WO2017145281A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2017145281A1
WO2017145281A1 PCT/JP2016/055373 JP2016055373W WO2017145281A1 WO 2017145281 A1 WO2017145281 A1 WO 2017145281A1 JP 2016055373 W JP2016055373 W JP 2016055373W WO 2017145281 A1 WO2017145281 A1 WO 2017145281A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
supply hole
oil supply
oil
drive shaft
Prior art date
Application number
PCT/JP2016/055373
Other languages
English (en)
French (fr)
Inventor
森田 慎也
修平 小山
友寿 松井
石園 文彦
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2016/055373 priority Critical patent/WO2017145281A1/ja
Publication of WO2017145281A1 publication Critical patent/WO2017145281A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • This invention relates to a scroll compressor mounted mainly on an air conditioner, a refrigerator, a water heater or the like.
  • the conventional scroll compressor removes foreign matter that has entered the compressor by an oil filter provided in the oil pump. At this time, small foreign matter that could not be removed by the oil filter passed through the oil supply hole of the rotary drive shaft and was introduced into the bearing along with the refrigerating machine oil. Thus, the foreign matter that has entered the bearing is discharged from the bearing gap together with the refrigeration oil and returns to the oil sump in the lower part of the compressor.
  • the present invention has been made to solve the above-described problems, and by providing a structure for separating foreign matter in an oil supply path in the rotary drive shaft, foreign matter accumulation in the bearing portion is prevented, and the compressor is locked.
  • the purpose is to obtain a scroll compressor that can prevent the above.
  • a scroll compressor includes a shell that is a pressure vessel, a fixed scroll and a swing scroll that are disposed on one end side of the shell to form a compression chamber, and a frame that thrust-supports the swing scroll.
  • a compression mechanism an oil sump formed on the other end of the shell, a rotary drive shaft rotatably connected to the compression mechanism via a bearing of the compression mechanism, and oil in the oil reservoir.
  • a vertical oil supply hole formed vertically through the rotary drive shaft to supply oil to the compression mechanism, and an oil that is attached to the lower part of the rotary drive shaft and supplies oil from the oil reservoir to the vertical oil supply hole of the rotary drive shaft
  • a vertical oiling hole is formed at a position eccentric in the radial direction from the rotation center of the rotary drive shaft, and the outer peripheral surface of the rotary drive shaft at a position facing the bearing portion of the compression mechanism portion, Communicate with the vertical oil hole
  • a lateral oil supply hole is formed in the rotary drive shaft, and the horizontal oil supply hole is opened on the outer peripheral surface opposite to the eccentric direction of the vertical oil supply hole with the rotation center of the rotary drive shaft as the center. is there.
  • the vertical oil supply hole is formed at a position eccentric in the radial direction from the rotation center of the rotary drive shaft, and the horizontal oil supply hole communicating with the middle of the vertical oil supply hole is formed at the rotation center of the rotary drive shaft. Since it is opened on the outer peripheral surface on the opposite side to the eccentric direction of the vertical oil hole as the center, foreign matter that receives centrifugal force due to the eccentric arrangement of the vertical oil hole does not enter the bearing part, Since it is separated and discharged through the vertical oil supply hole, it is possible to prevent foreign matter from accumulating on the bearing portion and to prevent the compressor from being locked.
  • FIG. Embodiment 1 shows a longitudinal sectional structure of the whole hermetic scroll compressor.
  • this scroll compressor has a function of sucking and compressing a fluid such as a refrigerant and discharging it in a high temperature / high pressure state.
  • a fluid such as a refrigerant
  • the compression mechanism 45, the drive mechanism 46, and other components are housed inside the sealed shell 8 forming an outer shell as a pressure vessel.
  • the compression mechanism 45, the drive mechanism 46, and other components are housed inside the sealed shell 8 forming an outer shell as a pressure vessel.
  • the compression mechanism 45, the drive mechanism 46, and other components are housed.
  • the compression mechanism portion 45 is disposed on the upper side in the shell 8
  • the drive mechanism portion 46 is disposed on the lower side in the shell 8.
  • a lower part in the shell 8 is an oil sump 12.
  • the compression mechanism 45 has a function of compressing the fluid sucked from the suction pipe 5 and discharging it to the high-pressure space 15 formed above the shell 8.
  • the fluid having such a high pressure is discharged from the discharge pipe 13 to the outside of the scroll compressor.
  • the drive mechanism section 46 functions to drive the orbiting scroll 2 that is a component of the compression mechanism section 45 in order to compress the fluid by the compression mechanism section 45. That is, the fluid is compressed by the compression mechanism 45 when the drive mechanism 46 swings the swing scroll 2 via the main shaft 4.
  • the compression mechanism unit 45 includes a fixed scroll 1, a swing scroll 2, and a frame 3 that fixes the fixed scroll 1 and thrust-supports the swing scroll 2 in a slidable manner.
  • the swing scroll 2 is disposed on the lower side
  • the fixed scroll 1 is disposed on the upper side.
  • the fixed scroll 1 is composed of a first base plate 1c and a spiral body 1b which is a first spiral projection provided upright on one surface of the first base plate 1c.
  • the orbiting scroll 2 is composed of a second base plate 2a and a second spiral body 2b which is a spiral projection provided upright on one surface of the second base plate 2a.
  • the fixed scroll 1 and the swing scroll 2 are mounted in the shell 8 in a state where the first spiral body 1b and the second spiral body 2b are engaged with each other. And between the 1st spiral body 1b and the 2nd spiral body 2b, the compression chamber 9 which shrinks
  • the fixed scroll 1 is fixed to the upper part (one end side) in the shell 8 through the frame 3.
  • a discharge port 1 a that discharges a compressed and high-pressure fluid is formed at the center of the fixed scroll 1.
  • a leaf spring valve 11 is provided at the outlet opening of the discharge port 1a to cover the outlet opening and prevent backflow of fluid.
  • a valve presser 10 that restricts the lift amount of the valve 11 is provided on one end side of the valve 11. That is, when the fluid is compressed to a predetermined pressure in the compression chamber 9, the valve 11 is lifted against its elastic force, and the compressed fluid is discharged from the discharge port 1 a into the high-pressure space 15, and the discharge pipe 13. And is discharged to the outside of the scroll compressor.
  • the orbiting scroll 2 performs an eccentric turning motion without rotating with respect to the fixed scroll 1.
