WO2017138572A1 - 光ファイバケーブル - Google Patents

光ファイバケーブル Download PDF

Info

Publication number
WO2017138572A1
WO2017138572A1 PCT/JP2017/004614 JP2017004614W WO2017138572A1 WO 2017138572 A1 WO2017138572 A1 WO 2017138572A1 JP 2017004614 W JP2017004614 W JP 2017004614W WO 2017138572 A1 WO2017138572 A1 WO 2017138572A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
cores
cable
fiber cable
slot
Prior art date
Application number
PCT/JP2017/004614
Other languages
English (en)
French (fr)
Inventor
岡田 圭輔
佐藤 文昭
美昭 長尾
鈴木 叙之
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201780010481.6A priority Critical patent/CN108603991A/zh
Priority to US16/075,803 priority patent/US10416403B2/en
Publication of WO2017138572A1 publication Critical patent/WO2017138572A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4407Optical cables with internal fluted support member
    • G02B6/4408Groove structures in support members to decrease or harmonise transmission losses in ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4413Helical structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering

Definitions

  • the present invention relates to an optical fiber cable.
  • This application claims priority based on Japanese Patent Application No. 2016-021723 filed on Feb. 8, 2016, and incorporates all the contents described in the above Japanese application.
  • Patent Document 1 a plurality of optical fiber strands are arranged in parallel, and a tape core wire that is integrally covered with a covering body is respectively provided in grooves formed at a plurality of locations on the outer peripheral surface of the slot rod.
  • An optical fiber cable in which a tension member is disposed at the center of the slot rod and a protective sheath is provided on the surface of the slot rod so as to close the groove is described. .
  • An optical fiber cable includes a plurality of optical fiber tape cores having 12 or more cores, A slot rod having a plurality of slot grooves for accommodating a plurality of the optical fiber ribbons; A tension member provided inside the slot rod; A cable jacket covering the outside of the slot rod; and an optical fiber cable comprising:
  • the optical fiber ribbon is a connecting portion in which a plurality of optical fibers are arranged in parallel and a part or all of the optical fibers are connected between adjacent optical fibers.
  • the number of optical fibers housed in the optical fiber cable x (present), the relationship between the flexural rigidity y of the optical fiber cable (N ⁇ mm 2) is an optical fiber cable which satisfies the equation 1 below.
  • FIG. 4 It is sectional drawing which shows an example of the optical fiber cable which concerns on 1 aspect of this indication. It is a top view which shows a 12 core intermittent connection type optical fiber tape core wire. It is a top view which shows 12 normal optical fiber tape core wires (it is called a non-intermittent optical fiber tape core wire). It is sectional drawing of the optical fiber cable of the comparative example using the non-intermittent optical fiber tape cable core of FIG. It is a schematic diagram explaining the measuring method of bending rigidity. 4 is a graph comparing the relationship between the number of cable cores and bending rigidity in an optical fiber cable using the optical fiber ribbon of FIG. 2 and an optical fiber cable using the optical fiber ribbon of FIG. 3.
  • an object of the present disclosure is to provide an optical fiber cable that can suppress an increase in bending rigidity of the optical fiber cable even when an optical fiber ribbon having a large number of cores is used.
  • An optical fiber cable according to an embodiment of the present invention, (1) A plurality of optical fiber ribbons of 12 or more fibers, A slot rod having a plurality of slot grooves for accommodating a plurality of the optical fiber ribbons; A tension member provided inside the slot rod; A cable jacket covering the outside of the slot rod; and an optical fiber cable comprising:
  • the optical fiber ribbon is a connecting portion in which a plurality of optical fibers are arranged in parallel and a part or all of the optical fibers are connected between adjacent optical fibers.
  • a plurality of 12 or more optical fiber ribbons housed in each slot groove have a structure in which a part or all of the optical fibers are intermittently connected in the longitudinal direction. There is. Thereby, even when the number of optical fiber cores accommodated in the optical fiber cable is increased, an increase in bending rigidity of the optical fiber cable can be suppressed. In addition, when the optical fiber cable is bent, distortion generated in the optical fiber ribbon can be alleviated, and it is not necessary to provide a large gap in the slot groove. Therefore, even with the same number of cores, it becomes possible to reduce the outer diameter compared to an optical fiber cable using a normal optical fiber ribbon, and further suppress the increase in the bending rigidity of the optical fiber cable. it can.
  • FIG. 1 is a cross-sectional view showing an example of an optical fiber cable according to the present embodiment.
  • FIG. 2 is a plan view showing a 12-fiber intermittently connected optical fiber ribbon.
