WO2017141576A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2017141576A1
WO2017141576A1 PCT/JP2017/000566 JP2017000566W WO2017141576A1 WO 2017141576 A1 WO2017141576 A1 WO 2017141576A1 JP 2017000566 W JP2017000566 W JP 2017000566W WO 2017141576 A1 WO2017141576 A1 WO 2017141576A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
cylinder
internal combustion
engine
supply manifold
Prior art date
Application number
PCT/JP2017/000566
Other languages
English (en)
French (fr)
Inventor
大育 竹本
柚木 晃広
石黒 達男
和雄 小倉
雄太 古川
信之介 長船
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to US16/077,331 priority Critical patent/US10619606B2/en
Priority to EP17752840.3A priority patent/EP3401523B1/en
Publication of WO2017141576A1 publication Critical patent/WO2017141576A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10295Damping means, e.g. tranquillising chamber to dampen air oscillations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0414Air temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an internal combustion engine having at least one cylinder.
  • Internal combustion engines are widely used as power sources in various applications.
  • a gas engine with high output and using economical methane gas or the like is known.
  • the air supply valve (scavenging port) provided in the cylinder opens and flows into the cylinder, but at that time the cylinder
  • the amount of air or mixture of air charged into the interior is determined based on the pressure difference between the cylinder and the air supply manifold.
  • a pressure wave of negative pressure is generated due to the pressure difference between the cylinder and the air supply manifold, and air supply pulsation corresponding to the combustion cycle is generated.
  • the pressure difference between the cylinders and the air supply manifold changes with time due to the air supply pulsation, the amount of air supplied to each cylinder is affected by the pressure difference.
  • the pressure difference between the cylinder and the air supply manifold decreases, the amount of air supplied to the cylinder decreases, which causes the engine efficiency to decrease.
  • Patent Document 1 As a technique for suppressing such a reduction in engine efficiency, there is Patent Document 1, for example.
  • an impulse valve is provided in the intake pipe on the downstream side of the throttle valve, and the opening degree of the impulse valve is controlled in synchronization with the opening degree change of the throttle valve, whereby the air supply amount is changed according to the operating condition change of the engine. It is described that good followability can be obtained even in the case of fluctuating, and deterioration of engine performance can be suppressed.
  • Patent Document 1 does not show a fundamental solution for the air supply pulsation, and there is still room for improvement in engine efficiency reduction due to the air supply pulsation.
  • At least one embodiment of the present invention has been made in view of the above-mentioned problems, and an object thereof is to provide an internal combustion engine capable of improving engine efficiency by suppressing pressure pulsation generated at the time of air supply.
  • an engine control device an engine body having at least one cylinder, and an air supply connected to the at least one cylinder via an air supply manifold.
  • a trachea and an adjusting pipe having a predetermined length and extending from the air supply manifold, the predetermined length being a first pressure wave advancing from the air supply manifold toward the adjusting pipe, and
  • the second pressure wave traveling from the adjusting pipe toward the air supply manifold is set to be in reverse phase with each other in at least a part of the at least one cylinder.
  • the air supply manifold connected to the engine main body is provided with the adjustment pipe having a predetermined length. Since the length of the adjusting pipe is set such that the first pressure wave and the second pressure wave are in opposite phase to each other in at least one cylinder, the first pressure wave and the second pressure wave are adjusted in the cylinder. Pressure waves are offset. As a result, the pressure difference between the cylinder and the air supply manifold is stably and increased, so the amount of air flowing into the cylinder is increased (volume efficiency is improved), and good engine efficiency can be obtained.
  • the predetermined length is set based on the supplied air temperature or the mixture composition (specific heat ratio) at the time of rated output of the engine body.
  • the propagation velocity of the pressure wave in the air supply manifold depends on the air supply temperature and the mixture composition (specific heat ratio). Therefore, in the configuration of the above (2), by setting the length of the adjusting pipe based on the supplied air temperature and the air-fuel mixture composition (specific heat ratio) at the time of rated output of the engine main body, particularly good engine at rated operation An internal combustion engine capable of exhibiting efficiency can be realized.
  • the adjusting pipe is provided at a bent portion of the air supply manifold.
  • the adjustment pipe at the bent portion of the air supply manifold, it is possible to effectively guide the pressure wave that goes straight from the inside of the air supply manifold to the adjustment pipe.
  • the second pressure wave can be effectively generated from the first pressure wave, and as a result, the above-described effect can be more effectively obtained.
  • the adjusting pipe is provided such that its inlet faces the at least one cylinder.
  • the inlet of the adjusting pipe to face the cylinder, it is possible to effectively guide the pressure wave resulting from the air supply passing through the air supply manifold to the adjusting pipe. .
  • the second pressure wave can be effectively generated from the first pressure wave, and as a result, the above-described effect can be more effectively obtained.
  • the engine body is a single cylinder engine having a single cylinder.
  • the engine body is a multi-cylinder engine having a plurality of cylinders.
  • the at least one cylinder includes a first cylinder group and a second cylinder group, and the air supply manifold includes the first cylinder group. And a second manifold connected to the second cylinder group, wherein the adjusting pipe is provided to connect the first manifold and the second manifold with each other.
  • the first manifold and the second manifold for supplying air to the first cylinder group and the second cylinder group constituting the plurality of cylinders are communicated with each other
  • An adjustment pipe is provided to As a result, the pressure waves generated in the respective cylinder groups can be dispersed more widely, and can be attenuated. Further, by controlling the pressure pulsation in the air supply manifold as described above by the adjusting pipe, a highly efficient engine can be realized. Further, such an adjusting pipe can be realized in a compact configuration as compared with the case where the adjusting pipe is individually provided in each cylinder group, which can also contribute to saving of the space for arranging the engine.
  • the adjusting pipe is a vent for generating an air flow resistance to air flowing in the adjusting pipe. It has a resistor.
  • the propagation velocity of the pressure wave passing through the adjusting pipe is reduced by the ventilation resistor provided in the adjusting pipe.
  • the time required for the pressure wave to pass through the adjusting pipe is increased, the length of the adjusting pipe required for offsetting the first pressure wave and the second pressure wave at the position of the cylinder is shortened.
  • Can. Thereby, a highly efficient engine can be realized with a more compact configuration.
  • the ventilation resistor is made of a porous material.
  • the ventilation resistor has a variable ventilation resistance value, and a parameter acquiring unit that acquires a parameter related to the operating state of the engine body; And a control unit that variably controls the ventilation resistance of the ventilation resistor based on the parameter acquired by the parameter acquisition unit.
  • an internal combustion engine capable of improving engine efficiency by suppressing pressure pulsations generated at the time of air supply.
  • FIG. 1 is a schematic view showing an entire configuration of an internal combustion engine according to a first embodiment.
  • FIG. 5 is a schematic view showing the appearance of a single pressure wave propagating through the air supply manifold 4 including the adjustment pipe 12; It is a schematic diagram which shows the mode of several pressure waves which propagate the air supply manifold 4 containing the adjustment pipe
  • the expression expressing a shape such as a quadrilateral shape or a cylindrical shape not only represents a shape such as a rectangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion The shape including a chamfer etc. shall also be expressed.
  • the expressions “comprising”, “having”, “having”, “including” or “having” one component are not exclusive expressions excluding the presence of other components.
