WO2017141605A1 - マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法 - Google Patents

マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2017141605A1
WO2017141605A1 PCT/JP2017/001343 JP2017001343W WO2017141605A1 WO 2017141605 A1 WO2017141605 A1 WO 2017141605A1 JP 2017001343 W JP2017001343 W JP 2017001343W WO 2017141605 A1 WO2017141605 A1 WO 2017141605A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
shielding film
light
light shielding
mask
Prior art date
Application number
PCT/JP2017/001343
Other languages
English (en)
French (fr)
Inventor
亮 大久保
野澤 順
博明 宍戸
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to US16/076,384 priority Critical patent/US20190040516A1/en
Priority to JP2017567992A priority patent/JP6396611B2/ja
Priority to KR1020187021041A priority patent/KR20180114895A/ko
Publication of WO2017141605A1 publication Critical patent/WO2017141605A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • C23C14/0057Reactive sputtering using reactive gases other than O2, H2O, N2, NH3 or CH4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/54Absorbers, e.g. of opaque materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50
    • G03F1/80Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a mask blank, a method of manufacturing a phase shift mask using the mask blank, and a method of manufacturing a semiconductor device using a phase shift mask manufactured from the mask blank.
  • a mask blank for a phase shift mask As a mask blank for a phase shift mask, a mask blank having a light-shielding film made of a chromium-based material on a light-transmitting substrate has been known.
  • a phase shift mask formed using such a mask blank includes a light shielding pattern formed by patterning a light shielding film by dry etching using a mixed gas of chlorine-based gas and oxygen gas.
  • Patent Document 1 As a mask blank using a chromium-based material, it has been proposed to use a multilayer film in which CrOC and CrOCN are combined as a light shielding film and an antireflection film (see, for example, Patent Document 1).
  • a mask blank for patterning the light-shielding film by dry etching using a mixed gas of chlorine-based gas and oxygen gas an etching mask of a silicon-based material such as SiO 2 , SiN, or SiON on the light-shielding film of a chromium-based material
  • a configuration having a film has been proposed (see, for example, Patent Document 2).
  • tantalum-based materials such as Ta, TaN, and TaON are listed as materials suitable for the etching mask film in addition to the silicon-based material described above.
  • a mixed gas of chlorine-based gas and oxygen gas oxygen-containing chlorine-based gas
  • oxygen-containing chlorine-based gas oxygen-containing chlorine-based gas
  • dry etching using this oxygen-containing chlorine-based gas as an etching gas has a small tendency for anisotropic etching and a large tendency for isotropic etching.
  • the control of the etching direction by applying a bias voltage is high, and the etching anisotropy is high. Therefore, the side etching amount of the thin film to be etched can be made minute.
  • oxygen gas tends to be radical plasma, so the effect of controlling the etching direction by applying a bias voltage is small, and etching anisotropy is increased. It is difficult. For this reason, when a pattern is formed on a light-shielding film made of a chromium-based material by dry etching using an oxygen-containing chlorine-based gas, the side etching amount tends to increase.
  • the resist pattern is etched from the top and decreases. At this time, the side wall direction of the resist pattern is also etched to be reduced. For this reason, the width of the pattern formed on the resist film is designed in advance in consideration of the amount of decrease due to side etching. Further, the width of the pattern formed on the resist film is designed in consideration of the side etching amount of the light shielding film of the chromium-based material.
  • a mask blank provided with a hard mask film made of a material having sufficient etching selectivity with a chromium-based material for dry etching of an oxygen-containing chlorine-based gas on a light-shielding film of a chromium-based material has been provided. It is starting to be used.
  • a pattern is formed on the hard mask film by dry etching using the resist pattern as a mask.
  • oxygen-containing chlorine-based gas is dry-etched on the light shielding film to form a pattern on the light shielding film.
  • This hard mask film is generally formed of a material that can be patterned by dry etching of a fluorine-based gas.
  • the fluorine-based gas dry etching is ion-based etching, there is a large tendency for anisotropic etching. For this reason, the side etching amount of the pattern side wall in the hard mask film on which the transfer pattern is formed is small. In the case of fluorine gas dry etching, the amount of side etching tends to be small even in a resist pattern for forming a pattern on a hard mask film. For this reason, the demand for a small amount of side etching in dry etching of an oxygen-containing chlorine-based gas is also increasing for a light-shielding film of a chromium-based material.
  • the bias voltage applied during the dry etching is significantly increased (hereinafter, an oxygen-containing chlorine-based gas with an increased ratio of the chlorine-based gas is used, and Dry etching performed under the condition of applying a high bias voltage is also referred to as “high bias etching of oxygen-containing chlorine-based gas”).
  • the mask blank described in the above-mentioned Patent Document 1 has a configuration in which films of chromium-based materials having different compositions are stacked, and the etching rate differs depending on the composition of each film.
  • the side etching amount is also different.
  • the mask blank was used to pattern the light shielding film by dry etching using high bias etching, a large step was generated in the cross-sectional shape of the pattern side wall formed in the light shielding film. If a phase shift mask is created using a mask blank having a step in the cross-sectional shape of the side wall, the pattern accuracy of the light shielding film is lowered.
  • a light-shielding film formed of a material containing chromium and a hard mask film formed in contact with the light-shielding film are laminated in this order on a light-transmitting substrate.
  • a mask blank in which the amount of side etching is significantly reduced while maintaining good pattern accuracy.
  • this invention provides the manufacturing method of the phase shift mask which can form a fine pattern accurately in a light shielding film by using this mask blank. Furthermore, a method for manufacturing a semiconductor device using the phase shift mask is provided.
  • the present invention has the following configuration as means for solving the above problems.
  • the hard mask film is made of a material containing one or more elements selected from silicon and tantalum,
  • the light shielding film has an optical density of more than 2.0 with respect to exposure light of an ArF excimer laser,
  • the light-shielding film is a single-layer film having a composition gradient portion with an increased oxygen content in the surface on the hard mask film side and in the vicinity thereof,
  • the light shielding film is made of a material containing chromium, oxygen and carbon,
  • the portion excluding the composition gradient portion of the light shielding film has a chromium content of 50 atomic% or more,
  • the maximum peak of the N1s narrow spectrum obtained by analyzing by X-ray photoelectron spectroscopy is below the detection lower limit
  • a portion of the light shielding film excluding the composition gradient portion has a maximum peak in a narrow spectrum of Cr2p
  • composition gradient portion of the light-shielding film has a maximum peak of a Cr2p narrow spectrum obtained by analysis by X-ray photoelectron spectroscopy at a binding energy of 576 eV or more.
  • (Configuration 4) 4. The mask blank according to any one of configurations 1 to 3, wherein the light shielding film has a maximum peak of a narrow spectrum of Si2p obtained by analysis by X-ray photoelectron spectroscopy that is equal to or lower than a detection lower limit value.
  • (Configuration 10) A method of manufacturing a phase shift mask using the mask blank according to any one of configurations 1 to 9, Forming a light shielding pattern on the hard mask film by dry etching using a fluorine-based gas using a resist film having a light shielding pattern formed on the hard mask film as a mask; Forming a light-shielding pattern on the light-shielding film by dry etching using a mixed gas of chlorine-based gas and oxygen gas using the hard mask film on which the light-shielding pattern is formed as a mask; Using a resist film having an digging pattern formed on the light shielding film as a mask, and forming a digging pattern on the translucent substrate by dry etching using a fluorine-based gas. A method of manufacturing a phase shift mask.
  • (Configuration 11) A method of manufacturing a semiconductor device, comprising using the phase shift mask according to Structure 10 and exposing and transferring a transfer pattern onto a resist film on a semiconductor substrate.
  • a mask blank having the above configuration having a structure in which a light-shielding film formed of a material containing chromium and a hard mask film are laminated in this order on a light-transmitting substrate.
  • oxygen-containing chlorine gas is used as an etching gas and this light shielding film is patterned by dry etching under high bias etching conditions, the amount of side etching of the pattern of the light shielding film formed thereby is greatly reduced. And a fine pattern can be formed on the light shielding film with high accuracy. For this reason, a phase shift mask provided with a highly accurate and fine transfer pattern can be obtained. Furthermore, in manufacturing a semiconductor device using this phase shift mask, it becomes possible to transfer a pattern with good accuracy to a resist film or the like on the semiconductor device.
  • FIG. 1 is a schematic cross-sectional view of an embodiment of a mask blank. It is a sectional schematic diagram showing a manufacturing process of a phase shift mask. It is a sectional schematic diagram showing a manufacturing process of a phase shift mask. It is a figure which shows the result (Cr2p narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 1. FIG. It is a figure which shows the result (O1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 1.
  • FIG. 1 It is a figure which shows the result (N1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 1.
  • FIG. It is a figure which shows the result (C1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 1.
  • FIG. It is a figure which shows the result (Si2p narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 1.
  • FIG. 1 It is a figure which shows the result (C1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 2.
  • FIG. It is a figure which shows the result (Si2p narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on Example 2.
  • FIG. It is a figure which shows the result (Cr2p narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on the comparative example 1.
  • FIG. 1 It is a figure which shows the result (O1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on the comparative example 1.
  • FIG. It is a figure which shows the result (N1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on the comparative example 1.
  • FIG. It is a figure which shows the result (C1s narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on the comparative example 1.
  • FIG. It is a figure which shows the result (Si2p narrow spectrum) which performed the XPS analysis (depth direction chemical bond state analysis) with respect to the light shielding film of the mask blank which concerns on the comparative example 1.
  • a chromium (Cr) -based material constituting a conventional mask blank a material containing nitrogen (N) such as CrON or CrOCN is known. This is because the defect quality of the chromium-based material film is improved by using nitrogen gas as the reactive gas in addition to the gas containing oxygen when the chromium-based material is formed by sputtering. In addition, by adding nitrogen to the chromium-based material film, the etching rate for dry etching with an oxygen-containing chlorine-based gas is increased.
  • a film forming method in which pre-sputtering is performed at the time of film formation of a Cr-based material has been performed on a chromium-based material film.
  • pre-sputtering it is possible to improve the defect quality of the chromium-based material film, and therefore it is possible to form a film without using N 2 gas for improving the defect quality.
  • the dry etching in the high bias etching for the chromium-based material film is compared with the dry etching performed in the normal bias voltage using the same etching gas condition (hereinafter referred to as “dry etching under normal conditions”).
  • dry etching under normal conditions the same etching gas condition
  • the etching rate of etching in the film thickness direction can be greatly increased.
  • both chemical etching and physical action etching are performed.
  • Etching by a chemical reaction is performed by a process in which an etching gas in a plasma state comes into contact with the surface of the thin film and combines with a metal element in the thin film to generate a low boiling point compound and sublimate.
  • etching by chemical reaction a metal element in a bonded state with another element is broken to form a low-boiling compound.
  • ionic plasma in an etching gas accelerated by a bias voltage collides with the surface of the thin film (this phenomenon is also referred to as “ion bombardment”).
  • ion bombardment a phenomenon of generating and sublimating the metal element and a low boiling point compound is performed.
  • High bias etching is an improvement of dry etching due to physical action compared to dry etching under normal conditions.
  • Etching by physical action greatly contributes to etching in the film thickness direction, but does not contribute much to etching in the side wall direction of the pattern.
  • etching by chemical reaction contributes to both etching in the film thickness direction and etching in the side wall direction of the pattern. Therefore, in order to make the side etching amount smaller than before, the ease of etching by a chemical reaction in a light shielding film of a chromium-based material is reduced compared to the past, and the ease of dry etching by a physical action is reduced compared with the past. It is necessary to maintain the same level.
  • the simplest approach for reducing the etching amount related to the etching by chemical reaction in the light shielding film of the chromium-based material is to increase the chromium content in the light shielding film.
  • the etching amount related to the dry etching due to the physical action is significantly reduced.
  • Even in the case of dry etching by physical action if the chromium element repelled from the film does not combine with chlorine and oxygen to form chromyl chloride (CrO 2 Cl 2 , a low boiling point compound of chromium), The element is reattached to the light shielding film and is not removed. Since there is a limit to increasing the supply amount of the etching gas, if the chromium content in the light shielding film is too large, the etching rate of the light shielding film is significantly reduced.
  • the etching time for patterning the light shielding film is significantly increased. If the etching time for patterning the light shielding film becomes longer, the time for which the side wall of the light shielding film is exposed to the etching gas becomes longer, leading to an increase in the amount of side etching.
  • An approach that greatly reduces the etching rate of the light shielding film, such as increasing the chromium content in the light shielding film, does not lead to suppression of the side etching amount.
  • constituent elements other than chromium in the light shielding film In order to suppress the side etching amount, it is effective to contain a light element that consumes oxygen radicals that promote etching by a chemical reaction. Since the material for forming the light-shielding film is required to have at least a certain level of patterning characteristics, light-shielding performance, chemical resistance during cleaning, etc., light elements that can be contained in a certain amount or more in the chromium-based material forming the light-shielding film are Limited. Typical examples of light elements to be contained in a chromium-based material in a certain amount or more include oxygen, nitrogen, and carbon.
  • the etching rate is significantly increased in both high bias etching and dry etching under normal conditions.
  • the etching of the side etching easily proceeds, but the etching time in the film thickness direction is greatly shortened, and the time during which the side wall of the light shielding film is exposed to the etching gas is shortened.
  • the chromium-based material for forming the light shielding film needs to contain oxygen.
  • the etching rate is high in both cases of high bias etching and dry etching under normal conditions, although not as remarkable as when oxygen is contained.
  • side etching also proceeds easily. Considering the fact that the etching time in the film thickness direction is shortened by adding nitrogen to the chromium-based material forming the light-shielding film, considering that the ease of side etching proceeds, in the case of high bias etching, It can be said that the chromium-based material forming the light-shielding film should not contain nitrogen.
  • the etching rate is slightly slower than in the case of the light-shielding film made only of chromium.
  • the resistance to etching by a physical action becomes lower than in the case of a light-shielding film made only of chromium.
  • the etching rate becomes faster than that in the case of the light shielding film made only of chromium.
  • the chromium-based material forming the light shielding film when carbon is contained in the chromium-based material forming the light shielding film, oxygen radicals that promote side etching are consumed, so that side etching is less likely to proceed than when oxygen or nitrogen is contained. Considering these, in the case of high bias etching, the chromium-based material for forming the light shielding film needs to contain carbon.
  • the Cr—N bond has a low binding energy (binding energy) and tends to be easily dissociated. For this reason, when chlorine and oxygen in a plasma state come into contact with each other, the Cr—N bond is dissociated and a low boiling point chromyl chloride is easily formed.
  • the Cr—C bond has a high binding energy and tends to be difficult to dissociate. For this reason, even if chlorine and oxygen in the plasma state come into contact with each other, it is difficult to dissociate the Cr—C bond and form low boiling point chromyl chloride.
  • the light-shielding film that is dry-etched by high bias etching using the hard mask film on which the pattern is formed as an etching mask contains oxygen on the surface on the hard mask film side and in the vicinity thereof.
  • the light-shielding film is made of a material containing chromium, oxygen, and carbon, and the portion other than the composition-gradient part of the light-shielding film has a chromium content of 50 atoms.
  • the maximum peak of the N1s narrow spectrum obtained by analyzing by X-ray photoelectron spectroscopy (XPS) is below the detection lower limit value, and the light shielding film has a composition gradient of the light shielding film.
  • the part excluding the part has a maximum peak at a binding energy of 574 eV or less in the narrow spectrum of Cr2p obtained by analysis by X-ray photoelectron spectroscopy. I came to the conclusion that there should be.
  • FIG. 1 shows a schematic configuration of an embodiment of a mask blank.
  • a mask blank 100 shown in FIG. 1 has a configuration in which a light shielding film 3 and a hard mask film 4 are laminated in this order on one main surface of a translucent substrate 1.
  • the mask blank 100 may have a configuration in which a resist film is laminated on the hard mask film 4 as necessary.
  • details of main components of the mask blank 100 will be described.
  • the translucent substrate 1 is made of a material having good transparency with respect to the exposure light used in the exposure process.
  • synthetic quartz glass, aluminosilicate glass, soda lime glass, low thermal expansion glass (such as SiO 2 —TiO 2 glass), and other various glass substrates can be used.
  • a substrate using synthetic quartz glass has high transmittance with respect to ArF excimer laser light (wavelength: about 193 nm), it can be suitably used as the light-transmitting substrate 1 of the mask blank 100.
  • the exposure process here refers to a transfer mask (phase shift mask) manufactured using the mask blank 100 set on a mask stage of an exposure apparatus, and irradiated with exposure light to the transfer object. It is a step of performing exposure transfer of a transfer pattern (phase shift pattern).
  • the exposure light means exposure light used in this exposure process.
  • ArF excimer laser light wavelength: 193 nm
  • KrF excimer laser light wavelength: 248 nm
  • i-line light wavelength: 365 nm
  • the light-shielding film 3 is a film on which a light-shielding pattern is formed when a transfer mask is manufactured from the mask blank 100, and is a film having a light-shielding property with respect to exposure light.
  • the light-shielding film 3 is required to have an optical density (OD) greater than 2.0 with respect to, for example, ArF excimer laser light having a wavelength of 193 nm, preferably 2.8 or more, and more preferably 3.0 or more. .
  • the light-shielding film 3 has a front side (surface farthest from the translucent substrate 1) and a back side (surface on the translucent substrate 1 side) in order to prevent exposure transfer defects due to reflection of exposure light.
  • the surface reflectivity with respect to the exposure light on each surface is kept low.
  • the reflectance of the surface on the front side of the light-shielding film 3 where the reflected light of the exposure light from the reduction optical system of the exposure apparatus hits is desirably, for example, 40% or less (preferably 30% or less). This is to suppress stray light generated by multiple reflection between the front surface of the light shielding film 3 and the lens of the reduction optical system.
  • the light shielding film 3 needs to function as an etching mask at the time of dry etching with a fluorine-based gas for forming a digging pattern on the translucent substrate 1. For this reason, it is necessary to apply a material having sufficient etching selectivity to the light-transmitting substrate 1 in the dry etching using a fluorine-based gas for the light-shielding film 3.
  • the light shielding film 3 is required to be able to form a fine light shielding pattern with high accuracy.
  • the thickness of the light shielding film 3 is preferably 80 nm or less, and more preferably 75 nm or less. If the thickness of the light shielding film 3 is too thick, a fine pattern to be formed cannot be formed with high accuracy.
  • the light shielding film 3 is required to satisfy the required optical density as described above. For this reason, it is calculated
  • the light shielding film 3 is made of a material containing chromium (Cr), oxygen (O), and carbon (C).
  • the light-shielding film 3 is a single-layer film having a composition gradient portion in which the oxygen content increases on the surface on the hard mask film 4 side and in the vicinity thereof. This is because, during the manufacturing process, the surface of the formed light shielding film 3 is exposed to an atmosphere containing oxygen, and therefore, a region in which the oxygen content is increased more than other portions is formed only on the surface of the light shielding film 3.
  • the oxygen content is highest on the surface exposed to the atmosphere containing oxygen, and the oxygen content gradually decreases as the distance from the surface increases. Then, the composition of the light shielding film 3 becomes substantially constant from a position away from the surface to some extent.
  • a region where the oxygen content changes (slowly decreases) from the surface of the light shielding film 3 is defined as a composition gradient portion.
  • the difference in the film thickness direction of the content of each constituent element is preferably less than 10 atomic%, and more preferably 8 atomic% or less. Preferably, it is more preferably 5 atomic% or less.
  • the composition gradient portion of the light shielding film 3 is preferably a region from the surface to a depth of less than 5 nm, more preferably a region to a depth of 4 nm or less, and further a region to a depth of 3 nm or less. preferable.
  • the portion other than the composition gradient portion of the light shielding film 3 has a chromium content of 50 atomic% or more. This is to suppress side etching that occurs when the light shielding film 3 is patterned by high bias etching.