  • an optical fiber cable 1 includes a plurality of optical fiber tape cores 10 having 12 or more cores, and a slot rod 3 having a plurality of slot grooves 2 in which the plurality of optical fiber tape cores 10 are accommodated. And a tension member 4 provided inside the slot rod 3 and a cable jacket 5 covering the outside of the slot rod 3.
  • the slot rod 3 has a structure in which a plurality of slot grooves 2 (six strips in the example of FIG. 1) are provided radially by unidirectional twisting or SZ twisting around the tension member 4.
  • FIG. 2 As an example of the optical fiber ribbon 10 accommodated in the slot groove 2, a 12-fiber ribbon 10 is shown in FIG.
  • the optical fiber ribbon 10 shown in FIG. 2 has 12 optical fibers 11A to 11L arranged in parallel. These optical fiber core wires 11A to 11L are single-core coated optical fibers.
  • the optical fiber cores 11A to 11L may be coated with different colors so that the optical fiber cores can be distinguished from each other.
  • the optical fiber ribbon 10 is an intermittently connected optical fiber ribbon, and in a state where a plurality of optical fibers are arranged in parallel, a connecting portion 12 in which adjacent optical fibers are connected to each other;
  • the non-connecting portion 13 where the adjacent optical fiber cores are not connected is intermittently provided in the longitudinal direction.
  • the location where the connecting portion 12 and the non-connecting portion 13 are provided intermittently may be between some optical fiber cores as shown in FIG. 2, or all optical fibers. It may be between core wires.
  • the unconnected portion 13 is not provided between the optical fiber core wires 11A and 11B, 11C and 11D, 11E and 11F, 11G and 11H, 11I and 11J, and 11K and 11L.
  • the optical fiber ribbon 10 is formed by intermittently applying a connecting resin such as an ultraviolet curable resin or a thermosetting resin between the optical fibers to intermittently connect the connecting portion 12 and the non-connecting portion 13. It may be produced as follows. Alternatively, by applying a connecting resin to the plurality of optical fiber cores 11A to 11L, connecting all the optical fiber core wires, and then cutting a part with a rotary blade or the like to make the unconnected portion 13, The intermittently connected optical fiber ribbon 10 may be manufactured. In addition, the said connection resin is good also as resin with good peelability, in order to make the operation
  • a connecting resin such as an ultraviolet curable resin or a thermosetting resin
  • FIG. 3 is a plan view showing a 12-core non-intermittent optical fiber ribbon 20.
  • FIG. 4 is a comparative optical fiber cable 21 using the non-intermittent optical fiber ribbon 20 of FIG.
  • the present inventors relate to the present embodiment using the optical fiber cable 21 of the comparative example of FIG. 4 using the non-intermittent optical fiber ribbon 20 of FIG. 3 and the intermittently connected optical fiber ribbon 10.
  • the bending rigidity was calculated by changing the number of optical fiber cores to be accommodated.
  • the optical fiber cable 21 of the comparative example is the same as the optical fiber cable 1 except for the optical fiber tape cores that are housed.
  • the optical fiber cables 1 and 21 were gripped at two points, and the displacement A was measured by applying an external force F in the direction perpendicular to the cable longitudinal direction to the center. Then, the bending stiffness was calculated based on the measured displacement amount A.
  • the optical fiber cable 1 according to the present embodiment using the intermittently connected optical fiber ribbon 10 includes the number x (cores) of the optical fiber cores to be accommodated and the bending rigidity y (N ⁇ N) of the optical fiber cable.
  • mm 2 satisfies the following expression 1 from the relationship shown in FIG.
  • the relationship between the number x of optical fiber cores housed (the number) and the bending rigidity y (N ⁇ mm 2 ) of the optical fiber cable 1 is expressed by the above formula 1.
  • This is an optical fiber cable that satisfies the requirements.
  • the optical fiber cable 1 according to the present embodiment has a great effect of suppressing an increase in bending rigidity, particularly in a multi-fiber optical fiber cable having 864 cores or more.
  • a plurality of 12 or more optical fiber tape cores 10 housed in each slot groove 2 are part or all of the optical fibers. Since the fiber cores are intermittently connected in the longitudinal direction, there is flexibility. For this reason, even when the number of optical fiber cores accommodated in the optical fiber cable 1 is increased, an increase in bending rigidity of the optical fiber cable 1 can be suppressed. Moreover, when the optical fiber cable 1 is bent, distortion generated in the optical fiber ribbon 10 can be alleviated, and it is not necessary to provide a large gap in the slot groove 2.
  • the outer diameter can be made smaller than that of the optical fiber cable 21 using the non-intermittent optical fiber ribbon 20, and the increase in the bending rigidity of the optical fiber cable is further suppressed. be able to.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

