WO2019163310A1 - マスクブランク、位相シフトマスク及び半導体デバイスの製造方法 - Google Patents

マスクブランク、位相シフトマスク及び半導体デバイスの製造方法 Download PDF

Info

Publication number
WO2019163310A1
WO2019163310A1 PCT/JP2019/000138 JP2019000138W WO2019163310A1 WO 2019163310 A1 WO2019163310 A1 WO 2019163310A1 JP 2019000138 W JP2019000138 W JP 2019000138W WO 2019163310 A1 WO2019163310 A1 WO 2019163310A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase shift
nitrogen
containing layer
film
oxygen
Prior art date
Application number
PCT/JP2019/000138
Other languages
English (en)
French (fr)
Inventor
仁 前田
亮 大久保
康隆 堀込
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020247015381A priority Critical patent/KR20240067993A/ko
Priority to SG11202007975QA priority patent/SG11202007975QA/en
Priority to CN201980014769.XA priority patent/CN111758071B/zh
Priority to US16/970,601 priority patent/US11009787B2/en
Priority to CN202310713382.1A priority patent/CN116841118A/zh
Priority to KR1020207022109A priority patent/KR102665789B1/ko
Publication of WO2019163310A1 publication Critical patent/WO2019163310A1/ja
Priority to US17/231,282 priority patent/US11415875B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/26Phase shift masks [PSM]; PSM blanks; Preparation thereof
    • G03F1/32Attenuating PSM [att-PSM], e.g. halftone PSM or PSM having semi-transparent phase shift portion; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment

Definitions

  • the present invention relates to a mask blank and a phase shift mask manufactured using the mask blank.
  • the present invention also relates to a method of manufacturing a semiconductor device using the phase shift mask.
  • a fine pattern is formed using a photolithography method. Also, a number of transfer masks are usually used for forming this fine pattern.
  • an ArF excimer laser (wavelength: 193 nm) has been increasingly applied as an exposure light source for manufacturing semiconductor devices.
  • the halftone phase shift mask has a translucent part that transmits exposure light and a phase shift part (of a halftone phase shift film) that attenuates and transmits the exposure light, and the exposure light that passes through the translucent part.
  • the phase of the exposure light transmitted through the phase shift unit is substantially reversed (a phase difference of about 180 degrees) with respect to the phase of. This phase difference increases the contrast of the optical image at the boundary between the light transmitting portion and the phase shift portion, so that the halftone phase shift mask is a transfer mask with high resolution.
  • the halftone phase shift mask tends to increase the contrast of the transferred image as the transmittance of the halftone phase shift film to the exposure light increases. For this reason, a so-called high-transmittance halftone phase shift mask is used mainly when high resolution is required.
  • a molybdenum silicide (MoSi) -based material is widely used for the phase shift film of the halftone phase shift mask. However, it has recently been found that the MoSi-based film has low resistance to ArF excimer laser exposure light (so-called ArF light resistance).
  • Patent Document 2 discloses a halftone phase shift mask using a phase shift film composed of a periodic multilayer film of a Si oxide layer and a Si nitride layer. Patent Document 2 describes that a predetermined phase difference can be obtained at a transmittance of 5% with respect to light having a wavelength of 157 nm, which is F 2 excimer laser light. Since SiN-based materials have high ArF light resistance, high transmittance halftone phase shift masks using SiN-based films as phase shift films have attracted attention.
  • ArF exposure light ArF excimer laser exposure light
  • Patent Document 1 discloses a halftone phase shift mask provided with a phase shift film having a two-layer structure including a silicon nitride layer and a silicon oxide layer arranged in this order from the translucent substrate side.
  • the phase shift film By making the phase shift film a two-layer structure composed of a silicon nitride layer and a silicon oxide layer, the refractive index, extinction coefficient, and thickness of the ArF exposure light are increased. It can have a desired transmittance and phase difference with respect to ArF exposure light.
  • a halftone phase shift mask having a two-layered phase shift film composed of a silicon nitride layer and a silicon oxide layer has the following problems.
  • Both the silicon nitride layer and the silicon oxide layer have significantly higher ArF light resistance than the MoSi-based film described above.
  • the silicon nitride layer has lower ArF light resistance than the silicon oxide layer. That is, when a phase shift mask is manufactured using a mask blank provided with this phase shift film, the phase shift mask is set in an exposure apparatus, and exposure transfer using ArF exposure light is repeated, the line width of the phase shift film pattern is The silicon nitride layer portion is likely to be thicker than the silicon oxide layer portion. For this reason, although the silicon oxide layer portion is not easily thickened by repeated irradiation with ArF exposure light, the line width of the pattern in the entire phase shift film when subjected to repeated irradiation with ArF exposure light is compared. There was a problem of becoming larger.
  • both the silicon nitride layer and the silicon oxide layer have significantly higher resistance (chemical resistance) to chemicals used for cleaning or the like than the above-described MoSi-based film.
  • the silicon nitride layer has lower chemical resistance than the silicon oxide layer. That is, when the phase shift mask is manufactured from the mask blank including the phase shift film, or when cleaning with a chemical solution is repeatedly performed after the phase shift mask is manufactured, the line width of the phase shift film pattern is a portion of the silicon oxide layer. Compared to the above, the silicon nitride layer portion tends to decrease. For this reason, although the silicon oxide layer has high chemical resistance, there has been a problem that the reduction amount of the line width of the pattern in the entire phase shift film when the cleaning with the chemical solution is repeatedly performed becomes relatively large.
  • phase shift film having the above two-layer structure when the material for forming the highly transmissive layer is changed from silicon oxide to silicon oxynitride, the optical characteristics are the same as when the highly transmissive layer is formed of silicon oxide. Can be obtained. However, even in the case of the phase shift film having this configuration, problems of ArF light resistance and chemical resistance arise.
  • the present invention has been made to solve the above problems, and includes a phase shift film including at least a nitrogen-containing layer such as a silicon nitride layer and an oxygen-containing layer such as a silicon oxide layer on a translucent substrate.
  • a phase shift film including at least a nitrogen-containing layer such as a silicon nitride layer and an oxygen-containing layer such as a silicon oxide layer on a translucent substrate.
  • a mask blank for a halftone phase shift mask having improved ArF light resistance and chemical resistance in the entire phase shift film is provided.
  • Another object of the present invention is to provide a phase shift mask manufactured using this mask blank. Furthermore, the present invention aims to provide a method for manufacturing such a phase shift mask. An object of the present invention is to provide a method of manufacturing a semiconductor device using such a phase shift mask.
  • the present invention has the following configuration.
  • a mask blank provided with a phase shift film on a translucent substrate includes at least a nitrogen-containing layer and an oxygen-containing layer
  • the oxygen-containing layer is formed of a material composed of silicon and oxygen, or a material composed of one or more elements selected from a metalloid element and a nonmetallic element, oxygen and silicon
  • the nitrogen-containing layer is formed of a material consisting of silicon and nitrogen, or a material consisting of one or more elements selected from non-metallic elements and metalloid elements, nitrogen and silicon
  • X-ray photoelectron spectroscopic analysis is performed on the nitrogen-containing layer to obtain the maximum peak PSi_f of the Si2p narrow spectrum photoelectron intensity in the nitrogen-containing layer
  • X-ray photoelectron spectroscopic analysis is performed on the translucent substrate.
  • (Configuration 4) The mask blank according to any one of configurations 1 to 3, wherein the oxygen-containing layer has an oxygen content of 15 atomic% or more.
  • (Configuration 5) The maximum peak of the photoelectron intensity in the Si2p narrow spectrum is a maximum peak in a range of binding energy of 96 [eV] or more and 106 [eV] or less, according to any one of configurations 1 to 4, Mask blank.
  • the phase shift film has a function of transmitting exposure light of ArF excimer laser with a transmittance of 10% or more, and in the air by the same distance as the thickness of the phase shift film with respect to the exposure light transmitted through the phase shift film.
  • Configuration 9) The mask blank according to any one of configurations 1 to 8, wherein a light shielding film is provided on the phase shift film.
  • a phase shift mask provided with a phase shift film having a transfer pattern formed on a translucent substrate includes at least a nitrogen-containing layer and an oxygen-containing layer
  • the oxygen-containing layer is formed of a material composed of silicon and oxygen, or a material composed of one or more elements selected from a metalloid element and a nonmetallic element, oxygen and silicon
  • the nitrogen-containing layer is formed of a material consisting of silicon and nitrogen, or a material consisting of one or more elements selected from non-metallic elements and metalloid elements, nitrogen and silicon
  • X-ray photoelectron spectroscopic analysis is performed on the nitrogen-containing layer to obtain the maximum peak PSi_f of the Si2p narrow spectrum photoelectron intensity in the nitrogen-containing layer
  • X-ray photoelectron spectroscopic analysis is performed on the translucent substrate.
  • (Configuration 13) 13 The phase shift mask according to claim 10, wherein the oxygen-containing layer has an oxygen content of 15 atomic% or more.
  • the maximum peak of the photoelectron intensity of the Si2p narrow spectrum is a maximum peak in a range of binding energy of 96 [eV] to 106 [eV], according to any one of configurations 10 to 13 Phase shift mask.
  • the phase shift film has a function of transmitting exposure light of ArF excimer laser with a transmittance of 10% or more, and in the air by the same distance as the thickness of the phase shift film with respect to the exposure light transmitted through the phase shift film.
  • (Configuration 18) 18 18.
  • the mask blank of the present invention is a mask blank provided with a phase shift film on a translucent substrate, the phase shift film includes at least a nitrogen-containing layer and an oxygen-containing layer, and the oxygen-containing layer includes silicon and oxygen.
  • a material comprising oxygen and silicon and the nitrogen-containing layer is formed of a material comprising silicon and nitrogen, or a non-metallic element and a semi-metallic element. It is formed of a material composed of one or more elements selected from metal elements, nitrogen, and silicon, and X-ray photoelectron spectroscopy is performed on the nitrogen-containing layer to obtain the maximum peak PSi_f of the photoelectron intensity of the Si2p narrow spectrum in the nitrogen-containing layer.
  • the maximum peak PSi_ of the photoelectron intensity of the Si2p narrow spectrum in the translucent substrate is obtained by performing X-ray photoelectron spectroscopy analysis on the translucent substrate.
  • When obtaining is characterized by a value obtained by dividing a maximum peak PSi_f in the nitrogen-containing layer at the maximum peak PSi_s in the translucent substrate (PSi_f) / (PSi_s) is 1.09 or less.
  • the phase shift mask of the present invention is characterized in that the phase shift film having a transfer pattern has the same configuration as the phase shift film of the mask blank of the present invention.
  • ArF light resistance and chemical resistance in the entire phase shift film can be improved.
  • the phase shift mask of the present invention has high transfer accuracy when exposure transfer is performed on a transfer object such as a resist film on a semiconductor substrate.
  • the semiconductor device manufacturing method of the present invention is characterized by comprising a step of exposing and transferring a transfer pattern onto a resist film on a semiconductor substrate using the phase shift mask of the present invention. For this reason, the semiconductor device manufacturing method of the present invention can perform exposure transfer of a transfer pattern onto a resist film with high transfer accuracy.
  • phase shift film of the mask blank has a stacked structure including a silicon nitride-based material layer (nitrogen-containing layer) and a silicon oxide-based material layer (oxygen-containing layer), the ArF light resistance of the phase shift film
  • the research was conducted from the viewpoints of sex and chemical resistance.
  • ArO light resistance and chemical resistance can be improved by adding oxygen to the silicon nitride material layer.
  • oxygen when oxygen is contained in the silicon nitride-based material layer, it is inevitable that the refractive index n and the extinction coefficient k are lowered, and the degree of freedom in designing the phase shift film is greatly reduced. It ’s hard.
  • the present inventors have used a silicon nitride material that is difficult to excite silicon when irradiated with ArF exposure light among silicon nitride materials, as a silicon nitride material layer of a phase shift film. It came to the idea that the ArF light resistance of the entire phase shift film could be improved.
  • the present inventors have used X-ray photoelectron spectroscopy (XPS: X) as an index as to whether or not silicon in a silicon nitride-based material layer is easily excited when irradiated with ArF exposure light.
  • XPS X-ray photoelectron spectroscopy
  • -I came up with the idea of applying ray Photoelectron Spectroscopy.
  • X-ray photoelectron spectroscopic analysis was performed on the silicon nitride-based material layer to obtain a Si2p narrow spectrum, and the use of the difference in the maximum peak as an index was examined.
  • the maximum peak of the photoelectron intensity of the Si2p narrow spectrum in the silicon nitride-based material layer corresponds to the number of photoelectrons emitted from the bond between nitrogen and silicon per unit time.
  • Photoelectrons are electrons that have been excited by irradiation with X-rays and have jumped out of the atomic orbitals.
  • a material which has a large number of photoelectrons emitted when X-rays are irradiated and is easily excited is a material having a small work function.
  • Such a silicon nitride-based material having a small work function can be said to be a material that is easily excited even when irradiated with ArF exposure light.
  • Transmissive substrate is formed of a relatively stable material mainly composed of SiO 2.
  • the translucent substrate used for the mask blank is required to have very small material variations such as small variations in optical characteristics. For this reason, the variation in work function of each material between a plurality of translucent substrates is very small.
  • the difference in the maximum peak of the photoelectron intensity of the Si2p narrow spectrum between the different translucent substrates is small, so the influence of the difference in the measurement conditions is greatly reflected in the maximum peak of the photoelectron intensity.
  • the maximum peak of the photoelectron intensity of the Si2p narrow spectrum in the translucent substrate is the number of photoelectrons emitted from the bond of oxygen and silicon per unit time, but the Si2p narrow spectrum in the silicon nitride material layer due to the difference in measurement conditions. This is a preferred reference value for correcting the difference in the maximum peak of photoelectron intensity.
  • phase shift film including at least a silicon nitride-based material layer (nitrogen-containing layer) and a silicon oxide-based material layer (oxygen-containing layer) on a light-transmitting substrate.
  • the silicon nitride material layer having the numerical value (PSi_f) / (PSi_s) of 1.09 or less is less likely to excite silicon in the layer when irradiated with ArF exposure light.
  • Such a silicon nitride-based material layer can be said to have a high abundance ratio of nitrogen and silicon bonds in a strong bond state.
  • the mask blank of the present invention includes a phase shift film on a translucent substrate, and the phase shift film includes a nitrogen-containing layer (silicon nitride-based material layer) and an oxygen-containing layer (silicon oxide-based material layer).
  • the oxygen-containing layer is formed of a material composed of silicon and oxygen, or a material composed of one or more elements selected from a metalloid element and a non-metal element, oxygen and silicon, and the nitrogen-containing layer is composed of silicon.
  • the nitrogen-containing layer is subjected to X-ray photoelectron spectroscopic analysis to contain nitrogen.
  • the maximum peak PSi_f of the photoelectron intensity of the Si2p narrow spectrum in the layer is obtained, and X-ray photoelectron spectroscopic analysis is performed on the translucent substrate to obtain the Si2p narrow spectrum in the translucent substrate.
  • the maximum peak PSi_s of Torr photoelectron intensity is obtained, the value (PSi_f) / (PSi_s) obtained by dividing the maximum peak PSi_f in the nitrogen-containing layer by the maximum peak PSi_s in the light-transmitting substrate is 1.09 or less. It is what.
  • FIG. 1 is a cross-sectional view showing a configuration of a mask blank 100 according to an embodiment of the present invention.
  • a mask blank 100 shown in FIG. 1 has a structure in which a phase shift film 2, a light shielding film 3, and a hard mask film 4 are laminated in this order on a translucent substrate 1.
  • the translucent substrate 1 can be formed of a glass material such as quartz glass, aluminosilicate glass, soda lime glass, low thermal expansion glass (SiO 2 —TiO 2 glass, etc.) in addition to synthetic quartz glass.
  • synthetic quartz glass has a high transmittance with respect to ArF excimer laser light (wavelength 193 nm), and is particularly preferable as a material for forming a light-transmitting substrate of a mask blank.
  • the phase shift film 2 is required to have a transmittance capable of effectively functioning the phase shift effect.
  • the phase shift film 2 is required to have at least a transmittance of 1% or more for ArF exposure light.
  • the phase shift film 2 preferably has a transmittance with respect to ArF exposure light of 10% or more, more preferably 15% or more, and further preferably 20% or more.
  • the phase shift film 2 is preferably adjusted so that the transmittance for ArF exposure light is 40% or less, more preferably 30% or less.
  • NTD Near Tone Development
  • a bright field mask transfer mask having a high pattern aperture ratio
  • the transmittance of the phase shift film is often used.
  • the transmittance of the phase shift film is adjusted to 10% or more, the balance between the zero-order light and the primary light of the light transmitted through the light-transmitting portion is improved.
  • the effect that the exposure light transmitted through the phase shift film interferes with the zero-order light and attenuates the light intensity is increased, and the pattern resolution on the resist film is improved.
  • the transmittance of the phase shift film 2 with respect to ArF exposure light is 10% or more.
  • the transmittance for ArF exposure light is 15% or more, the pattern edge enhancement effect of the transferred image (projection optical image) by the phase shift effect is further enhanced.
  • the transmittance of the phase shift film 2 with respect to ArF exposure light exceeds 40%, the influence of side lobes becomes too strong, which is not preferable.
  • the phase shift film 2 gives a predetermined phase difference between the transmitted ArF exposure light and the light that has passed through the air by the same distance as the thickness of the phase shift film 2. It is required to have a function to be generated. Moreover, it is preferable that the phase difference is adjusted to be in a range of 150 degrees or more and 200 degrees or less.
  • the lower limit value of the phase difference in the phase shift film 2 is more preferably 160 degrees or more, and further preferably 170 degrees or more.
  • the upper limit value of the phase difference in the phase shift film 2 is more preferably 190 degrees or less.
  • the thickness of the phase shift film 2 is preferably 90 nm or less, and more preferably 80 nm or less. On the other hand, the phase shift film 2 preferably has a thickness of 40 nm or more. If the thickness of the phase shift film 2 is less than 40 nm, the predetermined transmittance and phase difference required for the phase shift film may not be obtained.
  • the phase shift film 2 is a laminated film of two or more layers including at least a nitrogen-containing layer (silicon nitride-based material layer) and an oxygen-containing layer (silicon oxide-based material layer).
  • the phase shift film 2 only needs to have at least one nitrogen-containing layer and one oxygen-containing layer, and may further include one or more nitrogen-containing layers or oxygen-containing layers.
  • the phase shift film 2 may have a structure (a laminated structure of four or more layers) having two or more pairs of a laminated structure including a nitrogen-containing layer and an oxygen-containing layer. It is good also as a structure in which the content layer was provided.
  • the phase shift film 2 may include a material layer other than the nitrogen-containing layer and the oxygen-containing layer as long as the effects of the present invention are obtained.
  • the nitrogen-containing layer is preferably formed of a material consisting of silicon and nitrogen, or a material consisting of one or more elements selected from non-metallic elements and semi-metallic elements, and nitrogen and silicon.
  • the nitrogen-containing layer may contain any metalloid element. Among these metalloid elements, it is preferable to include one or more elements selected from boron, germanium, antimony, and tellurium because it can be expected to increase the conductivity of silicon used as a sputtering target.
  • the nitrogen-containing layer may contain any nonmetallic element.
  • the nonmetallic element means a nonmetallic element in a narrow sense (nitrogen, carbon, oxygen, phosphorus, sulfur, selenium), a halogen, and a noble gas.
  • the nitrogen-containing layer preferably has an oxygen content of 10 atomic% or less, more preferably 5 atomic% or less, and does not actively contain oxygen (composition by X-ray photoelectron spectroscopy or the like). More preferably, it is below the lower limit of detection when the analysis is performed. If the oxygen content in the nitrogen-containing layer is large, the difference in optical properties between the oxygen-containing layer and the phase-shift film is reduced.
  • the nitrogen-containing layer may contain a noble gas.
  • the noble gas is an element that can increase the deposition rate and improve the productivity by being present in the deposition chamber when the nitrogen-containing layer is deposited by reactive sputtering.
