いた場合を例に本発明の製造方法を説明する。触媒層の1214yaと水素が導入される側を「ガス導入部」、生成ガスが排出される側を「ガス排出部」という。
 触媒層に導入する1214yaと水素の割合は、過還元体であるHFO-1234yfやHFC-254eb等の副生を低減する点から、1214yaのモル数に対する水素のモル数の比(以下、モル比(H/1214ya)で表わす。)として、その値を1.4以下とする割合が好ましい。モル比(H/1214ya)は、小さいほどHFO-1234yf、HFC-254eb等の副生を低減しやすく、1.2以下がより好ましく、1.0以下がさらに好ましい。また、モル比(H/1214ya)は、1224ydの収率の点から、0.2以上が好ましく、0.4以上がより好ましい。
 後述の方法(A)のように水素を分割導入する場合、同様に、触媒層に導入する1214yaと触媒層に導入する水素の総量との割合は、モル比(H/1214ya)を1.4以下とする割合が好ましく、1.2以下がより好ましく、1.0以下がさらに好ましい。また、モル比(H/1214ya)は、0.2以上が好ましく、0.4以上がより好ましい。
 本発明の製造方法において、1214yaを水素と反応させる反応温度は、気相反応であることより、反応に用いる1214yaと水素の混合ガス、ただし不活性ガスを用いる場合には、1214yaと水素と不活性ガスの混合ガスの露点を越える温度とする。また、本発明の製造方法では、副生物の生成を抑制する観点から、反応温度は200℃以下が好ましく、130℃以下がより好ましい。
 本発明の製造方法における反応温度は、具体的には、以下に説明する触媒層の反応域の温度で示される。本発明の製造方法においては、触媒層の反応域の温度すなわち触媒層の最高温度を上記反応温度の範囲内に制御することで、反応性の向上と副生物の生成抑制が可能となる。
 触媒層の温度は、初期温度を所定の温度に設定しても、触媒の劣化の進行に伴い次第に低下し、それにより触媒される反応の反応率が低下するという問題がある。そのため、高い反応率を維持できるよう、触媒層の温度を所定の温度に保つ操作を行うことが好ましい。例えば、触媒層を熱媒などで外部から加熱してその温度を維持している場合は、熱媒の温度を徐々に上げることで、触媒層の温度低下を防ぐことができる。
 なお、触媒層の温度とは、外部からの加熱等により維持される触媒層の温度をいう。通常、1214yaと水素は触媒層の一部の領域で反応し、反応熱の発生により反応域(1214yaと水素が反応している領域)は他の触媒層領域よりも高温となる。この反応域の触媒活性は経時的に低下することより、通常、反応域はガス導入部付近からガスの流れ方向の下流側に徐々に移動していく。また、反応域の下流側では反応域で生成した温度の高い生成ガスが流れ、通常、触媒層の温度よりも高温となり、反応域から離れるほど徐々に温度が低下していく。本発明において触媒層の温度とは反応域の上流側の温度、すなわち、熱媒などで外部から加熱してその温度を維持している触媒層の温度をいう。
 また、本発明の製造方法では、1214yaと水素の反応熱による触媒層の過剰な温度上昇を抑制して、触媒層の最高温度を上記反応温度の上限値以下にすることが好ましい。上記のように、1214yaと水素が反応している反応域およびその下流側の領域における温度は、反応熱により他の領域の触媒層の温度よりも高くなる。反応中の触媒層の最高温度とはこの反応熱の発生により他の領域よりも高温となった触媒層領域の最高温度をいう。なお、反応中の触媒層の最高温度の測定法としては、例えば、挿し込み型の温度計を用いた下記測定法が挙げられる。
 触媒層における1214yaと水素の反応は、まず、これらがガス状で導入されるガス導入部付近の触媒が反応に寄与し、該ガス導入部付近の触媒が劣化するとその下流側の触媒が反応に寄与するというように、触媒層における反応域がガス排出側に向かって徐々に移動していく。つまり、触媒層の最高温度を示す部分は、1214yaと水素の反応域の移動と共に移動していくため、予め挿し込み型の温度計の計測部を触媒層のガス導入部に位置させておき、反応の進行と共に該計測部を移動させることで触媒層の最高温度を測定できる。