心数の多い光ファイバテープ心線を使用しても、光ファイバケーブルの曲げ剛性の増加を抑制する。複数枚の12心以上の光ファイバテープ心線と、複数枚の光ファイバテープ心線が収納されるスロット溝を複数有するスロットロッドと、スロットロッドの内側に設けられたテンションメンバと、スロットロッドの外側を覆うケーブル外被と、を備えた光ファイバケーブルであって、光ファイバテープ心線は、複数の光ファイバ心線が並列に配置された状態で、一部、または全ての光ファイバ心線間において、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ心線間が連結されていない非連結部とが長手方向に間欠的に設けられており、当該光ファイバケーブルに収納された光ファイバ心線の数x(本)と、当該光ファイバケーブルの曲げ剛性y(N・mm)との関係が、下記の式1を満足する。

Description

光ファイバケーブル
 本発明は、光ファイバケーブルに関する。
 本出願は、2016年2月8日出願の日本出願特願2016-021723号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、複数の光ファイバ素線が並列配置された状態で、被覆体で一体に被覆してなるテープ心線が、スロットロッドの外周面の複数箇所に形成された溝内にそれぞれ積層して収納され、また、スロットロッドの中心にはテンションメンバが配置され、さらに、このスロットロッドの表面には溝を閉鎖する状態で保護シースが設けられている光ファイバケーブルが記載されている。
日本国特開平8-262296号公報
 本開示の一態様に係る光ファイバケーブルは、複数枚の12心以上の光ファイバテープ心線と、
 複数枚の前記光ファイバテープ心線が収納されるスロット溝を複数有するスロットロッドと、
 前記スロットロッドの内側に設けられたテンションメンバと、
 前記スロットロッドの外側を覆うケーブル外被と、を備えた光ファイバケーブルであって、
 前記光ファイバテープ心線は、複数の光ファイバ心線が並列に配置された状態で、一部、または全ての前記光ファイバ心線間において、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ心線間が連結されていない非連結部とが長手方向に間欠的に設けられており、
 当該光ファイバケーブルに収納された光ファイバ心線の数x(本)と、当該光ファイバケーブルの曲げ剛性y(N・mm)との関係が、下記の式1を満足する光ファイバケーブル。
Figure JPOXMLDOC01-appb-I000002
本開示の一態様に係る光ファイバケーブルの一例を示す断面図である。 12心の間欠連結型光ファイバテープ心線を示す平面図である。 12心の通常の光ファイバテープ心線(非間欠光ファイバテープ心線と云う)を示す平面図である。 図3の非間欠光ファイバテープ心線を使用した比較例の光ファイバケーブルの断面図である。 曲げ剛性の測定方法を説明する模式図である。 図2の光ファイバテープ心線を使用した光ファイバケーブルと、図3の光ファイバテープ心線を使用した光ファイバケーブルと、におけるケーブル心数と曲げ剛性の関係を比較するグラフである。
[本開示が解決しようとする課題]
 スロット型の光ファイバケーブルは、ケーブルに曲げなどの外力が加わると、スロット溝の内部で光ファイバテープ心線の位置が変わる。その際に、光ファイバテープ心線がスロットロッドの壁、ケーブル外被等と接触すると伝送特性が悪化する。特に、12心などの心数の多い光ファイバテープ心線は幅が広いので、スロットロッドの壁、ケーブル外被等とより接触しやすく、伝送特性の悪化が顕著になる。このため、スロット溝に心数の多い光ファイバテープ心線を収納する場合は、所定の伝送特性を確保するために、スロット溝を大きくして、光ファイバテープ心線がスロットロッドの壁、ケーブル外被等と接触しないようにする必要がある。このように、スロット溝を大きくすると、ケーブル外径も大きくなるので、光ファイバケーブルの曲げ剛性が増加して曲げにくくなり、例えば、ダクト内、マンホール、ハンドホール内などでの取扱が困難となる。このため、例えば特許文献1では、テンションメンバを細くしたり、保護シースのヤング率を小さくしたりすることにより、可撓性を向上させている。
