WO2017145987A1 - 半導体レーザモジュール及びその製造方法 - Google Patents

半導体レーザモジュール及びその製造方法 Download PDF

Info

Publication number
WO2017145987A1
WO2017145987A1 PCT/JP2017/006140 JP2017006140W WO2017145987A1 WO 2017145987 A1 WO2017145987 A1 WO 2017145987A1 JP 2017006140 W JP2017006140 W JP 2017006140W WO 2017145987 A1 WO2017145987 A1 WO 2017145987A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
submount
solder layer
heat sink
laser module
Prior art date
Application number
PCT/JP2017/006140
Other languages
English (en)
French (fr)
Inventor
良和 貝渕
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to US16/078,192 priority Critical patent/US10748836B2/en
Priority to EP17756425.9A priority patent/EP3422497A4/en
Priority to CN201780013286.9A priority patent/CN108701959A/zh
Publication of WO2017145987A1 publication Critical patent/WO2017145987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • H01S5/02355Fixing laser chips on mounts
    • H01S5/0237Fixing laser chips on mounts by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0233Mounting configuration of laser chips
    • H01S5/02345Wire-bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0235Method for mounting laser chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02469Passive cooling, e.g. where heat is removed by the housing as a whole or by a heat pipe without any active cooling element like a TEC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02476Heat spreaders, i.e. improving heat flow between laser chip and heat dissipating elements
    • H01S5/02484Sapphire or diamond heat spreaders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure

Definitions

  • the present invention relates to a semiconductor laser module and a manufacturing method thereof, and more particularly to a semiconductor laser module having a submount and a manufacturing method thereof.
  • a fiber laser excitation light source for example, a high-power semiconductor laser diode (LD) made of a gallium arsenide (GaAs) material is used.
  • LD semiconductor laser diode
  • GaAs gallium arsenide
  • higher output of fiber lasers has been advanced, and accordingly, higher output of laser diodes has been strongly demanded. For example, an output exceeding 10 W is required for one laser diode chip, or an output close to 20 W is required in some cases.
  • a laser diode is mounted on a plate material called a submount and used in the form of a module integrated with the submount. Therefore, in order to avoid the deterioration of the characteristics of the laser diode due to the heat generated due to the high output of the laser diode described above, a submount having high thermal conductivity and high heat dissipation is required.
  • the difference between the thermal expansion coefficient of the laser diode and the thermal expansion coefficient of the submount is large, stress may be generated due to the thermal history when the laser diode is mounted on the submount, and the characteristics of the laser diode may be deteriorated. Therefore, it is also required to form the submount with a material having a thermal expansion coefficient close to that of the laser diode.
  • an electrode connected to the submount is formed on the bottom surface of the laser diode, and the laser diode is energized through the submount. Therefore, in order to obtain a higher output more efficiently, it is necessary not only to improve the heat dissipation of the submount but also to lower the electrical resistance value of the submount.
  • the submount on which the laser diode is mounted includes (1) high heat dissipation, (2) a thermal expansion coefficient close to that of the laser diode, and (3) electrical resistance. Reduction is required.
  • Patent Document 1 discloses using silicon as a material for the submount (see, for example, paragraph [0024]). Although the electrical resistance of the submount can be lowered by using silicon in this way, the heat conductivity of silicon is not so high as 150 W / mK, so that high heat dissipation cannot be realized.
  • Patent Document 2 discloses an embodiment in which CuW is used as a material for a submount disposed immediately below a laser chip (see paragraphs [0028] and [0029], FIG. 7).
  • CuW has a low electrical resistivity of 10 ⁇ 8 ⁇ m, a thermal conductivity of 170 W / mK, which is higher than that of silicon, and a thermal expansion coefficient of about 6.5 ppm / K, which is also used as a material for semiconductor laser diodes. Since it has a thermal expansion coefficient close to that of arsenic (about 5.9 ppm / K), it is widely used as a material for submounts for high-power semiconductor lasers. However, when the output exceeds 20 W, a material having higher heat dissipation than CuW is required.
  • Patent Document 2 discloses an embodiment in which a diamond submount, a silicon carbide (SiC) submount, or the like is laminated in order to improve the heat dissipation of the submount.
  • these submounts have a high electrical resistivity (for example, 10 ⁇ 4 ⁇ m), and when a laser diode is energized through these submounts, the electrical resistance value of the entire laser module increases, resulting in efficient light output. Can't get.
  • Patent Document 3 discloses an embodiment in which vapor-grown diamond or cBN (cubic boron nitride) is used as a submount (see paragraphs [0055] to [0057] and FIG. 7).
  • vapor-grown diamond or cBN cubic boron nitride
  • both vapor-phase-grown diamond and cBN have high electrical resistivity, and in the submount made of these materials, the electrical resistance value of the entire laser module is increased as in the submount of Patent Document 2, and efficient light is emitted. Unable to get output.
  • the present invention has been made in view of such problems of the prior art, and a first object thereof is to provide a semiconductor laser module capable of maintaining efficient output characteristics.
  • the second object of the present invention is to provide a semiconductor laser module manufacturing method capable of manufacturing a semiconductor laser module capable of maintaining efficient output characteristics by a simple process.
  • a semiconductor laser module capable of maintaining good output characteristics by achieving both a reduction in electric resistance value and an improvement in heat dissipation.
  • the semiconductor laser module includes an electrically conductive heat sink, a submount disposed above the heat sink, a semiconductor laser element disposed above the submount, and the semiconductor laser element and the heat sink. And a conductive portion connected to the. The conductive portion extends to the heat sink along the surface of the submount and has an electric resistivity lower than the electric resistance value of the submount.
  • the electrical resistivity of the conductive portion is lower than the electrical resistivity of the submount, the current supplied to the semiconductor laser element flows from the heat sink to the semiconductor laser device through the conductive portion. Therefore, it is not necessary to lower the electrical resistivity of the submount, and it is not necessary to use a material having a low electrical resistivity. For this reason, the material of a submount can be selected paying attention to high heat dissipation. By selecting a material with high heat dissipation for the submount in this way, the heat generated in the semiconductor laser element is transmitted to the heat sink via the submount and is dissipated by the heat sink. According to the present invention, since the current path and the heat path between the semiconductor laser element and the heat sink can be separated, it is possible to reduce the electrical resistance value as a whole of the semiconductor laser module, and to improve efficiency. Can maintain good output characteristics.
  • the thermal conductivity of the submount is higher than the thermal conductivity of the conductive portion.
  • the conductive portion may be formed by an upper solder layer extending from the semiconductor laser element to the heat sink along the surface of the submount. In this case, at least a part of the edge of the upper surface of the submount may be rounded or chamfered.
  • the conductive portion is formed on at least a side surface of the submount, an upper solder layer electrically connected to the semiconductor laser element, a lower solder layer formed between the submount and the heat sink, A plating layer that electrically connects the upper solder layer and the lower solder layer may be included.
  • the conductive portion may include an upper solder layer that is electrically connected to the semiconductor laser element, and an auxiliary conductive layer that electrically connects the upper solder layer and the heat sink.
  • the melting point of the auxiliary conductive layer is preferably lower than the melting point of the upper solder layer.
  • a semiconductor laser module manufacturing method capable of manufacturing a semiconductor laser module capable of maintaining efficient output characteristics by a simple process.
  • This method is used to manufacture a semiconductor laser module having a conductive heat sink, a submount disposed above the heat sink, and a semiconductor laser element disposed above the submount.
  • a conductive portion having an electrical resistivity lower than that of the submount is formed so as to extend from the semiconductor laser element along the surface of the submount to the heat sink.
  • the heat sink is electrically connected.
  • the conductive portion having an electrical resistance lower than the electrical resistivity of the submount is formed so as to extend from the semiconductor laser element to the heat sink along the surface of the submount, the current supplied to the semiconductor laser element is Then, it flows from the heat sink to the semiconductor laser element through the conductive portion. Therefore, it is not necessary to lower the electrical resistivity of the submount, and it is not necessary to use a material having a low electrical resistivity. For this reason, the material of a submount can be selected paying attention to high heat dissipation. By selecting a material with high heat dissipation for the submount in this way, the heat generated in the semiconductor laser element is transmitted to the heat sink via the submount and is dissipated by the heat sink.
  • the semiconductor laser module manufactured according to the present invention since the current path and the heat path between the semiconductor laser element and the heat sink can be separated, the electrical resistance value of the entire semiconductor laser module can be reduced. Is possible. Therefore, a semiconductor laser module capable of maintaining efficient output characteristics can be manufactured by a simple process.
  • the conductive portion is formed by forming an upper solder layer connected to the semiconductor laser element on the submount, pressing the semiconductor laser element against the submount while heating the upper solder layer, The upper solder layer melted by heating may be flowed to the lower end of the submount. In this case, the upper solder layer may be heated by heating the heat sink. In order to make the upper solder layer easily flow down to the lower end of the submount, it is preferable to round or chamfer at least a part of the edge of the upper surface of the submount.
  • the conductive portion is formed by forming a lower solder layer between the heat sink and the submount, forming a plating layer on at least the side surface of the submount, and the plating layer electrically connecting to the lower solder layer.
  • the submount may be disposed on the lower solder layer so as to be connected to the upper solder layer, and an upper solder layer electrically connected to the plating layer and the semiconductor laser element may be formed.
  • the conductive portion is formed by forming a lower solder layer between the heat sink and the submount, and forming an upper solder layer electrically connected to the semiconductor laser element on the submount.
  • the melting point of the auxiliary conductive layer is preferably lower than the melting point of the upper solder layer.
  • the electrical resistivity of the conductive part is lower than the electrical resistivity of the submount, the current supplied to the semiconductor laser element flows from the heat sink through the conductive part to the semiconductor laser element. Therefore, it is not necessary to lower the electrical resistivity of the submount, and it is not necessary to use a material having a low electrical resistivity. For this reason, the material of a submount can be selected paying attention to high heat dissipation. By selecting a material with high heat dissipation for the submount in this way, the heat generated in the semiconductor laser element is transmitted to the heat sink via the submount and is dissipated by the heat sink. According to the present invention, since the current path and the heat path between the semiconductor laser element and the heat sink can be separated, it is possible to reduce the electrical resistance value as a whole of the semiconductor laser module, and to improve efficiency. Can maintain good output characteristics.
  • FIG. 1 is a perspective view schematically showing a semiconductor laser module according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the semiconductor laser module of FIG.
  • FIG. 3 is a schematic diagram showing current and heat paths in the semiconductor laser module of FIG. 4A is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG. 4B is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG. 4C is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 4D is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 4E is a cross-sectional view showing the manufacturing process of the semiconductor laser module of FIG.
  • FIG. 4F is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 5 is a cross-sectional view schematically showing a semiconductor laser module according to the second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a semiconductor laser module according to the third embodiment of the present invention.
  • 7A is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 7B is a cross-sectional view showing the manufacturing process of the semiconductor laser module of FIG.
  • FIG. 7C is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 7D is a cross-sectional view showing the manufacturing process of the semiconductor laser module of FIG. FIG.
  • FIG. 8 is a cross-sectional view schematically showing a semiconductor laser module according to the fourth embodiment of the present invention.