  • this noble gas is turned into plasma and collides with the target, the target constituent element pops out from the target, and a nitrogen-containing layer is formed on the translucent substrate 1 while taking in the reactive gas in the middle.
  • the noble gas in the film forming chamber is slightly taken in until the target constituent element jumps out of the target and adheres to the translucent substrate 1.
  • Preferred elements for the noble gas required for this reactive sputtering include argon, krypton, and xenon.
  • helium and neon having a small atomic weight can be actively incorporated into the thin film.
  • the nitrogen-containing layer preferably has a nitrogen content of 50 atomic% or more.
  • a silicon-based film has a very low refractive index n for ArF exposure light and a large extinction coefficient k for ArF exposure light.
  • refractive index n it means the refractive index n for ArF exposure light.
  • extinction coefficient k it means the extinction coefficient k for ArF exposure light.
  • the nitrogen content in the silicon-based film increases, the refractive index n tends to increase and the extinction coefficient k tends to decrease.
  • the nitrogen content of the nitrogen-containing layer is preferably 50 atomic% or more, More preferably, it is 51 atomic% or more, and further preferably 52 atomic% or more. Further, the nitrogen content in the nitrogen-containing layer is preferably 57 atomic% or less, and more preferably 56 atomic% or less. If the nitrogen-containing layer contains more nitrogen than the mixing ratio of Si 3 N 4 , it becomes difficult to make the nitrogen-containing layer amorphous or microcrystalline. In addition, the surface roughness of the nitrogen-containing layer is greatly deteriorated.
  • the nitrogen-containing layer preferably has a silicon content of 35 atomic% or more, more preferably 40 atomic% or more, and even more preferably 45 atomic% or more.
  • the nitrogen-containing layer is preferably formed of a material consisting of silicon and nitrogen.
  • the material composed of silicon and nitrogen can be regarded as including a material containing a noble gas.
  • X-ray photoelectron spectroscopic analysis is performed on the nitrogen-containing layer to obtain the maximum peak PSi_f of the photoelectron intensity of the Si2p narrow spectrum in the nitrogen-containing layer, and X-ray photoelectron spectroscopic analysis is performed on the translucent substrate 1 to transmit the light.
  • the numerical value (PSi_f) / (PSi_s) obtained by dividing the maximum peak PSi_f in the nitrogen-containing layer by the maximum peak PSi_s in the translucent substrate 1 is 1. 0.09 or less is preferable.
  • a nitrogen-containing layer having a numerical value (PSi_f) / (PSi_s) of 1.09 or less is difficult to be excited even when irradiated with ArF exposure light as described above.
  • ArF light resistance can be improved by setting it as such a nitrogen content layer.
  • this nitrogen-containing layer has a high abundance ratio of nitrogen and silicon bonds in a strong bond state.
  • chemical resistance can be improved by setting it as such a nitrogen containing layer.
  • the numerical value (PSi_f) / (PSi_s) is preferably 1.085 or less, and more preferably 1.08 or less.
  • the fluorine gas in an excited state cuts the bond between nitrogen and silicon, generates a relatively low boiling point silicon fluoride, and volatilizes.
  • a pattern is formed in the nitrogen-containing layer.
  • a nitrogen-containing layer having a numerical value (PSi_f) / (PSi_s) of 1.09 or less it can be said that the etching rate of dry etching with respect to a fluorine-based gas is slow because the bond between nitrogen and silicon is difficult to break. Thereby, the difference in etching rate between the nitrogen-containing layer and the oxygen-containing layer of the phase shift film 2 is reduced, and the step difference in the side wall of the pattern formed on the phase shift film 2 by dry etching can be reduced.
  • a mask defect correction technique for a halftone phase shift mask by supplying xenon difluoride (XeF 2 ) gas to the black defect portion of the phase shift film, the portion is irradiated with an electron beam.
  • a defect correction technique may be used in which the black defect portion is changed to volatile fluoride and removed by etching.
  • EB defect correction Such defect correction performed by irradiating charged particles such as an electron beam is simply referred to as EB defect correction.
  • the pattern shape after EB defect correction tends to be a step shape that forms a step between the nitrogen-containing layer and the oxygen-containing layer.
  • XeF 2 gas used for EB defect correction is known as a non-excited etching gas when isotropic etching is performed on a silicon-based material.
  • the etching is performed by a process of surface adsorption of non-excited XeF 2 gas to a silicon-based material, separation into Xe and F, generation of a high-order fluoride of silicon, and volatilization.
  • a non-excited fluorine-based gas such as XeF 2 gas is supplied to the black defect portion of the thin film pattern, and the fluorine-based gas is adsorbed on the surface of the black defect portion.
  • the electron beam is irradiated to the black defect portion.
  • the silicon atoms in the black defect portion are excited to promote the bond with fluorine, and volatilize as a high-order fluoride of silicon much faster than when not irradiated with an electron beam.
  • the nitrogen-containing layer which has a small number of photoelectrons emitted when irradiated with X-rays and is difficult to be excited, is a material that is difficult to be excited even when irradiated with an electron beam.
  • the nitrogen-containing layer having the above numerical value (PSi_f) / (PSi_s) of 1.09 or less is not easily excited by irradiation with an electron beam, and can slow down the correction rate when EB defect correction is performed. .
  • the correction rate difference in the EB defect correction between the nitrogen-containing layer and the oxygen-containing layer of the phase shift film 2 is reduced, and the step on the side wall of the pattern where the EB defect correction of the phase shift film 2 is performed can be reduced. it can.
  • both AlK ⁇ rays and MgK ⁇ rays can be applied. It is preferable to use it. Note that this specification describes a case where X-ray photoelectron spectroscopy analysis using X-rays of AlK ⁇ rays is performed.
  • a method for obtaining a Si2p narrow spectrum by performing X-ray photoelectron spectroscopic analysis on the translucent substrate 1 and the nitrogen-containing layer is generally performed according to the following procedure. That is, first, a wide spectrum is obtained by performing a wide scan to obtain photoelectron intensity (number of photoelectrons emitted per unit time from a measurement object irradiated with X-rays) with a wide band of binding energy, and the transmission spectrum is obtained. All peaks derived from constituent elements of the optical substrate 1 and the nitrogen-containing layer are specified. After that, each narrow spectrum is acquired by performing narrow scan, which has a higher resolution than the wide scan but has a narrower binding energy bandwidth, with a bandwidth around the peak of interest (Si2p).
  • constituent elements of the translucent substrate 1 and the nitrogen-containing layer which are measurement objects using X-ray photoelectron spectroscopy in the present invention, are known in advance.
  • the narrow spectrum required in the present invention is limited to the Si2p narrow spectrum.
  • the Si2p narrow spectrum may be acquired by omitting the step of acquiring the wide spectrum.
  • the maximum peak (PSi_s, PSi_f) of the photoelectron intensity in the Si2p narrow spectrum obtained by performing X-ray photoelectron spectroscopy analysis on the translucent substrate 1 and the nitrogen-containing layer has a binding energy of 96 [eV] or more and 106 [eV].
  • the maximum peak in the following range is preferable. This is because the peak outside the range of the binding energy may not be a photoelectron emitted from a Si—N bond or a Si—O bond.
  • Nitrogen-containing layer the existence number the Si 3 N 4 bond, Si 3 N 4 bond, Si a N b binding (although, b / [a + b] ⁇ 4/7), Si-Si bonds, Si-O bonds and The ratio divided by the total number of Si-ON bonds is preferably 0.88 or more.
  • a nitrogen-containing layer having a high stable bond abundance ratio has high ArF light resistance and chemical resistance.
  • the Si—O bond is the most stable bond, but it is difficult to contain a large amount of oxygen in the nitrogen-containing layer due to the above-mentioned restrictions.
  • the Si 3 N 4 bond is the most stable bond, and the nitrogen-containing layer having a high abundance ratio of the Si 3 N 4 bond as described above has ArF light resistance and chemical resistance. high.
  • the total film thickness of all the nitrogen-containing layers provided in the phase shift film 2 is preferably 30 nm or more. If the total film thickness of all the nitrogen-containing layers is less than 30 nm, the predetermined transmittance (40% or less) and phase difference (150 degrees or more and 200 degrees or less) required as a phase shift film may not be obtained. .
  • the total film thickness of all the nitrogen-containing layers is more preferably 35 nm or more, and further preferably 40 nm or more.
  • the total film thickness of all the nitrogen-containing layers provided in the phase shift film 2 is preferably 60 nm or less, and more preferably 55 nm or less.
  • the oxygen-containing layer is preferably formed of a material composed of silicon and oxygen, or a material composed of one or more elements selected from metalloid elements and nonmetallic elements, oxygen, and silicon.
  • the oxygen-containing layer may contain any metalloid element. Among these metalloid elements, it is preferable to include one or more elements selected from boron, germanium, antimony, and tellurium because it can be expected to increase the conductivity of silicon used as a sputtering target.
  • the oxygen-containing layer may contain any nonmetallic element.
  • the nonmetallic element means a nonmetallic element in a narrow sense (nitrogen, carbon, oxygen, phosphorus, sulfur, selenium), a halogen, and a noble gas.
  • the oxygen-containing layer may contain a noble gas for the same reason as the nitrogen-containing layer.
  • the oxygen-containing layer preferably has a total content of nitrogen and oxygen of 50 atomic% or more.
  • the total content of nitrogen and oxygen in the oxygen-containing layer is preferably 50 atomic% or more, and more preferably 55 atomic% or more. More preferably, it is more preferably 60 atomic% or more.
  • the total content of nitrogen and oxygen in the oxygen-containing layer is preferably 66 atomic percent or less. If the nitrogen-containing layer contains more nitrogen and oxygen than the mixing ratio of SiO 2 or Si 3 N 4 , it becomes difficult to make the oxygen-containing layer amorphous or microcrystalline. In addition, the surface roughness of the oxygen-containing layer is greatly deteriorated.
  • the oxygen-containing layer is preferably formed of a material composed of silicon, nitrogen and oxygen.
  • the oxygen-containing layer may be formed of a material composed of silicon and oxygen.
  • the material composed of silicon, nitrogen and oxygen and the material composed of silicon and oxygen can be regarded as including a material containing noble gas.
  • the oxygen-containing layer preferably has an oxygen content of 15 atomic% or more.
  • the oxygen content in the oxygen-containing layer is preferably 15 atomic% or more, more preferably 20 atomic% or more, and 25 atomic%. More preferably, the above is true.
  • the total film thickness of all the oxygen-containing layers provided in the phase shift film 2 is preferably 10 nm or more, more preferably 15 nm or more, and further preferably 20 nm or more. On the other hand, the total film thickness of all the oxygen-containing layers provided in the phase shift film 2 is preferably 50 nm or less, and more preferably 45 nm or less.
  • the nitrogen-containing layer and the oxygen-containing layer have an amorphous structure because the pattern edge roughness becomes good when a pattern is formed by etching.
  • the nitrogen-containing layer or the oxygen-containing layer has a composition that is difficult to have an amorphous structure, the amorphous structure and the microcrystalline structure are preferably mixed.
  • the nitrogen-containing layer preferably has a refractive index n of 2.3 or more, more preferably 2.4 or more. Further, the nitrogen-containing layer preferably has an extinction coefficient k of 0.5 or less, and more preferably 0.4 or less. On the other hand, the refractive index n of the nitrogen-containing layer is preferably 3.0 or less, and more preferably 2.8 or less. Further, the nitrogen-containing layer preferably has an extinction coefficient k of 0.16 or more, and more preferably 0.2 or more.
  • the oxygen-containing layer preferably has a refractive index n of 1.5 or more, more preferably 1.8 or more.
  • the oxygen-containing layer preferably has an extinction coefficient k of 0.15 or less, and more preferably 0.1 or less.
  • the refractive index n of the oxygen-containing layer is preferably 2.2 or less, and more preferably 1.9 or less.
  • the oxygen-containing layer preferably has an extinction coefficient k of 0 or more.
  • the refractive index n and extinction coefficient k of a thin film are not determined only by the composition of the thin film.
  • the film density and crystal state of the thin film are factors that influence the refractive index n and the extinction coefficient k. For this reason, various conditions when forming a thin film by reactive sputtering are adjusted, and the thin film is formed so as to have a desired refractive index n and extinction coefficient k.
  • the ratio of the mixed gas of noble gas and reactive gas is changed. It is not limited only to adjustment.
  • the pressure in the deposition chamber, the power applied to the target, and the positional relationship such as the distance between the target and the light-transmitting substrate are various. These film forming conditions are unique to the film forming apparatus, and are appropriately adjusted so that the formed thin film has a desired refractive index n and extinction coefficient k.
  • the nitrogen-containing layer and the oxygen-containing layer are formed by sputtering, but any sputtering such as DC sputtering, RF sputtering, and ion beam sputtering can be applied.
  • a target with low conductivity such as a silicon target or a silicon compound target that does not contain a metalloid element or has a low content
  • the film stress of the phase shift film 2 is preferably 275 MPa or less, more preferably 165 MPa or less, and further preferably 110 MPa or less.
  • the phase shift film 2 formed by the above sputtering has a relatively large film stress. For this reason, it is preferable to reduce the film stress of the phase shift film 2 by subjecting the phase shift film 2 formed by sputtering to a heat treatment or a light irradiation process using a flash lamp or the like.
  • the light shielding film 3 is preferably provided on the phase shift film 2.
  • the outer peripheral region of the region where the transfer pattern is formed (transfer pattern forming region) is exposed and transferred to a resist film on a semiconductor wafer using an exposure device.
  • OD optical density
  • the optical density is required to be at least greater than 2.0.
  • the phase shift film 2 has a function of transmitting exposure light with a predetermined transmittance, and it is difficult to ensure the above optical density with the phase shift film 2 alone.
  • the light shielding film 3 is laminated on the phase shift film 2 in order to secure an insufficient optical density at the stage of manufacturing the mask blank 100.
  • the optical density in the laminated structure of the phase shift film 2 and the light shielding film 3 is preferably 2.5 or more, and more preferably 2.8 or more.
  • the optical density in the laminated structure of the phase shift film 2 and the light shielding film 3 is preferably 4.0 or less.
  • the light shielding film 3 can be applied to either a single layer structure or a laminated structure of two or more layers.
  • each layer of the light-shielding film 3 having a single-layer structure and the light-shielding film 3 having a laminated structure of two or more layers may have a structure having substantially the same composition in the film or layer thickness direction. The composition may be inclined.
  • the light shielding film 3 is preferably formed of a material containing chromium.
  • the material containing chromium that forms the light-shielding film 3 include a material containing one or more elements selected from oxygen, nitrogen, carbon, boron, and fluorine in addition to chromium metal.
  • a chromium-based material is etched with a mixed gas of a chlorine-based gas and an oxygen gas, but chromium metal does not have a very high etching rate with respect to this etching gas.
  • the material for forming the light-shielding film 3 is one or more selected from oxygen, nitrogen, carbon, boron and fluorine as chromium. It is preferable to use a material containing an element.
  • the chromium-containing material forming the light-shielding film 3 may contain one or more elements of molybdenum and tin. By including one or more elements of molybdenum and tin in the chromium-containing material, the etching rate for the mixed gas of chlorine-based gas and oxygen gas can be further increased.
  • the other film is made of the material containing chromium.
  • the light-shielding film 3 be formed of a material containing silicon.
  • a material containing chromium is etched by a mixed gas of a chlorine-based gas and an oxygen gas, but a resist film formed of an organic material is easily etched by this mixed gas.
  • a material containing silicon is generally etched with a fluorine-based gas or a chlorine-based gas.
  • etching gases basically do not contain oxygen, the amount of reduction in the resist film formed of an organic material can be reduced as compared with the case of etching with a mixed gas of chlorine gas and oxygen gas. For this reason, the film thickness of the resist film can be reduced.
  • the material containing silicon that forms the light-shielding film 3 may contain a transition metal or a metal element other than the transition metal. This is because when the phase shift mask 200 is manufactured from the mask blank 100, the pattern formed by the light shielding film 3 is basically a light shielding band pattern in the outer peripheral region, and ArF exposure light is emitted compared to the transfer pattern forming region. This is because it is rare that the integrated amount to be irradiated is small or the light-shielding film 3 remains in a fine pattern, and even if ArF light resistance is low, a substantial problem hardly occurs.
  • the light shielding film 3 contains a transition metal
  • the light shielding performance is greatly improved as compared with the case where no transition metal is contained, and the thickness of the light shielding film can be reduced.
  • transition metals to be included in the light-shielding film 3 molybdenum (Mo), tantalum (Ta), tungsten (W), titanium (Ti), chromium (Cr), hafnium (Hf), nickel (Ni), vanadium (V) , Zirconium (Zr), ruthenium (Ru), rhodium (Rh), niobium (Nb), palladium (Pd), or any one metal or an alloy of these metals.
  • the silicon-containing material for forming the light-shielding film 3 is a material containing silicon and nitrogen, or a material containing one or more elements selected from a semi-metal element and a non-metal element in a material consisting of silicon and nitrogen. You may apply.
  • the mask blank 100 is formed of a material having etching selectivity with respect to an etching gas used when etching the light shielding film 3 on the light shielding film 3. More preferably, the hard mask film 4 is further laminated. Since the light-shielding film 3 has a function of ensuring a predetermined optical density, there is a limit to reducing the thickness thereof. It is sufficient for the hard mask film 4 to have a film thickness that can function as an etching mask until dry etching for forming a pattern on the light shielding film 3 immediately below the hard mask film 4 is completed. Not receive.
  • the thickness of the hard mask film 4 can be made much thinner than the thickness of the light shielding film 3.
  • the resist film made of an organic material is sufficient to have a thickness sufficient to function as an etching mask until dry etching for forming a pattern on the hard mask film 4 is completed.
  • the thickness of the resist film can be greatly reduced.
  • the hard mask film 4 is preferably formed of the material containing silicon. Since the hard mask film 4 in this case tends to have low adhesion to the organic material resist film, the surface of the hard mask film 4 is subjected to HMDS (Hexamethyldisilazane) treatment to improve the surface adhesion. It is preferable. In this case, the hard mask film 4 is more preferably formed of SiO 2 , SiN, SiON or the like. In addition to the above, a material containing tantalum is also applicable as the material of the hard mask film 4 when the light shielding film 3 is formed of a material containing chromium.
  • HMDS Hexamethyldisilazane
  • the material containing tantalum in this case examples include a material in which tantalum contains one or more elements selected from nitrogen, oxygen, boron and carbon in addition to tantalum metal.
  • the material include Ta, TaN, TaON, TaBN, TaBON, TaCN, TaCON, TaBCN, TaBOCN, and the like.
  • the hard mask film 4 is preferably formed of the above-described material containing chromium.
  • a resist film made of an organic material is formed with a thickness of 100 nm or less in contact with the surface of the hard mask film 4.
  • a transfer pattern (phase shift pattern) to be formed on the hard mask film 4 may be provided with SRAF (Sub-Resolution Assist Feature) having a line width of 40 nm.
  • SRAF Sub-Resolution Assist Feature
  • the resist film preferably has a film thickness of 80 nm or less.
  • FIG. 2 shows a schematic cross-sectional view of a process of manufacturing the phase shift mask 200 from the mask blank 100 according to the embodiment of the present invention.