  • a concave bearing 2d that receives a driving force is formed at a substantially central portion of a surface (thrust surface) opposite to the surface on which the second spiral body 2b of the orbiting scroll 2 is formed.
  • An eccentric pin portion 4a provided at the upper end of the shaft 4 described later is fitted into the bearing 2d.
  • the drive mechanism portion 46 is rotatable to the main shaft 4 which is a rotational drive shaft accommodated vertically in the shell 8, the stator 7 fixedly held inside the shell 8, and the inner peripheral surface side of the stator 7. And a rotor 6 disposed and fixed to the main shaft 4.
  • the stator 7 has a function of rotating the rotor 6 when energized.
  • the stator 7 is fixedly held on the inner peripheral wall of the shell 8 body by shrink fitting or the like on the outer peripheral surface.
  • the rotor 6 has a function of rotating and driving the main shaft 4 by energizing the stator 7.
  • the rotor 6 is fixed to the outer periphery of the main shaft 4, has a permanent magnet inside, and is held with a slight gap from the stator 7.
  • the main shaft 4 rotates with the rotation of the rotor 6 to drive the orbiting scroll 2 to rotate.
  • the main shaft 4 is rotated by a bearing portion 3a whose upper side is located at the center of the frame 3 and whose lower side is a sub-bearing 19a located at the center of the subframe 19 fixedly arranged at the lower part of the shell 8. Supported as possible.
  • An eccentric pin portion 4a that fits with the bearing 2d is formed at the upper end portion of the main shaft 4 so that the orbiting scroll 2 can rotate while being eccentric.
  • FIG. 2 shows a bearing portion of a scroll compressor which is a hermetic type.
  • a slider 17, which is a lubricated part that is a cylindrical bush, is fitted to the bearing 2 d of the orbiting scroll 2 with a minute gap, and the slider 17 is attached to the eccentric pin portion 4 a of the main shaft 4.
  • a bearing member 3b positioned at the center of the frame 3 is fitted with a lubricated part sleeve 18 that is a cylindrical bush with a small gap, and the sleeve 18 is attached to the main shaft 4.
  • the lubricated component mounted on the spindle eccentric pin portion 4 a is referred to as a slider 17, and the lubricated component mounted on the spindle 4 is referred to as a sleeve 18.
  • the sleeve 18 is interposed between the frame 3 and the main shaft 4 of the compression mechanism 45 and rotates along with the main shaft 4.
  • the sleeve 18 is one of the bearing portions included in the compression mechanism portion 45.
  • an oil passage hole 25 that connects the sleeve inner peripheral surface and the sleeve outer peripheral surface is formed in a horizontal direction at a position facing the lateral oil supply hole 23 a of the main shaft 4.
  • the main shaft 4 has a crowning surface (not shown) formed between the slider 17 and the sleeve 18 which is formed in a drum shape with the center of the outer peripheral surface being convex. Since the orbiting scroll 2 is mounted eccentrically with respect to the rotation center 4 b of the main shaft 4, the first balancer 15 is fixed to the upper portion of the main shaft 4 so as to balance the unbalance, and the first balancer 15 is fixed to the lower surface of the rotor 6. The two balancer 16 is fixed.
  • FIG. 3 shows the slider 17.
  • the slider 17 is formed with a slit which is a substantially rectangular hole in the vicinity of the center, and the end of the eccentric pin portion 4a is processed to have a substantially rectangular cross section so as to be fitted into the slit. In this way, the slider 17 is slid only in a certain direction on a plane perpendicular to the axial direction of the main shaft 4.
  • the slider 17 is formed with a D-cut portion 17a.
  • the shell 8 is connected to a suction pipe 5 for sucking fluid and a discharge pipe 13 for discharging fluid.
  • the frame 3 is fixed inside the shell 8.
  • the frame 3 is fixed to the inner peripheral wall of the shell 8, and a through hole for pivotally supporting the main shaft 4 is formed in the center portion in plan view.
  • the frame 3 thrust-supports the orbiting scroll 2 on its support surface in a swingable manner, and rotatably supports the main shaft 4 on its bearing portion 3a.
  • the frame 3 is preferably fixed to the inner peripheral surface of the shell 8 by shrink fitting or welding.
  • a subframe 19 is fixed to the lower part of the shell 8.
  • the sub-frame 19 is fixed to the inner peripheral wall of the shell 8, and a through-hole for supporting the main shaft 4 is formed at the center in plan view.
  • the sub frame 19 rotatably supports the main shaft 4 by a sub bearing 19a attached to the through hole.
  • the frame 3 is disposed on the upper side, and the subframe 19 is disposed on the lower side.
  • an Oldham ring 20 is disposed for preventing the rotational movement of the orbiting scroll 2 during the eccentric turning motion.
  • the Oldham ring 20 is arranged between the fixed scroll 1 and the orbiting scroll 2 and is configured to function to prevent the rotation motion of the orbiting scroll 2 and to enable a revolving motion.
  • An oil pump 21 that is pumped up as the main shaft 4 rotates is fixed to the subframe 19 attached to the lower part (the other end side) of the shell 8.
  • An oil filter 22 is fitted to the oil pump 21, and the oil filter 22 functions to separate and remove the foreign matter 101 contained in the refrigerating machine oil 102 in the oil sump 12 from the refrigerating machine oil 102.
  • a vertical oil supply hole 23 having an oil supply hole center 4c at a position eccentric in the radial direction from the rotation center 4b of the main shaft 4 is formed penetrating vertically.
  • the vertical oil supply hole 23 is connected to the main shaft upper space 24, the frame bearing 3a, and the auxiliary bearing 19a, and the refrigerating machine oil pumped up by the oil pump 21 is supplied to the bearing portions (2d, 3a, 19a).
  • a lateral oil supply hole 23 a is formed in the main shaft 4 to communicate the outer peripheral surface of the main shaft 4 at a position facing the bearing portion of the sleeve 18 and the vertical oil supply hole 23.
  • the lateral oil supply hole 23 a is opened on the outer peripheral surface of the main shaft 4 on the opposite side to the eccentric direction of the vertical oil supply hole 23 around the rotation center 4 b of the main shaft 4.
  • FIG. 4 shows the sleeve 18.
  • An oil passage hole 25 connected to a lateral oil supply hole 23 a provided in the main shaft 4 is formed at the center of the sleeve 18, and a cut portion 26 is formed in a flat shape around the oil passage hole 25.
  • the main shaft 4 is provided with a non-rotating pin 27. When the non-rotating pin 27 is applied to the key groove 28 formed in the sleeve 18, the sleeve 18 rotates accompanying the rotation of the main shaft 4 while maintaining the positional relationship. To do.
  • the sleeve 18 has a load surface 29 that is constantly loaded during rotation and an anti-load surface 30 that is not loaded, and the oil passage hole 25 and the key groove 28 are disposed on the anti-load surface 30 side.
  • the operation of the scroll compressor 100 will be briefly described.