  • the portion of the light shielding film 3 excluding the composition gradient portion preferably has a chromium content of 80 atomic% or less. This is for securing a sufficient etching rate when the light shielding film 3 is patterned by high bias etching.
  • the maximum peak of the N1s narrow spectrum obtained by analysis by X-ray photoelectron spectroscopy is below the detection lower limit.
  • Cr—N bonds exist in the material forming the light-shielding film 3 in a predetermined ratio or more. If the material for forming the light shielding film 3 contains Cr—N bonds in a predetermined ratio or more, it is difficult to suppress the progress of side etching when the light shielding film 3 is patterned by high bias etching.
  • the content of nitrogen (N) in the light-shielding film 3 is preferably not more than a detection limit value in composition analysis by X-ray photoelectron spectroscopy.
  • the portion excluding the composition gradient portion of the light-shielding film 3 has a maximum peak at a binding energy of 574 eV or less in the narrow spectrum of Cr2p obtained by analysis by X-ray photoelectron spectroscopy.
  • a material containing Cr when the narrow spectrum of Cr2p has a maximum peak with a binding energy higher than 574 eV, that is, in a state of chemical shift, it binds to other atoms (particularly nitrogen). It shows that the existing ratio of chromium atoms is high.
  • Such a chromium-based material tends to have low resistance to etching mainly of chemical reaction, and it is difficult to suppress side etching.
  • Suppressing the progress of side etching when patterning by high bias etching is formed by forming a portion of the light shielding film 3 except for the composition gradient portion with a chromium-based material having a maximum peak at a binding energy of 574 eV or less with a narrow spectrum of Cr2p. can do.
  • the narrow spectrum of Cr2p in the part except the composition inclination part of the light shielding film 3 has a maximum peak with the binding energy of 570 eV or less.
  • the ratio obtained by dividing the carbon content [atomic%] in the portion excluding the composition gradient portion of the light shielding film 3 by the total content [atomic%] of chromium, carbon and oxygen is preferably 0.1 or more, More preferably, it is 0.14 or more.
  • the light shielding film 3 occupies most of chromium, oxygen and carbon. Most of the chromium in the light shielding film 3 exists in any form of a Cr—O bond, a Cr—C bond, and a form not bonded to oxygen and carbon.
  • a Cr-based material having a high ratio obtained by dividing the carbon content [atomic%] by the total content of chromium, carbon, and oxygen [atomic%] has a high abundance ratio of Cr—C bonds in the material.
  • the ratio of the carbon content [atomic%] in the portion excluding the composition gradient portion of the light shielding film 3 divided by the total content of chromium and carbon [atomic%] is preferably 0.14 or more, More preferably, it is 0.16 or more.
  • the light shielding film 3 preferably has a total content of chromium, oxygen, and carbon of 95 atomic% or more, and more preferably 98 atomic% or more.
  • the light-shielding film 3 is particularly preferably composed of chromium, oxygen, and carbon except for impurities that are unavoidably mixed. Note that the impurities inevitably mixed here are the light shielding films 3 such as argon (Ar), helium (He), neon (Ne), krypton (Kr), xenon (Xe), hydrogen (H), and the like. An element that is difficult to avoid when forming a film by sputtering.
  • the portion other than the composition gradient portion of the light shielding film 3 preferably has an oxygen content of 10 atomic% to 35 atomic%. Moreover, it is preferable that carbon content is 10 atomic% or more and 20 atomic% or less in the portion excluding the composition gradient portion of the light shielding film 3.
  • the composition gradient portion of the light-shielding film 3 preferably has a maximum peak at a binding energy of 576 eV or more in the narrow spectrum of Cr2p obtained by analysis by X-ray photoelectron spectroscopy.
  • the narrow spectrum of Cr2p of the composition inclination part of the light shielding film 3 has a maximum peak with the binding energy of 580 eV or less.
  • the maximum peak of the narrow spectrum of Si2p obtained by analyzing the light shielding film 3 by X-ray photoelectron spectroscopy is not more than the detection lower limit value.
  • the light shielding film 3 preferably has a silicon content of 1 atomic% or less, and preferably has a detection limit value or less in composition analysis by X-ray photoelectron spectroscopy.
  • a method for obtaining Cr2p narrow spectrum, O1s narrow spectrum, C1s narrow spectrum, N1s narrow spectrum, and Si2p narrow spectrum by performing X-ray photoelectron spectroscopic analysis on the light shielding film 3 is generally performed in the following procedure. . That is, first, a wide spectrum is obtained by performing a wide scan to obtain photoelectron intensity (number of photoelectrons emitted per unit time from a measurement object irradiated with X-rays) with a wide band of binding energy, and the light is blocked. All peaks derived from the constituent elements of the film 3 are specified.
  • each narrow spectrum is performed by performing narrow scan with higher resolution than wide scan but narrow band width of obtainable binding energy around the peak of interest (Cr2p, O1s, C1s, N1s, Si2p, etc.).
  • the step of obtaining the wide spectrum is omitted, and the Cr2p narrow spectrum, the O1s narrow spectrum, the C1s narrow spectrum, the N1s narrow spectrum, and the Si2p narrow spectrum are obtained. Also good.
  • the Cr2p narrow spectrum in the light-shielding film 3 is acquired in the range of the binding energy of, for example, 666 eV to 600 eV. It is more preferable that the Cr2p narrow spectrum in the light shielding film 3 includes a binding energy range of 570 eV to 580 eV.
  • the O1s narrow spectrum in the light shielding film 3 is acquired in the range of the binding energy of 524 eV to 540 eV, for example. It is more preferable that the O1s narrow spectrum in the light shielding film 3 includes a binding energy range of 528 eV to 534 eV.
  • the N1s narrow spectrum in the light shielding film 3 is acquired in the range of the binding energy of 390 eV to 404 eV, for example. It is more preferable that the N1s narrow spectrum in the light shielding film 3 includes a binding energy range of 395 eV to 400 eV.
  • the C1s narrow spectrum in the light shielding film 3 is acquired, for example, in the range of the binding energy of 278 eV to 296 eV. It is more preferable that the C1s narrow spectrum in the light shielding film 3 includes a binding energy range of 280 eV to 285 eV.
  • the Si2p narrow spectrum in the light shielding film 3 is acquired in the range of, for example, a binding energy of 95 eV to 110 eV.
  • the light shielding film 3 can be formed by forming a film on the light-transmitting substrate 1 by a reactive sputtering method using a target containing chromium.
  • the sputtering method may be a method using a direct current (DC) power source (DC sputtering) or a method using a high frequency (RF) power source (RF sputtering).
  • DC sputtering is preferred because the mechanism is simple.
  • the film forming apparatus may be an inline type or a single wafer type.
  • Sputtering gas used when forming the light shielding film 3 includes a gas containing no oxygen (eg, CH 4 , C 2 H 4 , C 2 H 6 ) and a gas containing no oxygen (O). 2 , O 3, etc.) and a rare gas (Ar, Kr, Xe, He, Ne, etc.), a mixed gas containing carbon and oxygen (CO 2 , CO, etc.) and a rare gas, or A mixed gas containing at least one of a gas containing no carbon and containing carbon (CH 4 , C 2 H 4 , C 2 H 6, etc.) and a gas containing no oxygen and containing oxygen in addition to a rare gas and a gas containing carbon and oxygen Is preferred.
  • a gas containing no oxygen eg, CH 4 , C 2 H 4 , C 2 H 6
  • a gas containing no oxygen O. 2 , O 3, etc.
  • a rare gas Ar, Kr, Xe, He, Ne, etc.
  • CO 2 , CO
  • CO 2 gas is less reactive than oxygen gas, the gas can circulate uniformly over a wide area in the chamber. This is preferable because the film quality of the light-shielding film 3 to be formed becomes uniform.
  • introduction method they may be introduced separately into the chamber, or some gases may be introduced together or all gases may be mixed.
  • the material of the target is not limited to chromium alone but may be chromium as a main component, and may be chromium containing either oxygen or carbon, or a target obtained by adding oxygen and carbon to chromium.
  • the hard mask film 4 is provided in contact with the surface of the light shielding film 3.
  • the hard mask film 4 is a film formed of a material having etching resistance against an etching gas used when the light shielding film 3 is etched. It is sufficient for the hard mask film 4 to have a film thickness that can function as an etching mask until dry etching for forming a pattern on the light shielding film 3 is completed. Not subject to restrictions. For this reason, the thickness of the hard mask film 4 can be made much thinner than the thickness of the light shielding film 3.
  • the thickness of the hard mask film 4 is required to be 20 nm or less, preferably 15 nm or less, and more preferably 10 nm or less. This is because if the thickness of the hard mask film 4 is too thick, the thickness of the resist film serving as an etching mask is required in dry etching for forming a light shielding pattern on the hard mask film 4.
  • the thickness of the hard mask film 4 is required to be 3 nm or more, and preferably 5 nm or more. If the thickness of the hard mask film 4 is too thin, the pattern of the hard mask film 4 disappears before the dry etching for forming the light shielding pattern on the light shielding film 3 is completed depending on the conditions of the high bias etching with the oxygen-containing chlorine-based gas. Because there is a risk of doing.
  • a resist film made of an organic material used as an etching mask in dry etching with a fluorine-based gas that forms a pattern on the hard mask film 4 only functions as an etching mask until the dry etching of the hard mask film 4 is completed.
  • the thickness of the film is sufficient. Therefore, the thickness of the resist film can be greatly reduced by providing the hard mask film 4 as compared with the conventional configuration in which the hard mask film 4 is not provided.
  • the hard mask film 4 is preferably formed of a material containing one or more elements selected from silicon and tantalum.
  • the hard mask film 4 is formed of a material containing silicon, it is preferable to apply SiO 2 , SiN, SiON or the like. Further, since the hard mask film 4 in this case tends to have low adhesion to the organic material resist film, the surface of the hard mask film 4 is subjected to HMDS (Hexamethyldisilazane) treatment to improve the surface adhesion. It is preferable.
  • HMDS Hexamethyldisilazane
  • the hard mask film 4 is formed of a material containing tantalum, it is preferable to apply a material in which tantalum contains one or more elements selected from nitrogen, oxygen, boron and carbon in addition to tantalum metal. Examples thereof include Ta, TaN, TaO, TaON, TaBN, TaBO, TaBON, TaCN, TaCO, TaCON, TaBCN, and TaBOCN.
  • the hard mask film 4 is preferably formed of a material containing tantalum (Ta) and oxygen (O) and having an O content of 50 atomic% or more (hereinafter referred to as a TaO-based material).
  • the hard mask film 4 is required to have sufficiently high etching resistance against high bias etching when the light shielding film 3 is patterned. If the etching resistance is not sufficient, the edge portion of the pattern of the hard mask film 4 is etched and the mask pattern is reduced, so that the accuracy of the light shielding pattern is deteriorated.
  • the material containing Ta can greatly increase the resistance to dry etching by the oxygen-containing chlorine-based gas by setting the oxygen content in the material to at least 50 atomic% or more.
  • the TaO-based material hard mask film 4 is desired to have a crystal structure of microcrystal, preferably amorphous.
  • the crystal structure in the TaO-based material hard mask film 4 is microcrystalline or amorphous, it is difficult to form a single structure, and a plurality of crystal structures tend to be mixed.
  • the TaO-based material in the hard mask film 4 tends to be in a state (mixed crystal state) in which TaO bonds, Ta 2 O 3 bonds, TaO 2 bonds, and Ta 2 O 5 bonds are mixed.
  • the TaO-based material in the hard mask film 4 tends to improve the resistance to dry etching with an oxygen-containing chlorine-based gas as the abundance ratio of Ta 2 O 5 bonds increases.
  • the TaO-based material in the hard mask film 4 tends to have higher properties for preventing hydrogen intrusion, chemical resistance, warm water resistance and ArF light resistance as the ratio of Ta 2 O 5 bonds increases.
  • the bonding state of tantalum and oxygen in the film tends to be mainly Ta 2 O 3 bonds.
  • the most unstable TaO bond is considered to be much less than when the oxygen content in the film is less than 50 atomic%.
  • the TaO-based material hard mask film 4 has an oxygen content in the film of 66.7 atomic% or more, it is considered that the bonding state of tantalum and oxygen tends to be mainly TaO 2 bonds. Both the unstable bond TaO bond and the next unstable bond Ta 2 O 3 are considered to be very few.
  • the TaO-based material hard mask film 4 has an oxygen content in the film of 67 atomic% or more, not only TaO 2 bonds are mainly formed but also the ratio of Ta 2 O 5 bonding states becomes high. Conceivable. At such an oxygen content, the Ta 2 O 3 and TaO 2 bonding states rarely exist, and the TaO bonding state cannot exist.
  • the hard mask film 4 made of TaO-based material is considered to be formed substantially only in the bonded state of Ta 2 O 5 when the oxygen content in the film is about 71.4 atomic% (most oxidized) (Because the oxygen content of Ta 2 O 5 in the bonded state is 71.4 atomic%).
  • the TaO-based material hard mask film 4 includes not only Ta 2 O 5 in the most stable bonding state but also bonding states of Ta 2 O 3 and TaO 2. Will be.
  • the lower limit value of the oxygen content that does not affect the dry etching resistance and the amount of the most unstable TaO bond is at least 50 atomic%. It is believed that there is.
  • the Ta 2 O 5 bond is a bonded state having very high stability, and the resistance to high bias etching is greatly increased by increasing the ratio of the Ta 2 O 5 bond. In addition, the characteristics of blocking hydrogen intrusion, chemical resistance, resistance to mask cleaning such as hot water resistance, and ArF light resistance are greatly enhanced.
  • the TaO constituting the hard mask film 4 is formed only by the combined state of Ta 2 O 5 .
  • the hard mask film 4 made of TaO-based material preferably contains nitrogen and other elements in a range that does not affect these functions and effects and does not substantially contain them.
  • the TaO-based material hard mask film 4 is made of a material in which the maximum peak of the Ta4f narrow spectrum obtained by analysis by X-ray photoelectron spectroscopy is larger than 23 eV, thereby greatly improving the resistance to high bias etching. be able to.
  • a material having a high binding energy tends to improve resistance to dry etching by an oxygen-containing chlorine-based gas.
  • the bonding state having the highest bonding energy in the tantalum compound is a Ta 2 O 5 bond.
  • the maximum peak of the Ta4f narrow spectrum obtained by analysis by X-ray photoelectron spectroscopy is preferably 24 eV or more, more preferably 25 eV or more, and 25.4 eV or more. Is particularly preferred. If the maximum peak of the Ta4f narrow spectrum obtained by analysis by X-ray photoelectron spectroscopy is 25 eV or more, the bonding state between tantalum and oxygen in the hard mask film 4 is mainly Ta 2 O 5 bonds, and a high bias Resistance to etching is greatly increased.
  • the TaO-based material having an oxygen content of 50 atomic% constituting the hard mask film 4 has a tendency of tensile stress.
  • the material (CrOC-based material) mainly composed of chromium, oxygen, and carbon constituting the light shielding film 3 has a tendency of compressive stress.
  • a TaO-based material hard mask film 4 is laminated on a CrOC-based material light-shielding film 3, so that the compressive stress of the light-shielding film 3 and the hard mask film 4 There is an offset between the tensile stress and the overall stress of the laminated structure can be reduced.
  • a resist film of an organic material is formed with a thickness of 100 nm or less in contact with the surface of the hard mask film 4.
  • the light shielding pattern to be formed on the light shielding film 3 may be provided with SRAF (Sub-Resolution Assist Feature) having a line width of 40 nm.
  • SRAF Sub-Resolution Assist Feature
  • the film thickness of the resist film can be suppressed by providing the hard mask film 4 as described above, whereby the cross-sectional aspect ratio of the resist pattern formed by this resist film is 1: 2.5. And can be lowered.
  • the resist film preferably has a film thickness of 80 nm or less.
  • the resist film is preferably a resist for electron beam drawing exposure, and more preferably, the resist is a chemical amplification type.
  • the mask blank 100 having the above configuration is manufactured by the following procedure.
  • the translucent substrate 1 has its end face and main surface polished to a predetermined surface roughness (for example, a root mean square roughness Rq of 0.2 nm or less in a square inner region having a side of 1 ⁇ m), and then a predetermined surface roughness.
  • the washing process and the drying process are performed.
  • the light shielding film 3 is formed on the translucent substrate 1 by a sputtering method.
  • the hard mask film 4 is formed on the light shielding film 3 by sputtering.
  • a sputtering target and a sputtering gas containing the material constituting each layer in a predetermined composition ratio are used, and if necessary, a mixed gas of the above rare gas and reactive gas is sputtered. Film formation using gas is performed.
  • the mask blank 100 has a resist film
  • the surface of the hard mask film 4 is subjected to HMDS (Hexamethyldisilazane) treatment as necessary.
  • a resist film is formed on the surface of the hard mask film 4 subjected to the HMDS process by a coating method such as a spin coating method, and the mask blank 100 is completed.
  • a resist film is formed on the hard mask film 4 of the mask blank 100 by a spin coating method.
  • a first pattern to be a light shielding pattern to be formed on the light shielding film 3 is exposed and drawn on the resist film with an electron beam.
  • the central portion of the translucent substrate 1 is used as a transfer pattern forming region 11A, and a light shielding pattern which is one of the transfer patterns is exposed and drawn.
  • an alignment pattern or a bar code pattern is exposed and drawn on the outer peripheral area 11B of the transfer pattern forming area 11A.
  • predetermined processing such as PEB processing, development processing, and post-baking processing is performed on the resist film to form a first pattern (resist pattern 5a) serving as a light shielding pattern on the resist film (see FIG. 2A). ).
  • the transfer pattern includes a light shielding pattern and an engraved pattern (phase shift pattern). Further, an electron beam is often used for exposure drawing of the resist film.
  • the hard mask film 4 is dry-etched using a fluorine-based gas to form a first pattern (hard mask pattern 4a) on the hard mask film 4 (FIG. 2B). reference). Thereafter, the resist pattern 5a is removed.
  • the light shielding film 3 may be dry-etched with the resist pattern 5a remaining without being removed. In this case, the resist pattern 5a disappears when the light shielding film 3 is dry-etched.
  • etching using an oxygen-containing chlorine-based gas is performed to form a first pattern (light shielding pattern 3a) on the light shielding film 3 (see FIG. 2C).
  • Dry etching with oxygen-containing chlorine-based gas on the light-shielding film 3 uses an etching gas having a higher mixing ratio of chlorine-based gas than conventional.
  • the anisotropy of dry etching can be increased.
  • the bias voltage applied from the back side of the translucent substrate 1 is also made higher than before.
  • the power when this bias voltage is applied is preferably 15 [W] or more, more preferably 20 [W] or more, and 30 [W] or more is more preferable.
  • a resist film (second resist film) 6 having a digging pattern is formed on the hard mask film 4 (hard mask pattern 4a) on which the light shielding pattern is formed.
  • a resist film 6 is formed on the translucent substrate 1 by a spin coating method.
  • predetermined processing such as development processing is performed.
  • a digging pattern in which the translucent substrate 1 is exposed is formed in the resist film 6 in the transfer pattern forming region 11A.
  • the digging pattern is formed in the resist film 6 with an opening width that takes a margin of misalignment generated in the exposure process, and the opening of the digging pattern formed in the resist film 6 completely covers the opening of the light shielding pattern.
  • a digging pattern is formed so as to be exposed.
  • the transparent substrate 1 is dried using a fluorine-based gas with the resist film 6 having the digging pattern and the light shielding film 3 on which the light shielding pattern 3a is formed as a mask. Etching is performed. Thereby, the digging pattern 2 is formed on the main surface 11S in the transfer pattern forming region 11A of the translucent substrate 1.
  • the digging pattern 2 has a predetermined phase difference (for example, 150 ° to 190 °) with respect to the exposure light that passes through the transmissive substrate 1 whose surface is not dug. Depth. For example, when ArF excimer laser light is applied to exposure light, the digging pattern is formed with a depth of about 173 nm (when the phase difference is 180 degrees).
  • the resist film 6 is reduced, and the resist film 6 on the hard mask film 4 is completely lost. Further, the hard mask film 4 also disappears by dry etching with a fluorine-based gas. Thereby, the transfer pattern 16 which consists of the light shielding pattern 3a and the digging pattern 2 formed in the translucent substrate 1 is formed in the transfer pattern formation region 11A. Thereafter, the remaining resist film 6 is removed.
  • the phase shift mask 200 created by the above process includes the digging pattern 2 on the one main surface 11S side of the translucent substrate 1, and the light shielding pattern 3a is formed on the main surface 11S of the translucent substrate 1. It has a structure including the formed light shielding film 3.
  • the engraved pattern 2 is formed on the main surface 11S side of the translucent substrate 1 in a state of being continuous from the opening bottom of the engraved pattern 2 in the transfer pattern forming region 11A of the translucent substrate 1.
  • the transfer pattern 16 composed of the digging pattern 2 and the light shielding pattern 3a is arranged.
  • a hole-shaped alignment pattern 15 penetrating the light shielding film 3 is provided in the outer peripheral region 11B.
  • the chlorine-based gas used in the dry etching during the manufacturing process is not particularly limited as long as it contains Cl.
  • a chlorine-based gas Cl 2, SiCl 2, CHCl 3, CH 2 Cl 2, CCl 4, BCl 3 and the like.
  • the fluorine-based gas used in the dry etching in the manufacturing process is not particularly limited as long as F is contained.
  • a fluorine-based gas CHF 3, CF 4, C 2 F 6, C 4 F 8, SF 6 and the like.
  • the fluorine-based gas not containing C has a relatively low etching rate with respect to the glass substrate, damage to the glass substrate can be further reduced.
  • the phase shift mask 200 is manufactured using the mask blank 100 described with reference to FIG.
  • oxygen-containing chlorine having an isotropic etching tendency in the process of FIG. 2C which is a dry etching process for forming the light shielding pattern 3a (fine pattern) on the light shielding film 3. Dry etching with a system gas is applied. Further, the dry etching with the oxygen-containing chlorine-based gas in the step of FIG. 2C is performed under etching conditions in which the ratio of the chlorine-based gas of the oxygen-containing chlorine-based gas is high and a high bias voltage is applied.
  • the side etching is reduced, and the light shielding pattern 3a formed with high accuracy and the resist film 6 having the digging pattern are used as an etching mask, and the transmissive substrate 1 is dry-etched with a fluorine-based gas, thereby obtaining the digging pattern. 2 and the light-shielding pattern 3a can be formed with high accuracy.
  • the phase shift mask 200 with good pattern accuracy can be manufactured.
  • the semiconductor device manufacturing method is characterized in that the transfer pattern of the phase shift mask 200 is exposed and transferred to the resist film on the substrate using the engraved Levenson type phase shift mask 200 manufactured by the above-described manufacturing method. It is said.
  • the manufacturing method of such a semiconductor device is performed as follows.
  • a substrate for forming a semiconductor device is prepared.
  • This substrate may be, for example, a semiconductor substrate, a substrate having a semiconductor thin film, or a microfabricated film formed thereon.
  • a resist film is formed on the prepared substrate, and pattern exposure is performed on the resist film using the digging Levenson-type phase shift mask 200 manufactured by the above-described manufacturing method. Thereby, the transfer pattern formed on the phase shift mask 200 is exposed and transferred onto the resist film.
  • the exposure light for example, ArF excimer laser light is used here.
  • the resist film to which the transfer pattern is exposed and transferred is developed to form a resist pattern, the surface pattern of the substrate is etched using this resist pattern as a mask, and impurities are introduced. . After the processing is completed, the resist pattern is removed.
  • the semiconductor device is completed by repeatedly performing the above processing on the substrate while exchanging the transfer mask, and further performing necessary processing.
  • a resist pattern with sufficient accuracy to sufficiently satisfy the initial design specifications is formed on the substrate by using the digging Levenson type phase shift mask manufactured by the above-described manufacturing method. be able to. For this reason, when a circuit pattern is formed by dry etching the lower layer film under the resist film using the resist film pattern as a mask, a high-accuracy circuit pattern without wiring short-circuit or disconnection due to insufficient accuracy is formed. Can do.
  • a translucent substrate 1 made of synthetic quartz glass having a main surface dimension of about 152 mm ⁇ about 152 mm and a thickness of about 6.35 mm was prepared.
  • the translucent substrate 1 has its end face and main surface polished to a predetermined surface roughness (root mean square roughness Rq of 0.2 nm or less), and then subjected to a predetermined cleaning process and drying process.
  • the translucent substrate 1 is installed in a single-wafer DC sputtering apparatus, and a mixed gas atmosphere of argon (Ar), carbon dioxide (CO 2 ), and helium (He) is used using a chromium (Cr) target.
  • the reactive sputtering (DC sputtering) was performed.
  • a light shielding film (CrOC film) 3 made of chromium, oxygen, and carbon was formed in a thickness of 59 nm in contact with the translucent substrate 1.
  • a heat treatment was performed on the translucent substrate 1 on which the light shielding film (CrOC film) 3 was formed. Specifically, using a hot plate, heat treatment was performed in the atmosphere at a heating temperature of 280 ° C. and a heating time of 5 minutes. After the heat treatment, the optical density of the light-shielding film 3 at the wavelength of ArF excimer laser light (about 193 nm) is applied to the translucent substrate 1 on which the light-shielding film 3 is formed using a spectrophotometer (Cary 4000 manufactured by Agilent Technologies). As a result, it was confirmed that it was 3.0 or more.
  • the translucent substrate 1 on which the light shielding film 3 is formed is installed in a single wafer RF sputtering apparatus, a silicon dioxide (SiO 2 ) target is used, argon (Ar) gas is used as a sputtering gas, and RF sputtering is performed.
  • a hard mask film 4 made of silicon and oxygen was formed on the light shielding film 3 to a thickness of 12 nm.
  • prescribed washing process was performed and the mask blank 100 of Example 1 was manufactured.
  • a light-shielding film 3 alone was formed on the main surface of another translucent substrate 1 under the same conditions, and a heat treatment was prepared.
  • the light shielding film 3 was analyzed by X-ray photoelectron spectroscopy (with XPS and RBS correction).
  • the region near the surface of the light-shielding film 3 opposite to the translucent substrate 1 side region from the surface to a depth of about 2 nm
  • the content of each constituent element in the region excluding the composition gradient portion of the light shielding film 3 was Cr: 71 atomic%, O: 15 atomic%, and C: 14 atomic% on average. Furthermore, the difference between the constituent elements in the thickness direction of the region excluding the composition gradient portion of the light-shielding film 3 is 3 atomic% or less, and it was confirmed that there is substantially no composition gradient in the thickness direction.
  • FIG. 4 shows the result of analysis of the chemical direction of the Cr2p narrow spectrum in the depth direction obtained by the X-ray photoelectron spectroscopy of the light-shielding film 3 of Example 1.
  • FIG. 4 shows the depth direction of the O1s narrow spectrum.
  • FIG. 5 shows the results of chemical bonding state analysis
  • FIG. 6 shows the results of chemical bonding state analysis in the depth direction of N1s narrow spectrum
  • FIG. 7 shows the results of chemical bonding state analysis in the depth direction of C1s narrow spectrum
  • FIG. The results of chemical bonding state analysis in the depth direction are shown in FIG.
  • the energy distribution of photoelectrons emitted from the light shielding film 3 is measured by irradiating the surface of the light shielding film 3 with X-rays, and the light shielding film 3 is subjected to Ar gas sputtering. Is repeated for a predetermined time, and the step of measuring the energy distribution of photoelectrons emitted from the light shielding film 3 by irradiating the surface of the light shielding film 3 in the dug area with X-rays is repeated.
  • the film thickness direction is analyzed.
  • the position in the film thickness direction of the light shielding film 3 after being dug by Ar gas sputtering from the outermost surface of the light shielding film 3 by 0.80 min is a position deeper than the composition gradient portion. That is, all the plots at the depth positions after the “0.80 min plot” are the measurement results of the portion excluding the composition gradient portion of the light shielding film 3.
  • Example 4 shows that the light shielding film 3 of Example 1 has a maximum peak at a binding energy of 574 eV except for the outermost surface (0.00 min plot). This result means that atoms such as nitrogen and oxygen and unbonded chromium atoms are present in a certain ratio or more.
  • Example 5 shows that the light shielding film 3 of Example 1 has a maximum peak at a binding energy of about 530 eV except the outermost surface (0.00 min plot). This result means that Cr—O bonds are present in a certain ratio or more.
  • Example 7 shows that the light shielding film 3 of Example 1 has a maximum peak at a binding energy of 282 to 283 eV except for the outermost surface (a plot of 0.00 min) from the result of the C1s narrow spectrum in FIG. This result means that Cr—C bonds are present in a certain ratio or more.
  • the engraved Levenson-type phase shift mask 200 of Example 1 was manufactured according to the following procedure.
  • the surface of the hard mask film 4 was subjected to HMDS treatment.
  • a resist film made of a chemically amplified resist for electron beam drawing with a film thickness of 80 nm was formed in contact with the surface of the hard mask film 4 by spin coating.
  • a first pattern which is a light shielding pattern to be formed on the hard mask film 4 is drawn on the resist film with an electron beam, a predetermined development process and a cleaning process are performed, and a resist pattern having the first pattern 5a was formed (see FIG. 2 (a)).
  • This first pattern includes a line and space pattern having a line width of 100 nm.
  • the space width is measured with a CD-SEM (Critical Dimension-Scanning Electron Microscope) in the region where the line and space pattern is formed. It was.
  • a resist film (second resist film) 6 in which a digging pattern is formed is formed on the hard mask film 4 (hard mask pattern 4a) in which a light shielding pattern is formed.
  • a resist film 6 made of a chemically amplified resist for electron beam drawing (PRL009, manufactured by Fuji Film Electronics Materials Co., Ltd.) with a film thickness of 50 nm was formed in contact with the surface of the hard mask film 4 by spin coating. .
  • the film thickness of the resist film 6 is the film thickness on the hard mask film 4.
  • an engraved pattern was drawn on the resist film 6 with an electron beam, and a predetermined development process and a cleaning process for the resist film 6 were performed to form a resist film 6 having an engraved pattern.
  • the opening pattern of the digging pattern formed in the resist film 6 completely exposes the opening of the light shielding pattern 3a. Formed.
  • the light-transmitting substrate 1 using a fluorine-based gas (CF 4 ) was dry-etched using the resist film 6 having a digging pattern as a mask.
  • the digging pattern 2 was formed at a depth of 173 nm in the transfer pattern forming region 11A on the one main surface 11S side of the translucent substrate 1.
  • the resist film 6 decreased in thickness during the dry etching with the fluorine-based gas, and all the resist film 6 on the hard mask film 4 disappeared at the end of the dry etching.
  • the hard mask film 4 was also removed by dry etching with a fluorine-based gas.
  • the remaining resist film 6 was removed, and a process such as cleaning was performed to obtain a phase shift mask 200.
  • the space width was measured with a length-measuring SEM (CD-SEM: Critical-Dimension-Scanning-Electron-Microscope) in the region where the line and space pattern was formed. .
  • an etching bias which is an amount of change between the space width of the hard mask pattern 4a and the space width of the light-shielding pattern 3a measured in advance at a plurality of locations in the region where the same line and space pattern is formed.
  • Each was calculated, and the average value of the etching bias was further calculated.
  • the average value of the etching bias was about 6 nm, which was much smaller than the conventional value.
  • the fine light-shielding pattern can be accurately applied to the light-shielding film. 3 can be formed.
  • Example 2 [Manufacture of mask blanks]
  • the mask blank 100 of Example 2 was manufactured in the same procedure as Example 1 except for the light shielding film 3.
  • the light-shielding film 3 of Example 2 is different from the light-shielding film 3 of Example 1 in film formation conditions.
  • the translucent substrate 1 is installed in a single wafer DC sputtering apparatus, and a mixed gas of argon (Ar), carbon dioxide (CO 2 ), and helium (He) is used using a chromium (Cr) target. Reactive sputtering (DC sputtering) was performed in the atmosphere.
  • a light shielding film (CrOC film) 3 made of chromium, oxygen and carbon was formed in a thickness of 72 nm in contact with the translucent substrate 1.
  • the light-transmitting substrate 1 on which the light shielding film (CrOC film) 3 was formed was subjected to heat treatment under the same conditions as in Example 1.
  • the optical density of the light-shielding film 3 at the wavelength of ArF excimer laser light (about 193 nm) is applied to the translucent substrate 1 on which the light-shielding film 3 is formed using a spectrophotometer (Cary 4000 manufactured by Agilent Technologies). As a result, it was confirmed that it was 3.0 or more.
  • a light-shielding film 3 alone was formed on the main surface of another translucent substrate 1 under the same conditions, and a heat treatment was prepared.
  • the light shielding film 3 was analyzed by X-ray photoelectron spectroscopy (with XPS and RBS correction).
  • the region near the surface of the light-shielding film 3 opposite to the translucent substrate 1 side region from the surface to a depth of about 2 nm
  • the content of each constituent element in the region excluding the composition gradient portion of the light shielding film 3 was Cr: 55 atomic%, O: 30 atomic%, and C: 15 atomic% on average. Furthermore, the difference between the constituent elements in the thickness direction of the region excluding the composition gradient portion of the light-shielding film 3 is 3 atomic% or less, and it was confirmed that there is substantially no composition gradient in the thickness direction.
  • Example 2 With respect to the light-shielding film 3 of Example 2, as a result of the depth direction chemical bond state analysis of Cr2p narrow spectrum (see FIG. 9), the depth direction chemical bond of O1s narrow spectrum is obtained.
  • State analysis result see FIG. 10
  • N1s narrow spectrum depth direction chemical bond state analysis result see FIG. 11
  • C1s narrow spectrum depth direction chemical bond state analysis result see FIG. 12
  • Si2p The result of the chemical analysis of the depth direction of the narrow spectrum was obtained.
  • the result of analysis at the position in the film thickness direction of the light shielding film 3 after digging for 80 min by Ar gas sputtering is “0.80 min plot”, and digging by Ar gas sputtering for 1.60 min from the outermost surface of the light shielding film 3
  • the analysis result at the position in the film thickness direction of the light shielding film 3 after the insertion is 2.8 from the outermost surface of the light shielding film 3 in the “1.60 min plot”.
  • the result of analysis at the position in the film thickness direction of the light shielding film 3 after digging by Ar gas sputtering for min is “2.80 min plot”, and digging by Ar gas sputtering for 3.20 min from the outermost surface of the light shielding film 3
  • the result of analysis at the position in the film thickness direction of the light-shielding film 3 after insertion is shown in the “3.20 min plot”.
  • the position in the film thickness direction of the light shielding film 3 after being dug by Ar gas sputtering from the outermost surface of the light shielding film 3 by 0.80 min is a position deeper than the composition gradient portion. That is, all the plots at the depth positions after the “0.80 min plot” are the measurement results of the portion excluding the composition gradient portion of the light shielding film 3.
  • the light-shielding film 3 of Example 2 has a maximum peak at a binding energy of 574 eV in the region after the depth of “0.80 min plot”. .
  • This result means that atoms such as nitrogen and oxygen and unbonded chromium atoms are present in a certain ratio or more.
  • the light-shielding film 3 of Example 2 has a maximum peak at a binding energy of about 530 eV in the depth region after the “0.80 min plot”. Recognize. This result means that Cr—O bonds are present in a certain ratio or more.
  • the light-shielding film 3 of Example 2 has a maximum peak at a binding energy of 282 to 283 eV in a region having a depth after “0.80 min plot”. I understand. This result means that Cr—C bonds are present in a certain ratio or more.
  • the vertical scales of the graphs in each of the narrow spectra in FIGS. 9 to 13 are not the same.
  • the N1s narrow spectrum in FIG. 11 and the Si2p narrow spectrum in FIG. 13 are greatly expanded in scale on the vertical axis as compared with the narrow spectra in FIGS. 9, 10, and 12.
  • the vibration wave in the graph of the N1s narrow spectrum of FIG. 11 and the Si2p narrow spectrum of FIG. 13 does not show the presence of a peak but only shows noise.
  • phase shift mask 200 of Example 2 was manufactured in the same procedure as in Example 1.
  • the line The space width was measured with a critical dimension SEM (CD-SEM: Critical Dimension Scanning Electron Microscope) in the region where the AND space pattern was formed.
  • an etching bias that is an amount of change between the space width of the hard mask pattern 4a and the space width of the light shielding pattern 3a is calculated, Furthermore, the average value of the etching bias was calculated. As a result, the average value of the etching bias was about 10 nm, which was sufficiently smaller than the conventional value. This means that the mask blank 100 of Example 2 is highly accurate even if the light shielding film 3 is patterned by high bias etching using the hard mask pattern 4a having a fine transfer pattern to be formed on the light shielding film 3 as an etching mask. This shows that the fine transfer pattern can be formed on the light shielding film 3.
  • ⁇ Comparative example 1> [Manufacture of mask blanks]
  • the mask blank of Comparative Example 1 was manufactured in the same procedure as in Example 1 except for the light shielding film.
  • the film forming conditions of the light shielding film of Comparative Example 1 are different from those of the light shielding film 3 of Example 1.
  • a translucent substrate is installed in a single-wafer DC sputtering apparatus, and using a chromium (Cr) target, argon (Ar), carbon dioxide (CO 2 ), nitrogen (N 2 ), and helium ( Reactive sputtering (DC sputtering) in a mixed gas atmosphere of He) was performed.
  • a light shielding film (CrOCN film) made of chromium, oxygen, carbon, and nitrogen was formed in a thickness of 72 nm in contact with the translucent substrate.
  • the light-transmitting substrate on which the light shielding film (CrOCN film) was formed was subjected to heat treatment under the same conditions as in Example 1.
  • the optical density of the light-shielding film at the wavelength of the ArF excimer laser light (about 193 nm) is measured using a spectrophotometer (Cary 4000 manufactured by Agilent Technologies) on the light-transmitting substrate on which the light-shielding film is formed. When measured, it was confirmed that it was 3.0 or more.
  • a light-shielding film alone was formed on the main surface of another translucent substrate under the same conditions, and a heat treatment was prepared.
  • the light shielding film was analyzed by X-ray photoelectron spectroscopy (with XPS and RBS correction).
  • XPS X-ray photoelectron spectroscopy
  • the region near the surface of the light-shielding film opposite to the translucent substrate region from the surface to a depth of about 2 nm
  • each constituent element in the region excluding the composition gradient portion of the light-shielding film is, on average, Cr: 55 atomic%, O: 22 atomic%, C: 12 atomic%, and N: 11 atomic%. all right. Furthermore, the difference in each constituent element in the thickness direction of the region excluding the composition gradient portion of the light-shielding film was 3 atomic% or less, and it was confirmed that there was substantially no composition gradient in the thickness direction.
  • the light-shielding film of Comparative Example 1 has a maximum peak with a binding energy greater than 574 eV in the region after the depth of “1.60 min plot”. Recognize. This result means that the abundance ratio of atoms such as nitrogen and oxygen to the bonded chromium atom is considerably small even though it is a so-called chemical shift.
  • phase shift mask of Comparative Example 1 was manufactured in the same procedure as in Example 1.
  • the space width was measured with a CD-SEM (CD-SEM: Critical Dimension-Scanning Electron Microscope). Etching that is the amount of change between the space width of the hard mask pattern and the space width of the light-shielding pattern of the manufactured phase shift mask at a plurality of locations in the region where the same line and space pattern is formed Each bias was calculated, and an average value of the etching bias was calculated.
  • the average value of the etching bias was 20 nm, which was a relatively large value. This is because the mask blank of Comparative Example 1 has a fine transfer with high accuracy when the light shielding film is patterned by high bias etching using a hard mask pattern having a fine transfer pattern to be formed on the light shielding film as an etching mask. This means that it is difficult to form a pattern on the light shielding film.
  • ⁇ Comparative example 2> [Manufacture of mask blanks]
  • the mask blank of Comparative Example 2 was manufactured in the same procedure as in Example 1 except for the light shielding film.
  • the film forming conditions of the light shielding film of Comparative Example 2 are different from those of the light shielding film 3 of Example 1.
  • a translucent substrate is installed in a single-wafer DC sputtering apparatus, and a mixed gas atmosphere of argon (Ar), nitric oxide (NO), and helium (He) using a chromium (Cr) target.
  • Reactive sputtering DC sputtering
  • a light shielding film (CrON film) made of chromium, oxygen and nitrogen was formed in a thickness of 72 nm in contact with the translucent substrate.
  • the light-transmitting substrate on which the light shielding film (CrON film) was formed was subjected to heat treatment under the same conditions as in Example 1.
  • the optical density of the light-shielding film at the wavelength of the light (about 193 nm) of the ArF excimer laser having a laminated structure is used for the light-transmitting substrate on which the light-shielding film is formed, using a spectrophotometer (Cary 4000 manufactured by Agilent Technologies). As a result, it was confirmed that it was 3.0 or more.
  • a light-shielding film alone was formed on the main surface of another translucent substrate under the same conditions, and a heat treatment was prepared.
  • the light shielding film was analyzed by X-ray photoelectron spectroscopy (with XPS and RBS correction).
  • the region near the surface of the light-shielding film on the side opposite to the translucent substrate 1 region from the surface to a depth of about 2 nm
  • each constituent element in the region excluding the composition gradient portion of the light shielding film was Cr: 58 atomic%, O: 17 atomic%, and N: 25 atomic% on average. Furthermore, the difference in each constituent element in the thickness direction of the region excluding the composition gradient portion of the light-shielding film was 3 atomic% or less, and it was confirmed that there was substantially no composition gradient in the thickness direction.
  • the light shielding film of Comparative Example 2 also has a N2s narrow spectrum as a result of a depth direction chemical bond state analysis of the Cr2p narrow spectrum, a depth direction chemical bond state analysis of the O1s narrow spectrum.
  • the depth direction chemical bond state analysis of the C1s narrow spectrum and the depth direction chemical bond state analysis of the Si2p narrow spectrum were obtained.
  • the light-shielding film of Comparative Example 2 has a maximum peak with a binding energy larger than 574 eV in all depth regions including the outermost surface. This result means that the abundance ratio of atoms such as nitrogen and oxygen to the bonded chromium atom is considerably small even though it is a so-called chemical shift. From the results of the O1s narrow spectrum, it was found that the light-shielding film of Comparative Example 2 had a maximum peak at a binding energy of about 530 eV in all depth regions including the outermost surface. This result means that Cr—O bonds are present in a certain ratio or more.
  • the maximum peak of the light-shielding film of Comparative Example 2 is not more than the detection lower limit value except for the outermost surface.
  • the outermost surface is greatly affected by contamination of organic substances, it is difficult to refer to the measurement results regarding carbon for the outermost surface. This result means that in the light-shielding film of Comparative Example 2, the abundance ratio of atoms bonded to carbon including Cr—C bonds was not detected.
  • phase shift mask of Comparative Example 2 was produced in the same procedure as in Example 1.
  • the line-and-line pattern is formed after the hard mask pattern is formed (see FIG. 2B) and after the transfer pattern is formed (see FIG. 3F).
  • the space width was measured with a CD-SEM (CD-SEM: Critical Dimension-Scanning Electron Microscope).
  • Etching that is the amount of change between the space width of the hard mask pattern and the space width of the light-shielding pattern of the manufactured phase shift mask at a plurality of locations in the region where the same line and space pattern is formed Each bias was calculated, and an average value of the etching bias was calculated. As a result, the average value of the etching bias was 30 nm, which was a large value. This is because the mask blank of Comparative Example 2 has a fine transfer with high accuracy when the light shielding film is patterned by high bias etching using a hard mask pattern having a fine transfer pattern to be formed on the light shielding film as an etching mask. This means that it is difficult to form a pattern on the light shielding film.
  • the present invention is not limited to the configuration described in the above embodiment, and various modifications and changes can be made without departing from the configuration of the present invention.
  • the present invention is not limited to this, and may be used for manufacturing a binary mask.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thermal Sciences (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

遮光膜(3)に高精度かつ微細なパターンを形成することが可能な位相シフトマスク製造用のマスクブランク(100)を提供する。透光性基板(1)上に、クロム、酸素及び炭素を含有する材料からなる遮光膜(3)、並びにケイ素及びタンタルから選ばれる1以上の元素を含有する材料からなるハードマスク膜(4)がこの順に設けられたマスクブランク(100)であって、遮光膜(3)は、ハードマスク膜(4)側の表面及びその近傍の領域に酸素含有量が増加した組成傾斜部を有する単層膜であり、遮光膜(3)は、X線光電子分光法で分析して得られるN1sのナロースペクトルの最大ピークが検出下限値以下であり、遮光膜(3)の組成傾斜部を除いた部分は、クロム含有量が50原子%以上であり、かつX線光電子分光法で分析して得られるCr2pのナロースペクトルが574eV以下の結合エネルギーで最大ピークを有することを特徴とする。

Description

マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法
 本発明は、マスクブランク、このマスクブランクを用いる位相シフトマスクの製造方法、及び、このマスクブランクから製造された位相シフトマスクを用いる半導体デバイスの製造方法に関する。
 位相シフトマスク用のマスクブランクとして、透光性基板上にクロム系材料からなる遮光膜を有するマスクブランクが以前より知られている。このようなマスクブランクを用いて形成される位相シフトマスクにおいては、塩素系ガスと酸素ガスとの混合ガスによるドライエッチングによって遮光膜をパターニングして形成された遮光パターンを備えている。
 クロム系材料を用いたマスクブランクとしては、CrOCとCrOCNとを組み合わせた多層膜を、遮光膜及び反射防止膜として用いることが提案されている(例えば、特許文献1参照)。
 一方、塩素系ガスと酸素ガスの混合ガスを用いたドライエッチングによって遮光膜をパターニングするマスクブランクとして、クロム系材料の遮光膜上に、SiO、SiN、SiONのようなケイ素系材料のエッチングマスク膜を有する構成が提案されている(例えば、特許文献2参照)。この特許文献2では、エッチングマスク膜に好適な材料として、上記のケイ素系材料のほかに、Ta、TaN、TaON等のタンタル系材料が挙げられている。
特開2001-305713号公報 特開2014-137388号公報
 クロム系材料からなる遮光膜のドライエッチングでは、塩素系ガスと酸素ガスとの混合ガス(酸素含有塩素系ガス)がエッチングガスとして用いられる。一般に、この酸素含有塩素系ガスをエッチングガスに用いるドライエッチングは、異方性エッチングの傾向が小さく、等方性エッチングの傾向が大きい。
 一般に、ドライエッチングによって薄膜にパターンを形成する場合、薄膜の厚さ方向のエッチングのみならず、薄膜に形成されるパターンの側壁方向へのエッチング、いわゆるサイドエッチングが進む。このサイドエッチングの進行を抑制するために、ドライエッチングの際、基板の薄膜が形成されている主表面の反対側からバイアス電圧を印加し、エッチングガスが膜の厚さ方向により多く接触するように制御することがこれまでも行われている。フッ素系ガスのようにイオン性のプラズマになる傾向が大きいエッチングガスを用いるイオン主体のドライエッチングの場合には、バイアス電圧を印加することよるエッチング方向の制御性が高く、エッチングの異方性が高められるため、エッチングされる薄膜のサイドエッチング量を微小にできる。
 一方、酸素含有塩素系ガスによるドライエッチングの場合、酸素ガスはラジカル性のプラズマになる傾向が大きいため、バイアス電圧を印加することによるエッチング方向の制御の効果が小さく、エッチングの異方性を高めることが難しい。このため、酸素含有塩素系ガスを用いるドライエッチングによって、クロム系材料からなる遮光膜にパターンを形成する場合、サイドエッチング量が大きくなりやすい。
 有機系材料からなるレジストパターンをエッチングマスクとして、酸素含有塩素系ガスを用いたドライエッチングでクロム系材料の遮光膜をパターニングする場合、レジストパターンは、上方からエッチングされて減退していく。このとき、レジストパターンの側壁方向もエッチングされて減退する。このため、レジスト膜に形成するパターンの幅は、予めサイドエッチングによる減退量を見込んで設計されている。さらに、レジスト膜に形成するパターンの幅は、クロム系材料の遮光膜のサイドエッチング量も見込んで設計されている。
 近年、クロム系材料の遮光膜の上に、酸素含有塩素系ガスのドライエッチングに対し、クロム系材料との間で十分なエッチング選択性を有する材料からなる、ハードマスク膜を設けたマスクブランクが用いられ始めている。このマスクブランクでは、レジストパターンをマスクとするドライエッチングによってハードマスク膜にパターンを形成する。そして、パターンを有するハードマスク膜をマスクとし、酸素含有塩素系ガスのドライエッチングを遮光膜に対して行い、遮光膜にパターンを形成する。このハードマスク膜は、フッ素系ガスのドライエッチングでパターニング可能な材料で形成されるのが一般的である。フッ素系ガスのドライエッチングは、イオン主体のエッチングであるため、異方性エッチングの傾向が大きい。このため、転写パターンが形成されたハードマスク膜におけるパターン側壁のサイドエッチング量は小さい。また、フッ素系ガスのドライエッチングの場合、ハードマスク膜にパターンを形成するためのレジストパターンにおいても、サイドエッチング量が小さくなる傾向がある。このため、クロム系材料の遮光膜についても、酸素含有塩素系ガスのドライエッチングにおけるサイドエッチング量が小さいことに対する要求が高まってきている。
 このクロム系材料の遮光膜におけるサイドエッチングの問題を解決する手段として、酸素含有塩素系ガスのドライエッチングにおいて、酸素含有塩素系ガス中の塩素系ガスの混合比率を大幅に高めることが検討されている。塩素系ガスは、イオン性のプラズマになる傾向が大きいからである。塩素系ガスの比率を高めた酸素含有塩素系ガスを用いたドライエッチングでは、クロム系材料の遮光膜のエッチングレートが低下することは避けられない。このクロム系材料の遮光膜のエッチングレートの低下を補うために、ドライエッチング時に印加されるバイアス電圧を大幅に高くする(以下、塩素系ガスの比率を高めた酸素含有塩素系ガスを用い、かつ高いバイアス電圧を印加した状態下で行われるドライエッチングのことを、「酸素含有塩素系ガスの高バイアスエッチング」という。)ことも検討されている。
 上述の特許文献1に記載されているようなマスクブランクは、組成の異なるクロム系材料の膜が積層された構成であり、それぞれの膜の組成に依存してエッチング速度が異なり、それぞれの膜のサイドエッチング量も異なる。このマスクブランクを用いて、高バイアスエッチングによるドライエッチングで遮光膜をパターニングした場合、この遮光膜に形成されたパターン側壁の断面形状に大きな段差が生じてしまっていた。このような側壁の断面形状に段差を生じたマスクブランクを用いて位相シフトマスクを作成すると、遮光膜のパターン精度が低下してしまう。
 上述した問題の解決のため、本発明では、透光性基板上に、クロムを含有する材料で形成された遮光膜と、この遮光膜に接して形成されたハードマスク膜がこの順に積層された構造を備えるマスクブランクであって、ハードマスク膜をマスクとし、酸素含有塩素系ガスをエッチングガスに用い、かつ高バイアスエッチング条件で遮光膜をパターニングした場合においても、パターンが形成された遮光膜のパターン精度を良好に保ちつつ、サイドエッチング量が大幅に低減されたマスクブランクを提供する。また、本発明は、このマスクブランクを用いることにより、遮光膜に精度よく微細なパターンを形成することが可能な位相シフトマスクの製造方法を提供する。さらに、その位相シフトマスクを用いる半導体デバイスの製造方法を提供する。
 本発明は上記の課題を解決する手段として、以下の構成を有する。
(構成1)
 透光性基板上に、遮光膜及びハードマスク膜がこの順に積層された構造を備えるマスクブランクであって、
 前記ハードマスク膜は、ケイ素及びタンタルから選ばれる1以上の元素を含有する材料からなり、
 前記遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.0よりも大きく、
 前記遮光膜は、前記ハードマスク膜側の表面及びその近傍の領域に酸素含有量が増加した組成傾斜部を有する単層膜であり、
 前記遮光膜は、クロム、酸素及び炭素を含有する材料からなり、
 前記遮光膜の組成傾斜部を除いた部分は、クロム含有量が50原子%以上であり、
 前記遮光膜は、X線光電子分光法で分析して得られるN1sのナロースペクトルの最大ピークが検出下限値以下であり、
 前記遮光膜の組成傾斜部を除いた部分は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが574eV以下の結合エネルギーで最大ピークを有する
ことを特徴とするマスクブランク。
(構成2)
 前記遮光膜の組成傾斜部を除いた部分における炭素の含有量[原子%]をクロム、炭素及び酸素の合計含有量[原子%]で除した比率は、0.1以上であることを特徴とする構成1に記載のマスクブランク。
(構成3)
 前記遮光膜の組成傾斜部は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが576eV以上の結合エネルギーで最大ピークを有することを特徴とする構成1または2に記載のマスクブランク。
(構成4)
 前記遮光膜は、X線光電子分光法で分析して得られるSi2pのナロースペクトルの最大ピークが検出下限値以下であることを特徴とする構成1から3のいずれかに記載のマスクブランク。
(構成5)
 前記遮光膜の組成傾斜部を除いた部分は、クロム含有量が80原子%以下であることを特徴とする構成1から4のいずれかに記載のマスクブランク。
(構成6)
 前記遮光膜の組成傾斜部を除いた部分は、炭素含有量が10原子%以上20原子%以下であることを特徴とする構成1から5のいずれかに記載のマスクブランク。
(構成7)
 前記遮光膜の組成傾斜部を除いた部分は、酸素含有量が10原子%以上35原子%以下であることを特徴とする構成1から6のいずれかに記載のマスクブランク。
(構成8)
 前記遮光膜の組成傾斜部を除いた部分は、厚さ方向における各構成元素の含有量の差がいずれも10原子%未満であることを特徴とする構成1から7のいずれかに記載のマスクブランク。
(構成9)
 前記遮光膜は、厚さが80nm以下であることを特徴とする構成1から8のいずれかに記載のマスクブランク。
(構成10)
 構成1から9のいずれかに記載のマスクブランクを用いる位相シフトマスクの製造方法であって、
 前記ハードマスク膜上に形成された遮光パターンを有するレジスト膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記ハードマスク膜に遮光パターンを形成する工程と、
 前記遮光パターンが形成されたハードマスク膜をマスクとし、塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングにより、前記遮光膜に遮光パターンを形成する工程と、
 前記遮光膜上に形成された掘込パターンを有するレジスト膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記透光性基板に掘込パターンを形成する工程と
を有することを特徴とする位相シフトマスクの製造方法。
(構成11)
 構成10記載の位相シフトマスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
 以上の構成を有する本発明のマスクブランクによれば、透光性基板上に、クロムを含有する材料で形成された遮光膜、ハードマスク膜がこの順に積層された構造を備えるマスクブランクであって、酸素含有塩素系ガスをエッチングガスに用い、かつ高バイアスエッチング条件によるドライエッチングによって、この遮光膜をパターニングした場合においても、それにより形成される遮光膜のパターンのサイドエッチング量を大幅に低減することができ、遮光膜に精度よく微細なパターンを形成することができる。このため、高精度かつ微細な転写パターンを備える位相シフトマスクを得ることができる。さらに、この位相シフトマスクを用いた半導体デバイスの製造において、半導体デバイス上のレジスト膜等に精度良好にパターンを転写することが可能になる。
マスクブランクの実施形態の断面概略図である。 位相シフトマスクの製造工程を示す断面概略図である。 位相シフトマスクの製造工程を示す断面概略図である。 実施例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(Cr2pナロースペクトル)を示す図である。 実施例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(O1sナロースペクトル)を示す図である。 実施例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(N1sナロースペクトル)を示す図である。 実施例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(C1sナロースペクトル)を示す図である。 実施例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(Si2pナロースペクトル)を示す図である。 実施例2に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(Cr2pナロースペクトル)を示す図である。 実施例2に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(O1sナロースペクトル)を示す図である。 実施例2に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(N1sナロースペクトル)を示す図である。 実施例2に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(C1sナロースペクトル)を示す図である。 実施例2に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(Si2pナロースペクトル)を示す図である。 比較例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(Cr2pナロースペクトル)を示す図である。 比較例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(O1sナロースペクトル)を示す図である。 比較例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(N1sナロースペクトル)を示す図である。 比較例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(C1sナロースペクトル)を示す図である。 比較例1に係るマスクブランクの遮光膜に対し、XPS分析(深さ方向化学結合状態分析)を行った結果(Si2pナロースペクトル)を示す図である。
 以下、本発明の各実施の形態について説明するが、まず本発明に至った経緯について説明する。従来のマスクブランクを構成するクロム(Cr)系材料としては、CrON、CrOCN等の窒素(N)を含有する材料が知られている。これは、スパッタリング法によりクロム系材料を成膜するときに酸素を含有するガスに加えて窒素ガスを反応性ガスに用いることで、クロム系材料膜の欠陥品質が向上するためである。また、クロム系材料膜に窒素を含有させることで、酸素含有塩素系ガスによるドライエッチングに対するエッチングレートが速くなる。これに対し、Cr系材料の成膜の際にプレスパッタを行う成膜方法が、クロム系材料膜に対して行われるようになった。このプレスパッタを行うことによりクロム系材料膜の欠陥品質を改善することができるため、欠陥品質の向上のためのNガスを使用しない成膜が可能となる。
 上記のとおり、クロム系材料膜に対する高バイアスエッチングでのドライエッチングでは、同じエッチングガスの条件を用いて通常のバイアス電圧で行うドライエッチング(以下、「通常条件のドライエッチング」という。)に比べて膜厚方向のエッチングのエッチングレートを大幅に速くすることができる。通常、薄膜をドライエッチングする際には、化学反応によるエッチングと物理的作用によるエッチングの両方が行われる。化学反応によるエッチングは、プラズマ状態のエッチングガスが薄膜の表面に接触し、薄膜中の金属元素と結合して低沸点の化合物を生成して昇華するプロセスで行われる。化学反応によるエッチングでは、他の元素と結合状態にある金属元素に対しその結合を断ち切らせて低沸点の化合物を生成する。これに対し、物理的作用によるエッチングは、バイアス電圧によって加速されたエッチングガス中のイオン性のプラズマが薄膜の表面に衝突すること(この現象を「イオン衝撃」ともいう。)で、薄膜表面の金属元素を含む各元素を物理的にはじき飛ばし(このとき元素間の結合が断ち切られる。)、その金属元素と低沸点の化合物を生成して昇華するプロセスで行われる。
 高バイアスエッチングは、通常条件のドライエッチングに比べて物理的作用によるドライエッチングを高めたものである。物理的作用によるエッチングは、膜厚方向へのエッチングに対して大きく寄与するが、パターンの側壁方向へのエッチングにはあまり寄与しない。これに対し、化学反応によるエッチングは、膜厚方向へのエッチング及びパターンの側壁方向へのエッチングのいずれにも寄与するものである。したがって、サイドエッチング量を従来よりも小さくするには、クロム系材料の遮光膜における化学反応によるエッチングのされやすさを従来よりも低減しつつ、物理的作用によるドライエッチングのされやすさを従来と同等程度に維持することが必要となる。
 クロム系材料の遮光膜における化学反応によるエッチングに係るエッチング量を小さくする最も単純なアプローチは、遮光膜中のクロム含有量を増やすことである。しかし、遮光膜をクロム金属のみで形成すると、物理的作用によるドライエッチングに係るエッチング量が大幅に小さくなってしまう。物理的作用によるドライエッチングの場合であっても、膜中からはじき出されたクロム元素が塩素と酸素と結合して塩化クロミル(CrOCl,クロムの低沸点の化合物)とならなければ、クロム元素が遮光膜に再付着してしまい、除去されない。エッチングガスの供給量を増やすことには限界があるため、遮光膜中のクロム含有量が多すぎると、遮光膜のエッチングレートが大幅に低下してしまう。
 遮光膜のエッチングレートが大幅に低下すると、遮光膜をパターニングするときのエッチングタイムが大幅に長くなる。遮光膜をパターニングするときのエッチングタイムが長くなると、遮光膜の側壁がエッチングガスに晒される時間が長くなり、サイドエッチング量が増加することにつながる。遮光膜中のクロム含有量を増やすといった、遮光膜のエッチングレートが大きく低下するようなアプローチは、サイドエッチング量の抑制には結びつかない。
 そこで、遮光膜中のクロム以外の構成元素について鋭意検討した。サイドエッチング量を抑制するには、化学反応によるエッチングを促進する酸素ラジカルを消費する軽元素を含有させることが効果的である。遮光膜を形成する材料には、一定以上のパターニング特性、遮光性能、洗浄時における薬液耐性などが少なくとも求められるため、遮光膜を形成するクロム系材料に一定量以上含有させることができる軽元素は限られる。クロム系材料に一定量以上含有させる軽元素として代表的なものとしては、酸素、窒素、炭素が挙げられる。遮光膜を形成するクロム系材料に酸素を含有させることで、高バイアスエッチング及び通常条件のドライエッチングのいずれの場合もエッチングレートが大幅に速くなる。同時にサイドエッチングのエッチングも進行しやすくなるが、膜厚方向のエッチングタイムが大きく短縮され、遮光膜の側壁がエッチングガスに晒される時間が短くなる。これらのことを考慮すると、高バイアスエッチングの場合、遮光膜を形成するクロム系材料には酸素を含有させる必要がある。
 遮光膜を形成するクロム系材料に窒素を含有させると、酸素を含有させる場合ほど顕著ではないが、高バイアスエッチング及び通常条件のドライエッチングのいずれの場合もエッチングレートは速くなる。しかし、サイドエッチングも進行しやすくなる。遮光膜を形成するクロム系材料に窒素を含有させることによって膜厚方向のエッチングタイムが短縮される度合いに比べ、サイドエッチングの進行しやすさが大きくなることを考慮すると、高バイアスエッチングの場合、遮光膜を形成するクロム系材料には窒素を含有させない方がよいといえる。
 通常条件のドライエッチングの場合、遮光膜を形成するクロム系材料に炭素を含有させると、クロムのみからなる遮光膜の場合よりも、エッチングレートがわずかに遅くなる。しかし、遮光膜を形成するクロム系材料に炭素を含有させると、クロムのみからなる遮光膜の場合よりも物理的作用によるエッチングに対する耐性が低くなる。このため、高バイアスエッチングの場合、遮光膜を形成するクロム系材料に炭素を含有させると、クロムのみからなる遮光膜の場合よりも、エッチングレートが速くなる。また、遮光膜を形成するクロム系材料に炭素を含有させる場合、サイドエッチングを促進する酸素ラジカルを消費するため、酸素や窒素を含有させる場合に比べてサイドエッチングが進行しにくい。これらのことを考慮すると、高バイアスエッチングの場合、遮光膜を形成するクロム系材料には炭素を含有させる必要がある。
 遮光膜を形成する材料に窒素を含有させた場合と炭素を含有させた場合との間でこのような大きな相違が生じるのは、Cr-N結合とCr-C結合との間の相違に起因する。Cr-N結合は結合エネルギー(束縛エネルギー)が低く、結合の解離がしやすい傾向がある。このため、プラズマ状態の塩素と酸素が接触すると、Cr-N結合を解離して低沸点の塩化クロミルを形成しやすい。これに対して、Cr-C結合は結合エネルギーが高く、結合の解離がしにくい傾向がある。このため、プラズマ状態の塩素と酸素が接触しても、Cr-C結合を解離して低沸点の塩化クロミルを形成しにくい。
 高バイアスエッチングは、物理的作用によるドライエッチングの傾向が大きい。物理的作用によるドライエッチングでは、イオン衝撃によって薄膜中の各元素がはじき飛ばされるが、その際に各元素間の結合が断ち切られた状態になりやすい。このため、元素間の結合エネルギーの高さの相違によって生じる塩化クロミルの生成しやすさの差は、化学反応によるエッチングの場合に比べて小さい。バイアス電圧によって生じる物理的作用によるエッチングは、膜厚方向のエッチングに対して大きく寄与する反面、パターンの側壁方向へのエッチングへはあまり寄与しない。よって、遮光膜の膜厚方向への高バイアスエッチングでは、Cr-N結合とCr-C結合との間でのエッチングされやすさの差は小さい。
 これに対し、遮光膜の側壁方向に進行するサイドエッチングでは、化学反応によるエッチングの傾向が大きい。このため、遮光膜を形成する材料中におけるCr-N結合の存在比率が高いと、サイドエッチングが進行しやすい。他方、遮光膜を形成する材料中におけるCr-C結合の存在比率が高いと、サイドエッチングが進行しにくい。
 これらのことを総合的に考慮した結果、パターンが形成されたハードマスク膜をエッチングマスクとする高バイアスエッチングでドライエッチングされる遮光膜は、ハードマスク膜側の表面及びその近傍の領域に酸素含有量が増加した組成傾斜部を有する単層膜であり、その遮光膜は、クロム、酸素及び炭素を含有する材料からなり、遮光膜の組成傾斜部を除いた部分は、クロム含有量が50原子%以上であり、その遮光膜は、X線光電子分光法(XPS:X-ray Photoelectron Spectroscopy)で分析して得られるN1sのナロースペクトルの最大ピークが検出下限値以下であり、遮光膜の組成傾斜部を除いた部分は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが574eV以下の結合エネルギーで最大ピークを有するものであるとよいという結論に至った。
 以下、図面に基づいて、上述した本発明の詳細な構成を説明する。なお、各図において同様の構成要素には同一の符号を付して説明を行う。
〈マスクブランク〉
 図1に、マスクブランクの実施形態の概略構成を示す。図1に示すマスクブランク100は、透光性基板1における一方の主表面上に、遮光膜3、及び、ハードマスク膜4がこの順に積層された構成である。また、マスクブランク100は、ハードマスク膜4上に、必要に応じてレジスト膜を積層させた構成であってもよい。以下、マスクブランク100の主要構成部の詳細を説明する。
[透光性基板]
 透光性基板1は、露光工程で用いられる露光光に対して透過性が良好な材料からなる。このような材料としては、合成石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO-TiOガラス等)、その他各種のガラス基板を用いることができる。特に、合成石英ガラスを用いた基板は、ArFエキシマレーザー光(波長:約193nm)に対する透過性が高いので、マスクブランク100の透光性基板1として好適に用いることができる。
 なお、ここでいう露光工程とは、このマスクブランク100を用いて作製された転写用マスク(位相シフトマスク)を露光装置のマスクステージにセットし、露光光を照射して転写対象物に対して転写パターン(位相シフトパターン)の露光転写を行う工程のことである。また、露光光とはこの露光工程で用いられる露光光のことをいう。この露光光としては、ArFエキシマレーザー光(波長:193nm)、KrFエキシマレーザー光(波長:248nm)、i線光(波長:365nm)のいずれも適用可能であるが、露光工程における転写パターンの微細化の観点からは、ArFエキシマレーザー光を露光光に適用することが望ましい。このため、以下においてはArFエキシマレーザー光を露光光に適用した場合についての実施形態を説明する。
[遮光膜]
 遮光膜3は、このマスクブランク100から転写用マスクを作製する際に遮光パターンが形成される膜であり、露光光に対して遮光性を有する膜である。遮光膜3は、例えば波長193nmのArFエキシマレーザー光に対する光学濃度(OD)が2.0より大きいことが求められ、2.8以上であることが好ましく、3.0以上であることがより好ましい。また、露光工程において、露光光の反射による露光転写の不具合を防止するため、遮光膜3は、表側(透光性基板1から最も遠い側の表面)および裏側(透光性基板1側の表面)の各表面での露光光に対する表面反射率が低く抑えられている。特に、露光装置の縮小光学系からの露光光の反射光が当たる、遮光膜3における表側の表面の反射率は、例えば40%以下(好ましくは、30%以下)であることが望まれる。これは、遮光膜3の表側の表面と縮小光学系のレンズの間での多重反射で生じる迷光を抑制するためである。
 また、遮光膜3は、透光性基板1に掘込パターンを形成するためのフッ素系ガスによるドライエッチングのときにエッチングマスクとして機能する必要がある。このため、遮光膜3は、フッ素系ガスによるドライエッチングにおいて、透光性基板1に対して十分なエッチング選択性を有する材料を適用する必要がある。遮光膜3には、微細な遮光パターンを精度よく形成できることが求められる。遮光膜3の膜厚は80nm以下であることが好ましく、75nm以下であるとより好ましい。遮光膜3の膜厚が厚すぎると、形成すべき微細パターンを高精度に形成することができない。他方、遮光膜3は、上記のとおり要求される光学濃度を満たすことが求められる。このため、遮光膜3の膜厚は30nmより大きいことが求められ、35nm以上であることが好ましく、40nm以上であるとより好ましい。
 遮光膜3は、クロム(Cr)、酸素(O)及び炭素(C)を含有する材料からなる。また、遮光膜3は、ハードマスク膜4側の表面及びその近傍の領域に酸素含有量が増加する組成傾斜部を有する単層膜からなる。これは、製造工程中において、形成された遮光膜3の表面が酸素を含む雰囲気中に暴露されるため、遮光膜3の表面においてのみ酸素含有量が他の部分よりも増加する領域が形成される。この酸素含有量は、酸素を含む雰囲気中に暴露される表面が最も高く、表面から離れるほど酸素の含有量が緩やかに低下する。そして、表面からある程度離れた位置からは、遮光膜3の組成がほぼ一定となる。このような遮光膜3の表面から酸素含有量が変化(緩やかに低下)する領域を組成傾斜部とする。また、組成傾斜部以外の領域における遮光膜3は、構成する各元素の含有量の膜厚方向での差が、いずれも10原子%未満であることが好ましく、8原子%以下であるとより好ましく、5原子%以下であるとさらに好ましい。なお、遮光膜3の組成傾斜部は、その表面から5nm未満の深さまでの領域であると好ましく、4nm以下の深さまでの領域であるとより好ましく、3nm以下の深さまでの領域であるとさらに好ましい。
 遮光膜3の組成傾斜部を除いた部分は、クロム含有量が50原子%以上である。遮光膜3を高バイアスエッチングでパターニングするときに生じるサイドエッチングを抑制するためである。一方、遮光膜3の組成傾斜部を除いた部分は、クロム含有量が80原子%以下であることが好ましい。遮光膜3を高バイアスエッチングでパターニングするときに十分なエッチングレートを確保するためである。
 遮光膜3は、X線光電子分光法で分析して得られるN1sのナロースペクトルの最大ピークが検出下限値以下である。N1sのナロースペクトルのピークが存在すると、遮光膜3を形成する材料中にCr-N結合が所定比率以上存在することになる。遮光膜3を形成する材料中にCr-N結合が所定比率以上存在すると、遮光膜3を高バイアスエッチングでパターニングするときにサイドエッチングの進行を抑制することが困難になる。遮光膜3における窒素(N)の含有量は、X線光電子分光法による組成分析で検出限界値以下であることが好ましい。
 遮光膜3の組成傾斜部を除いた部分は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが574eV以下の結合エネルギーで最大ピークを有する。Crを含有する材料において、Cr2pのナロースペクトルが574eVよりも高い結合エネルギーで最大ピークを有している状態、すなわちケミカルシフトしている状態である場合、他の原子(特に窒素)と結合しているクロム原子の存在比率が高い状態であることを示している。このようなクロム系材料は、化学反応が主体のエッチングに対する耐性が低い傾向があり、サイドエッチングを抑制することが難しい。Cr2pのナロースペクトルが574eV以下の結合エネルギーで最大ピークを有するクロム系材料で遮光膜3の組成傾斜部を除いた部分を形成することにより、高バイアスエッチングでパターニングしたときのサイドエッチングの進行を抑制することができる。なお、遮光膜3の組成傾斜部を除いた部分におけるCr2pのナロースペクトルは、570eV以下の結合エネルギーで最大ピークを有することが好ましい。
 遮光膜3の組成傾斜部を除いた部分における炭素の含有量[原子%]をクロム、炭素及び酸素の合計含有量[原子%]で除した比率は、0.1以上であることが好ましく、0.14以上であるとより好ましい。上記のとおり、遮光膜3は、クロム、酸素及び炭素で大半を占める。遮光膜3中のクロムは、Cr-O結合の形態、Cr-C結合の形態、酸素及び炭素と結合していない形態のいずれかの形態で存在するものが大勢となっている。炭素の含有量[原子%]をクロム、炭素及び酸素の合計含有量[原子%]で除した比率が高いCr系材料は、材料中のCr-C結合の存在比率が高く、このようなCr系材料を遮光膜3に適用することで、高バイアスエッチングでパターニングしたときのサイドエッチングの進行を抑制することができる。なお、遮光膜3の組成傾斜部を除いた部分における炭素の含有量[原子%]をクロム及び炭素の合計含有量[原子%]で除した比率は、0.14以上であることが好ましく、0.16以上であるとより好ましい。
 また、遮光膜3は、クロム、酸素及び炭素の合計含有量が95原子%以上であることが好ましく、98原子%以上であることがより好ましい。遮光膜3は、混入することが不可避な不純物を除き、クロム、酸素及び炭素で構成されていると特に好ましい。なお、ここでの混入することが不可避な不純物とは、アルゴン(Ar)、ヘリウム(He)、ネオン(Ne)、クリプトン(Kr)、キセノン(Xe)、水素(H)等の遮光膜3をスパッタリング法で成膜するときに混入することが避け難い元素のことをいう。遮光膜3の組成傾斜部を除いた部分は、酸素の含有量が10原子%以上35原子%以下であることが好ましい。また、遮光膜3の組成傾斜部を除いた部分は、炭素の含有量が10原子%以上20原子%以下であることが好ましい。
 遮光膜3の組成傾斜部は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが576eV以上の結合エネルギーで最大ピークを有することが好ましい。なお、遮光膜3の組成傾斜部のCr2pのナロースペクトルは、580eV以下の結合エネルギーで最大ピークを有することが好ましい。また、遮光膜3は、X線光電子分光法で分析して得られるSi2pのナロースペクトルの最大ピークが検出下限値以下であることが好ましい。Si2pのナロースペクトルのピークが存在すると、遮光膜3を形成する材料中に未結合のケイ素や、他の原子と結合したケイ素が所定比率以上存在することになる。このような材料は、酸素含有塩素系ガスによるドライエッチングに対するエッチングレートが低下する傾向があるため、好ましくない。遮光膜3は、ケイ素の含有量が1原子%以下であることが好ましく、X線光電子分光法による組成分析で検出限界値以下であることが好ましい。
 遮光膜3に対してX線光電子分光分析を行ってCr2pナロースペクトル、O1sナロースペクトル、C1sナロースペクトル、N1sナロースペクトル、およびSi2pナロースペクトルを取得する方法は、一般的には以下の手順で行われる。すなわち、最初に、幅広い結合エネルギーのバンド幅で光電子強度(X線を照射した測定対象物からの単位時間当たりの光電子の放出数)を取得するワイドスキャンを行ってワイドスペクトルを取得し、その遮光膜3の構成元素に由来する全てのピークを特定する。その後、ワイドスキャンよりも高分解能であるが取得できる結合エネルギーのバンド幅が狭いナロースキャンを注目するピーク(Cr2p、O1s、C1s、N1s、Si2p等)の周囲のバンド幅で行うことで各ナロースペクトルを取得する。一方、遮光膜3の構成元素があらかじめ分かっている場合、ワイドスペクトルの取得の工程を省略して、Cr2pナロースペクトル、O1sナロースペクトル、C1sナロースペクトル、N1sナロースペクトル、およびSi2pナロースペクトルを取得してもよい。
 遮光膜3におけるCr2pナロースペクトルは、例えば、566eV~600eVの結合エネルギーの範囲で取得する。遮光膜3におけるCr2pナロースペクトルは、570eV~580eVの結合エネルギーの範囲が含まれているとより好ましい。遮光膜3におけるO1sナロースペクトルは、例えば524eV~540eVの結合エネルギーの範囲で取得する。遮光膜3におけるO1sナロースペクトルは、528eV~534eVの結合エネルギーの範囲が含まれているとより好ましい。遮光膜3におけるN1sナロースペクトルは、例えば390eV~404eVの結合エネルギーの範囲で取得する。遮光膜3におけるN1sナロースペクトルは、395eV~400eVの結合エネルギーの範囲が含まれているとより好ましい。遮光膜3におけるC1sナロースペクトルは、例えば278eV~296eVの結合エネルギーの範囲で取得する。遮光膜3におけるC1sナロースペクトルは、280eV~285eVの結合エネルギーの範囲が含まれているとより好ましい。遮光膜3におけるSi2pナロースペクトルは、例えば95eV~110eVの結合エネルギーの範囲で取得する。
 遮光膜3は、クロムを含有するターゲットを用いた反応性スパッタリング法により、透光性基板1上に成膜することにより形成することができる。スパッタリング法としては、直流(DC)電源を用いたもの(DCスパッタリング)でも、高周波(RF)電源を用いたもの(RFスパッタリング)でもよい。またマグネトロンスパッタリング方式であっても、コンベンショナル方式であってもよい。DCスパッタリングの方が、機構が単純である点で好ましい。また、マグネトロンスパッタリング方式を用いた方が、成膜レートが速くなり、生産性が向上する点から好ましい。なお、成膜装置はインライン型でも枚葉型でも構わない。
 遮光膜3を成膜するときに使用するスパッタリングガスとしては、酸素を含まず炭素を含むガス(CH、C、C等)と炭素を含まず酸素を含むガス(O、O等)と希ガス(Ar、Kr、Xe、He、Ne等)とを含む混合ガス、炭素及び酸素を含むガス(CO、CO等)と希ガスとを含む混合ガス、あるいは希ガスと炭素及び酸素を含むガスに、酸素を含まず炭素を含むガス(CH、C、C等)及び炭素を含まず酸素を含むガスの少なくとも一方を含む混合ガスのうちのいずれかが好ましい。特に、スパッタリングガスとしてCOと希ガスとの混合ガスを用いると安全であり、COガスは酸素ガスよりも反応性が低いが故に、チャンバー内の広範囲に均一にガスが回り込むことができ、成膜される遮光膜3の膜質が均一になる点から好ましい。導入方法としては別々にチャンバー内に導入してもよいし、いくつかのガスをまとめて又は全てのガスを混合して導入してもよい。
 ターゲットの材料は、クロム単体だけでなくクロムが主成分であればよく、酸素、炭素のいずれかを含むクロム、又は酸素、炭素を組み合わせたものをクロムに添加したターゲットを用いてよい。
[ハードマスク膜]
 ハードマスク膜4は、遮光膜3の表面に接して設けられている。ハードマスク膜4は、遮光膜3をエッチングする際に用いられるエッチングガスに対してエッチング耐性を有する材料で形成された膜である。このハードマスク膜4は、遮光膜3にパターンを形成するためのドライエッチングが終わるまでの間、エッチングマスクとして機能することができるだけの膜の厚さがあれば十分であり、基本的に光学特性の制限を受けない。このため、ハードマスク膜4の厚さは遮光膜3の厚さに比べて大幅に薄くすることができる。
 ハードマスク膜4の厚さは、20nm以下であることが求められ、15nm以下であると好ましく、10nm以下であるとより好ましい。ハードマスク膜4の厚さが厚すぎると、ハードマスク膜4に遮光パターンを形成するドライエッチングにおいてエッチングマスクとなるレジスト膜の厚さが必要になってしまうためである。ハードマスク膜4の厚さは、3nm以上であることが求められ、5nm以上であると好ましい。ハードマスク膜4の厚さが薄すぎると、酸素含有塩素系ガスによる高バイアスエッチングの条件によっては、遮光膜3に遮光パターンを形成するドライエッチングが終わる前に、ハードマスク膜4のパターンが消失する恐れがあるためである。
 そして、このハードマスク膜4にパターンを形成するフッ素系ガスによるドライエッチングにおいてエッチングマスクとして用いる有機系材料のレジスト膜は、ハードマスク膜4のドライエッチングが終わるまでの間、エッチングマスクとして機能するだけの膜の厚さがあれば十分である。このため、ハードマスク膜4を設けていない従来の構成よりも、ハードマスク膜4を設けたことによって大幅にレジスト膜の厚さを薄くすることができる。
 ハードマスク膜4は、ケイ素及びタンタルから選ばれる1以上の元素を含有する材料で形成されることが好ましい。ケイ素を含有する材料でハードマスク膜4を形成する場合は、SiO、SiN、SiONなどを適用することが好ましい。また、この場合のハードマスク膜4は、有機系材料のレジスト膜との密着性が低い傾向があるため、ハードマスク膜4の表面をHMDS(Hexamethyldisilazane)処理を施し、表面の密着性を向上させることが好ましい。
 また、タンタルを含有する材料でハードマスク膜4を形成する場合、タンタル金属のほか、タンタルに窒素、酸素、ホウ素及び炭素から選ばれる一以上の元素を含有させた材料などを適用することが好ましく、たとえば、Ta、TaN、TaO、TaON、TaBN、TaBO、TaBON、TaCN、TaCO、TaCON、TaBCN、TaBOCNなどが挙げられる。ハードマスク膜4は、タンタル(Ta)と酸素(O)を含み、Oの含有量が50原子%以上である材料(以下、TaO系材料という。)で形成すると好ましい。
 ハードマスク膜4には、遮光膜3をパターニングするときの高バイアスエッチングに対するエッチング耐性が十分に高いことが求められる。エッチング耐性が十分でないと、ハードマスク膜4のパターンのエッジ部分がエッチングされ、マスクパターンが縮小するため、遮光パターンの精度が悪化する。Taを含有する材料は、材料中の酸素含有量が少なくとも50原子%以上とすることにより、酸素含有塩素系ガスによるドライエッチングに対する耐性を大幅に高めることができる。
 TaO系材料のハードマスク膜4は、結晶構造が微結晶、好ましくは非晶質であることが望まれる。TaO系材料のハードマスク膜4内の結晶構造が微結晶や非晶質であると、単一構造にはなりにくく、複数の結晶構造が混在した状態になりやすい。このため、ハードマスク膜4におけるTaO系材料は、TaO結合、Ta結合、TaO結合、及び、Ta結合が混在する状態(混晶状態)になりやすい。ハードマスク膜4におけるTaO系材料は、Ta結合の存在比率が高くなるにつれて、酸素含有塩素系ガスによるドライエッチングに対する耐性が向上する傾向がある。また、ハードマスク膜4におけるTaO系材料は、Ta結合の存在比率が高くなるにつれて、水素侵入を阻止する特性、耐薬性、耐温水性及びArF耐光性もともに高くなる傾向がある。
 TaO系材料のハードマスク膜4は、酸素含有量が50原子%以上66.7原子%未満であると、膜中のタンタルと酸素の結合状態はTa結合が主体になる傾向が大きくなると考えられ、一番不安定な結合のTaO結合は、膜中の酸素含有量が50原子%未満の場合に比べて非常に少なくなると考えられる。TaO系材料のハードマスク膜4は、膜中の酸素含有量が66.7原子%以上であると、タンタルと酸素の結合状態はTaO結合が主体になる傾向が大きくなると考えられ、一番不安定な結合のTaO結合及びその次に不安定な結合のTaの結合はともに非常に少なくなると考えられる。
 また、TaO系材料のハードマスク膜4は、膜中の酸素含有量が67原子%以上であると、TaO結合が主体になるだけでなく、Taの結合状態の比率も高くなると考えられる。このような酸素含有量になると、Ta、及び、TaOの結合状態は稀に存在する程度となり、TaOの結合状態は存在し得なくなってくる。TaO系材料のハードマスク膜4は、膜中の酸素含有量が71.4原子%程度であると、実質的にTaの結合状態だけで形成されていると考えられる(最も酸化した結合状態であるTaの酸素含有量が71.4原子%であるため)。
 TaO系材料のハードマスク膜4は、酸素含有量が50原子%以上であると、最も安定した結合状態のTaだけでなく、Ta、及び、TaOの結合状態も含まれることになる。一方、TaO系材料のハードマスク膜4において、ドライエッチング耐性に影響を与えない程度で、一番不安定な結合のTaO結合が少ない量となる酸素含有量の下限値は、少なくとも50原子%であると考えられる。
 Ta結合は、非常に高い安定性を有する結合状態であり、Ta結合の存在比率を多くすることで、高バイアスエッチングに対する耐性が大幅に高まる。また、水素侵入を阻止する特性、耐薬性、耐温水性などのマスク洗浄耐性及びArF耐光性も大幅に高まる。特に、ハードマスク膜4を構成するTaOは、Taの結合状態だけで形成されていることが最も好ましい。なお、TaO系材料のハードマスク膜4は、窒素、その他の元素は、これらの作用効果に影響のない範囲であることが好ましく、実質的に含まれないことが好ましい。
 また、TaO系材料のハードマスク膜4は、X線光電子分光法で分析して得られるTa4fのナロースペクトルの最大ピークが23eVよりも大きい材料とすることにより、高バイアスエッチングに対する耐性を大幅に高めることができる。高い結合エネルギーを有する材料は、酸素含有塩素系ガスによるドライエッチングに対する耐性が向上する傾向がある。また、水素侵入を阻止する特性、耐薬性、耐温水性、及び、ArF耐光性も高くなる傾向がある。タンタル化合物で最も高い結合エネルギーを有する結合状態は、Ta結合である。
 Ta4fのナロースペクトルの最大ピークが23eV以下であるタンタルを含有する材料は、Ta結合が存在しにくくなる。そのため、TaO系材料のハードマスク膜4は、X線光電子分光法で分析して得られるTa4fのナロースペクトルの最大ピークが24eV以上であると好ましく、25eV以上であるとより好ましく、25.4eV以上であると特に好ましい。X線光電子分光法で分析して得られるTa4fのナロースペクトルの最大ピークが25eV以上であると、ハードマスク膜4中におけるタンタルと酸素との結合状態はTa結合が主体となり、高バイアスエッチングに対する耐性が大幅に高まる。
 ハードマスク膜4を構成する酸素含有量が50原子%であるTaO系材料は、引張応力の傾向を有する。これに対し、遮光膜3を構成するクロム、酸素及び炭素を主成分とする材料(CrOC系材料)は、圧縮応力の傾向を有する。一般に、薄膜の応力を低減する処理としてアニール処理がある。しかし、クロム系材料の薄膜は、300度以上の高温で加熱することが困難であり、CrOC系材料の圧縮応力をゼロにすることは難しい。本実施形態のマスクブランク100のように、CrOC系材料の遮光膜3の上にTaO系材料のハードマスク膜4を積層した構造とすることにより、遮光膜3の圧縮応力とハードマスク膜4の引張応力との間で相殺が起こり、積層構造の全体での応力を小さくすることができる。
[レジスト膜]
 マスクブランク100において、ハードマスク膜4の表面に接して、有機系材料のレジスト膜が100nm以下の膜厚で形成されていることが好ましい。DRAM hp32nm世代に対応する微細パターンの場合、遮光膜3に形成すべき遮光パターンに、線幅が40nmのSRAF(Sub-Resolution Assist Feature)が設けられることがある。しかし、この場合でも上述のようにハードマスク膜4を設けたことによってレジスト膜の膜厚を抑えることができ、これによってこのレジスト膜で構成されたレジストパターンの断面アスペクト比を1:2.5と低くすることができる。したがって、レジスト膜の現像時、リンス時等にレジストパターンが倒壊や脱離することを抑制することができる。なお、レジスト膜は、膜厚が80nm以下であることがより好ましい。レジスト膜は、電子線描画露光用のレジストであると好ましく、さらにそのレジストが化学増幅型であるとより好ましい。
[マスクブランクの製造手順]
 以上の構成のマスクブランク100は、次のような手順で製造する。先ず、透光性基板1を用意する。この透光性基板1は、端面及び主表面が所定の表面粗さ(例えば、一辺が1μmの四角形の内側領域内において自乗平均平方根粗さRqが0.2nm以下)に研磨され、その後、所定の洗浄処理及び乾燥処理を施されたものである。
 次に、この透光性基板1上に、スパッタリング法によって上記の遮光膜3を成膜する。そして、遮光膜3上にスパッタリング法によって、上記のハードマスク膜4を成膜する。スパッタリング法による各層の成膜においては、各層を構成する材料を所定の組成比で含有するスパッタリングターゲット及びスパッタリングガスを用い、さらに必要に応じて上述の希ガスと反応性ガスとの混合ガスをスパッタリングガスとして用いた成膜を行う。この後、このマスクブランク100がレジスト膜を有するものである場合には、必要に応じてハードマスク膜4の表面に対してHMDS(Hexamethyldisilazane)処理を施す。そして、HMDS処理がされたハードマスク膜4の表面上に、スピンコート法等の塗布法によってレジスト膜を形成し、マスクブランク100を完成させる。
〈位相シフトマスクの製造方法〉
 次に、本実施の形態における位相シフトマスクの製造方法を、図1に示す構成のマスクブランク100を用いた、掘込レベンソン型位相シフトマスクの製造方法を例に説明する。
 先ず、マスクブランク100のハードマスク膜4上にレジスト膜をスピン塗布法によって形成する。次に、そのレジスト膜に対して、遮光膜3に形成すべき遮光パターンとなる第1のパターンを電子線で露光描画する。この際、透光性基板1の中央部分を、転写パターン形成領域11Aとし、ここに転写パターンを構成する1つである遮光パターンを露光描画する。また、転写パターン形成領域11Aの外周領域11Bには、例えばアライメントパターンやバーコードパターンを露光描画する。その後、レジスト膜に対してPEB処理、現像処理、ポストベーク処理等の所定の処理を行い、レジスト膜に遮光パターンとなる第1のパターン(レジストパターン5a)を形成する(図2(a)参照)。
 なお、ここで説明する掘込レベンソン型の位相シフトマスクでは、転写パターンは遮光パターンと掘込パターン(位相シフトパターン)とから構成される。また、レジスト膜の露光描画には、電子線が用いられる場合が多い。
 次に、レジストパターン5aをマスクとして、フッ素系ガスを用いてハードマスク膜4のドライエッチングを行い、ハードマスク膜4に第1のパターン(ハードマスクパターン4a)を形成する(図2(b)参照)。この後、レジストパターン5aを除去する。なお、ここで、レジストパターン5aを除去せず残存させたまま、遮光膜3のドライエッチングを行ってもよい。この場合では、遮光膜3のドライエッチングの際にレジストパターン5aが消失する。
 次に、ハードマスクパターン4aをマスクとして、酸素含有塩素系ガスを用いた高バイアスエッチングを行い、遮光膜3に第1のパターン(遮光パターン3a)を形成する(図2(c)参照)。遮光膜3に対する酸素含有塩素系ガスによるドライエッチングは、従来よりも塩素系ガスの混合比率の高いエッチングガスを用いる。遮光膜3のドライエッチングにおける塩素系ガスと酸素ガスとの混合ガスの混合比率は、エッチング装置内でのガス流量比で、塩素系ガス:酸素ガス=10以上:1であることが好ましく、15以上:1であるとより好ましく、20以上:1であるとより好ましい。塩素系ガスの混合比率の高いエッチングガスを用いることにより、ドライエッチングの異方性を高めることができる。また、遮光膜3のドライエッチングにおいて、塩素系ガスと酸素ガスとの混合ガスの混合比率は、エッチングチャンバー内でのガス流量比で、塩素系ガス:酸素ガス=40以下:1であることが好ましい。
 また、この遮光膜3に対する酸素含有塩素系ガスのドライエッチングでは、透光性基板1の裏面側から印加するバイアス電圧も従来よりも高くする。エッチング装置によって、バイアス電圧を高める効果に差はあるが、例えば、このバイアス電圧を印加したときの電力は、15[W]以上であると好ましく、20[W]以上であるとより好ましく、30[W]以上であるとより好ましい。バイアス電圧を高めることにより、酸素含有塩素系ガスのドライエッチングの異方性を高めることができる。
 次に、図3(d)に示すように、遮光パターンを形成したハードマスク膜4(ハードマスクパターン4a)上に、掘込パターンを有するレジスト膜(第2レジスト膜)6を形成する。この際、まず透光性基板1上にレジスト膜6をスピン塗布法によって形成する。次に、塗布したレジスト膜6に対して露光描画を行った後、現像処理等の所定の処理を行う。これにより、転写パターン形成領域11Aのレジスト膜6に、透光性基板1が露出する掘込パターンを形成する。なお、ここでは、露光工程において生じる合わせズレのマージンを取った開口幅でレジスト膜6に掘込パターンを形成し、レジスト膜6に形成する掘込パターンの開口が、遮光パターンの開口を完全に露出するように掘込パターンを形成する。
 次に、図3(e)に示すように、掘込パターンを有するレジスト膜6と、遮光パターン3aを形成した遮光膜3とをマスクとして、フッ素系ガスを用いて透光性基板1のドライエッチングを行う。これにより、透光性基板1の転写パターン形成領域11Aにおいて、主表面11Sに掘込パターン2を形成する。この掘込パターン2は、その掘込パターン2を透過する露光光が、表面が掘り込まれていない透光性基板1を透過する露光光に対し、所定の位相差(例えば、150度~190度。)が生じるような深さに形成する。例えば、ArFエキシマレーザー光を露光光に適用した場合であれば、掘込パターンは、173nm程度(位相差が180度の場合)の深さで形成する。
 また、このフッ素系ガスによるドライエッチングの途上で、レジスト膜6は減膜し、ハードマスク膜4上のレジスト膜6が全て消失する。さらに、ハードマスク膜4もフッ素系ガスによるドライエッチングで消失する。これにより、転写パターン形成領域11Aに、遮光パターン3aと、透光性基板1に形成した掘込パターン2とからなる転写パターン16を形成する。その後、残存するレジスト膜6を除去する。
 以上の工程により、図3(f)に示すような位相シフトマスク200を得る。以上の工程により作成された位相シフトマスク200は、透光性基板1における一方の主表面11S側に掘込パターン2を備え、この透光性基板1における主表面11S上に、遮光パターン3aが形成された遮光膜3を備えた構造を有する。掘込パターン2は、透光性基板1における転写パターン形成領域11Aにおいて、掘込パターン2の開口底部から連続する状態で、透光性基板1の主表面11S側に形成されている。転写パターン形成領域11Aには、この掘込パターン2と遮光パターン3aとからなる転写パターン16が配置された状態となる。また、外周領域11Bには、遮光膜3を貫通する孔形状のアライメントパターン15が設けられた状態となる。
 なお、上記の製造工程中のドライエッチングで使用される塩素系ガスとしては、Clが含まれていれば特に制限はない。たとえば、塩素系ガスとして、Cl、SiCl、CHCl、CHCl、CCl、BCl等があげられる。また、上記の製造工程中のドライエッチングで使用されるフッ素系ガスとしては、Fが含まれていれば特に制限はない。たとえば、フッ素系ガスとして、CHF、CF、C、C、SF等があげられる。特に、Cを含まないフッ素系ガスは、ガラス基板に対するエッチングレートが比較的低いため、ガラス基板へのダメージをより小さくすることができる。
 以上、説明した位相シフトマスクの製造方法では、図1を用いて説明したマスクブランク100を用いて位相シフトマスク200を製造している。このような位相シフトマスクの製造では、遮光膜3に遮光パターン3a(微細パターン)を形成するドライエッチングの工程である図2(c)の工程において、等方性エッチングの傾向を有する酸素含有塩素系ガスによるドライエッチングを適用している。さらに、この図2(c)の工程における酸素含有塩素系ガスによるドライエッチングは、酸素含有塩素系ガスの塩素系ガスの比率が高く、かつ高いバイアス電圧を印加するエッチング条件で行う。これにより、遮光膜3のドライエッチング工程において、エッチングレートの低下を抑制しつつ、エッチングの異方性の傾向を高めることが可能となる。これにより、遮光膜3に遮光パターン3aを形成するときのサイドエッチングが低減される。
 そして、サイドエッチングが低減され、高精度に形成された遮光パターン3aおよび掘込パターンを有するレジスト膜6をエッチングマスクとし、透光性基板1をフッ素系ガスでドライエッチングすることにより、掘込パターン2と遮光パターン3aとからなる転写パターン16を高精度に形成することができる。以上の作用により、パターン精度が良好な位相シフトマスク200を作製することができる。
〈半導体デバイスの製造方法〉
 次に、上述の製造方法により作製された位相シフトマスク200を用いる半導体デバイスの製造方法について説明する。半導体デバイスの製造方法は、上述の製造方法によって製造された掘込レベンソン型の位相シフトマスク200を用いて、基板上のレジスト膜に対して位相シフトマスク200の転写パターンを露光転写することを特徴としている。このような半導体デバイスの製造方法は、次のように行う。
 先ず、半導体デバイスを形成する基板を用意する。この基板は、例えば半導体基板であってもよいし、半導体薄膜を有する基板であってもよいし、さらにこれらの上部に微細加工膜が成膜されていてもよい。そして、用意した基板上にレジスト膜を成膜し、このレジスト膜に対して、上述の製造方法によって製造された掘込レベンソン型の位相シフトマスク200を用いてパターン露光を行う。これにより、位相シフトマスク200に形成された転写パターンをレジスト膜に露光転写する。この際、露光光としては、例えばここではArFエキシマレーザー光を用いる。
 さらに、転写パターンが露光転写されたレジスト膜を現像処理してレジストパターンを形成したり、このレジストパターンをマスクにして基板の表層に対してエッチング加工を施したり、不純物を導入する処理等を行う。処理が終了した後には、レジストパターンを除去する。以上のような処理を、転写用マスクを交換しつつ基板上において繰り返し行い、さらに必要な加工処理を行うことにより、半導体デバイスを完成させる。
 以上のような半導体デバイスの製造においては、上述の製造方法によって製造された掘込レベンソン型の位相シフトマスクを用いることにより、基板上に初期の設計仕様を十分に満たす精度のレジストパターンを形成することができる。このため、このレジスト膜のパターンをマスクとして、レジスト膜下の下層膜をドライエッチングして回路パターンを形成した場合、精度不足に起因する配線短絡や断線のない高精度の回路パターンを形成することができる。
 以下、実施例により、本発明の実施の形態をさらに具体的に説明する。
〈実施例1〉
[マスクブランクの製造]
 図1を参照し、主表面の寸法が約152mm×約152mmで、厚さが約6.35mmの合成石英ガラスからなる透光性基板1を準備した。この透光性基板1は、端面及び主表面が所定の表面粗さ(自乗平均平方根粗さRqが0.2nm以下)に研磨され、その後、所定の洗浄処理及び乾燥処理が施されている。
 次に、枚葉式DCスパッタリング装置内に透光性基板1を設置し、クロム(Cr)ターゲットを用いて、アルゴン(Ar)、二酸化炭素(CO)及びヘリウム(He)の混合ガス雰囲気での反応性スパッタリング(DCスパッタリング)を行った。これにより、透光性基板1に接して、クロム、酸素及び炭素からなる遮光膜(CrOC膜)3を59nmの膜厚で形成した。
 次に、上記遮光膜(CrOC膜)3が形成された透光性基板1に対して、加熱処理を施した。具体的には、ホットプレートを用いて、大気中で加熱温度を280℃、加熱時間を5分として、加熱処理を行った。加熱処理後、遮光膜3が形成された透光性基板1に対し、分光光度計(アジレントテクノロジー社製 Cary4000)を用い、ArFエキシマレーザーの光の波長(約193nm)における遮光膜3の光学濃度を測定したところ、3.0以上であることが確認できた。
 次に、枚葉式RFスパッタリング装置内に、遮光膜3が形成された透光性基板1を設置し、二酸化ケイ素(SiO)ターゲットを用い、アルゴン(Ar)ガスをスパッタリングガスとし、RFスパッタリングにより遮光膜3の上に、ケイ素及び酸素からなるハードマスク膜4を12nmの厚さで形成した。さらに所定の洗浄処理を施し、実施例1のマスクブランク100を製造した。
 別の透光性基板1の主表面上に同条件で遮光膜3のみを形成し、加熱処理を行ったものを準備した。その遮光膜3に対し、X線光電子分光法(XPS,RBS補正有り)で分析を行った。この結果、遮光膜3の透光性基板1側とは反対側の表面近傍の領域(表面から2nm程度の深さまでの領域)は、それ以外の領域よりも酸素含有量が多い組成傾斜部(酸素含有量が40原子%以上)を有することが確認できた。また、遮光膜3の組成傾斜部を除く領域における各構成元素の含有量は、平均値でCr:71原子%、O:15原子%、C:14原子%であることがわかった。さらに、遮光膜3の組成傾斜部を除く領域の厚さ方向における各構成元素の差は、いずれも3原子%以下であり、厚さ方向の組成傾斜は実質的にないことが確認できた。
 また、この実施例1の遮光膜3に対するX線光電子分光法での分析結果として得られた、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果を図4に、O1sナロースペクトルの深さ方向化学結合状態分析の結果を図5に、N1sナロースペクトルの深さ方向化学結合状態分析の結果を図6に、C1sナロースペクトルの深さ方向化学結合状態分析の結果を図7に、Si2pナロースペクトルの深さ方向化学結合状態分析の結果を図8に、それぞれ示す。
 遮光膜3に対するX線光電子分光法での分析では、遮光膜3の表面に向かってX線を照射して遮光膜3から放出される光電子のエネルギー分布を測定し、Arガススパッタリングで遮光膜3を所定時間だけ掘り込み、掘り込んだ領域の遮光膜3の表面に対してX線を照射して遮光膜3から放出される光電子のエネルギー分布を測定するというステップを繰り返すことで、遮光膜3の膜厚方向の分析を行う。なお、このX線光電子分光法での分析では、X線源に単色化Al(1486.6eV)を用い、光電子の検出領域は100μmφ、検出深さが約4~5nm(取り出し角45deg)の条件で行った(以降の他の実施例及び比較例とも同様。)。
 図4~図8における各深さ方向化学結合状態分析では、Arガススパッタリングをする前(スパッタリング時間:0min)における遮光膜3の最表面の分析結果が「0.00minのプロット」に、遮光膜3の最表面から0.80minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「0.80minのプロット」に、遮光膜3の最表面から1.60minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「1.60minのプロット」に、遮光膜3の最表面から5.60minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「5.60minのプロット」に、遮光膜3の最表面から12.00minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「12.00minのプロット」に、それぞれ示されている。
 なお、遮光膜3の最表面から0.80minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置は、組成傾斜部よりも深い位置である。すなわち、「0.80minのプロット」以降の深さの位置のプロットは全て、遮光膜3の組成傾斜部を除いた部分の測定結果である。
 図4のCr2pナロースペクトルの結果から、この実施例1の遮光膜3は、最表面(0.00minのプロット)を除き、結合エネルギーが574eVで最大ピークを有していることがわかる。この結果は、窒素、酸素等の原子と未結合のクロム原子が一定比率以上存在していることを意味している。
 図5のO1sナロースペクトルの結果から、この実施例1の遮光膜3は、最表面(0.00minのプロット)を除き、結合エネルギーが約530eVで最大ピークを有していることがわかる。この結果は、Cr-O結合が一定比率以上存在していることを意味している。
 図6のN1sナロースペクトルの結果から、この実施例1の遮光膜3は、全ての深さの領域で最大ピークが検出下限値以下であることがわかる。この結果は、遮光膜3ではCr-N結合を含め、窒素と結合した原子の存在比率が検出されなかったことを意味している。
 図7のC1sナロースペクトルの結果から、この実施例1の遮光膜3は、最表面(0.00minのプロット)を除き、結合エネルギーが282~283eVで最大ピークを有していることがわかる。この結果は、Cr-C結合が一定比率以上存在していることを意味している。
 図8のSi2pナロースペクトルの結果から、この実施例1の遮光膜3は、全ての深さの領域で最大ピークが検出下限値以下であることがわかる。この結果は、遮光膜3ではCr-Si結合を含め、ケイ素と結合した原子の存在比率が検出されなかったことを意味している。
 なお、図4~図8の各ナロースペクトルにおけるグラフの縦軸のスケールは同じではない。図6のN1sナロースペクトルと図8のSi2pナロースペクトルは、図4、図5および図7の各ナロースペクトルに比べて縦軸のスケールを大きく拡大している。図6のN1sナロースペクトルと図8のSi2pナロースペクトルのグラフにおける振動の波は、ピークの存在が表れているのではなく、ノイズが表れているだけである。
[位相シフトマスクの製造]
 次に、この実施例1のマスクブランク100を用い、以下の手順で実施例1の掘込レベンソン型の位相シフトマスク200を製造した。最初に、ハードマスク膜4の表面にHMDS処理を施した。続いて、スピン塗布法によって、ハードマスク膜4の表面に接して、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚80nmで形成した。次に、このレジスト膜に対して、ハードマスク膜4に形成すべき遮光パターンである第1のパターンを電子線描画し、所定の現像処理及び洗浄処理を行い、第1のパターンを有するレジストパターン5aを形成した(図2(a)参照)。この第1のパターンは、線幅100nmのライン・アンド・スペースパターンを含むものとした。
 次に、レジストパターン5aをマスクとし、CFガスを用いたドライエッチングを行い、ハードマスク膜4に第1のパターン(ハードマスクパターン4a)を形成した(図2(b)参照)。この形成されたハードマスクパターン4aに対し、上記のライン・アンド・スペースパターンが形成されている領域で、測長SEM(CD-SEM:Critical Dimension-Scanning Electron Microscope)でスペース幅の測長を行った。
 次に、レジストパターン5aを除去した。続いて、ハードマスクパターン4aをマスクとし、塩素ガス(Cl)と酸素ガス(O)の混合ガス(ガス流量比 Cl:O=13:1)を用いたドライエッチング(バイアス電圧を印加したときの電力が50[W]の高バイアスエッチング)を行い、遮光膜3に第1のパターン(遮光パターン3a)を形成した(図2(c)参照)。なお、遮光膜3のエッチング時間(トータルエッチングタイム)は、遮光膜3のエッチング開始から透光性基板1の表面が最初に露出するまでの時間(ジャストエッチングタイム)の1.5倍の時間とした。すなわち、ジャストエッチングタイムの50%の時間(オーバーエッチングタイム)だけ追加でオーバーエッチングを行った。このオーバーエッチングを行うことで、遮光膜3のパターン側壁の垂直性を高めることが可能となる。
 次に、図3(d)に示すように、遮光パターンが形成されたハードマスク膜4(ハードマスクパターン4a)上に、掘込パターンが形成されたレジスト膜(第2レジスト膜)6を形成した。具体的には、スピン塗布法によって、ハードマスク膜4の表面に接して、電子線描画用化学増幅型レジスト(富士フィルムエレクトロニクスマテリアルズ社製 PRL009)からなるレジスト膜6を膜厚50nmで形成した。なお、このレジスト膜6の膜厚は、ハードマスク膜4上の膜厚である。そして、レジスト膜6に対して掘込パターンを電子線描画し、所定の現像処理、レジスト膜6の洗浄処理を行い、掘込パターンを有するレジスト膜6を形成した。このとき、レジスト膜6に形成された掘込パターンの開口が遮光パターン3aの開口を完全に露出するように、露光工程において生じる合わせズレのマージンを取った開口幅でレジスト膜6に掘込パターンを形成した。
 その後、図3(e)に示すように、掘込パターンを有するレジスト膜6をマスクとして、フッ素系ガス(CF)を用いた透光性基板1のドライエッチングを行った。これにより、透光性基板1の一方の主表面11S側における転写パターン形成領域11Aに、掘込パターン2を173nmの深さで形成した。また、このフッ素系ガスによるドライエッチングの際に、レジスト膜6が減膜していき、ドライエッチングの終了時にはハードマスク膜4上のレジスト膜6は全て消失した。さらに、ハードマスク膜4もフッ素系ガスによるドライエッチングで除去された。そして、図3(f)に示すように残存するレジスト膜6を除去し、洗浄等の処理を行い、位相シフトマスク200を得た。
 この形成された遮光パターン3aに対し、上記のライン・アンド・スペースパターンが形成されている領域で、測長SEM(CD-SEM:Critical Dimension-Scanning Electron Microscope)でスペース幅の測長を行った。そして、同じライン・アンド・スペースパターンが形成されている領域内の複数個所で、先に測定したハードマスクパターン4aのスペース幅と遮光パターン3aのスペース幅との間の変化量であるエッチングバイアスをそれぞれ算出し、さらにエッチングバイアスの平均値を算出した。その結果、エッチングバイアスの平均値は6nm程度であり、従来よりも大幅に小さい値であった。このことは、遮光膜3に形成すべき微細な転写パターンを有するハードマスクパターン4aをエッチングマスクとする高バイアスエッチングで遮光膜3をパターニングしても、高精度にその微細な遮光パターンを遮光膜3に形成することができることを示している。
[パターン転写性能の評価]
 以上の手順を得て作製された位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、設計仕様を十分に満たしていた。この結果から、この実施例1の位相シフトマスク200を露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写したとしても、最終的に半導体デバイス上に形成される回路パターンは高精度で形成できるといえる。
〈実施例2〉
[マスクブランクの製造]
 実施例2のマスクブランク100は、遮光膜3以外については、実施例1と同様の手順で製造した。この実施例2の遮光膜3は、実施例1の遮光膜3とは成膜条件を変更している。具体的には、枚葉式DCスパッタリング装置内に透光性基板1を設置し、クロム(Cr)ターゲットを用いて、アルゴン(Ar)、二酸化炭素(CO)及びヘリウム(He)の混合ガス雰囲気での反応性スパッタリング(DCスパッタリング)を行った。これにより、透光性基板1に接して、クロム、酸素及び炭素からなる遮光膜(CrOC膜)3を72nmの膜厚で形成した。
 次に、上記遮光膜(CrOC膜)3が形成された透光性基板1に対して、実施例1の場合と同条件で加熱処理を施した。加熱処理後、遮光膜3が形成された透光性基板1に対し、分光光度計(アジレントテクノロジー社製 Cary4000)を用い、ArFエキシマレーザーの光の波長(約193nm)における遮光膜3の光学濃度を測定したところ、3.0以上であることが確認できた。
 別の透光性基板1の主表面上に同条件で遮光膜3のみを形成し、加熱処理を行ったものを準備した。その遮光膜3に対し、X線光電子分光法(XPS,RBS補正有り)で分析を行った。この結果、遮光膜3の透光性基板1側とは反対側の表面近傍の領域(表面から2nm程度の深さまでの領域)は、それ以外の領域よりも酸素含有量が多い組成傾斜部(酸素含有量が40原子%以上)を有することが確認できた。また、遮光膜3の組成傾斜部を除く領域における各構成元素の含有量は、平均値でCr:55原子%、O:30原子%、C:15原子%であることがわかった。さらに、遮光膜3の組成傾斜部を除く領域の厚さ方向における各構成元素の差は、いずれも3原子%以下であり、厚さ方向の組成傾斜は実質的にないことが確認できた。
 また、この実施例1の場合と同様に、実施例2の遮光膜3についても、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果(図9参照)、O1sナロースペクトルの深さ方向化学結合状態分析の結果(図10参照)、N1sナロースペクトルの深さ方向化学結合状態分析の結果(図11参照)、C1sナロースペクトルの深さ方向化学結合状態分析の結果(図12参照)、及びSi2pナロースペクトルの深さ方向化学結合状態分析の結果(図13参照)をそれぞれ取得した。
 図9~図13における各深さ方向化学結合状態分析では、Arガススパッタリングをする前(スパッタリング時間:0min)における遮光膜3の最表面の分析結果が「0.00minのプロット」に、遮光膜3の最表面から0.40minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「0.40minのプロット」に、遮光膜3の最表面から0.80minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「0.80minのプロット」に、遮光膜3の最表面から1.60minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「1.60minのプロット」に、遮光膜3の最表面から2.80minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「2.80minのプロット」に、遮光膜3の最表面から3.20minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置での分析結果が「3.20minのプロット」に、それぞれ示されている。
 なお、遮光膜3の最表面から0.80minだけArガススパッタリングで掘り込んだ後における遮光膜3の膜厚方向の位置は、組成傾斜部よりも深い位置である。すなわち、「0.80minのプロット」以降の深さの位置のプロットは全て、遮光膜3の組成傾斜部を除いた部分の測定結果である。
 図9のCr2pナロースペクトルの結果から、この実施例2の遮光膜3は、「0.80minのプロット」以降の深さの領域では、結合エネルギーが574eVで最大ピークを有していることがわかる。この結果は、窒素、酸素等の原子と未結合のクロム原子が一定比率以上存在していることを意味している。
 図10のO1sナロースペクトルの結果から、この実施例2の遮光膜3は、「0.80minのプロット」以降の深さの領域では、結合エネルギーが約530eVで最大ピークを有していることがわかる。この結果は、Cr-O結合が一定比率以上存在していることを意味している。
 図11のN1sナロースペクトルの結果から、この実施例2の遮光膜3は、全ての深さの領域で最大ピークが検出下限値以下であることがわかる。この結果は、遮光膜3ではCr-N結合を含め、窒素と結合した原子の存在比率が検出されなかったことを意味している。
 図12のC1sナロースペクトルの結果から、この実施例2の遮光膜3は、「0.80minのプロット」以降の深さの領域では、結合エネルギーが282~283eVで最大ピークを有していることがわかる。この結果は、Cr-C結合が一定比率以上存在していることを意味している。
 図13のSi2pナロースペクトルの結果から、この実施例2の遮光膜3は、全ての深さの領域で最大ピークが検出下限値以下であることがわかる。この結果は、遮光膜3ではCr-Si結合を含め、ケイ素と結合した原子の存在比率が検出されなかったことを意味している。
 なお、図9~図13の各ナロースペクトルにおけるグラフの縦軸のスケールは同じではない。図11のN1sナロースペクトルと図13のSi2pナロースペクトルは、図9、図10および図12の各ナロースペクトルに比べて縦軸のスケールを大きく拡大している。図11のN1sナロースペクトルと図13のSi2pナロースペクトルのグラフにおける振動の波は、ピークの存在が表れているのではなく、ノイズが表れているだけである。
[位相シフトマスクの製造]
 次に、この実施例2のマスクブランク100を用い、実施例1と同様の手順で、実施例2の位相シフトマスク200を製造した。実施例1の場合と同様に、ハードマスクパターン4aが形成された後(図2(b)参照)と、遮光パターン3aが形成された後(図3(f)参照)のそれぞれに対し、ライン・アンド・スペースパターンが形成されている領域で、測長SEM(CD-SEM:Critical Dimension-Scanning Electron Microscope)でスペース幅の測長を行った。そして、同じライン・アンド・スペースパターンが形成されている領域内の複数個所で、ハードマスクパターン4aのスペース幅と遮光パターン3aのスペース幅との間の変化量であるエッチングバイアスをそれぞれ算出し、さらにエッチングバイアスの平均値を算出した。その結果、エッチングバイアスの平均値は10nm程度であり、従来よりも十分に小さい値であった。このことは、実施例2のマスクブランク100は、遮光膜3に形成すべき微細な転写パターンを有するハードマスクパターン4aをエッチングマスクとする高バイアスエッチングで遮光膜3をパターニングしても、高精度にその微細な転写パターンを遮光膜3に形成することができることを示している。
[パターン転写性能の評価]
 実施例2の位相シフトマスク200に対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、設計仕様を十分に満たしていた。この結果から、この実施例2の位相シフトマスク200を露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写したとしても、最終的に半導体デバイス上に形成される回路パターンは高精度で形成できるといえる。
〈比較例1〉
[マスクブランクの製造]
 比較例1のマスクブランクは、遮光膜以外については、実施例1と同様の手順で製造した。この比較例1の遮光膜は、実施例1の遮光膜3とは成膜条件を変更している。具体的には、枚葉式DCスパッタリング装置内に透光性基板を設置し、クロム(Cr)ターゲットを用いて、アルゴン(Ar)、二酸化炭素(CO)、窒素(N)及びヘリウム(He)の混合ガス雰囲気での反応性スパッタリング(DCスパッタリング)を行った。これにより、透光性基板に接して、クロム、酸素、炭素及び窒素からなる遮光膜(CrOCN膜)を72nmの膜厚で形成した。
 次に、上記遮光膜(CrOCN膜)が形成された透光性基板に対して、実施例1の場合と同条件で加熱処理を施した。加熱処理後、遮光膜が形成された透光性基板に対し、分光光度計(アジレントテクノロジー社製 Cary4000)を用い、構造のArFエキシマレーザーの光の波長(約193nm)における遮光膜の光学濃度を測定したところ、3.0以上であることが確認できた。
 別の透光性基板の主表面上に同条件で遮光膜のみを形成し、加熱処理を行ったものを準備した。その遮光膜に対し、X線光電子分光法(XPS,RBS補正有り)で分析を行った。この結果、遮光膜の透光性基板側とは反対側の表面近傍の領域(表面から2nm程度の深さまでの領域)は、それ以外の領域よりも酸素含有量が多い組成傾斜部(酸素含有量が40原子%以上)を有することが確認できた。また、遮光膜の組成傾斜部を除く領域における各構成元素の含有量は、平均値でCr:55原子%、O:22原子%、C:12原子%、N:11原子%であることがわかった。さらに、遮光膜の組成傾斜部を除く領域の厚さ方向における各構成元素の差は、いずれも3原子%以下であり、厚さ方向の組成傾斜は実質的にないことが確認できた。
 別の透光性基板の主表面上に同条件で遮光膜のみを形成して加熱処理を行い、さらに、その加熱処理後の遮光膜の表面に接してハードマスク膜を形成したものを準備した。その比較例1のハードマスク膜と遮光膜に対し、実施例1の場合と同様の測定条件で、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果(図14参照)、O1sナロースペクトルの深さ方向化学結合状態分析の結果(図15参照)、N1sナロースペクトルの深さ方向化学結合状態分析の結果(図16参照)、C1sナロースペクトルの深さ方向化学結合状態分析(図17参照)、及びSi2pナロースペクトル(図18参照)の深さ方向化学結合状態分析の結果をそれぞれ取得した。
 図14~図18における各深さ方向化学結合状態分析では、Arガススパッタリングをする前(スパッタリング時間:0min)におけるハードマスク膜の分析結果が「0.00minのプロット」に、ハードマスク膜の最表面から0.40minだけArガススパッタリングで掘り込んだ位置での分析結果が「0.40minのプロット」に、ハードマスク膜の最表面から1.60minだけArガススパッタリングで掘り込んだ位置での分析結果が「1.60minのプロット」に、ハードマスク膜の最表面から3.00minだけArガススパッタリングで掘り込んだ位置での分析結果が「3.00minのプロット」に、ハードマスク膜の最表面から5.00minだけArガススパッタリングで掘り込んだ位置での分析結果が「5.00minのプロット」に、ハードマスク膜の最表面から8.40minだけArガススパッタリングで掘り込んだ位置での分析結果が「8.40minのプロット」に、それぞれ示されている。
 なお、ハードマスク膜の最表面から1.60minだけArガススパッタリングで掘り込んだ位置は、遮光膜の内部であり、かつ組成傾斜部よりも深い位置である。すなわち、「1.60minのプロット」以降の深さの位置のプロットは全て、比較例1における遮光膜の組成傾斜部を除いた部分の測定結果である。
 図14のCr2pナロースペクトルの結果から、この比較例1の遮光膜は、「1.60minのプロット」以降の深さの領域では、574eVよりも大きい結合エネルギーで最大ピークを有していることがわかる。この結果は、いわゆるケミカルシフトしているといえ、窒素、酸素等の原子と結合のクロム原子の存在比率がかなり少ないことを意味している。
 図15のO1sナロースペクトルの結果から、この比較例1の遮光膜は、「1.60minのプロット」以降の深さの領域では、結合エネルギーが約530eVで最大ピークを有していることがわかる。この結果は、Cr-O結合が一定比率以上存在していることを意味している。
 図16のN1sナロースペクトルの結果から、この比較例1の遮光膜は、「1.60minのプロット」以降の深さの領域では、結合エネルギーが約397eVで最大ピークを有していることがわかる。この結果は、Cr-N結合が一定比率以上存在していることを意味している。
 図17のC1sナロースペクトルの結果から、この比較例1の遮光膜は、「1.60minのプロット」以降の深さの領域では、結合エネルギーが283eVで最大ピークを有していることがわかる。この結果は、Cr-C結合が一定比率以上存在していることを意味している。
 図18のSi2pナロースペクトルの結果から、この比較例1の遮光膜は、「1.60minのプロット」以降の深さの領域では、最大ピークが検出下限値以下であることがわかる。この結果は、比較例1の遮光膜ではCr-Si結合を含め、ケイ素と結合した原子の存在比率が検出されなかったことを意味している。
[位相シフトマスクの製造]
 次に、この比較例1のマスクブランクを用い、実施例1と同様の手順で、比較例1の位相シフトマスクを製造した。
 実施例1の場合と同様に、ハードマスクパターンが形成された後(図2(b)参照)と、転写パターンが形成された後(図3(f)参照)のそれぞれに対し、ライン・アンド・スペースパターンが形成されている領域で、測長SEM(CD-SEM:Critical Dimension-Scanning Electron Microscope)でスペース幅の測長を行った。そして、同じライン・アンド・スペースパターンが形成されている領域内の複数個所で、ハードマスクパターンのスペース幅と製造された位相シフトマスクが有する遮光パターンのスペース幅との間の変化量であるエッチングバイアスをそれぞれ算出し、さらにエッチングバイアスの平均値を算出した。その結果、エッチングバイアスの平均値は20nmであり、比較的大きい値であった。このことは、比較例1のマスクブランクは、遮光膜に形成すべき微細な転写パターンを有するハードマスクパターンをエッチングマスクとする高バイアスエッチングで遮光膜をパターニングした場合、高精度にその微細な転写パターンを遮光膜に形成することが困難であることを意味している。
[パターン転写性能の評価]
 比較例1の位相シフトマスクに対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、転写不良が確認された。これは、遮光パターンのパターン側壁のサイドエッチング量が大きいことに起因して形状の垂直性が悪く、さらに面内のCD均一性も低いことが、転写不良の発生要因と推察される。この結果から、この比較例1の位相シフトマスクを露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写した場合、最終的に半導体デバイス上に形成される回路パターンに不良箇所が発生してしまうといえる。
〈比較例2〉
[マスクブランクの製造]
 比較例2のマスクブランクは、遮光膜以外については、実施例1と同様の手順で製造した。この比較例2の遮光膜は、実施例1の遮光膜3とは成膜条件を変更している。具体的には、枚葉式DCスパッタリング装置内に透光性基板を設置し、クロム(Cr)ターゲットを用いて、アルゴン(Ar)、一酸化窒素(NO)及びヘリウム(He)の混合ガス雰囲気での反応性スパッタリング(DCスパッタリング)を行った。これにより、透光性基板に接して、クロム、酸素及び窒素からなる遮光膜(CrON膜)を72nmの膜厚で形成した。
 次に、上記遮光膜(CrON膜)が形成された透光性基板に対して、実施例1の場合と同条件で加熱処理を施した。加熱処理後、遮光膜が形成された透光性基板に対し、分光光度計(アジレントテクノロジー社製 Cary4000)を用い、積層構造のArFエキシマレーザーの光の波長(約193nm)における遮光膜の光学濃度を測定したところ、3.0以上であることが確認できた。
 別の透光性基板の主表面上に同条件で遮光膜のみを形成し、加熱処理を行ったものを準備した。その遮光膜に対し、X線光電子分光法(XPS,RBS補正有り)で分析を行った。この結果、遮光膜の透光性基板1側とは反対側の表面近傍の領域(表面から2nm程度の深さまでの領域)は、それ以外の領域よりも酸素含有量が多い組成傾斜部(酸素含有量が40原子%以上)を有することが確認できた。また、遮光膜の組成傾斜部を除く領域における各構成元素の含有量は、平均値でCr:58原子%、O:17原子%、N:25原子%であることがわかった。さらに、遮光膜の組成傾斜部を除く領域の厚さ方向における各構成元素の差は、いずれも3原子%以下であり、厚さ方向の組成傾斜は実質的にないことが確認できた。
 実施例1の場合と同様に、この比較例2の遮光膜についても、Cr2pナロースペクトルの深さ方向化学結合状態分析の結果、O1sナロースペクトルの深さ方向化学結合状態分析の結果、N1sナロースペクトルの深さ方向化学結合状態分析の結果、C1sナロースペクトルの深さ方向化学結合状態分析、及びSi2pナロースペクトルの深さ方向化学結合状態分析の結果をそれぞれ取得した。
 Cr2pナロースペクトルの結果から、この比較例2の遮光膜は、最表面を含む全ての深さの領域で、574eVよりも大きい結合エネルギーで最大ピークを有していることがわかる。この結果は、いわゆるケミカルシフトしているといえ、窒素、酸素等の原子と結合のクロム原子の存在比率がかなり少ないことを意味している。O1sナロースペクトルの結果から、この比較例2の遮光膜は、最表面を含む全ての深さの領域で、結合エネルギーが約530eVで最大ピークを有していることがわかった。この結果は、Cr-O結合が一定比率以上存在していることを意味している。
 N1sナロースペクトルの結果から、最表面を除き、結合エネルギーが約397eVで最大ピークを有していることがわかる。この結果は、Cr-N結合が一定比率以上存在していることを意味している。
 C1sナロースペクトルの結果から、この比較例2の遮光膜は、最表面を除き、最大ピークが検出下限値以下であることがわかる。また、最表面は有機物等のコンタミネーションの影響を大きく受けるため、最表面に関しては炭素に関する測定結果は参考にし難い。この結果は、比較例2の遮光膜ではCr-C結合を含め、炭素と結合した原子の存在比率が検出されなかったことを意味している。
 Si2pナロースペクトルの結果から、この比較例2の遮光膜は、全ての深さの領域で最大ピークが検出下限値以下であることがわかる。この結果は、この比較例2の遮光膜ではCr-Si結合を含め、ケイ素と結合した原子の存在比率が検出されなかったことを意味している。
[位相シフトマスクの製造]
 次に、この比較例2のマスクブランクを用い、実施例1と同様の手順で、比較例2の位相シフトマスクを製造した。実施例2の場合と同様に、ハードマスクパターンが形成された後(図2(b)参照)と、転写パターンが形成された後(図3(f)参照)のそれぞれに対し、ライン・アンド・スペースパターンが形成されている領域で、測長SEM(CD-SEM:Critical Dimension-Scanning Electron Microscope)でスペース幅の測長を行った。そして、同じライン・アンド・スペースパターンが形成されている領域内の複数個所で、ハードマスクパターンのスペース幅と製造された位相シフトマスクが有する遮光パターンのスペース幅との間の変化量であるエッチングバイアスをそれぞれ算出し、さらにエッチングバイアスの平均値を算出した。その結果、エッチングバイアスの平均値は30nmであり、大分大きい値であった。このことは、比較例2のマスクブランクは、遮光膜に形成すべき微細な転写パターンを有するハードマスクパターンをエッチングマスクとする高バイアスエッチングで遮光膜をパターニングした場合、高精度にその微細な転写パターンを遮光膜に形成することが困難であることを意味している。
[パターン転写性能の評価]
 比較例2の位相シフトマスクに対し、実施例1と同様にAIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、転写不良が確認された。これは、遮光パターンのパターン側壁のサイドエッチング量が大きいことに起因して形状の垂直性が悪く、さらに面内のCD均一性も低いことが、転写不良の発生要因と推察される。この結果から、この比較例2の位相シフトマスクを露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写した場合、最終的に半導体デバイス上に形成される回路パターンに不良箇所が発生してしまうといえる。
 なお、本発明は上述の実施形態において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。例えば、本発明の実施形態においては、マスクブランクを用いて掘込レベンソン型位相シフトマスクを製造する場合について説明したが、これに限らず、バイナリマスクを製造するために用いられてもよい。
1 透光性基板
2 掘込部
3 遮光膜
3a 遮光パターン
4 ハードマスク膜
4a ハードマスクパターン
5a レジストパターン
6 レジストパターン
11A 転写パターン形成領域
11B 外周領域
11S 主表面
15 アライメントパターン
16 転写パターン
100 マスクブランク
200 位相シフトマスク

Claims (11)

  1.  透光性基板上に、遮光膜及びハードマスク膜がこの順に積層された構造を備えるマスクブランクであって、
     前記ハードマスク膜は、ケイ素及びタンタルから選ばれる1以上の元素を含有する材料からなり、
     前記遮光膜は、ArFエキシマレーザーの露光光に対する光学濃度が2.0よりも大きく、
     前記遮光膜は、前記ハードマスク膜側の表面及びその近傍の領域に酸素含有量が増加した組成傾斜部を有する単層膜であり、
     前記遮光膜は、クロム、酸素及び炭素を含有する材料からなり、
     前記遮光膜の組成傾斜部を除いた部分は、クロム含有量が50原子%以上であり、
     前記遮光膜は、X線光電子分光法で分析して得られるN1sのナロースペクトルの最大ピークが検出下限値以下であり、
     前記遮光膜の組成傾斜部を除いた部分は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが574eV以下の結合エネルギーで最大ピークを有する
    ことを特徴とするマスクブランク。
  2.  前記遮光膜の組成傾斜部を除いた部分における炭素の含有量[原子%]をクロム、炭素及び酸素の合計含有量[原子%]で除した比率は、0.1以上であることを特徴とする請求項1記載のマスクブランク。
  3.  前記遮光膜の組成傾斜部は、X線光電子分光法で分析して得られるCr2pのナロースペクトルが576eV以上の結合エネルギーで最大ピークを有することを特徴とする請求項1または2記載のマスクブランク。
  4.  前記遮光膜は、X線光電子分光法で分析して得られるSi2pのナロースペクトルの最大ピークが検出下限値以下であることを特徴とする請求項1から3のいずれかに記載のマスクブランク。
  5.  前記遮光膜の組成傾斜部を除いた部分は、クロム含有量が80原子%以下であることを特徴とする請求項1から4のいずれかに記載のマスクブランク。
  6.  前記遮光膜の組成傾斜部を除いた部分は、炭素含有量が10原子%以上20原子%以下であることを特徴とする請求項1から5のいずれかに記載のマスクブランク。
  7.  前記遮光膜の組成傾斜部を除いた部分は、酸素含有量が10原子%以上35原子%以下であることを特徴とする請求項1から6のいずれかに記載のマスクブランク。
  8.  前記遮光膜の組成傾斜部を除いた部分は、厚さ方向における各構成元素の含有量の差がいずれも10原子%未満であることを特徴とする請求項1から7のいずれかに記載のマスクブランク。
  9.  前記遮光膜は、厚さが80nm以下であることを特徴とする請求項1から8のいずれかに記載のマスクブランク。
  10.  請求項1から9のいずれかに記載のマスクブランクを用いる位相シフトマスクの製造方法であって、
     前記ハードマスク膜上に形成された遮光パターンを有するレジスト膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記ハードマスク膜に遮光パターンを形成する工程と、
     前記遮光パターンが形成されたハードマスク膜をマスクとし、塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングにより、前記遮光膜に遮光パターンを形成する工程と、
     前記遮光膜上に形成された掘込パターンを有するレジスト膜をマスクとし、フッ素系ガスを用いたドライエッチングにより、前記透光性基板に掘込パターンを形成する工程と
    を有することを特徴とする位相シフトマスクの製造方法。
  11.  請求項10記載の位相シフトマスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
PCT/JP2017/001343 2016-02-15 2017-01-17 マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法 WO2017141605A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/076,384 US20190040516A1 (en) 2016-02-15 2017-01-17 Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device
JP2017567992A JP6396611B2 (ja) 2016-02-15 2017-01-17 マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法
KR1020187021041A KR20180114895A (ko) 2016-02-15 2017-01-17 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016025622 2016-02-15
JP2016-025622 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141605A1 true WO2017141605A1 (ja) 2017-08-24

Family

ID=59624890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001343 WO2017141605A1 (ja) 2016-02-15 2017-01-17 マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法

Country Status (5)

Country Link
US (1) US20190040516A1 (ja)
JP (2) JP6396611B2 (ja)
KR (1) KR20180114895A (ja)
TW (1) TWI676859B (ja)
WO (1) WO2017141605A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186320A1 (ja) * 2017-04-08 2018-10-11 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2020179463A1 (ja) * 2019-03-07 2020-09-10 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
TWI726192B (zh) * 2017-02-27 2021-05-01 日商Hoya股份有限公司 光罩基底、轉印用光罩之製造方法、及半導體裝置之製造方法
CN113614637A (zh) * 2019-03-18 2021-11-05 Hoya株式会社 掩模坯料、转印用掩模的制造方法、及半导体器件的制造方法
JP2022093557A (ja) * 2018-12-12 2022-06-23 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
WO2023037731A1 (ja) * 2021-09-08 2023-03-16 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
US12007684B2 (en) 2017-02-27 2024-06-11 Hoya Corporation Mask blank, method of manufacturing imprint mold, method of manufacturing transfer mask, method of manufacturing reflective mask, and method of manufacturing semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210262077A1 (en) * 2020-01-03 2021-08-26 University Of Maryland, College Park Tantalum pentoxide based low-loss metasurface optics for uv applications

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002287330A (ja) * 2002-03-01 2002-10-03 Shin Etsu Chem Co Ltd フォトマスク用ブランクス及びフォトマスク
JP2003248298A (ja) * 2002-02-26 2003-09-05 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスク
JP2003322954A (ja) * 2002-03-01 2003-11-14 Hoya Corp ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
JP2004053662A (ja) * 2002-07-16 2004-02-19 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びフォトマスクブランクの選定方法
JP2005284216A (ja) * 2004-03-31 2005-10-13 Shin Etsu Chem Co Ltd 成膜用ターゲット及び位相シフトマスクブランクの製造方法
JP2009080510A (ja) * 2003-04-09 2009-04-16 Hoya Corp フォトマスクの製造方法およびフォトマスクブランク
JP2014197215A (ja) * 2008-09-30 2014-10-16 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
JP2014232191A (ja) * 2013-05-29 2014-12-11 Hoya株式会社 マスクブランク、位相シフトマスク、これらの製造方法、および半導体デバイスの製造方法
JP2016188958A (ja) * 2015-03-30 2016-11-04 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230971A (en) * 1991-08-08 1993-07-27 E. I. Du Pont De Nemours And Company Photomask blank and process for making a photomask blank using gradual compositional transition between strata
US6265083B1 (en) * 1997-08-22 2001-07-24 Mitsui Chemicals, Inc. Poly (4-methyl-1-pentene) resin laminates and uses thereof
TW480367B (en) * 2000-02-16 2002-03-21 Shinetsu Chemical Co Photomask blank, photomask and method of manufacture
JP2001305713A (ja) * 2000-04-25 2001-11-02 Shin Etsu Chem Co Ltd フォトマスク用ブランクス及びフォトマスク
JP4834203B2 (ja) * 2005-09-30 2011-12-14 Hoya株式会社 フォトマスクブランクの製造方法及びフォトマスクの製造方法
JP4509050B2 (ja) * 2006-03-10 2010-07-21 信越化学工業株式会社 フォトマスクブランク及びフォトマスク
JP5009590B2 (ja) * 2006-11-01 2012-08-22 Hoya株式会社 マスクブランクの製造方法及びマスクの製造方法
KR20110016739A (ko) * 2009-08-12 2011-02-18 주식회사 에스앤에스텍 블랭크 마스크, 포토마스크 및 그의 제조방법
KR101883025B1 (ko) * 2010-12-24 2018-07-27 호야 가부시키가이샤 마스크 블랭크 및 그 제조 방법, 및 전사용 마스크 및 그 제조 방법
JP6544943B2 (ja) * 2014-03-28 2019-07-17 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、位相シフトマスク、および半導体デバイスの製造方法
CN106200256B (zh) * 2014-08-25 2020-07-10 株式会社 S&S Tech 相位反转空白掩模及光掩模
KR102398583B1 (ko) * 2015-11-06 2022-05-17 호야 가부시키가이샤 마스크 블랭크, 위상 시프트 마스크의 제조 방법 및 반도체 디바이스의 제조 방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003248298A (ja) * 2002-02-26 2003-09-05 Shin Etsu Chem Co Ltd フォトマスクブランク及びフォトマスク
JP2002287330A (ja) * 2002-03-01 2002-10-03 Shin Etsu Chem Co Ltd フォトマスク用ブランクス及びフォトマスク
JP2003322954A (ja) * 2002-03-01 2003-11-14 Hoya Corp ハーフトーン型位相シフトマスクブランク及びハーフトーン型位相シフトマスク
JP2004053662A (ja) * 2002-07-16 2004-02-19 Shin Etsu Chem Co Ltd フォトマスクブランク、フォトマスク及びフォトマスクブランクの選定方法
JP2009080510A (ja) * 2003-04-09 2009-04-16 Hoya Corp フォトマスクの製造方法およびフォトマスクブランク
JP2005284216A (ja) * 2004-03-31 2005-10-13 Shin Etsu Chem Co Ltd 成膜用ターゲット及び位相シフトマスクブランクの製造方法
JP2014197215A (ja) * 2008-09-30 2014-10-16 Hoya株式会社 フォトマスクブランク、フォトマスク及びその製造方法、並びに半導体デバイスの製造方法
JP2014232191A (ja) * 2013-05-29 2014-12-11 Hoya株式会社 マスクブランク、位相シフトマスク、これらの製造方法、および半導体デバイスの製造方法
JP2016188958A (ja) * 2015-03-30 2016-11-04 Hoya株式会社 マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11281089B2 (en) 2017-02-27 2022-03-22 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
US12007684B2 (en) 2017-02-27 2024-06-11 Hoya Corporation Mask blank, method of manufacturing imprint mold, method of manufacturing transfer mask, method of manufacturing reflective mask, and method of manufacturing semiconductor device
US11762279B2 (en) 2017-02-27 2023-09-19 Hoya Corporation Mask blank, method for manufacturing reflective mask, and method for manufacturing semiconductor device
TWI726192B (zh) * 2017-02-27 2021-05-01 日商Hoya股份有限公司 光罩基底、轉印用光罩之製造方法、及半導體裝置之製造方法
US11435662B2 (en) 2017-04-08 2022-09-06 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
WO2018186320A1 (ja) * 2017-04-08 2018-10-11 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
US11119400B2 (en) 2017-04-08 2021-09-14 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
JP2018180170A (ja) * 2017-04-08 2018-11-15 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
JP7231094B2 (ja) 2018-12-12 2023-03-01 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
JP2022093557A (ja) * 2018-12-12 2022-06-23 信越化学工業株式会社 フォトマスクブランク、及びフォトマスクの製造方法
CN113614636A (zh) * 2019-03-07 2021-11-05 Hoya株式会社 掩模坯料、转印用掩模的制造方法、及半导体器件的制造方法
JP2020149049A (ja) * 2019-03-07 2020-09-17 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2020179463A1 (ja) * 2019-03-07 2020-09-10 Hoya株式会社 マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
US20220214608A1 (en) * 2019-03-18 2022-07-07 Hoya Corporation Mask blank, method for manufacturing transfer mask, and method for manufacturing semiconductor device
CN113614637A (zh) * 2019-03-18 2021-11-05 Hoya株式会社 掩模坯料、转印用掩模的制造方法、及半导体器件的制造方法
WO2023037731A1 (ja) * 2021-09-08 2023-03-16 Hoya株式会社 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Also Published As

Publication number Publication date
TW201740182A (zh) 2017-11-16
TWI676859B (zh) 2019-11-11
JP2019032532A (ja) 2019-02-28
JPWO2017141605A1 (ja) 2018-10-18
JP6396611B2 (ja) 2018-09-26
JP6929822B2 (ja) 2021-09-01
US20190040516A1 (en) 2019-02-07
KR20180114895A (ko) 2018-10-19

Similar Documents

Publication Publication Date Title
JP6325153B2 (ja) マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法
JP6396611B2 (ja) マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法
JP6266842B2 (ja) マスクブランク、マスクブランクの製造方法、位相シフトマスク、位相シフトマスクの製造方法及び半導体デバイスの製造方法
JP6575957B2 (ja) マスクブランク、反射型マスクの製造方法、及び半導体デバイスの製造方法
JP6573806B2 (ja) マスクブランク、位相シフトマスク、位相シフトマスクの製造方法および半導体デバイスの製造方法
WO2018100958A1 (ja) マスクブランク、転写用マスク、転写用マスクの製造方法及び半導体デバイスの製造方法
JP2016188958A (ja) マスクブランク、位相シフトマスクの製造方法、及び、半導体デバイスの製造方法
WO2019163310A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP6818921B2 (ja) マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2020189168A1 (ja) マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752869

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567992

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17752869

Country of ref document: EP

Kind code of ref document: A1