 そこで、本開示の目的は、心数の多い光ファイバテープ心線を使用しても、光ファイバケーブルの曲げ剛性の増加を抑制することができる光ファイバケーブルを提供することにある。
[本開示の効果]
 本開示によれば、心数の多い光ファイバテープ心線を使用しても、光ファイバケーブルの曲げ剛性の増加を抑制することができる。
[本発明の実施形態の説明]
 最初に本発明の実施形態を列記して説明する。
 本発明の実施形態に係る光ファイバケーブルは、
 (1) 複数枚の12心以上の光ファイバテープ心線と、
 複数枚の前記光ファイバテープ心線が収納されるスロット溝を複数有するスロットロッドと、
 前記スロットロッドの内側に設けられたテンションメンバと、
 前記スロットロッドの外側を覆うケーブル外被と、を備えた光ファイバケーブルであって、
 前記光ファイバテープ心線は、複数の光ファイバ心線が並列に配置された状態で、一部、または全ての前記光ファイバ心線間において、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ心線間が連結されていない非連結部とが長手方向に間欠的に設けられており、
 当該光ファイバケーブルに収納された光ファイバ心線の数x(本)と、当該光ファイバケーブルの曲げ剛性y(N・mm)との関係が、下記の式1を満足する光ファイバケーブルである。
Figure JPOXMLDOC01-appb-I000003
 各スロット溝に収納された複数枚の12心以上の光ファイバテープ心線は、一部、または全ての光ファイバ心線間が、長手方向で間欠的に連結した構造となっているので柔軟性がある。これにより、当該光ファイバケーブルに収納された光ファイバ心線の数を増やした場合でも、光ファイバケーブルの曲げ剛性の増加を抑制することができる。また、光ファイバケーブルが曲げられた際に、光ファイバテープ心線に発生する歪を緩和することができ、スロット溝に大きな隙間を設けなくてもよい。そのため、同じ心数であっても、通常の光ファイバテープ心線を使用した光ファイバケーブルに比べ、外径を小さくすることが可能となり、光ファイバケーブルの曲げ剛性の増加をさらに抑制することができる。
[本発明の実施形態の詳細]
 本発明の実施形態に係る光ファイバケーブルの具体例を、以下に図面を参照しつつ説明する。
 なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 図1は、本実施形態に係る光ファイバケーブルの一例を示す断面図である。図2は、12心の間欠連結型光ファイバテープ心線を示す平面図である。
 図1に示すように、光ファイバケーブル1は、複数枚の12心以上の光ファイバテープ心線10と、複数枚の光ファイバテープ心線10が収納されるスロット溝2を複数有するスロットロッド3と、スロットロッド3の内側に設けられたテンションメンバ4と、スロットロッド3の外側を覆うケーブル外被5と、を備えている。
 スロットロッド3は、テンションメンバ4を中心として、外面側に一方向撚り、或いはSZ撚りで放射状に複数のスロット溝2(図1の例では6条)が設けられた構造となっている。
 スロット溝2に収納される光ファイバテープ心線10の一例として、12心の光ファイバテープ心線10を図2に示す。図2に示す光ファイバテープ心線10は、12本の光ファイバ心線11A~11Lが並列に配置されている。この光ファイバ心線11A~11Lは、単心の被覆光ファイバである。なお、光ファイバ心線11A~11Lは、光ファイバ心線同士を識別できるように、それぞれ異なる色に被覆が着色されていてもよい。
 光ファイバテープ心線10は、間欠連結型の光ファイバテープ心線であり、複数の光ファイバ心線が並列に配置された状態で、隣接する光ファイバ心線間が連結された連結部12と、隣接する光ファイバ心線間が連結されていない非連結部13とが長手方向に間欠的に設けられている。このように、連結部12と非連結部13とが間欠的に設けられている箇所は、図2に示すように一部の光ファイバ心線間であってもよく、または、全ての光ファイバ心線間であってもよい。図2に示す例では、光ファイバ心線11Aと11B、11Cと11D、11Eと11F、11Gと11H、11Iと11J、11Kと11L、の各線間には非連結部13が設けられていない。