  • the power supply terminal 31 provided in the shell 8 When the power supply terminal 31 provided in the shell 8 is energized, torque is generated in the stator 7 and the rotor 6 and the main shaft 4 rotates.
  • the rocking scroll 2 is rotatably fitted to the slider 17 attached to the eccentric pin portion 4a at the upper end of the main shaft 4.
  • the fixed scroll 1 having the spiral bodies (first spiral body 1b and second spiral body 2b) formed following the involute curve and the orbiting scroll 2 are slidably engaged with each other, thereby forming a plurality of compression chambers 9. Is done.
  • the compression chamber 9 moves while reducing the volume toward the center along with the turning motion of the orbiting scroll 2, and the fluid (refrigerant) is compressed.
  • the compressed refrigerant is discharged out of the shell 8 through the discharge pipe 13.
  • the foreign matter discharging operation will be briefly described.
  • the oil pump 21 is driven to pump the refrigerating machine oil 102 in the oil sump 12 into the vertical oil supply hole 23. Since the refrigeration oil 102 in the oil sump 12 often contains foreign matter 101, the refrigeration oil 102 and the foreign matter 101 are separated by the oil filter 22 fitted to the oil pump 21. Although most of the foreign matter 101 is captured and removed by the oil filter 22, the fine foreign matter 101 having a size smaller than the mesh size of the oil filter 22 enters the vertical oil supply hole 23 of the main shaft 4 together with the refrigerating machine oil 102.
  • the vertical oil supply hole 23 formed in the axial direction is shifted in the radial direction from the main shaft rotation center 4 b, and the horizontal oil supply hole 23 a connected to the bearing portion 3 a of the frame 3 is arranged vertically with respect to the rotation center 4 b of the main shaft 4. Since the foreign material 101 is separated by centrifugal force and does not enter the oil supply path 201 on the bearing portion 3a side of the frame 3, the foreign material 101 enters the main shaft upper space 24. Discharged. The foreign matter 101 discharged to the main spindle upper space 24 is returned to the oil sump 12 through the D-cut portion 17 a of the slider 17, the frame inner space 3 b, and the oil pipe 32 fitted to the frame 3.
  • a foreign matter discharge path 200 during operation of the compressor in the first embodiment is indicated by a thick arrow in FIG.
  • foreign matter is discharged while the foreign matter 101 and the refrigerating machine oil 102 are mixed.
  • the oil supply path 201 on the bearing 3a side of the frame 3 the foreign matter 101 is separated by centrifugal force. Therefore, only the refrigerating machine oil 102 is supplied to the bearing portion as lubricating oil, and is returned to the oil sump 12 through the bearing portion 3a, the frame inner space 3b, and the oil pipe 32.
  • the foreign matter 101 is separated by centrifugal force and returned to the oil sump 12 via the main spindle upper space 24, so that only the refrigerating machine oil 102 is supplied to the oil supply path 201.
  • the foreign matter 101 is separated by centrifugal force and returned to the oil sump 12 via the main spindle upper space 24, so that only the refrigerating machine oil 102 is supplied to the oil supply path 201.
  • the vertical oil supply hole eccentric structure employed in the above embodiment can be used for a general differential pressure type pump. Furthermore, by combining with a trochoid pump, it is of course possible to more effectively separate and discharge foreign substances while ensuring the oil supply capability at startup and at low speeds.
  • Embodiment 2 shows Embodiment 2 in such a case.
  • a bearing gap which is a minute gap, is set between the sleeve and the bearing portion 3 a of the frame 3.
  • the foreign matter 101 pumped up by the oil pump 22 during operation of the compressor passes through the lateral oil supply hole 23a and the oil passage hole 25 connected to the bearing portion 3a and enters the bearing gap, the foreign matter 101 together with the refrigerator oil 102 It is discharged into the frame internal space 3b.
  • the pumping amount is small at the time of start-up or operating conditions where the number of revolutions is low, the amount of scraping of the refrigerating machine oil 102 is reduced and the refrigerating machine oil 102 is not discharged into the frame inner space 3b, and the foreign matter 101 enters the bearing gap. May accumulate and the compressor may lock.
  • FIG. 5 shows a sleeve 51 with a foreign matter discharge groove 51a in the second embodiment.
  • a cut portion (an example of an oil storage portion) 26 formed by cutting the outer peripheral surface of the sleeve 51 into a flat shape is formed around the opening portion of the oil passage hole 25 on the sleeve outer peripheral surface.
  • a foreign matter discharge groove 51a that connects the cut portion 26 provided with the opening of the oil passage hole 25 and the upper end surface 51b of the sleeve 51 is formed on the outer peripheral surface of the sleeve 51 on the upstream side in the sleeve rotation direction (arrow R direction). It is formed to be inclined upward.
  • the foreign matter discharge groove 51a is formed on the left side of the cut portion 26 in the drawing so that the foreign matter 101 is discharged into the frame internal space 3b.
  • FIG. 6 shows the relationship between the inclined groove angle ⁇ of the foreign matter discharge groove 51a of the sleeve 51 and the foreign matter discharge force by centrifugal force.
  • the smaller the inclination angle ⁇ with respect to the horizontal direction the greater the foreign matter discharge force due to the influence of centrifugal force, and the foreign matter 101 is more likely to be discharged into the frame internal space 3 b. Therefore, the inclination angle ⁇ of the foreign matter discharge groove 51a of the sleeve 51 in the second embodiment is preferably set as small as possible.
  • the range of the inclination angle ⁇ is 0 ° ⁇ ⁇ 90 °.
  • the cut portion 26 formed by cutting out the outer peripheral surface of the sleeve 51 is formed around the opening portion of the oil passage hole 25, a sufficient amount of the refrigerating machine oil 102 is temporarily stored in the cut portion 26. Therefore, sufficient lubrication can always be performed on the bearing portion of the compression mechanism 45, and a large amount of foreign matter 101 separated from the vertical lubrication hole 23 can pass through the cut portion 26 even if it is large in size. Can do.
  • the minimum inclination angle ⁇ min is set.
  • the foreign matter discharge groove of the present invention is not limited to the configuration of the above-described embodiment.
  • 68 ° can be changed as necessary.
  • the inclination angle ⁇ (for example, 80 ° and 85 ° here) and the groove width can be changed as necessary. is there.
  • the main shaft 4 in which the vertical oil supply hole is eccentric in the first embodiment is described, and the sleeve 51 with the foreign matter discharge groove 51a is described in the second embodiment.
  • the combination of the two configurations further improves the resistance to foreign matter and prevents the compressor from being locked.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