  • the phase shift mask 200 of the present invention is a phase shift mask 200 including a phase shift film 2 (phase shift pattern 2a) on which a transfer pattern is formed on a translucent substrate 1, and the phase shift film 2 (phase shift film 2).
  • the shift pattern 2a) includes at least a nitrogen-containing layer and an oxygen-containing layer, and the oxygen-containing layer is made of a material composed of silicon and oxygen, or one or more elements selected from metalloid elements and nonmetallic elements, oxygen and silicon.
  • the nitrogen-containing layer is formed of a material consisting of silicon and nitrogen, or is formed of a material consisting of one or more elements selected from non-metallic elements and metalloid elements, nitrogen and silicon, and the nitrogen-containing layer X-ray photoelectron spectroscopic analysis is performed to obtain the maximum peak PSi_f of the Si2p narrow spectrum photoelectron intensity in the nitrogen-containing layer.
  • a value obtained by dividing the maximum peak PSi_f in the nitrogen-containing layer by the maximum peak PSi_s in the translucent substrate ( PSi_f) / (PSi_s) is 1.09 or less.
  • This phase shift mask 200 has the same technical features as the mask blank 100. Matters relating to the translucent substrate 1, the phase shift film 2, and the light shielding film 3 (light shielding pattern) in the phase shift mask 200 are the same as those of the mask blank 100. In such a phase shift mask 200, the ArF light resistance of the entire phase shift film 2 (phase shift pattern 2a) is improved, and the chemical resistance is also improved. Therefore, when the phase shift mask 200 is set on a mask stage of an exposure apparatus using ArF excimer laser as exposure light and the phase shift pattern 2a is exposed and transferred to the resist film on the semiconductor device, the resist film on the semiconductor device is also used. The pattern can be transferred with sufficient accuracy to meet the design specifications.
  • phase shift mask 200 an example of a method of manufacturing the phase shift mask 200 will be described according to the manufacturing process shown in FIG.
  • a material containing chromium is applied to the light shielding film 3
  • a material containing silicon is applied to the hard mask film 4.
  • a resist film was formed by spin coating in contact with the hard mask film 4 in the mask blank 100.
  • a first pattern which is a transfer pattern (phase shift pattern) to be formed on the phase shift film 2
  • a predetermined process such as a development process is further performed.
  • a first resist pattern 5a was formed (see FIG. 2A).
  • dry etching using a fluorine-based gas was performed using the first resist pattern 5a as a mask to form a first pattern (hard mask pattern 4a) on the hard mask film 4 (see FIG. 2B). .
  • a resist film was formed on the mask blank 100 by a spin coating method.
  • a second pattern which is a pattern (light-shielding pattern) to be formed on the light-shielding film 3
  • a predetermined process such as a development process is further performed to provide a second pattern having a light-shielding pattern.
  • Resist pattern 6b was formed.
  • dry etching using a mixed gas of chlorine-based gas and oxygen gas is performed to form a second pattern (light-shielding pattern 3b) on the light-shielding film 3 (FIG. 2). (See (E)).
  • the second resist pattern 6b was removed, and a predetermined process such as cleaning was performed to obtain the phase shift mask 200 (see FIG. 2F).
  • the chlorine-based gas used in the dry etching is not particularly limited as long as it contains Cl.
  • a chlorine-based gas Cl 2, SiCl 2, CHCl 3, CH 2 Cl 2, CCl 4, BCl 3 and the like.
  • the fluorine gas used in the dry etching is not particularly limited as long as F is contained.
  • a fluorine-based gas CHF 3, CF 4, C 2 F 6, C 4 F 8, SF 6 , and the like.
  • the fluorine-based gas not containing C has a relatively low etching rate of the glass material with respect to the light-transmitting substrate 1, damage to the light-transmitting substrate 1 can be further reduced.
  • the semiconductor device manufacturing method of the present invention is characterized in that a pattern is exposed and transferred onto a resist film on a semiconductor substrate using the phase shift mask 200 manufactured using the mask blank 100 described above. Since the mask blank 100 of the present invention and the phase shift mask 200 manufactured using the mask blank 100 have the effects as described above, the phase shift mask is used as a mask stage of an exposure apparatus using an ArF excimer laser as exposure light. When 200 is set and the phase shift pattern 2a is exposed and transferred to the resist film on the semiconductor device, the pattern can be transferred to the resist film on the semiconductor device with sufficient accuracy to satisfy the design specifications.
  • the mask blank according to another embodiment includes a phase shift film on a light-transmitting substrate, and the phase shift film contains oxygen on the surface opposite to the light-transmitting substrate and a region in the vicinity thereof.
  • the phase shift film is a material composed of silicon and nitrogen, or one or more elements selected from nonmetallic elements and metalloid elements, and nitrogen and silicon.
  • X-ray photoelectron spectroscopy analysis is performed on the phase shift film to obtain the maximum peak PSi_f of the Si2p narrow spectrum photoelectron intensity in the phase shift film, and X-ray photoelectron spectroscopy analysis is performed on the translucent substrate.
  • the maximum peak PSi_f of the photoelectron intensity of the Si2p narrow spectrum in the translucent substrate is obtained, the maximum peak PSi_f in the phase shift film is obtained on the translucent substrate.
  • a value obtained by dividing the maximum peak PSi_s kicking (PSi_f) / (PSi_s) is characterized in that it is 1.09 or less.
  • the region excluding the composition gradient portion of the phase shift film has the same characteristics as the nitrogen-containing layer of the phase shift film of the present invention. Further, the composition gradient portion of the phase shift film has high ArF light resistance and chemical resistance due to the increased oxygen content. For this reason, the mask blank of this another embodiment has a higher ArF light resistance in the entire phase shift film than the conventional mask blank including a phase shift film made of a silicon nitride-based material having a single layer structure. The nature is also high. In addition, about the other matter regarding the phase shift film of this another embodiment, it is the same as that of the nitrogen containing layer in the phase shift film of embodiment of this invention.
  • the phase shift mask according to another embodiment includes a phase shift film in which a transfer pattern is formed on a translucent substrate, and the phase shift film has a surface opposite to the translucent substrate and A single-layer film having a composition gradient portion having an increased oxygen content in a region in the vicinity thereof, wherein the phase shift film is one or more materials selected from a material consisting of silicon and nitrogen, or a nonmetallic element and a semimetallic element
  • An X-ray photoelectron spectroscopic analysis is performed on the phase shift film to obtain the maximum peak PSi_f of the Si2p narrow spectrum photoelectron intensity in the phase shift film, and is formed on the translucent substrate.
  • the phase shift mask of this another embodiment has a phase shift compared to a phase shift mask having a phase shift film made of a silicon nitride-based material having a conventional single layer structure.
  • the shift film as a whole has high ArF light resistance and high chemical resistance.
  • the phase shift mask of another embodiment is set on the mask stage of an exposure apparatus that uses ArF excimer laser as exposure light and the phase shift pattern is exposed and transferred to a resist film on the semiconductor device, The pattern can be transferred to the resist film with sufficient accuracy to meet the design specifications.
  • Example 1 Manufacture of mask blanks
  • a translucent substrate 1 made of synthetic quartz glass having a main surface dimension of about 152 mm ⁇ about 152 mm and a thickness of about 6.25 mm was prepared.
  • the translucent substrate 1 had its end face and main surface polished to a predetermined surface roughness, and then subjected to a predetermined cleaning process and a drying process.
  • a phase shift film 2 having a two-layer structure in which a nitrogen-containing layer and an oxygen-containing layer were laminated was formed on the translucent substrate 1 by the following procedure.
  • the translucent substrate 1 is installed in a single wafer RF sputtering apparatus, a silicon (Si) target is used, and a mixed gas of krypton (Kr), helium (He) and nitrogen (N 2 ) is used as a sputtering gas,
  • Kr krypton
  • He helium
  • N 2 nitrogen
  • a nitrogen-containing layer (silicon nitride layer) of the phase shift film 2 made of silicon and nitrogen was formed to a thickness of 58 nm on the translucent substrate 1 by reactive sputtering using an RF power source (RF sputtering).
  • the translucent substrate 1 on which a nitrogen-containing layer is formed is installed in a single wafer RF sputtering apparatus, a silicon dioxide (SiO 2 ) target is used, argon (Ar) gas is used as a sputtering gas, and an RF power source
  • a silicon dioxide (SiO 2 ) target is used
  • argon (Ar) gas is used as a sputtering gas
  • an RF power source An oxygen-containing layer (silicon oxide layer) of the phase shift film 2 made of silicon and oxygen was formed on the nitrogen-containing layer with a thickness of 11 nm by reactive sputtering (RF sputtering).
  • the translucent substrate 1 on which the phase shift film 2 was formed was placed in an electric furnace, and was heated in the atmosphere at a heating temperature of 550 ° C. and a processing time of 1 hour.
  • the electric furnace having the same structure as the vertical furnace disclosed in FIG. 5 of JP-A-2002-162726 was used.
  • the heat treatment in the electric furnace was performed in a state where the atmosphere through the chemical filter was introduced into the furnace.
  • a coolant was injected into the electric furnace, and the substrate was forcedly cooled to a predetermined temperature (around 250 ° C.).
  • This forced cooling was performed in a state where nitrogen gas as a refrigerant was introduced into the furnace (substantially a nitrogen gas atmosphere). After this forced cooling, the substrate was taken out from the electric furnace and naturally cooled until the temperature dropped to room temperature (25 ° C. or lower) in the atmosphere.
  • phase shift film 2 The transmittance and phase difference of the ArF excimer laser at the wavelength of light (about 193 nm) were measured on the phase shift film 2 after the heat treatment using a phase shift amount measuring device (MPM-193 manufactured by Lasertec Corporation). The phase difference was 21% and 177 degrees.
  • a phase shift film is formed on the main surface of the newly prepared translucent substrate under the same conditions as the above phase shift film, and further subjected to heat treatment under the same conditions as described above. J. A. Woollam M-2000D) was used to measure the optical properties of the phase shift film.
  • the nitrogen-containing layer has a refractive index n of 2.56 at a wavelength of 193 nm and an extinction coefficient k of 0.35
  • the oxygen-containing layer has a refractive index n of 1.59 at a wavelength of 193 nm and an extinction coefficient k.
  • phase shift film is formed on the main surface of the newly prepared translucent substrate in addition to the above, under the same film formation conditions as the phase shift film 2 of the first embodiment, and further under the same conditions as above. Heat treatment was performed.
  • X-ray photoelectron spectroscopic analysis was performed on the translucent substrate and the phase shift film after the heat treatment. In this X-ray photoelectron spectroscopic analysis, the surface of the phase shift film (or translucent substrate) is irradiated with X-rays (AlK ⁇ rays: 1486 eV) and emitted from the phase shift film (or translucent substrate).
  • the intensity of photoelectrons is measured, and the surface of the phase shift film (or translucent substrate) is dug for a predetermined time (depth of about 0.7 nm) by Ar gas sputtering, and the phase shift film (or translucent film) in the dug area is dug.
  • substrate) is measured. Then, by repeating this step, Si2p narrow spectra were obtained for each of the phase shift film and the translucent substrate.
  • the obtained Si2p narrow spectrum has a low energy displacement with respect to the spectrum when analyzed on a conductor because the light-transmitting substrate 1 is an insulator. In order to correct this displacement, correction is performed in accordance with the peak of carbon, which is a conductor.
  • AlK ⁇ ray 1486.6 eV
  • the photoelectron detection region was 200 ⁇ m ⁇
  • the extraction angle was 45 deg (the same applies to the following comparative examples).
  • FIG. 3 shows each Si2p narrow spectrum of the nitrogen-containing layer (silicon nitride layer) of the phase shift film of Example 1 and the translucent substrate.
  • the obtained Si2p narrow spectrum of the nitrogen-containing layer includes peaks of Si 3 N 4 bond, Si a N b bond (b / [a + b] ⁇ 4/7), Si—O bond, and Si—ON bond, respectively. It is. And each peak position of Si 3 N 4 bond, Si a N b bond, Si—O bond and Si—ON bond (where Si—O bond and Si—ON bond are the same peak position), and half value Peak separation was performed with the full width at half maximum (FWHM) fixed. Specifically, the peak position of Si a N b bond is 100.4 eV, the peak position of Si 3 N 4 bond is 102.0 eV, and the peak positions of Si—O bond and Si—ON bond are 103.3 eV. Then, peak separation was performed by setting the full width at half maximum FWHM to 2.06 (the same applies to Comparative Example 1 below).
  • the spectrum of each of the peak-separated Si a N b bond, Si 3 N 4 bond, Si—O bond, and Si—ON bond was calculated by an algorithm of a known technique provided in the analyzer.
  • the area after subtracting the background is calculated, and based on the calculated areas, the ratio of the number of Si a N b bonds, the ratio of the number of Si 3 N 4 bonds, the Si—O bond, and the Si
  • the ratio of the number of -ON bonds was calculated.
  • the ratio of the number of Si a N b bonds is 0.092
  • the ratio of the number of Si 3 N 4 bonds is 0.884
  • the ratio of the number of Si—O bonds and Si—ON bonds is 0.8. 024.
  • the nitrogen-containing layer the existence number the Si 3 N 4 bond, Si 3 N 4 bond, Si a N b binding ratio obtained by dividing the total number of existing Si-O bond and Si-ON bond 0.88
  • the above condition was satisfied (0.884 is satisfied).
  • a mask blank 100 having a structure in which the phase shift film 2, the light shielding film 3, and the hard mask film 4 were laminated on the light transmitting substrate 1 was manufactured.
  • phase shift mask 200 of Example 1 was produced according to the following procedure. First, the surface of the hard mask film 4 was subjected to HMDS treatment. Subsequently, a resist film made of a chemically amplified resist for electron beam drawing with a film thickness of 80 nm was formed in contact with the surface of the hard mask film 4 by spin coating. Next, a first pattern which is a phase shift pattern to be formed on the phase shift film 2 is drawn on the resist film with an electron beam, a predetermined development process and a cleaning process are performed, and a first pattern having the first pattern is formed. 1 resist pattern 5a was formed (see FIG. 2A).
  • a resist film made of a chemically amplified resist for electron beam lithography was formed on the light-shielding pattern 3a with a film thickness of 150 nm by spin coating.
  • a second pattern which is a pattern (light-shielding pattern) to be formed on the light-shielding film 3, is exposed and drawn on the resist film, and a predetermined process such as a development process is further performed, whereby the second pattern having the light-shielding pattern Resist pattern 6b was formed.
  • the process of intermittently irradiating ArF excimer laser light at an integrated dose of 40 kJ / cm 2 was performed on the phase shift pattern 2 a of the halftone phase shift mask 200 of the manufactured Example 1.
  • the CD (Critical Dimension) change amount of the phase shift pattern 2a before and after this irradiation process is 1.2 nm at the maximum, and is a CD change amount that can ensure high transfer accuracy as the phase shift mask 200.
  • the halftone phase shift mask 200 of Example 1 was separately manufactured in the same procedure, and the phase shift mask 200 was cleaned with a chemical solution. Specifically, the phase shift mask 200 is first subjected to SPM cleaning (cleaning solution: H 2 SO 4 + H 2 O 2 ), then rinsed with DI (DeIonized) water, and then APM cleaning (cleaning solution). : NH 4 OH + H 2 O 2 + H 2 O), and finally a rinse step of rinsing with DI water was taken as one cycle, and this was repeated 20 cycles.
  • the phase shift pattern 2a of the phase shift mask 200 after the cleaning treatment was observed with a cross-sectional TEM (Transmission Electron Microscope). As a result, it was confirmed that the side wall shape of the phase shift pattern 2a was good, and no conspicuous step was found between the silicon nitride layer and the silicon oxide layer.
  • Comparative Example 1 Manufacture of mask blanks
  • the mask blank of Comparative Example 1 was manufactured in the same procedure as the mask blank 100 of Example 1 except that the conditions for the heat treatment on the phase shift film were changed. Specifically, the translucent substrate 1 on which the phase shift film 2 of Comparative Example 1 was formed was placed on a hot plate, and heat treatment was performed in the air under the conditions of a heating temperature of 280 ° C. and a treatment time of 30 minutes. . After the heat treatment, forced cooling was performed using a refrigerant until the temperature decreased to room temperature (25 ° C. or lower).
  • the transmittance and phase difference of the ArF excimer laser at the wavelength of light were measured with a phase shift amount measuring device (MPM-193, manufactured by Lasertec Corporation) on the phase shift film after the heat treatment. %, The phase difference was 177 degrees. Further, in the same manner as in Example 1, the optical characteristics of the phase shift film were measured. As a result, the nitrogen-containing layer has a refractive index n of 2.58 at a wavelength of 193 nm and an extinction coefficient k of 0.39, and the oxygen-containing layer has a refractive index n of 1.59 at a wavelength of 193 nm and an extinction coefficient k. Was 0.00.
  • Example 1 As in the case of Example 1, a phase shift film is formed on the main surface of a newly prepared translucent substrate under the same film formation conditions as the phase shift film of Comparative Example 1, and heat treatment is further performed under the same conditions. went. Next, the same X-ray photoelectron spectroscopic analysis as in Example 1 was performed on the light-transmitting substrate and the phase shift film after the heat treatment.
  • FIG. 4 shows each Si2p narrow spectrum of the nitrogen-containing layer (silicon nitride layer) of the phase shift film of Comparative Example 1 and the translucent substrate.
  • Example 1 the Si 2p narrow spectrum of the nitrogen-containing layer of Comparative Example 1 was compared with Si 3 N 4 bond, Si a N b bond (b / [a + b] ⁇ 4/7), Si—O. Bonds and Si—ON bonds were separated into peaks, and the ratio of the number of each bond was calculated. As a result, the ratio of the number of Si a N b bonds is 0.093, the ratio of the number of Si 3 N 4 bonds is 0.873, and the ratio of the number of Si—O bonds and Si—ON bonds is 0.8. 034.
  • the nitrogen-containing layer of this Comparative Example 1 the existence number the Si 3 N 4 bond, Si 3 N 4 bond, Si a N b binding was divided by the total number of existing Si-O bond and Si-ON bond The ratio did not satisfy the condition of 0.88 or more (not satisfied with 0.873).
  • Example 2 a light shielding film and a hard mask film were formed on the phase shift film of the translucent substrate.
  • the mask blank of the comparative example 1 provided with the structure which laminated
  • phase shift mask of Comparative Example 1 was manufactured in the same procedure as in Example 1. Further, similarly to Example 1, the ArF excimer laser light was intermittently irradiated with an integrated dose of 40 kJ / cm 2 to the phase shift pattern of the manufactured halftone phase shift mask of Comparative Example 1.
  • the CD change amount of the phase shift pattern 2a before and after this irradiation treatment is 3.5 nm at the maximum, and the CD change amount that can ensure high transfer accuracy as a phase shift mask has not been reached.
  • the halftone phase shift mask of Comparative Example 1 is separately manufactured in the same procedure as in Example 1, and the phase shift mask is subjected to a cleaning process with a chemical solution. It was.
  • the phase shift pattern of the phase shift mask after the cleaning treatment was observed with a cross-section TEM (Transmission Electron Microscope). As a result, the side wall shape of the phase shift pattern had a level difference between the silicon nitride layer and the silicon oxide layer.
  • phase shift mask of Comparative Example 1 after the cumulative irradiation treatment with ArF excimer laser light was exposed and transferred to the resist film on the semiconductor device with exposure light having a wavelength of 193 nm using AIMS 193 (manufactured by Carl Zeiss).
  • AIMS 193 manufactured by Carl Zeiss
  • a simulation of the transferred image was performed. When the exposure transfer image of this simulation was verified, the design specification could not be satisfied with the fine pattern portion. From this result, when the phase shift mask of Comparative Example 1 after the integrated irradiation process with ArF excimer laser light is set on the mask stage of the exposure apparatus and exposed and transferred to the resist film on the semiconductor device, the result is finally on the semiconductor device. It can be said that it is difficult to form a circuit pattern with high accuracy.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