  • FIG. 1 is a schematic view showing an entire configuration of an internal combustion engine (hereinafter appropriately referred to as “engine”) 10 according to the first embodiment.
  • the engine 10 is a single cylinder gas engine having a single cylinder 2.
  • An air supply manifold 4 is connected to a combustion chamber (not shown) of the cylinder 2.
  • An air supply pipe 6 is connected to the upstream side of the air supply manifold 4.
  • the air supply pipe 6 is provided with a mixing device (not shown) for mixing the air from the air cleaner and the fuel gas mixed in the middle, and the mixed gas generated by the mixing device is supplied to the air supply manifold 4. It is configured to be introduced.
  • the mixed gas introduced into the air supply manifold 4 is charged into the combustion chamber by flowing into the cylinder 2 according to the pressure difference between the cylinder 2 and the air supply manifold 4 when the air supply valve is opened. .
  • Exhaust gas generated by burning the mixed gas in the combustion chamber is exhausted from the exhaust pipe 9 to the outside through the exhaust manifold 8.
  • the exhaust pipe 9 is provided with an exhaust gas purification device (not shown) including an oxidation catalyst and a denitration catalyst, and the exhaust gas is released into the atmosphere after being detoxified by the exhaust gas purification device.
  • the adjustment pipe 12 is provided in the air supply manifold 4 in order to suppress the efficiency decrease of the engine 10 caused by the pressure pulsation of the air supply.
  • the adjusting pipe 12 has a shape (e.g., length and volume) suitable for damping pressure waves generated in the air supply manifold 4.
  • a cylindrical tubular body having a constant diameter and a predetermined length is shown as an example of such a control pipe 12.
  • the adjustment pipe 12 may be configured integrally with the air supply manifold 4 or may be configured separately.
  • FIG. 2 is a schematic view showing the appearance of a single pressure wave propagating through the air supply manifold 4 including the adjustment pipe 12.
  • the pressure wave 14 generated along with the opening and closing of the intake valve intrudes into the adjustment pipe 12 from the air supply manifold 4 side and travels toward the deepest portion 18.
  • the pressure wave 14 that has reached the deepest portion 18 is reflected by the inner wall of the adjustment pipe 12 and travels from the deepest portion 18 toward the air supply manifold 4 side.
  • the reflection of the pressure wave 14 at the deepest portion 18 is a fixed end reflection, the phase of the pressure wave 14 is reversed at the time of reflection.
  • the first pressure wave 14A the adjustment pipe What advances from the deepest part 18 of 12 toward the air supply manifold 4 side will be referred to as a second pressure wave 14B.
  • FIG. 3 is a schematic view showing a plurality of pressure waves propagating through the air supply manifold 4 including the adjustment pipe 12 at a certain moment.
  • a plurality of pressure waves 14 generated each time the air supply valve opens and closes are shown (the generation timing of each pressure wave 14 is at times t1, t2, and t3. And).
  • the adjustment pipe 12 is provided in the air supply manifold 4 so that the first pressure wave 14A and the second pressure wave 14B have opposite phases to each other at the installation position of the cylinder 2. It is configured to be offset.
  • the influence of the pressure pulsation of the air supply is suppressed, and the pressure difference between the cylinder 2 and the air supply manifold 4 is stabilized.
  • the amount of air supplied to the cylinder 2 is also stabilized, and a reduction in engine efficiency is suppressed.
  • a design method of the adjustment pipe 12 suitable for suppressing such pressure pulsation will be specifically described.
  • the case of designing by focusing on the length among the specifications of the adjustment pipe 12 is illustrated, but other specification parameters such as, for example, a capacity may be designed based on the same technical idea.
  • the traveling velocity v of the pressure wave 14 in the charge air present in the charge manifold 4 is expressed by the following equation Is represented by Then, assuming that the length of the adjusting pipe 12 is Le, the pressure wave intrudes into the adjusting pipe 12 from the vicinity of the air supply valve of the cylinder 2 and is reflected by the deepest portion 18 before reaching the cylinder 2 again.
  • the required time T1 is It becomes.
  • the open / close cycle period t of the air supply valve using an arbitrary natural number n, the following equation As a result, as shown in FIG. 3, the first pressure wave 14A and the second pressure wave 14B have opposite phases to each other at the position of the cylinder 2. That is, based on (2) that satisfies the condition of (3), the length Le of the adjusting pipe 12 is determined.
  • FIG. 3 shows the case where the first pressure wave 14A and the second pressure wave 14B having opposite phases to each other completely cancel out by completely overlapping each other at the position of the cylinder 2, at least partial In the case of overlapping, it is possible to enjoy the same effect without much.
  • the first pressure wave 14A and the second pressure wave 14B overlap each other by about 25% it is easy to effectively enjoy the effect.
  • the traveling speed v of the first pressure wave 14A and the second pressure wave 14B depends on the air supply temperature T
  • the specification of the adjusting pipe 12 may be determined based on the air supply temperature T.
  • the advancing speed v of the pressure wave includes the charge air temperature T.
  • rated operation is mainly assumed because the engine 10 is a power generation engine. Therefore, by setting the length Le based on the air supply temperature assumed during rated operation, good efficiency can be achieved during actual engine operation.
  • the air supply manifold 4 has a bending portion 22 having a predetermined curvature, and the inlet of the adjustment pipe 12 is designed to be located at the bending portion 29.
  • the pressure wave resulting from the air supply passing through while turning the bending portion 22 is effectively guided to the adjusting pipe, whereby the second pressure wave is effectively generated by the reflection of the first pressure wave 14A. It can be done.
  • the inlet of the adjusting pipe 12 may be provided to face the cylinder 2.
  • the pressure wave generated at the time of charging the cylinder 2 can be effectively guided to the adjusting pipe 12.
  • the intake pipe is provided by setting the adjustment pipes whose lengths are set such that the first pressure wave and the second pressure wave are in opposite phase to each other.
  • the pressure pulsation which sometimes occurs is suppressed.
  • the pressure difference between the air supply manifold and the cylinders is properly secured at the time of intake to the cylinders, and the air supply is stabilized, so that good engine efficiency can be obtained.
  • FIG. 5 is a schematic view showing the entire configuration of the engine 20 according to the second embodiment.
  • symbol is attached
  • the engine 20 is a multi-cylinder gas engine having a plurality of cylinders 2, and in the present embodiment, an in-line four-cylinder engine is exemplified.
  • An air supply manifold 4 is connected to a combustion chamber (not shown) of each cylinder 2.
  • An air supply pipe 6 is connected to the upstream side of the air supply manifold 4.
  • the air supply pipe 6 is provided with a mixing device (not shown) for mixing the air from the air cleaner and the fuel gas mixed in the middle, and the mixed gas generated by the mixing device is supplied to the air supply manifold 4. It is configured to be introduced.
  • the mixed gas introduced into the air supply manifold 4 is charged into the combustion chamber by flowing into each cylinder 2 according to the pressure difference between the cylinder 2 and the air supply manifold 4 when the air supply valve is opened. Ru. Exhaust gas generated by burning the mixed gas in the combustion chamber of each cylinder 2 is collected by the exhaust manifold 8 and exhausted from the exhaust pipe 9 to the outside.
  • the exhaust pipe 9 is provided with an exhaust gas purification device (not shown) including an oxidation catalyst and a denitration catalyst, and the exhaust gas is released into the atmosphere after being detoxified by the exhaust gas purification device.
  • the pressure waves generated in the cylinders 2 interfere with each other, so that the amount of air supplied between the cylinders 2 tends to vary. Such variation in the amount of supplied air between the cylinders 2 also causes a reduction in engine efficiency.
  • the air supply manifold 4 is provided with the adjustment pipe 12.
  • the adjusting pipe 12 has a shape (e.g., length and volume) suitable for damping pressure waves generated in the air supply manifold 4.