 このスクロール圧縮機は、シェル8と、シェル8内の一端側の圧縮機構部45と、シェル8内の他端側の油溜め12と、圧縮機構部45の軸受部を介して設けられた主軸4と、主軸4に形成された縦給油穴23と、主軸4下部のオイルポンプ21と、を備えて成り、縦給油穴23は、主軸4の回転中心4bから偏心した位置に形成され、主軸4の外周面と縦給油穴23とを連通する横給油穴23aが形成され、横給油穴23aは縦給油穴23の偏心方向とは反対側の外周面に開口している。従って、遠心力により分離された異物101は軸受部へ侵入することなく主軸4の上部から排出されるから、軸受部の異物堆積を防ぎ圧縮機ロックを防止できる。

Description

スクロール圧縮機
 この発明は、主に空調機、冷凍機、給湯機等に搭載されるスクロール圧縮機に関するものである。
 従来のスクロール圧縮機は、圧縮機内に侵入した異物を、オイルポンプに設けられたオイルフィルタにより除去している。このとき、オイルフィルタで除去できなかった小さな異物は回転駆動軸の給油穴を通り、冷凍機油に伴って軸受内に導かれていた。このように軸受に侵入した異物は、冷凍機油とともに軸受隙間から排出されて圧縮機内下部の油溜めに戻るようになっている。
特開平5-202936号公報
 ところで、上記した従来のスクロール圧縮機において、オイルフィルタで除去しきれなかった異物は軸受内に侵入しやすく、かかる異物が軸受内に侵入した場合は、軸受部における異物排出経路が軸受隙間分しかないため、異物を噛み込んで圧縮機がロックするというおそれがあった。
 この発明は、上記のような課題を解決するためになされたもので、回転駆動軸内の給油経路に異物を分離する構造を設けることによって、軸受部での異物堆積を防いで圧縮機のロックを未然に防止できるスクロール圧縮機を得ることを目的としている。
この発明に係るスクロール圧縮機は、圧力容器であるシェルと、シェル内の一端側に配備されて圧縮室を形成する固定スクロールおよび揺動スクロールならびに揺動スクロールを旋回自在にスラスト支持するフレームを備えた圧縮機構部と、シェル内の他端側に形成された油溜めと、圧縮機構部の軸受部を介して圧縮機構部に回動自在に連結された回転駆動軸と、油溜めの油を圧縮機構部へ給油するために回転駆動軸に上下貫通して形成された縦給油穴と、回転駆動軸の下部に取り付けられていて油溜めの油を回転駆動軸の縦給油穴に供給するオイルポンプと、を備えて成り、縦給油穴は、回転駆動軸の回転中心から半径方向に偏心した位置に形成され、圧縮機構部の軸受部と対面する位置に在る回転駆動軸の外周面と、縦給油穴とを連通する横給油穴が回転駆動軸に形成され、横給油穴は、回転駆動軸の回転中心を中心として縦給油穴の偏心方向とは反対側の外周面に開口していることを特徴とするものである。
 この発明に係るスクロール圧縮機は、回転駆動軸の回転中心から半径方向に偏心した位置に縦給油穴を形成し、縦給油穴の途中と連通する横給油穴を、回転駆動軸の回転中心を中心として縦給油穴の偏心方向とは反対側の外周面に開口させるようにしたので、縦給油穴の偏心配置に起因する遠心力を受けた異物は、軸受部へ侵入することなく、油から分離され縦給油穴を経て排出されるため、軸受部への異物堆積を防ぎ、圧縮機のロックを防止できるという効果が得られる。
この発明の実施の形態1におけるスクロール圧縮機全体の縦断面図である。 前記スクロール圧縮機における軸受部を主に示す部分拡大縦断面図である。 前記スクロール圧縮機におけるスライダを示す平面図である。 前記スクロール圧縮機におけるスリーブを示す斜視図である。 この発明の実施の形態2におけるスクロール圧縮機のスリーブを示す斜視図である。 前記スクロール圧縮機におけるスリーブの異物排出溝の傾斜角度と異物排出力との関係を示す図であって、(a)は傾斜角度が45度のときの関係を示す説明図、(b)は傾斜角度が30度のときの関係を示す説明図である。 前記スクロール圧縮機におけるスリーブの外周面を周方向に展開した展開図である。 前記スクロール圧縮機におけるスリーブの別の例を示す斜視図である。 前記スクロール圧縮機におけるスリーブの他の例を示す斜視図である。 前記スクロール圧縮機におけるスリーブの更に他の例を示す斜視図である。
実施の形態1.
 この発明に係る実施の形態1を図1から図4を用いて説明する。図1は密閉型のスクロール圧縮機全体の縦断面構造を示している。
図において、このスクロール圧縮機は、冷媒等の流体を吸入し圧縮し高温・高圧の状態にして吐出させる機能を有しており、圧力容器としての外郭を成す密閉状のシェル8の内部に、圧縮機構部45、駆動機構部46、およびその他の構成部品が収納されて構成されている。圧縮機構部45はシェル8内の上側に配置され、駆動機構部46はシェル8内の下側に配置されている。シェル8内の下部は油溜め12となっている。
 前記の圧縮機構部45は、吸入管5から吸入した流体を圧縮して、シェル8内の上方に形成されている高圧空間15に排出する機能を有している。このように高圧にされた流体は、吐出管13からスクロール圧縮機の外部に吐出されるようになっている。前記の駆動機構部46は、圧縮機構部45で流体を圧縮するために、圧縮機構部45の構成部品である揺動スクロール2を駆動させる機能を果たすようになっている。つまり、駆動機構部46が主軸4を介して揺動スクロール2を揺動駆動させることによって、圧縮機構部45で流体を圧縮するようになっている。