 反応中の触媒層の最高温度を上記反応温度の上限値以下に維持する方法としては、触媒層の最高温度を低く制御しつつ、生産性を高く維持しやすい点から、触媒層に水素を分割して導入する方法(方法(A))が好ましい。水素を触媒層の複数個所に分割して導入すれば、1214yaの導入量を変化させずに触媒層の反応域を分散させられるため、反応熱の発生が一箇所に集中しない。そのため、生産性を低下させずに、触媒層の局所的な過剰発熱を容易に抑制できる。
 水素の分割導入とは、1214yaと、本製造方法に用いる所定量の水素のうちの一部を触媒層のガス導入部に導入するとともに、触媒層のガス導入部とガス排出部との間の少なくとも1か所から水素の残部を導入することをいう。すなわち、ガス導入部以外に触媒層の少なくとも1箇所、すなわち、合計2箇所以上、から水素を導入することをいう。そして、分割導入においては、このようにして2箇所以上から導入される水素の総量が上記水素の所定量となる。
 具体的には、触媒層のガス導入部(触媒層においてガスの流れ方向の最上流側に位置する)に導入する1214yaと水素の量は、触媒層に導入する水素の一部と1214yaの全量とする。残余の水素はガスの流れ方向下流の触媒層に水素導入部から導入し、その導入位置の触媒層を流れるガス(通常は、1214yaの一部が水素と反応した後の、生成ガス)に水素を混入し、該水素の導入位置から下流側の触媒層で未反応の1214yaを水素と反応させ、触媒層のガス排出部(触媒層においてガスの流れ方向の最下流側に位置する)から生成ガスを排出する。
 ガス導入部とガスの流れ方向の最上流側の水素導入部との間で、ガス導入部から導入された水素の少なくとも一部は1214yaと反応していることが好ましい。また、ガスの流れ方向の最下流側の水素導入部は、その水素導入部とガス排出部との間の触媒層で、該水素導入部から導入された水素と1214yaとが十分反応しうる位置に設けることが好ましい。
 方法(A)における水素の導入は、2箇所に分割導入しても、3箇所以上に分割導入してもよく、プロセスを簡略化できるという観点から、2箇所から分割導入することが好ましい。触媒層の2箇所以上に分割導入する水素は、触媒層の最高温度を低く維持しやすい点から、分割導入される各々の水素の量を等量とすることが好ましい。
 反応器内に触媒層が2つ以上ある場合、水素の分割導入は、例えば、水素の一部を1214yaと共に最も上流側(1段目)の触媒層に導入し、残部を1段目より下流側の2段目以降の触媒層に導入する方法が挙げられる。
 また、方法(A)以外の触媒層の最高温度の制御方法としては、1214yaおよび水素と共に触媒層に不活性ガスを流通させる方法(方法(B))が挙げられる。不活性ガスを流通させ、触媒層中を流通する1214yaおよび水素の濃度を調節することで、反応熱による触媒層の過剰な温度上昇を抑制できる。また、不活性ガス以外の希釈ガスを不活性ガスの代わりにまたは不活性ガスとともに使用することもできる。
 不活性ガスとしては、窒素、希ガス(ヘリウム、アルゴン等)、二酸化炭素、水素化反応に不活性なフロン類等が挙げられる。不活性ガス以外の希釈ガスとしては塩化水素などが挙げられる。
 触媒層への不活性ガスの導入量は、触媒層の最高温度を低く維持しやすく、副生物の生成を低減しやすい点、および触媒の劣化を抑制しやすい点から、1214yaの1モルに対して、0.5モル以上が好ましく、1.0モル以上がより好ましい。また、不活性ガスの導入量は、該不活性ガスの回収率の点から、1214yaの1モルに対して、10モル以下が好ましく、4モル以下がより好ましい。
 方法(B)においては、原料が液化した状態での反応では、1224ydが過剰に還元された副生物の生成が増加することにより1224ydの収率が低下する点から、触媒層の温度は、上記混合ガスの露点よりも高いことが好ましい。より好ましくは露点よりも高くかつ200℃未満、さらに好ましくは、露点よりも高くかつ150℃以下である。
 また、方法(A)、方法(B)以外の触媒層の最高温度の制御方法としては、触媒層の温度を、反応に用いる1214yaと水素の混合ガス、ただし不活性ガスを用いる場合には、1214yaと水素と不活性ガスの混合ガスの露点を下限として、より低い温度とする方法(方法(C))が挙げられる。触媒層の温度を低く保つことで、反応熱のより迅速な除熱が可能となり、触媒層の過剰な温度上昇を抑制できる。
 方法(C)においては、触媒層が低い温度であるほど目的物である1224ydと分離困難な副生物の生成を抑制するのに有利である点、および、原料が液化した状態での反応では、1224ydが過剰に還元された副生物の生成が増加することにより1224ydの収率が低下する点から、触媒層の温度は、上記混合ガスの露点よりも高いことが好ましい。より好ましくは露点よりも高くかつ50℃未満、さらに好ましくは、露点よりも高くかつ30℃以下である。
 触媒層の最高温度の制御には、方法(A)、方法(B)、方法(C)をそれぞれ単独で用いる、またはこれらの2つ、または3つを併用することが好ましい。
 反応圧力は、取り扱い性の点から、常圧が好ましい。反応時間は0.4~400秒が好ましく、1~400秒がより好ましく、4~400秒が最も好ましい。本発明の製造方法において、反応時間は、具体的には、1214yaのパラジウム触媒担持担体(X)に対する接触時間である。この接触時間は、反応器に導入される1214yaの体積と触媒層の体積から計算される。
 本発明の製造方法では、触媒層における下式(4)で表される1214yaの線速度uは、0.1~100cm/秒が好ましく、0.1~30cm/秒がより好ましく、0.1~10cm/秒が最も好ましい。線速度uが0.1cm/秒以上であれば、生産性が向上し、1214yaが触媒層を均一に流れやすい。線速度uが100cm/秒以下であれば、1214yaと水素の反応率が向上し、線速度uが30cm/秒以下であれば発熱による反応点付近の温度制御が容易になる。
 線速度uは、反応器に導入される1214yaのガス量と触媒層の体積とから、下式(4)によって計算される。
 u=(W/100)×V/S   式(4)
W:触媒層を流通する全ガス中の1214yaの濃度(モル%)
V:触媒層を流通する全ガスの流量(cm/秒)
S:触媒層のガスの流通方向に対する断面積(cm
 なお、本発明の製造方法において、触媒層に導入するガス状成分には、1214ya、水素、任意成分としての不活性ガス、希釈ガスの他に、本発明の効果を損なわない範囲でその他成分が含まれていてもよい。その他成分としては、例えば、1214yaを準備する際に不純物として1214yaとともに持ち込まれる成分等が挙げられる。
 本発明の製造方法に用いる反応器としては、触媒担持担体を充填して触媒層を形成できる公知の反応器が挙げられる。反応器の材質としては、例えば、ガラス、鉄、ニッケル、またはこれらを主成分とする合金等が挙げられる。
 反応後の生成ガスには、目的物である1224ydの他に、未反応の原料、過還元体であるHFO-1234yf、HFC-254eb、1,1,1-トリフルオロプロパン(CFCHCH、HFC-263fb)、3,3,3-トリフルオロプロペン(CFCH=CH、HFO-1243zf)等およびHClが含まれる。
 生成ガスに含まれるHClは、例えば、該生成ガスをアルカリ水溶液に吹き込んで中和することにより除去できる。上記アルカリ水溶液に用いるアルカリとしては、水酸化ナトリウム、水酸化カリウム等が挙げられる。生成ガスからの1224ydの回収方法としては、例えば、分留等の公知の方法を採用できる。得られる1224ydは、通常、1224ydのE体とZ体の混合物である。該混合物から1224ydのE体およびZ体の分離が必要な場合には、蒸留等の分離精製方法を用いればよい。
 以上説明した本発明の製造方法によれば、比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1214yaを水素と反応させることで、過還元体であるHFO-1234yf、HFC-254eb、HFC-263fb、HFO-1243zf等の副生が低減される。結果的に、生成ガス中の目的物である1224ydの量が増えるので、高純度な1224ydを効率良く生産できる。また、反応に用いる1214yaについては、入手が容易な原料から安定した製造方法が確立されている化合物であるため、本発明の製造方法は、工業的に実施しやすく、安定に実施可能な方法といえる。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。例1~4は実施例、例5~8は比較例である。
 まず、各例に用いたパラジウム触媒担持担体を以下のようにして調製した。パラジウム触媒担持担体(X1)~(X3)は本発明に係るパラジウム触媒担持担体であり、パラジウム触媒担持担体(Cf1)~(Cf3)は比較例用のパラジウム触媒担持担体である。また、各パラジウム触媒担持担体の調整には、粒度が4~8メッシュのヤシ殻活性炭100質量%に対して0.5質量%のパラジウム単体が担持されたパラジウム担持活性炭(エヌ・イーケムキャット社製;以下「パラジウム担持活性炭(A)」という。)を用いた。パラジウム担持活性炭(A)における、担持されたパラジウム触媒(パラジウム単体)の比表面積を、前述の比表面積測定法で測定した結果、198m/gであった。
[調製例1]
 パラジウム担持活性炭(A)を窒素中750℃で10時間加熱処理することにより、担持されたパラジウムの比表面積が6m/gであるパラジウム触媒担持担体(X1)を得た。
[調製例2]
 調製例1における加熱処理温度を600℃に変更すること以外は調製例1と同様に行い、担持されたパラジウムの比表面積が20m/gであるパラジウム触媒担持担体(X2)を得た。
[調製例3]
 調製例1における加熱処理温度を550℃に変更すること以外は調製例1と同様に行い、担持されたパラジウムの比表面積が33m/gであるパラジウム触媒担持担体(X3)を得た。
[調製例4]
 調製例1における加熱処理温度を500℃に変更すること以外は調製例1と同様に行い、担持されたパラジウムの比表面積が41m/gであるパラジウム触媒担持担体(Cf1)を得た。
[調製例5]
 調製例1における加熱処理温度を400℃に変更すること以外は調製例1と同様に行い、担持されたパラジウムの比表面積が88m/gであるパラジウム触媒担持担体(Cf2)を得た。
[調製例6]
 パラジウム担持活性炭(A)(パラジウムの比表面積が198m/g)をパラジウム触媒担持担体(Cf3)としてそのまま用いた。
[例1]
 1224ydの製造は、図1に模式図を示す反応装置100を用いて、上記の方法(B)にて行った。反応装置100は、図1に示すように、1本の反応管8と、それを浸漬する油浴9を備えている。反応管8としては、内径2.14cm、全長70cmのSUS304製のU字型の反応管を用いた。反応管8は、その出口11側に上記で調整されたパラジウム触媒担持担体(X1)が充填密度0.73g/cmで充填された、高さ40cmの触媒層10を有する。
 また、反応装置100は、1214yaガス収容容器1、水素ガス収容容器2および窒素ガス収容容器3を有し、各容器はそれぞれ配管4、5、6を介して反応管8の入口7に接続されている。反応管8の出口11から排出されるガスについては、配管13によりアルカリ洗浄槽14に移送され、アルカリ洗浄後、配管15を介して生成ガス収容容器16に回収される。以下の説明において、反応管8の出口11から排出されるガスを「出口ガス」、出口ガスをアルカリ洗浄して得られたガスを「生成ガス」という。
 まず、触媒層10が全て浸漬されるように、反応管8を100℃に温度調整した油浴9中に浸漬し、触媒層10を100℃に加熱した。次いで、1214yaガス、水素ガスおよび窒素ガスを反応管8に流通させ、排出された出口ガスをアルカリ洗浄して生成ガスを得た。
 触媒層10に充填されたパラジウム触媒担持担体(X1)に対する1214yaガスの接触時間は12秒とし、1214yaガスのモル数と、触媒層に導入する水素ガスの総導入量のモル数との比、モル比(H/1214ya)は1.0とした。また、1214yaガスのモル数と、触媒層に導入する窒素ガスの総導入量のモル数との比、モル比(N/1214ya)は2.0とした。1214yaの線速度uは0.8cm/秒とした。
 また、反応中の触媒層10の最高温度(反応温度)を、触媒層に挿入した差し込み型の温度計12により測定したところ、88℃であった。なお、触媒層の温度は、1214yaガス、水素ガスおよび窒素ガスを流通することにより変化し、油浴温度とは異なる温度を示す場合がある。実際には、このような状況下、触媒層10の最高温度を測定し上記反応温度とした。
 出口ガスのアルカリ洗浄は、温度15℃の20質量%水酸化ナトリウム水溶液により行った。
[例2]
 パラジウム触媒担持担体(X1)をパラジウムの比表面積が20m/gであるパラジウム触媒担持担体(X2)に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、123℃であった。
[例3]
 パラジウム触媒担持担体(X1)をパラジウムの比表面積が33m/gであるパラジウム触媒担持担体(X3)に、油浴9の温度を80℃に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、146℃であった。
[例4]
 油浴9の温度を100℃に変更した以外は、例3と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、189℃であった。
[例5]
 パラジウム触媒担持担体(X1)をパラジウムの比表面積が41m/gであるパラジウム触媒担持担体(Cf1)に、油浴9の温度を80℃に変更した以外は、例3と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、161℃であった。
[例6]
 パラジウム触媒担持担体(X1)をパラジウムの比表面積が88m/gであるパラジウム触媒担持担体(Cf2)に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、159℃であった。
[例7]
 パラジウム触媒担持担体(X1)をパラジウムの比表面積が198m/gであるパラジウム触媒担持担体(Cf3)に、油浴9の温度を80℃に変更した以外は、例1と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、165℃であった。
[例8]
 油浴9の温度を100℃に変更した以外は、例7と同様にして生成ガスを得た。反応中の触媒層10の最高温度を、触媒層に挿入した差し込み型の温度計12により測定したところ、185℃であった。
[分析方法]
 各例で得られた生成ガスをガスクロマトグラフィー(GC)にて分析し、下式(5)、(6)により、1214yaの1224yd(Z)への選択率X(単位:%)、および1224yd(E)への選択率Y(単位:%)をそれぞれ算出した。
X=[a/(a+b+c+d)]×100  式(5)
Y=[b/(a+b+c+d)]×100  式(6)
(ただし、式(5)、(6)中「a」は1224yd(Z)のモル数、「b」は1224yd(E)のモル数、「c」はHFO-1234yfのモル数、「d」はその他の過還元体(HFC-254eb、HFC-263fb、HFO-1243zf、その他)の合計モル数を示す。)
 また、1224yd(Z体およびE体)の収率を下式(7)により算出した。
 1224yd(Z体およびE体)の収率= [A×(X+Y)]/100
  式(7)
(ただし、式(7)中、「A」は1214yaの反応率を示す。)
 分析結果を、反応条件等とともに表1に示す。また、生成ガスのGC分析における面積比をモル比(単位:モル%)として表2に示す。なお、表1におけるパラジウム触媒担持担体の種類は符号のみを示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1および表2に示すように、本発明の実施例である例1~4は、パラジウム触媒担持担体におけるパラジウム触媒の比表面積が本発明の範囲外である例5~8に比べて、1224yd(Z)への選択率Xと1224yd(E)への選択率Yの合計、ならびに1224yd収率について高い結果が得られた。例1~4のなかでもパラジウム触媒担持担体におけるパラジウム触媒の比表面積が6~20m/gの例1、2では、1224yd(Z)への選択率Xと1224yd(E)への選択率Yの合計、ならびに1224yd収率は特に高い結果である。
 本発明の製造方法によれば、1214yaを還元して1224ydを得る方法において、HFO-1234yf、HFC-254eb等の還元体の生成を抑制することで高純度の1224ydを製造することができる。そして、本発明の方法で得られる1224ydは、地球温暖化係数(GWP)が小さく、クロロフルオロカーボン類に代わる化合物として、洗浄剤、冷媒、発泡剤、溶剤、およびエアゾール用途等に有用である。
 100…反応装置、1…1214yaガス収容容器、2…水素ガス収容容器、3…窒素ガス収容容器、7…反応管入口、8…反応管、9…油浴、10…触媒層、11…反応管出口、12…温度計、14…アルカリ洗浄槽、16…生成ガス収容容器。