  • the method of determining the specification of the adjusting pipe 12 can basically adopt the same idea as that of the first embodiment, but in the case of a multi-cylinder engine, pressure waves of each cylinder 2 are compared with each other as compared with a single cylinder engine. The need to consider interference complicates the condition. Therefore, an appropriate specification may be determined in consideration of not only the logical calculation value as described above but also the result obtained by the experimental and simulation method.
  • the air supply manifold 4 includes a main flow passage 4 a extending along the arrangement direction of the cylinders 2 and a plurality of branch passages 4 b branched from the main flow passage 4 a to the cylinders 2.
  • the inlet of the adjustment pipe 12 is designed to face the air supply pipe 6 in the bending portion 22 having a predetermined curvature, but as shown in FIG.
  • the inlet of the cylinder may be provided to face the cylinder 2.
  • first pressure wave 14A and the second pressure wave 14B are in opposite phase at a specific position of one cylinder is illustrated, but two or more It may be designed to be in the opposite phase simultaneously at the position of the cylinder 2 or may be designed to be in the opposite phase simultaneously at the positions of all the cylinders.
  • each adjustment pipe 12 may be provided to correspond to each cylinder 2.
  • each adjustment pipe 12 is disposed to face the corresponding cylinder 2. In this case, by adjusting the specifications of the adjusting pipes 12, pressure pulsations in the cylinders 2 can be accurately suppressed, so that the engine efficiency can be more effectively improved.
  • the lengths of the first pressure wave 14A and the second pressure wave 14B are set to be opposite to each other even in a multi-cylinder engine having a plurality of cylinders.
  • pressure pulsation can be effectively suppressed.
  • the amount of supplied air in each cylinder 2 is made uniform, so that the variation in the amount of supplied air in each cylinder is suppressed, and a good engine efficiency can be obtained.
  • FIG. 8 is a schematic view showing an entire configuration of an engine 30 according to a third embodiment.
  • symbol is attached
  • the engine 30 is a V-type 8-cylinder power generation gas engine inclined in a V-shape to the left and right around a rotation shaft of a crankshaft (not shown).
  • a total of eight cylinders 2 are respectively allocated to the first cylinder group RH bank 24 and the second cylinder group LH bank 26 by four cylinders, and each is disposed in a V-shape.
  • a first air supply manifold 28 and a second air supply manifold 32 for introducing mixed gas into the combustion chambers of the cylinders of each bank are connected to V-shaped spaces of the RH bank 24 and the LH bank 26, respectively. ing.
  • the first air supply manifold 28 and the second air supply manifold 32 are configured to communicate with each other via the adjustment pipe 12.
  • the first exhaust manifold 36 for leading the exhaust gas discharged from the combustion chamber of each cylinder 2 to the outside of the RH bank 24, and the exhaust gas discharged from the combustion chamber of each cylinder 2 to the outside of the LH bank 26 A second exhaust manifold 38 for leading out is provided.
  • an exhaust gas purification device (not shown) including an oxidation catalyst and a NOx removal catalyst is used. After the exhaust is detoxified, it is released to the atmosphere.
  • the adjustment pipe 12 is provided to communicate between the air supply manifolds 28 and 32 in order to suppress a decrease in the efficiency of the engine caused by pressure pulsations of the air supply generated in the air supply manifolds 28 and 32.
  • FIG. 9 is a schematic view showing a pressure wave traveling through the adjustment pipe 12 of FIG.
  • the first pressure wave 14 A generated in the first air supply manifold 28 travels toward the second air supply manifold 32 via the adjustment pipe 12.
  • the second pressure wave 14 B generated in the second air supply manifold 32 travels toward the first air supply manifold 28 via the adjustment pipe 12.
  • the adjusting pipe 12 is designed such that the first pressure wave 14A and the second pressure wave 14B are in opposite phase to each other in the cylinder 2 of either the RH bank 24 or the LH bank 26, as shown in FIG. (In FIG. 9, the position of any cylinder 2 included in the RH bank 24 is indicated by x1, and the position of any cylinder 2 included in the LH bank 26 is indicated by x2.
  • pressure waves in the charge air are attenuated by being widely dispersed to the respective charge air manifolds 28 and 32 through the adjustment pipe 12 and are offset each other.
  • pressure pulsations in the air supply manifolds 28 and 32 are suppressed, and good engine efficiency can be obtained.
  • the pressure pulsation can be suppressed with a compact configuration.
  • the multi-cylinder engine includes the RH bank 24 and the LH bank 26
  • adjustment is made to connect the first air supply manifold 28 and the second air supply manifold 32.
  • the pressure wave can be dispersed by being widely dispersed, and the pressure wave can be offset to effectively suppress the pressure pulsation.
  • such an effect can be realized with a compact configuration as compared with the case where the adjusting pipe 12 is individually provided in each cylinder group, which can also contribute to the saving of the installation space of the engine.
  • FIG. 10 is a schematic view showing an entire configuration of an engine 40 according to the fourth embodiment.
  • symbol is attached
  • FIG. 10 shows an engine 40 having a basic configuration in common with the second embodiment, and a ventilation resistor 42 is provided in the middle of the adjustment pipe 12.
  • the air flow resistance member 42 is a component serving as a resistance to a pressure wave traveling in the adjustment pipe 12 and is made of, for example, a porous material such as ceramic or punching metal.
  • the provision of the ventilation resistor 42 in the adjustment pipe 12 in this manner reduces the propagation velocity of the pressure wave passing through the adjustment pipe.
  • the time required for the pressure wave to pass through the adjusting pipe 12 becomes longer, the length of the adjusting pipe 12 required to offset the first pressure wave 14A and the second pressure wave 14B at the position of the cylinder 2 can be shortened. Thereby, a highly efficient engine can be realized with a more compact configuration.
  • the ventilation tube 42 may be provided in the adjustment pipe 12 also for the engine having the basic configuration common to the other embodiments. It is self-evident that the same effect can be obtained.
  • FIG. 11 is a schematic view showing an entire configuration of an engine system 50 according to a fifth embodiment.
  • symbol is attached
  • an engine 52 having a configuration equivalent to that of the fourth embodiment and provided with a ventilation resistor 42 in the adjustment pipe 12, and an operating condition detecting means 54 for detecting the operating condition of the engine 52. And a controller 56 for electronically controlling the engine 52 based on the detection result of the driving state detection means 54.
  • the ventilation resistor 42 used in the present embodiment has a variable ventilation resistance value.
  • a flow resistance 42 having a variable flow resistance value for example, a pair of porous elements having a predetermined flow resistance value are disposed in parallel with each other in the traveling direction of the pressure wave, and at least one of them is a piezoelectric element or the like By displacing the position by the driving means, the ventilation resistance value can be variably adjusted by adjusting the degree of overlapping with each other.
  • the operating condition detecting means 54 is a device for detecting a parameter related to the operating condition of the engine 52, and in the present embodiment, in particular, a rotational speed sensor for detecting the rotational speed of the engine 52 is exemplified.
  • a device etc. which detect the output of the engine 52 and the pressure, temperature, and composition of the air which flows through the inside of the air supply manifold 4 can be suitably adopted.
  • the controller 56 is a control unit configured of an electronic arithmetic unit such as an ECU, for example, and variably controls the ventilation resistance of the ventilation resistor and a parameter acquisition unit 58 which acquires the parameter detected by the operation state detection unit 54. And a control unit 62.
  • the controller 62 can adjust the length of the adjusting tube 12 substantially by adjusting the flow resistance value of the flow resistance 42 based on the parameter acquired by the parameter acquisition unit 58.
  • pressure pulsation can be suppressed according to the operating state of the engine 52. Therefore, good engine efficiency can be obtained even when the operating condition of the engine fluctuates.
  • the present disclosure is applicable to an internal combustion engine having at least one cylinder.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)
  • Exhaust Silencers (AREA)