そして、圧縮機構部45は、固定スクロール1と、揺動スクロール2と、固定スクロール1を固定し揺動スクロール2を摺動自在にスラスト支持するフレーム3と、から構成されている。この場合、揺動スクロール2は下側に配置され、固定スクロール1は上側に固定配置されている。固定スクロール1は、第1台板1cと、第1台板1cの一方の面に立設された第1渦巻状突起物である渦巻体1bと、から構成されている。揺動スクロール2は、第2台板2aと、第2台板2aの一方の面に立設された渦巻状突起物である第2渦巻体2bと、から構成されている。固定スクロール1および揺動スクロール2は、第1渦巻体1bと第2渦巻体2bを互いに噛み合せた状態で、シェル8内に装着されている。そして、第1渦巻体1bと第2渦巻体2bとの間には、容積が半径方向内側へ向かうに従って縮小する圧縮室9が形成されるようになっている。
固定スクロール1は、フレーム3を介してシェル8内の上部(一端側)に固定されている。固定スクロール1の中央部には、圧縮され高圧となった流体を吐出する吐出ポート1aが形成されている。吐出ポート1aの出口開口部には、この出口開口部を覆い、流体の逆流を防ぐ板バネ製の弁11が設けられている。弁11の一端側には、弁11のリフト量を制限する弁押さえ10が設けられている。つまり、圧縮室9内で流体が所定圧力まで圧縮されると、弁11がその弾性力に逆らって、持ち上げられ、圧縮された流体が吐出ポート1aから高圧空間15内に吐出され、吐出管13を通ってスクロール圧縮機の外部に吐出される。
揺動スクロール2は、固定スクロール1に対して自転することなく偏心旋回運動を行うようになっている。また、揺動スクロール2の第2渦巻体2bの形成面とは反対側の面(スラスト面)の略中心部には、駆動力を受ける凹状の軸受2dが形成されている。この軸受2dには、後述するシャフト4の上端に設けられた偏心ピン部4aが嵌入されている。
前記の駆動機構部46は、シェル8内で垂直向きに収容された回転駆動軸である主軸4と、シェル8内部に固着保持されたステータ7と、ステータ7の内周面側に回転可能に配設されて主軸4に固定されたロータ6と、を備えて構成されている。ステータ7は、通電されることによってロータ6を回転駆動させる機能を有している。また、ステータ7は、外周面が焼き嵌め等によりシェル8胴部の内周壁に固着保持されている。ロータ6は、ステータ7に通電がなされることにより回転駆動し、主軸4を回転駆動させる機能を有している。このロータ6は、主軸4の外周に固定されており、内部に永久磁石を有し、ステータ7と僅かな隙間を隔てて保持されている。
 前記の主軸4は、ロータ6の回転に伴って回転し、揺動スクロール2を回転駆動させるようになっている。この主軸4は、その上側がフレーム3の中心部に位置する軸受部3aで、その下側がシェル8内の下部に固定配置されたサブフレーム19の中心部に位置する副軸受19aで、それぞれ回転可能に支持されている。この主軸4の上端部には、揺動スクロール2を偏心しつつ回転できるように軸受2dと嵌め合う偏心ピン部4aが形成されている。
 図2は、密閉型であるスクロール圧縮機の軸受部を示している。揺動スクロール2の軸受2dには、微小隙間をもって円筒状ブッシュである被潤滑部品のスライダ17が嵌合され、スライダ17は主軸4の偏心ピン部4aに装着されている。また、フレーム3の中心部に位置する軸受部3bには、微小隙間をもって円筒状ブッシュである被潤滑部品スリーブ18が嵌合され、スリーブ18は主軸4に装着されている。以下、主軸偏心ピン部4aに装着された被潤滑部品をスライダ17といい、主軸4に装着された被潤滑部品をスリーブ18という。
前記のスリーブ18は、圧縮機構部45のフレーム3と主軸4との間に介設されていて主軸4に随伴して回転する。このスリーブ18は圧縮機構部45が有する軸受部のひとつである。また、このスリーブ18において主軸4の横給油穴23aとの対面位置には、スリーブ内周面とスリーブ外周面とを連通する通油孔25が水平方向に貫通して形成されている。
 主軸4は、外周面中央が凸となる鼓状に形成されたクラウニング面(図示省略)をスライダ17とスリーブ18との間に有している。また、揺動スクロール2は主軸4の回転中心4bに対して偏心して装着されているため、そのアンバランスと釣り合うよう、主軸4の上部に第一バランサ15が固定され、ロータ6の下面に第二バランサ16が固定されている。
 図3はスライダ17を示している。スライダ17は中央近傍に略長方形の穴であるスリットが形成され、偏心ピン部4aの端部はこのスリットに嵌合されるように略長方形の横断面を有するように加工されている。このようにすることで、スライダ17が主軸4の軸心方向に直角な面上の一定方向にしか摺動しないようにしている。スライダ17にはDカット部17aが形成されている。
