WO2017143542A1 - 涂层残余应力测试方法及仪器 - Google Patents

涂层残余应力测试方法及仪器 Download PDF

Info

Publication number
WO2017143542A1
WO2017143542A1 PCT/CN2016/074483 CN2016074483W WO2017143542A1 WO 2017143542 A1 WO2017143542 A1 WO 2017143542A1 CN 2016074483 W CN2016074483 W CN 2016074483W WO 2017143542 A1 WO2017143542 A1 WO 2017143542A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
target object
sample
thermal expansion
residual stress
Prior art date
Application number
PCT/CN2016/074483
Other languages
English (en)
French (fr)
Inventor
包亦望
马德隆
万德田
刘小根
Original Assignee
中国建材检验认证集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材检验认证集团股份有限公司 filed Critical 中国建材检验认证集团股份有限公司
Priority to PCT/CN2016/074483 priority Critical patent/WO2017143542A1/zh
Priority to CN201680000792.XA priority patent/CN107709969B/zh
Priority to US15/351,387 priority patent/US10222343B2/en
Publication of WO2017143542A1 publication Critical patent/WO2017143542A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/16Investigating or analyzing materials by the use of thermal means by investigating thermal coefficient of expansion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0047Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes measuring forces due to residual stresses

Definitions

  • the invention relates to the technical field of coating residual stress testing, in particular to a coating residual stress testing method and apparatus.
  • the prior art For the purpose of improving the strength, hardness, high temperature resistance, corrosion resistance, wear resistance and the like of the member, the prior art often chemically or physically coats a metal or other solid material (substrate) with a coating.
  • the coated components are of great significance for the performance improvement of modern mechanical fields including automotive, aerospace, aerospace and various high temperature wear resistant devices.
  • the coating must solve the evaluation of mechanical properties when it is applied to practical engineering applications in order to improve the process and increase its service life.
  • residual stress is one of the most important indicators. Residual stress refers to the stress that still exists and maintains its own balance inside the object when various external factors that generate stress no longer exist.
  • the main reason for the residual stress is that the coating is generally prepared at a higher temperature and cooled to room temperature.
  • the coefficient of thermal expansion is small due to the mismatch between the thermal expansion coefficient of the coating and the substrate.
  • One end is subjected to tensile stress upon cooling, and one end having a large coefficient of thermal expansion is subjected to compressive stress, which causes residual stress in the coating.
  • the existence of residual stress of the coating will cause many micro-cracks inside the coating.
  • the structural properties will be reduced or even fall off.
  • it will have a great influence on its resistance to oxidation and high temperature. Therefore, it is very important to accurately evaluate the residual stress of the coating.
  • coating residual stress testing methods mainly include curvature measurement method based on Stoney formula and X-ray diffraction method.
  • the principle is that under the action of residual stress, the coated substrate will flex. Although this deformation is very small, it can be measured by laser interferometer or surface profiler. The radius of curvature of the deflection. Substrate The degree of deflection allows the residual stress of the coating to be calculated according to the Stoney formula.
  • this method has many problems: First, since the curvature of the sample after plating is small and the curvature is not equal everywhere along the length direction, the curvature is difficult to accurately measure, and in addition, a large number of members are symmetric coatings. Or although the asymmetry is much stronger than the coating, so there is no warpage, the method can not be used.
  • the Stoney formula ignores the influence of the elastic modulus of the coating on the result during the derivation. For thicker coating samples, this has a great influence on the calculation of residual stress.
  • the Stoney formula calculates the residual stress. The model assumes that the coating is only subjected to uniform stress and no bending stress. The substrate is only bent, no Uniform stress can cause large errors for thick coatings.
  • the Stoney formula calculates residual stress. The model assumes that the internal bending moment of the sample is constant, causing the coating to produce cylindrical deformation, but in practice, the internal stress of the sample is not evenly distributed. It is difficult to reflect the real situation.
  • the principle is to measure the elastic strain caused by the change of the lattice spacing caused by stress by X-ray diffraction method.
  • the test sample often uses powder or small block, and the test result only reflects the local performance of the sample, and cannot Represents the residual stress of the component as a whole, and at the same time, its measurement results are inaccurate and its dispersion is high.
  • the residual stress is not a material constant.
  • the residual stress is different when the size and size of the substrate are different from the coating. Therefore, when the residual stress of the coating is evaluated by the above two methods, the obtained results can only reflect the residual stress of the sample measured, and cannot be used to reflect the residual stress of the actual service coating prepared by the same material.
  • the above two methods cannot be used for field test, so these two methods cannot be used to evaluate the residual stress of the actual service coating.
  • the embodiment of the present invention provides a coating residual stress testing method, and the main purpose is to simply and accurately evaluate the residual stress of the coating.
  • the present invention mainly provides the following technical solutions:
  • an embodiment of the present invention provides a coating residual stress testing method, which includes Including the following steps:
  • S c is the cross-sectional area of the coating of the target object
  • S s is the cross - sectional area of the base of the target object
  • E c is the elastic modulus of the coating of the target object
  • E s is the elasticity of the matrix of the target object Modulus
  • ⁇ c is the thermal expansion coefficient of the coating of the target object
  • ⁇ s is the thermal expansion coefficient of the base of the target object
  • ⁇ T c is the temperature at which the coating of the target object is prepared.
  • the coating of the target object and the average thermal expansion of the substrate at room temperature to the temperature ⁇ T c at the time of preparation of the coating of the target object The coefficient is the coefficient of thermal expansion ⁇ c of the coating of the target object and the coefficient of thermal expansion ⁇ s of the substrate.
  • the measurement of the average thermal expansion coefficient of the coating of the target object and the substrate is carried out by a relative method.
  • the coefficient of thermal expansion ⁇ c of the coating of the target object and the coefficient of thermal expansion ⁇ s of the substrate are obtained by the following steps:
  • Sample A is a sample of the substrate of the target object
  • Sample B is a composite sample of the target object coated with the coating of the target object
  • thermal expansion coefficients of sample A and sample B are respectively obtained, wherein the thermal expansion coefficient of sample A is the thermal expansion coefficient ⁇ s of the matrix of the target object;
  • the thermal expansion coefficient ⁇ c of the coating of the target object is obtained by the thermal expansion coefficients of the sample A and the sample B.
  • the substrates of Sample A and Sample B are prepared using the same material as the substrate of the target object, and the coating of Sample B is obtained by the same material and preparation process as the coating of the target object.
  • the coating of the sample B is symmetric over the matrix of the sample B to avoid bending deformation when the temperature changes.
  • both sample A and sample B are of a sample size that meets the thermal expansion coefficient test criteria.
  • the elastic modulus of the coating of the target object and the substrate is obtained by a relative method.
  • the elastic modulus of the coating of the target object and the substrate is obtained by preparing a sample having the same material as the target object and performing corresponding tests on the sample.
  • the residual stress type of the coating of the target object is determined according to the thermal expansion coefficient of the coating of the target object and the thermal expansion coefficient of the substrate, wherein the thermal expansion coefficient of the coating of the target object is greater than the thermal expansion coefficient of the substrate, and the residual stress of the coating For tensile stress, otherwise, the residual stress of the coating is compressive stress.
  • an embodiment of the present invention provides a coating residual stress testing apparatus, including:
  • a heating furnace for heating the sample to thermally expand the sample
  • a temperature control device that controls a heating temperature of the heating furnace
  • a slide rail mechanism connected to the heating furnace, the heating furnace sliding along a track of the slide rail mechanism;
  • a micro-displacement measuring device for detecting a sample expansion displacement transmitted by the transmission rod
