WO2017145604A1 - 繊維状炭素ナノ構造体の製造方法 - Google Patents
繊維状炭素ナノ構造体の製造方法 Download PDFInfo
- Publication number
- WO2017145604A1 WO2017145604A1 PCT/JP2017/002001 JP2017002001W WO2017145604A1 WO 2017145604 A1 WO2017145604 A1 WO 2017145604A1 JP 2017002001 W JP2017002001 W JP 2017002001W WO 2017145604 A1 WO2017145604 A1 WO 2017145604A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- carrier
- carbon
- fibrous carbon
- volume
- Prior art date
Links
- 239000002717 carbon nanostructure Substances 0.000 title claims abstract description 134
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 66
- 239000003054 catalyst Substances 0.000 claims abstract description 235
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 101
- 238000006243 chemical reaction Methods 0.000 claims abstract description 73
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 67
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 67
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 61
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 51
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 145
- 239000002994 raw material Substances 0.000 claims description 88
- 239000007789 gas Substances 0.000 claims description 83
- 229910052799 carbon Inorganic materials 0.000 claims description 55
- 239000005977 Ethylene Substances 0.000 claims description 21
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 20
- 239000012159 carrier gas Substances 0.000 claims description 18
- 239000002086 nanomaterial Substances 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 4
- 239000002041 carbon nanotube Substances 0.000 description 96
- 229910021393 carbon nanotube Inorganic materials 0.000 description 90
- 238000003786 synthesis reaction Methods 0.000 description 50
- 230000015572 biosynthetic process Effects 0.000 description 41
- 230000004913 activation Effects 0.000 description 32
- 239000002245 particle Substances 0.000 description 24
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000010419 fine particle Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 230000009849 deactivation Effects 0.000 description 10
- 230000035484 reaction time Effects 0.000 description 9
- 230000002194 synthesizing effect Effects 0.000 description 9
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 8
- 238000005229 chemical vapour deposition Methods 0.000 description 8
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 8
- 238000003763 carbonization Methods 0.000 description 7
- 238000001000 micrograph Methods 0.000 description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000002109 single walled nanotube Substances 0.000 description 6
- 238000001237 Raman spectrum Methods 0.000 description 5
- -1 containing ethylene Chemical compound 0.000 description 5
- 238000011049 filling Methods 0.000 description 5
- 229910044991 metal oxide Inorganic materials 0.000 description 5
- 150000004706 metal oxides Chemical class 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000001603 reducing effect Effects 0.000 description 5
- 238000004544 sputter deposition Methods 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 150000001335 aliphatic alkanes Chemical class 0.000 description 4
- 239000000969 carrier Substances 0.000 description 4
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229910052863 mullite Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000013341 scale-up Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 150000001345 alkine derivatives Chemical class 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910001873 dinitrogen Inorganic materials 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- KDKYADYSIPSCCQ-UHFFFAOYSA-N but-1-yne Chemical compound CCC#C KDKYADYSIPSCCQ-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- KTWOOEGAPBSYNW-UHFFFAOYSA-N ferrocene Chemical compound [Fe+2].C=1C=C[CH-]C=1.C=1C=C[CH-]C=1 KTWOOEGAPBSYNW-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000002071 nanotube Substances 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical compound CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- MWWATHDPGQKSAR-UHFFFAOYSA-N propyne Chemical compound CC#C MWWATHDPGQKSAR-UHFFFAOYSA-N 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004071 soot Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/182—Graphene
- C01B32/184—Preparation
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F9/00—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
- D01F9/08—Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
- D01F9/12—Carbon filaments; Apparatus specially adapted for the manufacture thereof
- D01F9/127—Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
- D01F9/1273—Alkenes, alkynes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
- C01B32/162—Preparation characterised by catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
- C01B32/16—Preparation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
Definitions
- the present invention relates to a method for producing a fibrous carbon nanostructure. More specifically, the present invention relates to a method for producing a fibrous carbon nanostructure using a fluidized bed method in which a catalyst is fluidized.
- Fibrous carbon nanostructures such as carbon nanotubes (hereinafter sometimes referred to as “CNT”; see Non-Patent Document 1, for example) have mechanical strength, sliding characteristics, flexibility, semiconducting and metallic conductivity. Because of its excellent properties such as thermal conductivity and high chemical stability, it has been applied to a wide range of applications. Therefore, in recent years, a method for producing a fibrous carbon nanostructure having such excellent characteristics efficiently and at low cost has been studied.
- the CVD method is a production method that has been studied as a method suitable for mass synthesis, continuous synthesis, and high-purity synthesis of single-walled carbon nanotubes having excellent characteristics (for example, see Non-Patent Document 2). ).
- Patent Document 1 a support substrate surface supporting a catalyst made of Fe and Al is supported by flowing a source gas made of acetylene, carbon dioxide, and an inert gas at a predetermined partial pressure.
- a technique for synthesizing carbon nanotubes on a body is disclosed.
- the acetylene / carbon dioxide concentration is within the range of 1.2 to 20 torr partial pressure of carbon dioxide and 7.6 to 30.4 torr partial pressure of carbon dioxide under normal pressure.
- the partial pressure ratio By adjusting the partial pressure ratio to 0.7 or less, single-walled carbon nanotubes having a length of 1.0 mm or more are obtained.
- Patent Document 1 since acetylene used in the conventional method for producing carbon nanotubes described in Patent Document 1 has a high reaction activity as a carbon raw material, the carbonization of the catalyst is deactivated when acetylene is supplied at a high concentration. There is a problem of progress. Therefore, in Patent Document 1, it is necessary to supply acetylene as a carbon raw material at a low concentration, and there is room for improvement in improving the productivity of carbon nanotubes. Moreover, in patent document 1, with the density
- an object of the present invention is to provide a method for producing a fibrous carbon nanostructure that can synthesize and grow fibrous carbon nanostructures such as carbon nanotubes with high efficiency and enables cost reduction.
- the present inventors have intensively studied to achieve the above object. And the present inventors include a carbon raw material by including a carbon component having a lower activity than acetylene and a predetermined additive component in a predetermined ratio in the raw material gas supplied to the reaction field in the fluidized bed method. It has been found that even when used at a high concentration, fibrous carbon nanostructures can be produced in high yield. In addition, as the carbon raw material is supplied at a high concentration in this way, the content ratio of the gas component that does not contribute to the synthesis reaction of the fibrous carbon nanostructure with respect to the carbon raw material can be reduced. The present inventors have found that the synthesis cost can be greatly reduced and completed the present invention.
- the method for producing a fibrous carbon nanostructure of the present invention is a method for producing a fibrous carbon nanostructure using a fluidized bed method.
- a method comprising: supplying a raw material gas to a reaction field in which a catalyst carrier having a particulate carrier and a catalyst supported on the surface of the carrier is flowing, thereby providing the catalyst of the catalyst carrier A process of generating a fibrous carbon nanostructure, wherein the source gas includes a double bond-containing hydrocarbon and carbon dioxide, and the content ratio of the carbon dioxide is based on the total volume of the source gas. It is 0.3 volume% or more.
- a fibrous carbon nanostructure can be manufactured with high efficiency. Moreover, the cost concerning manufacture of a fibrous carbon nanostructure can be reduced.
- “particulate” means that the aspect ratio (major axis / minor axis) of the carrier or catalyst carrier measured according to the measurement method described later is from 1 to 5, and preferably the aspect ratio is 2 It is as follows.
- the content ratio of each component contained in the source gas may be referred to as “concentration”.
- the content ratio of the double bond-containing hydrocarbon is preferably 4% by volume or more based on the total volume of the raw material gas.
- the fibrous carbon nano This is because the structure can be manufactured with higher efficiency. Moreover, it is because the cost concerning manufacture of a fibrous carbon nanostructure can be reduced more.
- the source gas further contains a carrier gas, and the volume content of the carrier gas relative to the volume content of the double bond-containing hydrocarbon (carrier gas / 2
- the heavy bond-containing hydrocarbon is preferably 10 times or less. Costs for manufacturing fibrous carbon nanostructures are further reduced by keeping carrier gas supply quantities that are not involved in the synthesis reaction of fibrous carbon nanostructures low relative to the supply of double-bond containing hydrocarbons Because it can.
- the double bond-containing hydrocarbon is preferably ethylene. This is because if the double bond-containing hydrocarbon as the carbon raw material is ethylene having an appropriate reaction activity, the fibrous carbon nanostructure can be produced with higher efficiency. Moreover, it is because the cost concerning manufacture of a fibrous carbon nanostructure can further be reduced.
- the double bond-containing hydrocarbon is ethylene
- the ethylene may be pure ethylene containing only ethylene, mainly containing ethylene, and further containing, for example, any other hydrocarbon. You can leave.
- the specific surface area of the said carrier is 1 m ⁇ 2 > / g or less in the manufacturing method of the fibrous carbon nanostructure of this invention. If a carrier having a relatively small specific surface area of 1 m 2 / g or less is used in the method for producing a fibrous carbon nanostructure of the present invention, a fibrous carbon nanostructure having good characteristics can be produced with higher efficiency. Because it can be done.
- the “specific surface area” can be measured according to JISZ 8830: 2013.
- a fibrous carbon nanostructure capable of synthesizing and growing a fibrous carbon nanostructure such as a carbon nanotube with high efficiency and reducing costs.
- a method of manufacturing a body can be provided.
- FIG. 3 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst support according to Comparative Example 1 (see scale bar in image for magnifications of (i) to (iii)). The same applies below).
- 2 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst support according to Example 1.
- FIG. 4 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst support according to Example 2.
- FIG. 4 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 3.
- FIG. 3 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst support according to Comparative Example 1 (see scale bar in image for magnifications of (i) to (iii)). The same applies below).
- 2 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst support according to Example 1.
- FIG. 6 is a scanning electron microscope (SEM) image of carbon nanotubes synthesized on a catalyst support according to Example 4. It is a scanning electron microscope (SEM) image of the carbon nanotube synthesized on the catalyst support according to Example 6.
- 10 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 9.
- FIG. FIG. 6 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 10.
- FIG. FIG. 6 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 11.
- FIG. 6 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 12.
- FIG. 14 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 13.
- FIG. 14 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst support according to Example 14.
- FIG. 18 is a scanning electron microscope image (SEM) image of carbon nanotubes synthesized on a catalyst carrier according to Example 15.
- FIG. 4 is a Raman spectrum diagram ((a) Radial Breathing Mode peak, (b) G and D bands) according to Examples 1 to 4 and Comparative Example 1. It is a Raman spectrum figure according to Example 6 ((a) Radial Breathing Mode peak, (b) G and D bands).
- the method for producing a fibrous carbon nanostructure of the present invention can be used, for example, for producing a fine-sized fibrous carbon nanostructure such as a carbon nanotube. And according to the manufacturing method of this invention, a fibrous carbon nanostructure can be efficiently manufactured with a high yield, and the manufacturing cost of a fibrous carbon nanostructure can be reduced.
- the method for producing a fibrous carbon nanostructure of the present invention uses a fluidized bed method, and a raw material is provided in a reaction field in which a catalyst carrier having a particulate carrier and a catalyst supported on the surface of the carrier is fluidized. By supplying gas, it has the process of producing
- the raw material gas used in the method for producing a fibrous carbon nanostructure of the present invention includes at least two predetermined components (double bond-containing hydrocarbon and carbon dioxide) and one of the two types. The supply amount of the component (carbon dioxide) is not less than a predetermined ratio.