 シェル8には、流体を吸入するための吸入管5と、流体を吐出するための吐出管13とがそれぞれ接続されている。シェル8の内部には、フレーム3が固着されている。フレーム3は、シェル8の内周壁に固着され、平面視中心部に主軸4を軸支するための貫通孔が形成されている。このフレーム3は、その支持面で揺動スクロール2を揺動自在にスラスト支持するとともに、その軸受部3aで主軸4を回転自在に支持している。尚、フレーム3は、その外周面を焼き嵌めや溶接等によってシェル8の内周面に固定するとよい。また、シェル8内の下部には、サブフレーム19が固着されている。サブフレーム19は、シェル8の内周壁に固着され、平面視中心部に主軸4を軸支するための貫通孔が形成されている。サブフレーム19は、貫通孔に取り付けられた副軸受19aによって主軸4を回転自在に支持している。尚、シェル8内で、フレーム3は上側に配置され、サブフレーム19は下側に配置されている。
 シェル8内には、揺動スクロール2の偏心旋回運動中における自転運動を阻止するためのオルダムリング20が配設されている。このオルダムリング20は、固定スクロール1と揺動スクロール2との間に配設され、揺動スクロール2の自転運動を阻止するとともに公転運動を可能とする機能を果たすように構成されている。
 シェル8内の下部(他端側)に取り付けられたサブフレーム19には、主軸4の回転に伴って汲み上げ駆動を行うオイルポンプ21が固定されている。オイルポンプ21にはオイルフィルタ22が嵌合されており、オイルフィルタ22は油溜め12内の冷凍機油102に含まれる異物101を冷凍機油102から分離して取り除く機能を果たしている。
 主軸4の回転中心4bから半径方向に偏心した位置に給油穴心4cを有する、縦給油穴23が上下貫通して形成されている。この縦給油穴23は主軸上側空間24、フレーム軸受3a、副軸受19aと繋がっており、オイルポンプ21によって汲み上げられた冷凍機油102が各軸受部(2d,3a,19a)にそれぞれ供給される。そして、スリーブ18の軸受部分と対面する位置に在る主軸4の外周面と、縦給油穴23とを連通する横給油穴23aが、主軸4に形成されている。この横給油穴23aは、主軸4の回転中心4bを中心として縦給油穴23の偏心方向とは反対側の主軸4の外周面に開口している。
 図4はスリーブ18を示している。スリーブ18の中央部には主軸4に設けられた横給油穴23aと繋がる通油孔25が形成されており、通油孔25の周囲にはカット部26が平面状に形成されている。主軸4には回り止めピン27が配設されており、スリーブ18に形成されたキー溝28に回り止めピン27がかかることで、主軸4の回転とともに位置関係を維持したままスリーブ18が随伴回転する。これにより、フレーム3の軸受部3aへ繋がる主軸4の横給油穴23aと、スリーブ18の通油孔25との位置関係は、常に一致して連通し、フレーム3の軸受部3aへと冷凍機油102が給油される。スリーブ18には、回転中に常に負荷のかかる負荷面29と、負荷のかからない反負荷面30とが存在し、通油孔25とキー溝28は反負荷面30側に配設される。
 ここで、スクロール圧縮機100の動作について簡単に説明する。
シェル8に設けられた電源端子31に通電されると、ステータ7とロータ6とにトルクが発生し、主軸4が回転する。主軸4上端の偏心ピン部4aに装着されたスライダ17には、回転自在に揺動スクロール2が嵌合されている。インボリュート曲線にならって形成された渦巻体(第1渦巻体1bと第2渦巻体2b)を有する固定スクロール1と揺動スクロール2とは摺動自在に噛み合い、これによって複数の圧縮室9が形成される。圧縮室9は、揺動スクロール2の旋回運動とともに中心に向かって容積を減少させながら移動し、流体(冷媒)が圧縮される。圧縮された冷媒は、吐出管13を介してシェル8外へ排出される。
 次に、異物排出動作について簡単に説明する。
前述のスクロール圧縮機100の動作において、主軸4が回転すると、オイルポンプ21が駆動し油溜め12内の冷凍機油102を縦給油穴23に汲み上げる。油溜め12内の冷凍機油102には異物101が混入している場合が多いので、オイルポンプ21に嵌合されたオイルフィルタ22により冷凍機油102と異物101との分離が行なわれる。オイルフィルタ22にて大部分の異物101は捕捉除去されるが、オイルフィルタ22のメッシュサイズ以下の微細な異物101は冷凍機油102と共に主軸4の縦給油穴23に侵入する。軸心方向に形成された縦給油穴23を主軸回転中心4bから半径方向にずらし、かつ、フレーム3の軸受部3aへ繋がる横給油穴23aを、主軸4の回転中心4bに対し縦給油穴23の偏心方向とは反対側の主軸外周面に開口させていることから、異物101は遠心力によって分離され、フレーム3の軸受部3a側の給油経路201へ侵入することなく、主軸上部空間24へ排出される。主軸上部空間24へ排出された異物101は、スライダ17のDカット部17a、フレーム内空間3b、フレーム3に嵌合されたオイルパイプ32を通って、油溜め12へ返される。実施の形態1における圧縮機動作中の異物排出経路200を図1中に太線矢印で示しておく。
 そして、前述異物排出経路200においては、異物101と冷凍機油102が混合された状態で異物排出を行うが、フレーム3の軸受部3a側の給油経路201においては、異物101が遠心力によって分離されるので、冷凍機油102のみが潤滑油として軸受部に給油され、軸受部3a、フレーム内空間3b、オイルパイプ32を通って、油溜め12へ返される。
 以上のように、異物排出経路200において、異物101を遠心力により分離し、主軸上部空間24を経由して油溜め12へ返すようにしているので、冷凍機油102のみを給油経路201へ供給することで、軸受部への異物101の侵入を防止し、圧縮機のロックを防止することができる。