 光ファイバテープ心線10は、例えば、紫外線硬化型樹脂、熱硬化型樹脂等の連結樹脂を、間欠的に光ファイバ心線間に塗布することで連結部12と非連結部13とを間欠的に形成するようにして作製してもよい。或いは、複数の光ファイバ心線11A~11Lに連結樹脂を塗布して、全ての光ファイバ心線を連結させてから、回転刃等で一部を切断して非連結部13を作ることで、間欠連結型の光ファイバテープ心線10を作製してもよい。
 なお、上記連結樹脂は、光ファイバ心線の単心分離の作業を容易にするため、剥離性の良い樹脂としてもよい。
 本発明者らは、上記のような間欠連結型の光ファイバテープ心線10を光ファイバケーブル1に使用することにより、光ファイバ心線の心数が増加した場合に、光ファイバケーブル1の曲げ剛性の増加をどの程度抑制できるかについて検討を行った。そのために、非連結部が存在せず全ての光ファイバ心線間が連結している通常の光ファイバテープ心線(以下、非間欠光ファイバテープ心線と云う)を使用した光ファイバケーブルにおける、光ファイバ心線の心数の増加に対する曲げ剛性の増加と比較した。
 図3は、12心の非間欠光ファイバテープ心線20を示す平面図である。図4は、図3の非間欠光ファイバテープ心線20を使用した比較例の光ファイバケーブル21である。
 本発明者らは、図3の非間欠光ファイバテープ心線20を使用した図4の比較例の光ファイバケーブル21と、間欠連結型の光ファイバテープ心線10を使用した本実施形態に係る光ファイバケーブル1(図1参照)とについて、収納される光ファイバ心線の心数を変えて、曲げ剛性をそれぞれ算出した。なお、比較例の光ファイバケーブル21は、収納されている光ファイバテープ心線が異なるだけで、他の構造は光ファイバケーブル1と同様である。
 まず、曲げ剛性の算出方法について説明する。図5に示すように、光ファイバケーブル1,21を2点で把持し、その中央部にケーブル長手方向と直交する方向の外力Fを加えて変位量Aを測定した。そして、測定された変位量Aの値に基づいて曲げ剛性を算出した。
 算出結果を図6に示す。非間欠光ファイバテープ心線20を使用した光ファイバケーブル21の場合、図6に示すように、光ファイバ心線の心数の増加とともに曲げ剛性は指数関数的に大きくなる。
 これに対して、間欠連結型の光ファイバテープ心線10を使用した本実施形態に係る光ファイバケーブル1の場合も光ファイバ心線の心数の増加とともに曲げ剛性は大きくなるが、非間欠光ファイバテープ心線20を使用した光ファイバケーブル21の場合よりも曲げ剛性の増加が抑制されていることがわかる。特に、心数が864本を超えると、曲げ剛性の増加抑制の効果が大きくなる。
 間欠連結型の光ファイバテープ心線10を使用した本実施形態に係る光ファイバケーブル1は、収納される光ファイバ心線の心数x(本)と、光ファイバケーブルの曲げ剛性y(N・mm)との関係は、図6に示す関係から、下記の式1を満足する。
Figure JPOXMLDOC01-appb-M000004
 すなわち、本実施形態に係る光ファイバケーブル1は、収納された光ファイバ心線の数x(本)と、光ファイバケーブル1の曲げ剛性y(N・mm)との関係が、上記式1を満足する光ファイバケーブルである。本実施形態に係る光ファイバケーブル1は、特に、864心以上の多心の光ファイバケーブルにおいて、曲げ剛性増加の抑制効果が大きい。
 以上詳述したように、本実施形態に係る光ファイバケーブル1によれば、各スロット溝2に収納された複数枚の12心以上の光ファイバテープ心線10は、一部、または全ての光ファイバ心線間が、長手方向で間欠的に連結した構造となっているので柔軟性がある。このため、当該光ファイバケーブル1に収納された光ファイバ心線の心数を増やした場合でも、光ファイバケーブル1の曲げ剛性の増加を抑制することができる。また、光ファイバケーブル1が曲げられた際に、光ファイバテープ心線10に発生する歪を緩和することができ、スロット溝2に大きな隙間を設けなくてもよい。そのため、同じ心数であっても、非間欠光ファイバテープ心線20を使用した光ファイバケーブル21に比べ、外径を小さくすることが可能となり、光ファイバケーブルの曲げ剛性の増加をさらに抑制することができる。
 1、21 光ファイバケーブル
 2 スロット溝
 3 スロットロッド
 4 テンションメンバ
 5 ケーブル外被
 10 間欠連結型の光ファイバテープ心線
 11A~11L 光ファイバ心線
 12 連結部
 13 非連結部
 20 非間欠光ファイバテープ心線