  • 9A is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 9B is a cross-sectional view showing the manufacturing process of the semiconductor laser module of FIG.
  • FIG. 9C is a cross-sectional view showing a manufacturing process of the semiconductor laser module of FIG.
  • FIG. 9D is a cross-sectional view showing a manufacturing step of the semiconductor laser module of FIG.
  • FIG. 10 is a perspective view schematically showing a semiconductor laser module according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view schematically showing a semiconductor laser module according to Comparative Example 1 and Comparative Example 2.
  • FIG. 11 is a cross-sectional view schematically showing a semiconductor laser module according to Comparative Example 1 and Comparative Example 2.
  • FIG. 12 is a graph showing the relationship between the current flowing through the semiconductor laser module according to Example 1 and Comparative Example 1 and its optical output.
  • FIG. 13 is a graph showing the relationship between the current flowing through the semiconductor laser modules according to Example 1 and Comparative Example 1 and the operating voltage.
  • FIG. 14 is a graph showing the relationship between the current flowing through the semiconductor laser modules according to Example 1 and Comparative Example 2 and the optical output thereof.
  • FIG. 15 is a graph showing the relationship between the current flowing through the semiconductor laser modules according to Example 1 and Comparative Example 2 and the operating voltage.
  • FIGS. 1 to 15 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • FIGS. 1 to 15 the scale and dimensions of each component are exaggerated, and some components may be omitted.
  • FIG. 1 is a perspective view schematically showing a semiconductor laser module 1 according to the first embodiment of the present invention.
  • the semiconductor laser module 1 according to this embodiment includes a heat sink 10 made of a material having high thermal conductivity such as copper, and a submount 20 disposed on the heat sink 10.
  • a semiconductor laser element (laser diode) 30 mounted on the mount 20, and a bonding wire 40 that connects the semiconductor laser element 30 and a lead (not shown) and through which a current from the semiconductor laser element 30 flows.
  • the semiconductor laser element 30 is constituted by a high-power semiconductor laser diode made of, for example, gallium arsenide (GaAs).
  • GaAs gallium arsenide
  • the submount 20 is made of, for example, a copper-diamond composite material (CuC).
  • CuC copper-diamond composite material
  • This copper-diamond composite material is a material in which diamond lumps are dispersed in Cu, and its thermal expansion coefficient is about 6.0 ppm / K.
  • the heat sink 10 is grounded.
  • FIG. 2 is a cross-sectional view of the semiconductor laser module 1 of FIG.
  • a lower solder layer 50 made of, for example, Au—Sn solder is formed between the submount 20 and the heat sink 10.
  • an upper solder layer 60 made of, for example, Au—Sn solder is formed between the semiconductor laser element 30 and the submount 20.
  • the upper solder layer 60 extends from between the semiconductor laser element 30 and the submount 20 to the upper surface 11 of the heat sink 10 along the surface of the submount 20. In other words, the upper solder layer 60 is formed so as to cover the upper surface 21 and the side surface 22 of the submount 20.
  • An electrode (not shown) is formed on the bottom surface of the semiconductor laser element 30, and the electrode of the semiconductor laser element 30 and the heat sink 10 are electrically connected to each other by the upper solder layer 60.
  • the upper solder layer 60 in the present embodiment constitutes a conductive portion extending from the semiconductor laser element 30 to the heat sink 10 along the surface (the upper surface 21 and the side surface 22) of the submount 20.
  • the conductive portion may not exist between the semiconductor laser element 30 and the submount 20 as long as it is electrically connected to the electrode of the semiconductor laser element 30.
  • the material of the submount 20 and the upper solder layer 60 is such that the thermal conductivity of the submount 20 is higher than the thermal conductivity of the upper solder layer 60, and the electric resistivity of the upper solder layer 60 is the electric resistance of the submount 20. Is selected to be lower than the rate.
  • a copper-diamond composite material is used as the material of the submount 20
  • Au—Sn solder is used as the material of the upper solder layer 60.
  • the electrical resistivity of the upper solder layer 60 is lower than the electrical resistivity of the submount 20
  • the current supplied to the semiconductor laser element 30 is supplied from the heat sink 10 to the upper solder layer 60 as shown in FIG. 3. And flows to the semiconductor laser element 30.
  • a material having high thermal conductivity can be used for the submount 20, and it is not necessary to select a material having low electrical resistivity.
  • the thermal conductivity is high, even an electrical insulator can be used as the submount 20.
  • the thermal conductivity of the submount 20 can be made higher than that of the upper solder layer 60, the heat generated in the semiconductor laser element 30 is transmitted to the heat sink 10 through the submount 20.
  • the heat sink 10 dissipates heat. Therefore, the current path and the heat path between the semiconductor laser element 30 and the heat sink 10 can be separated, and the heat dissipation is improved while reducing the electrical resistance value of the semiconductor laser module 1 as a whole. It becomes possible. Therefore, deterioration of the output characteristics of the semiconductor laser element 30 can be prevented, and efficient output characteristics can be maintained.
  • a method for manufacturing such a semiconductor laser module 1 will be described with reference to FIGS. 4A to 4F.
  • a lower solder layer 50 made of, for example, Au—Sn solder is deposited on a predetermined submount region on the upper surface 11 of the heat sink 10.
  • the submount 20 is disposed on the lower solder layer 50 on the heat sink 10.
  • an upper solder layer 60 made of, for example, Au—Sn solder is deposited on a predetermined element region on the upper surface 21 of the submount 20. At this time, the upper solder layer 60 is thicker than the completed thickness shown in FIG. Then, as shown in FIG. 4D, the semiconductor laser element 30 is disposed on the upper solder layer 60. At this time, the semiconductor laser element 30 is arranged so that an electrode (not shown) on the bottom surface of the semiconductor laser element 30 is in contact with the upper solder layer 60.
  • the lower solder layer 50 is heated by heating the heat sink 10 and the upper solder layer 60 is heated via the submount 20. By this heating, the lower solder layer 50 and the upper solder layer 60 are melted. At this time, the semiconductor laser element 30 is pressed against the submount 20, the submount 20 is fixed to the heat sink 10 by the lower solder layer 50, and the semiconductor laser element 30 is fixed to the submount 20 by the upper solder layer 60. .
  • the semiconductor laser element 30 when the semiconductor laser element 30 is pressed against the submount 20, as shown in FIG. 4F, the molten upper solder layer 60 spreads around and travels along the surface (upper surface 21 and side surface 22) of the submount 20. run down. Finally, the molten upper solder layer 60 flows down to the lower end of the submount 20, that is, the upper surface 11 of the heat sink 10. The upper solder layer 60 that has flowed down forms a conductive portion extending from the semiconductor laser element 30 to the heat sink 10 along the surface (upper surface 21 and side surface 22) of the submount 20. Thereby, the semiconductor laser module 1 as shown in FIG. 1 is completed.
  • the lower solder layer 50 and the upper solder layer 60 are heated at the same time, thereby fixing the semiconductor laser element 30 to the submount 20 and fixing the submount 20 to the heat sink 10.
  • the semiconductor laser element 30 may be fixed to the submount 20 after the submount 20 is fixed to the heat sink 10.
  • the semiconductor laser element 30 is disposed on the upper solder layer 60 deposited on the submount 20, and the upper solder layer 60 is heated and melted.
  • the semiconductor laser element 30 is pressed against the submount 20, and the molten upper solder layer 60 is caused to flow along the surface (upper surface 21 and side surface 22) of the submount 20 to the lower end of the submount 20.
  • the element 30 and the submount 20 are fixed.
  • the submount 20 and the semiconductor laser element 30 are disposed on the lower solder layer 50 deposited on the heat sink 10, and the heat sink 10 and the submount 20 are fixed by heating the lower solder layer 50.
  • the melting point of the lower solder layer 50 is preferably lower than the melting point of the upper solder layer 60.
  • FIG. 5 is a cross-sectional view schematically showing a semiconductor laser module 101 according to the second embodiment of the present invention.
  • the edge 23 of the upper surface 21 of the submount 20 is rounded.
  • the solder layer melted on the submount 20 can easily flow down from the upper surface 21 to the side surface 22, so that the conductive portion is formed by the upper solder layer 60. It becomes easier.
  • the entire edge 23 of the upper surface 21 of the submount 20 is shown to be rounded, but at least a part of the edge 23 of the upper surface 21 of the submount 20 may be rounded. Good. The same effect can be obtained by chamfering at least part of the edge 23 of the upper surface 21 of the submount 20.
  • FIG. 6 is a cross-sectional view schematically showing a semiconductor laser module 201 according to the third embodiment of the present invention.
  • the semiconductor laser module 201 in this embodiment has a submount 220 made of, for example, a copper-diamond composite material.
  • Ni / Au plating is performed on the upper surface and side surfaces of the submount 220 to form a plating layer 221.
  • An upper solder layer 260 made of, for example, Au—Sn solder is formed between the semiconductor laser element 30 and the submount 220. Unlike the upper solder layer 60 of the first embodiment, the upper solder layer 260 is formed only on the upper surface of the submount 220 and does not extend to the upper surface 11 of the heat sink 10.
  • the upper solder layer 260 is electrically connected to the plating layer 221 of the submount 220, and the plating layer 221 of the submount 220 is electrically connected to the lower solder layer 50 formed on the heat sink 10. Therefore, the upper solder layer 260, the plating layer 221 of the submount 220, and the lower solder layer 50 in this embodiment constitute a conductive portion that extends from the semiconductor laser element 30 to the heat sink 10 along the surface of the submount 220. Yes.
  • the thermal conductivity of the submount 220 is higher than the thermal conductivity of the conductive portion, and the electrical resistivity of the conductive portion is lower than the electrical resistivity of the submount 220. Selected as
  • the current supplied to the semiconductor laser element 30 flows from the heat sink 10 through the lower solder layer 50, the plating layer 221, and the upper solder layer 260 to the semiconductor laser element 30.
  • the generated heat is transmitted to the heat sink 10 through the submount 220 and is radiated by the heat sink 10.
  • the electrical resistance value of the semiconductor laser module 201 as a whole can be reduced and the heat dissipation can be reduced. It becomes possible to improve. Therefore, deterioration of the output characteristics of the semiconductor laser element 30 can be prevented, and good output characteristics can be maintained.
  • a sufficient effect can be expected if the thickness of the plating layer 221 is about 5 ⁇ m, but the thickness of the plating layer 221 may be 5 ⁇ m or less.
  • the example in which the plating layer 221 is formed on the upper surface and the side surface of the submount 220 has been described. However, similar plating may be performed on the bottom surface of the submount 220. Further, if the plating layer 221 is electrically connected to the upper solder layer 260 and the lower solder layer 50, the plating layer 221 may be formed only on the side surface of the submount 220.
  • a lower solder layer 50 made of, for example, Au—Sn solder is deposited on a predetermined submount region of the upper surface 11 of the heat sink 10. .
  • the submount 220 having the plating layer 221 formed on the upper surface and the side surface is disposed on the lower solder layer 50 on the submount region of the heat sink 10.
  • the submount 220 is disposed on the lower solder layer 50 so that the plating layer 221 is electrically connected to the lower solder layer 50.