ところで、上記の実施形態で採用した縦給油穴偏心構造は、一般的な差圧式のポンプについて使用できることについては言うまでもない。更には、トロコイドポンプと組み合せることで、起動時や低速時の給油能力を確保しつつ、より効果的に異物の分離、排出が可能となることも無論である。
実施の形態2.
実施の形態1は、縦給油穴23の偏心配置により異物101を遠心除去するようにしたものであるが、次にスリーブの構造を改良した場合の実施の形態2を説明する。図5から図10はこのような場合の実施の形態2を示している。
ところで、スリーブとフレーム3の軸受部3aとの間には、微小隙間である軸受隙間が設定されている。そして、圧縮機動作中にオイルポンプ22によって汲み上げられた異物101が、軸受部3aへ繋がる横給油穴23a、通油孔25を通過後に、軸受隙間へ侵入した場合、異物101は冷凍機油102とともにフレーム内空間3bに排出される。しかしながら、起動時や回転数の低い運転条件などにおいてポンプの汲み上げ量が少ない場合は、冷凍機油102の掻き出し量が少なくなって冷凍機油102がフレーム内空間3bに排出されず、軸受隙間に異物101が堆積して圧縮機がロックする可能性がある。
そこで先ず、図5に、実施の形態2における異物排出溝51a付きのスリーブ51を示す。このスリーブ51では、スリーブ外周面における通油孔25の開口部周囲に、スリーブ51の外周面を平面状に切り欠いて形成されたカット部(貯油部の例)26が形成されている。そして、通油孔25の開口部が設けられたカット部26とスリーブ51の上端面51bとをつなぐ異物排出溝51aが、スリーブ51の外周面にスリーブ回転方向(矢印R方向)の上流側に向かって上向きに傾斜して形成されている。この場合、スリーブ51の回転方向(矢印R方向)により異物101が堆積しやすい箇所が存在し、図5に示すような反時計回りの場合、回転方向上流側端面であるカット部26の図面視左側に異物堆積が発生するため、異物排出溝51aをカット部26の図面視左側に形成し、異物101をフレーム内空間3bに排出するようにしている。
 図6に、スリーブ51の異物排出溝51aの傾斜溝角度θと遠心力による異物排出力との関係を示す。図6に示す通り、水平方向に対する傾斜角度θが小さいほど、遠心力の影響を受けて異物排出力が大きくなり、異物101をフレーム内空間3bに排出しやすくなる。そこで、実施の形態2におけるスリーブ51の異物排出溝51aの傾斜角度θは、できる限り小さく設定するとよい。但し、傾斜角度θの範囲は、0°<θ<90°とする。
図7に、異物排出溝51a付きのスリーブ51の外周面を周方向に展開した展開図を示す。
図7中に示した符号の関係から、最小溝角度θminは以下の式(1)によって算出される。
θmin= tan -1 ((H+b) / (πr-a)) ・・・ (1)
 式(1)中の符号において、
H:スリーブ高さ、
a:カット部縦長さ、
b:カット部横長さ、
r:スリーブ半径 (=スリーブ外径/2)、
である。
また、通油孔25の開口部周囲に、スリーブ51の外周面を切り欠いて形成されたカット部26が形成されているので、十分な量の冷凍機油102をカット部26に一時的に貯めておけるから、常に圧縮機構部45の軸受部に十分な給油を行なうことができ、縦給油穴23から分離された異物101も多量に、かつ、例え大粒のものでもカット部26を通過させることができる。
 尚、上記の実施形態では、最小傾斜角度θminを設定することにしたが、本発明の異物排出溝は前述の実施例の構成に限定されるものではない。例えば、図8に示すスリーブ51の異物排出溝51aAのように、反負荷面30の範囲内で、かつ、傾斜角度θ=0°<θ<90°の範囲内において、傾斜角度θ(ここでは例えば68°)を必要に応じて変更可能である。また、図9,10に示すスリーブ51の異物排出溝51aB,51aCのように、傾斜角度θ(ここでは例えば80°および85°)および溝幅も必要に応じて変更可能であることは無論である。
 ところで、前述の説明では、実施の形態1にて縦給油穴を偏心させた主軸4について述べ、実施の形態2にて異物排出溝51a付きのスリーブ51について述べたが、実施形態1と実施形態2の構成を組み合わせることで、更に異物に対する耐力が向上し、圧縮機のロックを防止できることは言うまでもない。
1 固定スクロール、2 揺動スクロール、2d 軸受、3 フレーム、3a 軸受部、3b フレーム内空間、4 主軸(回動駆動軸)、4a 偏心ピン部、4b 主軸回転中心、4c 給油穴心、5 吸入管、6 ロータ、7 ステータ、8 シェル、9 圧縮室、12 油溜め、13 吐出管、17 スライダ、17a Dカット部、18 スリーブ、19 サブフレーム、19a 副軸受、20 オルダムリング、21 オイルポンプ、23 縦給油穴、23a 横給油穴、24 主軸上部空間、25 通油孔、26 カット部(貯油部)、29 負荷面、30 反負荷面、32 オイルパイプ、45 圧縮機構部、46 駆動機構部、51 スリーブ、51a,51aA,51aB,51aC 異物排出溝、51b 上端面、100 スクロール圧縮機、101 異物、102  冷凍機油、200 異物排出経路、201 給油経路、R 矢印、θ 傾斜角度。