透光性基板上に備えた位相シフト膜が窒素含有層と酸素含有層を少なくとも含み、窒素含有層が窒化ケイ素系材料で形成され、酸素含有層が酸化ケイ素系材料で形成されるマスクブランクであって、窒素含有層に対してX線光電子分光分析を行ってSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板に対してX線光電子分光分析を行ってSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、窒素含有層における最大ピークPSi_fを透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下である。

Description

マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
 本発明は、マスクブランク、そのマスクブランクを用いて製造された位相シフトマスクに関するものである。また、本発明は、上記の位相シフトマスクを用いた半導体デバイスの製造方法に関するものである。
 半導体デバイスの製造工程では、フォトリソグラフィー法を用いて微細パターンの形成が行われている。また、この微細パターンの形成には通常何枚もの転写用マスクが使用される。半導体デバイスのパターンを微細化するに当たっては、転写用マスクに形成されるマスクパターンの微細化に加え、フォトリソグラフィーで使用される露光光源の波長の短波長化が必要となる。近年、半導体デバイスを製造する際の露光光源にArFエキシマレーザー(波長193nm)が適用されることが増えてきている。
 転写用マスクの一種に、ハーフトーン型位相シフトマスクがある。ハーフトーン型位相シフトマスクは、露光光を透過させる透光部と、露光光を減光して透過させる(ハーフトーン位相シフト膜の)位相シフト部を有し、透光部を透過する露光光の位相に対して位相シフト部を透過する露光光の位相を略反転(略180度の位相差)させる。この位相差により、透光部と位相シフト部の境界の光学像のコントラストが高まるので、ハーフトーン型位相シフトマスクは、解像度の高い転写用マスクとなる。
 ハーフトーン型位相シフトマスクは、ハーフトーン位相シフト膜の露光光に対する透過率が高いほど転写像のコントラストが高まる傾向にある。このため、特に高い解像度が要求される場合を中心に、いわゆる、高透過率ハーフトーン型位相シフトマスクが用いられる。ハーフトーン型位相シフトマスクの位相シフト膜には、モリブデンシリサイド(MoSi)系の材料が広く用いられる。しかし、MoSi系膜は、ArFエキシマレーザーの露光光に対する耐性(いわゆるArF耐光性)が低いということが近年判明している。
 ハーフトーン型位相シフトマスクの位相シフト膜として、ケイ素と窒素からなるSiN系の材料も知られており、例えば、特許文献1に開示されている。また、所望の光学特性を得る方法として、Si酸化物層とSi窒化物層の周期多層膜からなる位相シフト膜を用いたハーフトーン型位相シフトマスクが特許文献2に開示されている。特許文献2には、Fエキシマレーザー光である157nmの波長の光に対して、透過率が5%で所定の位相差が得られることが記載されている。SiN系の材料は高いArF耐光性を有するので、位相シフト膜としてSiN系膜を用いた高透過率ハーフトーン型位相シフトマスクが注目を集めている。
特開平7-134392号公報 特表2002-535702号公報
 窒化ケイ素材料からなる単層の位相シフト膜を用いる場合、ArFエキシマレーザーの露光光(以下、ArF露光光という。)に対する透過率に対して制約があり、透過率を18%より高めることは材料の光学特性上難しい。
 窒化ケイ素に酸素を導入すると、透過率を高くすることができる。しかし、酸化窒化ケイ素材料からなる単層の位相シフト膜を用いると、ドライエッチングによる位相シフト膜のパターニング時に、酸化ケイ素を主成分とする材料で形成された透光性基板とのエッチング選択性が小さくなるという問題がある。
 上述の問題点を解決する方法としては、例えば、位相シフト膜を、透光性基板側から順に配置された窒化ケイ素層と酸化ケイ素層からなる2層構造とする方法が考えられる。特許文献1には、透光性基板側から順に配置された窒化ケイ素層と酸化ケイ素層とからなる2層構造の位相シフト膜を備えるハーフトーン型位相シフトマスクが開示されている。
 位相シフト膜を窒化ケイ素層と酸化ケイ素層からなる2層構造にすることにより、ArF露光光に対する屈折率、消衰係数及び膜厚の自由度が増して、その2層構造の位相シフト膜をArF露光光に対して所望の透過率と位相差を有するものにすることができる。しかしながら、詳細に検討を行った結果、窒化ケイ素層と酸化ケイ素層とからなる2層構造の位相シフト膜を備えるハーフトーン型位相シフトマスクには以下に述べる問題があることがわかった。
 窒化ケイ素層と酸化ケイ素層はともに上述のMoSi系膜に比べてArF耐光性が大幅に高い。しかし、窒化ケイ素層は、酸化ケイ素層に比べるとArF耐光性が低い。すなわち、この位相シフト膜を備えるマスクブランクにより位相シフトマスクを製造し、その位相シフトマスクを露光装置にセットしてArF露光光による露光転写を繰り返し行った場合、位相シフト膜のパターンの線幅は、酸化ケイ素層の部分に比べて窒化ケイ素層の部分の方が太りやすい。このため、酸化ケイ素層の部分がArF露光光の繰り返し照射に対して太りにくいにも関わらず、ArF露光光の繰り返し照射を受けたときの位相シフト膜全体でのパターンの線幅の太りが比較的大きくなるという問題があった。
 また、窒化ケイ素層と酸化ケイ素層はともに上述のMoSi系膜に比べて、洗浄等に用いられる薬液に対する耐性(耐薬性)が大幅に高い。しかし、窒化ケイ素層は、酸化ケイ素層に比べると耐薬性が低い。すなわち、この位相シフト膜を備えるマスクブランクから位相シフトマスクを製造する途上や、位相シフトマスクを製造後に薬液による洗浄を繰り返し行った場合、位相シフト膜のパターンの線幅は、酸化ケイ素層の部分に比べて窒化ケイ素層の部分の方が減少しやすい。このため、酸化ケイ素層の耐薬性が高いにも関わらず、薬液による洗浄を繰り返し行ったときの位相シフト膜全体でのパターンの線幅の減少量が比較的大きくなるという問題があった。
 一方、上記の2層構造の位相シフト膜において、高透過層を形成する材料を酸化ケイ素から酸窒化ケイ素に代えた構成とした場合、高透過層を酸化ケイ素で形成した場合と同様の光学特性を得ることができる。しかし、この構成の位相シフト膜の場合でも、ArF耐光性および耐薬性の問題は生じる。
 本発明は、上記の課題を解決するためになされたものであり、透光性基板上に、窒化ケイ素層のような窒素含有層と酸化ケイ素層のような酸素含有層を少なくとも含む位相シフト膜を備えたマスクブランクにおいて、位相シフト膜の全体でのArF耐光性および耐薬性が向上されたハーフトーン型位相シフトマスク用のマスクブランクを提供することを目的としている。
 また、本発明は、このマスクブランクを用いて製造される位相シフトマスクを提供することを目的としている。
 さらに、本発明は、このような位相シフトマスクを製造する方法を提供することを目的としている。
 そして、本発明は、このような位相シフトマスクを用いた半導体デバイスの製造方法を提供することを目的としている。
 前記の課題を解決するため、本発明は以下の構成を有する。
(構成1)
 透光性基板上に位相シフト膜を備えたマスクブランクであって、
 前記位相シフト膜は、窒素含有層と酸素含有層を少なくとも含み、
 前記酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、
 前記窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、
 前記窒素含有層に対してX線光電子分光分析を行って前記窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、前記透光性基板に対してX線光電子分光分析を行って前記透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、前記窒素含有層における最大ピークPSi_fを前記透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下である
ことを特徴とするマスクブランク。
(構成2)
 前記窒素含有層は、窒素の含有量が50原子%以上であることを特徴とする構成1に記載のマスクブランク。
(構成3)
 前記酸素含有層は、窒素および酸素の合計含有量が50原子%以上であることを特徴とする構成1または2に記載のマスクブランク。
(構成4)
 前記酸素含有層は、酸素の含有量が15原子%以上であることを特徴とする構成1から3のいずれか一つに記載のマスクブランク。
(構成5)
 前記Si2pナロースペクトルの光電子強度の最大ピークは、結合エネルギーが96[eV]以上106[eV]以下の範囲での最大ピークであることを特徴とする構成1から4のいずれか一つに記載のマスクブランク。
(構成6)
 前記X線光電子分光分析で前記位相シフト膜に対して照射するX線は、AlKα線であることを特徴とする構成1から5のいずれか一つに記載のマスクブランク。
(構成7)
 前記窒素含有層におけるSi結合の存在数を、Si結合、Si結合(ただし、b/[a+b]<4/7)、Si-Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上であることを特徴とする構成1から6のいずれか一つに記載のマスクブランク。
(構成8)
 前記位相シフト膜は、ArFエキシマレーザーの露光光を10%以上の透過率で透過させる機能と、前記位相シフト膜を透過した前記露光光に対して前記位相シフト膜の厚さと同じ距離だけ空気中を通過した前記露光光との間で150度以上200度以下の位相差を生じさせる機能とを有することを特徴とする構成1から7のいずれか一つに記載のマスクブランク。
(構成9)
 前記位相シフト膜上に、遮光膜を備えることを特徴とする構成1から8のいずれか一つに記載のマスクブランク。
(構成10)
 透光性基板上に、転写パターンが形成された位相シフト膜を備えた位相シフトマスクであって、
 前記位相シフト膜は、窒素含有層と酸素含有層を少なくとも含み、
 前記酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、
 前記窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、
 前記窒素含有層に対してX線光電子分光分析を行って前記窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、前記透光性基板に対してX線光電子分光分析を行って前記透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、前記窒素含有層における最大ピークPSi_fを前記透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下である
ことを特徴とする位相シフトマスク。
(構成11)
 前記窒素含有層は、窒素の含有量が50原子%以上であることを特徴とする構成10に記載の位相シフトマスク。
(構成12)
 前記酸素含有層は、窒素および酸素の合計含有量が50原子%以上であることを特徴とする構成10または11に記載の位相シフトマスク。
(構成13)
 前記酸素含有層は、酸素の含有量が15原子%以上であることを特徴とする構成10から12のいずれか一つに記載の位相シフトマスク。
(構成14)
 前記Si2pナロースペクトルの光電子強度の最大ピークは、結合エネルギーが96[eV]以上106[eV]以下の範囲での最大ピークであることを特徴とする構成10から13のいずれか一つに記載の位相シフトマスク。
(構成15)
 前記X線光電子分光分析で前記位相シフト膜に対して照射するX線は、AlKα線であることを特徴とする構成10から14のいずれか一つに記載の位相シフトマスク。
(構成16)
 前記窒素含有層におけるSi結合の存在数を、Si結合、Si結合(ただし、b/[a+b]<4/7)、Si-Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上であることを特徴とする構成10から15のいずれか一つに記載の位相シフトマスク。
(構成17)
 前記位相シフト膜は、ArFエキシマレーザーの露光光を10%以上の透過率で透過させる機能と、前記位相シフト膜を透過した前記露光光に対して前記位相シフト膜の厚さと同じ距離だけ空気中を通過した前記露光光との間で150度以上200度以下の位相差を生じさせる機能とを有することを特徴とする構成10から16のいずれか一つに記載の位相シフトマスク。
(構成18)
 前記位相シフト膜上に、遮光パターンが形成された遮光膜を備えることを特徴とする構成10から17のいずれか一つに記載の位相シフトマスク。
(構成19)
 構成10から18のいずれか一つに記載の位相シフトマスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
 本発明のマスクブランクは、透光性基板上に位相シフト膜を備えたマスクブランクであって、位相シフト膜は、窒素含有層と酸素含有層を少なくとも含み、酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、窒素含有層に対してX線光電子分光分析を行って窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板に対してX線光電子分光分析を行って透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、前記窒素含有層における最大ピークPSi_fを前記透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であることを特徴としている。このような構造のマスクブランクとすることにより、位相シフト膜の全体でのArF耐光性および耐薬性を向上させることができる。
 また、本発明の位相シフトマスクは、転写パターンを有する位相シフト膜が上記本発明のマスクブランクの位相シフト膜と同様の構成としていることを特徴としている。このような位相シフトマスクとすることにより、位相シフト膜の全体でのArF耐光性および耐薬性を向上させることができる。このため、本発明の位相シフトマスクは、半導体基板上のレジスト膜等の転写対象物に対して露光転写を行ったときの転写精度が高い。
 また、本発明の半導体デバイスの製造方法は、上記本発明の位相シフトマスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴としている。このため、本発明の半導体デバイスの製造方法は、高い転写精度でレジスト膜への転写パターンの露光転写を行うことができる。
本発明の実施形態におけるマスクブランクの構成を示す断面図である。 本発明の実施形態における位相シフトマスクの製造工程を示す断面図である。 本発明の実施例1に係るマスクブランクの位相シフト膜および透光性基板に対してX線光電子分光分析を行った結果(Si2pナロースペクトル)を示す図である。 比較例1に係るマスクブランクの位相シフト膜および透光性基板に対してX線光電子分光分析を行った結果(Si2pナロースペクトル)を示す図である。
 まず、本発明の完成に至る経緯を述べる。本発明者らは、マスクブランクの位相シフト膜を、窒化ケイ素系材料層(窒素含有層)と酸化ケイ素系材料層(酸素含有層)を含む積層構造とした場合について、位相シフト膜のArF耐光性の観点、および耐薬性の観点から研究を行った。
 ケイ素系材料層のパターンの線幅がArF露光光の照射を受けたときに太る現象が発生するのは、他の元素(別のケイ素原子を含む)と結合した状態のケイ素原子が励起してその結合を断ち切り、酸素と結合する反応が進むことで体積膨張が起こることが原因と考えられている。このため、ArF露光光の照射を受ける前の段階で既に酸素と結合したケイ素が多く存在している酸化ケイ素系材料層の場合、ArF露光光の照射を受けても体積膨張によるパターン線幅は太りにくい。また、酸素と結合したケイ素は、酸素以外の元素と結合したケイ素に比べ、薬液に対して溶解しにくい。
 窒化ケイ素系材料層に酸素を含有させることによって、ArF耐光性と耐薬性を高めることは可能である。しかし、窒化ケイ素系材料層に酸素を含有させると、屈折率nおよび消衰係数kが低下することが避けがたく、位相シフト膜の設計の自由度が大きく低下するため、この手段は適用しがたい。
 本発明者らは、鋭意研究を行った結果、窒化ケイ素系材料のうちArF露光光を照射したときにケイ素が励起しにくい窒化ケイ素系材料を位相シフト膜の窒化ケイ素系材料層に用いれば、位相シフト膜全体のArF耐光性を高めることができるのではないかという考えに至った。
 本発明者らは、窒化ケイ素系材料層がArF露光光の照射を受けたときに、その層中のケイ素が励起しやすい状態であるかどうかの指標に、X線光電子分光分析(XPS:X-ray Photoelectron Spectroscopy)を応用することを思いついた。最初に、窒化ケイ素系材料層に対してX線光電子分光分析を行ってSi2pナロースペクトルを取得し、その最大ピークの相違を指標として用いることを検討した。窒化ケイ素系材料層におけるSi2pナロースペクトルの光電子強度の最大ピークは、窒素とケイ素の結合から放出された光電子の単位時間当たりの数に相当する。光電子は、X線の照射を受けて励起して原子軌道から飛び出した電子である。X線が照射されたときに放出される光電子の数が多く励起しやすい材料は、仕事関数が小さい材料である。このような仕事関数が小さい窒化ケイ素系材料は、ArF露光光の照射を受けた時も励起しやすい材料であるといえる。
 しかし、X線光電子分光分析で検出される光電子の数は、同じ窒化ケイ素系材料層であっても測定条件(使用するX線の種類、照射強度等)によって変動するため、そのまま指標として使用することはできない。この問題点について研究した結果、窒化ケイ素系材料層におけるSi2pナロースペクトルの光電子強度の最大ピークを、透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークで除した数値を指標とすればよいという考えに至った。
 透光性基板は、SiOを主成分とする比較的安定な材料で形成されている。マスクブランクに用いられる透光性基板は、光学特性のバラつきが小さい等、材料のバラつきが非常に小さいことが要求される。このため、複数の透光性基板間での各材料の仕事関数のバラつきも非常に小さい。同一測定条件の場合、異なる透光性基板間でのSi2pナロースペクトルの光電子強度の最大ピークの差が小さいため、測定条件の相違の影響がこの光電子強度の最大ピークに大きく反映される。透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークは、酸素とケイ素の結合から放出された光電子の単位時間当たりの数ではあるが、測定条件の相違による窒化ケイ素系材料層におけるSi2pナロースペクトルの光電子強度の最大ピークの差を補正するには好適な参照値である。
 本発明者らは、さらに鋭意研究を行った結果、透光性基板上に、窒化ケイ素系材料層(窒素含有層)と酸化ケイ素系材料層(酸素含有層)を少なくとも含む位相シフト膜を備えたマスクブランクにおいて、その窒化ケイ素系材料層と透光性基板に対してX線光電子分光分析を行った場合、窒化ケイ素系材料層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを、透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であれば、ArF耐光性を高められるという結論に至った。
 一方、上記の数値(PSi_f)/(PSi_s)が1.09以下である窒化ケイ素系材料層は、ArF露光光の照射を受けた時に層中のケイ素が励起しにくい。このような窒化ケイ素系材料層は、強い結合状態の窒素とケイ素の結合の存在比率が高いといえる。この窒化ケイ素系材料層に薬液が接触した場合、窒素とケイ素の結合が切れにくく、薬液中に溶解しにくいという結論に至った。
 以上の鋭意研究の結果、本発明のマスクブランクを導き出した。すなわち、本発明のマスクブランクは、透光性基板上に位相シフト膜を備えており、その位相シフト膜は、窒素含有層(窒化ケイ素系材料層)と酸素含有層(酸化ケイ素系材料層)を少なくとも含み、酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、窒素含有層に対してX線光電子分光分析を行って窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板に対してX線光電子分光分析を行って透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、窒素含有層における最大ピークPSi_fを透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であることを特徴とするものである。
 次に、本発明の実施形態について説明する。本発明のマスクブランクは、位相シフトマスクを作成するためのマスクブランクに適用可能なものである。以降では、ハーフトーン型位相シフトマスクを製造するためのマスクブランクについて説明する。
 図1は、本発明の実施形態に係るマスクブランク100の構成を示す断面図である。図1に示すマスクブランク100は、透光性基板1上に、位相シフト膜2、遮光膜3およびハードマスク膜4がこの順に積層した構造を有する。
 透光性基板1は、合成石英ガラスのほか、石英ガラス、アルミノシリケートガラス、ソーダライムガラス、低熱膨張ガラス(SiO-TiOガラス等)などのガラス材料で形成することができる。これらの中でも、合成石英ガラスは、ArFエキシマレーザー光(波長193nm)に対する透過率が高く、マスクブランクの透光性基板を形成する材料として特に好ましい。
 位相シフト膜2は、位相シフト効果を有効に機能させることが可能な透過率を有することが求められる。位相シフト膜2は、ArF露光光に対する透過率が1%以上であることが少なくとも求められる。位相シフト膜2は、ArF露光光に対する透過率が10%以上であると好ましく、15%以上であるとより好ましく、20%以上であるとさらに好ましい。
 また、位相シフト膜2は、ArF露光光に対する透過率が40%以下になるように調整されていることが好ましく、30%以下であるとより好ましい。
 近年、半導体基板(ウェハ)上のレジスト膜に対する露光・現像プロセスとしてNTD(Negative Tone Development)が用いられるようになってきている。NTDではブライトフィールドマスク(パターン開口率が高い転写用マスク)がよく用いられる。ブライトフィールドの位相シフトマスクでは、位相シフト膜の露光光に対する透過率を10%以上とすることにより、透光部を透過した光の0次光と1次光のバランスがよくなる。このバランスがよくなると、位相シフト膜を透過した露光光が0次光に干渉して光強度を減衰させる効果がより大きくなって、レジスト膜上でのパターン解像性が向上する。このため、位相シフト膜2のArF露光光に対する透過率が10%以上であると好ましい。ArF露光光に対する透過率が15%以上である場合は、位相シフト効果による転写像(投影光学像)のパターンエッジ強調効果がより高まる。一方、位相シフト膜2のArF露光光に対する透過率が40%を超えると、サイドローブの影響が強くなりすぎるため、好ましくない。
 位相シフト膜2は、適切な位相シフト効果を得るために、透過するArF露光光に対し、この位相シフト膜2の厚さと同じ距離だけ空気中を通過した光との間で所定の位相差を生じさせる機能を有することが求められる。また、その位相差は、150度以上200度以下の範囲になるように調整されていることが好ましい。位相シフト膜2における前記位相差の下限値は、160度以上であることがより好ましく、170度以上であるとさらに好ましい。他方、位相シフト膜2における前記位相差の上限値は、190度以下であることがより好ましい。
 位相シフト膜2は、厚さが90nm以下であることが好ましく、80nm以下であるとより好ましい。一方、位相シフト膜2は、厚さが40nm以上であることが好ましい。位相シフト膜2の厚さが40nm未満であると、位相シフト膜として求められる所定の透過率と位相差が得られない恐れがある。
 位相シフト膜2は、窒素含有層(窒化ケイ素系材料層)と酸素含有層(酸化ケイ素系材料層)を少なくとも含む2層以上の積層膜となっている。位相シフト膜2は、窒素含有層と酸素含有層を少なくとも1層ずつ有していればよく、窒素含有層や酸素含有層をさらに1層以上有していてもよい。例えば、位相シフト膜2は、窒素含有層と酸素含有層とからなる1組の積層構造を2組以上有する構造(4層以上の積層構造)としてもよく、2つの窒素含有層の間に酸素含有層が設けられた構造としてもよい。位相シフト膜2は、本発明の効果が得られる範囲であれば、窒素含有層および酸素含有層以外の材料層を備えてもよい。
 窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成されることが好ましい。窒素含有層は、いずれの半金属元素を含有してもよい。この半金属元素の中でも、ホウ素、ゲルマニウム、アンチモン及びテルルから選ばれる1以上の元素を含有させると、スパッタリングターゲットとして用いるケイ素の導電性を高めることが期待できるため、好ましい。
 窒素含有層は、いずれの非金属元素を含有してもよい。この場合の非金属元素は、狭義の非金属元素(窒素、炭素、酸素、リン、硫黄、セレン)、ハロゲンおよび貴ガスを含むものをいう。この非金属元素の中でも、炭素、フッ素及び水素から選ばれる1以上の元素を含有させると好ましい。窒素含有層は、酸素の含有量が10原子%以下であることが好ましく、5原子%以下であることがより好ましく、積極的に酸素を含有させることをしない(X線光電子分光分析等による組成分析を行ったときに検出下限値以下。)ことがさらに好ましい。窒素含有層の酸素の含有量が多いと、酸素含有層との間で光学特性の差が小さくなり、位相シフト膜の設計自由度が小さくなる。
 窒素含有層は、貴ガスを含有してもよい。貴ガスは、反応性スパッタリングで窒素含有層を成膜する際に成膜室内に存在することによって成膜速度を大きくし、生産性を向上させることができる元素である。この貴ガスがプラズマ化し、ターゲットに衝突することでターゲットからターゲット構成元素が飛び出し、途中、反応性ガスを取りこみつつ、透光性基板1上に窒素含有層が形成される。このターゲット構成元素がターゲットから飛び出し、透光性基板1に付着するまでの間に成膜室中の貴ガスがわずかに取り込まれる。この反応性スパッタリングで必要とされる貴ガスとして好ましい元素としては、アルゴン、クリプトン、キセノンが挙げられる。また、窒素含有層の応力を緩和するために、原子量の小さいヘリウム、ネオンを薄膜に積極的に取りこませることができる。
 窒素含有層は、窒素の含有量が50原子%以上であることが好ましい。ケイ素系膜はArF露光光に対する屈折率nが非常に小さく、ArF露光光に対する消衰係数kが大きい。以降、単に屈折率nと表記されている場合、ArF露光光に対する屈折率nのことをいう。また、単に消衰係数kと表記されている場合、ArF露光光に対する消衰係数kのことをいう。ケイ素系膜中の窒素の含有量が多くなるに従い、屈折率nが大きくなっていき、消衰係数kが小さくなっていく傾向がある。位相シフト膜2に求められる所定の透過率を確保しつつ、より薄い厚さで位相差を確保することを考慮すると、窒素含有層の窒素の含有量を50原子%以上とすることが好ましく、51原子%以上であるとより好ましく、52原子%以上であるとさらに好ましい。また、窒素含有層の窒素の含有量は、57原子%以下であると好ましく、56原子%以下であるとより好ましい。窒素含有層に、窒素をSiの混合比よりも多く含有させようとすると、窒素含有層をアモルファスや微結晶構造にすることが困難になる。また、窒素含有層の表面粗さが大幅に悪化する。
 窒素含有層は、ケイ素の含有量が35原子%以上であることが好ましく、40原子%以上であるとより好ましく、45原子%以上であるとさらに好ましい。
 窒素含有層は、ケイ素及び窒素からなる材料で形成することが好ましい。なお、この場合のケイ素及び窒素からなる材料は、貴ガスを含有する材料も包含しているとみなすことができる。
 窒素含有層に対してX線光電子分光分析を行って窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板1に対してX線光電子分光分析を行って透光性基板1におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、窒素含有層における最大ピークPSi_fを、透光性基板1における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であることが好ましい。数値(PSi_f)/(PSi_s)が1.09以下である窒素含有層は、上述のとおり、ArF露光光の照射を受けたときにも励起しにくい。このような窒素含有層とすることで、ArF耐光性を高めることができる。また、この窒素含有層は、上述のとおり、強い結合状態の窒素とケイ素の結合の存在比率が高い。また、このような窒素含有層とすることで、耐薬性を高めることができる。数値(PSi_f)/(PSi_s)は、1.085以下であると好ましく、1.08以下であるとより好ましい。
 一方、位相シフト膜2のパターニングの際に行われるSF等のフッ素系ガスによるドライエッチングの場合、窒素含有層は酸素含有層に比べてエッチングレートが速い。このため、位相シフト膜2に対してドライエッチングでパターニングを行ったときに、パターンの側壁に段差が発生しやすい傾向がある。
 上記のフッ素系ガスによるドライエッチングで窒素含有層をパターニングする場合、励起状態のフッ素ガスが窒素とケイ素の結合を切って、比較的低沸点のケイ素のフッ化物を生成して揮発することで、窒素含有層にパターンが形成される。数値(PSi_f)/(PSi_s)が1.09以下である窒素含有層は、窒素とケイ素の結合が切れにくいことから、フッ素系ガスに対するドライエッチングのエッチングレートが遅くなるといえる。これにより、位相シフト膜2の窒素含有層と酸素含有層のエッチングレート差が小さくなり、ドライエッチングで位相シフト膜2に形成されるパターンの側壁の段差を低減することができる。
 他方、ハーフトーン型位相シフトマスクのマスク欠陥修正技術として、位相シフト膜の黒欠陥部分に対して、二フッ化キセノン(XeF)ガスを供給しつつ、その部分に電子線を照射することでその黒欠陥部分を揮発性のフッ化物に変化させてエッチング除去する欠陥修正技術が用いられることがある。以下、このような電子線等の荷電粒子を照射して行う欠陥修正を単にEB欠陥修正という。転写パターンが形成された後の位相シフト膜2に対してEB欠陥修正を行う場合、窒素含有層の修正レートは酸素含有層の修正レートに比べて速い傾向を有する。それに加えてEB欠陥修正の場合、側壁が露出した状態の位相シフト膜2のパターンに対してエッチングを行うことから、パターンの側壁方向に進行するエッチングであるサイドエッチングが特に窒素含有層に入りやすい。このため、EB欠陥修正後のパターン形状が窒素含有層と酸素含有層とで段差を作る段差形状となりやすい傾向がある。
 EB欠陥修正で用いられるXeFガスは、ケイ素系材料に対して等方性エッチングを行うときの非励起状態のエッチングガスとして知られている。そのエッチングは、ケイ素系材料への非励起状態のXeFガスの表面吸着、XeとFに分離、ケイ素の高次フッ化物の生成、揮発というプロセスで行われる。ケイ素系材料の薄膜パターンに対するEB欠陥修正では、薄膜パターンの黒欠陥部分に対してXeFガス等の非励起状態のフッ素系ガスを供給し、黒欠陥部分の表面にそのフッ素系ガスを吸着させてから、黒欠陥部分に対して電子線を照射する。これにより、黒欠陥部分のケイ素原子は励起してフッ素との結合が促進され、電子線を照射しない場合よりも大幅に速くケイ素の高次フッ化物となって揮発する。X線が照射されたときに放出される光電子の数が少なく励起しにくい窒素含有層は、電子線の照射を受けた時も励起しにくい材料であるといえる。
 上記の数値(PSi_f)/(PSi_s)が1.09以下である窒素含有層は、電子線の照射に対して励起しにくく、EB欠陥修正が行われたときの修正レートを遅くすることができる。これにより、位相シフト膜2の窒素含有層と酸素含有層のEB欠陥修正における修正レート差が小さくなり、位相シフト膜2のEB欠陥修正を行った箇所のパターンの側壁の段差を低減することができる。
 上記のX線光電子分光分析において、透光性基板1や位相シフト膜2の窒素含有層に対して照射するX線としては、AlKα線およびMgKα線のいずれも適用可能であるが、AlKα線を用いることが好ましい。なお、本明細書ではAlKα線のX線を用いたX線光電子分光分析を行う場合について述べている。
 透光性基板1や窒素含有層に対してX線光電子分光分析を行ってSi2pナロースペクトルを取得する方法は、一般的には以下の手順で行われる。すなわち、最初に、幅広い結合エネルギーのバンド幅で光電子強度(X線を照射した測定対象物からの単位時間当たりの光電子の放出数)を取得するワイドスキャンを行ってワイドスペクトルを取得し、その透光性基板1や窒素含有層の構成元素に由来する全てのピークを特定する。その後、ワイドスキャンよりも高分解能であるが取得できる結合エネルギーのバンド幅が狭いナロースキャンを注目するピーク(Si2p)の周囲のバンド幅で行うことで各ナロースペクトルを取得する。一方、本発明でX線光電子分光分析を用いる測定対象物である透光性基板1や窒素含有層は構成元素があらかじめ分かっている。また、本発明で必要となるナロースペクトルはSi2pナロースペクトルに限られる。このため、本発明の場合、ワイドスペクトルの取得の工程を省略して、Si2pナロースペクトルを取得してもよい。
 透光性基板1や窒素含有層に対してX線光電子分光分析を行って取得されるSi2pナロースペクトルにおける光電子強度の最大ピーク(PSi_s、PSi_f)は、結合エネルギーが96[eV]以上106[eV]以下の範囲での最大ピークであることが好ましい。この結合エネルギーの範囲外のピークは、Si-N結合やSi-O結合から放出された光電子ではない恐れがあるためである。
 窒素含有層は、Si結合の存在数を、Si結合、Si結合(ただし、b/[a+b]<4/7)、Si-Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上であることが好ましい。安定した結合の存在比率が高い窒素含有層は、ArF耐光性や耐薬性が高い。上記の各結合の中でSi-O結合が最も安定した結合であるが、上記の制約から窒素含有層に酸素を多く含有させることは難しい。酸素以外のケイ素との結合の中では、Si結合が最も安定した結合であり、上記のようなSi結合の存在比率が高い窒素含有層は、ArF耐光性や耐薬性が高い。
 位相シフト膜2に設けられている全ての窒素含有層の合計膜厚は、30nm以上であることが好ましい。この全ての窒素含有層の合計膜厚が30nm未満であると、位相シフト膜として求められる所定の透過率(40%以下)と位相差(150度以上200度以下)が得られない恐れがある。この全ての窒素含有層の合計膜厚は、35nm以上であるとより好ましく、40nm以上であるとさらに好ましい。一方、位相シフト膜2に設けられている全ての窒素含有層の合計膜厚は、60nm以下であることが好ましく、55nm以下であるとより好ましい。
 酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成されることが好ましい。酸素含有層は、いずれの半金属元素を含有してもよい。この半金属元素の中でも、ホウ素、ゲルマニウム、アンチモン及びテルルから選ばれる1以上の元素を含有させると、スパッタリングターゲットとして用いるケイ素の導電性を高めることが期待できるため、好ましい。
 酸素含有層は、いずれの非金属元素を含有してもよい。この場合の非金属元素は、狭義の非金属元素(窒素、炭素、酸素、リン、硫黄、セレン)、ハロゲンおよび貴ガスを含むものをいう。この非金属元素の中でも、炭素、フッ素及び水素から選ばれる1以上の元素を含有させると好ましい。酸素含有層は、窒素含有層と同様の理由から貴ガスを含有してもよい。
 酸素含有層は、窒素および酸素の合計含有量が50原子%以上であることが好ましい。位相シフト膜2の設計自由度(特に透過率)を高めることを考慮すると、酸素含有層の窒素および酸素の合計含有量を50原子%以上とすることが好ましく、55原子%以上とすることがより好ましく、60原子%以上とすることがさらに好ましい。また、酸素含有層の窒素および酸素の合計含有量は、66原子%以下であると好ましい。窒素含有層に、窒素および酸素をSiOやSiの混合比よりも多く含有させようとすると、酸素含有層をアモルファスや微結晶構造にすることが困難になる。また、酸素含有層の表面粗さが大幅に悪化する。
 酸素含有層は、ケイ素、窒素及び酸素からなる材料で形成することが好ましい。特に、位相シフト膜の設計自由度を透過率が高い領域で広げる場合、酸素含有層は、ケイ素及び酸素からなる材料で形成してもよい。なお、これらの場合のケイ素、窒素及び酸素からなる材料やケイ素及び酸素からなる材料は、貴ガスを含有する材料も包含しているとみなすことができる。
 酸素含有層は、酸素の含有量が15原子%以上であることが好ましい。ケイ素系膜は、酸素の含有量が多くなるに従い、窒素の含有量を多くする場合に比べて消衰係数kが大幅に小さくなる。位相シフト膜の設計自由度を透過率が高い領域で広げる場合、酸素含有層の酸素の含有量は、15原子%以上であることが好ましく、20原子%以上であるとより好ましく、25原子%以上であるとさらに好ましい。
 位相シフト膜2に設けられている全ての酸素含有層の合計膜厚は、10nm以上であることが好ましく、15nm以上であるとより好ましく、20nm以上であるとさらに好ましい。一方、位相シフト膜2に設けられている全ての酸素含有層の合計膜厚は、50nm以下であることが好ましく、45nm以下であるとより好ましい。
 窒素含有層および酸素含有層は、エッチングでパターンを形成したときのパターンエッジラフネスが良好になるなどの理由からアモルファス構造であることが最も好ましい。窒素含有層や酸素含有層がアモルファス構造にすることが難しい組成である場合は、アモルファス構造と微結晶構造が混在した状態であることが好ましい。
 窒素含有層は、屈折率nが2.3以上であることが好ましく、2.4以上であるとより好ましい。また、窒素含有層は、消衰係数kが0.5以下であることが好ましく、0.4以下であるとより好ましい。一方、窒素含有層は、屈折率nが3.0以下であることが好ましく、2.8以下であるとより好ましい。また、窒素含有層は、消衰係数kが0.16以上であることが好ましく、0.2以上であるとより好ましい。
 酸素含有層は、屈折率nが1.5以上であることが好ましく、1.8以上であるとより好ましい。また、酸素含有層は、消衰係数kが0.15以下であることが好ましく、0.1以下であるとより好ましい。一方、酸素含有層は、屈折率nが2.2以下であることが好ましく、1.9以下であるとより好ましい。また、酸素含有層は、消衰係数kが0以上であると好ましい。
 薄膜の屈折率nおよび消衰係数kは、その薄膜の組成だけで決まるものではない。その薄膜の膜密度および結晶状態なども、屈折率nおよび消衰係数kを左右する要素である。このため、反応性スパッタリングで薄膜を成膜するときの諸条件を調整して、その薄膜が所望の屈折率nおよび消衰係数kとなるように成膜する。窒素含有層および酸素含有層を、所望の屈折率nおよび消衰係数kの範囲にするには、反応性スパッタリングで薄膜を成膜する際に、貴ガスと反応性ガスの混合ガスの比率を調整することだけに限られない。反応性スパッタリングで薄膜を成膜する際における成膜室内の圧力、ターゲットに印加する電力、ターゲットと透光性基板との間の距離等の位置関係など多岐にわたる。また、これらの成膜条件は成膜装置に固有のものであり、形成される薄膜が所望の屈折率nおよび消衰係数kになるように適宜調整されるものであある。
 窒素含有層および酸素含有層は、スパッタリングによって形成されるが、DCスパッタリング、RFスパッタリングおよびイオンビームスパッタリングなどのいずれのスパッタリングも適用可能である。導電性が低いターゲット(ケイ素ターゲット、半金属元素を含有しないあるいは含有量の少ないケイ素化合物ターゲットなど)を用いる場合においては、RFスパッタリングやイオンビームスパッタリングを適用することが好ましいが、成膜レートを考慮すると、RFスパッタリングを適用することがより好ましい。
 位相シフト膜2の膜応力が大きいと、マスクブランクから位相シフトマスクを製造した時に位相シフト膜2に形成される転写パターンの位置ずれが大きくなるという問題が生じる。位相シフト膜2の膜応力は、275MPa以下であると好ましく、165MPa以下であるとより好ましく、110MPa以下であるとさらに好ましい。上記のスパッタリングで形成された位相シフト膜2は、比較的大きな膜応力を有する。このため、スパッタリングで形成された後の位相シフト膜2に対して、加熱処理やフラッシュランプ等による光照射処理などを行って、位相シフト膜2の膜応力を低減させることが好ましい。
 マスクブランク100において、位相シフト膜2上に遮光膜3を備えることが好ましい。一般に、位相シフトマスク200(図2(F)参照)では、転写パターンが形成される領域(転写パターン形成領域)の外周領域は、露光装置を用いて半導体ウェハ上のレジスト膜に露光転写した際に外周領域を透過した露光光による影響をレジスト膜が受けないように、所定値以上の光学濃度(OD)を確保することが求められている。位相シフトマスク200の外周領域では、光学濃度が2.0よりも大きいことが少なくとも求められている。上記の通り、位相シフト膜2は所定の透過率で露光光を透過する機能を有しており、位相シフト膜2だけでは上記の光学濃度を確保することは困難である。このため、マスクブランク100を製造する段階で位相シフト膜2の上に、不足する光学濃度を確保するために遮光膜3を積層しておくことが望まれる。このようなマスクブランク100の構成とすることで、位相シフト膜2を製造する途上で、位相シフト効果を使用する領域(基本的に転写パターン形成領域)の遮光膜3を除去すれば、外周領域に上記の光学濃度が確保された位相シフトマスク200を製造することができる。なお、マスクブランク100は、位相シフト膜2と遮光膜3の積層構造における光学濃度が2.5以上であると好ましく、2.8以上であるとより好ましい。また、遮光膜3の薄膜化のため、位相シフト膜2と遮光膜3の積層構造における光学濃度は4.0以下であると好ましい。
 遮光膜3は、単層構造および2層以上の積層構造のいずれも適用可能である。また、単層構造の遮光膜3および2層以上の積層構造の遮光膜3の各層は、膜または層の厚さ方向でほぼ同じ組成である構成であってもよく、層の厚さ方向で組成傾斜した構成であってもよい。
 遮光膜3は、位相シフト膜2との間に別の膜を介さない場合においては、位相シフト膜2にパターンを形成する際に用いられるエッチングガスに対して十分なエッチング選択性を有する材料を適用する必要がある。この場合、遮光膜3は、クロムを含有する材料で形成することが好ましい。この遮光膜3を形成する、クロムを含有する材料としては、クロム金属のほか、クロムに酸素、窒素、炭素、ホウ素およびフッ素から選ばれる1以上の元素を含有する材料が挙げられる。
 一般に、クロム系材料は、塩素系ガスと酸素ガスとの混合ガスでエッチングされるが、クロム金属はこのエッチングガスに対するエッチングレートがあまり高くない。塩素系ガスと酸素ガスとの混合ガスのエッチングガスに対するエッチングレートを高める点を考慮すると、遮光膜3を形成する材料としては、クロムに酸素、窒素、炭素、ホウ素およびフッ素から選ばれる1以上の元素を含有する材料を用いることが好ましい。また、遮光膜3を形成する、クロムを含有する材料に、モリブデンおよびスズのうち1以上の元素を含有させてもよい。クロムを含有する材料に、モリブデンおよびスズのうち1以上の元素を含有させることで、塩素系ガスと酸素ガスとの混合ガスに対するエッチングレートをより高くすることができる。
 一方、マスクブランク100において、遮光膜3と位相シフト膜2との間に別の膜を介する構成とする場合においては、前記のクロムを含有する材料でその別の膜(エッチングストッパ兼エッチングマスク膜)を形成し、ケイ素を含有する材料で遮光膜3を形成する構成とすることが好ましい。クロムを含有する材料は、塩素系ガスと酸素ガスとの混合ガスによってエッチングされるが、有機系材料で形成されるレジスト膜は、この混合ガスでエッチングされやすい。ケイ素を含有する材料は、一般にフッ素系ガスや塩素系ガスでエッチングされる。これらのエッチングガスは基本的に酸素を含有しないため、塩素系ガスと酸素ガスとの混合ガスによってエッチングする場合よりも、有機系材料で形成されるレジスト膜の減膜量が低減できる。このため、レジスト膜の膜厚を低減することができる。
 遮光膜3を形成する、ケイ素を含有する材料には、遷移金属を含有させてもよく、遷移金属以外の金属元素を含有させてもよい。これは、このマスクブランク100から位相シフトマスク200を作製した場合、遮光膜3で形成されるパターンは、基本的に外周領域の遮光帯パターンであり、転写パターン形成領域に比べてArF露光光が照射される積算量が少ないことや、この遮光膜3が微細パターンで残っていることは稀であり、ArF耐光性が低くても実質的な問題は生じにくいためである。また、遮光膜3に遷移金属を含有させると、遷移金属を含有させない場合に比べて遮光性能が大きく向上し、遮光膜の厚さを薄くすることが可能となるためである。遮光膜3に含有させる遷移金属としては、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、チタン(Ti)、クロム(Cr)、ハフニウム(Hf)、ニッケル(Ni)、バナジウム(V)、ジルコニウム(Zr)、ルテニウム(Ru)、ロジウム(Rh)、ニオブ(Nb)、パラジウム(Pd)等のいずれか1つの金属またはこれらの金属の合金が挙げられる。
 一方、遮光膜3を形成する、ケイ素を含有する材料として、ケイ素及び窒素からなる材料、またはケイ素および窒素からなる材料に半金属元素および非金属元素から選ばれる1以上の元素を含有する材料を適用してもよい。
 上記の位相シフト膜2に積層して遮光膜3を備えるマスクブランク100において、遮光膜3の上に遮光膜3をエッチングするときに用いられるエッチングガスに対してエッチング選択性を有する材料で形成されたハードマスク膜4をさらに積層した構成とするとより好ましい。遮光膜3は、所定の光学濃度を確保する機能が必須であるため、その厚さを低減するのには限界がある。ハードマスク膜4は、その直下の遮光膜3にパターンを形成するドライエッチングが終わるまでの間、エッチングマスクとして機能することができるだけの膜厚があれば十分であり、基本的に光学上の制限を受けない。このため、ハードマスク膜4の厚さは遮光膜3の厚さに比べて大幅に薄くすることができる。そして、有機系材料のレジスト膜は、このハードマスク膜4にパターンを形成するドライエッチングが終わるまでの間、エッチングマスクとして機能するだけの膜の厚さがあれば十分であるので、従来よりも大幅にレジスト膜の厚さを薄くすることができる。
 このハードマスク膜4は、遮光膜3がクロムを含有する材料で形成されている場合は、前記のケイ素を含有する材料で形成されることが好ましい。なお、この場合のハードマスク膜4は、有機系材料のレジスト膜との密着性が低い傾向があるため、ハードマスク膜4の表面をHMDS(Hexamethyldisilazane)処理を施し、表面の密着性を向上させることが好ましい。なお、この場合のハードマスク膜4は、SiO、SiN、SiON等で形成されることがより好ましい。また、遮光膜3がクロムを含有する材料で形成されている場合におけるハードマスク膜4の材料として、前記のほか、タンタルを含有する材料も適用可能である。この場合におけるタンタルを含有する材料としては、タンタル金属のほか、タンタルに窒素、酸素、ホウ素および炭素から選ばれる1以上の元素を含有させた材料などが挙げられる。その材料として、たとえば、Ta、TaN、TaON、TaBN、TaBON、TaCN、TaCON、TaBCN、TaBOCNなどが挙げられる。一方、このハードマスク膜4は、遮光膜3がケイ素を含有する材料で形成されている場合は、上記のクロムを含有する材料で形成されることが好ましい。
 マスクブランク100において、上記ハードマスク膜4の表面に接して、有機系材料のレジスト膜が100nm以下の膜厚で形成されていることが好ましい。DRAM hp32nm世代に対応する微細パターンの場合、ハードマスク膜4に形成すべき転写パターン(位相シフトパターン)に、線幅が40nmのSRAF(Sub-Resolution Assist Feature)が設けられることがある。しかし、この場合でも、レジストパターンの断面アスペクト比が1:2.5と低くすることができるので、レジスト膜の現像時、リンス時等にレジストパターンが倒壊や脱離することを抑制することができる。なお、レジスト膜は、膜厚が80nm以下であることがより好ましい。
 図2に、本発明の実施形態であるマスクブランク100から位相シフトマスク200を製造する工程の断面模式図を示す。