Claims (1)

  1.  複数枚の12心以上の光ファイバテープ心線と、
     複数枚の前記光ファイバテープ心線が収納されるスロット溝を複数有するスロットロッドと、
     前記スロットロッドの内側に設けられたテンションメンバと、
     前記スロットロッドの外側を覆うケーブル外被と、を備えた光ファイバケーブルであって、
     前記光ファイバテープ心線は、複数の光ファイバ心線が並列に配置された状態で、一部、または全ての前記光ファイバ心線間において、隣接する光ファイバ心線間が連結された連結部と、隣接する光ファイバ心線間が連結されていない非連結部とが長手方向に間欠的に設けられており、
     当該光ファイバケーブルに収納された光ファイバ心線の数x(本)と、当該光ファイバケーブルの曲げ剛性y(N・mm)との関係が、下記の式1を満足する光ファイバケーブル。
    Figure JPOXMLDOC01-appb-I000001
PCT/JP2017/004614 2016-02-08 2017-02-08 光ファイバケーブル WO2017138572A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780010481.6A CN108603991A (zh) 2016-02-08 2017-02-08 光纤线缆
US16/075,803 US10416403B2 (en) 2016-02-08 2017-02-08 Optical fiber cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-021723 2016-02-08
JP2016021723A JP2017142285A (ja) 2016-02-08 2016-02-08 光ファイバケーブル