Abstract

内燃機関は、少なくとも1の気筒(2)を有するエンジン本体(10)と、調整管(12)を有する給気マニホールド(4)とを備える。調整管の長さは、給気マニホールドから調整管に向かって進行する第1の圧力波(14A)と調整管から給気マニホールドに向かって進行する第2の圧力波(14B)とが、気筒において互いに逆位相になるように設定されている。

Description

内燃機関
 本開示は、少なくとも1の気筒を有する内燃機関に関する。
 様々な用途において動力源として内燃機関が広く用いられている。例えば発電プラント等を稼働させるための動力源としては、大出力であり、且つ、経済的なメタンガス等を使用するガスエンジンが知られている。
 ところで内燃機関の各気筒における燃焼室に空気又は混合ガスを充填する際には、気筒に設けられた給気弁(掃気ポート)が開いてシリンダ内に流入することとなるが、その際にシリンダ内に充填される空気量又は混合気量は、シリンダ及び給気マニホールド間の圧力差に基づいて決定される。このとき、気筒及び給気マニホールド間の圧力差により負圧の圧力波が発生し、燃焼サイクルに応じた給気脈動が生ずる。そして給気脈動によって、気筒及び給気マニホールド間の圧力差が経時的に変化するため、各気筒への給気量が当該圧力差によって影響を受ける。特に、気筒及び給気マニホールド間の圧力差が小さくなると、気筒への給気量が減少してしまい、エンジン効率が低下する要因となる。
 このようなエンジン効率の低下を抑制するための技術として、例えば特許文献1がある。この文献では、スロットル弁の下流側の吸気管にインパルス弁を設け、インパルス弁の開度をスロットル弁の開度変化に同期して制御することで、エンジンの運転状態変化に伴って給気量が変動する場合であっても良好な追従性が得られ、エンジン性能の低下を抑制できることが記載されている。
特開2009-191696号公報
 上記特許文献1では、運転状態の変動に対する追従性を改善することでエンジン効率を向上させている。そのため、自動車用エンジンのように運転状態が時事刻々と変動する用途には適する一方で、例えば発電用エンジンのように定格運転が占める割合が多い用途においては効果が得られにくいという問題点がある。
 また特許文献1では給気脈動に関しては根本的な解決策が示されておらず、依然として給気脈動に起因するエンジン効率低下については改善の余地が残されている。
 本発明の少なくとも一実施形態は上述の問題点に鑑みなされたものであり、給気時に生じる圧力脈動を抑制することにより、エンジン効率を向上可能な内燃機関を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係るエンジン制御装置は上記課題を解決するために、少なくとも1の気筒を有するエンジン本体と、前記少なくとも1の気筒に給気マニホールドを介して接続された給気管と、所定長さを有するとともに前記給気マニホールドから延在する調整管と、を備え、前記所定長さは、前記給気マニホールドから前記調整管に向かって進行する第1の圧力波と前記調整管から前記給気マニホールドに向かって進行する第2の圧力波とが、前記少なくとも1の気筒の少なくとも一部において互いに逆位相になるように設定されている。
 上記(1)の構成によれば、エンジン本体に接続された給気マニホールドには、所定長さを有する調整管が設けられている。この調整管の長さは、少なくとも1の気筒において第1の圧力波及び第2の圧力波が互いに逆位相になるように設定されているため、当該気筒において第1の圧力波及び第2の圧力波が相殺される。これにより、気筒及び給気マニホールド間の圧力差が安定かつ増加するため、気筒内に流入する空気量が増加(体積効率が改善)し、良好なエンジン効率が得られる。
(2)幾つかの実施形態では上記(1)の構成において、前記所定長さは、前記エンジン本体の定格出力時における給気温度又は混合気組成(比熱比)に基づいて設定される。
 給気マニホールド内における圧力波の伝搬速度は給気温度、混合気組成(比熱比)に依存する。そのため、上記(2)の構成では、エンジン本体の定格出力時における給気温度、混合気組成(比熱比)に基づいて調整管の長さを設定することで、定格運転時において特に良好なエンジン効率を発揮可能な内燃機関を実現できる。
(3)幾つかの実施形態では上記(1)又は(2)の構成において、前記調整管は、前記給気マニホールドの屈曲部に設けられている。
 上記(3)の構成によれば、調整管が給気マニホールドの屈曲部に設けられることにより、給気マニホールド内から直進してくる圧力波を調整管に効果的に導くことができる。これにより、第1の圧力波から第2の圧力波を効果的に生じさせることができ、その結果、上述した効果をより効果的に享受できる。
(4)幾つかの実施形態では上記(1)又は(2)の構成において、前記調整管は、その入口が前記少なくとも1の気筒に対向するように設けられている。
 上記(4)の構成によれば、調整管の入口が気筒に対向するように設けられることにより、給気マニホールドを通過する給気に起因する圧力波を調整管に効果的に導くことができる。これにより、第1の圧力波から第2の圧力波を効果的に生じさせることができ、その結果、上述した効果をより効果的に享受できる。
(5)幾つかの実施形態では上記(1)から(4)のいずれか1構成において、前記エンジン本体は単一の気筒を有する単気筒エンジンである。
 上記(5)の構成によれば、単気筒エンジンの給気マニホールドに上記調整管を設けることで、給気中の圧力脈動が抑制され、気筒への給気時に給気マニホールド及び気筒間の圧力差が安定化される。その結果、良好なエンジン効率を有する単気筒エンジンを実現できる。
(6)幾つかの実施形態では上記(1)から(4)のいずれか1構成において、前記エンジン本体は複数の気筒を有する多気筒エンジンである。
 上記(6)の構成によれば、多気筒エンジンの給気マニホールドに上記調整管を設けることで、給気中の圧力脈動が抑制され、気筒への給気時に給気マニホールド及び気筒間の圧力差が安定化されるとともに、各気筒における給気量を均一化できる。その結果、良好なエンジン効率を有する多気筒エンジンを実現できる。
(7)幾つかの実施形態では上記(6)の構成において、前記少なくとも1の気筒は、第1の気筒群及び第2の気筒群を含み、前記給気マニホールドは、前記第1の気筒群に接続された第1のマニホールド及び前記第2の気筒群に接続された第2のマニホールドを含み、前記調整管は前記第1のマニホールド及び前記第2のマニホールドを互いに連通するように設けられている。
 上記(7)の構成によれば、複数の気筒を構成する第1の気筒群及び第2の気筒群に対してそれぞれ給気を行うための第1のマニホールド及び第2のマニホールド間を互いに連通するように調整管が設けられる。これにより、各気筒群で発生した圧力波をより広範囲に分散させることで減衰できるとともに、調整管によって上述のように給気マニホールドにおける圧力脈動を抑制することにより、高効率なエンジンを実現できる。また、このような調整管は、各気筒群に個別に調整管を設ける場合に比べて、コンパクトな構成で実現できるため、エンジンの配置スペースの節約にも貢献することができる。
(8)幾つかの実施形態では上記(1)から(7)のいずれか1構成において、前記調整管は、前記調整管の内部を進行する給気に対して通気抵抗を発生させるための通気抵抗体を有する。
 上記(8)の構成によれば、調整管に設けられた通気抵抗体により、調整管を通過する圧力波の伝搬速度が低下される。これにより、圧力波が調整管を通過するために要する時間が長くなるため、第1の圧力波及び第2の圧力波を気筒の位置において相殺するために要する調整管の長さを短縮することができる。これにより、よりコンパクトな構成で高効率なエンジンを実現することができる。
(9)幾つかの実施形態では上記(8)の構成において、前記通気抵抗体は、多孔質材料から構成されている。
 上記(9)の構成によれば、多孔質材料からなる通気抵抗体を用いることにより、調整管を伝搬する圧力波の伝搬速度を効果的に低下せしめることができる。
(10)幾つかの実施形態では上記(9)の構成において、前記通気抵抗体は通気抵抗値が可変に構成されており、前記エンジン本体の運転状態に関するパラメータを取得するパラメータ取得部と、前記パラメータ取得部で取得されたパラメータに基づいて、前記通気抵抗体の通気抵抗を可変に制御する制御部と、を備える。
 上記(10)の構成によれば、エンジン本体の運転状態に応じて通気抵抗を可変に制御することで、エンジン本体の運転状態が変動する場合であっても、その時々の運転状態に適した圧力脈動の抑制が可能となり、より高効率なエンジンを実現できる。
 本発明の少なくとも一実施形態によれば、給気時に生じる圧力脈動を抑制することにより、エンジン効率を向上可能な内燃機関を提供できる。
第1実施形態に係る内燃機関の全体構成を示す模式図である。 調整管12を含む給気マニホールド4を伝搬する単一の圧力波の様子を示す模式図である。 ある瞬間において調整管12を含む給気マニホールド4を伝搬する複数の圧力波の様子を示す模式図である。 第1実施形態に係る内燃機関の変形例を示す模式図である。 第2実施形態に係る内燃機関の全体構成を示す模式図である。 第2実施形態に係る内燃機関の変形例を示す模式図である。 第2実施形態に係る内燃機関の変形例を示す模式図である。 第3実施形態に係る内燃機関の全体構成を示す模式図である。 第4実施形態に係る内燃機関の全体構成を示す模式図である。 図9の調整管を進行する圧力波を示す模式図である。 第5実施形態に係るエンジンシステムの全体構成を示す模式図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 また例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
(第1実施形態)
 図1は第1実施形態に係る内燃機関(以下、適宜「エンジン」と称する)10の全体構成を示す模式図である。
 エンジン10は、単一の気筒2を有する単気筒ガスエンジンである。気筒2の燃焼室(不図示)には、給気マニホールド4が接続されている。給気マニホールド4の上流側には給気管6が接続されている。給気管6には、エアクリーナからの空気と途中から混入される燃料ガスとを混合させるミキシング装置(不図示)が設けられており、該ミキシング装置で生成された混合ガスが該給気マニホールド4に導入されるように構成されている。
 給気マニホールド4に導入された混合ガスは、給気弁が開いた際に、気筒2及び給気マニホールド4間の圧力差に応じて気筒2内に流入することにより、燃焼室に充填される。燃焼室で混合ガスが燃焼されることにより発生した排気は、排気マニホールド8を介して排気管9から外部に排出される。
 尚、排気管9には酸化触媒及び脱硝触媒を含む排気浄化装置(不図示)が設けられており、排気は排気浄化装置によって無害化された後、大気に放出される。
 ところで気筒2に混合ガスが流入する際には、気筒2及び給気マニホールド4間の圧力差により生じる負圧によって、給気マニホールド4の給気中に圧力波が発生する。このような圧力波は気筒2の燃焼サイクルに応じて生じるため、給気に圧力脈動が生ずることとなる。このような圧力脈動は、気筒2及び給気マニホールド4間の圧力差が経時的に変化する要因となる。そのため、気筒2及び給気マニホールド4間の圧力差が小さくなると、気筒2への給気量が減少し、エンジン効率が低下する要因となる。
 本実施形態では、このような給気の圧力脈動に起因するエンジン10の効率低下を抑制するために、給気マニホールド4に調整管12が設けられている。調整管12は給気マニホールド4に生ずる圧力波を減衰するために適した形状(例えば長さや容積)を有する。本実施形態では、このような調整管12の一例として、一定径を有し、所定長さを有する円筒形状の管状体が示されている。
 尚、調整管12は給気マニホールド4と一体的に構成されていてもよいし、別体として構成されていてもよい。
 図2は調整管12を含む給気マニホールド4を伝搬する単一の圧力波の様子を示す模式図である。
 吸気弁の開閉に伴って生じた圧力波14は、給気マニホールド4側から調整管12に侵入し、最奥部18に向かって進行する。最奥部18に到達した圧力波14は調整管12の内壁で反射され、最奥部18から給気マニホールド4側に向かって進行する。ここで最奥部18における圧力波14の反射は固定端反射であるため、圧力波14の位相は反射時に反転されることとなる。
 尚、以下の説明では、このような伝播経路を示す圧力波14のうち、給気マニホールド4側から調整管12の最奥部18に向かって進行するものを第1の圧力波14A、調整管12の最奥部18から給気マニホールド4側に向かって進行するものを第2の圧力波14Bと称することとする。
 図3は、ある瞬間において調整管12を含む給気マニホールド4を伝搬する複数の圧力波の様子を示す模式図である。
 この図では、エンジン10で燃焼サイクルが繰り返される際に、給気弁が開閉する毎に発生する複数の圧力波14が示されている(各圧力波14の発生タイミングを時刻t1、t2、t3とする)。図3に示されるように、給気マニホールド4に調整管12が設けられることにより、第1の圧力波14A及び第2の圧力波14Bは、気筒2の設置位置において互いに逆位相を有するため、相殺されるように構成されている。そのため、気筒2の設置位置では給気の圧力脈動の影響が抑制されることとなり、気筒2及び給気マニホールド4間の圧力差が安定する。その結果、気筒2への給気量もまた安定することとなり、エンジン効率の低下が抑制される。
 このような圧力脈動を抑制するために適切な調整管12の設計方法について、具体的に説明する。ここでは調整管12の仕様のうち長さに着目して設計する場合について例示するが、同様の技術的思想に基づいて、例えば容量のような他の仕様パラメータを設計するようにしてもよい。
 まず給気マニホールド4に存在する給気中の圧力波14の進行速度vは、給気の比熱比γ、気体定数R、給気温度Tを用いて次式
Figure JPOXMLDOC01-appb-I000001
で表される。
 そして調整管12の長さを仮にLeとすると、圧力波が気筒2の給気弁の近傍から調整管12に侵入し、最奥部18で反射された後に、再び気筒2に到達するまでに要する時間T1は次式
Figure JPOXMLDOC01-appb-I000002
となる。
 ここで、気筒2において給気弁の開閉サイクル期間t、任意の自然数nを用いて、次式
Figure JPOXMLDOC01-appb-I000003
が成立した場合、図3に示されるように、気筒2の位置において第1の圧力波14A及び第2の圧力波14Bが互いに逆位相を有することとなる。すなわち(3)の条件を満足する(2)に基づいて、調整管12の長さLeが決定される。
 尚、図3では気筒2の位置において、互いに逆位相を有する第1の圧力波14A及び第2の圧力波14Bが完全に重なることによって完全に相殺される場合を示しているが、少なくとも部分的に重なる場合においても、同様の効果を少なからず享受できる。好ましくは、第1の圧力波14A及び第2の圧力波14Bは互いに約25%程度の重なりがあると、当該効果を効果的に享受しやすい。
 また第1の圧力波14A及び第2の圧力波14Bの進行速度vは給気温度Tに依存することから、給気温度Tに基づいて調整管12の仕様を決定してもよい。上述の例においても(1)式に示されるように、圧力波の進行速度vに給気温度Tが含まれる。本実施形態では特に、エンジン10は発電用エンジンであることから定格運転が主に想定される。従って、定格運転時に想定される給気温度に基づいて長さLeを設定することで、実際のエンジン運用時に良好な効率を達成することができる。
 また本実施形態では、給気マニホールド4は所定曲率を有する屈曲部22を有しており、調整管12の入口が当該屈曲部29に位置するように設計されている。これにより、屈曲部22を旋回しながら通過する給気に起因する圧力波を調整管に効果的に導くことで、第1の圧力波14Aの反射によって第2の圧力波を効果的に生じさせることができるようになっている。
 また図4に示すように、調整管12の入口は気筒2に対向するように設けられていてもよい。このように調整管12を設けることによって、気筒2への給気時に生じる圧力波を調整管12に効果的に導くことができる。
 以上説明したように本実施形態によれば、単気筒エンジンにおいて、第1の圧力波及び第2の圧力波が互いに逆位相になるように長さが設定された調整管を有することにより、吸気時に生じる圧力脈動が抑制される。これにより、気筒への吸気時に給気マニホールド及び気筒間の圧力差が適切に確保され、給気が安定化されるので、良好なエンジン効率が得られる。
(第2実施形態)
 図5は第2実施形態に係るエンジン20の全体構成を示す模式図である。尚、上述の他の実施形態に対応する構成要素については共通の符号を付すこととし、重複する説明は適宜省略する。
 エンジン20は、複数の気筒2を有する多気筒ガスエンジンであり、本実施形態では、直列4気筒エンジンが例示されている。各気筒2の燃焼室(不図示)には、給気マニホールド4が接続されている。給気マニホールド4の上流側には給気管6が接続されている。給気管6には、エアクリーナからの空気と途中から混入される燃料ガスとを混合させるミキシング装置(不図示)が設けられており、該ミキシング装置で生成された混合ガスが該給気マニホールド4に導入されるように構成されている。
 給気マニホールド4に導入された混合ガスは、給気弁が開いた際に、気筒2及び給気マニホールド4間の圧力差に応じて各気筒2内に流入することにより、燃焼室に充填される。各気筒2の燃焼室で混合ガスが燃焼されることにより発生した排気は、排気マニホールド8によって集められ、排気管9から外部に排出される。
 尚、排気管9には酸化触媒及び脱硝触媒を含む排気浄化装置(不図示)が設けられており、排気は排気浄化装置によって無害化された後、大気に放出される。
 本実施形態に係るエンジン20のような多気筒エンジンにおいても、上述の単気筒エンジンと同様に、各気筒2に混合ガスが流入する際には、気筒2及び給気マニホールド4間の圧力差により生じる負圧によって、給気マニホールド4の給気中に圧力波が発生する。このような圧力波は気筒2の燃焼サイクルに応じて生じるため、給気に圧力脈動が生ずることとなる。このような圧力脈動は、気筒2及び給気マニホールド4間の圧力差が経時的に変化する要因となる。そのため、気筒2及び給気マニホールド4間の圧力差が小さくなると、気筒2への給気量が減少し、エンジン効率が低下する要因となる。
 更に多気筒エンジンでは、各気筒2で生じる圧力波が互いに干渉し合うことで、気筒2間の給気量にバラツキが生じやすくなる。このような気筒2間における給気量のバラツキもまたエンジン効率の低下の要因となる。
 本実施形態では、このようなエンジン20の効率低下を抑制するために、給気マニホールド4に調整管12が設けられている。調整管12は給気マニホールド4に生ずる圧力波を減衰するために適した形状(例えば長さや容積)を有する。調整管12の仕様の決定手法は、基本的に、上記第1実施形態と同様の思想を採用可能であるが、多気筒エンジンの場合、単気筒エンジンに比べて各気筒2の圧力波同士の干渉を考慮する必要がある分、条件が複雑となる。そのため、上述のような論理的な算出値だけでなく、実験的・シミュレーション的な手法によって得られた結果を考慮して、適切な仕様を決定するようにしてもよい。
 本実施形態では、給気マニホールド4は、各気筒2の配列方向に沿って延在する主流路4aと、主流路4aから各気筒2に分岐する複数の分岐路4bとを備える。この例では、第1実施形態と同様に、所定曲率を有する屈曲部22に、調整管12の入口が給気管6に対向するように設計されているが、図6に示すように調整管12の入口が気筒2に対向するように設けられていてもよい。
 尚、本実施形態では第1実施形態と同様に、特定の1気筒の位置において第1の圧力波14A及び第2の圧力波14Bが逆位相になる場合を例示しているが、2以上の気筒2の位置において同時に逆位相になるようにしても設計してもよいし、全気筒の位置において同時に逆位相になるように設計してもよい。
 また調整管12は、例えば図7に示すように、各気筒2に対応するように複数設けられていてもよい。図7では、各調整管12は対応する気筒2に対向するようにそれぞれ配置されている。この場合、各調整管12の仕様を調整することにより、各気筒2における圧力脈動を精度よく抑制することができるため、より効果的にエンジン効率を改善できる。
 以上説明したように本実施形態によれば、複数の気筒を有する多気筒エンジンにおいても、第1の圧力波14A及び第2の圧力波14Bが互いに逆位相になるように長さが設定された調整管12を有することにより、圧力脈動を効果的に抑制できる。その結果、各気筒2における給気量が均一化されることにより各気筒の給気量のバラツキが抑制され、良好なエンジン効率が得られる。
(第3実施形態)
 図8は第3実施形態に係るエンジン30の全体構成を示す模式図である。尚、上述の他の実施形態に対応する構成要素については共通の符号を付すこととし、重複する説明は適宜省略する。
 エンジン30はクランクシャフト(図示省略)の回転軸を中心に左右にV字状に傾斜したV型8気筒の発電用ガスエンジンである。合計8つの気筒2は、第1の気筒群であるRHバンク24と、第2の気筒群であるLHバンク26とにそれぞれ4気筒ずつ振り分けられており、各々がV字状に配設されている。RHバンク24とLHバンク26のV字状の空間部には、それぞれ各バンクの各気筒の燃焼室に混合ガスを導入する第1の給気マニホールド28及び第2の給気マニホールド32が連結されている。第1の給気マニホールド28及び第2の給気マニホールド32は、調整管12を介して互いに連通するように構成されている。
 RHバンク24の外側には各気筒2の燃焼室から排出される排気を導出するための第1のエキゾーストマニホールド36と、LHバンク26の外側には各気筒2の燃焼室から排出される排気を導出するための第2のエキゾーストマニホールド38とがそれぞれ配設されている。
 尚、図8では図示を省略しているが、第1のエキゾーストマニホールド36及び第2のエキゾーストマニホールド38は下流側にて合流したのち、酸化触媒及び脱硝触媒を含む排気浄化装置(不図示)によって排気が無害化された後、大気に放出されるようになっている。
 本実施形態では、各給気マニホールド28及び32で生じる給気の圧力脈動に起因するエンジンの効率低下を抑制するために、給気マニホールド28及び32間を連通するように調整管12が設けられている。
 ここで図9は、図8の調整管12を進行する圧力波を示す模式図である。第1の給気マニホールド28で生じた第1の圧力波14Aは、調整管12を介して第2の給気マニホールド32に向かって進行する。一方、第2の給気マニホールド32で生じた第2の圧力波14Bは、調整管12を介して第1の給気マニホールド28に向かって進行する。調整管12は、図9に示されるように、第1の圧力波14A及び第2の圧力波14BがRHバンク24及びLHバンク26のいずれかの気筒2において互いに逆位相となるように設計されている(図9では、RHバンク24に含まれる任意の気筒2の位置をx1、LHバンク26に含まれる任意の気筒2の位置をx2として示されている)。これにより、給気中の圧力波は、調整管12を介して各給気マニホールド28及び32に広く分散されることで減衰されるとともに、互いに相殺される。その結果、給気マニホールド28及び32における圧力脈動は抑制され、良好なエンジン効率が得られる。
 また第1の給気マニホールド28及び第2の給気マニホールド32間を連通するように単一の調整管12を設けることによって、第1の給気マニホールド28及び第2の給気マニホールド32に、上記実施形態のように最奥部18を有する調整管12を設ける場合に比べて、コンパクトな構成で圧力脈動の抑制を行うことができる。
 以上説明したように本実施形態によれば、多気筒エンジンがRHバンク24及びLHバンク26からなる場合において、第1の給気マニホールド28及び第2の給気マニホールド32間を連通するように調整管12を設けることにより、圧力波を広く分散させることで減衰させるとともに、圧力波を相殺して圧力脈動を効果的に抑制できる。しかも、このような効果を、各気筒群に個別に調整管12を設ける場合に比べてコンパクトな構成で実現できるため、エンジンの設置スペースの節約にも貢献できる。
(第4実施形態)
 図10は第4実施形態に係るエンジン40の全体構成を示す模式図である。尚、上述の他の実施形態に対応する構成要素については共通の符号を付すこととし、重複する説明は適宜省略する。
 図10には第2実施形態と共通の基本構成を有するエンジン40が示されており、調整管12の途中に通気抵抗体42が設けられている。通気抵抗体42は、調整管12を進行する圧力波に対して抵抗となる構成要素であり、例えばセラミックス、パンチングメタルのような多孔質材料から構成されている。
 本実施形態ではこのように調整管12に通気抵抗体42を設けることにより、調整管を通過する圧力波の伝搬速度が低下される。これにより、圧力波が調整管12を通過するために要する時間が長くなるため、第1の圧力波14A及び第2の圧力波14Bを気筒2の位置において相殺するために要する調整管12の長さを短縮することができる。これにより、よりコンパクトな構成で高効率なエンジンを実現することができる。
 尚、本実施形態では上記第2実施形態と共通の基本構成を有するエンジンについて説明したが、他の実施形態と共通の基本構成を有するエンジンについても、調整管12に通気抵抗体42を設けることで同様の効果が得られることは自明な範囲である。
(第5実施形態)
 図11は第5実施形態に係るエンジンシステム50の全体構成を示す模式図である。尚、上述の他の実施形態に対応する構成要素については共通の符号を付すこととし、重複する説明は適宜省略する。
 本実施形態では、上記第4実施形態と同等構成を有し、且つ、調整管12に通気抵抗体42が設けられたエンジン52と、エンジン52の運転状態を検知するための運転状態検知手段54と、運転状態検知手段54の検知結果に基づいてエンジン52を電子的に制御するためのコントローラ56とを備える。
 本実施形態で用いられている通気抵抗体42は、通気抵抗値が可変に構成されている。このような通気抵抗値が可変な通気抵抗体42は、例えば所定の通気抵抗値を有する一対の多孔質エレメントを圧力波の進行方向に対して互いに並行に配置し、少なくとも一方を圧電素子等の駆動手段によって位置を変位させることにより、互いの重なり具合を調整することで通気抵抗値を可変調整できるように構成される。
 運転状態検知手段54はエンジン52の運転状態に関するパラメータを検知するデバイスであり、本実施形態では特に、エンジン52の回転数を検知するための回転数センサが例示されている。
 尚、運転状態検知手段54としては、他にエンジン52の出力、給気マニホールド4内を流れる給気の圧力・温度・組成を検知するデバイス等を適宜採用可能である。
 コントローラ56は例えばECUのような電子演算装置から構成された制御ユニットであり、運転状態検知手段54で検知されたパラメータを取得するパラメータ取得部58と、通気抵抗体の通気抵抗を可変に制御する制御部62と、を備える。制御部62はパラメータ取得部58で取得されたパラメータに基づいて、通気抵抗体42の通気抵抗値を調整することで、実質的に調整管12の長さ調整を行うことができる。これにより、エンジン52の運転状態に応じた圧力脈動の抑制が可能となる。そのため、特にエンジンの運転状態が変動する場合であっても良好なエンジン効率が得られる。
 本開示は、少なくとも1の気筒を有する内燃機関に利用可能である。
2 気筒
4 給気マニホールド
4a 主流路
4b 分岐路
6 吸気管
8 排気マニホールド
9 排気管
12 調整管
14 圧力波
14A 第1の圧力波
14B 第2の圧力波
18 最奥部
28 第1の給気マニホールド
32 第2の給気マニホールド
36 第1のエキゾーストマニホールド
38 第2のエキゾーストマニホールド
42 通気抵抗体
50 エンジンシステム
54 運転状態検知手段
56 コントローラ
58 パラメータ取得部
62 制御部

Claims (10)

  1.  少なくとも1の気筒を有するエンジン本体と、
     前記少なくとも1の気筒に給気マニホールドを介して接続された給気管と、
     所定長さを有するとともに前記給気マニホールドから延在する調整管と、
    を備え、
     前記所定長さは、前記給気マニホールドから前記調整管に向かって進行する第1の圧力波と前記調整管から前記給気マニホールドに向かって進行する第2の圧力波とが、前記少なくとも1の気筒の少なくとも一部において互いに逆位相になるように設定されていることを特徴とする内燃機関。
  2.  前記所定長さは、前記エンジン本体の定格出力時における給気温度又は混合気組成に基づいて設定されることを特徴とする請求項1に記載の内燃機関。
  3.  前記調整管は、前記給気マニホールドの屈曲部に設けられていることを特徴とする請求項1又は2に記載の内燃機関。
  4.  前記調整管は、その入口部が前記少なくとも1の気筒に対向するように設けられていることを特徴とする請求項1又は2に記載の内燃機関。
  5.  前記エンジン本体は単一の気筒を有する単気筒エンジンであることを特徴とする請求項1から4のいずれか1項に記載の内燃機関。
  6.  前記エンジン本体は複数の気筒を有する多気筒エンジンであることを特徴とする請求項1から4のいずれか1項に記載の内燃機関。
  7.  前記少なくとも1の気筒は、第1の気筒群及び第2の気筒群を含み、
     前記給気マニホールドは、前記第1の気筒群に接続された第1のマニホールド及び前記第2の気筒群に接続された第2のマニホールドを含み、
     前記調整管は前記第1のマニホールド及び前記第2のマニホールドを互いに連通するように設けられていることを特徴とする請求項6に記載の内燃機関。
  8.  前記調整管は、前記調整管の内部を進行する給気に対して通気抵抗を発生させるための通気抵抗体を有することを特徴とする請求項1から7のいずれか1項に記載の内燃機関。
  9.  前記通気抵抗体は、多孔質材料から構成されていることを特徴とする請求項8に記載の内燃機関。
  10.  前記通気抵抗体は通気抵抗値が可変に構成されており、
     前記エンジン本体の運転状態に関するパラメータを取得するパラメータ取得部と、
     前記パラメータ取得部で取得されたパラメータに基づいて、前記通気抵抗体の通気抵抗を可変に制御する制御部と、
    を備えることを特徴とする請求項9に記載の内燃機関。
PCT/JP2017/000566 2016-02-15 2017-01-11 内燃機関 WO2017141576A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/077,331 US10619606B2 (en) 2016-02-15 2017-01-11 Internal combustion engine
EP17752840.3A EP3401523B1 (en) 2016-02-15 2017-01-11 Internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016025755A JP6734068B2 (ja) 2016-02-15 2016-02-15 内燃機関
JP2016-025755 2016-02-15

Publications (1)

Publication Number Publication Date
WO2017141576A1 true WO2017141576A1 (ja) 2017-08-24

Family

ID=59624967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/000566 WO2017141576A1 (ja) 2016-02-15 2017-01-11 内燃機関

Country Status (4)

Country Link
US (1) US10619606B2 (ja)
EP (1) EP3401523B1 (ja)
JP (1) JP6734068B2 (ja)
WO (1) WO2017141576A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768123U (ja) * 1980-10-09 1982-04-23
JPS62124232U (ja) * 1986-01-30 1987-08-07
JPS63268917A (ja) * 1987-04-27 1988-11-07 Mazda Motor Corp エンジンの吸気装置
JPH025711A (ja) * 1988-06-24 1990-01-10 Suzuki Motor Co Ltd エンジンの吸気装置
JPH03168325A (ja) * 1989-11-24 1991-07-22 Mazda Motor Corp 多気筒エンジンの吸気装置
JPH0687657U (ja) * 1993-06-02 1994-12-22 日産ディーゼル工業株式会社 エンジン吸気系の脈動音低減装置
JPH0791264A (ja) * 1993-09-22 1995-04-04 Yamaha Motor Co Ltd エンジンの過給装置
JPH07145731A (ja) * 1993-11-22 1995-06-06 Mazda Motor Corp エンジンの制御装置
US6758304B1 (en) * 1999-09-16 2004-07-06 Siemens Vdo Automotive Inc. Tuned Helmholtz resonator using cavity forcing
JP2014105666A (ja) * 2012-11-29 2014-06-09 Mahle Filter Systems Japan Corp 内燃機関の吸気音発生装置
US20150068482A1 (en) * 2013-09-09 2015-03-12 Motive Power Industry Co., Ltd. Kinetic system-oriented variable intake structure

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS592919U (ja) 1982-06-29 1984-01-10 トヨタ自動車株式会社 可変周波数型レゾネ−タ
JPS608457A (ja) 1983-06-29 1985-01-17 Toyota Motor Corp 吸気マニホルド
JPS6049228U (ja) 1983-09-13 1985-04-06 三菱自動車工業株式会社 エンジンの吸気管長無段可変装置
JPS60164618A (ja) * 1984-02-04 1985-08-27 Toyota Motor Corp 内燃機関の吸気装置
JPS60164620A (ja) * 1984-02-06 1985-08-27 Toyota Motor Corp 内燃機関の吸気装置
JPH0819885B2 (ja) * 1988-12-28 1996-03-04 マツダ株式会社 エンジンの吸気装置
JPH0299225U (ja) 1989-01-25 1990-08-07
JPH0412161A (ja) * 1990-05-01 1992-01-16 Mazda Motor Corp エンジンの吸気装置
GB2256674A (en) * 1991-06-10 1992-12-16 Ford Motor Co Acoustic pipe coupling.
GB2256675A (en) * 1991-06-11 1992-12-16 Ford Motor Co Tuned i.c.engine intake system.
JPH1122572A (ja) * 1997-06-30 1999-01-26 Suzuki Motor Corp 内燃機関のレゾネータ構造
JP4015247B2 (ja) 1997-10-31 2007-11-28 北越工業株式会社 防音型作業機
JP2000110679A (ja) 1998-10-06 2000-04-18 Yanmar Diesel Engine Co Ltd エンジン作業機におけるエンジン吸気音低減装置
JP2000110678A (ja) * 1998-10-08 2000-04-18 Suzuki Motor Corp 車両用エンジンの吸気消音装置
DE102004056149B4 (de) * 2004-11-20 2023-03-16 Andreas Stihl Ag & Co. Kg Zweitaktmotor
US7353791B2 (en) * 2005-10-07 2008-04-08 Nissan Motor Co., Ltd. Sound increase apparatus
JP4321514B2 (ja) * 2005-11-08 2009-08-26 トヨタ自動車株式会社 内燃機関の吸気装置
JP5050861B2 (ja) 2008-01-08 2012-10-17 トヨタ自動車株式会社 内燃機関の吸気制御装置
JP2009191696A (ja) 2008-02-13 2009-08-27 Toyota Motor Corp 内燃機関の吸気制御装置
DE102010018659A1 (de) 2010-04-28 2011-11-03 J. Eberspächer GmbH & Co. KG Kolbenmotor, Verfahren und Verwendung

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5768123U (ja) * 1980-10-09 1982-04-23
JPS62124232U (ja) * 1986-01-30 1987-08-07
JPS63268917A (ja) * 1987-04-27 1988-11-07 Mazda Motor Corp エンジンの吸気装置
JPH025711A (ja) * 1988-06-24 1990-01-10 Suzuki Motor Co Ltd エンジンの吸気装置
JPH03168325A (ja) * 1989-11-24 1991-07-22 Mazda Motor Corp 多気筒エンジンの吸気装置
JPH0687657U (ja) * 1993-06-02 1994-12-22 日産ディーゼル工業株式会社 エンジン吸気系の脈動音低減装置
JPH0791264A (ja) * 1993-09-22 1995-04-04 Yamaha Motor Co Ltd エンジンの過給装置
JPH07145731A (ja) * 1993-11-22 1995-06-06 Mazda Motor Corp エンジンの制御装置
US6758304B1 (en) * 1999-09-16 2004-07-06 Siemens Vdo Automotive Inc. Tuned Helmholtz resonator using cavity forcing
JP2014105666A (ja) * 2012-11-29 2014-06-09 Mahle Filter Systems Japan Corp 内燃機関の吸気音発生装置
US20150068482A1 (en) * 2013-09-09 2015-03-12 Motive Power Industry Co., Ltd. Kinetic system-oriented variable intake structure

Also Published As

Publication number Publication date
JP6734068B2 (ja) 2020-08-05
EP3401523A1 (en) 2018-11-14
EP3401523A4 (en) 2018-12-12
US10619606B2 (en) 2020-04-14
JP2017145695A (ja) 2017-08-24
EP3401523B1 (en) 2021-10-20
US20190055908A1 (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US7455044B2 (en) Intake device of internal combustion engine
RU154182U1 (ru) Охладитель воздуха
JP2014227930A (ja) ターボ過給機のタービンハウジング
JP6256275B2 (ja) エンジンの吸排気装置
EP1695757B1 (en) Exhaust purification device and exhaust purification method for an internal combustion engine
WO2017141576A1 (ja) 内燃機関
US9140198B2 (en) Intake and exhaust apparatus of multi-cylinder engine
JP5262863B2 (ja) 多気筒エンジンの排気システムの制御方法およびその装置
JP2013241834A (ja) 内燃機関の排気還流装置
JP2008274884A (ja) 内燃機関の制御装置
JP2020153343A (ja) Egr装置
JP2008303745A (ja) 内燃機関の制御装置
JP5472050B2 (ja) 多気筒エンジンの排気装置
JP5673214B2 (ja) 多気筒エンジンの吸排気装置
JP2011214438A (ja) 多気筒エンジンの排気装置
JP2005325824A (ja) 内燃機関の可変吸気装置
JP2010014079A (ja) 内燃機関の制御装置
JP2008128186A (ja) 内燃機関の気流生成装置及び内燃機関の制御装置
JP4367327B2 (ja) 内燃機関
JP2016188627A (ja) エンジンのegr装置
JP2010084580A (ja) エンジンの排気装置
JP2012107540A (ja) 多気筒エンジンの吸排気装置
JP2010169027A (ja) 内燃機関の制御装置
JP2001152946A (ja) 内燃機関の排気浄化装置
JPS63208614A (ja) エンジンの排気制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17752840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017752840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017752840

Country of ref document: EP

Effective date: 20180809

NENP Non-entry into the national phase

Ref country code: DE