- Fibrous carbon nanostructures can be produced with high efficiency.
- a predetermined component carbon dioxide
- a fibrous carbon nanostructure such as a carbon nanotube is added. It can be manufactured at low cost.
- the raw material gas used in the method for producing a fibrous carbon nanostructure of the present invention is characterized by containing a double bond-containing hydrocarbon and carbon dioxide having a predetermined content ratio.
- the raw material gas may further contain other carbon raw materials other than the double bond-containing hydrocarbon and carbon dioxide, and other gas components.
- the source gas used in the method for producing a fibrous carbon nanostructure of the present invention contains carbon dioxide in a predetermined ratio or more. Carbon dioxide is included as an additive component in the raw material gas for synthesizing fibrous carbon nanostructures such as carbon nanotubes. Carbon dioxide suppresses the deactivation of the catalyst by carbonization in the synthesis of the fibrous carbon nanostructure, and as a result, supplies a double bond-containing hydrocarbon as a carbon raw material to be described later at a high concentration. It is an additive component that makes it possible.
- the content rate of carbon dioxide needs to be 0.3 volume% or more with respect to the total volume of source gas.
- the content of carbon dioxide is preferably 0.5% by volume or more, more preferably 0.9% by volume or more, and 40% by volume or less with respect to the total volume of the raw material gas. It is preferably 25% by volume or less, more preferably 5% by volume or less.
- the double bond containing hydrocarbon as a carbon raw material can be supplied with sufficient concentration, without adding a carbon dioxide excessively.
- fibrous carbon nanostructures such as carbon nanotubes can be produced with high yield.
- supplying a double bond-containing hydrocarbon as a carbon raw material at a sufficiently high concentration sufficiently reduces the supply concentration of gas components that do not contribute to the synthesis reaction of fibrous carbon nanostructures, as will be described later. Therefore, the manufacturing cost of the fibrous carbon nanostructure can be greatly reduced.
- the supply concentration of gas components that do not contribute to the synthesis reaction of the fibrous carbon nanostructure is sufficiently reduced, the total flow rate of the raw material gas to the reaction field can be kept low, so that the high temperature of the reaction field is maintained. Therefore, it is considered that a method for producing fibrous carbon nanostructures suitable for scale-up and mass synthesis of fibrous carbon nanostructures can be provided.
- the fact that carbon dioxide can be supplied at a relatively high concentration on the order of about percent means that, for example, a small amount of control is not required compared with the case of supplying carbon dioxide at a relatively low concentration on the order of ppm. This is also a desirable condition from the viewpoint of performance and scale-up.
- the reason why carbonization deactivation of the catalyst can be satisfactorily suppressed by adding carbon dioxide to the raw material gas at a predetermined content ratio or more is not clear, but is presumed as follows. That is, the fibrous carbon nanostructure is formed by decomposing a carbon raw material on the catalyst, incorporating the decomposed carbon into the catalyst, and depositing carbon exceeding the saturation concentration in the catalyst from the catalyst.
- the degree of saturation exceeds the saturation concentration, that is, the degree of supersaturation increases, the fibrous carbon nanostructure precipitates faster.
- the greater the degree of supersaturation the higher the possibility that a carbon film is formed on the catalyst surface and the catalyst is deactivated by carbonization.
- the source gas used in the method for producing a fibrous carbon nanostructure of the present invention contains a double bond-containing hydrocarbon.
- the double bond-containing hydrocarbon plays a role as a carbon raw material (carbon source) for synthesizing fibrous carbon nanostructures such as carbon nanotubes.
- the raw material gas may contain other carbon raw materials other than the double bond-containing hydrocarbon as long as the desired effects of the present invention are not inhibited.
- the content ratio of the double bond-containing hydrocarbon contained in the raw material gas is not particularly limited, but is preferably 4% by volume or more, more preferably 8% by volume or more, based on the total volume of the raw material gas, It is more preferably 10% by volume or more, and still more preferably 16% by volume or more. If the content ratio of the double bond-containing hydrocarbon is set to the above lower limit or more, the carbon raw material can be supplied at a high concentration, and the whole or most of the reaction field can be utilized for the synthesis reaction. This is because the carbon nanostructure can be synthesized more efficiently.
- the double bond-containing hydrocarbon has a low activity as compared with, for example, a triple bond-containing hydrocarbon, the deactivation of the catalyst can be suppressed even when supplied at a high concentration. Therefore, since the double bond-containing hydrocarbon can be supplied at a higher concentration in the reaction field and can stay for a longer period of time compared to a triple bond-containing hydrocarbon such as acetylene, for example. This contributes to higher production efficiency of the fibrous carbon nanostructure.
- the double bond-containing hydrocarbon as a carbon raw material is supplied at a high concentration, generally, the double bond-containing hydrocarbon is less expensive than a triple bond-containing hydrocarbon having the same carbon number, and Since the supply concentration of other gas components that do not contribute to the synthesis reaction of the fibrous carbon nanostructure can be kept low, it can be considered that this contributes to a significant reduction in manufacturing costs.
- the content ratio of the double bond-containing hydrocarbon contained in the raw material gas is not particularly limited, but from the viewpoint of satisfactorily suppressing the deactivation of the catalyst, for example, 60 volume% with respect to the total volume of the raw material gas. It can be as follows.
- the double bond-containing hydrocarbon is not particularly limited, and examples thereof include ethylene, propylene, butene and its isomer, butadiene, pentene and its isomer, pentadiene and the like.
- 1 double bond is present in the molecule.
- a double bond-containing hydrocarbon having one carbon atom is preferred, a double bond-containing hydrocarbon having 3 or less carbon atoms is more preferred, and ethylene is still more preferred.
- examples of ethylene include pure ethylene composed only of ethylene; low-purity ethylene containing ethylene and other optional hydrocarbons; and the like.
- examples of the other optional hydrocarbons that can coexist with ethylene include, but are not limited to, alkanes such as methane, ethane, and propane, and alkenes such as propylene.
- the carbon raw material other than the double bond-containing hydrocarbon is not particularly limited, and examples thereof include alkanes such as methane, ethane, propane, and butane; and alkynes such as acetylene, propyne, and butyne. Therefore, other arbitrary hydrocarbons that can coexist with ethylene in the low-purity ethylene described above may be contained in the raw material gas as other carbon raw materials other than the double bond-containing hydrocarbon.
- the content ratio of the alkane can be added to the same level as the content ratio of the double bond-containing hydrocarbon.
- the alkyne content is preferably 3% by volume or less based on the total volume of the raw material gas, and is 0.3% by volume. More preferably, it is more preferably close to 0% by volume (that is, substantially free of other carbon raw materials). If the content ratio of other carbon raw materials is less than or equal to the above upper limit, effects such as high concentration supply of carbon raw materials contributed by double bond-containing hydrocarbons and suppression of catalyst carbonization deactivation can be sufficiently exhibited. It is.
- Other gas components other than the above-mentioned double bond-containing hydrocarbon and carbon dioxide, which can be contained in the raw material gas, include supply of the raw material gas to the reaction field, and the flow and flow of the raw material gas and catalyst in the reaction field. Examples include carrier gas.
- the carrier gas is not particularly limited, and examples thereof include inert gases such as nitrogen gas (N 2 ) and argon gas (Ar); hydrogen gas (H 2 );
- the hydrogen gas can exhibit a reducing action of the catalyst and a tar production suppressing action.
- Hydrogen gas can also be produced as a by-product by decomposition of the carbon raw material.
- the volume content of the carrier gas that can be contained in the raw material gas is preferably 10 times or less, more preferably 7 times or less, with respect to the volume content of the double bond-containing hydrocarbon. It is more preferable that the ratio is 1 or less, and usually 1 or more, but the carrier gas may not be used.
- a gas component that does not contribute to the synthesis reaction of the fibrous carbon nanostructure as long as the volume content of the carrier gas relative to the volume content of the double bond-containing hydrocarbon (carrier gas / double bond-containing hydrocarbon) is not more than the above upper limit.
- the supply amount of the carbon raw material can be greatly suppressed and the supply amount of the carbon raw material can be increased, so that fibrous carbon nanostructures such as carbon nanotubes can be produced more efficiently.
- the manufacturing cost of the fibrous carbon nanostructure is further reduced, and the total flow rate of the raw material supply is kept low. This is because it is possible to provide a production method suitable for scale-up that can easily maintain the reaction field at a high temperature.
- the carrier gas is not included in the raw material gas, the above double bond-containing hydrocarbon and / or carbon dioxide can serve as the carrier gas.
- the content ratio of the double bond-containing hydrocarbon and carbon dioxide in the raw material gas is preferably 3 times or more, and 5 times. More preferably, it is 7 times or more, further preferably 15 times or more, more preferably 70 times or less, and 50 times or less. If the content ratio of the double bond-containing hydrocarbon and carbon dioxide is not less than the above lower limit, the carbon raw material constituting the fibrous carbon nanostructure can be supplied at a higher concentration. This is because it is possible to achieve both higher efficiency in production and lower cost.
- the carbonization deactivation of the catalyst can be sufficiently suppressed due to the contribution of carbon dioxide. This is because it is possible to achieve further increase in manufacturing efficiency.
- the total flow F for supplying the source gas to the reaction field is not particularly limited, and is determined by the product of the flow velocity v for supplying the source gas to the reaction field and the reaction tube cross-sectional area S.
- the flow velocity v is not particularly limited.
- the particle size of the catalyst carrier used is about 100 ⁇ m to 500 ⁇ m, it can be set to 0.03 m / s or more and 3 m / s or less.
- the reason why a low flow rate of 3 m / s or less can be set is because a relatively low activity double bond-containing hydrocarbon is used as a carbon raw material.
- the reaction temperature in the reaction field can be easily maintained, so that a production method suitable for larger-scale synthesis can be provided. Furthermore, since the flow rate of the raw material gas is suppressed to 3 m / s or less, the risk that the flowing catalyst is blown out of the reaction tube can be reduced. A size catalyst can be used.
- the residence time during which the raw material gas stays in the reaction field is not particularly limited.
- the residence time is 0.5 seconds to 50 seconds. be able to.
- it can be set up to a long residence time of 50 seconds, for example, by adding carbon dioxide to the raw material gas at a high concentration, the double bond-containing hydrocarbon as the carbon raw material can also be supplied at a high concentration. Because it can. And a fibrous carbon nanostructure can be synthesize
- the catalyst carrier used in the method for producing a fibrous carbon nanostructure of the present invention has a particulate carrier and a catalyst carried on the surface of the carrier.
- the catalyst carrier functions to mediate, promote, and improve efficiency of synthesis and growth of the fibrous carbon nanostructure in the reaction field.
- the catalyst carrier is not particularly limited, and has a role of taking in carbon raw materials such as double bond-containing hydrocarbons from the supplied raw material gas on the surface and discharging fibrous carbon nanostructures such as carbon nanotubes. Bear. More specifically, for example, when the catalyst has a fine particle shape, each catalyst particle continuously generates carbon while forming a tube-like structure having a diameter corresponding to the size of the catalyst particle. Thus, the fibrous carbon nanostructure is synthesized and grown on the catalyst of the catalyst carrier.