  • the computer receives the relevant data and organizes the relevant data into parameters required for calculating the residual stress of the coating, and processes the parameters according to the following formula to obtain a coating residual stress ⁇ c of the target object:
  • S c is the cross-sectional area of the coating of the target object
  • S s is the cross - sectional area of the base of the target object
  • E c is the elastic modulus of the coating of the target object
  • E s is the elasticity of the matrix of the target object Modulus
  • ⁇ c is the coefficient of thermal expansion of the coating of the target object
  • ⁇ s is the coefficient of thermal expansion of the matrix of the target object
  • ⁇ T c is the temperature at which the coating of the target object is prepared.
  • the quartz bracket comprises a first quartz bracket and a second quartz bracket, wherein the first quartz bracket and the second quartz bracket respectively have sample placement portions for respectively placing samples;
  • the transmission rod includes a first transmission rod and a second transmission rod, the first transmission rod and the second transmission rod respectively transmitting expansion displacements of the samples in the first quartz bracket and the second quartz bracket.
  • the micro-displacement measuring device has a test resolution of less than 0.2 mm.
  • the test method of the embodiment of the present invention can be used for evaluation of coating residual stress of any coated member.
  • the test method provided by the embodiment of the invention is simple and is not limited by the target coating member, and the residual stress of the coating can be obtained by easy preparation and detection of the sample, and the operability is strong.
  • the method of the embodiment of the invention has accurate test results and small dispersion. Not only can the value of the residual stress be obtained, but also whether the type of residual stress on the coating is tensile or compressive.
  • FIG. 1 is a schematic structural view of a coating residual stress testing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural view of an expansion coefficient measuring portion according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of a method for testing residual stress of a coating according to an embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a graphite substrate/CVD (chemical vapor deposition) silicon carbide coated pipe according to an embodiment of the present invention
  • Figure 5 is a schematic view of a sample B in an embodiment of the present invention.
  • 6-1 is a schematic front view showing the force of a graphite substrate/CVD silicon carbide coated pipe according to an embodiment of the present invention
  • 6-2 is a schematic side view showing the force of a graphite substrate/CVD silicon carbide coated pipe according to an embodiment of the present invention
  • 6-3 is a force diagram of a graphite substrate/CVD silicon carbide coated pipe according to an embodiment of the present invention. Schematic top view.
  • FIG. 7 is a schematic cross-sectional view showing a reaction-sintered carbonized substrate/CVD (chemical vapor deposition) silicon carbide coated plate according to an embodiment of the present invention
  • Figure 8 is a schematic view of a sample B according to another embodiment of the present invention.
  • 9-1 is a front elevational view showing the force of a reaction-sintered carbonized substrate/CVD silicon carbide coated sheet according to an embodiment of the present invention.
  • 9-2 is a schematic side view showing the force of a reaction-sintered carbonized substrate/CVD silicon carbide coated plate according to an embodiment of the present invention.
  • 9-3 is a top plan view showing the force of a reaction-sintered carbonized substrate/CVD silicon carbide coated sheet according to an embodiment of the present invention.
  • the coating residual stress testing instrument includes:
  • Heating furnace 4 for heating the sample to thermally expand the sample
  • the temperature control device 1 controls the heating temperature of the heating furnace 4;
  • the micro-displacement measuring device 11 detects the sample expansion displacement transmitted by the transmission rod
  • the computer 12 receives the relevant data and organizes the relevant data into parameters required for calculating the residual stress of the coating, and processes the relevant parameters according to the following formula to obtain the coating residual stress ⁇ c of the target object:
  • S c is the cross-sectional area of the coating of the target object
  • S s is the cross - sectional area of the base of the target object
  • E c is the elastic modulus of the coating of the target object
  • E s is the elasticity of the matrix of the target object Modulus
  • ⁇ c is the thermal expansion coefficient of the coating of the target object
  • ⁇ s is the thermal expansion coefficient of the base of the target object
  • ⁇ T c is the temperature at which the coating of the target object is prepared.
  • the raw data processed by the computer 12 in the apparatus of the embodiment of the present invention may be manually input through an input device, or the measured data may be directly transmitted to the computer by each measuring mechanism by wire or wirelessly.
  • the sample expansion displacement data measured by the micro-displacement measuring device 11 can be directly transmitted to the computer, or manually input and manually input.
  • the computer 12 automatically processes the received data to obtain the required residual stress value, and also determines whether the type of residual stress is tensile stress or compressive stress.
  • the quartz holder includes a first quartz holder 7 and a second quartz holder 8, and the first quartz holder 7 and the second quartz holder 8 have sample placement portions (first quartz holder, respectively) 7 is the first sample placement 5, and the second quartz holder 8 is the second sample placement 6) to place the sample separately;
  • the transmission rod includes a first transmission rod 9 and a second transmission rod 10 that transmit expansion displacements of the samples in the first quartz holder 7 and the second quartz holder 8, respectively.
  • the two samples can be simultaneously measured for thermal expansion coefficient, ensuring accurate and consistent data and simplifying operation.
  • the test resolution of the micro-displacement measuring device 11 is less than 0.2 mm, and the micro-displacement measuring device 11 can use an inductive micro-displacement measuring device, a differential transformer-type micro-displacement measuring device, a eddy current micro-displacement measuring device or a Hall sensor. .
  • the measured data can be directly transmitted to the computer 12 for processing to obtain the required parameters.
  • apparatus for measuring the required data may be included in the apparatus of the embodiments of the present invention, such as an elastic modulus measuring apparatus to measure data required to obtain a corresponding elastic modulus.
  • the data measured by the elastic modulus measuring device can be directly transmitted to the computer 12 or manually input to the computer 12 after reading.
  • the instrument of the embodiment of the invention Means for measuring the data may also be included in the apparatus.
  • the slide rail mechanism in the embodiment of the present invention is not limited as long as the heating furnace 4 can be easily moved to realize sample measurement.
  • the slide rail mechanism includes a rail 2 and a slide bearing 3 slidable along the rail 2, and the heating furnace 4 is fixed to the slide bearing 3 so as to reciprocate along the rail 2 together with the slide bearing 3.
  • FIG. 3 is a flow chart of a method for testing residual stress of a coating according to an embodiment of the present invention. see FIG. 3, a method for testing residual stress of a coating, comprising the following steps:
  • S c is the cross-sectional area of the coating of the target object
  • S s is the cross - sectional area of the base of the target object
  • E c is the elastic modulus of the coating of the target object
  • E s is the elasticity of the matrix of the target object Modulus
  • ⁇ c is the thermal expansion coefficient of the coating of the target object
  • ⁇ s is the thermal expansion coefficient of the base of the target object
  • ⁇ T c is the temperature at which the coating of the target object is prepared.
  • the test method of the embodiment of the present invention can be applied to the evaluation of the residual stress of the coating of any coating member, and the method is simple, and is not limited by the target coating member, and the residual stress of the coating can be obtained by easily preparing and detecting the sample, and can be operated. Strong.
  • the method of the embodiment of the invention has accurate test results and small dispersion. Not only can the value of the residual stress be obtained, but also whether the type of residual stress on the coating is tensile or compressive.
  • the data required in the method of the invention can be obtained using the above test apparatus.
  • the thermal expansion coefficient ⁇ c of the coating of the target object and the thermal expansion coefficient ⁇ s of the substrate are the average thermal expansion coefficients of the temperature ⁇ T c at the time of preparation of the coating of the target object by the temperature rise from room temperature.
  • the measurement of the average coefficient of thermal expansion of the coating of the target object and the substrate may be any of the prior art.
  • the coefficient of thermal expansion ⁇ c of the coating of the target object and the coefficient of thermal expansion ⁇ s of the substrate are obtained by the following steps:
  • Sample A is a sample of the substrate of the target object