Publications (1)

Publication Number Publication Date
WO2017138572A1 true WO2017138572A1 (ja) 2017-08-17

Family

ID=59563178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004614 WO2017138572A1 (ja) 2016-02-08 2017-02-08 光ファイバケーブル

Country Status (4)

Country Link
US (1) US10416403B2 (ja)
JP (1) JP2017142285A (ja)
CN (1) CN108603991A (ja)
WO (1) WO2017138572A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018230618A1 (ja) * 2017-06-14 2018-12-20 住友電気工業株式会社 スロット型光ケーブル
JP7156178B2 (ja) * 2019-06-04 2022-10-19 住友電気工業株式会社 光ファイバケーブル
JP7316794B2 (ja) 2019-01-10 2023-07-28 古河電気工業株式会社 光ファイバケーブル、ケーブルコアの製造方法
JP7156181B2 (ja) * 2019-06-19 2022-10-19 住友電気工業株式会社 光ファイバケーブル
WO2020256019A1 (ja) * 2019-06-19 2020-12-24 住友電気工業株式会社 光ファイバケーブル
CN113359230B (zh) * 2021-05-18 2022-04-29 烽火通信科技股份有限公司 一种柔性光纤带及光缆
CN116299927B (zh) * 2023-05-26 2023-08-01 长飞光纤光缆股份有限公司 一种骨架式光纤带光缆

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177809A (en) * 1990-12-19 1993-01-05 Siemens Aktiengesellschaft Optical cable having a plurality of light waveguides
JP2000066069A (ja) * 1998-08-17 2000-03-03 Hitachi Cable Ltd 光ファイバケーブル
JP2000214359A (ja) * 1999-01-20 2000-08-04 Hitachi Cable Ltd 光ファイバケ―ブル用スペ―サの製造方法及びその装置、並びにスペ―サを用いた光ファイバケ―ブルの製造方法
JP2015007714A (ja) * 2013-06-25 2015-01-15 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
JP2015166806A (ja) * 2014-03-04 2015-09-24 株式会社フジクラ 光ケーブル及び光ケーブルの製造方法
JP2016020989A (ja) * 2014-07-15 2016-02-04 住友電気工業株式会社 光ケーブル用のスロットロッド及び光ケーブル
JP2016020990A (ja) * 2014-07-15 2016-02-04 住友電気工業株式会社 光ケーブル用のスロットロッド及び光ケーブル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08262296A (ja) 1995-03-23 1996-10-11 Mitsubishi Cable Ind Ltd 光ファイバケーブル
CN1131443C (zh) * 1997-07-15 2003-12-17 住友电气工业株式会社 光缆及光缆用衬套
JP2003227976A (ja) * 2001-11-30 2003-08-15 Yazaki Corp プラスチック光ファイバおよび光ファイバケーブル
JP2005017694A (ja) * 2003-06-26 2005-01-20 Furukawa Electric Co Ltd:The 光ファイバおよび光ファイバケーブル
CN102681119B (zh) * 2008-06-30 2015-01-28 日本电信电话株式会社 光纤缆线以及光纤带
JP4865891B1 (ja) * 2010-07-22 2012-02-01 古河電気工業株式会社 光ファイバ素線、光ファイバテープ心線および光ファイバケーブル
JP5380396B2 (ja) * 2010-08-19 2014-01-08 株式会社フジクラ 光ファイバテープ心線の検査装置、製造装置及び光ファイバテープ心線の検査方法
JP6657976B2 (ja) * 2016-01-13 2020-03-04 住友電気工業株式会社 間欠連結型光ファイバテープ心線および光ケーブル
WO2017122518A1 (ja) * 2016-01-13 2017-07-20 住友電気工業株式会社 間欠連結型光ファイバテープ心線、光ケーブルおよび間欠連結型光ファイバテープ心線の製造方法
JP6958361B2 (ja) * 2016-01-28 2021-11-02 住友電気工業株式会社 光ファイバケーブル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177809A (en) * 1990-12-19 1993-01-05 Siemens Aktiengesellschaft Optical cable having a plurality of light waveguides
JP2000066069A (ja) * 1998-08-17 2000-03-03 Hitachi Cable Ltd 光ファイバケーブル
JP2000214359A (ja) * 1999-01-20 2000-08-04 Hitachi Cable Ltd 光ファイバケ―ブル用スペ―サの製造方法及びその装置、並びにスペ―サを用いた光ファイバケ―ブルの製造方法
JP2015007714A (ja) * 2013-06-25 2015-01-15 住友電気工業株式会社 光ファイバテープ心線、光ケーブル、製造装置、及び製造方法
JP2015166806A (ja) * 2014-03-04 2015-09-24 株式会社フジクラ 光ケーブル及び光ケーブルの製造方法
JP2016020989A (ja) * 2014-07-15 2016-02-04 住友電気工業株式会社 光ケーブル用のスロットロッド及び光ケーブル
JP2016020990A (ja) * 2014-07-15 2016-02-04 住友電気工業株式会社 光ケーブル用のスロットロッド及び光ケーブル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATO,FUMIAKI ET AL.: "Ultra-High-Fiber-Count and High-Density Slotted Core Cable with Pliable 12-Fiber Ribbons", SEI TECHINICAL REVIEW, vol. 83, October 2016 (2016-10-01), pages 10 - 14, XP055406526 *

Also Published As

Publication number Publication date
US10416403B2 (en) 2019-09-17
JP2017142285A (ja) 2017-08-17
CN108603991A (zh) 2018-09-28
US20190064462A1 (en) 2019-02-28

Similar Documents

Publication Publication Date Title
WO2017138572A1 (ja) 光ファイバケーブル
JP6034344B2 (ja) 光ファイバケーブル
WO2017131118A1 (ja) 光ファイバケーブル
WO2017131117A1 (ja) 光ファイバケーブル
JP2016061871A (ja) 光ファイバケーブル
JP5391131B2 (ja) テープ心線ユニット及び光ファイバケーブル
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
JP2010217392A (ja) 光ファイバケーブル
JP5290547B2 (ja) 複合ケーブル
JP2016148709A (ja) 光ファイバユニットおよび光ケーブル
JP2011169938A (ja) ユニット型光ファイバテープ心線及び光ファイバケーブル
EP4027180A1 (en) Optical fiber ribbon, optical fiber cable, and connector-equipped optical fiber cord
WO2020189772A1 (ja) 間欠連結型光ファイバテープ心線、光ファイバケーブルおよびコネクタ付き光ファイバコード
JP2006162703A (ja) 光ファイバケーブル
JP6365459B2 (ja) 光ファイバテープ心線、光ファイバケーブルおよび光ファイバコード
JP2007101955A (ja) 光ファイバユニット及び光ファイバケーブル
JP2021157154A (ja) 光ファイバユニットおよび光ファイバケーブル
JP4624279B2 (ja) 光ファイバケーブル
JP2004265780A (ja) メタル光複合ケーブル
JP2011221162A (ja) 光ファイバテープ心線及び光ファイバケーブル
JP2005128326A (ja) 光ファイバケーブル
JP2013120339A (ja) 光ファイバおよび光接続箱
EP4227720A1 (en) Optical cable
JP4312747B2 (ja) 光ケーブルの固定構造および固定方法
JP2004012616A (ja) 光ファイバ心線、2次元テープ状光ファイバ心線および光ファイバコード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17750293

Country of ref document: EP

Kind code of ref document: A1