  • an upper solder layer 260 made of, for example, Au—Sn solder is deposited on a predetermined element region on the upper surface of the submount 220. At this time, the upper solder layer 260 is formed so that the upper solder layer 260 is electrically connected to the plating layer 221 and the semiconductor laser element 30. Thereafter, as shown in FIG. 7D, the semiconductor laser element 30 is disposed on the upper solder layer 260. At this time, the semiconductor laser element 30 is arranged so that an electrode (not shown) on the bottom surface of the semiconductor laser element 30 is in contact with the upper solder layer 260.
  • the lower solder layer 50 is heated by heating the heat sink 10, and the upper solder layer 260 is heated via the submount 220.
  • the submount 220 is fixed to the heat sink 10 by the lower solder layer 50, and the semiconductor laser element 30 is fixed to the submount 20 by the upper solder layer 260.
  • a semiconductor laser module 201 as shown in FIG. 6 is completed.
  • FIG. 8 is a cross-sectional view schematically showing a semiconductor laser module 301 according to the fourth embodiment of the present invention.
  • the semiconductor laser module 301 according to the present embodiment includes a heat sink 10 made of a material having high thermal conductivity such as copper, and a submount 320 disposed on the heat sink 10.
  • the semiconductor laser device 30 is mounted on the mount 320.
  • the submount 320 is made of, for example, a copper-diamond composite material.
  • the lower solder layer 50 made of, for example, Au—Sn solder is formed between the submount 320 and the heat sink 10.
  • An upper solder layer 360 made of, for example, Au—Sn solder is formed between the semiconductor laser element 30 and the submount 320.
  • the upper solder layer 360 is formed only on the upper surface of the submount 320 and does not extend to the upper surface 11 of the heat sink 10.
  • an auxiliary conductive layer 370 is formed so as to cover the side surface 322 of the submount 320.
  • the auxiliary conductive layer 370 can be made of solder having a lower melting point than the lower solder layer 50 and the upper solder layer 360, for example, Sn—Ag—Cu solder.
  • the method of forming the auxiliary conductive layer 370 is not limited to Sn—Ag—Cu solder, and the auxiliary conductive layer 370 may be formed by applying silver paste or using an In-based solder.
  • the auxiliary conductive layer 370 is electrically connected to the upper solder layer 360 and the heat sink 10. Therefore, the upper solder layer 360 and the auxiliary conductive layer 370 in the present embodiment constitute a conductive portion that extends from the semiconductor laser element 30 to the heat sink 10 along the surface of the submount 320.
  • the material constituting the submount 320 and the conductive portion is such that the thermal conductivity of the submount 320 is higher than the thermal conductivity of the conductive portion, and the electrical resistivity of the conductive portion is lower than the electrical resistivity of the submount 320. Selected.
  • the current supplied to the semiconductor laser element 30 flows from the heat sink 10 through the auxiliary conductive layer 370 and the upper solder layer 360 to the semiconductor laser element 30, and the heat generated in the semiconductor laser element 30 is sub- The heat is transmitted to the heat sink 10 via the mount 320 and is radiated by the heat sink 10.
  • the electrical resistance value of the semiconductor laser module 301 as a whole can be reduced and the heat dissipation can be reduced. It becomes possible to improve. Therefore, deterioration of the output characteristics of the semiconductor laser element 30 can be prevented, and efficient output characteristics can be maintained.
  • a lower solder layer 50 made of, for example, Au—Sn solder is deposited on a predetermined submount region of the upper surface 11 of the heat sink 10. . Then, as shown in FIG. 9B, the submount 320 is disposed on the lower solder layer 50 on the submount region of the heat sink 10.
  • an upper solder layer 360 made of, for example, Au—Sn solder is deposited on a predetermined element region on the upper surface of the submount 320. Then, as shown in FIG. 9D, the upper solder layer 360 is formed on the upper solder layer 360.
  • the semiconductor laser element 30 is disposed in At this time, the semiconductor laser element 30 is arranged so that an electrode (not shown) on the bottom surface of the semiconductor laser element 30 is in contact with the upper solder layer 360.
  • the lower solder layer 50 is heated by heating the heat sink 10, and the upper solder layer 360 is heated via the submount 320.
  • the submount 320 is fixed to the heat sink 10 by the lower solder layer 50, and the semiconductor laser element 30 is fixed to the submount 20 by the upper solder layer 360.
  • the auxiliary conductive layer 370 is formed on the side surface 322 of the submount 320 so as to electrically connect the upper solder layer 360 and the heat sink 10.
  • the auxiliary conductive layer 370 is formed of, for example, solder having a melting point lower than that of the lower solder layer 50 or the upper solder layer 360, such as Sn—Ag—Cu solder.
  • solder having a lower melting point than the lower solder layer 50 and the upper solder layer 360 is used in order to avoid the lower solder layer 50 and the upper solder layer 360 from being melted again.
  • the semiconductor laser module 301 as shown in FIG. 8 is completed.
  • the current flows from the heat sink 10 to the semiconductor laser element 30.
  • the direction in which the current flows may be reversed. That is, it can be configured such that a current is supplied from the bonding wire 40 (see FIG. 1) to the semiconductor laser element 30 and the current flows from the semiconductor laser element 30 to the heat sink 10 through the conductive portion.
  • FIG. 10 is a perspective view schematically showing a semiconductor laser module 401 including a plurality of semiconductor laser elements 430.
  • the present invention can also be applied to a semiconductor laser module 401 as shown in FIG.
  • the laser diode bar 432 is disposed above the submount 20.
  • the laser diode bar 432 includes a plurality of semiconductor laser elements 430 arranged at regular intervals along the horizontal direction. Since such a semiconductor laser module 401 includes a plurality of semiconductor laser elements 430, a higher output than the semiconductor laser modules in the first to fourth embodiments described above can be realized.
  • the semiconductor laser module 401 provided with such a laser diode bar 432 has a high output, the amount of heat generated is very large. If the submount 20 does not have sufficient heat dissipation, the laser diode bar 432 is bent during use due to the difference between the thermal expansion coefficient of the submount 20 and the thermal expansion coefficient of the laser diode bar 432, and a plurality of semiconductor laser elements 430 are used. The height of the emission point from will change. When the semiconductor laser module 401 is applied to a laser processing apparatus or the like, the light emitted from the semiconductor laser element 430 is collected and used by an optical component such as a lens, but the height of the emission point changes. Then, adjustment of the optical system for condensing becomes very difficult.
  • the electrical resistance of the entire semiconductor laser module 401 can be reduced by the conductive portion (upper solder layer 60), and gallium arsenide (GaAs) constituting the semiconductor laser element 430 and the thermal expansion coefficient. Since the submount 20 can be made of a copper-diamond composite material that has almost no difference between them, deformation due to thermal expansion can be reduced, and the deviation of the position of the emission point from the plurality of semiconductor laser elements 430 can be minimized. Can be.
  • Example 1 a semiconductor laser module having the structure shown in FIG. 2 was prepared.
  • a heat sink made of copper was used as the heat sink 10
  • a submount made of a copper-diamond composite material was used as the submount 20.
  • the semiconductor laser element 30 a semiconductor laser diode made of gallium arsenide (GaAs) was used.
  • GaAs gallium arsenide
  • As the lower solder layer 50 and the upper solder layer 60 Au—Sn solder was used.
  • Comparative Example 1 and Comparative Example 2 semiconductor laser modules having the structure shown in FIG. 11 were prepared.
  • a heat sink made of copper was used as the heat sink 510, and a semiconductor laser diode made of gallium arsenide (GaAs) was used as the semiconductor laser element 530.
  • Au—Sn solder was used as the solder layer 550 for fixing the submount 520 to the heat sink 510 and the solder layer 560 for fixing the semiconductor laser element 530 to the submount 520.
  • a submount made of CuW was used as the submount 520
  • Comparative Example 2 a submount made of a copper-diamond composite material was used as in Example 1.
  • Comparative Example 1 and Comparative Example 2 the upper solder layer 60 extending to the heat sink 10 is not provided as shown in FIG. 2, and the current supplied to the semiconductor laser element 530 passes from the heat sink 510 through the submount 520. The semiconductor laser element 530 is supplied.
  • FIG. 12 is a graph showing the relationship between the current flowing through the semiconductor laser elements according to Example 1 and Comparative Example 1 and the optical output thereof
  • FIG. 13 flows through the semiconductor laser elements according to Example 1 and Comparative Example 1. It is a graph which shows the relationship between an electric current and an operating voltage.
  • FIG. 14 is a graph showing the relationship between the current flowing through the semiconductor laser elements according to Example 1 and Comparative Example 2 and the optical output thereof
  • FIG. 15 flows through the semiconductor laser elements according to Example 1 and Comparative Example 2. It is a graph which shows the relationship between an electric current and an operating voltage.
  • the optical output of the semiconductor laser module according to Comparative Example 1 is the same as that of the semiconductor laser module according to Example 1 when the same current is passed. It is lower than the light output.
  • Comparative Example 1 current flows through the submount 520 made of CuW having a higher electrical resistivity than that of the upper solder layer 60 in Example 1, so that the submount 520 generates heat.
  • the semiconductor laser device This is thought to be due to the rise in temperature.
  • the light output does not decrease even when the current exceeds 15 A. This is because the heat dissipation of the semiconductor laser module according to Example 1 is higher than that of the semiconductor laser module according to Comparative Example 1. It shows that it is improving.
  • the electrical resistivity of the copper-diamond composite material used as the submount of the semiconductor laser module according to Example 1 is 10 ⁇ 4 ⁇ m, and CuW used as the submount of the semiconductor laser module according to Comparative Example 1 13, the semiconductor laser module operating voltage according to Example 1 is substantially the same as the operating voltage of the semiconductor laser module according to Comparative Example 1, as shown in FIG. 13. That is, the semiconductor laser module according to Example 1 can maintain the electrical resistance value of the entire module equivalent to that of Comparative Example 1 even though the copper-diamond composite material is used as the submount. I can say that. This indicates that the semiconductor laser element 30 can be efficiently energized through the conductive portion by the upper solder layer 60.
  • Comparative Example 2 the same copper-diamond composite material as in Example 1 is used as the submount. However, when the same current is applied as shown in FIG. 14, the semiconductor laser according to Comparative Example 2 is used. The optical output of the module is lower than the optical output of the semiconductor laser module according to the first embodiment. This is because in Comparative Example 2, current flows through the submount 520 made of a copper-diamond composite material having a higher electrical resistivity than the upper solder layer 60 in Example 1, so that the submount 520 generates heat. This is probably because the temperature of the semiconductor laser element has increased. Further, as shown in FIG.
  • the operating voltage of the semiconductor laser module according to Example 1 is lower than the optical output of the semiconductor laser module according to Comparative Example 2, and the electrical resistance value of the entire module can be reduced. It can be said that. This indicates that the semiconductor laser element 30 can be efficiently energized through the conductive portion including the upper solder layer 60.
  • the present invention can be suitably used for a semiconductor laser module having a submount.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Semiconductor Lasers (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

半導体レーザモジュール1は、導電性を有するヒートシンク10と、ヒートシンク10の上方に配置されるサブマウント20と、サブマウント20の上方に配置される半導体レーザ素子30と、ヒートシンク10とサブマウント20との間に配置される下側はんだ層50と、半導体レーザ素子30及びヒートシンク10に電気的に接続される上側はんだ層60とを備えている。この上側はんだ層60は、サブマウント20の電気抵抗率よりも低い電気抵抗率を有しており、サブマウント20の表面21,22に沿ってヒートシンク10まで延びている。

Description

半導体レーザモジュール及びその製造方法
 本発明は、半導体レーザモジュール及びその製造方法に係り、特にサブマウントを有する半導体レーザモジュール及びその製造方法に関するものである。
 近年、半導体レーザを励起光源とし、希土類添加ファイバを増幅媒質として用いるファイバレーザの研究開発が進んでいる。このようなファイバレーザの励起光源としては、例えばガリウムヒ素(GaAs)系の材料からなる高出力の半導体レーザダイオード(LD)が用いられる。近年では、ファイバレーザの高出力化が進んでおり、これに伴ってレーザダイオードの高出力化も強く求められている。例えば、1つのレーザダイオードチップに対して10Wを超える出力が要求されたり、場合によっては20W近い出力が要求されたりしている。
 このようなレーザダイオードの高出力化に伴って、レーザダイオードからの発熱量も大きくなっており、レーザダイオード自身の発熱でレーザダイオードの特性が悪化してしまうことが問題となっている。例えば、15Wで出力しているときのレーザダイオードの電気-光変換効率が60%であると仮定すると、レーザダイオードから10Wもの熱量が発生することとなる。
 一般的に、レーザダイオードはサブマウントと呼ばれる板材の上に実装され、サブマウントと一体となったモジュールの形態で使用される。したがって、上述したレーザダイオードの高出力化に伴う発熱によってレーザダイオードの特性が悪化することを避けるためには、熱伝導率が高く放熱性の高いサブマウントが必要とされる。
 また、レーザダイオードの熱膨張係数とサブマウントの熱膨張係数との差が大きいと、レーザダイオードをサブマウントに実装する際の熱履歴によって応力が生じてレーザダイオードの特性が悪化するおそれがある。したがって、レーザダイオードの熱膨張係数に近い熱膨張係数を有する材料でサブマウントを構成することも求められている。
 一般的に、レーザダイオードの底面にはサブマウントに接続される電極が形成されており、レーザダイオードへの通電はサブマウントを介して行われる。したがって、より効率よく高い出力を得るためには、サブマウントの放熱性を高めるだけではなく、サブマウントの電気抵抗値を低くする必要もある。
 このように、レーザダイオードの高出力化に伴い、レーザダイオードが実装されるサブマウントには、(1)高い放熱性と、(2)レーザダイオードに近い熱膨張係数と、(3)電気抵抗の低減とが求められている。
 しかしながら、上述した3つの要求を同時に満たすことのできる材料を見つけ出すことは難しい。例えば、一般的に放熱性の高い材料であるセラミックスなどをサブマウントの材料として用いれば、高い放熱性を実現することができるが、セラミックスは絶縁体であり、サブマウントの電気抵抗が非常に高くなってしまう。
 また、特許文献1には、サブマウントの材料としてシリコンを用いることが開示されている(例えば、段落[0024]参照)。このようにシリコンを用いることでサブマウントの電気抵抗を低くすることができるが、シリコンの熱伝導率は150W/mKとあまり高くないため、高い放熱性を実現することができない。
 さらに、特許文献2には、レーザチップの直下に配置するサブマウントの材料としてCuWを用いる実施形態が開示されている(段落[0028]、[0029]、図7参照)。CuWは、電気抵抗率が10-8Ωmと低く、熱伝導率が170W/mKとシリコンよりも高いうえに、熱膨張係数も約6.5ppm/Kと半導体レーザダイオードの材料としても用いられるガリウムヒ素の熱膨張係数(約5.9ppm/K)に近いため、高出力半導体レーザ用のサブマウントの材料として広く用いられている。しかしながら、20Wを超える出力となると、CuWよりも高い放熱性を有する材料が求められる。
 この特許文献2には、サブマウントの放熱性を向上させるために、ダイヤモンドサブマウントや炭化シリコン(SiC)サブマウントなどを積層する実施形態が開示されている。しかしながら、これらのサブマウントは、電気抵抗率が高く(例えば10-4Ωm)、これらのサブマウントを介してレーザダイオードに通電すると、レーザモジュール全体の電気抵抗値が高くなり、効率の良い光出力を得ることができない。
 また、特許文献3には、サブマウントとして気相成長ダイヤモンドやcBN(立方晶窒化ホウ素)を用いる実施形態が開示されている(段落[0055]~[0057]、図7参照)。しかしながら、気相成長ダイヤモンドとcBNのいずれも電気抵抗率が高く、これらの材料からなるサブマウントでは、特許文献2のサブマウントと同様にレーザモジュール全体の電気抵抗値が高くなり、効率の良い光出力を得ることができない。
特開2005-026333号公報 特開平11-307875号公報 特開平7-176820号公報
 本発明は、このような従来技術の問題点に鑑みてなされたもので、効率の良い出力特性を維持することができる半導体レーザモジュールを提供することを第1の目的とする。
 また、本発明は、効率の良い出力特性を維持することができる半導体レーザモジュールを簡単な工程で製造することができる半導体レーザモジュールの製造方法を提供することを第2の目的とする。
 本発明の第1の態様によれば、電気抵抗値の低減と放熱性の向上とを両立することにより良好な出力特性を維持することができる半導体レーザモジュールが提供される。この半導体レーザモジュールは、導電性を有するヒートシンクと、上記ヒートシンクの上方に配置されるサブマウントと、上記サブマウントの上方に配置される半導体レーザ素子と、上記半導体レーザ素子と上記ヒートシンクとに電気的に接続される導電部とを備えている。この導電部は、上記サブマウントの表面に沿って上記ヒートシンクまで延び、上記サブマウントの電気抵抗値よりも低い電気抵抗率を有している。
 このように、導電部の電気抵抗率がサブマウントの電気抵抗率よりも低いので、半導体レーザ素子に供給される電流は、ヒートシンクから導電部を通って半導体レーザ素子に流れる。したがって、サブマウントの電気抵抗率を低くする必要がなく、電気抵抗率の低い材料を使用しなくてもよい。このため、高い放熱性に着目してサブマウントの材料を選択することができる。このように放熱性の高い材料をサブマウントに選択することにより、半導体レーザ素子で発生した熱は、サブマウントを介してヒートシンクに伝達され、ヒートシンクにより放熱される。本発明によれば、半導体レーザ素子とヒートシンクとの間の電流の経路と熱の経路とを別々にすることができるので、半導体レーザモジュール全体としての電気抵抗値を低減することが可能となり、効率の良い出力特性を維持することができる。
 また、半導体レーザ素子の放熱性を向上し、出力特性の悪化を防止するためには、上記サブマウントの熱伝導率が上記導電部の熱伝導率よりも高いことが好ましい。
 上記半導体レーザ素子から上記サブマウントの表面に沿って上記ヒートシンクまで延びる上側はんだ層により上記導電部を形成してもよい。この場合において、上記サブマウントの上面の縁部の少なくとも一部を丸めてもよく、あるいは面取りしてもよい。
 上記導電部は、上記半導体レーザ素子と電気的に接続される上側はんだ層と、上記サブマウントと上記ヒートシンクとの間に形成された下側はんだ層と、上記サブマウントの少なくとも側面に形成され、上記上側はんだ層と上記下側はんだ層とを電気的に接続するめっき層とを含んでいてもよい。
 あるいは、上記導電部は、上記半導体レーザ素子と電気的に接続される上側はんだ層と、上記上側はんだ層と上記ヒートシンクとを電気的に接続する補助導電層とを含んでいてもよい。この場合において、上記補助導電層の融点は上記上側はんだ層の融点よりも低いことが好ましい。
 本発明の第2の態様によれば、効率の良い出力特性を維持することができる半導体レーザモジュールを簡単な工程で製造することができる半導体レーザモジュールの製造方法が提供される。この方法は、導電性を有するヒートシンクと、上記ヒートシンクの上方に配置されるサブマウントと、上記サブマウントの上方に配置される半導体レーザ素子とを有する半導体レーザモジュールを製造するために用いられる。この方法では、上記サブマウントの電気抵抗率よりも低い電気抵抗率を有する導電部を、上記半導体レーザ素子から上記サブマウントの表面に沿って上記ヒートシンクまで延びるように形成して上記半導体レーザ素子と上記ヒートシンクとを電気的に接続する。
 このように、サブマウントの電気抵抗率よりも低い電気抵抗を有する導電部を、半導体レーザ素子からサブマウントの表面に沿ってヒートシンクまで延びるように形成するため、半導体レーザ素子に供給される電流は、ヒートシンクから導電部を通って半導体レーザ素子に流れることとなる。したがって、サブマウントの電気抵抗率を低くする必要がなく、電気抵抗率の低い材料を使用しなくてもよい。このため、高い放熱性に着目してサブマウントの材料を選択することができる。このように放熱性の高い材料をサブマウントに選択することにより、半導体レーザ素子で発生した熱は、サブマウントを介してヒートシンクに伝達され、ヒートシンクにより放熱される。本発明により製造された半導体レーザモジュールでは、半導体レーザ素子とヒートシンクとの間の電流の経路と熱の経路とを別々にすることができるので、半導体レーザモジュール全体としての電気抵抗値を低減することが可能となる。したがって、効率の良い出力特性を維持することができる半導体レーザモジュールを簡単な工程で製造することができる。
 上記導電部の形成は、上記半導体レーザ素子に接続される上側はんだ層を上記サブマウント上に形成し、上記上側はんだ層を加熱しつつ上記半導体レーザ素子を上記サブマウントに対して押圧して、加熱により溶融した上記上側はんだ層を上記サブマウントの下端まで流すことにより行ってもよい。この場合において、上記上側はんだ層の加熱は、上記ヒートシンクを加熱することにより行ってもよい。また、上側はんだ層をサブマウントの下端まで流れ落ちやすくするためには、上記サブマウントの上面の縁部の少なくとも一部を丸める又は面取りすることが好ましい。
 上記導電部の形成は、上記ヒートシンクと上記サブマウントとの間に下側はんだ層を形成し、上記サブマウントの少なくとも側面にめっき層を形成し、上記めっき層が上記下側はんだ層に電気的に接続されるように上記サブマウントを上記下側はんだ層上に配置し、上記めっき層と上記半導体レーザ素子とに電気的に接続される上側はんだ層を形成することにより行ってもよい。
 あるいは、上記導電部の形成は、上記ヒートシンクと上記サブマウントとの間に下側はんだ層を形成し、上記半導体レーザ素子と電気的に接続される上側はんだ層を上記サブマウント上に形成し、上記上側はんだ層と上記ヒートシンクとを電気的に接続する補助導電層を形成することにより行ってもよい。この場合において、上記補助導電層の融点が上記上側はんだ層の融点よりも低いことが好ましい。
 本発明によれば、導電部の電気抵抗率がサブマウントの電気抵抗率よりも低いので、半導体レーザ素子に供給される電流は、ヒートシンクから導電部を通って半導体レーザ素子に流れる。したがって、サブマウントの電気抵抗率を低くする必要がなく、電気抵抗率の低い材料を使用しなくてもよい。このため、高い放熱性に着目してサブマウントの材料を選択することができる。このように放熱性の高い材料をサブマウントに選択することにより、半導体レーザ素子で発生した熱は、サブマウントを介してヒートシンクに伝達され、ヒートシンクにより放熱される。本発明によれば、半導体レーザ素子とヒートシンクとの間の電流の経路と熱の経路とを別々にすることができるので、半導体レーザモジュール全体としての電気抵抗値を低減することが可能となり、効率の良い出力特性を維持することができる。
図1は、本発明の第1の実施形態における半導体レーザモジュールを模式的に示す斜視図である。 図2は、図1の半導体レーザモジュールの断面図である。 図3は図2の半導体レーザモジュールにおける電流と熱の経路を示す模式図である。 図4Aは、図1の半導体レーザモジュールの製造工程を示す断面図である。 図4Bは、図1の半導体レーザモジュールの製造工程を示す断面図である。 図4Cは、図1の半導体レーザモジュールの製造工程を示す断面図である。 図4Dは、図1の半導体レーザモジュールの製造工程を示す断面図である。 図4Eは、図1の半導体レーザモジュールの製造工程を示す断面図である。 図4Fは、図1の半導体レーザモジュールの製造工程を示す断面図である。 図5は、本発明の第2の実施形態における半導体レーザモジュールを模式的に示す断面図である。 図6は、本発明の第3の実施形態における半導体レーザモジュールを模式的に示す断面図である。 図7Aは、図6の半導体レーザモジュールの製造工程を示す断面図である。 図7Bは、図6の半導体レーザモジュールの製造工程を示す断面図である。 図7Cは、図6の半導体レーザモジュールの製造工程を示す断面図である。 図7Dは、図6の半導体レーザモジュールの製造工程を示す断面図である。 図8は、本発明の第4の実施形態における半導体レーザモジュールを模式的に示す断面図である。 図9Aは、図8の半導体レーザモジュールの製造工程を示す断面図である。 図9Bは、図8の半導体レーザモジュールの製造工程を示す断面図である。 図9Cは、図8の半導体レーザモジュールの製造工程を示す断面図である。 図9Dは、図8の半導体レーザモジュールの製造工程を示す断面図である。 図10は、本発明の他の実施形態における半導体レーザモジュールを模式的に示す斜視図である。 図11は、比較例1及び比較例2に係る半導体レーザモジュールを模式的に示す断面図である。 図12は、実施例1と比較例1に係る半導体レーザモジュールに流れる電流とその光出力との関係を示すグラフである。 図13は、実施例1と比較例1に係る半導体レーザモジュールに流れる電流と動作電圧との関係を示すグラフである。 図14は、実施例1と比較例2に係る半導体レーザモジュールに流れる電流とその光出力との関係を示すグラフである。 図15は、実施例1と比較例2に係る半導体レーザモジュールに流れる電流と動作電圧との関係を示すグラフである。
 以下、本発明に係る半導体レーザモジュールの実施形態について図1から図15を参照して詳細に説明する。なお、図1から図15において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。また、図1から図15においては、各構成要素の縮尺や寸法が誇張されて示されている場合や一部の構成要素が省略されている場合がある。
 図1は、本発明の第1の実施形態における半導体レーザモジュール1を模式的に示す斜視図である。図1に示すように、本実施形態における半導体レーザモジュール1は、例えば銅などの熱伝導率が高く導電性を有する材料からなるヒートシンク10と、ヒートシンク10上に配置されるサブマウント20と、サブマウント20上に実装される半導体レーザ素子(レーザダイオード)30と、半導体レーザ素子30とリード(図示せず)とを接続し、半導体レーザ素子30からの電流が流れるボンディングワイヤ40とを有している。半導体レーザ素子30は、例えばガリウムヒ素(GaAs)からなる高出力の半導体レーザダイオードにより構成される。サブマウント20は、例えば銅-ダイヤモンド複合材料(CuC)により構成される。この銅-ダイヤモンド複合材料は、Cuの中にダイヤモンド塊が分散したものであり、その熱膨張係数は約6.0ppm/Kである。なお、本実施形態では、ヒートシンク10は接地されている。
 図2は、図1の半導体レーザモジュール1の断面図である。図2に示すように、サブマウント20とヒートシンク10との間には、例えばAu-Snはんだからなる下側はんだ層50が形成されている。また、半導体レーザ素子30とサブマウント20との間には、例えばAu-Snはんだからなる上側はんだ層60が形成されている。この上側はんだ層60は、半導体レーザ素子30とサブマウント20との間からサブマウント20の表面に沿ってヒートシンク10の上面11まで延びている。換言すれば、上側はんだ層60は、サブマウント20の上面21と側面22を覆うように形成されている。半導体レーザ素子30の底面には電極(図示せず)が形成されており、上側はんだ層60によって半導体レーザ素子30の電極とヒートシンク10とが互いに電気的に接続される。このように、本実施形態における上側はんだ層60は、半導体レーザ素子30からサブマウント20の表面(上面21及び側面22)に沿ってヒートシンク10まで延びる導電部を構成している。なお、この導電部は、半導体レーザ素子30の電極と電気的に接続されていれば、半導体レーザ素子30とサブマウント20との間に存在していなくてもよい。
 ここで、サブマウント20及び上側はんだ層60の材料は、サブマウント20の熱伝導率が上側はんだ層60の熱伝導率よりも高く、上側はんだ層60の電気抵抗率がサブマウント20の電気抵抗率よりも低くなるように選択される。本実施形態では、上述したように、サブマウント20の材料として銅-ダイヤモンド複合材料を用い、上側はんだ層60の材料としてAu-Snはんだを用いる。
 このように、上側はんだ層60の電気抵抗率がサブマウント20の電気抵抗率よりも低いので、図3に示すように、半導体レーザ素子30に供給される電流は、ヒートシンク10から上側はんだ層60を通って半導体レーザ素子30に流れる。このため、上述したように、サブマウント20として熱伝導率の高い材料を用いることができ、電気抵抗率の低い材料を選択する必要がない。例えば、熱伝導率が高ければ電気的絶縁体であってもサブマウント20として用いることができる。
 このように、サブマウント20の熱伝導率を上側はんだ層60の熱伝導率よりも高くすることができるので、半導体レーザ素子30で発生した熱は、サブマウント20を介してヒートシンク10に伝達され、ヒートシンク10により放熱される。このため、半導体レーザ素子30とヒートシンク10との間の電流の経路と熱の経路とを別々にすることができ、半導体レーザモジュール1全体としての電気抵抗値を低減しつつ、放熱性を向上することが可能となる。したがって、半導体レーザ素子30の出力特性の悪化を防止することができ、効率の良い出力特性を維持することができる。
 次に、このような半導体レーザモジュール1の製造方法について図4Aから図4Fを参照して説明する。まず、図4Aに示すように、ヒートシンク10の上面11の所定のサブマウント領域に例えばAu-Snはんだからなる下側はんだ層50を蒸着する。そして、図4Bに示すように、ヒートシンク10上の下側はんだ層50の上にサブマウント20を配置する。
 次に、図4Cに示すように、サブマウント20の上面21の所定の素子領域に例えばAu-Snはんだからなる上側はんだ層60を蒸着する。このときの上側はんだ層60の厚さは、図2に示す完成時の厚さよりも厚くなっている。そして、図4Dに示すように、この上側はんだ層60上に半導体レーザ素子30を配置する。このとき半導体レーザ素子30の底面の電極(図示せず)が上側はんだ層60に接触するように半導体レーザ素子30を配置する。
 次に、図4Eに示すように、ヒートシンク10を加熱することによって下側はんだ層50を加熱するとともに、サブマウント20を介して上側はんだ層60を加熱する。この加熱により下側はんだ層50及び上側はんだ層60を溶融させる。このとき、半導体レーザ素子30をサブマウント20に対して押圧して、下側はんだ層50によってサブマウント20をヒートシンク10に固定し、上側はんだ層60によって半導体レーザ素子30をサブマウント20に固定する。
 ここで、半導体レーザ素子30をサブマウント20に対して押圧すると、図4Fに示すように、溶融した上側はんだ層60が周囲に広がり、サブマウント20の表面(上面21及び側面22)を伝って流れ落ちる。最終的に、溶融した上側はんだ層60は、サブマウント20の下端、すなわちヒートシンク10の上面11まで流れ落ちる。この流れ落ちた上側はんだ層60によって、半導体レーザ素子30からサブマウント20の表面(上面21及び側面22)に沿ってヒートシンク10まで延びる導電部が形成されることとなる。これにより、図1に示すような半導体レーザモジュール1が完成する。
 図4Aから図4Fに示す例では、下側はんだ層50と上側はんだ層60とを同時に加熱することにより、サブマウント20に対する半導体レーザ素子30の固定と、ヒートシンク10に対するサブマウント20の固定とを同時に行っているが、サブマウント20をヒートシンク10に固定した後に、半導体レーザ素子30をサブマウント20に固定してもよい。
 あるいは、半導体レーザ素子30をサブマウント20に固定した後に、これらをヒートシンク10に固定してもよい。この場合には、まず、サブマウント20上に蒸着した上側はんだ層60上に半導体レーザ素子30を配置し、上側はんだ層60を加熱して溶融する。半導体レーザ素子30をサブマウント20に対して押圧して、溶融した上側はんだ層60をサブマウント20の表面(上面21及び側面22)に沿ってサブマウント20の下端まで流し、この状態で半導体レーザ素子30とサブマウント20とを固定する。その後、ヒートシンク10上に蒸着した下側はんだ層50上にサブマウント20及び半導体レーザ素子30を配置し、下側はんだ層50を加熱することでヒートシンク10とサブマウント20とを固定する。この場合には、下側はんだ層50の融点は上側はんだ層60の融点よりも低いことが好ましい。
 図5は、本発明の第2の実施形態における半導体レーザモジュール101を模式的に示す断面図である。本実施形態では、サブマウント20の上面21の縁部23が丸められている。このように、サブマウント20の上面21の縁部23を丸めることにより、サブマウント20上で溶融したはんだ層が上面21から側面22に流れ落ちやすくなるので、上側はんだ層60により導電部を形成することがより容易になる。なお、図5では、サブマウント20の上面21の縁部23の全体が丸められているように示されているが、サブマウント20の上面21の縁部23の少なくとも一部を丸めることとしてもよい。また、サブマウント20の上面21の縁部23の少なくとも一部を面取りしても同様の効果が得られる。
 図6は、本発明の第3の実施形態における半導体レーザモジュール201を模式的に示す断面図である。図6に示すように、本実施形態における半導体レーザモジュール201は、例えば銅-ダイヤモンド複合材料により構成されるサブマウント220を有している。このサブマウント220の上面及び側面には例えばNi/Auめっきが施され、めっき層221が形成されている。
 半導体レーザ素子30とサブマウント220との間には、例えばAu-Snはんだからなる上側はんだ層260が形成されている。第1の実施形態の上側はんだ層60とは異なり、この上側はんだ層260は、サブマウント220の上面にのみ形成されており、ヒートシンク10の上面11まで延びていない。
 上側はんだ層260はサブマウント220のめっき層221と電気的に接続されており、サブマウント220のめっき層221はヒートシンク10上に形成された下側はんだ層50と電気的に接続される。したがって、本実施形態における上側はんだ層260、サブマウント220のめっき層221、及び下側はんだ層50は、半導体レーザ素子30からサブマウント220の表面に沿ってヒートシンク10まで延びる導電部を構成している。サブマウント220の材料及び導電部を構成する材料は、サブマウント220の熱伝導率が導電部の熱伝導率よりも高く、導電部の電気抵抗率がサブマウント220の電気抵抗率よりも低くなるように選択される。
 このような構成により、半導体レーザ素子30に供給される電流は、ヒートシンク10から下側はんだ層50、めっき層221、及び上側はんだ層260を通って半導体レーザ素子30に流れ、半導体レーザ素子30で発生した熱は、サブマウント220を介してヒートシンク10に伝達され、ヒートシンク10により放熱される。このように、半導体レーザ素子30とヒートシンク10との間の電流の経路と熱の経路とを別々にすることができるので、半導体レーザモジュール201全体としての電気抵抗値を低減しつつ、放熱性を向上することが可能となる。したがって、半導体レーザ素子30の出力特性の悪化を防止することができ、良好な出力特性を維持することができる。なお、めっき層221の厚さが5μm程度あれば十分な効果が期待できるが、めっき層221の厚さは5μm以下であってもよい。
 上述した実施形態では、サブマウント220の上面と側面にめっき層221を形成した例を説明したが、サブマウント220の底面にも同様のめっきを施してもよい。また、めっき層221が上側はんだ層260及び下側はんだ層50にそれぞれ電気的に接続されているのであれば、サブマウント220の側面にのみめっき層221を形成してもよい。
 このような半導体レーザモジュール201を製造する際には、まず、図7Aに示すように、ヒートシンク10の上面11の所定のサブマウント領域に例えばAu-Snはんだからなる下側はんだ層50を蒸着する。そして、図7Bに示すように、上面及び側面にめっき層221が形成されたサブマウント220をヒートシンク10のサブマウント領域上の下側はんだ層50の上に配置する。このとき、めっき層221が下側はんだ層50に電気的に接続されるようにサブマウント220を下側はんだ層50上に配置する。
 次に、図7Cに示すように、サブマウント220の上面の所定の素子領域に例えばAu-Snはんだからなる上側はんだ層260を蒸着する。このとき、上側はんだ層260がめっき層221及び半導体レーザ素子30に電気的に接続されるように上側はんだ層260を形成する。その後、図7Dに示すように、上側はんだ層260上に半導体レーザ素子30を配置する。このとき半導体レーザ素子30の底面の電極(図示せず)が上側はんだ層260に接触するように半導体レーザ素子30を配置する。
 そして、ヒートシンク10を加熱することによって下側はんだ層50を加熱するとともに、サブマウント220を介して上側はんだ層260を加熱する。これにより、下側はんだ層50によってサブマウント220をヒートシンク10に固定し、上側はんだ層260によって半導体レーザ素子30をサブマウント20に固定する。このようにして、図6に示すような半導体レーザモジュール201が完成する。
 図8は、本発明の第4の実施形態における半導体レーザモジュール301を模式的に示す断面図である。図8に示すように、本実施形態における半導体レーザモジュール301は、例えば銅などの熱伝導率が高く導電性を有する材料からなるヒートシンク10と、ヒートシンク10上に配置されるサブマウント320と、サブマウント320上に実装される半導体レーザ素子30とを有している。サブマウント320は、例えば銅-ダイヤモンド複合材料により構成される。
 サブマウント320とヒートシンク10との間には、例えばAu-Snはんだからなる下側はんだ層50が形成されている。また、半導体レーザ素子30とサブマウント320との間には、例えばAu-Snはんだからなる上側はんだ層360が形成されている。この上側はんだ層360は、サブマウント320の上面にのみ形成されており、ヒートシンク10の上面11まで延びていない。
 また、サブマウント320の側面322を覆うように、補助導電層370が形成されている。例えば、この補助導電層370は、下側はんだ層50や上側はんだ層360よりも融点の低いはんだ、例えばSn-Ag-Cuはんだにより構成することができる。なお、この補助導電層370を形成する方法は、Sn-Ag-Cuはんだに限られるものではなく、銀ペーストの塗布やIn系のはんだにより補助導電層370を形成してもよい。
 補助導電層370は、上側はんだ層360及びヒートシンク10と電気的に接続される。したがって、本実施形態における上側はんだ層360及び補助導電層370は、半導体レーザ素子30からサブマウント320の表面に沿ってヒートシンク10まで延びる導電部を構成している。サブマウント320及び導電部を構成する材料は、サブマウント320の熱伝導率が導電部の熱伝導率よりも高く、導電部の電気抵抗率がサブマウント320の電気抵抗率よりも低くなるように選択される。
 このような構成により、半導体レーザ素子30に供給される電流は、ヒートシンク10から補助導電層370及び上側はんだ層360を通って半導体レーザ素子30に流れ、半導体レーザ素子30で発生した熱は、サブマウント320を介してヒートシンク10に伝達され、ヒートシンク10により放熱される。このように、半導体レーザ素子30とヒートシンク10との間の電流の経路と熱の経路とを別々にすることができるので、半導体レーザモジュール301全体としての電気抵抗値を低減しつつ、放熱性を向上することが可能となる。したがって、半導体レーザ素子30の出力特性の悪化を防止することができ、効率の良い出力特性を維持することができる。
 このような半導体レーザモジュール301を製造する際には、まず、図9Aに示すように、ヒートシンク10の上面11の所定のサブマウント領域に例えばAu-Snはんだからなる下側はんだ層50を蒸着する。そして、図9Bに示すように、サブマウント320をヒートシンク10のサブマウント領域上の下側はんだ層50の上に配置する。
 次に、図9Cに示すように、サブマウント320の上面の所定の素子領域に例えばAu-Snはんだからなる上側はんだ層360を蒸着した後、図9Dに示すように、この上側はんだ層360上に半導体レーザ素子30を配置する。このとき半導体レーザ素子30の底面の電極(図示せず)が上側はんだ層360に接触するように半導体レーザ素子30を配置する。
 そして、ヒートシンク10を加熱することによって下側はんだ層50を加熱するとともに、サブマウント320を介して上側はんだ層360を加熱する。これにより、下側はんだ層50によってサブマウント320をヒートシンク10に固定し、上側はんだ層360によって半導体レーザ素子30をサブマウント20に固定する。
 その後、上側はんだ層360とヒートシンク10とを電気的に接続するようにサブマウント320の側面322に補助導電層370を形成する。この補助導電層370は、例えば下側はんだ層50や上側はんだ層360よりも融点の低いはんだ、例えばSn-Ag-Cuはんだにより形成する。このように、下側はんだ層50や上側はんだ層360よりも融点の低いはんだを用いるのは、下側はんだ層50や上側はんだ層360が再度溶融することを避けるためである。このようにして、図8に示すような半導体レーザモジュール301が完成する。
 上述した実施形態においては、ヒートシンク10から半導体レーザ素子30に電流が流れるものとして説明したが、電流が流れる方向が逆であってもよい。すなわち、ボンディングワイヤ40(図1参照)から半導体レーザ素子30に電流を供給し、半導体レーザ素子30から導電部を通ってヒートシンク10に電流が流れるように構成することもできる。
 上述した実施形態における半導体レーザモジュールは単一の半導体レーザ素子30を含むものであるが、本発明は、複数の半導体レーザ素子を含む半導体レーザモジュールにも適用できるものである。例えば、図10は、複数の半導体レーザ素子430を含む半導体レーザモジュール401を模式的に示す斜視図であり、本発明は図10に示すような半導体レーザモジュール401にも適用できるものである。図10に示す半導体レーザモジュール401においては、サブマウント20の上方にレーザダイオードバー432が配置されている。このレーザダイオードバー432は、水平方向に沿って一定間隔で配置された複数の半導体レーザ素子430を含んでいる。このような半導体レーザモジュール401は、複数の半導体レーザ素子430を含んでいるため、上述した第1~第4の実施形態における半導体レーザモジュールよりも高い出力を実現することができる。
 このようなレーザダイオードバー432を備えた半導体レーザモジュール401は高出力であるために、その発熱量も非常に大きい。サブマウント20が十分な放熱性を有していないとすると、サブマウント20の熱膨張係数とレーザダイオードバー432の熱膨張係数の差によって使用時にレーザダイオードバー432が撓み、複数の半導体レーザ素子430からの出射点の高さが変化してしまうこととなる。半導体レーザモジュール401をレーザ加工装置などに応用する場合には、半導体レーザ素子430から出射された光をレンズなどの光学部品で集光して使用することとなるが、出射点の高さが変化すると、集光のための光学系の調整が非常に困難になってしまう。図10に示す構成によれば、導電部(上側はんだ層60)によって半導体レーザモジュール401全体の電気抵抗を低減することができるとともに、半導体レーザ素子430を構成するガリウムヒ素(GaAs)と熱膨張係数の差がほとんどない銅-ダイヤモンド複合材料によってサブマウント20を構成することができるので、熱膨張による変形を小さくすることができ、複数の半導体レーザ素子430からの出射点の位置のずれを最小限にすることができる。
 実施例1として、図2に示す構造の半導体レーザモジュールを用意した。ヒートシンク10として銅からなるヒートシンクを用い、サブマウント20として銅-ダイヤモンド複合材料からなるサブマウントを用いた。半導体レーザ素子30としては、ガリウムヒ素(GaAs)からなる半導体レーザダイオードを用いた。下側はんだ層50及び上側はんだ層60としてはAu-Snはんだを用いた。
 比較例1及び比較例2として、図11に示す構造の半導体レーザモジュールを用意した。いずれの比較例も、実施例1と同様に、ヒートシンク510として銅からなるヒートシンクを用い、半導体レーザ素子530としてガリウムヒ素(GaAs)からなる半導体レーザダイオードを用いた。また、サブマウント520をヒートシンク510に固定するはんだ層550及び半導体レーザ素子530をサブマウント520に固定するはんだ層560としてはAu-Snはんだを用いた。比較例1ではサブマウント520としてCuWからなるサブマウントを用い、比較例2では実施例1と同様に銅-ダイヤモンド複合材料からなるサブマウントを用いた。比較例1及び比較例2では、図2に示すようにヒートシンク10に延びる上側はんだ層60は設けられておらず、半導体レーザ素子530に供給される電流は、ヒートシンク510からサブマウント520を通って半導体レーザ素子530に供給される。
 実施例1、比較例1、及び比較例2の半導体レーザモジュールを作動させて、半導体レーザ素子に流れる電流とその光出力及び動作電圧を測定した。図12は、実施例1と比較例1に係る半導体レーザ素子に流れる電流とその光出力との関係を示すグラフであり、図13は、実施例1と比較例1に係る半導体レーザ素子に流れる電流と動作電圧との関係を示すグラフである。図14は、実施例1と比較例2に係る半導体レーザ素子に流れる電流とその光出力との関係を示すグラフであり、図15は、実施例1と比較例2に係る半導体レーザ素子に流れる電流と動作電圧との関係を示すグラフである。
 図12に示すように、半導体レーザ素子に流れる電流が15Aを超える領域では、同一の電流を流した場合において、比較例1に係る半導体レーザモジュールの光出力が実施例1に係る半導体レーザモジュールの光出力よりも低下している。これは、比較例1においては、実施例1における上側はんだ層60よりも電気抵抗率の高いCuWからなるサブマウント520を電流が流れることで、サブマウント520が発熱し、その結果、半導体レーザ素子の温度が上昇したためと考えられる。実施例1に係る半導体レーザモジュールでは電流が15Aを超えても光出力が低下しておらず、これは、実施例1に係る半導体レーザモジュールの放熱性が比較例1に係る半導体レーザモジュールに比べて向上していることを示している。
 実施例1に係る半導体レーザモジュールのサブマウントとして用いられている銅-ダイヤモンド複合材料の電気抵抗率は10-4Ωmであり、比較例1に係る半導体レーザモジュールのサブマウントとして用いられているCuWの電気抵抗率よりも高いにもかかわらず、図13に示すように、実施例1に係る半導体レーザモジュール動作電圧は、比較例1に係る半導体レーザモジュールの動作電圧とほぼ同一となっている。すなわち、実施例1に係る半導体レーザモジュールは、サブマウントとして銅-ダイヤモンド複合材料を用いているにもかかわらず、モジュール全体としての電気抵抗値を比較例1のものと同等に維持できていると言える。これは、上側はんだ層60による導電部を介して半導体レーザ素子30への通電が効率よくできていることを示すものである。
 また、比較例2では、サブマウントとして実施例1と同じ銅-ダイヤモンド複合材料を用いているが、図14に示すように、同一の電流を流した場合においては、比較例2に係る半導体レーザモジュールの光出力が実施例1に係る半導体レーザモジュールの光出力よりも低下している。これは、比較例2においては、実施例1における上側はんだ層60よりも電気抵抗率の高い銅-ダイヤモンド複合材料からなるサブマウント520を電流が流れることで、サブマウント520が発熱し、その結果、半導体レーザ素子の温度が上昇したためと考えられる。また、図15に示すように、実施例1に係る半導体レーザモジュールの動作電圧は、比較例2に係る半導体レーザモジュールの光出力よりも低くなっており、モジュール全体としての電気抵抗値を低減できていると言える。これは、上側はんだ層60を含む導電部を介して半導体レーザ素子30への通電が効率良くできていることを示すものである。
 以上で述べたように、実施例1に係る半導体レーザモジュールでは、電気抵抗値の低減と放熱性の向上とを両立することができ、これにより効率の良い出力特性を維持できていることがわかる。
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本発明は、サブマウントを有する半導体レーザモジュールに好適に利用できる。
  1  半導体レーザモジュール
 10  ヒートシンク
 20  サブマウント
 23  縁部
 30  半導体レーザ素子
 40  ボンディングワイヤ
 50  下側はんだ層
 60  上側はんだ層
101  半導体レーザモジュール
201  半導体レーザモジュール
220  サブマウント
221  めっき層
260  上側はんだ層
301  半導体レーザモジュール
320  サブマウント
360  上側はんだ層
370  補助導電層
401  半導体レーザモジュール
430  半導体レーザ素子
432  レーザダイオードバー

Claims (14)

  1.  導電性を有するヒートシンクと、
     前記ヒートシンクの上方に配置されるサブマウントと、
     前記サブマウントの上方に配置される半導体レーザ素子と、
     前記半導体レーザ素子と前記ヒートシンクとに電気的に接続される導電部であって、前記サブマウントの表面に沿って前記ヒートシンクまで延び、前記サブマウントの電気抵抗率よりも低い電気抵抗率を有する導電部と
    を備えた、半導体レーザモジュール。
  2.  前記サブマウントの熱伝導率は、前記導電部の熱伝導率よりも高い、請求項1に記載の半導体レーザモジュール。
  3.  前記導電部は、前記半導体レーザ素子から前記サブマウントの表面に沿って前記ヒートシンクまで延びる上側はんだ層により形成される、請求項1又は2に記載の半導体レーザモジュール。
  4.  前記サブマウントの上面の縁部の少なくとも一部は丸められている又は面取りされている、請求項3に記載の半導体レーザモジュール。
  5.  前記導電部は、
      前記半導体レーザ素子と電気的に接続される上側はんだ層と、
      前記サブマウントと前記ヒートシンクとの間に形成された下側はんだ層と、
      前記サブマウントの少なくとも側面に形成され、前記上側はんだ層と前記下側はんだ層とを電気的に接続するめっき層と
    を含む、請求項1又は2に記載の半導体レーザモジュール。
  6.  前記導電部は、
      前記半導体レーザ素子と電気的に接続される上側はんだ層と、
      前記上側はんだ層と前記ヒートシンクとを電気的に接続する補助導電層と
    を含む、請求項1又は2に記載の半導体レーザモジュール。
  7.  前記補助導電層の融点は前記上側はんだ層の融点よりも低い、請求項6に記載の半導体レーザモジュール。
  8.  導電性を有するヒートシンクと、前記ヒートシンクの上方に配置されるサブマウントと、前記サブマウントの上方に配置される半導体レーザ素子とを有する半導体レーザモジュールを製造する方法であって、
     前記サブマウントの電気抵抗率よりも低い電気抵抗率を有する導電部を、前記半導体レーザ素子から前記サブマウントの表面に沿って前記ヒートシンクまで延びるように形成して前記半導体レーザ素子と前記ヒートシンクとを電気的に接続する、半導体レーザモジュールの製造方法。
  9.  前記導電部の形成は、
      前記半導体レーザ素子に接続される上側はんだ層を前記サブマウント上に形成し、
      前記上側はんだ層を加熱しつつ前記半導体レーザ素子を前記サブマウントに対して押圧して、加熱により溶融した前記上側はんだ層を前記サブマウントの下端まで流すことにより行う、
    請求項8に記載の半導体レーザモジュールの製造方法。
  10.  前記上側はんだ層の加熱は、前記ヒートシンクを加熱することにより行う、請求項9に記載の半導体レーザモジュールの製造方法。
  11.  前記サブマウントの上面の縁部の少なくとも一部を丸める又は面取りする、請求項8又は9に記載の半導体レーザモジュールの製造方法。
  12.  前記導電部の形成は、
      前記ヒートシンクと前記サブマウントとの間に下側はんだ層を形成し、
      前記サブマウントの少なくとも側面にめっき層を形成し、
      前記めっき層が前記下側はんだ層に電気的に接続されるように前記サブマウントを前記下側はんだ層上に配置し、
      前記めっき層と前記半導体レーザ素子とに電気的に接続される上側はんだ層を形成することにより行う、
    請求項8に記載の半導体レーザモジュールの製造方法。
  13.  前記導電部の形成は、
      前記ヒートシンクと前記サブマウントとの間に下側はんだ層を形成し、
      前記半導体レーザ素子と電気的に接続される上側はんだ層を前記サブマウント上に形成し、
      前記上側はんだ層と前記ヒートシンクとを電気的に接続する補助導電層を形成することにより行う、
    請求項8に記載の半導体レーザモジュールの製造方法。
  14.  前記補助導電層の融点は前記上側はんだ層の融点よりも低い、請求項13に記載の半導体レーザモジュールの製造方法。
PCT/JP2017/006140 2016-02-25 2017-02-20 半導体レーザモジュール及びその製造方法 WO2017145987A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/078,192 US10748836B2 (en) 2016-02-25 2017-02-20 Semiconductor laser module and method for manufacturing the same
EP17756425.9A EP3422497A4 (en) 2016-02-25 2017-02-20 SEMICONDUCTOR LASER MODULE AND MANUFACTURING METHOD THEREOF
CN201780013286.9A CN108701959A (zh) 2016-02-25 2017-02-20 半导体激光模块及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-033875 2016-02-25
JP2016033875A JP6652856B2 (ja) 2016-02-25 2016-02-25 半導体レーザモジュール及びその製造方法

Publications (1)

Publication Number Publication Date
WO2017145987A1 true WO2017145987A1 (ja) 2017-08-31

Family

ID=59685688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006140 WO2017145987A1 (ja) 2016-02-25 2017-02-20 半導体レーザモジュール及びその製造方法

Country Status (5)

Country Link
US (1) US10748836B2 (ja)
EP (1) EP3422497A4 (ja)
JP (1) JP6652856B2 (ja)
CN (1) CN108701959A (ja)
WO (1) WO2017145987A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019532497A (ja) * 2016-08-30 2019-11-07 テラダイオード, インコーポレーテッド カーボンナノチューブを利用した高出力レーザパッケージング
US10916914B2 (en) * 2017-05-17 2021-02-09 Mitsubishi Electric Corporation Light module
CN110011178A (zh) * 2019-03-28 2019-07-12 广东工业大学 电流-温控半导体激光器的光学干涉光源装置及其构成的测量系统
JP7324665B2 (ja) * 2019-09-13 2023-08-10 シチズンファインデバイス株式会社 サブマウント

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972752U (ja) * 1982-11-08 1984-05-17 日本電気株式会社 ダイヤモンドヒ−トシンク
JPH07176820A (ja) 1993-12-20 1995-07-14 Mitsubishi Electric Corp 半導体レーザ装置
JPH11307875A (ja) 1998-04-24 1999-11-05 Sony Corp 電子装置
JP2003152145A (ja) * 2001-08-31 2003-05-23 Sumitomo Electric Ind Ltd 半導体放熱用基板とその製造方法及びパッケージ
JP2005026333A (ja) 2003-06-30 2005-01-27 Sanyo Electric Co Ltd 半導体レーザ装置
WO2006061937A1 (ja) * 2004-12-08 2006-06-15 A.L.M.T.Corp. ヒートシンク材およびその製造方法ならびに半導体レーザー装置
US20120257647A1 (en) * 2011-04-11 2012-10-11 Coherent, Inc. Cooling apparatus for optically pumped semiconductor laser
WO2013150715A1 (ja) * 2012-04-05 2013-10-10 パナソニック株式会社 半導体レーザ装置およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837713B2 (ja) * 1978-12-01 1983-08-18 富士通株式会社 半導体レ−ザ−装置の製造方法
JPH03209896A (ja) * 1990-01-12 1991-09-12 Mitsubishi Electric Corp 半導体レーザ素子用サブマウント
JP2839015B2 (ja) * 1996-06-21 1998-12-16 日本電気株式会社 半導体装置の製造方法
EP2428590B1 (en) * 2001-11-09 2018-08-15 Sumitomo Electric Industries, Ltd. Sintered diamond having high thermal conductivity and method for producing the same and heat sink employing it
JP5273922B2 (ja) * 2006-12-28 2013-08-28 株式会社アライドマテリアル 放熱部材および半導体装置
US8320419B2 (en) * 2007-09-20 2012-11-27 Oclaro Technology Limited High power semiconductor laser diodes
JP2013004571A (ja) * 2011-06-13 2013-01-07 Hamamatsu Photonics Kk 半導体レーザ装置
JP5672324B2 (ja) * 2013-03-18 2015-02-18 三菱マテリアル株式会社 接合体の製造方法及びパワーモジュール用基板の製造方法
JP6305127B2 (ja) * 2014-03-12 2018-04-04 三菱電機株式会社 半導体レーザ光源
EP3127197A4 (en) * 2014-03-31 2017-12-27 IPG Photonics Corporation High-power laser diode packaging method and laser diode module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972752U (ja) * 1982-11-08 1984-05-17 日本電気株式会社 ダイヤモンドヒ−トシンク
JPH07176820A (ja) 1993-12-20 1995-07-14 Mitsubishi Electric Corp 半導体レーザ装置
JPH11307875A (ja) 1998-04-24 1999-11-05 Sony Corp 電子装置
JP2003152145A (ja) * 2001-08-31 2003-05-23 Sumitomo Electric Ind Ltd 半導体放熱用基板とその製造方法及びパッケージ
JP2005026333A (ja) 2003-06-30 2005-01-27 Sanyo Electric Co Ltd 半導体レーザ装置
WO2006061937A1 (ja) * 2004-12-08 2006-06-15 A.L.M.T.Corp. ヒートシンク材およびその製造方法ならびに半導体レーザー装置
US20120257647A1 (en) * 2011-04-11 2012-10-11 Coherent, Inc. Cooling apparatus for optically pumped semiconductor laser
WO2013150715A1 (ja) * 2012-04-05 2013-10-10 パナソニック株式会社 半導体レーザ装置およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3422497A4

Also Published As

Publication number Publication date
JP6652856B2 (ja) 2020-02-26
EP3422497A1 (en) 2019-01-02
US10748836B2 (en) 2020-08-18
CN108701959A (zh) 2018-10-23
US20190067161A1 (en) 2019-02-28
EP3422497A4 (en) 2020-01-01
JP2017152551A (ja) 2017-08-31

Similar Documents

Publication Publication Date Title
US9203213B2 (en) Semiconductor light-emitting device
KR101142561B1 (ko) 레이저 광원 모듈
WO2017145987A1 (ja) 半導体レーザモジュール及びその製造方法
US20170070028A1 (en) Laser Light Modules
JP2001168442A (ja) 半導体レーザ素子の製造方法、配設基板および支持基板
JP7220751B2 (ja) 端面発光型のレーザバー
KR20120087989A (ko) 레이저 모듈
JP2016054279A (ja) 半導体レーザ
JP2006344743A (ja) 半導体レーザ装置
JP5282605B2 (ja) 半導体レーザ装置、及びその製造方法
JP2003209313A (ja) 半導体レーザ装置
JP4811629B2 (ja) 半導体レーザ装置
JP2006128236A (ja) 光半導体モジュール
JP2008172141A (ja) レーザダイオード素子
JP2007305977A (ja) 半導体レーザ装置及びその製造方法
US20050286592A1 (en) Semiconductor laser array device
JP4573882B2 (ja) 半導体レーザ装置
JP2006294805A (ja) 半導体レーザ装置
JP2006351847A (ja) 半導体発光装置
JPWO2020031944A1 (ja) 半導体発光装置
JP6573451B2 (ja) 半導体レーザユニット及び半導体レーザ装置
US11942763B2 (en) Semiconductor laser, operating method for a semiconductor laser, and method for determining the optimum fill factor of a semiconductor laser
JP2009158645A (ja) レーザモジュール
JPH0451073B2 (ja)
US20090185591A1 (en) Semiconductor device

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017756425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017756425

Country of ref document: EP

Effective date: 20180925

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17756425

Country of ref document: EP

Kind code of ref document: A1