  • Sample B is a composite sample of the target object coated with the coating of the target object
  • thermal expansion coefficients of sample A and sample B are respectively obtained, wherein the thermal expansion coefficient of sample A is the thermal expansion coefficient ⁇ s of the matrix of the target object;
  • the thermal expansion coefficient ⁇ c of the coating of the target object is obtained by the thermal expansion coefficients of the sample A and the sample B.
  • the relevant data is obtained by preparing a sample which is easy to prepare and easy to measure, and thus is not limited by the actual target object, and the quantitative (size) and qualitative (type) of the coating residual stress of any coating member can be realized. Evaluation.
  • the substrates of Sample A and Sample B were prepared using the same material as the substrate of the target object, and the coating of Sample B was obtained by the same material and preparation process as the coating of the target object. Since the materials are the same, the expansion coefficient obtained from the sample is the relevant expansion coefficient of the target object.
  • the coating of Sample B is symmetric in the distribution of the sample B to avoid bending deformation when the temperature changes.
  • Sample A and sample B are all sample sizes that meet the thermal expansion coefficient test criteria.
  • sample A and sample B are both rectangular parallelepipeds
  • sample A and sample B have a minimum length of 50 mm
  • the side length of the cross section is less than 6 mm on either side
  • the cross-sectional area is greater than 10 mm 2 .
  • the coating is at least on the opposite sides of the sample to form a symmetry to avoid bending deformation when temperature changes.
  • the elastic modulus of the coating of the target object and the substrate is obtained by a relative method.
  • it can also be obtained by any other suitable method.
  • the elastic modulus of the coating of the target object and the substrate is obtained by preparing a sample having the same material as the target object and performing corresponding tests on the sample.
  • the sample can be referred to the above sample A and sample B.
  • the residual stress type of the coating of the target object is determined according to the thermal expansion coefficient of the coating of the target object and the thermal expansion coefficient of the substrate, wherein the thermal expansion coefficient of the coating of the target object is greater than the thermal expansion coefficient of the substrate, Layer residue The residual stress is tensile stress, otherwise the residual stress of the coating is compressive stress.
  • Embodiments of the present invention are capable of determining not only the magnitude of residual stress but also the type of residual stress.
  • Example 1 Graphite Matrix/CVD (Chemical Vapor Deposition) Silicon Carbide Coated Round Tube Residual Stress Test
  • Graphite substrate / CVD Chemical Vapor Deposition
  • silicon carbide coated round tube its cross-sectional schematic view is shown in Figure 4,
  • Figure 13 in Figure 13 is a silicon carbide coating
  • 14 is a graphite matrix
  • the outer radius R1 of the tube is 330mm
  • inner radius R2 is 320mm
  • length L is 400mm
  • outer coating thickness T1 is 200 ⁇ m
  • inner coating thickness T2 is 200 ⁇ m;
  • Sample A and sample B are long strips of 50 mm in length, the length of the cross section is 4 mm, the width is 3 mm, and the area of the cross section is 12 mm 2 .
  • the schematic diagram of the sample B taken is shown in Fig. 5, and the standard in Fig. 5 No. 15 is a silicon carbide coating, 16 is a graphite matrix, and the thickness of the upper and lower coating layers is 200 ⁇ m; sample A is made of the same material as the graphite matrix of the tube to be tested, and sample B is coated with the graphite substrate/CVD silicon carbide to be tested.
  • the preparation process of the layer pipe is the same, and the preparation temperature ⁇ Tc of the coating is 1000 °C.
  • Sample A and sample B were tested by the relative method (for the specific operation, refer to the international standard "Test Method for Elastic Modulus and Strength of Ceramic Thick Coatings" (ISO/TC 206 AWI 19603) to obtain the elastic mode of CVD silicon carbide coating and graphite matrix.
  • the elastic modulus of the silicon carbide coating was Ec of 440 GPa
  • the elastic modulus Es of the graphite substrate was 9.8 GPa.
  • the residual stress of the graphite matrix/CVD silicon carbide coated pipe to be tested is divided into tangential residual stress ⁇ T and axial (longitudinal direction of the tube) residual stress ⁇ L , and the front view, side view and top view of the force diagram are respectively Figure 6-1 to 6-3.
  • the coating area is Cross-sectional area of the substrate
  • Sample A and Sample B were tested using a coating residual stress tester to obtain the average coefficient of thermal expansion of the sample coating and the substrate.
  • the thermal expansion coefficient ⁇ c of the coating layer is 2.47 ⁇ 10 -6 /° C.
  • the thermal expansion coefficient ⁇ s of the substrate is 1.63 ⁇ 10 -6 /° C.
  • the residual stress of the coating of the tested member can be output, specifically, graphite matrix/CVD carbonization.
  • the tangential residual stress ⁇ T of the silicon coated pipe is 132.19 MPa. Since the thermal expansion coefficient of the coating is larger than the thermal expansion coefficient of the substrate, the residual stress type of the obtained coating is tensile stress;
  • the elastic modulus of the sample coating and the substrate, the cross-sectional area of the coating and the substrate, and the temperature at which the coating is prepared are input into the tester to obtain the residual stress of the coating of the tested component, specifically, the graphite matrix
  • the axial residual stress ⁇ L of the /CVD silicon carbide coated pipe is 132.19 MPa
  • the residual stress type of the coating is tensile stress.
  • a reaction-sintered silicon carbide substrate/CVD (chemical vapor deposition) silicon carbide coated plate has a cross-sectional schematic view as shown in Fig. 7.
  • reference numeral 17 is a CVD (Chemical Vapor Deposition) silicon carbide coating
  • 18 is a reaction sintering carbonization.
  • Silicon substrate; the length L of the plate is 400 mm, the width B is 300 mm, the substrate thickness H is 20 mm, the upper coating thickness T1 is 200 ⁇ m, the lower coating thickness T2 is 200 ⁇ m; the sample A and the sample B are both 50 mm long.
  • the block has a cross section of 4 mm in length and 3 mm in width, and the cross-sectional area is 12 mm 2 .
  • FIG. 8 The schematic view of the sample B taken is shown in Fig. 8.
  • reference numeral 19 is a silicon carbide coating
  • 20 is a reaction sintering.
  • the silicon carbide matrix substrate has a thickness of 200 ⁇ m for the upper and lower coating layers;
  • Sample A uses the same material as the sintered silicon carbide substrate reacted with the sheet to be tested, and
  • Sample B and the prepared reaction sintered silicon carbide substrate/CVD silicon carbide coating are prepared. The process was the same and the preparation temperature was 1100 °C.
  • the area ratio is equal to the thickness ratio. As long as the ratio of the thickness of the substrate to the thickness of the coating is determined, it can be substituted.
  • the elastic modulus of the CVD silicon carbide coating and the reaction-sintered silicon carbide substrate of the sample was measured by a relative method. Specifically, the elastic modulus of the coating was Ec 440 GPa, and the elastic modulus Es of the substrate was 347 GPa.
  • the residual stress of the reaction-sintered silicon carbide substrate/CVD silicon carbide coating to be tested is divided into residual stress ⁇ X in the X direction and residual stress ⁇ Y in the Y direction.
  • the front view, side view and top view of the force diagram are shown in Figure 9 1 to 9-3.
  • Sample A and sample B were tested to obtain the average thermal expansion coefficient of the sample coating and the substrate.
  • the thermal expansion coefficient ⁇ c of the coating was 2.47 ⁇ 10 ⁇ 6 /° C.
  • the thermal expansion coefficient ⁇ s of the substrate was 3.41 ⁇ 10. -6/°C.
  • the elastic modulus of the sample coating and the substrate, the cross-sectional area of the coating and the substrate, and the temperature at which the coating is prepared are input into the tester to obtain the residual stress of the coating of the tested component, specifically, the reaction-sintered silicon carbide substrate.
  • the X-direction residual stress ⁇ X of the /CVD silicon carbide coated sheet is 403.37 MPa. Since the thermal expansion coefficient of the coating is smaller than the thermal expansion coefficient of the substrate, the resulting residual stress type of the coating is compressive stress;
  • the modulus of elasticity, the cross-sectional area of the coating and the substrate, and the temperature at which the coating is prepared are input to the tester to obtain the residual stress of the coating of the tested component.
  • the reaction-sintered silicon carbide substrate/CVD silicon carbide coating The residual stress ⁇ Y of the sheet in the Y direction is 403.37 MPa, and the residual stress type of the coating is compressive stress.
  • the method of the present invention is not affected by factors such as the specific shape and size of the coating member. Based on the principle of the method of the present invention, the method of the present invention is applicable to coating residual stress of any coating member due to a mismatch between the coating and the thermal expansion coefficient of the substrate, resulting in residual stress in the coating, including metal coating composition. Parts and ceramic coating components, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

一种涂层残余应力测试方法及仪器,其中测试方法包括如下步骤:获取目标物体的涂层制备时的温度;获取目标物体的涂层的横截面面积与基体的横截面面积;获取目标物体的涂层的热膨胀系数和基体的热膨胀系数;通过下式计算目标物体的涂层残余应力σ c,σ c=(S s/S c)·{1-[E sS s/E cS ccs]/[1+E sS s/E cS c]}E s·α s·△T c,式中:S c为目标物体的涂层的横截面面积,S s为目标物体的基体的横截面面积,E c为目标物体的涂层的弹性模量,E s为目标物体的基体的弹性模量,α c为目标物体的涂层的热膨胀系数,α s为目标物体的基体的热膨胀系数,△T c为目标物体的涂层的制备时的温度。该方法可测量任何涂层构件的涂层残余应力。

Description

涂层残余应力测试方法及仪器 技术领域
本发明涉及涂层残余应力测试技术领域,尤其涉及一种涂层残余应力测试方法及仪器。
背景技术
出于提高构件强度、硬度、抗高温、耐腐蚀、耐磨损等性能的目的,现有技术经常在金属或其他固体材料(基体)上通过化学或物理的方法镀上一层涂层。涂层构件对于现代机械领域包括汽车、航空、航天以及各种高温耐磨器械的性能提高具有重要意义。涂层在面向实际工程应用时必须解决力学性能的评价问题,以便改善工艺,提高其使用寿命。在涂层需要评价的力学性能指标中,残余应力是其中最为重要的指标之一。残余应力是指产生应力的各种外界因素作用不复存在时,在物体内部依然存在并保持自身平衡的应力。对于涂层而言,其残余应力产生的主要原因是涂层一般在较高温度下制备,并冷却至室温环境中,在这一过程中,由于涂层与基体热膨胀系数不匹配,热膨胀系数小的一端在冷却时受到拉应力,而热膨胀系数大的一端受到压应力,即导致涂层内出现残余应力。涂层残余应力的存在会导致涂层内部产生很多出现微小裂纹,一方面导致其结构性能降低,甚至脱落,另一方面,对其抗氧化腐蚀,耐高温等性能也有很大影响。故而准确评价涂层残余应力具有十分重要的意义。
目前,常用的涂层残余应力测试方法主要包括基于Stoney公式的曲率测量法以及X射线衍射法。
对于基于Stoney公式的曲率测量法,其原理是在残余应力的作用下,镀有涂层的基体会发生挠曲,这种变形尽管很微小,但通过激光干涉仪或者表面轮廓仪,能够测量到挠曲的曲率半径。通过基体的 挠曲程度即可根据Stoney公式计算涂层的残余应力。然而,该方法存在很多问题:第一,由于镀涂层后样品的曲率较小并且曲率沿长度方向并不处处相等,故而曲率难以准确测量,另外,大量的构件都是对称式的涂层,或者虽然非对称但基体刚度远大于有涂层,因而不会产生翘曲,该方法不能使用;第二,Stoney公式在推导过程中,忽略了含涂层弹性模量项对结果的影响,对于厚度较大的涂层样品,该项对残余应力的计算结果影响较大;第三,Stoney公式计算残余应力的模型假设涂层仅受到均匀应力,没有弯曲应力的作用,基体只受弯曲,没有均匀应力,对于厚涂层可导致大误差;第四,Stoney公式计算残余应力的模型假设样品内部弯矩为常数,使涂层产生类圆柱形变形,但对于实际上,样品内部应力并非均匀分布,难以反映真实情况。
对于X射线衍射法,其原理是利用X光衍射法测量应力引起的点阵间距变化所导致的弹性应变,测试样品常采用粉体或小型块体,其测试结果仅反映样品局部的性能,不能代表构件整体的残余应力,同时,其测量结果不准确,其离散性较高。
必须强调,残余应力并非一个材料常数,对于同种涂层而言,当基体与涂层的尺寸、大小不同时,其残余应力也不相同。故采用上述两种方法对涂层残余应力进行评价时,得到的结果仅可反映其所测量样品残余应力的大小,无法用于反映同种材料制备的实际服役涂层残余应力的大小。同时,对于实际服役涂层而言,无法采用上述两种方法进行现场测试,故这两种方法无法用于评价实际服役涂层的残余应力。
发明内容
有鉴于此,本发明实施例提供一种涂层残余应力测试方法,主要目的是简单准确地评价涂层的残余应力。
为达到上述目的,本发明主要提供如下技术方案:
一方面,本发明实施例提供了一种涂层残余应力测试方法,包 括如下步骤:
获取目标物体的涂层与基体的弹性模量;
获取目标物体的涂层制备时的温度;
获取目标物体的涂层的横截面面积与基体的横截面面积;
获取目标物体的涂层的热膨胀系数和基体的热膨胀系数;
通过下式计算目标物体的涂层残余应力σc
Figure PCTCN2016074483-appb-000001
式中:Sc为目标物体的涂层的横截面面积,Ss为目标物体的基体的横截面面积,Ec为目标物体的涂层的弹性模量,Es为目标物体的基体的弹性模量,αc为目标物体的涂层的热膨胀系数,αs为目标物体的基体的热膨胀系数,ΔTc为目标物体的涂层制备时的温度。
作为优选,所述目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs检测时,以室温至目标物体的涂层制备时的温度ΔTc的目标物体的涂层及基体的平均热膨胀系数作为目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs
作为优选,所述目标物体的涂层与基体的平均热膨胀系数的测量采用相对法测试。
作为优选,目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs通过如下步骤获取:
制备样品A和样品B,其中样品A为目标物体的基体的样品,样品B为目标物体的基体上复合有目标物体涂层的复合样品;
分别获取样品A和样品B的热膨胀系数,其中样品A的热膨胀系数即为目标物体的基体的热膨胀系数αs
通过样品A和样品B的热膨胀系数得到目标物体的涂层的热膨胀系数αc
作为优选,所述样品A及样品B的基体采用目标物体的基体相同的材料制备,所述样品B的涂层采用与目标物体的涂层相同的材料及制备工艺得到。
作为优选,所述样品B的涂层在样品B的基体上的分布呈对称性,以避免温度变化时发生弯曲变形。
作为优选,所述样品A与样品B尺寸,均采用符合热膨胀系数测试标准的样品尺寸。
作为优选,所述目标物体的涂层与基体的弹性模量采用相对法测试得到。
作为优选,所述目标物体的涂层与基体的弹性模量通过制备材质与目标物体相同的样品,对所述样品进行相应测试得到。
作为优选,根据获取目标物体的涂层的热膨胀系数和基体的热膨胀系数确定目标物体的涂层的残余应力类型,其中目标物体的涂层的热膨胀系数大于基体的热膨胀系数,则涂层的残余应力为拉应力,否则,涂层的残余应力为压缩应力。
另一方面,本发明实施例提供了一种涂层残余应力测试仪器,包括:
加热炉,用于加热样品,以使样品受热膨胀;
控温装置,控制所述加热炉的加热温度;
滑轨机构,与所述加热炉连接,所述加热炉沿滑轨机构的轨道滑动;
石英托架,具有样品放置处;
传动杆,用于传递样品膨胀位移;
微位移测量装置,检测传动杆传递的样品膨胀位移;
电脑,接收相关数据,并将相关数据整理为计算涂层残余应力所需参数,将所述参数按如下公式进行处理,得到目标物体的涂层残余应力σc
Figure PCTCN2016074483-appb-000002
式中:Sc为目标物体的涂层的横截面面积,Ss为目标物体的基体的横截面面积,Ec为目标物体的涂层的弹性模量,Es为目标物体的基体的弹性模量,αc为目标物体的涂层的热膨胀系数,αs为目标 物体的基体的热膨胀系数,ΔTc为目标物体的涂层制备时的温度。
作为优选,所述石英托架包括第一石英托架和第二石英托架,第一石英托架和第二石英托架内分别具有样品放置处,以分别放置样品;
所述传动杆包括第一传动杆和第二传动杆,所述第一传动杆和第二传动杆分别传递第一石英托架和第二石英托架内样品的膨胀位移。
作为优选,所述微位移测量装置的测试分辨率小于0.2mm。
与现有技术相比,本发明的有益效果在于:
本发明实施例的测试方法可用于任何涂层构件的涂层残余应力的评价。本发明实施例提供的测试方法简单,不受目标涂层构件的限制,可通过易于制备和检测样品来获得涂层残余应力,可操作性强。本发明实施例的方法测试结果准确,离散性小。不但能够获得残余应力的值,而且能够确定涂层上面的残余应力类型是拉伸应力还是压缩应力。
附图说明
图1为本发明一实施例的涂层残余应力测试仪器的结构示意图。
图2为本发明一实施例膨胀系数测量部分的结构示意图;
图3为本发明一实施例的涂层残余应力测试方法的流程图;
图4为本发明实施例中石墨基体/CVD(化学气相沉积)碳化硅涂层管材的横截面示意图;
图5为本发明实施例中样品B示意图;
图6-1为本发明实施例中石墨基体/CVD碳化硅涂层管材的受力示意图正视图;
图6-2为本发明实施例中石墨基体/CVD碳化硅涂层管材的受力示意图侧视图;
图6-3为本发明实施例中石墨基体/CVD碳化硅涂层管材的受力 示意图俯视图。
图7为本发明实施例中反应烧结碳化基体/CVD(化学气相沉积)碳化硅涂层板材的横截面示意图;
图8为本发明另一实施例中样品B示意图;
图9-1为本发明实施例中反应烧结碳化基体/CVD碳化硅涂层板材的受力示意图正视图;
图9-2为本发明实施例中反应烧结碳化基体/CVD碳化硅涂层板材的受力示意图侧视图;
图9-3为本发明实施例中反应烧结碳化基体/CVD碳化硅涂层板材的受力示意图俯视图。
具体实施方式
下面结合具体实施例对本发明作进一步详细描述,但不作为对本发明的限定。在下述说明中,不同的“一实施例”或“实施例”指的不一定是同一实施例。此外,一或多个实施例中的特定特征、结构、或特点可由任何合适形式组合。
图1为本发明一实施例的涂层残余应力测试仪器的结构示意图。图2为本发明一实施例膨胀系数测量部分的结构示意图。参见图1和图2,涂层残余应力测试仪器,包括:
加热炉4,用于加热样品,以使样品受热膨胀;
控温装置1,控制加热炉4的加热温度;
滑轨机构,与加热炉4连接,加热炉4沿滑轨机构的轨道2滑动;
石英托架,具有样品放置处;
传动杆,用于传递样品膨胀位移;
微位移测量装置11,检测传动杆传递的样品膨胀位移;
电脑12,接收相关数据,并将相关数据整理为计算涂层残余应力所需参数,将相关参数按如下公式进行处理,得到目标物体的涂层残余应力σc
Figure PCTCN2016074483-appb-000003
式中:Sc为目标物体的涂层的横截面面积,Ss为目标物体的基体的横截面面积,Ec为目标物体的涂层的弹性模量,Es为目标物体的基体的弹性模量,αc为目标物体的涂层的热膨胀系数,αs为目标物体的基体的热膨胀系数,ΔTc为目标物体的涂层制备时的温度。
本发明实施例的仪器中电脑12处理的原始数据可以是通过输入设备人工输入,也可以是通过有线或无线方式由各测量机构直接将测得的数据传输至电脑。如微位移测量装置11测得的样品膨胀位移数据可直接传输至电脑,也可人工读取后人工输入。本发明实施例的仪器中电脑12对接收的数据自动处理得到所需的残余应力值,同时还可判断出残余应力的类型是拉应力还是压应力。
图2为本发明一实施例膨胀系数测量部分的结构示意图;参见图1和图2。作为上述实施例的优选,石英托架包括第一石英托架7和第二石英托架8,第一石英托架7和第二石英托架8内分别具有样品放置处(第一石英托架7内为第一样品放置处5,第二石英托架8内为第二样品放置处6),以分别放置样品;
传动杆包括第一传动杆9和第二传动杆10,第一传动杆9和第二传动杆10分别传递第一石英托架7和第二石英托架8内样品的膨胀位移。本实施例中可以同时对两个样品进行热膨胀系数的测量,确保数据准确一致,简化操作。
作为上述实施例的优选,微位移测量装置11的测试分辨率小于0.2mm,微位移测量装置11可以采用电感式微位移测量装置、差动变压器式微位移测量装置、涡流式微位移测量装置或霍尔传感器。所测数据可直接传输至电脑12进行处理,以得到所需参数。
本发明实施例的仪器中还可以包括其他测量所需数据的装置,如还包括弹性模量测量装置,以测量获取相应弹性模量所需的数据。同样,如上面所述的,弹性模量测量装置测得的数据可以直接传输至电脑12或读取后人工输入电脑12。另外,本发明实施例的仪 器中还可包括用于测量尺寸数据的装置等测量所述数据的装置。
本发明实施例中的滑轨机构的具体构造不限,只要加热炉4能够便于移动,实现样品测量即可。本实施例中,滑轨机构包括轨道2和可沿轨道2滑动的滑动轴承3,加热炉4与滑动轴承3固定,从而与滑动轴承3一起沿轨道2往复移动。
图3为本发明一实施例的涂层残余应力测试方法的流程图;参见图3,涂层残余应力测试方法,包括如下步骤:
获取目标物体的涂层与基体的弹性模量;
获取目标物体的涂层制备时的温度;
获取目标物体的涂层的横截面面积与基体的横截面面积;
获取目标物体的涂层的热膨胀系数和基体的热膨胀系数;
通过下式计算目标物体的涂层残余应力σc
Figure PCTCN2016074483-appb-000004
式中:Sc为目标物体的涂层的横截面面积,Ss为目标物体的基体的横截面面积,Ec为目标物体的涂层的弹性模量,Es为目标物体的基体的弹性模量,αc为目标物体的涂层的热膨胀系数,αs为目标物体的基体的热膨胀系数,ΔTc为目标物体的涂层制备时的温度。
本发明实施例的测试方法可用于任何涂层构件的涂层残余应力的评价,并且方法简单,不受目标涂层构件的限制,可通过易于制备和检测样品来获得涂层残余应力,可操作性强。本发明实施例的方法测试结果准确,离散性小。不但能够获得残余应力的值,而且能够确定涂层上面的残余应力类型是拉伸应力还是压缩应力。本发明方法中所需数据可采用上述测试仪器来获得。
作为上述实施例的优选,目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs为由室温升温至目标物体的涂层制备时的温度ΔTc的平均热膨胀系数。目标物体的涂层与基体的平均热膨胀系数的测量可以是现有技术中任一种。
作为上实施例的优选,目标物体的涂层的热膨胀系数αc及基体 的热膨胀系数αs通过如下步骤获取:
制备样品A和样品B,其中样品A为目标物体的基体的样品,样品B为目标物体的基体上复合有目标物体涂层的复合样品;
分别获取样品A和样品B的热膨胀系数,其中样品A的热膨胀系数即为目标物体的基体的热膨胀系数αs
通过样品A和样品B的热膨胀系数得到目标物体的涂层的热膨胀系数αc
本实施例中通过制备易于制备及易于测量的样品来获取相关数据,因此不受实际的目标物体的限制,可实现任一涂层构件的涂层残余应力的定量(大小)及定性(类型)评价。
样品A及样品B的基体采用目标物体的基体相同的材料制备,样品B的涂层采用与目标物体的涂层相同的材料及制备工艺得到。由于材质相同,因此根据样品所得膨胀系数即为目标物体的相关膨胀系数。
作为作为有上述实施例的优选,样品B的涂层在样品B的基体上的分布呈对称性,以避免温度变化时发生弯曲变形。
样品A与样品B尺寸,均采用符合热膨胀系数测试标准的样品尺寸。以利于热膨胀系数的测量。如样品A与样品B均为长方体,样品A与样品B的最小长度为50mm,横截面的边长任一边长小于6mm,横截面的面积大于10mm2。在采用该形状时,涂层至少在样品的两向对面上,以便形成对称,避免温度变化时发生弯曲变形。
作为上述实施例的优选,目标物体的涂层与基体的弹性模量采用相对法测试得到。当然,也可采用其他任何适当的方法获得。
作为上述实施例的优选,目标物体的涂层与基体的弹性模量通过制备材质与目标物体相同的样品,对所述样品进行相应测试得到。该样品可参照上述样品A和样品B。
作为上述实施例的优选,根据获取目标物体的涂层的热膨胀系数和基体的热膨胀系数确定目标物体的涂层的残余应力类型,其中目标物体的涂层的热膨胀系数大于基体的热膨胀系数,则涂层的残 余应力为拉应力,否则,涂层的残余应力为压缩应力。本发明实施例不仅能够确定残余应力的大小,而且能够确定残余应力的类型。
下面以实际涂层构件的涂层残余应力测试为例对本发明方法及仪器进一步说明。
实施例一:石墨基体/CVD(化学气相沉积)碳化硅涂层圆管残余应力测试
石墨基体/CVD(化学气相沉积)碳化硅涂层圆管,其横截面示意图如图4所示,图4中标号13为碳化硅涂层,14为石墨基体;该管材的外半径R1为330mm,内半径R2为320mm,长度L为400mm,外侧涂层厚度T1为200μm,内侧涂层厚度T2为200μm;
样品A与样品B均为长50mm的长条块体,其横截面的长为4mm,宽为3mm,横截面的面积为12mm2,所取的样品B示意图如图5所示,图5中标号15为碳化硅涂层,16为石墨基体,其上下涂层的厚度均为200μm;样品A采用与待测管材的石墨基体相同的材料,样品B与待测的石墨基体/CVD碳化硅涂层管材的制备工艺相同,涂层的制备温度ΔTc为1000℃。
采用相对法测试样品A与样品B(具体操作参见国际标准《陶瓷厚涂层弹性模量和强度试验方法》(ISO/TC 206 AWI 19603)),得到CVD碳化硅涂层与石墨基体的弹性模量,具体的,其碳化硅涂层的弹性模量为Ec为440GPa,石墨基体的弹性模量Es为9.8GPa。
待测的石墨基体/CVD碳化硅涂层管材的残余应力分为切向残余应力σT和轴向(圆管长度方向)残余应力σL,其受力示意图的正视图、侧视图、俯视图分别如图6-1~6-3所示。
待测的石墨基体/CVD碳化硅涂层管材的切向残余应力σT的测试:
为测试圆管上涂层在切向方向的残余应力,需确定在圆管的横截面面积比,涂层面积为
Figure PCTCN2016074483-appb-000005
其基体的横截面积
Figure PCTCN2016074483-appb-000006
采用涂层残余应力测试仪对样品A与样 品B进行测试,得到样品涂层与基体的平均热膨胀系数。具体的,其涂层的热膨胀系数αc为2.47×10-6/℃,基体的热膨胀系数αs为1.63×10-6/℃。将样品涂层与基体的弹性模量,涂层与基体横截面面积以及涂层制备时的温度输入电脑12,即可输出所测构件的涂层的残余应力,具体的,石墨基体/CVD碳化硅涂层管材的切向残余应力σT为132.19MPa,由于涂层的热膨胀系数大于基体的热膨胀系数,故所得到的涂层残余应力类型为拉应力;
待测的石墨基体/CVD碳化硅涂层管材的轴向残余应力σL的测试:
其涂层的横截面积为S′c=L×(T1+T2)=160mm2,其基体的横截面积为S′s=L×(R1-R2)=4×103mm2,将样品涂层与基体的弹性模量,涂层与基体横截面面积以及涂层制备时的温度输入测试仪,即可得到所测构件的涂层的残余应力,具体的,石墨基体/CVD碳化硅涂层管材的轴向残余应力σL为132.19MPa,涂层残余应力类型为拉应力。
实施例二:反应烧结碳化硅板材基体/CVD(化学气相沉积)碳化硅涂层的残余应力测试
反应烧结碳化硅基体/CVD(化学气相沉积)碳化硅涂层板材,其横截面示意图如图7所示,图7中标号17为CVD(化学气相沉积)碳化硅涂层,18为反应烧结碳化硅基体;该板材的长度L为400mm,宽度B为300mm,基体厚度H为20mm,上侧涂层厚度T1为200μm,下侧涂层厚度T2为200μm;样品A与样品B均为长50mm的块体,其横截面的长为4mm,宽为3mm,横截面的面积为12mm2,所取的样品B示意图如图8所示,图8中标号19为碳化硅涂层,20为反应烧结碳化硅基体基体,其上下涂层的厚度均为200μm;样品A采用与待测板材反应烧结碳化硅基体相同的材料,样品B与待测的反应烧结碳化硅基板/CVD碳化硅涂层的制备工艺相同,其制备温度为1100℃。
由于涂层与基体的宽度相同,面积比就等于厚度比,只要确定基体厚度与涂层厚度的比值,即可代入计算。
采用相对法测试样品的CVD碳化硅涂层与反应烧结碳化硅基体的弹性模量,具体的,其涂层的弹性模量为Ec为440GPa,基体的弹性模量Es为347GPa。
待测的反应烧结碳化硅基板/CVD碳化硅涂层的残余应力分为X方向残余应力σX与Y方向残余应力σY,其受力示意图的正视图、侧视图、俯视图分别如图9-1~9-3所示。
待测的反应烧结碳化硅基体/CVD碳化硅涂层板材的X方向残余应力σX的测试:
其涂层的横截面积Sc=B×(T1+T2)=120mm2,其基体的横截面积Ss=B×H=6×103mm2,采用涂层残余应力测试仪对样品A与样品B进行测试,得到样品涂层与基体的平均热膨胀系数,具体的,其涂层的热膨胀系数αc为2.47×10-6/℃,基体的热膨胀系数αs为3.41×10-6/℃。将样品涂层与基体的弹性模量,涂层与基体横截面面积以及涂层制备时的温度输入测试仪,即可得到所测构件的涂层的残余应力,具体的,反应烧结碳化硅基体/CVD碳化硅涂层板材的X向残余应力σX为403.37MPa,由于涂层的热膨胀系数小于基体的热膨胀系数,故所得到的涂层残余应力类型为压应力;
待测的反应烧结碳化硅/CVD碳化硅涂层板材的Y方向残余应力σY的测试:
其涂层的横截面积S′c=L×(T1+T2)=160mm2,基体的横截面积S′s=L×H=8×103mm2:将样品涂层与基体的弹性模量,涂层与基体横截面面积以及涂层制备时的温度输入测试仪,即可得到所测构件的涂层的残余应力,具体的,反应烧结碳化硅基体/CVD碳化硅涂层板材的Y方向残余应力σY为403.37MPa,涂层残余应力类型为压应力。
通过上述两个陶瓷涂层构件的涂层残余应力的测试,证明本发明方法不受涂层构件具体形状及大小等因素的影响。基于本发明方法的原理,本发明方法适用于由于涂层与基体热膨胀系数不匹配,导致涂层内出现残余应力的任何涂层构件的涂层残余应力,包括金属涂层构 件和陶瓷涂层构件等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (13)

  1. 涂层残余应力测试方法,其特征在于,包括如下步骤:
    获取目标物体的涂层与基体的弹性模量;
    获取目标物体的涂层制备时的温度;
    获取目标物体的涂层的横截面面积与基体的横截面面积;
    获取目标物体的涂层的热膨胀系数和基体的热膨胀系数;
    通过下式计算目标物体的涂层残余应力σc
    Figure PCTCN2016074483-appb-100001
    式中:Sc为目标物体的涂层的横截面面积,Ss为目标物体的基体的横截面面积,Ec为目标物体的涂层的弹性模量,Es为目标物体的基体的弹性模量,αc为目标物体的涂层的热膨胀系数,αs为目标物体的基体的热膨胀系数,ΔTc为目标物体的涂层制备时的温度。
  2. 根据权利要求1所述的涂层残余应力测试方法,其特征在于,所述目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs检测时,以室温至目标物体的涂层制备时的温度ΔTc的目标物体的涂层及基体的平均热膨胀系数作为目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs
  3. 根据权利要求1所述的涂层残余应力测试方法,其特征在于,所述目标物体的涂层与基体的平均热膨胀系数的测量采用相对法测试。
  4. 根据权利要求1所述的涂层残余应力测试方法,其特征在于,目标物体的涂层的热膨胀系数αc及基体的热膨胀系数αs通过如下步骤获取:
    制备样品A和样品B,其中样品A为目标物体的基体的样品,样品B为目标物体的基体上复合有目标物体涂层的复合样品;
    分别获取样品A和样品B的热膨胀系数,其中样品A的热膨胀系数即为目标物体的基体的热膨胀系数αs
    通过样品A和样品B的热膨胀系数得到目标物体的涂层的热膨胀系数αc
  5. 根据权利要求4所述的涂层残余应力测试方法,其特征在于,所述样品A及样品B的基体采用目标物体的基体相同的材料制备,所述样品B的涂层采用与目标物体的涂层相同的材料及制备工艺得到。
  6. 根据权利要求4所述的涂层残余应力测试方法,其特征在于,所述样品B的涂层在样品B的基体上的分布呈对称性,以避免温度变化时发生弯曲变形。
  7. 根据权利要求4所述的涂层残余应力测试方法,其特征在于,所述样品A与样品B尺寸,均采用符合热膨胀系数测试标准的样品尺寸。
  8. 根据权利要求1所述的涂层残余应力测试方法,其特征在于,所述目标物体的涂层与基体的弹性模量采用相对法测试得到。
  9. 根据权利要求1所述的涂层残余应力测试方法,其特征在于,所述目标物体的涂层与基体的弹性模量通过制备材质与目标物体相同的样品,对所述样品进行相应测试得到。
  10. 根据权利要求1所述的涂层残余应力测试方法,其特征在于,根据获取目标物体的涂层的热膨胀系数和基体的热膨胀系数确定目标物体的涂层的残余应力类型,其中目标物体的涂层的热膨胀系数大于基体的热膨胀系数,则涂层的残余应力为拉应力,否则,涂层的残余应力为压缩应力。
  11. 涂层残余应力测试仪器,其特征在于,包括:
    加热炉,用于加热样品,以使样品受热膨胀;
    控温装置,控制所述加热炉的加热温度;
    滑轨机构,与所述加热炉连接,所述加热炉沿滑轨机构的轨道滑动;
    石英托架,具有样品放置处;
    传动杆,用于传递样品膨胀位移;
    微位移测量装置,检测传动杆传递的样品膨胀位移;
    电脑,接收相关数据,并将相关数据整理为计算涂层残余应力所需参数,将所述参数按如下公式进行处理,得到目标物体的涂层残余应力σc
    Figure PCTCN2016074483-appb-100002
    式中:Sc为目标物体的涂层的横截面面积,Ss为目标物体的基体的横截面面积,Ec为目标物体的涂层的弹性模量,Es为目标物体的基体的弹性模量,αc为目标物体的涂层的热膨胀系数,αs为目标物体的基体的热膨胀系数,ΔTc为目标物体的涂层制备时的温度。
  12. 根据权利要求11所述的涂层残余应力测试仪器,其特征在于,所述石英托架包括第一石英托架和第二石英托架,第一石英托架和第二石英托架内分别具有样品放置处,以分别放置样品;
    所述传动杆包括第一传动杆和第二传动杆,所述第一传动杆和第二传动杆分别传递第一石英托架和第二石英托架内样品的膨胀位移。
  13. 根据权利要求11所述的涂层残余应力测试仪器,其特征在于,所述微位移测量装置的测试分辨率小于0.2mm。
PCT/CN2016/074483 2016-02-24 2016-02-24 涂层残余应力测试方法及仪器 WO2017143542A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2016/074483 WO2017143542A1 (zh) 2016-02-24 2016-02-24 涂层残余应力测试方法及仪器
CN201680000792.XA CN107709969B (zh) 2016-02-24 2016-02-24 涂层残余应力测试方法及仪器
US15/351,387 US10222343B2 (en) 2016-02-24 2016-11-14 Method and apparatus for testing residual stress in coatings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/074483 WO2017143542A1 (zh) 2016-02-24 2016-02-24 涂层残余应力测试方法及仪器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/351,387 Continuation US10222343B2 (en) 2016-02-24 2016-11-14 Method and apparatus for testing residual stress in coatings

Publications (1)

Publication Number Publication Date
WO2017143542A1 true WO2017143542A1 (zh) 2017-08-31

Family

ID=59629349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074483 WO2017143542A1 (zh) 2016-02-24 2016-02-24 涂层残余应力测试方法及仪器

Country Status (3)

Country Link
US (1) US10222343B2 (zh)
CN (1) CN107709969B (zh)
WO (1) WO2017143542A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108375539B (zh) * 2018-02-07 2020-07-14 南京工程学院 一种钢板堆焊镍基合金残余应力计算方法
US11519798B2 (en) * 2018-12-18 2022-12-06 Metal Industries Research & Development Centre Residual stress detection device and detection method thereof
CN109870450B (zh) * 2019-02-28 2021-03-09 中国石油大学(北京) 一种涂层力学行为在线检测方法、设备以及系统
CN112268646B (zh) * 2020-07-30 2021-08-06 北京航空航天大学 一种基于蠕变轮廓法的残余应力测量装置
CN112629725B (zh) * 2020-12-04 2022-06-07 江苏徐工工程机械研究院有限公司 一种活塞杆喷涂层残余应力测试方法
CN112880618A (zh) * 2021-01-15 2021-06-01 中国民航大学 基于抛物线模型测量aps涂层残余应力试片曲率半径的方法
CN113074854B (zh) * 2021-03-31 2023-04-07 天津中环电炉股份有限公司 陶瓷涂层高温内应力的评价方法
TWI788873B (zh) * 2021-06-08 2023-01-01 逢甲大學 多層薄膜界面應力與殘留應力之量測方法及裝置
CN114252473B (zh) * 2021-12-16 2024-02-20 中国国检测试控股集团股份有限公司 预应力陶瓷表面涂层优选方法
CN114264690B (zh) * 2021-12-22 2023-06-23 赛迈科先进材料股份有限公司 一种提高测试精度的石墨热膨胀系数测试方法
CN115906316B (zh) * 2022-11-21 2023-09-22 江苏科技大学 一种对基体无负面力学影响的核壳载体设计与制备方法
CN116011199B (zh) * 2022-12-21 2023-12-26 中交建筑集团有限公司 基于弹性模量折减的残余应力影响分析及模拟方法和系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101004373A (zh) * 2007-01-22 2007-07-25 中国科学院力学研究所 一种涂层质量的判断方法
JP3994884B2 (ja) * 2003-02-17 2007-10-24 松下電器産業株式会社 薄膜の膜応力評価方法と弾性率・線膨張率同定方法
JP4548975B2 (ja) * 2001-06-14 2010-09-22 帝国ピストンリング株式会社 皮膜の残留応力測定方法
CN103528896A (zh) * 2013-10-24 2014-01-22 大连理工大学 一种测定微电子封装焊点压缩蠕变性能的测试装置
CN103926025A (zh) * 2014-04-13 2014-07-16 北京工业大学 一种用于测量涂层残余应力的试验装置及方法
CN103960043A (zh) * 2013-02-05 2014-08-06 贵州高山生物科技有限公司 一种椴木栽培大红巨芝的方法
CN104359938A (zh) * 2014-11-25 2015-02-18 中国建筑材料科学研究总院 一种测试涂层热膨胀系数的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866730B2 (en) * 2003-03-21 2005-03-15 General Motors Corporation Metallic-based adhesion materials
CN101477030A (zh) * 2008-01-02 2009-07-08 中国人民解放军装甲兵工程学院 涂层内部残余应力的测定方法
CN101285772B (zh) * 2008-05-20 2010-11-10 浙江大学 一种薄膜残余应力成分的分析装置
CN101725821A (zh) * 2008-10-16 2010-06-09 中国建筑材料科学研究总院 一种均匀受压预应力玻璃构件及其制备方法
CN102063539B (zh) * 2010-12-30 2013-03-27 北京航空航天大学 一种基于有限元的惯性平台残余应力释放仿真方法
CN102798491B (zh) * 2011-05-23 2014-04-16 同济大学 一种薄膜残余应力分离和测量装置
CN104458435B (zh) * 2014-12-04 2017-03-15 中国建材检验认证集团股份有限公司 高温及超高温环境下弹性模量测试用装置和测试方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548975B2 (ja) * 2001-06-14 2010-09-22 帝国ピストンリング株式会社 皮膜の残留応力測定方法
JP3994884B2 (ja) * 2003-02-17 2007-10-24 松下電器産業株式会社 薄膜の膜応力評価方法と弾性率・線膨張率同定方法
CN101004373A (zh) * 2007-01-22 2007-07-25 中国科学院力学研究所 一种涂层质量的判断方法
CN103960043A (zh) * 2013-02-05 2014-08-06 贵州高山生物科技有限公司 一种椴木栽培大红巨芝的方法
CN103528896A (zh) * 2013-10-24 2014-01-22 大连理工大学 一种测定微电子封装焊点压缩蠕变性能的测试装置
CN103926025A (zh) * 2014-04-13 2014-07-16 北京工业大学 一种用于测量涂层残余应力的试验装置及方法
CN104359938A (zh) * 2014-11-25 2015-02-18 中国建筑材料科学研究总院 一种测试涂层热膨胀系数的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YU , YITING ET AL.: "Study on Residual Stresses in MEMS Thin Films", MICROFABRICATION TECHNOLOGY, 30 June 2005 (2005-06-30), pages 47 *
ZHU, JIANGUO ET AL.: "Research Progress on the Experimental Measurement Methods of Mechanical Properties of Thermal Barrier Coatings", CHINESE JOURNAL OF THEORETICAL AND APPLIED MECHANICS, vol. 45, no. 1, 31 January 2013 (2013-01-31), pages 49 *

Also Published As

Publication number Publication date
US20170241925A1 (en) 2017-08-24
CN107709969A (zh) 2018-02-16
CN107709969B (zh) 2020-08-28
US10222343B2 (en) 2019-03-05

Similar Documents

Publication Publication Date Title
WO2017143542A1 (zh) 涂层残余应力测试方法及仪器
JP3677219B2 (ja) コンクリート構造物の温度応力測定装置及び方法
Khan et al. Ceramic rolling elements with ring crack defects—a residual stress approach
Latella et al. Young’s modulus of a 2.25 Cr–1Mo steel at elevated temperature
KR101206851B1 (ko) 재료의 잔류응력 평가 방법
CN103308395B (zh) 超高温外伸式变形测量装置
CN102095637A (zh) 一种评价圆环或圆管状脆性材料弹性模量和强度的方法
CN106053250A (zh) 测量材料超高温弯曲弹性模量及断裂应变的装置及方法
Morrell Biaxial flexural strength testing of ceramic materials.
CN203310706U (zh) 超高温外伸式变形测量装置
CN102353468B (zh) 一种太阳能电池烧结炉温度测定装置及其使用方法
Tung et al. Sensing sheet: the response of full-bridge strain sensors to thermal variations for detecting and characterizing cracks
Wei et al. Evaluating thermal expansion coefficient and density of ceramic coatings by relative method
JP6940915B2 (ja) ひび割れ発生時期の予測方法、および、アルカリシリカ反応の早期検知方法、
CN103048353B (zh) 一种高弹性模量金属丝材料线膨胀系数的测量方法
Guo et al. Properties of Ceramic Substrate Materials for High‐Temperature Pressure Sensors for Operation above 1000° C
Cockeram Fracture strength of plate and tubular forms of monolithic silicon carbide produced by chemical vapor deposition
Yu et al. Ultra-high temperature video extensometer: System development and experimental validation
Reder et al. Non-contacting strain measurements of ceramic and carbon single fibres by using the laser-speckle method
JP2012037535A (ja) 固定具
CN114965553A (zh) 一种基于平板弯曲曲率的高温涂层热膨胀系数的计算方法
Xing et al. Determining interfacial thermal residual stress in SiC/Ti-15-3 composites
Liu et al. Evaluating high temperature modulus and strength of alumina tube in vacuum by a modified split ring method
JP5554886B2 (ja) クリープ試験方法、及び試験体の製造方法
Kumykov et al. Measuring the Temperature Coefficient of the Surface Tension of Metals in the Solid State

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890996

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16890996

Country of ref document: EP

Kind code of ref document: A1