 本発明の位相シフトマスク200は、透光性基板1上に、転写パターンが形成された位相シフト膜2(位相シフトパターン2a)を備えた位相シフトマスク200であって、位相シフト膜2(位相シフトパターン2a)は、窒素含有層と酸素含有層を少なくとも含み、酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、窒素含有層に対してX線光電子分光分析を行って窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板1に対してX線光電子分光分析を行って透光性基板1におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、窒素含有層における最大ピークPSi_fを透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であることを特徴とするものである。
 この位相シフトマスク200は、マスクブランク100と同様の技術的特徴を有している。位相シフトマスク200における透光性基板1、位相シフト膜2および遮光膜3(遮光パターン)に関する事項については、マスクブランク100と同様である。このような位相シフトマスク200は、位相シフト膜2(位相シフトパターン2a)の全体のArF耐光性が向上しており、耐薬性も向上している。このため、ArFエキシマレーザーを露光光とする露光装置のマスクステージにこの位相シフトマスク200をセットし、半導体デバイス上のレジスト膜に位相シフトパターン2aを露光転写する際も、半導体デバイス上のレジスト膜に設計仕様を十分に満たす精度でパターンを転写することができる。
 以下、図2に示す製造工程にしたがって、位相シフトマスク200の製造方法の一例を説明する。なお、この例では、遮光膜3にはクロムを含有する材料を適用し、ハードマスク膜4にはケイ素を含有する材料を適用している。
 まず、マスクブランク100におけるハードマスク膜4に接して、レジスト膜をスピン塗布法によって形成した。次に、レジスト膜に対して、位相シフト膜2に形成すべき転写パターン(位相シフトパターン)である第1のパターンを露光描画し、さらに現像処理等の所定の処理を行い、位相シフトパターンを有する第1のレジストパターン5aを形成した(図2(A)参照)。続いて、第1のレジストパターン5aをマスクとして、フッ素系ガスを用いたドライエッチングを行い、ハードマスク膜4に第1のパターン(ハードマスクパターン4a)を形成した(図2(B)参照)。
 次に、レジストパターン5aを除去してから、ハードマスクパターン4aをマスクとして、塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングを行い、遮光膜3に第1のパターン(遮光パターン3a)を形成する(図2(C)参照)。続いて、遮光パターン3aをマスクとして、フッ素系ガスを用いたドライエッチングを行い、位相シフト膜2に第1のパターン(位相シフトパターン2a)を形成し、かつ同時にハードマスクパターン4aも除去した(図2(D)参照)。
 次に、マスクブランク100上にレジスト膜をスピン塗布法によって形成した。次に、レジスト膜に対して、遮光膜3に形成すべきパターン(遮光パターン)である第2のパターンを露光描画し、さらに現像処理等の所定の処理を行い、遮光パターンを有する第2のレジストパターン6bを形成した。続いて、第2のレジストパターン6bをマスクとして、塩素系ガスと酸素ガスとの混合ガスを用いたドライエッチングを行い、遮光膜3に第2のパターン(遮光パターン3b)を形成した(図2(E)参照)。さらに、第2のレジストパターン6bを除去し、洗浄等の所定の処理を経て、位相シフトマスク200を得た(図2(F)参照)。
 上記のドライエッチングで使用される塩素系ガスとしては、Clが含まれていれば特に制限はない。たとえば、塩素系ガスとして、Cl、SiCl、CHCl、CHCl、CCl、BCl等が挙げられる。また、上記のドライエッチングで使用されるフッ素系ガスとしては、Fが含まれていれば特に制限はない。たとえば、フッ素系ガスとして、CHF、CF、C、C、SF等が挙げられる。特に、Cを含まないフッ素系ガスは、ガラス材料の透光性基板1に対するエッチングレートが比較的低いため、透光性基板1へのダメージをより小さくすることができる。
 さらに、本発明の半導体デバイスの製造方法は、前記のマスクブランク100を用いて製造された位相シフトマスク200を用い、半導体基板上のレジスト膜にパターンを露光転写することを特徴としている。本発明のマスクブランク100およびそのマスクブランク100を用いて製造された位相シフトマスク200は、上記の通りの効果を有するため、ArFエキシマレーザーを露光光とする露光装置のマスクステージに、位相シフトマスク200をセットし、半導体デバイス上のレジスト膜に位相シフトパターン2aを露光転写する際も、半導体デバイス上のレジスト膜に設計仕様を十分に満たす精度でパターンを転写することができる。
 一方、本発明と関連する別の実施形態として、以下の構成のマスクブランクを挙げることができる。すなわち、この別の実施形態のマスクブランクは、透光性基板上に位相シフト膜を備えており、位相シフト膜は、透光性基板とは反対側の表面及びその近傍の領域に酸素の含有量が増加した組成傾斜部を有する単層膜であり、位相シフト膜は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、位相シフト膜に対してX線光電子分光分析を行って位相シフト膜におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板に対してX線光電子分光分析を行って透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、位相シフト膜における最大ピークPSi_fを透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であることを特徴とするものである。
 位相シフト膜の組成傾斜部を除く領域は、本発明の位相シフト膜の窒素含有層と同様の特徴を有している。また、位相シフト膜の組成傾斜部は、酸素の含有量が多くなっていることからArF耐光性および耐薬性がともに高い。このため、この別の実施形態のマスクブランクは、従来の単層構造の窒化ケイ素系材料からなる位相シフト膜を備えるマスクブランクに比べて、位相シフト膜の全体でのArF耐光性が高く、耐薬性も高い。なお、この別の実施形態の位相シフト膜に関するその他の事項については、本発明の実施形態の位相シフト膜における窒素含有層と同様である。
 また、上記の別の実施形態のマスクブランクと同様の特徴を備える別の実施形態の位相シフトマスクも挙げることができる。すなわち、この別の実施形態の位相シフトマスクは、透光性基板上に、転写パターンが形成された位相シフト膜を備えており、位相シフト膜は、透光性基板とは反対側の表面及びその近傍の領域に酸素の含有量が増加した組成傾斜部を有する単層膜であり、位相シフト膜は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、位相シフト膜に対してX線光電子分光分析を行って位相シフト膜におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、透光性基板に対してX線光電子分光分析を行って透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、位相シフト膜における最大ピークPSi_fを透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下であることを特徴とするものである。
 上記の別の実施形態のマスクブランクの場合と同様、この別の実施形態の位相シフトマスクは、従来の単層構造の窒化ケイ素系材料からなる位相シフト膜を備える位相シフトマスクに比べて、位相シフト膜の全体でのArF耐光性が高く、耐薬性も高い。また、ArFエキシマレーザーを露光光とする露光装置のマスクステージにこの別の実施形態の位相シフトマスクをセットし、半導体デバイス上のレジスト膜に位相シフトパターンを露光転写する際も、半導体デバイス上のレジスト膜に設計仕様を十分に満たす精度でパターンを転写することができる。
 以下、実施例により、本発明の実施形態をさらに具体的に説明する。
(実施例1)
[マスクブランクの製造]
 主表面の寸法が約152mm×約152mmで、厚さが約6.25mmの合成石英ガラスからなる透光性基板1を準備した。この透光性基板1は、端面及び主表面が所定の表面粗さに研磨され、その後、所定の洗浄処理および乾燥処理を施されたものであった。
 次に、透光性基板1上に、窒素含有層と酸素含有層が積層した2層構造の位相シフト膜2を以下の手順で形成した。まず、枚葉式RFスパッタ装置内に透光性基板1を設置し、ケイ素(Si)ターゲットを用い、クリプトン(Kr)、ヘリウム(He)および窒素(N)の混合ガスをスパッタリングガスとし、RF電源による反応性スパッタリング(RFスパッタリング)により、透光性基板1上に、ケイ素および窒素からなる位相シフト膜2の窒素含有層(窒化ケイ素層)を58nmの厚さで形成した。
 続いて、枚葉式RFスパッタ装置内に、窒素含有層が形成された透光性基板1を設置し、二酸化ケイ素(SiO)ターゲットを用い、アルゴン(Ar)ガスをスパッタリングガスとし、RF電源による反応性スパッタリング(RFスパッタリング)により、窒素含有層の上に、ケイ素および酸素からなる位相シフト膜2の酸素含有層(酸化ケイ素層)を11nmの厚さで形成した。
 次に、この位相シフト膜2が形成された透光性基板1を電気炉内に設置し、大気中において加熱温度550℃、処理時間1時間の条件で加熱処理を行った。電気炉は、特開2002-162726号公報の図5に開示されている縦型炉と同様の構造のものを使用した。電気炉での加熱処理は、炉内にケミカルフィルタを通した大気を導入した状態で行った。電気炉での加熱処理後、電気炉に冷媒を注入して、上記基板に対し所定温度(250℃前後)までの強制冷却を行った。この強制冷却は、炉内に冷媒の窒素ガスを導入した状態(実質的に窒素ガス雰囲気)で行った。この強制冷却後、電気炉から上記基板を取り出して、大気中で常温(25℃以下)に低下するまで自然冷却を行った。
 加熱処理後の位相シフト膜2に対し、位相シフト量測定装置(レーザーテック社製 MPM-193)でArFエキシマレーザーの光の波長(約193nm)における透過率および位相差を測定したところ、透過率は21%、位相差が177度であった。
 また、新たに準備した透光性基板の主表面に対して、上記の位相シフト膜と同じ条件で位相シフト膜を形成し、さらに上記と同じ条件で加熱処理を行った後に、分光エリプソメーター(J.A.Woollam社製 M-2000D)を用いてこの位相シフト膜の光学特性を測定した。その結果、窒素含有層は、波長193nmにおける屈折率nが2.56、消衰係数kが0.35であり、酸素含有層は、波長193nmにおける屈折率nが1.59、消衰係数kが0.00であった。
 次に、上記のほかに新たに準備した透光性基板の主表面上に、上記の実施例1の位相シフト膜2と同じ成膜条件で位相シフト膜を形成し、さらに上記と同じ条件で加熱処理を行った。次に、その加熱処理後の透光性基板と位相シフト膜に対して、X線光電子分光分析を行った。このX線光電子分光分析では、位相シフト膜(または透光性基板)の表面に対してX線(AlKα線:1486eV)を照射してその位相シフト膜(または透光性基板)から放出される光電子の強度を測定し、Arガススパッタリングで位相シフト膜(または透光性基板)の表面を所定時間(約0.7nmの深さ)だけ掘り込み、掘り込んだ領域の位相シフト膜(または透光性基板)に対してX線を照射してその掘り込んだ領域の位相シフト膜(または透光性基板)から放出される光電子の強度を測定する。そして、このステップを繰り返すことで、Si2pナロースペクトルを位相シフト膜と透光性基板のそれぞれについて取得した。なお、取得されたSi2pナロースペクトルは、透光性基板1が絶縁体であるため、導電体上で分析する場合のスペクトルに対してエネルギーが低めに変位している。この変位を修正するため、導電体である炭素(カーボン)のピークに合わせた修正を行っている。また、このX線光電子分光分析では、X線にAlKα線(1486.6eV)を用い、光電子の検出領域は、200μmφ、取り出し角度が45degの条件で行った(以降の比較例も同様。)。
 図3に実施例1の位相シフト膜の窒素含有層(窒化ケイ素層)と透光性基板の各Si2pナロースペクトルを示す。このX線光電子分光分析の結果から、位相シフト膜の窒素含有層におけるSi2pナロースペクトルの最大ピークPSi_fを、透光性基板におけるSi2pナロースペクトルの最大ピークPSi_sで除した値(PSi_f)/(PSi_s)を算出したところ、1.077であった。
 この取得した窒素含有層のSi2pナロースペクトルには、Si結合、Si結合(b/[a+b]<4/7)、Si-O結合およびSi-ON結合のピークがそれぞれ含まれている。そして、Si結合、Si結合およびSi-O結合およびSi-ON結合のそれぞれのピーク位置(ただし、Si-O結合およびSi-ON結合は、同じピーク位置。)と、半値全幅FWHM(full width at half maximum)を固定して、ピーク分離を行った。具体的には、Si結合のピーク位置を100.4eVとし、Si結合のピーク位置を102.0eVとし、Si-O結合およびSi-ON結合のピーク位置を103.3eVとし、それぞれの半値全幅FWHMを2.06として、ピーク分離を行った(以降の比較例1も同様。)。
 さらに、ピーク分離されたSi結合と、Si結合と、Si-O結合およびSi-ON結合のそれぞれのスペクトルについて、分析装置が備えている公知の手法のアルゴリズムにより算出されたバックグラウンドを差し引いた面積をそれぞれ算出し、算出されたそれぞれの面積に基づき、Si結合の存在数の比率と、Si結合の存在数の比率と、Si-O結合およびSi-ON結合の存在数の比率をそれぞれ算出した。その結果、Si結合の存在数の比率が0.092、Si結合の存在数の比率が0.884、Si-O結合およびSi-ON結合の存在数の比率が0.024であった。すなわち、窒素含有層は、Si結合の存在数を、Si結合、Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上という条件を満たす(0.884で満たす。)ものであった。なお、このX線光電子分光分析の結果から、この位相シフト膜の窒素含有層の組成は、Si:N:O=43.6原子%:55.2原子%:1.2原子%であり、酸素含有層の組成は、Si:O=33.8原子%:66.2原子%であることがわかった。
 次に、枚葉式DCスパッタ装置内に加熱処理後の位相シフト膜2が形成された透光性基板1を設置し、クロム(Cr)ターゲットを用い、アルゴン(Ar)、二酸化炭素(CO)、およびヘリウム(He)の混合ガス(流量比 Ar:CO:He=18:33:28,圧力=0.15Pa)をスパッタリングガスとし、DC電源の電力を1.8kWとし、反応性スパッタリング(DCスパッタリング)により、位相シフト膜2の表面に接して、CrOCからなる遮光膜3を56nmの厚さで形成した。
 さらに、枚葉式RFスパッタ装置内に、位相シフト膜2および遮光膜3が積層された透光性基板1を設置し、二酸化ケイ素(SiO)ターゲットを用い、アルゴン(Ar)ガス(圧力=0.03Pa)をスパッタリングガスとし、RF電源の電力を1.5kWとし、RFスパッタリングにより、遮光膜3上に、ケイ素および酸素からなるハードマスク膜4を5nmの厚さで形成した。以上の手順により、透光性基板1上に、位相シフト膜2、遮光膜3およびハードマスク膜4が積層した構造を備えるマスクブランク100を製造した。
[位相シフトマスクの製造]
 次に、この実施例1のマスクブランク100を用い、以下の手順で実施例1の位相シフトマスク200を作製した。最初に、ハードマスク膜4の表面にHMDS処理を施した。続いて、スピン塗布法によって、ハードマスク膜4の表面に接して、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚80nmで形成した。次に、このレジスト膜に対して、位相シフト膜2に形成すべき位相シフトパターンである第1のパターンを電子線描画し、所定の現像処理および洗浄処理を行い、第1のパターンを有する第1のレジストパターン5aを形成した(図2(A)参照)。
 次に、第1のレジストパターン5aをマスクとし、CFガスを用いたドライエッチングを行い、ハードマスク膜4に第1のパターン(ハードマスクパターン4a)を形成した(図2(B)参照)。
 次に、第1のレジストパターン5aを除去した。続いて、ハードマスクパターン4aをマスクとし、塩素と酸素との混合ガス(ガス流量比 Cl:O=4:1)を用いたドライエッチングを行い、遮光膜3に第1のパターン(遮光パターン3a)を形成した(図2(C)参照)。
 次に、遮光パターン3aをマスクとし、フッ素系ガス(SFとHeの混合ガス)を用いたドライエッチングを行い、位相シフト膜2に第1のパターン(位相シフトパターン2a)を形成し、かつ同時にハードマスクパターン4aを除去した(図2(D)参照)。
 次に、遮光パターン3a上に、スピン塗布法によって、電子線描画用化学増幅型レジストからなるレジスト膜を膜厚150nmで形成した。次に、レジスト膜に対して、遮光膜3に形成すべきパターン(遮光パターン)である第2のパターンを露光描画し、さらに現像処理等の所定の処理を行い、遮光パターンを有する第2のレジストパターン6bを形成した。続いて、第2のレジストパターン6bをマスクとして、塩素と酸素との混合ガス(ガス流量比 Cl:O=4:1)を用いたドライエッチングを行い、遮光膜3に第2のパターン(遮光パターン3b)を形成した(図2(E)参照)。さらに、第2のレジストパターン6bを除去し、洗浄処理を経て、位相シフトマスク200を得た(図2(F)参照)。
 製造した実施例1のハーフトーン型の位相シフトマスク200の位相シフトパターン2aに対して、ArFエキシマレーザー光を積算照射量40kJ/cmで間欠照射する処理を行った。この照射処理の前後における位相シフトパターン2aのCD(Critical Dimension)変化量は、最大1.2nmであり、位相シフトマスク200として高い転写精度を確保できるCD変化量であった。
 また、同様の手順で実施例1のハーフトーン型の位相シフトマスク200を別に製造し、その位相シフトマスク200に対し、薬液による洗浄処理を行った。具体的には、位相シフトマスク200に対し、最初にSPM洗浄(洗浄液:HSO+H)を行い、次にDI(DeIonized)水によるリンス洗浄を行い、次にAPM洗浄(洗浄液:NHOH+H+HO)を行い、最後にDI水によるリンス洗浄を行う洗浄工程を1サイクルとし、これを20サイクル繰り返した。この洗浄処理後の位相シフトマスク200の位相シフトパターン2aを断面TEM(Transmission Electron Microscope)で観察した。その結果、位相シフトパターン2aの側壁形状は良好であることが確認でき、窒化ケイ素層と酸化ケイ素層との間で目立った段差は見当たらなかった。
 次に、ArFエキシマレーザー光による積算照射処理後の実施例1の位相シフトマスク200に対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、設計仕様を十分に満たしていた。この結果から、ArFエキシマレーザー光による積算照射処理後の実施例1の位相シフトマスク200を露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写した場合でも、最終的に半導体デバイス上に回路パターンを高精度で形成できるといえる。
(比較例1)
[マスクブランクの製造]
 比較例1のマスクブランクは、位相シフト膜に対する加熱処理の条件を変更した以外は、実施例1のマスクブランク100と同様の手順で製造された。具体的には、比較例1の位相シフト膜2が形成された透光性基板1をホットプレートに設置し、大気中において、加熱温度280℃、処理時間30分の条件で加熱処理を行った。加熱処理後、冷媒を用いて常温(25℃以下)に低下するまで強制冷却を行った。
 加熱処理後の位相シフト膜に対し、位相シフト量測定装置(レーザーテック社製 MPM-193)でArFエキシマレーザーの光の波長(約193nm)における透過率および位相差を測定したところ、透過率は21%、位相差が177度であった。また、実施例1の場合と同様に、この位相シフト膜の光学特性を測定した。その結果、窒素含有層は、波長193nmにおける屈折率nが2.58、消衰係数kが0.39であり、酸素含有層は、波長193nmにおける屈折率nが1.59、消衰係数kが0.00であった。
 実施例1の場合と同様に、新たに準備した透光性基板の主表面上に、比較例1の位相シフト膜と同じ成膜条件で位相シフト膜を形成し、さらに同じ条件で加熱処理を行った。次に、その加熱処理後の透光性基板と位相シフト膜に対して、実施例1と同様のX線光電子分光分析を行った。
 図4に比較例1の位相シフト膜の窒素含有層(窒化ケイ素層)と透光性基板の各Si2pナロースペクトルを示す。このX線光電子分光分析の結果から、位相シフト膜の窒素含有層におけるSi2pナロースペクトルの最大ピークPSi_fを、透光性基板におけるSi2pナロースペクトルの最大ピークPSi_sで除した値(PSi_f)/(PSi_s)を算出したところ、1.096であった。
 実施例1の場合と同様に、この比較例1の窒素含有層のSi2pナロースペクトルに対し、Si結合、Si結合(b/[a+b]<4/7)、Si-O結合およびSi-ON結合のピーク分離を行い、各結合の存在数の比率を算出した。その結果、Si結合の存在数の比率が0.093、Si結合の存在数の比率が0.873、Si-O結合およびSi-ON結合の存在数の比率が0.034であった。すなわち、この比較例1の窒素含有層は、Si結合の存在数を、Si結合、Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上という条件を満たさない(0.873で満たさない。)ものであった。なお、このX線光電子分光分析の結果から、この比較例1の位相シフト膜の窒素含有層の組成は、Si:N:O=43.8原子%:54.5原子%:1.7原子%であり、酸素含有層の組成は、Si:O=33.9原子%:66.1原子%であることがわかった。
 次に、実施例1の場合と同様に、透光性基板の位相シフト膜上に、遮光膜およびハードマスク膜を形成した。以上の手順により、透光性基板上に、位相シフト膜、遮光膜およびハードマスク膜が積層した構造を備える比較例1のマスクブランクを製造した。
[位相シフトマスクの製造]
 次に、この比較例1のマスクブランクを用い、実施例1と同様の手順で、比較例1の位相シフトマスクを製造した。さらに、実施例1と同様、製造した比較例1のハーフトーン型の位相シフトマスクの位相シフトパターンに対して、ArFエキシマレーザー光を積算照射量40kJ/cmで間欠照射する処理を行った。この照射処理の前後における位相シフトパターン2aのCD変化量は、最大3.5nmであり、位相シフトマスクとして高い転写精度を確保できるCD変化量には至らなかった。
 また、この比較例1のマスクブランクを用い、実施例1と同様の手順で、比較例1のハーフトーン型の位相シフトマスクを別に製造し、その位相シフトマスクに対し、薬液による洗浄処理を行った。この洗浄処理後の位相シフトマスクの位相シフトパターンを断面TEM(Transmission Electron Microscope)で観察した。その結果、位相シフトパターンの側壁形状は、窒化ケイ素層と酸化ケイ素層との間で段差が発生していた。
 次に、ArFエキシマレーザー光による積算照射処理後の比較例1の位相シフトマスクに対し、AIMS193(Carl Zeiss社製)を用いて、波長193nmの露光光で半導体デバイス上のレジスト膜に露光転写したときにおける転写像のシミュレーションを行った。このシミュレーションの露光転写像を検証したところ、微細なパターンの部分で設計仕様を満たすことができていなかった。この結果から、ArFエキシマレーザー光による積算照射処理後の比較例1の位相シフトマスクを露光装置のマスクステージにセットし、半導体デバイス上のレジスト膜に露光転写した場合、最終的に半導体デバイス上に回路パターンを高精度で形成することは困難といえる。
 1 透光性基板
 2 位相シフト膜
 2a 位相シフトパターン
 3 遮光膜
 3a,3b 遮光パターン
 4 ハードマスク膜
 4a ハードマスクパターン
 5a 第1のレジストパターン
 6b 第2のレジストパターン
 100 マスクブランク
 200 位相シフトマスク