- the carrier has a particle shape made of an arbitrary material, and is a part constituting a base structure for supporting the catalyst by attaching, fixing, forming a film, or forming the catalyst on the surface of the carrier.
- the catalyst carrier is usually in the form of particles, so that in the fluidized bed method, the catalyst carrier can be kept flowing while being more uniformly dispersed in the reaction field. Therefore, a fibrous carbon nanostructure can be manufactured more efficiently.
- the carrier is “particulate” as long as it has a substantially particle shape, for example, the carrier has the aspect ratio described above.
- the “aspect ratio of the carrier” is not particularly limited, and can be determined using a scanning electron microscope (SEM). Specifically, for example, the catalyst carrier is observed, and for any 50 catalyst carriers, the maximum diameter (major axis) and the particle diameter (minor axis) perpendicular to the maximum diameter are measured. It can be obtained by calculating the average value of the ratio (major axis / minor axis) to the minor axis.
- SEM scanning electron microscope
- the structure of the carrier may be the carrier alone or a carrier with an underlayer provided with an arbitrary underlayer for favorably supporting the catalyst on the surface of the carrier.
- the specific surface area of the carrier is preferably 1 m 2 / g or less, more preferably 0.3 m 2 / g or less, and further preferably 0.1 m 2 / g or less.
- a support made of a porous metal oxide having a large specific surface area of 100 m 2 / g or more is used.
- carrier which has the said large specific surface area the production amount of the fibrous carbon nanostructure has been increased by carrying a large amount of catalyst on the support surface.
- the contact area between the synthesized fibrous carbon nanostructure and the catalyst carrier is large, and both are intertwined in a complicated manner. Therefore, it is difficult to separate the fibrous carbon nanostructure from the catalyst support, and the resulting fibrous carbon nanostructure has poor properties.
- the carrier that can be used in the method for producing a fibrous carbon nanostructure of the present invention has a small specific surface area as described above and a smooth surface, the synthesized fibrous carbon nanostructure and catalyst carrier The number of contact points can be reduced. As a result, separation of the both becomes easy, and a fibrous carbon nanostructure having excellent characteristics can be obtained.
- a carrier having a small surface area when a carrier having a small surface area is used, the amount of the catalyst applied to the surface of the carrier is reduced.
- a double bond-containing hydrocarbon as a carbon raw material can be supplied at a high concentration by adding carbon dioxide at a high concentration. Therefore, even when a catalyst carrier having a relatively small amount of catalyst is used, the reaction amount can be sufficiently obtained. Even when a high concentration carbon raw material is supplied, the deactivation of the catalyst can be prevented by adding 0.3% by volume or more of carbon dioxide. As a result, even when a high concentration of carbon raw material is reacted at a high rate, the synthesis reaction of the fibrous carbon nanostructure can be favorably sustained without depletion of carbon dioxide added at a sufficiently high concentration. .
- the particle diameter of the carrier is preferably 1000 ⁇ m or less in terms of volume average particle diameter, more preferably 600 ⁇ m or less, further preferably 400 ⁇ m or less, and preferably 50 ⁇ m or more. This is because if the volume average particle diameter of the support is not more than the above upper limit, the catalyst support can be satisfactorily flowed in the reaction field without sinking or stagnating downward.
- the carrier gas concentration can be suppressed and the flow rate can be reduced, so even a relatively small size catalyst carrier does not jump out of the reaction tube.
- the catalyst carrier can be kept flowing more stably.
- the fibrous carbon nanostructure can be produced with higher efficiency.
- small size carriers are generally less expensive than large size carriers, the use of small particle size carriers can further reduce the cost of producing fibrous carbon nanostructures. Because. Further, if the volume average particle diameter of the support is not less than the above lower limit, the flowing catalyst carrier is prevented from jumping out of the reaction tube or staying above the reaction tube, and the catalyst carrier can be flowed easily and satisfactorily. It is because it can be made to continue.
- the carrier is not particularly limited, and is at least one selected from the group consisting of magnesium (Mg), aluminum (Al), silicon (Si), zirconium (Zr), and molybdenum (Mo). It is preferable to include a metal oxide containing an element. These may contain one kind alone or in any combination of two or more kinds, and may further contain elements other than the above.
- the carrier may contain the above-described elements in the form of a metal oxide such as SiO 2 , Al 2 O 3 , or MgO.
- the support may further contain nitrides such as Si 3 N 4 and AlN; carbides such as SiC, in addition to the metal oxides described above.
- synthetic products or natural products may be used as these metal oxides contained in the carrier.
- the underlayer that the carrier can further have is made of any material, and can be formed, for example, on the surface of the carrier as one layer or two or more layers. From the viewpoint of effectively supporting the catalyst on the carrier and effectively utilizing the catalyst carrier, the carrier preferably further has a base layer on the surface of the carrier.
- the composition of the underlayer is not particularly limited and can be appropriately selected depending on the type of support and the type of catalyst described later. Moreover, the film thickness of the base layer to be formed can be appropriately adjusted depending on the desired amount of catalyst supported.
- the catalyst is supported on the surface of the particulate carrier described above. Further, the catalyst may be directly supported on the surface of the particulate carrier as a catalyst layer, for example, to constitute a catalyst carrier. Further, the catalyst is, for example, indirectly supported on the surface of the particulate carrier as the catalyst layer through the above-mentioned underlayer or the like to constitute a catalyst carrier (from inside, a multilayer in which the carrier / underlayer / catalyst is supported) Structure). Further, in the multilayer structure, for example, a plurality of layers containing an underlayer and / or a catalyst may be arbitrarily provided. The catalyst is usually present on the surface of the catalyst carrier and serves to promote the synthesis of the fibrous carbon nanostructure.
- the composition constituting the catalyst is not particularly limited.
- metals such as iron (Fe), cobalt (Co), and nickel (Ni)
- Fe iron
- Co cobalt
- Ni nickel
- the catalyst preferably contains fine metal particles (metal fine particles) containing the above metal, for example.
- the metal fine particles that can be contained in the catalyst are preferably 1 nm or more in terms of volume average particle diameter, and preferably 30 nm or less. This is because if the particle diameter of the metal fine particles is equal to or more than the above lower limit, the metal fine particles exhibit sufficient activity as a catalyst, so that fibrous carbon nanostructures such as carbon nanotubes can be produced more efficiently. Moreover, if the particle diameter of the metal fine particles is not more than the above upper limit, the fibrous carbon nanostructure can be efficiently nucleated due to the small curvature radius, and the fibrous carbon nanostructure is produced more efficiently. Because it can. In addition, since the fibrous carbon nanostructure is usually generated and grown with a diameter corresponding to the particle diameter of the metal fine particles acting as a catalyst, the produced fibrous carbon nanostructure is adjusted to a desired fine diameter. Because it is possible.
- the method for supporting the catalyst is not particularly limited.
- a known dry process for forming a film on the carrier surface described above by vapor deposition such as sputtering (sputtering) or chemical vapor deposition (CVD). Law.
- the carrier used for supporting the catalyst may be the carrier itself that has not been subjected to surface processing or film formation, and is a carrier having an underlayer formed on the carrier on the outer surface. Also good.
- Catalyst carrier filling factor The filling rate of the catalyst support in the reaction field (catalyst filling rate) is preferably 1% by volume or more and 50% by volume or less as the ratio of the true volume of the catalyst to the reactor volume. By setting the catalyst filling rate to 1% by volume or more, a sufficient amount of the catalyst carrier can be supplied to the reaction field. Moreover, the space which a fibrous carbon nanostructure produces
- the fibrous carbon nanostructure is not particularly limited, and examples thereof include fibrous carbon nanostructures having an aspect ratio exceeding 10.
- examples of the fibrous carbon nanostructure include CNT and vapor grown carbon fiber.
- “aspect ratio of fibrous carbon nanostructure” refers to the diameter (outer diameter) and length of 100 fibrous carbon nanostructures selected at random using a transmission electron microscope. Can be obtained.
- this invention is not limited to this.
- CNT is a material having a structure in which a graphene sheet is wound in a cylindrical shape and having a one-dimensional structure with a very large aspect ratio (see Non-Patent Document 1).
- the fibrous carbon nanostructure containing CNT may be composed only of CNT, or may be a mixture of CNT and fibrous carbon nanostructure other than CNT.
- the CNT is not particularly limited and can be a single-walled carbon nanotube and / or a multi-walled carbon nanotube. From the viewpoint of improving various mechanical strength, electrical characteristics, thermal conductivity, and other characteristics.
- the CNTs are preferably composed of 10 or less layers, more preferably 5 or less layers, and even more preferably single-walled carbon nanotubes.
- Single-walled carbon nanotubes / multi-walled carbon nanotubes can be appropriately adjusted by changing various reaction conditions such as the size of the catalyst, the composition of the catalyst, the reaction time, and the flow rate of the raw material gas.
- the average diameter of the fibrous carbon nanostructure containing CNT can be set to a desired value depending on various applications. For example, if the particle diameter of the metal fine particles in the above-mentioned catalyst is usually about 1 to 2 nm, the average diameter of the CNTs is about 1 nm, and if the particle diameter of the metal fine particles is about 30 nm, the average diameter of the CNTs or the like. Can be adjusted to about 20 to 30 nm. In general, various properties are improved as the average diameter of the CNT is finer.
- a fibrous carbon nanostructure is synthesized while containing a double bond-containing hydrocarbon and a carbon dioxide in a predetermined ratio or more in the raw material gas while suppressing the deactivation of the catalyst. Therefore, even if CNT continues to be synthesized and grown, it grows while maintaining a good size according to the particle diameter of the metal fine particles.
- the “average diameter” of the fibrous carbon nanostructures containing CNTs is determined by measuring the diameter (outer diameter) of 100 fibrous carbon nanostructures selected at random using, for example, a transmission electron microscope. Can be sought.
- the average length of the fibrous carbon nanostructure containing CNT can be set to a desired value depending on various applications, but the average length at the time of synthesis is preferably 1 ⁇ m or more, and is 50 ⁇ m or more. It is more preferable. If the average length of the fibrous carbon nanostructure containing CNTs during synthesis is 1 ⁇ m or more, the resulting fibrous carbon nanostructure has various mechanical strength, electrical characteristics, thermal conductivity, and other characteristics. It is because it can be made to exhibit better. In addition, since the longer the length of the fibrous carbon nanostructure including the CNT at the time of synthesis, the more likely the fibrous carbon nanostructure is damaged, such as breaking or cutting, the fibrous carbon nanostructure including the CNT at the time of synthesis. The average length of the structure is preferably 5000 ⁇ m or less. In addition, the “average length” of the fibrous carbon nanostructure containing CNTs can be appropriately adjusted by changing the synthesis reaction time, for example.
- the method for producing the fibrous carbon nanostructure of the present invention uses a fluidized bed method. Specifically, the fibrous carbon nanostructure is efficiently produced by circulating the raw material gas in the reaction field that continues to flow through the catalyst support described above.
- the reaction field is a space for synthesizing and growing fibrous carbon nanostructures, and can supply a catalyst such as a catalyst carrier, a raw material gas containing a double bond-containing hydrocarbon and carbon dioxide, and any other gas component. It is space.
- a reaction tube 2 having an arbitrary size as shown in FIG. 1 can be cited.
- a reaction tube 2 is supplied with a supply tube (for supplying a raw material gas 12) ( A discharge pipe (not shown) for discharging a gas flow or the like is connected.
- a catalyst carrier may be produced by supplying a carrier, a catalyst component, an underlayer component, and the like to the reaction field.
- the reaction temperature for synthesizing and growing the fibrous carbon nanostructure is preferably 500 ° C. or higher, more preferably 700 ° C. or higher, preferably 1000 ° C. or lower, and more preferably 900 ° C. or lower. This is because if the reaction temperature is at least the above lower limit, the catalyst retains sufficiently high activity, so that the fibrous carbon nanostructure can be efficiently synthesized with a higher yield. Moreover, if the reaction temperature is lower than the above upper limit, the double bond-containing hydrocarbon in the raw material gas is prevented from being thermally decomposed to become soot, and the fibrous carbon nanostructure can be efficiently produced in a higher yield. This is because they can be synthesized.
- the reaction temperature refers to the atmospheric temperature of the reaction field.
- the method for producing a fibrous carbon nanostructure of the present invention can keep the total flow rate of the raw material gas flowing to the reaction field low, so even when the synthesis of the fibrous carbon nanostructure is performed continuously, The atmosphere temperature in the reaction field can be easily maintained, which is suitable for scale-up.
- the reaction time for synthesizing and growing the fibrous carbon nanostructure is not particularly limited, and is usually the length of the target fibrous carbon nanostructure, the supply of the above-described double bond-containing hydrocarbon and carbon dioxide. It can be appropriately adjusted according to the concentration, the total flow rate of the raw material gas, the type and supply amount of the catalyst, the reaction temperature and the like.
- the reaction time can be 1 minute or longer and can be 100 minutes or shorter. In general, the longer the reaction time, the longer the fibrous carbon nanostructure obtained, and the shorter the reaction time, the shorter the fibrous carbon nanostructure obtained.
- the reaction time can be adjusted, for example, by starting or stopping the flow of the raw material gas into the reaction field.
- Example 1 ⁇ Preparation of catalyst carrier> ⁇ Catalyst support >> By baking 100 g of alumina beads (Al 2 O 3 , volume average particle diameter D50: 300 ⁇ m) as a carrier in a vertical tube furnace in an environment of 850 ° C. in a dry air flow, surface impurities were Removed. Next, an aluminum layer (average film thickness: 15 nm) was formed on the baked alumina beads by sputtering, and released into the atmosphere to be naturally oxidized to obtain an aluminum oxide (Al 2 O 3 ) underlayer.
- alumina beads Al 2 O 3 , volume average particle diameter D50: 300 ⁇ m
- an activation gas 10 composed of 10% by volume—hydrogen (H 2 ) / 90% by volume—nitrogen gas (N 2 ) was supplied at a flow rate of 1500 sccm for 5 minutes.
- the catalyst support 8 was obtained by reducing the Fe catalyst layer thus supported and activating the catalyst.
- Example 2 In the synthesis of carbon nanotubes, the catalyst carrier before activation, the catalyst carrier, and the catalyst carrier on which the carbon nanotubes were synthesized were the same as in Example 1 except that the CO 2 concentration was changed to 1.0% by volume. Got the body. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 3 In the synthesis of carbon nanotubes, the catalyst carrier before activation, the catalyst carrier, and the catalyst carrier on which the carbon nanotubes were synthesized were the same as in Example 1 except that the CO 2 concentration was changed to 3.0% by volume. Got the body. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 4 In the synthesis of carbon nanotubes, the catalyst carrier before activation, the catalyst carrier, and the catalyst carrier in which the carbon nanotubes were synthesized were the same as in Example 1 except that the CO 2 concentration was changed to 10.0% by volume. Got the body. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 5 In the activation of the catalyst, the catalyst carrier before activation and the catalyst support were the same as in Example 1 except that the amount of the supported catalyst supplied to the reaction tube was changed to 30 g and used as it was for the synthesis of carbon nanotubes. And a catalyst carrier in which carbon nanotubes were synthesized was obtained. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIG.
- Example 6 In the activation of the catalyst, the amount of the supported catalyst supplied to the reaction tube was changed to 30 g and used as it was for the synthesis of carbon nanotubes. Further, in the synthesis of carbon nanotubes, except for changing the concentration of CO 2 in 1.0% by volume in the same manner as in Example 1, the catalyst carrier prior to activation, the catalyst carrier, and carbon nanotubes were synthesized A catalyst support was obtained. And it computed and observed by the method similar to Example 1. FIG. The results are shown in Table 1 and FIGS.
- Example 7 In the activation of the catalyst, the amount of the supported catalyst supplied to the reaction tube was changed to 30 g and used as it was for the synthesis of carbon nanotubes. Further, in the synthesis of carbon nanotubes, the catalyst carrier before activation, the catalyst carrier, and the carbon nanotubes were synthesized in the same manner as in Example 1 except that the CO 2 concentration was changed to 3.0% by volume. A catalyst support was obtained. And it computed and observed by the method similar to Example 1. FIG. The results are shown in Table 1 and FIG.
- Example 8 In the activation of the catalyst, the amount of the supported catalyst supplied to the reaction tube was changed to 30 g and used as it was for the synthesis of carbon nanotubes. Further, in the synthesis of carbon nanotubes, the catalyst carrier before activation, the catalyst carrier, and the carbon nanotubes were synthesized in the same manner as in Example 1 except that the CO 2 concentration was changed to 10.0% by volume. A catalyst support was obtained. And it computed and observed by the method similar to Example 1. FIG. The results are shown in Table 1 and FIG.
- Example 9 In the synthesis of carbon nanotubes, the CO 2 concentration was changed to 3.0% by volume, and the C 2 H 4 concentration was changed to 10.0% by volume.
- a catalyst carrier before activation, a catalyst carrier, and a catalyst carrier in which carbon nanotubes were synthesized were obtained in the same manner as in Example 1 except that the reaction temperature was changed to 800 ° C. and the total flow rate was changed to 850 sccm. It was. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 10 In the synthesis of carbon nanotubes was changed concentration of CO 2 in 3.0% by volume.
- a catalyst carrier before activation, a catalyst carrier, and a catalyst carrier in which carbon nanotubes were synthesized were obtained in the same manner as in Example 1 except that the reaction temperature was changed to 800 ° C. and the total flow rate was changed to 850 sccm. It was. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 11 In the synthesis of carbon nanotubes, the CO 2 concentration was changed to 3.0% by volume, and the C 2 H 4 concentration was changed to 30.0% by volume.
- a catalyst carrier before activation, a catalyst carrier, and a catalyst carrier in which carbon nanotubes were synthesized were obtained in the same manner as in Example 1 except that the reaction temperature was changed to 800 ° C. and the total flow rate was changed to 850 sccm. It was. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 12 In the production of the catalyst carrier, the catalyst carrier was produced and used as follows. In the synthesis of carbon nanotubes, the CO 2 concentration was changed to 3.0% by volume, and the C 2 H 4 concentration was changed to 10.0% by volume. Further, the catalyst carrier before activation, the catalyst carrier, and the catalyst carrier before activation, except that the position of the dispersion plate 4 is lowered by 12 cm, the reaction field height is 27 cm, and the reaction temperature is changed to 725 ° C. A catalyst carrier in which carbon nanotubes were synthesized was obtained. And it computed and observed by the method similar to Example 1. FIG. The results are shown in Table 1 and FIG.
- mullite powder having a volume average particle diameter (D50) of about 150 ⁇ m (“Naiiga Sera Beads 60”, # 750, manufactured by ITOCHU CERATECH Corp.) was used. 70 g of mullite powder was charged into a reaction tube made of a glass tube, heated to a temperature of 800 ° C. at a rate of 40 ° C./min in an atmosphere of 4 vol% oxygen and 96 vol% nitrogen, and maintained for 2 minutes.
- the mullite used in this example is a general formula xM 2 O.yAl 2 O 3 .zSiO 2 .nH 2 O [wherein M is a metal atom, and x to z and n are moles of each component. It represents a number (0 or more)].
- Example 13 In the activation of the catalyst, the packing amount of the catalyst carrier before activation was changed to a layer height of 3 cm (corresponding to the supply amount of the catalyst carrier of 27 g) and used as it was for the synthesis of carbon nanotubes. Further, in the synthesis of carbon nanotubes, a catalyst carrier before activation, a catalyst carrier, and a catalyst carrier with synthesized carbon nanotubes were obtained in the same manner as in Example 12 except that the reaction temperature was changed to 800 ° C. It was. And it computed and observed by the method similar to Example 1. FIG. The results are shown in Table 1 and FIGS.
- Example 14 In the synthesis of carbon nanotubes, a catalyst carrier before activation, a catalyst carrier, and a catalyst carrier with synthesized carbon nanotubes were obtained in the same manner as in Example 12 except that the reaction temperature was changed to 800 ° C. And it computed and observed by the method similar to Example 1.
- FIG. The results are shown in Table 1 and FIGS.
- Example 15 In the activation of the catalyst, the packing amount of the catalyst carrier before activation was changed to a layer height of 9 cm (equivalent to the supply amount of the catalyst carrier of 81 g) and used as it was for the synthesis of carbon nanotubes. Further, in the synthesis of carbon nanotubes, a catalyst carrier before activation, a catalyst carrier, and a catalyst carrier with synthesized carbon nanotubes were obtained in the same manner as in Example 12 except that the reaction temperature was changed to 800 ° C. It was. And it computed and observed by the method similar to Example 1. FIG. The results are shown in Table 1 and FIGS.
- combine and grow a fibrous carbon nanostructure, such as a carbon nanotube, with high efficiency, and enables cost reduction can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
Description
そこで、近年、このような優れた特性を有する繊維状炭素ナノ構造体を効率的に、かつ低コストで製造する方法が検討されている。
また、特許文献1では、上述した炭素原料の濃度が低いことに伴い、キャリアガスを炭素原料の濃度に対して高濃度に供給しなければならないという問題がある。従って、特許文献1では、カーボンナノチューブの合成反応に寄与しないキャリアガス成分を多量に使用することによる高コスト化を抑制する必要があった。
なお、本発明において「粒子状」とは、後述する測定方法に従って測定した担体または触媒担持体のアスペクト比(長径/短径)が1以上5以下であることを指し、好ましくはアスペクト比が2以下である。
また、以下、原料ガスに含まれる各成分の含有割合を「濃度」と称する場合がある。
なお、前記二重結合含有炭化水素がエチレンである場合、当該エチレンとしては、エチレンのみを含む純エチレンであっても良く、主としてエチレンを含み、かつ、例えば、その他の任意の炭化水素を更に含んでいても良い。
なお、本発明において、「比表面積」は、JISZ 8830:2013に準拠して測定することができる。
本発明の繊維状炭素ナノ構造体の製造方法は、例えば、カーボンナノチューブなどの微細なサイズの繊維状炭素ナノ構造体を製造するために用いることができる。そして、本発明の製造方法に従えば、繊維状炭素ナノ構造体を高収率で効率的に製造することができ、繊維状炭素ナノ構造体の製造コストを軽減することができる。
本発明の繊維状炭素ナノ構造体の製造方法は、流動床法を用いており、粒子状の担体と当該担体の表面に担持された触媒とを有する触媒担持体を流動させた反応場に原料ガスを供給することにより、触媒担持体が有する触媒上に繊維状炭素ナノ構造体を生成する工程を有する。また、本発明の繊維状炭素ナノ構造体の製造方法に用いる原料ガスは、少なくとも所定の2種類の成分(二重結合含有炭化水素および二酸化炭素)を含み、かつ当該2種類のうちの1種類の成分(二酸化炭素)の供給量が所定割合以上であることを特徴とする。
そして、流動床法を用いた本発明の繊維状炭素ナノ構造体の製造方法では、原料ガスが二重結合含有炭化水素および所定以上の含有割合の二酸化炭素を含んでいるため、カーボンナノチューブなどの繊維状炭素ナノ構造体を、高い効率で製造することができる。加えて、本発明の繊維状炭素ナノ構造体の製造方法では、通常、所定の成分(二酸化炭素)を所定量以上に比較的多量に添加するため、カーボンナノチューブなどの繊維状炭素ナノ構造体を低コストで製造することができる。
本発明の繊維状炭素ナノ構造体の製造方法で用いる原料ガスは、二重結合含有炭化水素および所定の含有割合の二酸化炭素を含むことを特徴とする。また、原料ガスは、上記二重結合含有炭化水素および二酸化炭素以外のその他の炭素原料、その他のガス成分を更に含んでも良い。
本発明の繊維状炭素ナノ構造体の製造方法で用いる原料ガスは、二酸化炭素を所定の割合以上含む。二酸化炭素は、カーボンナノチューブなどの繊維状炭素ナノ構造体を合成する原料ガスに、添加成分として含まれる。そして、二酸化炭素は、繊維状炭素ナノ構造体の合成において、触媒が炭化失活することを抑制し、その結果、後述する炭素原料としての二重結合含有炭化水素を高濃度に供給することを可能にする添加成分である。従って、原料ガスに二酸化炭素を所定量以上添加することにより、繊維状炭素ナノ構造体を構成する炭素源を反応場に多量に流通させることができるため、カーボンナノチューブなどの繊維状炭素ナノ構造体を効率的に合成することができる。
ここで、二酸化炭素の含有割合は、原料ガスの全体積に対して0.3体積%以上であることを必要とする。また、二酸化炭素の含有割合は、原料ガスの全体積に対して0.5体積%以上であることが好ましく、0.9体積%以上であることがより好ましく、40体積%以下であることが好ましく、25体積%以下であることがより好ましく、5体積%以下であることが更に好ましい。二酸化炭素の含有割合が上記下限以上であれば、触媒の炭化失活を良好に抑制して、炭素原料としての二重結合含有炭化水素を十分に高濃度で供給することができる。また、二酸化炭素の含有割合が上記上限以下であれば、二酸化炭素を過度に添加することなく炭素原料としての二重結合含有炭化水素を十分に高濃度で供給することができる。その結果、カーボンナノチューブなどの繊維状炭素ナノ構造体を高い収率で製造することができる。また、炭素原料としての二重結合含有炭化水素を十分に高濃度で供給するということは、後述するように、繊維状炭素ナノ構造体の合成反応に寄与しないガス成分の供給濃度を十分に低減することに繋がるため、繊維状炭素ナノ構造体の製造コストを大幅に削減することが可能となる。
なお、上述のように二酸化炭素を約パーセントオーダーの比較的高濃度で供給できるということは、例えば、ppmオーダーの比較的低濃度で供給する場合に対して微量制御の必要がなく、製造の容易性およびスケールアップの観点からも望ましい条件である。
即ち、繊維状炭素ナノ構造体は、触媒上で炭素原料を分解し、触媒中に分解された炭素を取り込ませ、触媒中の飽和濃度を超えた炭素が触媒から析出することにより形成される。ここで、上記飽和濃度を超える程度、即ち過飽和度が大きいほど、繊維状炭素ナノ構造体は速く析出する。しかし同時に、過飽和度が大きいほど触媒表面に炭素被膜が形成されて触媒が炭化失活する可能性も高まる。ここで、二酸化炭素は、CO2 + C → 2CO(なお、当該化学反応は可逆反応である。)で表される通り炭素と反応し、一酸化炭素を生じることが知られている。従って、二酸化炭素を反応場に供給することで、触媒表面の炭素被膜が除去されるため、触媒の活性が良好に維持されると考えられる。
本発明の繊維状炭素ナノ構造体の製造方法で用いる原料ガスは、二重結合含有炭化水素を含む。二重結合含有炭化水素は、カーボンナノチューブなどの繊維状炭素ナノ構造体を合成する炭素原料(炭素源)としての役割を担う。
なお、原料ガスには、本発明の所望の効果の発現を阻害しない範囲で、上記二重結合含有炭化水素以外のその他の炭素原料を含めてもよい。
原料ガスに含まれる二重結合含有炭化水素の含有割合は、特に制限されないが、原料ガスの全体積に対して4体積%以上であることが好ましく、8体積%以上であることがより好ましく、10体積%以上であることが更に好ましく、16体積%以上であることが一層好ましい。二重結合含有炭化水素の含有割合を上記下限以上にすれば、炭素原料を高濃度に供給することができ、反応場の全体または大部分を合成反応に活用できるため、カーボンナノチューブなどの繊維状炭素ナノ構造体をより効率的に合成することができるからである。ここで、二重結合含有炭化水素は、例えば三重結合含有炭化水素と比較して低活性であるため、高濃度に供給しても触媒の炭化失活を抑制することができる。従って、二重結合含有炭化水素は、例えばアセチレンなどの三重結合含有炭化水素と比較して、反応場内に、より高濃度で供給することができ、かつ、より長い時間滞留することができるため、繊維状炭素ナノ構造体のより高い製造効率に寄与する。また、炭素原料としての二重結合含有炭化水素を高濃度に供給すれば、一般的に、二重結合含有炭化水素は、炭素数が等しい三重結合含有炭化水素よりも低コストであること、および、繊維状炭素ナノ構造体の合成反応に寄与しないその他のガス成分の供給濃度を低く抑えることができるため、製造コストの大幅な削減に寄与することが考えられる。
なお、原料ガスに含まれる二重結合含有炭化水素の含有割合は、特に制限されないが、触媒の炭化失活を良好に抑制する観点からは、例えば、原料ガスの全体積に対して60体積%以下とすることができる。
二重結合含有炭化水素としては、特に制限されることなく、例えば、エチレン、プロピレン、ブテンおよびその異性体、ブタジエン、ペンテンおよびその異性体、ペンタジエンなどが挙げられる。これらの中でも、繊維状炭素ナノ構造体の合成、成長に十分な高い活性を有し、かつ、触媒失活を抑制し得る適度な反応活性を有する観点からは、分子中に二重結合を1個有する二重結合含炭化水素が好ましく、炭素数が3以下の二重結合含炭化水素がより好ましく、エチレンが更に好ましい。
また、エチレンとしては、エチレンのみからなる純エチレン;エチレンとその他任意の炭化水素を含む低純度エチレン;などが挙げられるが、製造コストを低減する観点からは、低純度エチレンを用いることが有利である。ここで、エチレンと併存し得る上記その他任意の炭化水素としては、特に限定されることなく、メタン、エタン、プロパンなどのアルカン、プロピレンなどのアルケンが挙げられる。
また、二重結合含有炭化水素以外のその他の炭素原料としては、特に制限されることなく、例えば、メタン、エタン、プロパン、ブタンなどのアルカン;アセチレン、プロピン、ブチンなどのアルキンが挙げられる。従って、上述した低純度エチレン中にエチレンと併存し得るその他任意の炭化水素は、当該二重結合含有炭化水素以外のその他の炭素原料として原料ガスに含まれていても良い。
ここで、その他の炭素原料としてアルカンを二重結合含有炭化水素と併用する場合は、アルカンの含有割合は、二重結合含有炭化水素の含有割合と同程度に加えることができる。また、その他の炭素原料としてアルキンを二重結合含有炭化水素と併用する場合は、アルキンの含有割合は、原料ガスの全体積に対して3体積%以下であることが好ましく、0.3体積%以下であることがより好ましく、0体積%に近いこと(つまり、実質的にその他の炭素原料を含まないこと)が更に好ましい。その他の炭素原料の含有割合が上記上限以下であれば、二重結合含有炭化水素が寄与する炭素原料の高濃度供給、および触媒炭化失活の抑制などの効果を十分に発揮させることができるからである。
原料ガスが含み得る、上記二重結合含有炭化水素および二酸化炭素以外のその他のガス成分としては、反応場への原料ガスの供給、並びに、反応場中での原料ガス及び触媒の流通、流動を担うキャリアガス等が挙げられる。
キャリアガスとしては、特に限定されることなく、例えば、窒素ガス(N2)、アルゴンガス(Ar)などの不活性ガス;水素ガス(H2);などが挙げられる。ここで、水素ガスは、触媒の還元作用やタールの生成抑制作用を発現しうる。なお、水素ガスは炭素原料の分解によっても副生しうる。
ここで、原料ガス中に含み得るキャリアガスの体積含有割合は、二重結合含有炭化水素の体積含有割合に対して10倍以下であることが好ましく、7倍以下であることがより好ましく、5倍以下であることが更に好ましく、通常1倍以上であるが、キャリアガスを用いなくても良い。二重結合含有炭化水素の体積含有割合に対するキャリアガスの体積含有割合(キャリアガス/二重結合含有炭化水素)が上記上限以下であれば、繊維状炭素ナノ構造体の合成反応に寄与しないガス成分の供給量を大幅に抑制して炭素原料の供給量を増大することができるため、カーボンナノチューブなどの繊維状炭素ナノ構造体を更に効率良く製造できるからである。また、繊維状炭素ナノ構造体の合成反応に寄与しないガス成分の供給量を大幅に抑制することにより、繊維状炭素ナノ構造体の製造コストを更に削減するとともに、原料供給の総流量を低く抑えることにより、反応場を高温に維持し易くスケールアップに適した製造方法を提供することができるからである。
なお、原料ガス中にキャリアガスを含まない場合は、上記二重結合含有炭化水素および/または二酸化炭素がキャリアガスの役割を担うことができる。
原料ガスを反応場へ供給する総流量Fは、特に制限されることなく、原料ガスを反応場へ供給する流速vと反応管断面積Sとの積で決まる。また、流速vも特に制限されることなく、例えば、用いる触媒担持体の粒子径が100μm~500μm程度である場合は、0.03m/s以上3m/s以下とすることができる。ここで、3m/s以下と低めの流速を設定できるのは、比較的活性の低い二重結合含有炭化水素を炭素原料として用いているためである。また、原料ガスの流速を3m/s以下と低めに抑制することにより、上述した通り、反応場の反応温度が維持し易くなるため、より大量合成に適した製造方法を提供することができる。更に、原料ガスの流速を3m/s以下と低めに抑制することにより、流動している触媒が反応管の外に吹き飛ばされてしまうリスクを低くすることができるため、後述する触媒として比較的小さなサイズの触媒を使用することができる。
また、原料ガスが反応場に留まる滞留時間は、特に制限されることなく、例えば、用いる反応容器の長さが0.3m~5m程度である場合は、0.5秒以上50秒以下とすることができる。ここで、例えば50秒と長めの滞留時間まで設定できるのは、原料ガス中に二酸化炭素を高濃度に添加することにより、炭素原料としての二重結合含有炭化水素も高濃度に供給することができるからである。そして、高濃度の炭素原料を十分な時間に亘って触媒担持体と接触させることにより、繊維状炭素ナノ構造体を更に効率的に合成することができる。
本発明の繊維状炭素ナノ構造体の製造方法に用いる触媒担持体は、粒子状の担体と当該担体の表面に担持された触媒とを有する。