Claims (9)

  1.  比表面積が40m/g以下のパラジウム触媒を担体に担持させたパラジウム触媒担持担体の存在下、気相で1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンを水素と反応させることを特徴とする1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法。
  2.  前記比表面積が6~33m/gである、請求項1に記載の製造方法。
  3.  前記比表面積が6~20m/gである、請求項1に記載の製造方法。
  4.  前記パラジウム触媒におけるパラジウム100質量部に対するパラジウム以外の金属の割合が50質量部以下である、請求項1~3のいずれか一項に記載の製造方法。
  5.  前記担体に対する前記パラジウム触媒の質量割合が、0.1~10質量%である請求項1~4のいずれか一項に記載の製造方法。
  6.  前記パラジウム触媒がパラジウム単体である請求項1~5のいずれか一項に記載の製造方法。
  7.  前記担体が活性炭である請求項1~6のいずれか一項に記載の製造方法。
  8.  前記活性炭がヤシ殻活性炭である、請求項7に記載の製造方法。
  9.  前記1,1-ジクロロ-2,3,3,3-テトラフルオロプロペンのモル数に対する前記水素の分子のモル数の比が1.4以下である、請求項1~8のいずれか一項に記載の製造方法。
PCT/JP2017/007017 2016-02-25 2017-02-24 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法 WO2017146189A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018501782A JP6780696B2 (ja) 2016-02-25 2017-02-24 1−クロロ−2,3,3,3−テトラフルオロプロペンの製造方法
EP17756624.7A EP3421444B1 (en) 2016-02-25 2017-02-24 Method for producing 1-chloro-2,3,3,3-tetrafluoropropene
CN201780013375.3A CN108779048B (zh) 2016-02-25 2017-02-24 1-氯-2,3,3,3-四氟丙烯的制造方法
US16/105,513 US10377686B2 (en) 2016-02-25 2018-08-20 Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-034101 2016-02-25
JP2016034101 2016-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/105,513 Continuation US10377686B2 (en) 2016-02-25 2018-08-20 Method for producing 1-chloro-2,3,3,3-tetrafluoropropene

Publications (1)

Publication Number Publication Date
WO2017146189A1 true WO2017146189A1 (ja) 2017-08-31

Family

ID=59686498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/007017 WO2017146189A1 (ja) 2016-02-25 2017-02-24 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法

Country Status (5)

Country Link
US (1) US10377686B2 (ja)
EP (1) EP3421444B1 (ja)
JP (1) JP6780696B2 (ja)
CN (1) CN108779048B (ja)
WO (1) WO2017146189A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065906A1 (ja) * 2017-09-28 2019-04-04 Agc株式会社 噴射剤、噴射剤組成物および噴霧器
WO2019124221A1 (ja) * 2017-12-21 2019-06-27 Agc株式会社 2-クロロ-1,3,3,3-テトラフルオロプロペンの除去方法及び1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
WO2019123759A1 (ja) * 2017-12-22 2019-06-27 Agc株式会社 溶剤組成物、洗浄方法、塗膜形成用組成物、塗膜付き基材の製造方法、エアゾール組成物、リンス組成物、部材の洗浄方法および部材の洗浄装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109563399A (zh) * 2016-07-29 2019-04-02 Agc株式会社 热循环用工作介质
CN112552875B (zh) * 2020-11-23 2022-03-08 浙江衢化氟化学有限公司 一种新型环保制冷剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054778A2 (en) * 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with hf
WO2011162340A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
WO2011162341A1 (ja) 2010-06-23 2011-12-29 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
JP2013180964A (ja) * 2012-03-01 2013-09-12 Asahi Glass Co Ltd 2,3,3,3−テトラフルオロプロペンの製造方法
WO2014080868A1 (ja) * 2012-11-20 2014-05-30 旭硝子株式会社 ランキンサイクル用作動媒体およびランキンサイクルシステム
JP2014237627A (ja) * 2013-05-09 2014-12-18 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
WO2016031778A1 (ja) * 2014-08-25 2016-03-03 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法
WO2016088779A1 (ja) * 2014-12-05 2016-06-09 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713019A (en) 1980-06-24 1982-01-23 Tousou Tekko Kk Can arranging equipment
TW200837036A (en) * 2006-11-15 2008-09-16 Du Pont Process for producing 2,3,3,3-tetrafluoropropene
FR2929273B1 (fr) * 2008-03-28 2017-05-26 Arkema France Procede de preparation de composes fluores.
JP5786858B2 (ja) * 2010-06-23 2015-09-30 旭硝子株式会社 2,3,3,3−テトラフルオロプロペンの製造方法
CN111718234A (zh) * 2014-04-16 2020-09-29 科慕埃弗西有限公司 将氯氟丙烷和氯氟丙烯转化成更需要的氟丙烷和氟丙烯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008054778A2 (en) * 2006-10-31 2008-05-08 E. I. Du Pont De Nemours And Company Processes for producing 2,3,3,3-tetrafluoropropene, a process for producing 1-chloro-2,2,3,3,3-pentafluoropropane and azeotropic compositions of 1-chloro-2,3,3,3-tetrafluoropropene with hf
WO2011162340A1 (ja) * 2010-06-23 2011-12-29 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
WO2011162341A1 (ja) 2010-06-23 2011-12-29 旭硝子株式会社 2,3,3,3-テトラフルオロプロペンの製造方法
JP2013180964A (ja) * 2012-03-01 2013-09-12 Asahi Glass Co Ltd 2,3,3,3−テトラフルオロプロペンの製造方法
WO2014080868A1 (ja) * 2012-11-20 2014-05-30 旭硝子株式会社 ランキンサイクル用作動媒体およびランキンサイクルシステム
JP2014237627A (ja) * 2013-05-09 2014-12-18 セントラル硝子株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの製造方法
WO2016031778A1 (ja) * 2014-08-25 2016-03-03 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法
WO2016088779A1 (ja) * 2014-12-05 2016-06-09 旭硝子株式会社 ハイドロフルオロオレフィンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3421444A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7147773B2 (ja) 2017-09-28 2022-10-05 Agc株式会社 噴射剤、噴射剤組成物および噴霧器
WO2019065906A1 (ja) * 2017-09-28 2019-04-04 Agc株式会社 噴射剤、噴射剤組成物および噴霧器
EP4335780A3 (en) * 2017-09-28 2024-05-22 AGC Inc. Sprayer
US11760910B2 (en) 2017-09-28 2023-09-19 AGC Inc. Pressurized container system
US11306231B2 (en) 2017-09-28 2022-04-19 AGC Inc. Sprayer
WO2019065905A1 (ja) * 2017-09-28 2019-04-04 Agc株式会社 噴霧器
JPWO2019065905A1 (ja) * 2017-09-28 2020-11-05 Agc株式会社 噴霧器
JP7103365B2 (ja) 2017-09-28 2022-07-20 Agc株式会社 噴霧器
CN111148814B (zh) * 2017-09-28 2023-07-11 Agc株式会社 喷雾器
CN111148814A (zh) * 2017-09-28 2020-05-12 Agc株式会社 喷雾器
JPWO2019065906A1 (ja) * 2017-09-28 2020-11-19 Agc株式会社 噴射剤、噴射剤組成物および噴霧器
CN111511708A (zh) * 2017-12-21 2020-08-07 Agc株式会社 2-氯-1,3,3,3-四氟丙烯的去除方法及1-氯-2,3,3,3-四氟丙烯的制造方法
JP7127655B2 (ja) 2017-12-21 2022-08-30 Agc株式会社 2-クロロ-1,3,3,3-テトラフルオロプロペンの除去方法及び1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
CN111511708B (zh) * 2017-12-21 2023-03-03 Agc株式会社 2-氯-1,3,3,3-四氟丙烯的去除方法及1-氯-2,3,3,3-四氟丙烯的制造方法
WO2019124221A1 (ja) * 2017-12-21 2019-06-27 Agc株式会社 2-クロロ-1,3,3,3-テトラフルオロプロペンの除去方法及び1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
JPWO2019124221A1 (ja) * 2017-12-21 2020-12-17 Agc株式会社 2−クロロ−1,3,3,3−テトラフルオロプロペンの除去方法及び1−クロロ−2,3,3,3−テトラフルオロプロペンの製造方法
WO2019123759A1 (ja) * 2017-12-22 2019-06-27 Agc株式会社 溶剤組成物、洗浄方法、塗膜形成用組成物、塗膜付き基材の製造方法、エアゾール組成物、リンス組成物、部材の洗浄方法および部材の洗浄装置

Also Published As

Publication number Publication date
EP3421444B1 (en) 2020-11-11
EP3421444A1 (en) 2019-01-02
JPWO2017146189A1 (ja) 2018-12-20
JP6780696B2 (ja) 2020-11-04
CN108779048B (zh) 2022-01-14
US20180354874A1 (en) 2018-12-13
US10377686B2 (en) 2019-08-13
EP3421444A4 (en) 2019-11-13
CN108779048A (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
WO2017146189A1 (ja) 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法
JP5713016B2 (ja) 1,1−ジクロロ−2,3,3,3−テトラフルオロプロペンおよび2,3,3,3−テトラフルオロプロペンの製造方法
US8530711B2 (en) Process for producing 2,3,3,3-tetrafluoropropene
CN106660908B (zh) 氢氟烯烃的制造方法
JP6827810B2 (ja) ハイドロフルオロオレフィンの製造方法
JP5713017B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
CN109563010B (zh) 1-氯-2,3,3,3-四氟丙烯的制造方法
JP6696431B2 (ja) ハイドロフルオロオレフィンの製造方法
JPWO2011162339A1 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5817591B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP5713018B2 (ja) 2,3,3,3−テトラフルオロプロペンの製造方法
JP7484900B2 (ja) 1-クロロ-2,3,3,3-テトラフルオロプロペンの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018501782

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756624

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756624

Country of ref document: EP

Effective date: 20180925

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756624

Country of ref document: EP

Kind code of ref document: A1