Claims (19)

  1.  透光性基板上に位相シフト膜を備えたマスクブランクであって、
     前記位相シフト膜は、窒素含有層と酸素含有層を少なくとも含み、
     前記酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、
     前記窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、
     前記窒素含有層に対してX線光電子分光分析を行って前記窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、前記透光性基板に対してX線光電子分光分析を行って前記透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、前記窒素含有層における最大ピークPSi_fを前記透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下である
     ことを特徴とするマスクブランク。
  2.  前記窒素含有層は、窒素の含有量が50原子%以上であることを特徴とする請求項1に記載のマスクブランク。
  3.  前記酸素含有層は、窒素および酸素の合計含有量が50原子%以上であることを特徴とする請求項1または2に記載のマスクブランク。
  4.  前記酸素含有層は、酸素の含有量が15原子%以上であることを特徴とする請求項1から3のいずれか1項に記載のマスクブランク。
  5.  前記Si2pナロースペクトルでの光電子強度の最大ピークは、結合エネルギーが96[eV]以上106[eV]以下の範囲での最大ピークであることを特徴とする請求項1から4のいずれか1項に記載のマスクブランク。
  6.  前記X線光電子分光分析で前記位相シフト膜に対して照射するX線は、AlKα線であることを特徴とする請求項1から5のいずれか1項に記載のマスクブランク。
  7.  前記窒素含有層におけるSi結合の存在数を、Si結合、Si結合(ただし、b/[a+b]<4/7)、Si-Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上であることを特徴とする請求項1から6のいずれか1項に記載のマスクブランク。
  8.  前記位相シフト膜は、ArFエキシマレーザーの露光光を10%以上の透過率で透過させる機能と、前記位相シフト膜を透過した前記露光光に対して前記位相シフト膜の厚さと同じ距離だけ空気中を通過した前記露光光との間で150度以上200度以下の位相差を生じさせる機能とを有することを特徴とする請求項1から7のいずれか1項に記載のマスクブランク。
  9.  前記位相シフト膜上に、遮光膜を備えることを特徴とする請求項1から8のいずれか1項に記載のマスクブランク。
  10.  透光性基板上に、転写パターンが形成された位相シフト膜を備えた位相シフトマスクであって、
     前記位相シフト膜は、窒素含有層と酸素含有層を少なくとも含み、
     前記酸素含有層は、ケイ素と酸素とからなる材料、または半金属元素および非金属元素から選ばれる1以上の元素と酸素とケイ素とからなる材料で形成され、
     前記窒素含有層は、ケイ素と窒素とからなる材料、または非金属元素および半金属元素から選ばれる1以上の元素と窒素とケイ素とからなる材料で形成され、
     前記窒素含有層に対してX線光電子分光分析を行って前記窒素含有層におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_fを取得し、前記透光性基板に対してX線光電子分光分析を行って前記透光性基板におけるSi2pナロースペクトルの光電子強度の最大ピークPSi_sを取得したとき、前記窒素含有層における最大ピークPSi_fを前記透光性基板における最大ピークPSi_sで除した数値(PSi_f)/(PSi_s)が1.09以下である
     ことを特徴とする位相シフトマスク。
  11.  前記窒素含有層は、窒素の含有量が50原子%以上であることを特徴とする請求項10に記載の位相シフトマスク。
  12.  前記酸素含有層は、窒素および酸素の合計含有量が50原子%以上であることを特徴とする請求項10または11に記載の位相シフトマスク。
  13.  前記酸素含有層は、酸素の含有量が15原子%以上であることを特徴とする請求項10から12のいずれか1項に記載の位相シフトマスク。
  14.  前記Si2pナロースペクトルでの光電子強度の最大ピークは、結合エネルギーが96[eV]以上106[eV]以下の範囲での最大ピークであることを特徴とする請求項10から13のいずれか1項に記載の位相シフトマスク。
  15.  前記X線光電子分光分析で前記位相シフト膜に対して照射するX線は、AlKα線であることを特徴とする請求項10から14のいずれか1項に記載の位相シフトマスク。
  16.  前記窒素含有層におけるSi結合の存在数を、Si結合、Si結合(ただし、b/[a+b]<4/7)、Si-Si結合、Si-O結合およびSi-ON結合の合計存在数で除した比率が0.88以上であることを特徴とする請求項10から15のいずれか1項に記載の位相シフトマスク。
  17.  前記位相シフト膜は、ArFエキシマレーザーの露光光を10%以上の透過率で透過させる機能と、前記位相シフト膜を透過した前記露光光に対して前記位相シフト膜の厚さと同じ距離だけ空気中を通過した前記露光光との間で150度以上200度以下の位相差を生じさせる機能とを有することを特徴とする請求項10から16のいずれか1項に記載の位相シフトマスク。
  18.  前記位相シフト膜上に、遮光パターンが形成された遮光膜を備えることを特徴とする請求項10から17のいずれか1項に記載の位相シフトマスク。
  19.  請求項10から18のいずれか1項に記載の位相シフトマスクを用い、半導体基板上のレジスト膜に転写パターンを露光転写する工程を備えることを特徴とする半導体デバイスの製造方法。
PCT/JP2019/000138 2018-02-22 2019-01-08 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法 WO2019163310A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020247015381A KR20240067993A (ko) 2018-02-22 2019-01-08 마스크 블랭크, 위상 시프트 마스크, 및 반도체 디바이스의 제조 방법
SG11202007975QA SG11202007975QA (en) 2018-02-22 2019-01-08 Mask blank, phase shift mask, and method for manufacturing semiconductor device
CN201980014769.XA CN111758071B (zh) 2018-02-22 2019-01-08 掩模坯料、相移掩模及半导体器件的制造方法
US16/970,601 US11009787B2 (en) 2018-02-22 2019-01-08 Mask blank, phase shift mask, and method for manufacturing semiconductor device
CN202310713382.1A CN116841118A (zh) 2018-02-22 2019-01-08 掩模坯料、相移掩模及半导体器件的制造方法
KR1020207022109A KR102665789B1 (ko) 2018-02-22 2019-01-08 마스크 블랭크, 위상 시프트 마스크, 및 반도체 디바이스의 제조 방법
US17/231,282 US11415875B2 (en) 2018-02-22 2021-04-15 Mask blank, phase shift mask, and method for manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-029428 2018-02-22
JP2018029428A JP6547019B1 (ja) 2018-02-22 2018-02-22 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/970,601 A-371-Of-International US11009787B2 (en) 2018-02-22 2019-01-08 Mask blank, phase shift mask, and method for manufacturing semiconductor device
US17/231,282 Continuation US11415875B2 (en) 2018-02-22 2021-04-15 Mask blank, phase shift mask, and method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2019163310A1 true WO2019163310A1 (ja) 2019-08-29

Family

ID=67297609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000138 WO2019163310A1 (ja) 2018-02-22 2019-01-08 マスクブランク、位相シフトマスク及び半導体デバイスの製造方法

Country Status (7)

Country Link
US (2) US11009787B2 (ja)
JP (1) JP6547019B1 (ja)
KR (2) KR102665789B1 (ja)
CN (2) CN111758071B (ja)
SG (1) SG11202007975QA (ja)
TW (1) TWI815847B (ja)
WO (1) WO2019163310A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827878B (zh) * 2019-09-05 2024-01-01 日商Hoya股份有限公司 光罩基底、相偏移光罩及半導體裝置之製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220342294A1 (en) * 2019-09-25 2022-10-27 Hoya Corporation Mask blank, phase shift mask, and method of manufacturing semiconductor device
JP7192731B2 (ja) * 2019-09-27 2022-12-20 信越化学工業株式会社 ハーフトーン位相シフト型フォトマスクブランク、その製造方法、及びハーフトーン位相シフト型フォトマスク
JP6987912B2 (ja) * 2020-03-16 2022-01-05 アルバック成膜株式会社 マスクブランクス、位相シフトマスク、製造方法
KR20220130376A (ko) 2021-03-18 2022-09-27 렉스온 주식회사 힌지장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728224A (ja) * 1993-07-13 1995-01-31 Dainippon Printing Co Ltd ハーフトーン位相シフトフォトマスク及びハーフトーン位相シフトフォトマスク用ブランクス
JPH10171096A (ja) * 1996-12-14 1998-06-26 Hoya Corp 位相シフトマスク及び位相シフトマスクブランク
JP2002341515A (ja) * 2001-05-18 2002-11-27 Shin Etsu Chem Co Ltd 位相シフトマスクブランク及び位相シフトマスクの製造方法
JP2006276648A (ja) * 2005-03-30 2006-10-12 Hoya Corp 位相シフトマスクブランク及び位相シフトマスクの製造方法
WO2016158649A1 (ja) * 2015-03-27 2016-10-06 Hoya株式会社 マスクブランク、位相シフトマスク及び位相シフトマスクの製造方法、並びに半導体装置の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100295385B1 (ko) 1993-04-09 2001-09-17 기타지마 요시토시 하프톤위상쉬프트포토마스크,하프톤위상쉬프트포토마스크용블랭크스및이들의제조방법
KR0168134B1 (ko) 1993-05-25 1999-01-15 사토 후미오 반사형 위상쉬프트 마스크와, 투과형 위상쉬프트 마스크 및, 패턴형성방법
JP3115185B2 (ja) 1993-05-25 2000-12-04 株式会社東芝 露光用マスクとパターン形成方法
US6274280B1 (en) 1999-01-14 2001-08-14 E.I. Du Pont De Nemours And Company Multilayer attenuating phase-shift masks
JP3722029B2 (ja) 2000-09-12 2005-11-30 Hoya株式会社 位相シフトマスクブランクの製造方法、及び位相シフトマスクの製造方法
US7652401B2 (en) 2005-02-07 2010-01-26 Lg Innotek Co., Ltd. Flat vibration motor
JP5762819B2 (ja) * 2010-05-19 2015-08-12 Hoya株式会社 マスクブランクの製造方法及び転写用マスクの製造方法、並びにマスクブランク及び転写用マスク
US9625806B2 (en) * 2013-01-15 2017-04-18 Hoya Corporation Mask blank, phase-shift mask, and method for manufacturing the same
JP6101646B2 (ja) * 2013-02-26 2017-03-22 Hoya株式会社 位相シフトマスクブランク及びその製造方法、位相シフトマスク及びその製造方法、並びに表示装置の製造方法
JP2015049282A (ja) * 2013-08-30 2015-03-16 Hoya株式会社 表示装置製造用フォトマスク、該フォトマスクの製造方法、パターン転写方法及び表示装置の製造方法
SG10201908855RA (en) * 2015-11-06 2019-10-30 Hoya Corp Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728224A (ja) * 1993-07-13 1995-01-31 Dainippon Printing Co Ltd ハーフトーン位相シフトフォトマスク及びハーフトーン位相シフトフォトマスク用ブランクス
JPH10171096A (ja) * 1996-12-14 1998-06-26 Hoya Corp 位相シフトマスク及び位相シフトマスクブランク
JP2002341515A (ja) * 2001-05-18 2002-11-27 Shin Etsu Chem Co Ltd 位相シフトマスクブランク及び位相シフトマスクの製造方法
JP2006276648A (ja) * 2005-03-30 2006-10-12 Hoya Corp 位相シフトマスクブランク及び位相シフトマスクの製造方法
WO2016158649A1 (ja) * 2015-03-27 2016-10-06 Hoya株式会社 マスクブランク、位相シフトマスク及び位相シフトマスクの製造方法、並びに半導体装置の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI827878B (zh) * 2019-09-05 2024-01-01 日商Hoya股份有限公司 光罩基底、相偏移光罩及半導體裝置之製造方法

Also Published As

Publication number Publication date
JP2019144444A (ja) 2019-08-29
KR20200123102A (ko) 2020-10-28
US11415875B2 (en) 2022-08-16
CN111758071B (zh) 2023-05-26
US20210088895A1 (en) 2021-03-25
CN116841118A (zh) 2023-10-03
TW201937267A (zh) 2019-09-16
TWI815847B (zh) 2023-09-21
SG11202007975QA (en) 2020-09-29
TW202405553A (zh) 2024-02-01
CN111758071A (zh) 2020-10-09
JP6547019B1 (ja) 2019-07-17
KR20240067993A (ko) 2024-05-17
US20210255538A1 (en) 2021-08-19
US11009787B2 (en) 2021-05-18
KR102665789B1 (ko) 2024-05-14

Similar Documents

Publication Publication Date Title
JP6759270B2 (ja) マスクブランク、位相シフトマスクの製造方法、及び半導体デバイスの製造方法
WO2019163310A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
TWI752119B (zh) 光罩基底、轉印用遮罩、轉印用遮罩之製造方法及半導體裝置之製造方法
JP7201502B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP7039521B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP6738941B2 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
US20210109436A1 (en) Mask blank, method for producing transfer mask, and method for producing semiconductor device
WO2023037731A1 (ja) マスクブランク、位相シフトマスク及び半導体デバイスの製造方法
JP2018132686A (ja) マスクブランク、転写用マスク、転写用マスクの製造方法および半導体デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757316

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757316

Country of ref document: EP

Kind code of ref document: A1