ここで、触媒担持体は、反応場内において繊維状炭素ナノ構造体の合成および成長の仲介、促進、効率化などの働きをする。そして、触媒担持体は、特に限定されることなく、表面において、供給された原料ガスから二重結合含有炭化水素などの炭素原料を取り込み、カーボンナノチューブなどの繊維状炭素ナノ構造体を吐き出す役割を担う。より具体的には、例えば、触媒が微細な粒子状の形状を有する場合は、触媒粒子それぞれが、当該触媒粒子のサイズに応じた径を有するチューブ状などの構造を作りながら炭素を生成し続けることにより、触媒担持体が有する触媒上で繊維状炭素ナノ構造体が合成および成長される。
ここで、担体は、任意の材質からなる粒子形状を有し、当該担体表面に触媒を付着、固定、成膜、または形成などして担持するための母体構造を成す部分である。このように、担体が粒子状であれば、通常、触媒担持体も粒子状となるため、流動床法において触媒担持体を反応場中により均一に分散させながら流動させ続けることができる。従って、繊維状炭素ナノ構造体をより効率良く製造することができる。
なお、担体が「粒子状」であるとは、例えば担体が上述したアスペクト比を有するなど、略粒子形状を形成していれば良い。ここで、本発明において、「担体のアスペクト比」は、特に限定されることなく、走査型電子顕微鏡(SEM)を用いて求めることができる。具体的には、例えば、触媒担持体を観察し、任意の50個の触媒担持体について、最大径(長径)と、最大径に直交する方向の粒子径(短径)とを測定し、長径と短径との比(長径/短径)の平均値を算出することにより求めることができる。
ここで、担体の比表面積は、1m2/g以下であることが好ましく、0.3m2/g以下であることがより好ましく、0.1m2/g以下であることが更に好ましい。既存の流動床法による繊維状炭素ナノ構造体の合成技術では、典型的には、100m2/g以上の大きな比表面積を有する多孔質の金属酸化物からなる担体を用いていた。そして、当該大きな比表面積を有する担体を用いることにより、担体表面上に触媒を多量に担持して繊維状炭素ナノ構造体の生成量を増やしてきた。しかし、当該既存の技術では、合成された繊維状炭素ナノ構造体と触媒担持体との接触面積が大きく、両者が複雑に絡み合う。従って、触媒担持体からの繊維状炭素ナノ構造体の分離が困難であり、結果として得られる繊維状炭素ナノ構造体の特性は劣っていた。
一方で、本発明の繊維状炭素ナノ構造体の製造方法で用い得る担体は、比表面積が上記範囲の通り小さく、平滑な表面を有するため、合成された繊維状炭素ナノ構造体と触媒担持体との接点を減らすことができる。その結果、両者の分離が容易となり、特性に優れた繊維状炭素ナノ構造体を得ることができる。ここで、一般的には、表面積が小さい担体を用いると、当該担体の表面に付与される触媒の担持量が減ってしまう。しかし、本発明の繊維状炭素ナノ構造体の製造方法では、二酸化炭素を高濃度に添加することにより炭素原料としての二重結合含有炭化水素を高濃度に供給できる。従って、比較的少ない触媒担持量を有する触媒担持体を用いた場合であっても、反応量を十分に稼ぐことができる。また、高濃度の炭素原料を供給した場合であっても、0.3体積%以上の二酸化炭素の添加により、触媒の炭化失活を防ぐことができる。結果として、高濃度の炭素原料を高い割合で反応させても、十分な高濃度で添加された二酸化炭素が枯渇することなく、繊維状炭素ナノ構造体の合成反応を良好に持続することができる。
また、担体の粒子径は、体積平均粒子径で1000μm以下であることが好ましく、600μm以下であることがより好ましく、400μm以下であることが更に好ましく、50μm以上であることが好ましい。担体の体積平均粒子径が上記上限以下であれば、反応場中で触媒担持体が沈んだり下方に停滞したりすることなく良好に流動されるからである。特に本発明の繊維状炭素ナノ構造体の製造方法では、上述したようにキャリアガスの濃度を抑えて流量を低くすることができるため、比較的小さなサイズの触媒担持体でも反応管から飛び出すことなく、触媒担持体をより安定的に流動させ続けることができる。その結果、繊維状炭素ナノ構造体を更に高い効率で製造することができるからである。加えて、一般的に、小さなサイズの担体は大きなサイズの担体よりも低コストであるため、小さな粒子径の担体を用いることにより、繊維状炭素ナノ構造体の製造にかかるコストを更に削減し得るからである。
また、担体の体積平均粒子径が上記下限以上であれば、流動している触媒担持体が反応管から飛び出す、または反応管の上方に滞留することを防ぎ、触媒担持体を容易かつ良好に流動させ続けることができるからである。
ここで、担体としては、特に制限されることなく、マグネシウム(Mg)、アルミニウム(Al)、ケイ素(Si)、ジルコニウム(Zr)、およびモリブデン(Mo)からなる群から選択される少なくとも1種の元素を含有する金属酸化物を含むことが好ましい。これらは1種類を単独で、または2種類以上を任意に組み合わせて含有しても良く、上記以外の元素を更に含有しても良い。例えば、担体は、上述した元素を、SiO2、Al2O3、MgOなどの金属酸化物の状態で含有しても良い。また、担体は、上述した金属酸化物に加え、Si3N4、AlNなどの窒化物;SiCなどの炭化物;を更に含有しても良い。
なお、担体が含有するこれらの金属酸化物などは、合成物を用いてもよく、天然物を用いても良い。
担体が更に有し得る下地層は、任意の材質からなり、例えば、担体の表面に1層、または2層以上形成されることができる。なお、担体上に触媒を良好に担持させて触媒担持体を有効に活用する観点からは、担体は、当該担体表面に下地層を更に有することが好ましい。
なお、下地層の組成は特に制限されることなく、担体の種類、および後述する触媒の種類によって適宜選択することができる。また、形成する下地層の膜厚も、所望の触媒担持量によって適宜調節することができる。
触媒は、上述した粒子状の担体の表面に担持される。また、触媒は、例えば触媒層として、粒子状の担体の表面に直接的に担持されて触媒担持体を構成しても良い。また、触媒は、例えば触媒層として、上記下地層などを介して粒子状の担体の表面に間接的に担持されて触媒担持体を構成(内側より、担体/下地層/触媒が担持された多層構造)しても良い。更に、当該多層構造は、例えば、下地層および/または触媒を含有する層を、任意に複数層設けても良い。
そして、触媒は、通常、触媒担持体の表面に存在して、繊維状炭素ナノ構造体の合成を促進する働きをする。
ここで、触媒を構成する組成は、特に制限されない。触媒を構成する組成としては、例えば、鉄(Fe)、コバルト(Co)、およびニッケル(Ni)などの金属を含むことができ、これらの元素は1種のみ含有されても良く、2種以上を組み合わせて含有されても良い。また、所望の微細な径を有する繊維状炭素ナノ構造体を合成する観点からは、触媒は、例えば上記金属を含む微細な金属粒子(金属微粒子)を含有することが好ましい。
触媒が含有し得る金属微粒子は、体積平均粒子径で1nm以上であることが好ましく、30nm以下であることが好ましい。金属微粒子の粒子径が上記下限以上であれば、金属微粒子が触媒として十分な活性を発揮するため、カーボンナノチューブなどの繊維状炭素ナノ構造体を更に効率良く製造することができるからである。また、金属微粒子の粒子径が上記上限以下であれば、曲率半径が小さいことにより繊維状炭素ナノ構造体を効率的に核発生させることができ、繊維状炭素ナノ構造体を更に効率良く製造することができるからである。加えて、繊維状炭素ナノ構造体は、通常、触媒として働く金属微粒子の粒子径に対応した径にて生成、成長するため、製造される繊維状炭素ナノ構造体を所望の微細径に調節することが可能だからである。
触媒の担持方法としては、特に制限されることなく、例えば、上述した担体表面に対して、スパッタリング(スパッタ)法、化学蒸着法(CVD法)などの気相蒸着法により成膜する既知の乾式法が挙げられる。ここで、触媒を担持する際に用いる担体は、表面加工および成膜などを施していない担体そのものであっても良く、当該担体上に形成された下地層などを外表面に有する担体であっても良い。
反応場への触媒担持体の充填率(触媒充填率)は、反応器容積に対する触媒の真体積の割合として、1体積%以上50体積%以下が好適である。触媒充填率を1体積%以上とすることで十分な量の触媒担持体を反応場に供給することができる。また、触媒充填率を50体積%以下とすることで繊維状炭素ナノ構造体が生成する空間を確保できる。
繊維状炭素ナノ構造体としては、特に限定されることなく、例えば、アスペクト比が10を超える繊維状炭素ナノ構造体が挙げられる。具体的には、繊維状炭素ナノ構造体としては、CNT、気相成長炭素繊維などが挙げられる。
なお、本発明において、「繊維状炭素ナノ構造体のアスペクト比」は、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)および長さを測定して求めることができる。
以下、本発明の製造方法で得られる繊維状炭素ナノ構造体がCNTを含む場合について説明するが、本発明はこれに限定されない。
CNTは、グラフェンシートを筒状に巻いた構造を有し、アスペクト比の非常に大きい一次元構造を有する材料である(非特許文献1を参照)。ここで、CNTを含む繊維状炭素ナノ構造体は、CNTのみから構成されていてもよいし、CNTと、CNT以外の繊維状炭素ナノ構造体との混合物であってもよい。
また、CNTを含む繊維状炭素ナノ構造体の平均直径は、種々の用途により所望の値とすることができる。例えば、通常、上述した触媒中の金属微粒子の粒子径が1~2nm程度であれば、CNTなどの平均直径は1nm程度に、金属微粒子の粒子径が30nm程度であれば、CNTなどの平均直径は20~30nm程度に調節することが可能である。一般的には、CNTの平均直径が微細であるほど種々の特性は向上する。特に、本発明の製造方法では、原料ガスに二重結合含有炭化水素および所定以上の割合の二酸化炭素を含むことにより、触媒の炭化失活を抑制しながら繊維状炭素ナノ構造体を合成することができるため、CNTを合成成長し続けても、金属微粒子の粒子径に応じたサイズを良好に維持しながら成長する。
なお、CNTを含む繊維状炭素ナノ構造体の「平均直径」は、例えば、透過型電子顕微鏡を用いて無作為に選択した繊維状炭素ナノ構造体100本の直径(外径)を測定して求めることができる。
なお、CNTを含む繊維状炭素ナノ構造体の「平均長さ」は、例えば、合成反応時間を変更することにより、適宜調節することができる。
本発明の繊維状炭素ナノ構造体の製造方法は流動床法を用いる。具体的には、上述した触媒担持体を流動し続けている反応場中に原料ガスを流通させることにより、繊維状炭素ナノ構造体を効率的に製造する。
反応場は、繊維状炭素ナノ構造体を合成、成長させる空間であり、触媒担持体等の触媒、二重結合含有炭化水素および二酸化炭素を含む原料ガス、任意のその他のガス成分などを供給できる空間である。反応場を提供する装置としては、例えば、図1に示すような、任意のサイズの反応管2などが挙げられ、通常、反応管2には、原料ガス12等を供給するための供給管(図示せず)、および気体流等が排出されるための排出管(図示せず)が接続されている。
また、当該反応場に、担体および触媒成分、下地層成分などを供給することにより、触媒担持体を作製しても良い。
繊維状炭素ナノ構造体を合成および成長させる反応温度は、500℃以上とすることが好ましく、700℃以上がより好ましく、1000℃以下が好ましく、900℃以下がより好ましい。反応温度を上記下限以上とすれば、触媒が十分に高い活性を保持するため、繊維状炭素ナノ構造体をより高い収率で効率的に合成することができるからである。また、反応温度を上記上限以下とすれば、原料ガス中の二重結合含有炭化水素が熱分解して煤になることを抑制し、繊維状炭素ナノ構造体をより高い収率で効率的に合成することができるからである。
ここで、反応温度とは、反応場の雰囲気温度を指す。特に、本発明の繊維状炭素ナノ構造体の製造方法は、反応場に流通させる原料ガスの総流量を低く抑えることができるため、繊維状炭素ナノ構造体の合成を続けて行った場合でも、反応場の雰囲気温度を容易に維持することができ、スケールアップに適している。
繊維状炭素ナノ構造体を合成および成長させる反応時間は、特に制限されることなく、通常、目的とする繊維状炭素ナノ構造体の長さ、上述した二重結合含有炭化水素および二酸化炭素の供給濃度、原料ガスの総流量、触媒の種類および供給量、および反応温度などに従って、適宜調節することができる。例えば、反応時間は、1分間以上とすることができ、100分間以下とすることができる。一般的に、反応時間が長いほど得られる繊維状炭素ナノ構造体の長さも増し、反応時間が短いほど得られる繊維状炭素ナノ構造体の長さも短くなる。反応時間は、例えば、反応場中への原料ガスの流通を開始または停止することにより調節することができる。
なお、カーボンナノチューブの状態観察、カーボンナノチューブの構造評価、およびカーボンナノチューブの製造収率は、以下の通り算出および観察を行った。
触媒担持体が有する触媒上に合成されたカーボンナノチューブの表面状態を、走査型電池顕微鏡(SEM、Hitachi S-4800)を用いて観察した。なお、加速電圧は5kV、倍率は100倍~100,000倍とした。得られたSEM画像を図2~5に示す。
触媒担持体が有する触媒上に合成されたカーボンナノチューブの構造を、顕微レーザーラマン分光計(Horiba HR-800)を用いて測定、評価した。なお、励起波長は488nmとした。得られたラマンスペクトルを図6~9に示す。
反応場に供給するエチレン中に含まれる炭素原料の重量Gc-source(g)を、原料ガスの供給総流量F(sccm)、エチレン濃度CC2H4(体積%)、反応時間t(分)、気体の標準状態でのモル体積V=22400(cc/mol)、および炭素のモル質量M≒12(g/mol)を用いて、下記式(I):
Gc-source(g)=
F×(CC2H4/100)×t×(1/V)×(M×2)・・・(I)
に従って算出した。
次に触媒担持体が有する触媒上に合成されたカーボンナノチューブの収量GCNT(g)を、電子天秤(島津製作所製、型番「AUW120D」)を用いて秤量した。なお、GCNTは、カーボンナノチューブが合成された触媒担持体全体の質量から、触媒担持体の質量を差し引くことにより求めた。そして、下記式(II):
カーボンナノチューブの製造収率Y(%)=
(GCNT/Gc-source)×100・・・(II)
に従って算出した。製造収率Yの値が高いほど、カーボンナノチューブの製造効率が高いことを示す。結果を表1および図10に示す。
<触媒担持体の作製>
<<触媒の担持>>
担体としてのアルミナビーズ(Al2O3、体積平均粒子径D50:300μm)100gを、あらかじめ、乾燥空気流通下、温度850℃の環境下にて縦型管状炉で焼くことにより、表面の不純物を除去した。次に、スパッタリングにより、焼いたアルミナビーズ上にアルミニウム層(平均膜厚:15nm)を成膜し、大気解放して自然酸化させて酸化アルミニウム(Al2O3)下地層を得た。更にAl2O3下地層上に鉄触媒層(Fe触媒層、平均膜厚:1nm)をスパッタで成膜することにより、触媒が担持された活性化前の触媒担持体を得た。
なお、本実施例ではドラムスパッタを用いて触媒を担持したため、アルミナビーズの球体全面上に略均一にAl2O3下地層およびFe触媒層が形成された。
<<触媒の活性化>>
得られた活性化前の触媒担持体10gを、図1に示す分散板4付き反応管2(内径:2.2cm、反応場高さ:15cm)内に供給し、加熱器6を用いて温度850℃まで昇温後、10体積%-水素(H2)/90体積%-窒素ガス(N2)で構成される活性化ガス10を、流量1500sccmにて5分間供給した。このようにして担持したFe触媒層を還元して触媒の活性化を行うことにより、触媒担持体8を得た。
上述で得られた触媒担持体に対し、0.3体積%-二酸化炭素ガス(CO2)/20.0体積%-エチレンガス(C2H4)/10体積%-水素ガス(H2)/その他窒素ガス(N2)で構成される原料ガス12を、常圧下、温度850℃の環境下、総流量1500sccmにて10分間、上記反応管2内に供給した。このようにして原料ガスを供給することにより、触媒担持体を流動させた流動床法にて、触媒担持体上にカーボンナノチューブを合成した。
そして、カーボンナノチューブが合成された触媒担持体を用いて、上述の方法に従って、カーボンナノチューブの状態観察、カーボンナノチューブの構造評価、およびカーボンナノチューブの製造収率の算出を行った。結果を表1および図2b、6、10に示す。
カーボンナノチューブの合成において、CO2の濃度を1.0体積%に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図2c、6、10に示す。
カーボンナノチューブの合成において、CO2の濃度を3.0体積%に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図2d、6、10に示す。
カーボンナノチューブの合成において、CO2の濃度を10.0体積%に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図2e、6、10に示す。
触媒の活性化において、担持した触媒の反応管への供給量を30gに変更してそのままカーボンナノチューブの合成に用いた以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図10に示す。
触媒の活性化において、担持した触媒の反応管への供給量を30gに変更してそのままカーボンナノチューブの合成に用いた。また、カーボンナノチューブの合成において、CO2の濃度を1.0体積%に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図3、7、10に示す。
触媒の活性化において、担持した触媒の反応管への供給量を30gに変更してそのままカーボンナノチューブの合成に用いた。また、カーボンナノチューブの合成において、CO2の濃度を3.0体積%に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図10に示す。
触媒の活性化において、担持した触媒の反応管への供給量を30gに変更してそのままカーボンナノチューブの合成に用いた。また、カーボンナノチューブの合成において、CO2の濃度を10.0体積%に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図10に示す。
カーボンナノチューブの合成において、CO2の濃度を3.0体積%に変更し、C2H4の濃度を10.0体積%に変更した。また、反応温度を800℃に、総流量を850sccmに変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図4a、8に示す。
カーボンナノチューブの合成において、CO2の濃度を3.0体積%に変更した。また、反応温度を800℃に、総流量を850sccmに変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図4b、8に示す。
カーボンナノチューブの合成において、CO2の濃度を3.0体積%に変更し、C2H4の濃度を30.0体積%に変更した。また、反応温度を800℃に、総流量を850sccmに変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図4c、8に示す。
触媒担持体の作製において、触媒担持体を以下の通り作製し、使用した。また、カーボンナノチューブの合成において、CO2の濃度を3.0体積%に変更し、C2H4の濃度を10.0体積%に変更した。また、分散板4の位置を12cm下げて反応場高さを27cmとし、反応温度を725℃に変更した以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図5aに示す。
<触媒担持体の作製>
[触媒の担持]
[[準備工程]]
担体として、体積平均粒子径(D50)約150μmのムライト粉末(伊藤忠セラテック株式会社製、「ナイガイセラビーズ60」、#750)を用いた。ムライト粉末70gを、ガラス管よりなる反応管に充填し、酸素4体積%、窒素96体積%雰囲気下で温度800℃まで40℃/分の速度で昇温し、2分間維持した。なお、本実施例で用いたムライトとは、一般式xM2O・yAl2O3・zSiO2・nH2O[式中、Mは金属原子であり、x~z、nは各成分のモル数(0以上)を表す]で表されるアルミノケイ酸塩の一種である。
[[下地層形成工程]]
次に、下地層成分としてのアルミニウムイソプロポキシド(和光純薬工業社製、商品名「012-16012」、化学式:Al(O-i-Pr)3[i-Prはイソプロピル基-CH(CH3)2])の蒸気を、流量500sccmのN2ガスで同伴し、酸素4体積%、窒素96体積%、10slmのガスとともに5分間供給して、担体としてのムライト粉末上に、下地層としての酸化アルミニウム(Al2O3)層(平均膜厚:5nm)を化学蒸着法により形成した。
[[触媒層形成工程]]
次いで、触媒成分としてフェロセン(和光純薬工業社製、商品名「060-05981」)の蒸気を流量20sccmのN2ガスで同伴し、酸素4体積%、窒素96体積%、10slmのガスとともに5分間供給して、鉄により形成される金属微粒子を含有するFe触媒層(平均膜厚:0.5nm)を化学蒸着法により形成した。
[[繰り返し工程]]
そして、上記下地層及び触媒層を形成した触媒担持体について、上述の下地層形成工程-触媒層形成工程をさらに4回繰り返し、下地層及び触媒層をそれぞれ5層ずつ備える、活性化前の触媒担持体を製造した。
[触媒の活性化]
得られた活性化前の触媒担持体を、ガラス管(内径:22mm)よりなるカーボンナノチューブ合成用反応管に、層高6cm(触媒担持体の供給量54g相当)になるように充填した。そして、CNT合成用流動層装置内を、水素10体積%、窒素90体積%を含む雰囲気下で800℃に昇温し、10分間維持してFe触媒層を還元して触媒の活性化を行うことにより、触媒担持体を得た。
触媒の活性化において、活性化前の触媒担持体の充填量を層高3cm(触媒担持体の供給量27g相当)に変更してそのままカーボンナノチューブの合成に用いた。また、カーボンナノチューブの合成において、反応温度を800℃に変更した以外は実施例12と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図5b、9に示す。
カーボンナノチューブの合成において、反応温度を800℃に変更した以外は実施例12と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図5c、9に示す。
触媒の活性化において、活性化前の触媒担持体の充填量を層高9cm(触媒担持体の供給量81g相当)に変更してそのままカーボンナノチューブの合成に用いた。また、カーボンナノチューブの合成において、反応温度を800℃に変更した以外は実施例12と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図5d、9に示す。
カーボンナノチューブの合成において、CO2を添加しなかった(CO2の濃度を0体積%に変更した)以外は実施例1と同様にして、活性化前の触媒担持体、触媒担持体、およびカーボンナノチューブが合成された触媒担持体を得た。
そして、実施例1と同様の方法で算出、観察した。結果を表1および図2a、6、10に示す。
また、図2~10より、実施例1~15では、微細な径の単層カーボンナノチューブが触媒担持体上から良好に合成、成長している様子が確認できた。
4 分散板
6 加熱器
8 触媒担持体
10 活性化ガス
12 原料ガス
Claims (5)
- 流動床法を用いた繊維状炭素ナノ構造体の製造方法であって、
粒子状の担体と当該担体の表面に担持された触媒とを有する触媒担持体が流動している反応場に対して原料ガスを供給することにより、前記触媒担持体が有する触媒上に繊維状炭素ナノ構造体を生成する工程を有し、
前記原料ガスは、二重結合含有炭化水素および二酸化炭素を含み、
前記二酸化炭素の含有割合が、前記原料ガスの全体積に対して0.3体積%以上である、繊維状炭素ナノ構造体の製造方法。 - 前記二重結合含有炭化水素の含有割合が、前記原料ガスの全体積に対して4体積%以上である、請求項1に記載の繊維状炭素ナノ構造体の製造方法。
- 前記原料ガスがキャリアガスを更に含み、
前記二重結合含有炭化水素の体積含有割合に対する前記キャリアガスの体積含有割合が10倍以下である、請求項1又は2に記載の繊維状炭素ナノ構造体の製造方法。 - 前記二重結合含有炭化水素がエチレンである、請求項1~3のいずれか一項に記載の繊維状炭素ナノ構造体の製造方法。
- 前記担体の比表面積が1m2/g以下である、請求項1~4のいずれか一項に記載の繊維状炭素ナノ構造体の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201780012709.5A CN108698830A (zh) | 2016-02-27 | 2017-01-20 | 纤维状碳纳米结构体的制造方法 |
JP2018501059A JP6816096B2 (ja) | 2016-02-27 | 2017-01-20 | 繊維状炭素ナノ構造体の製造方法 |
US16/078,744 US10954128B2 (en) | 2016-02-27 | 2017-01-20 | Method of producing fibrous carbon nanostructures |
KR1020187023732A KR102669941B1 (ko) | 2016-02-27 | 2017-01-20 | 섬유상 탄소 나노 구조체의 제조 방법 |
EP17756046.3A EP3421424B1 (en) | 2016-02-27 | 2017-01-20 | Production method for fibrous carbon nanostructure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016-036478 | 2016-02-27 | ||
JP2016036478 | 2016-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017145604A1 true WO2017145604A1 (ja) | 2017-08-31 |
Family
ID=59686228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/002001 WO2017145604A1 (ja) | 2016-02-27 | 2017-01-20 | 繊維状炭素ナノ構造体の製造方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US10954128B2 (ja) |
EP (1) | EP3421424B1 (ja) |
JP (1) | JP6816096B2 (ja) |
KR (1) | KR102669941B1 (ja) |
CN (1) | CN108698830A (ja) |
WO (1) | WO2017145604A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019188979A1 (ja) * | 2018-03-30 | 2019-10-03 | 日本ゼオン株式会社 | 分離回収方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111063402B (zh) * | 2019-12-11 | 2021-12-03 | 上海交通大学 | 纤维增强复合材料细观尺度几何重构方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091959A (ja) * | 2002-08-30 | 2004-03-25 | Mitsubishi Heavy Ind Ltd | カーボンナノファイバーの製造方法及び装置 |
JP2009012988A (ja) * | 2007-06-29 | 2009-01-22 | Toray Ind Inc | カーボンナノチューブ集合体の製造方法 |
JP2009149503A (ja) * | 2007-11-30 | 2009-07-09 | Toray Ind Inc | カーボンナノチューブ組成物の製造方法 |
JP2010540220A (ja) * | 2007-09-27 | 2010-12-24 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | カーボンナノチューブを製造するために用いる触媒の製造方法 |
JP2012056789A (ja) * | 2010-09-08 | 2012-03-22 | Toray Ind Inc | 2層カーボンナノチューブ分散液 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI404675B (zh) | 2004-07-27 | 2013-08-11 | Nat Inst Of Advanced Ind Scien | 單層奈米碳管及定向單層奈米碳管/塊材構造體暨該等之製造方法/裝置及用途 |
US8178203B2 (en) | 2004-07-27 | 2012-05-15 | National Institute Of Advanced Industrial Science And Technology | Aligned single-walled carbon nanotube aggregate, bulk aligned single-walled carbon nanotube aggregate, and powdered aligned single-walled carbon nanotube aggregate |
JP4697941B2 (ja) * | 2005-05-11 | 2011-06-08 | 株式会社日本製鋼所 | 低級炭化水素の直接分解による機能性ナノ炭素及び水素の製造方法 |
KR20080078879A (ko) | 2005-12-19 | 2008-08-28 | 어드밴스드 테크놀러지 머티리얼즈, 인코포레이티드 | 탄소 나노튜브의 생성 |
EP2307311A1 (en) * | 2008-06-30 | 2011-04-13 | Showa Denko K.K. | Process for producing carbon nanomaterial and system for producing carbon nanomaterial |
CN106430152A (zh) * | 2008-12-30 | 2017-02-22 | 独立行政法人产业技术综合研究所 | 取向单层碳纳米管集合体及其制造方法 |
JP2012057229A (ja) | 2010-09-10 | 2012-03-22 | Japan Organo Co Ltd | 三室型電解水生成装置のスケール防止方法及び三室型電解水生成装置 |
JP6202359B2 (ja) | 2010-10-26 | 2017-09-27 | 日立化成株式会社 | カーボンナノチューブの製造方法 |
TWI638770B (zh) | 2012-09-18 | 2018-10-21 | 美商艾克頌美孚上游研究公司 | 用於製造碳同素異形體之反應器系統 |
KR102291933B1 (ko) * | 2014-02-05 | 2021-08-19 | 덴카 주식회사 | 카본 나노파이버의 제조방법 및 카본 나노파이버 |
-
2017
- 2017-01-20 CN CN201780012709.5A patent/CN108698830A/zh active Pending
- 2017-01-20 WO PCT/JP2017/002001 patent/WO2017145604A1/ja active Application Filing
- 2017-01-20 US US16/078,744 patent/US10954128B2/en active Active
- 2017-01-20 KR KR1020187023732A patent/KR102669941B1/ko active IP Right Grant
- 2017-01-20 EP EP17756046.3A patent/EP3421424B1/en active Active
- 2017-01-20 JP JP2018501059A patent/JP6816096B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004091959A (ja) * | 2002-08-30 | 2004-03-25 | Mitsubishi Heavy Ind Ltd | カーボンナノファイバーの製造方法及び装置 |
JP2009012988A (ja) * | 2007-06-29 | 2009-01-22 | Toray Ind Inc | カーボンナノチューブ集合体の製造方法 |
JP2010540220A (ja) * | 2007-09-27 | 2010-12-24 | バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト | カーボンナノチューブを製造するために用いる触媒の製造方法 |
JP2009149503A (ja) * | 2007-11-30 | 2009-07-09 | Toray Ind Inc | カーボンナノチューブ組成物の製造方法 |
JP2012056789A (ja) * | 2010-09-08 | 2012-03-22 | Toray Ind Inc | 2層カーボンナノチューブ分散液 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3421424A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019188979A1 (ja) * | 2018-03-30 | 2019-10-03 | 日本ゼオン株式会社 | 分離回収方法 |
CN111788152A (zh) * | 2018-03-30 | 2020-10-16 | 日本瑞翁株式会社 | 分离回收方法 |
KR20200138211A (ko) | 2018-03-30 | 2020-12-09 | 니폰 제온 가부시키가이샤 | 분리 회수 방법 |
JPWO2019188979A1 (ja) * | 2018-03-30 | 2021-04-08 | 日本ゼオン株式会社 | 分離回収方法 |
US11186488B2 (en) | 2018-03-30 | 2021-11-30 | Zeon Corporation | Separation and recovery method |
JP7136192B2 (ja) | 2018-03-30 | 2022-09-13 | 日本ゼオン株式会社 | 分離回収方法 |
CN111788152B (zh) * | 2018-03-30 | 2022-11-04 | 日本瑞翁株式会社 | 分离回收方法 |
KR102650449B1 (ko) | 2018-03-30 | 2024-03-21 | 니폰 제온 가부시키가이샤 | 분리 회수 방법 |
Also Published As
Publication number | Publication date |
---|---|
EP3421424B1 (en) | 2020-12-02 |
CN108698830A (zh) | 2018-10-23 |
KR102669941B1 (ko) | 2024-05-27 |
JPWO2017145604A1 (ja) | 2018-12-20 |
EP3421424A4 (en) | 2019-08-21 |
EP3421424A1 (en) | 2019-01-02 |
JP6816096B2 (ja) | 2021-01-20 |
US20190055128A1 (en) | 2019-02-21 |
KR20180116270A (ko) | 2018-10-24 |
US10954128B2 (en) | 2021-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11090635B2 (en) | Carbon nanotube having high specific surface area and method for manufacturing same | |
US10758898B2 (en) | Method for manufacturing carbon nanotube agglomerate having controlled bulk density | |
JP2010137222A (ja) | 金属ナノ触媒およびその製造方法、ならびにこれを用いて製造されたカーボンナノチューブの成長形態の調節方法 | |
KR102699854B1 (ko) | 촉매 담지체 및 섬유상 탄소 나노 구조체의 제조 방법 | |
KR102388564B1 (ko) | 유동층 반응기에서 카본 나노튜브 제조 방법 | |
JP6492598B2 (ja) | カーボンナノチューブの製造方法 | |
JP6890187B2 (ja) | 多重壁カーボンナノチューブの大量生産のための触媒 | |
Yardimci et al. | The effects of catalyst pretreatment, growth atmosphere and temperature on carbon nanotube synthesis using Co–Mo/MgO catalyst | |
KR101936447B1 (ko) | 카본 나노 튜브의 제조 방법 | |
Pinheiro et al. | Nanotubes and nanofilaments from carbon monoxide disproportionation over Co/MgO catalysts: I. Growth versus catalyst state | |
WO2017145604A1 (ja) | 繊維状炭素ナノ構造体の製造方法 | |
Donato et al. | Influence of carbon source and Fe-catalyst support on the growth of multi-walled carbon nanotubes | |
KR102473017B1 (ko) | 탄소나노튜브의 제조방법 | |
JP6810408B2 (ja) | 触媒担持体及びその調製方法 | |
WO2012081600A1 (ja) | カーボンナノチューブの製造装置および製造方法 | |
WO2010147192A1 (ja) | 高比表面積のカーボンナノチューブ集合体の製造方法 | |
CN118742388A (zh) | 用于制造碳纳米管的催化剂 | |
Shen et al. | Synthesis of high-specific volume carbon nanotube structures for gas-phase applications | |
KR20230109574A (ko) | 탄소나노튜브 제조용 촉매 | |
KR20230114426A (ko) | 탄소나노튜브 제조용 촉매의 제조방법, 탄소나노튜브 제조용 촉매 및 이를 이용한 탄소나노튜브의 제조방법 | |
WO2013125690A1 (ja) | カーボンナノチューブ生成用触媒 | |
JPWO2013125689A1 (ja) | カーボンナノチューブ生成用触媒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2018501059 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20187023732 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017756046 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017756046 Country of ref document: EP Effective date: 20180927 |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17756046 Country of ref document: EP Kind code of ref document: A1 |