Claims (4)

  1. 圧力容器であるシェルと、前記シェル内の一端側に配備されて圧縮室を形成する固定スクロールおよび揺動スクロールならびに前記揺動スクロールを旋回自在にスラスト支持するフレームを備えた圧縮機構部と、前記シェル内の他端側に形成された油溜めと、前記圧縮機構部の軸受部を介して前記圧縮機構部に回動自在に連結された回転駆動軸と、前記回転駆動軸に上下貫通して形成され、前記油溜めの油を前記圧縮機構部へ給油する縦給油穴と、前記回転駆動軸の下部に取り付けられていて前記油溜めの油を前記回転駆動軸の縦給油穴に供給するオイルポンプと、を備えて成り、
    前記縦給油穴は、前記回転駆動軸の回転中心から半径方向に偏心した位置に形成され、前記回転駆動軸は、前記圧縮機構部の軸受部と対面する位置に、前記縦給油穴に連通する横給油穴を備え、
    前記横給油穴は、前記回転駆動軸の回転中心を中心として前記縦給油穴の偏心方向とは反対側の外周面に開口していることを特徴とするスクロール圧縮機。
  2. 圧縮機構部の軸受部のひとつが、前記圧縮機構部のフレームと前記回転駆動軸との間に介設されて前記回転駆動軸の回転とともに回転するスリーブであり、
    前記スリーブは、前記回転駆動軸の横給油穴との対面位置に形成され、スリーブ内周面とスリーブ外周面とを連通する通油孔と、
    前記通油孔の開口部と前記スリーブの上端面とをつなぎ、前記スリーブの外周面にスリーブ回転方向上流側に向かって上向きに傾斜して形成されている異物排出溝とを備えることを特徴とするスクロール圧縮機。
  3. 水平方向に対する異物排出溝の傾斜角度が、0度を超え90度未満に設定されていることを特徴とする請求項2に記載のスクロール圧縮機。
  4. 通油孔の開口部周囲に、スリーブ外周面を切り欠いて形成された貯油部が形成されていることを特徴とする請求項2または請求項3に記載のスクロール圧縮機。
PCT/JP2016/055373 2016-02-24 2016-02-24 スクロール圧縮機 WO2017145281A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055373 WO2017145281A1 (ja) 2016-02-24 2016-02-24 スクロール圧縮機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/055373 WO2017145281A1 (ja) 2016-02-24 2016-02-24 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2017145281A1 true WO2017145281A1 (ja) 2017-08-31

Family

ID=59686052

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055373 WO2017145281A1 (ja) 2016-02-24 2016-02-24 スクロール圧縮機

Country Status (1)

Country Link
WO (1) WO2017145281A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138175A (ja) * 1986-11-28 1988-06-10 Matsushita Refrig Co 密閉形圧縮機
JPH03258986A (ja) * 1990-03-07 1991-11-19 Matsushita Electric Ind Co Ltd 圧縮機
JPH05180179A (ja) * 1992-01-07 1993-07-20 Mitsubishi Electric Corp 横形スクロール圧縮機
JPH08200263A (ja) * 1995-01-31 1996-08-06 Hitachi Ltd スクロール流体機械の軸受給油装置
JPH11166491A (ja) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp スクロール圧縮機
JP2013137002A (ja) * 2011-12-28 2013-07-11 Daikin Industries Ltd スクロール圧縮機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63138175A (ja) * 1986-11-28 1988-06-10 Matsushita Refrig Co 密閉形圧縮機
JPH03258986A (ja) * 1990-03-07 1991-11-19 Matsushita Electric Ind Co Ltd 圧縮機
JPH05180179A (ja) * 1992-01-07 1993-07-20 Mitsubishi Electric Corp 横形スクロール圧縮機
JPH08200263A (ja) * 1995-01-31 1996-08-06 Hitachi Ltd スクロール流体機械の軸受給油装置
JPH11166491A (ja) * 1997-12-04 1999-06-22 Mitsubishi Electric Corp スクロール圧縮機
JP2013137002A (ja) * 2011-12-28 2013-07-11 Daikin Industries Ltd スクロール圧縮機

Similar Documents

Publication Publication Date Title
JP7075407B2 (ja) スクロール型圧縮機
JP2592154B2 (ja) スクロール型流体機械
JP2004239099A (ja) 回転式圧縮機
JP6745913B2 (ja) 圧縮機
WO2017145281A1 (ja) スクロール圧縮機
JP6104396B2 (ja) スクロール圧縮機
JPH037036B2 (ja)
JPS6220689A (ja) スクロ−ル圧縮機
WO2020230232A1 (ja) 圧縮機
JPH05149277A (ja) 横置型密閉スクロール圧縮機
JP4281128B2 (ja) スクロール形流体機械
JP2003184776A (ja) 圧縮機
JP3574904B2 (ja) 密閉式容積形圧縮機
JP2000027776A (ja) スクロ―ル型流体機械
JPH05133358A (ja) 横型スクロール圧縮機
JP4301122B2 (ja) スクロール圧縮機
JP2955215B2 (ja) スクロール型圧縮機
JP2008309150A (ja) スクロール圧縮機
WO2019142460A1 (ja) スクロール圧縮機
JP2000337257A (ja) 流体機械
JPH03117692A (ja) スクロール流体機械
JP4935511B2 (ja) スクロール圧縮機
JPH0211888A (ja) 密閉型スクロール圧縮機
JP2020105909A (ja) スクロール式圧縮機
JPH04171293A (ja) 密閉型圧縮機

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16891438

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16891438

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP