WO2017138367A1 - フッ素ガスの精製方法 - Google Patents

フッ素ガスの精製方法 Download PDF

Info

Publication number
WO2017138367A1
WO2017138367A1 PCT/JP2017/002854 JP2017002854W WO2017138367A1 WO 2017138367 A1 WO2017138367 A1 WO 2017138367A1 JP 2017002854 W JP2017002854 W JP 2017002854W WO 2017138367 A1 WO2017138367 A1 WO 2017138367A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine gas
fluoride
metal
hydrogen fluoride
volume
Prior art date
Application number
PCT/JP2017/002854
Other languages
English (en)
French (fr)
Inventor
章史 八尾
浩平 大矢
雄太 武田
純 江藤
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017010593A external-priority patent/JP6867581B2/ja
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to US16/076,552 priority Critical patent/US20190047858A1/en
Priority to KR1020187025979A priority patent/KR102165773B1/ko
Publication of WO2017138367A1 publication Critical patent/WO2017138367A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/20Fluorine
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a purification method in which a metal component is removed from a fluorine gas containing a metal component as an impurity, and the fluorine gas is purified.
  • Fluorine gas is used in substrate forming or thin film forming equipment such as CVD (Chemical Vapor Deposition) in the manufacturing process of semiconductor devices, MEMS (Micro Electro Mechanical Systems) devices, TFT (Thin Film Transistor) panels for liquid crystals, and solar cells. It is widely used as a cleaning gas or a fluorinating agent for fluorine chemical product synthesis.
  • CVD Chemical Vapor Deposition
  • MEMS Micro Electro Mechanical Systems
  • TFT Thin Film Transistor
  • a cryogenic purification method which is a method for separating and recovering by partial condensation, is known.
  • energy is applied to a fluorine compound to react the fluorine compound to generate a fluorine gas component and a component other than the fluorine gas, and the generated fluorine gas component and a gas component other than the fluorine gas component are liquidated.
  • a cryogenic purification method is disclosed in which cooling is performed using nitrogen or the like, and fluorine gas is separated based on the difference in boiling points between the two.
  • the metal impurities contained in the fluorine gas are usually contained in the gas as fine particles or clusters of metal or metal compound, or a gas of metal halide or metal complex having a relatively high vapor pressure.
  • the metal impurities have a very high sublimation property, and the contained amount is very small. Therefore, there is a problem that it is difficult to remove the metal impurities by the cryogenic purification method.
  • the cryogenic purification method is used, the equipment becomes complicated and large, and it is possible to install equipment in a fluorine gas manufacturing plant, but it is difficult to install equipment when processing a small amount of gas. There is also a problem.
  • Patent Document 2 As a method for treating a gas using an apparatus having a simple structure, a dry treatment method in which a solid drug is brought into contact is known.
  • Patent Document 2 in a purification apparatus having a processing tower filled with an adsorbent such as sodium fluoride (NaF), hydrogen fluoride which is an impurity is obtained by circulating a mixed gas containing fluorine gas and impurities in the processing tower.
  • Patent Document 3 discloses a method for removing sublimated manganese fluoride contained in fluorine gas generated by heating MnF 4 . Specifically, it is described that manganese fluoride and sodium fluoride are brought into contact with each other and reacted to form and remove a composite fluoride by the formula 2NaF + MnF 4 ⁇ Na 2 MnF 6 .
  • Patent Document 2 The method described in Patent Document 2 is an effective method when the impurity is hydrogen fluoride. However, it has little effect on impurities other than hydrogen fluoride. Patent Document 2 describes a method for removing hydrogen fluoride contained in fluorine gas, but does not describe a removal method when the impurity is a metal impurity. In addition, fluorine gas generated by normal electrolysis of hydrogen fluoride contains about 5% by mass of hydrogen fluoride.
  • Patent Document 3 discloses heating to a high temperature of 100 ° C. or higher in order to react sodium fluoride and manganese fluoride to form a composite fluoride.
  • a reaction occurs between the fluorine gas and the metal container filled with sodium fluoride, and there is a problem that the metal component of the container is mixed into the fluorine gas and becomes a new impurity.
  • An object of the present invention is to provide a fluorine gas purification method in which a trace metal component contained as an impurity in fluorine gas is removed by an apparatus having a simple structure and the fluorine gas is purified.
  • the present inventors have found that when a trace amount of hydrogen fluoride is present in the fluorine gas containing a metal component as an impurity, the metal component contained in the fluorine gas is hydrogen fluoride. It has been found that it can be adsorbed and removed by solid metal fluoride together with hydrogen fluoride to purify fluorine gas, and the present invention has been completed.
  • the present invention includes inventions 1 to 16.
  • [Invention 1] A purification method for removing metal components from fluorine gas containing hydrogen fluoride and metal components, The fluorine gas is brought into contact with a solid metal fluoride, and the hydrogen fluoride and the metal component are adsorbed on the metal fluoride and removed.
  • invention 3 The method for purifying fluorine gas according to invention 1, wherein the concentration adjusting step is an addition step of adding hydrogen fluoride to fluorine gas.
  • invention 4 The method for purifying fluorine gas according to inventions 1 to 3, wherein the metal fluoride is at least one selected from the group consisting of alkali metal fluorides and alkaline earth metal fluorides.
  • invention 5 The method for purifying fluorine gas according to Invention 4, wherein the metal fluoride is at least one selected from the group consisting of lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride and barium fluoride.
  • invention 6 The method for purifying fluorine gas according to inventions 1 to 5, wherein in the removing step, the temperature at which the fluorine gas is brought into contact with the solid metal fluoride is 50 ° C. or less.
  • invention 7 The fluorine gas of inventions 1 to 6, wherein the metal component contained in the fluorine gas before the removing step contains at least one metal selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni. Purification method.
  • a method for purifying fluorine gas which removes metal components from fluorine gas containing hydrogen fluoride and at least one metal component selected from the group consisting of Fe, Cr, Mn, Co, Ti, Mo, Cu and Ni, Hydrogen fluoride is brought into contact with at least one metal fluoride selected from the group consisting of solid lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, and barium fluoride.
  • the content of hydrogen fluoride in the fluorine gas before the removing step is 50 ppm by volume or more and 1% by volume or less with respect to the total volume of the fluorine gas, hydrogen fluoride and the metal component,
  • the fluorine gas purification method, wherein each content of Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni in the fluorine gas after the removing step is 10 mass ppb or less.
  • [Invention 10] A method for producing purified fluorine gas that removes metal components contained in fluorine gas, A fluorine gas containing hydrogen fluoride and a metal component is brought into contact with a solid metal fluoride, and the hydrogen fluoride and the metal component are adsorbed on the metal fluoride and removed.
  • invention 12 The method for producing purified fluorine gas of Invention 10 or Invention 11, wherein the content of hydrogen fluoride in the purified fluorine gas is 50 ppm by volume or less.
  • invention 13 Applying the method for producing purified fluorine gas according to invention 10 to obtain purified fluorine gas; Etching the semiconductor element using the purified fluorine gas; and An etching method comprising:
  • [Invention 14] A fluorine gas supply unit; A metal fluoride filling unit for bringing the fluorine gas supplied from the fluorine gas supply unit into contact with a solid metal fluoride; An etching chamber to which an exit gas of the metal fluoride filling portion is supplied; An etching apparatus.
  • the content of hydrogen fluoride in the fluorine gas is 50 ppm by volume or more with respect to the total volume of the fluorine gas, hydrogen fluoride and the metal component,
  • the etching apparatus of the invention 14 which has a hydrogen fluoride concentration adjustment part adjusted to 1 volume% or less.
  • invention 16 The etching apparatus according to claim 15, wherein the hydrogen fluoride concentration adjusting unit includes a hydrogen fluoride supply unit that adds hydrogen fluoride to fluorine gas.
  • the present invention it is possible to easily remove a metal component from a fluorine gas containing a metal component as an impurity with an apparatus having a simple structure, and a gas usable for applications such as etching corresponding to miniaturization in the semiconductor field. Can provide.
  • FIG. 1 and 2 show only an example of a method for carrying out the present invention, and the present invention can be carried out by a method other than this embodiment.
  • the purification apparatus 10 is supplied with fluorine gas from the fluorine gas supply unit 20 and supplies the outlet gas to the external device 30.
  • the purification apparatus 10 includes at least a metal fluoride filling unit 100 and, if necessary, a hydrogen fluoride concentration adjusting unit 110 and a hydrogen fluoride supply unit 120.
  • the metal fluoride filling unit 100 is a container filled with a drug containing a metal fluoride, and is appropriately designed depending on the purity and flow rate of the flowing gas.
  • a detoxification facility in which metal fluoride pellets are filled on the bottom mesh, a gas to be treated is introduced from the lower part, and discharged from the upper part.
  • the drug to be filled may be powdery, granular, or pelletized as long as it contains a metal fluoride, and the content of the metal fluoride is not particularly limited, but usually has a purity of 90% by mass or more, preferably a purity. It is 95 mass% or more.
  • metal fluoride to be used examples include alkali metal fluoride and alkaline earth metal fluoride. Specifically, lithium fluoride, sodium fluoride, potassium fluoride, magnesium fluoride, calcium fluoride, An example is barium fluoride. These metal fluorides are preferable because they have low reactivity with fluorine compounds but can adsorb hydrogen fluoride gas.
  • the material used for the container of the metal fluoride filling unit 100 is a metal that is corrosion resistant to fluorine compounds, fluorine, and hydrogen fluoride.
  • nickel, nickel-based alloy Hastelloy (registered trademark), Monel (registered trademark) or Inconel (registered trademark), aluminum, aluminum alloy, or stainless steel can be selected.
  • Hastelloy registered trademark
  • Monel registered trademark
  • Inconel registered trademark
  • aluminum, aluminum alloy, or stainless steel can be selected.
  • Fe and Cr contained in the material may react with the fluorine compound, which may be a source of metal impurities. It is necessary to perform a treatment such as forming a passive film.
  • the use temperature of the metal fluoride filling unit 100 that is, the temperature at which the fluorine gas is brought into contact with the solid metal fluoride is 50 ° C. or less. If the operating temperature is less than the boiling point of fluorine gas at the pressure in the metal fluoride filling unit 100 (-188 ° C. at 1 atm), a problem of gas condensing in the metal fluoride filling unit 100 occurs. Usually it is 0 ° C or higher.
  • the metal impurity derived from a container may generate
  • the metal fluoride filling part 100 can be used at a temperature as low as possible to obtain a purification effect, it requires a separate cooling facility, and thus is usually used near room temperature (about 20 ° C.). .
  • the fluorine gas supplied to the metal fluoride filling unit 100 preferably contains 50 ppm by volume or more and 1% by volume or less of hydrogen fluoride. Moreover, about each content of each metal component (Fe, Cr, Mn, Co, Ti, Mo, Cu, Ni) contained in fluorine gas, in the exit of the metal fluoride filling part 100, the manufacturing process of a semiconductor device It is preferable that all are 10 mass ppb or less so that it can be used in.
  • each content of each metal component (Fe, Cr, Mn, Co, Ti, Mo, Cu, Ni) contained in the fluorine gas at the inlet of the metal fluoride filling unit 100 10 mass ppb or more, It is preferably 1000 mass ppb or less, and preferably 20 mass ppb or more and 500 mass ppb or less. If the amount of the metal component is too large, the metal component may not be completely removed. If the amount is too small, the necessity of applying the present invention is eliminated.
  • Each metal component is contained in the gas as fine particles or clusters of metal or metal compound, or a gas of metal halide or metal complex having a relatively high vapor pressure. However, the content of each metal component is evaluated not as the content of a metal compound or a metal complex but as the content of a single metal.
  • the metal component is a material such as a reactor or a pipe in the fluorine gas production process, or a metal used as a material for a cylinder is corroded by fluorine gas. Mixed in.
  • the content can be suppressed to 1000 mass ppb or less by using the above-mentioned corrosion-resistant metal for the member and the cylinder.
  • the amount of hydrogen fluoride contained in the fluorine gas at the exit from the metal fluoride filling unit 100 is 50 ppm by volume or less with respect to the total volume of the fluorine gas, hydrogen fluoride, and the metal component. Is preferred.
  • the fluorine gas supply unit 20 is a fluorine gas storage unit manufactured by a fluorine gas manufacturing facility, a cylinder filled with fluorine gas, or the like. There is no restriction on the purity of the gas to be supplied, but when a low-concentration gas is used, the load on the metal fluoride filling unit 100 installed on the downstream side increases, resulting in an increase in the size of the apparatus and the frequency of drug replacement. It is preferable to use a gas from which impurities have been removed in advance by distillation or a cryogenic purification method. Specifically, it is preferable to use those having a purity of 90% by volume or more, more preferably 99% by volume or more.
  • An external device 30 is connected downstream of the purification device 10.
  • the external device 30 corresponds to a fluorine gas filling facility.
  • the etching apparatus corresponds to the external apparatus 30.
  • the purification device 10 of the present invention is provided in the middle of the gas inlet and piping of the etching device, and the semiconductor device is etched using the gas from which the metal component has been removed by supplying the outlet gas of the purification device 10 to the etching chamber. can do.
  • the hydrogen fluoride concentration adjusting unit 110 adjusts the amount of hydrogen fluoride contained in the fluorine gas supplied to the purification apparatus 10 to an amount suitable for supplying the metal fluoride filling unit 100.
  • the content of hydrogen fluoride in the fluorine gas supplied to the metal fluoride filling unit 100 is 50 volume ppm or more and 1 volume% or less with respect to the total volume of the fluorine gas, hydrogen fluoride, and metal components. It is preferable that it is 100 volume ppm or more and 2000 volume ppm or less, and 200 volume ppm or more and 1000 ppm or less may be sufficient.
  • the hydrogen fluoride content is less than 50 ppm, the amount of hydrogen fluoride is too small, and it is often difficult to sufficiently reduce the amount of the metal component.
  • the fluorine gas supplied from the fluorine gas supply unit 20 contains 50 ppm by volume or more of hydrogen fluoride in advance, it is supplied to the metal fluoride filling unit 100 as it is, but the hydrogen fluoride content is less than 50 ppm by volume. In this case, it is preferable to supply hydrogen fluoride from the hydrogen fluoride supply unit 120.
  • the hydrogen fluoride concentration adjusting unit 110 may be diluted with a fluorine gas having a smaller hydrogen fluoride content or a metal fluoride or the like. Hydrogen fluoride may be roughly removed with a drug.
  • the hydrogen fluoride supply unit 120 is connected by a pipe or the like at an upstream portion of the metal fluoride filling unit 100, and can add hydrogen fluoride to the fluorine gas.
  • a container or a cylinder filled with hydrogen fluoride is connected to the hydrogen fluoride supply unit 120.
  • the purity of the hydrogen fluoride to be connected is preferably high-purity, and the purity is preferably 99.5% by mass or more, more preferably 99.9% by mass or more. Further, regarding the metal impurities, it is preferable that the concentration of each of the mixed Fe, Cr, Mn, Co, Ti, Mo, Cu, and Ni metal components is 10 mass ppb or less.
  • the concentration of the metal component can be reduced to a very low level with an apparatus having a simple structure simply filled with a drug. Therefore, even in a small factory, a gas with few metal impurities can be obtained using the present invention.
  • the purification device 10 can be provided immediately before using the fluorine gas, it is possible to prevent mixing of metal components derived from piping and the like, and the external device 30 can use a gas with less metal impurities.
  • a cylinder filled with F 2 (purity 99% by volume or more and 99.99% by volume or less) is used as the fluorine gas supply unit 20, and the hydrogen fluoride supply unit 120 is filled with HF. (HF purity: 99.99% by volume) was connected.
  • the supply amount of each gas was controlled using a mass flow controller (manufactured by Horiba Estec Co., Ltd.) as a flow rate control device on the downstream side of each cylinder.
  • a mass flow controller manufactured by Horiba Estec Co., Ltd.
  • what filled 100 g of NaF pellets (Morita Chemical Co., Ltd.) in a 1 inch (25.4 mm) ⁇ 200 mm Ni tube was used for the metal fluoride filling portion 100.
  • the metal fluoride filling part 100 was used by heating to room temperature or a predetermined temperature. And the gas of the part corresponded to the inlet_port
  • ICP-MS inductively coupled plasma mass spectrometer
  • the metal component is converted into fluorine gas in the above-described state, for example, when a metal used as a material used in a reactor or a pipe in a fluorine gas production process or a cylinder is corroded by fluorine gas. It is mixed.
  • Example 1 and Example 2 the metal concentration could be reduced by bringing fluorine gas containing a predetermined amount of hydrogen fluoride into contact with NaF at 25 ° C.
  • Comparative Example 1 where the concentration of hydrogen fluoride was too low, it was difficult to remove the metal component.
  • Comparative Example 1 where the concentration of hydrogen fluoride was too low, it was difficult to remove the metal component.
  • the metal component was not fully removable. This is presumed that the metal component derived from the container of the metal fluoride filling part 100 was mixed by reacting with high-temperature F 2 .
  • F 2 gas containing 3% by volume and high concentration of HF the metal concentration could hardly be reduced. This is because HF could not be completely removed, and it is considered that the metal component was included in the outlet gas together with HF.
  • Example 2 As shown in Table 2, in Examples 3 to 5, the same procedure as in Example 1 was performed except that the chemical filling the metal fluoride filler 100 was changed to KF pellets, MgF 2 pellets, and BaF 2 pellets. As a result, as in Example 1, the effect of removing the metal component could be confirmed.
  • a metal component contained in fluorine gas can be easily removed, and a gas usable for applications such as etching corresponding to miniaturization in the semiconductor field can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

開示されているのは、フッ化水素と金属成分を含むフッ素ガスから金属成分を除去する精製方法である。この方法は、前記フッ素ガスを、固体の金属フッ化物に接触させ、フッ化水素及び金属成分を金属フッ化物に吸着させて除去する除去工程を含む。前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下である。金属フッ化物が、アルカリ金属フッ化物又はアルカリ土類金属フッ化物であることが好ましい。フッ素ガスにフッ化水素を共存させることによって、意外にも、不純物としての金属成分を金属フッ化物に吸着させて除去できる。

Description

フッ素ガスの精製方法
 本発明は、不純物として金属成分を含むフッ素ガスから金属成分を除去し、フッ素ガスを精製する、精製方法に関するものである。
発明の背景
 フッ素ガスは、半導体デバイス、MEMS(Micro Electro Mechanical Systems)デバイス、液晶用TFT(Thin Film Transistor)パネル及び太陽電池などの製造工程における、基板のエッチングもしくはCVD(Chemical Vapor Deposition)などの薄膜形成装置のクリーニング用のガス、または、フッ素化学製品合成のためのフッ素化剤などに、広く使用される。
 半導体デバイスの製造においては、微細化及び高集積化技術の発展により、加工する際の技術的難易度は年々高くなっている。このような状況の中で、半導体デバイスの材料に含まれる不純物は、半導体デバイスの製造工程において、製品の歩留まりを低下させるなどの問題を引き起こす懸念がある。そこで使用されるフッ素ガスについても、高純度化が望まれており、特に、電気特性への影響が大きい金属不純物については、10質量ppb以下に低減する必要があるなど、その要求レベルは非常に高い。
 こうしたガスの高純度化を狙いとする精製方法としては、ガスと不純物を含む混合ガスを低温に冷却して液化させ、混合ガス中のそれぞれのガスが凝縮する際の温度の違いにより、蒸留または部分凝縮によって分離回収する方法である深冷精製法が知られている。例えば、特許文献1に、フッ素化合物にエネルギーを付与しフッ素化合物を反応させフッ素ガス成分とフッ素ガス以外の成分とを生成し、生成されたフッ素ガス成分とフッ素ガス成分以外のガス成分とを液体窒素などを用いて冷却し、双方の沸点の違いにより、フッ素ガスを分離する深冷精製法が開示されている。
 しかしながら、フッ素ガスに含まれる金属不純物は、通常、金属や金属化合物の微粒子またはクラスター、あるいは比較的高い蒸気圧を持つ金属ハロゲン化物または金属錯体の気体として、ガス中に含有されている。しかしながら、金属不純物は昇華性が非常に高く、さらに含まれる量も微量であることから、深冷精製法による除去は困難であるといった問題がある。また、深冷精製法を用いると、その設備は複雑で大型となり、フッ素ガスの製造工場には設備を設置可能であるが、少量のガスを処理する際は設備を設置し難く不向きであるという問題もある。
 簡単な構造の装置を用いガスを処理する方法として、固形薬剤と接触させる乾式処理方法が知られている。例えば、特許文献2には、フッ化ナトリウム(NaF)などの吸着剤を充填した処理塔を有する精製装置において、処理塔にフッ素ガスと不純物を含む混合ガスを流通し不純物であるフッ化水素を除去する方法が開示されている。また、特許文献3には、MnF4を加熱して生成したフッ素ガスに含まれる、昇華したフッ化マンガンを除去する方法が開示されている。具体的には、フッ化マンガンとフッ化ナトリウムとを接触させて反応させ、式 2NaF+MnF4→Na2MnF6により、複合フッ化物を形成し除去することができるとの記載されている。
 特許文献2に記載の方法は、不純物がフッ化水素の場合は有効な方法である。しかしながら、フッ化水素以外の不純物に対しては、効果がほとんどない。特許文献2には、フッ素ガスに含まれるフッ化水素を除去する方法については記載されているが、不純物が金属不純物である場合の除去方法については記載されていない。また、通常のフッ化水素の電気分解により発生したフッ素ガスには5質量%前後のフッ化水素が含まれる。
 特許文献3に記載の方法は、フッ化ナトリウムとフッ化マンガンを反応させて複合フッ化物を形成するため、100℃以上の高温に加熱することが開示されている。しかしながら、高温に加熱すると、フッ素ガスとフッ化ナトリウムを充填する金属容器との反応も生じ、容器の金属成分がフッ素ガス中に混入して新たな不純物となってしまうといった問題がある。
特開2004-39740号公報 特開2009-215588号公報 特開2006-117509号公報
 本発明は、簡単な構造の装置でフッ素ガスに不純物として含まれる微量金属成分を除去し、フッ素ガスを精製する、フッ素ガスの精製方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、不純物としての金属成分を含むフッ素ガスに微量のフッ化水素が存在すると、フッ素ガスに含まれる金属成分がフッ化水素と反応し、フッ化水素とともに固体の金属フッ化物に吸着し除去され、フッ素ガスを精製できることを見出し、本発明を完成させるに至った。
 本発明のフッ素ガスの精製方法において、フッ素ガスにフッ化水素ガスを添加しフッ化水素ガスを共存させることで、これら金属不純物を金属フッ化物に吸着させることが可能となる。
 すなわち、本発明は発明1~16を含む。
[発明1]
 フッ化水素と金属成分を含むフッ素ガスから金属成分を除去する精製方法であって、
 前記フッ素ガスを、固体の金属フッ化物に接触させ、フッ化水素及び金属成分を金属フッ化物に吸着させて除去する除去工程を含み、
 前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下である、フッ素ガスの精製方法。
[発明2]
 前記除去工程の前に、フッ素ガス中のフッ化水素の含有量を、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整する濃度調整工程を行う、発明1に記載のフッ素ガスの精製方法。
[発明3]
 前記濃度調整工程が、フッ素ガスにフッ化水素を添加する添加工程である、発明1のフッ素ガスの精製方法。
[発明4]
 前記金属フッ化物が、アルカリ金属フッ化物及びアルカリ土類金属フッ化物からなる群より選ばれる少なくとも1種である、発明1~3のフッ素ガスの精製方法。
[発明5]
 前記金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム及びフッ化バリウムからなる群より選ばれる少なくとも1種である、発明4のフッ素ガスの精製方法。
[発明6]
 前記除去工程において、フッ素ガスを固体の金属フッ化物に接触させる温度が、50℃以下である、発明1~5のフッ素ガスの精製方法。
[発明7]
 前記除去工程前のフッ素ガスに含まれる金属成分が、Fe、Cr、Mn、Co、Ti、Mo、Cu及びNiからなる群より選ばれる少なくとも一種の金属を含む、発明1~6のフッ素ガスの精製方法。
[発明8]
 前記除去工程後のフッ素ガス中の、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、発明1~7のフッ素ガスの精製方法。
[発明9]
 フッ化水素と、Fe、Cr、Mn、Co、Ti、Mo、Cu及びNiからなる群より選ばれる少なくとも一種の金属成分を含むフッ素ガスから金属成分を除去するフッ素ガスの精製方法であって、
 前記フッ素ガスを、固体のフッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム及びフッ化バリウムからなる群より選ばれる少なくとも1種の金属フッ化物に接触させ、フッ化水素及び金属成分を金属フッ化物に吸着させて除去する除去工程を含み、
 前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下であり、
前記除去工程後のフッ素ガス中の、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、フッ素ガスの精製方法。
[発明10]
 フッ素ガスに含まれる金属成分を除去する精製フッ素ガスの製造方法であって、
 フッ化水素と金属成分を含むフッ素ガスを、固体の金属フッ化物に接触させ、フッ化水素及び金属成分を前記金属フッ化物に吸着させて除去する除去工程を含み、
 前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下である、精製フッ素ガスの製造方法。
[発明11]
 精製フッ素ガス中の、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、発明10の精製フッ素ガスの製造方法。
[発明12]
 精製フッ素ガス中のフッ化水素の含有量が、50体積ppm以下である、発明10または発明11の精製フッ素ガスの製造方法。
[発明13]
 発明10に記載の精製フッ素ガスの製造方法を適用して、精製フッ素ガスを得る工程と、
 前記精製フッ素ガスを用いて、半導体素子のエッチングを行う工程と、
を具備する、エッチング方法。
[発明14]
 フッ素ガス供給部と、
 前記フッ素ガス供給部から供給されたフッ素ガスを固体の金属フッ化物に接触させる金属フッ化物充填部と、
 前記金属フッ化物充填部の出口ガスが供給されるエッチングチャンバーと、
を有する、エッチング装置。
[発明15]
 さらに、前記フッ素ガス供給部と前記金属フッ化物充填部の間に、フッ素ガス中のフッ化水素の含有量を、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整するフッ化水素濃度調整部を有する、発明14のエッチング装置。
[発明16]
 前記フッ化水素濃度調整部が、フッ素ガスにフッ化水素を添加するフッ化水素供給部を有する、発明15のエッチング装置。
 本発明によれば、簡単な構造の装置で、不純物として金属成分を含むフッ素ガスから金属成分を容易に除去することができ、半導体分野における微細化に対応したエッチングなどの用途に使用可能なガスを提供できる。
本発明の実施形態の一例を示す概念図である。 本発明の別の実施形態の一例を示す概念図である。
詳細な説明
 以下、本発明の実施方法について、図面を参照して詳述する。
 なお、図1、2は本発明を実施する方法の一例を示したに過ぎず、本形態以外の方法でも本発明の実施は可能である。
<精製装置10>
 本発明に係る精製装置10は、フッ素ガス供給部20からフッ素ガスが供給され、出口ガスを外部装置30に供給する。精製装置10は、少なくとも金属フッ化物充填部100を備え、必要によりフッ化水素濃度調整部110とフッ化水素供給部120を備える。
<金属フッ化物充填部100>
 金属フッ化物充填部100は金属フッ化物を含む薬剤を充填した容器で、流通するガスの純度や流速によって適宜設計される。例えば、底網上に金属フッ化物のペレットを充填し、下部から処理対象ガスを導入し、上部から排出する除害設備などを使用できる。充填する薬剤は、金属フッ化物を含んでいれば、粉末状でも粒状でもペレット状でもよく、金属フッ化物の含有量も特に限定されないが、通常は純度90質量%以上であり、好ましくは、純度95質量%以上である。使用する金属フッ化物としては、アルカリ金属フッ化物、アルカリ土類金属フッ化物を挙げることができ、具体的には、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム、フッ化バリウムを例示することができる。これらの金属フッ化物は、フッ素化合物との反応性が低いが、フッ化水素ガスを吸着可能であるため、好ましい。
 また、金属フッ化物充填部100の容器に使用する材質は、フッ素化合物、フッ素、フッ化水素に対し耐食性のある金属が使用される。具体的には、ニッケル、ニッケル基合金であるハステロイ(登録商標)、モネル(登録商標)もしくはインコネル(登録商標)、アルミニウム、アルミニウム合金、またはステンレス鋼などを選択することができる。なお、ステンレス鋼については、材質に含まれるFeやCrとフッ素化合物が反応し、金属不純物の発生源となる可能性があるため、使用する前に、フッ素化合物ガスやフッ素ガスを流通し、表面に不動態皮膜を形成するなどの処理を行う必要がある。
 また、金属フッ化物充填部100の使用温度、すなわち、フッ素ガスを固体の金属フッ化物に接触させる温度は、50℃以下である。使用温度が、金属フッ化物充填部100での圧力におけるフッ素ガスの沸点(1気圧で-188℃)未満では、金属フッ化物充填部100内でガスが凝縮する問題が発生するため、使用温度は通常は0℃以上である。また50℃より高い温度では、フッ素ガスと金属フッ化物充填部100の容器の反応が促進され、容器由来の金属不純物が発生し、金属成分の濃度が増加する可能性があるため、好ましくない。なお、金属フッ化物充填部100は可能な限り低温で使用する方が、より精製効果が得られるが、別途冷却設備などが必要となるため、通常は室温(約20℃)付近で使用される。
 金属フッ化物充填部100に供給されるフッ素ガスには、後述の通り、フッ化水素が50体積ppm以上、1体積%以下含まれることが好ましい。また、フッ素ガスに含まれる各金属成分(Fe、Cr、Mn、Co、Ti、Mo、Cu、Ni)のそれぞれの含有量については、金属フッ化物充填部100の出口では、半導体デバイスの製造工程において使用できるよう、いずれも10質量ppb以下であることが好ましい。
 なお、金属フッ化物充填部100の入口でのフッ素ガスに含まれる各金属成分(Fe、Cr、Mn、Co、Ti、Mo、Cu、Ni)のそれぞれの含有量については、10質量ppb以上、1000質量ppb以下であることが好ましく、20質量ppb以上、500質量ppb以下であることが好ましい。金属成分の量が多すぎる場合、金属成分を除去しきれない恐れがあり、少なすぎる場合、本発明を適用する必要性がなくなる。各金属成分は、金属や金属化合物の微粒子またはクラスターや、比較的高い蒸気圧を持つ金属ハロゲン化物または金属錯体の気体として、ガス中に含有されている。但し、各金属成分の含有量は、金属化合物や金属錯体の含有量ではなく、金属単体の含有量として評価する。
 金属成分は、フッ素ガスの製造工程における反応器または配管などの部材、またはボンベに使用される材質として使用される金属がフッ素ガスにより腐食するなどして、前述の金属不純物の状態で、フッ素ガスに混入する。その含有量は、部材およびボンベなどに前述の耐食性の金属を用いることで1000質量ppb以下に抑えることができる。
 また、金属フッ化物充填部100からの出口でのフッ素ガスに含まれるフッ化水素の量が、フッ素ガス、フッ化水素、及び、金属成分の合計体積に対して、50体積ppm以下となることが好ましい。
<フッ素ガス供給部20>
 フッ素ガス供給部20は、フッ素ガスの製造設備で製造されたフッ素ガスの貯蔵部や、フッ素ガスを充填したボンベなどである。供給するガスの純度などに制約は無いが、低濃度のガスを使用した場合、下流側に設置する金属フッ化物充填部100の負荷が大きくなり、装置の大型化や、薬剤交換頻度が高くなるなどの支障をきたすため、予め、蒸留や深冷精製法で不純物を除去したガスを使用することが好ましい。具体的には純度が90体積%以上のものを使用するのが好ましく、さらに好ましくは99体積%以上のものを使用するのが好ましい。
<外部装置30>
 精製装置10の下流には、外部装置30が接続される。外部装置30には、例えば、本発明の方法をフッ素ガスの製造工程で使用する場合は、フッ素ガスの充填設備が相当する。また、本発明の方法をエッチング工程のガス供給ラインに使用する場合は、エッチング装置が外部装置30に相当する。なお、一つの筐体に精製装置10と外部装置30の両方を備えていてもよい。例えば、エッチング装置のガス受入口や配管の途中に本発明の精製装置10を設け、精製装置10の出口ガスをエッチングチャンバーに供給することで、金属成分を除去したガスを用いて半導体素子をエッチングすることができる。
<フッ化水素濃度調整部110>
 フッ化水素濃度調整部110は、精製装置10に供給されたフッ素ガスに含まれるフッ化水素の量を、金属フッ化物充填部100に供給するのに適した量に調整する。金属フッ化物充填部100に供給されるフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素、及び、金属成分の合計体積に対して、50体積ppm以上、1体積%以下であることが好ましく、100体積ppm以上、2000体積ppm以下であることがより好ましく、200体積ppm以上、1000ppm以下であってもよい。フッ化水素含有量が50ppm未満であると、フッ化水素の量が少なすぎて、金属成分の量を十分に低減するのが難しい場合が多い。フッ素ガス供給部20から供給されるフッ素ガスに、あらかじめ50体積ppm以上のフッ化水素が含まれる場合は、そのまま金属フッ化物充填部100に供給するが、フッ化水素含有量が50体積ppm未満の場合は、フッ化水素供給部120よりフッ化水素を供給することが好ましい。
 一方、フッ化水素含有量が1体積%を超える場合は、金属フッ化物充填部100の薬剤を頻繁に交換する必要があるため、経済的でないうえに、金属フッ化物充填部100の薬剤の量によってはフッ化水素を除去しきれずに、金属成分を十分に低減することができない場合もある。そのため、フッ化水素含有量が1体積%を超えるフッ素ガスが供給された場合、フッ化水素濃度調整部110は、フッ化水素含有量がより少ないフッ素ガスで希釈するか、金属フッ化物などの薬剤でフッ化水素を粗取りしてもよい。
<フッ化水素供給部120>
 フッ化水素供給部120は、金属フッ化物充填部100の上流部分で配管などによって接続され、フッ素ガスにフッ化水素を添加可能である。フッ化水素供給部120にはフッ化水素を充填した容器やボンベが接続される。接続するフッ化水素の純度は高純度のものを使用するのが好ましく、純度が99.5質量%以上、より好ましくは99.9質量%以上のものを使用するのが好ましい。さらに金属不純物については、混入したFe、Cr、Mn、Co、Ti、Mo、Cu、Niの各金属成分の濃度が、いずれも10質量ppb以下であることが好ましい。
<精製装置10の効果>
 本発明を利用した精製装置10では、薬剤を充填しただけの簡易な構造の装置で、金属成分の濃度を非常に低いレベルまで低減可能である。そのため、小規模な工場でも本発明を利用して金属不純物の少ないガスを得ることができる。また、フッ素ガスを使用する直前に精製装置10を設けることができるため、配管などに由来した金属成分の混入を防ぐことができ、外部装置30は金属不純物の少ないガスを利用することができる。
 以下、実施例により本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
[実施例]
 図2に示す系統図に従い、フッ素ガス供給部20としてF2を充填したボンベ(純度99体積%以上、99.99体積%以下)を用い、フッ化水素供給部120にはHFを充填したボンベ(HF純度:99.99体積%)を接続した。なお、図2には図示していないが、それぞれのボンベの下流側に流量制御装置として、マスフローコントローラー(株式会社堀場エステック製)を使用して、各ガスの供給量を制御した。また、金属フッ化物充填部100には、径1インチ(25.4mm)×200mmのNi管にNaFペレット(森田化学工業株式会社製)100gを充填したものを使用した。なお、金属フッ化物充填部100は、室温や、所定の温度に加熱して使用した。そして、金属フッ化物充填部100の入口と出口に相当する部分のガスを捕集し、誘導結合プラズマ質量分析計(ICP-MS)により、金属成分の含有量を測定した。
 尚、金属成分は、フッ素ガスの製造工程における反応器または配管などの部材、またはボンベに使用される材質として使用される金属がフッ素ガスにより腐食するなどして、前述の状態で、フッ素ガスに混入したものである。
 実施例及び比較例の結果については表1にまとめた。
Figure JPOXMLDOC01-appb-T000001
 実施例1と実施例2では、所定量のフッ化水素を含むフッ素ガスを、25℃でNaFと接触させることで、金属濃度を低減可能であった。一方で、フッ化水素の濃度が低すぎる比較例1では金属成分を除去することが難しかった。また、100℃でNaFと接触させた比較例2では、十分に金属成分を除去できなかった。これは、金属フッ化物充填部100の容器に由来する金属成分が、高温のF2と反応して混入したものと推測される。さらに、3体積%と高濃度のHFを含むF2ガスの場合、金属濃度はほとんど低減できなかった。これは、HFを取りきれなかったため、HFとともに金属成分が出口ガスに含まれたものと思われる。
 また、表2に示すように、実施例3~5では、金属フッ化物充填部100に充填する薬剤を、KFペレット、MgF2ペレット、BaF2ペレットに変更する以外は実施例1と同様に実施した結果、実施例1と同様に、金属成分の除去効果が確認できた。
Figure JPOXMLDOC01-appb-T000002
 本発明により、フッ素ガスに含まれる金属成分を容易に除去することができ、半導体分野における微細化に対応したエッチングなどの用途に使用可能なガスを提供できる。

Claims (16)

  1. フッ化水素と金属成分を含むフッ素ガスから金属成分を除去するフッ素ガスの精製方法であって、
     前記フッ素ガスを、固体の金属フッ化物に接触させ、フッ化水素及び金属成分を金属フッ化物に吸着させて除去する除去工程を含み、
     前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下である、フッ素ガスの精製方法。
  2. 前記除去工程の前に、フッ素ガス中のフッ化水素の含有量を、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整する濃度調整工程を行う、請求項1に記載のフッ素ガスの精製方法。
  3. 前記濃度調整工程が、フッ素ガスにフッ化水素を添加する添加工程である、請求項1に記載のフッ素ガスの精製方法。
  4. 前記金属フッ化物が、アルカリ金属フッ化物及びアルカリ土類金属フッ化物からなる群より選ばれる少なくとも1種である、請求項1乃至請求項3のいずれか1項に記載のフッ素ガスの精製方法。
  5. 前記金属フッ化物が、フッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム及びフッ化バリウムからなる群より選ばれる少なくとも1種である、請求項4に記載のフッ素ガスの精製方法。
  6. 前記除去工程において、フッ素ガスを固体の金属フッ化物に接触させる温度が、50℃以下である、請求項1乃至請求項5のいずれか1項に記載のフッ素ガスの精製方法。
  7. 前記除去工程前のフッ素ガスに含まれる金属成分が、Fe、Cr、Mn、Co、Ti、Mo、Cu及びNiからなる群より選ばれる少なくとも一種の金属を含む、請求項1乃至請求項6のいずれか1項に記載のフッ素ガスの精製方法。
  8. 前記除去工程後のフッ素ガス中の、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、請求項1乃至請求項7のいずれか1項に記載のフッ素ガスの精製方法。
  9. フッ化水素と、Fe、Cr、Mn、Co、Ti、Mo、Cu及びNiからなる群より選ばれる少なくとも一種の金属成分を含むフッ素ガスから金属成分を除去するフッ素ガスの精製方法であって、
     前記フッ素ガスを、固体のフッ化リチウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化カルシウム及びフッ化バリウムからなる群より選ばれる少なくとも1種の金属フッ化物に接触させ、フッ化水素及び金属成分を金属フッ化物に吸着させて除去する除去工程を含み、
     前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下であり、
    前記除去工程後のフッ素ガス中の、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、フッ素ガスの精製方法。
  10. フッ素ガスに含まれる金属成分を除去する精製フッ素ガスの製造方法であって、
     フッ化水素と金属成分を含むフッ素ガスを、固体の金属フッ化物に接触させ、フッ化水素及び金属成分を前記金属フッ化物に吸着させて除去する除去工程を含み、
     前記除去工程前のフッ素ガス中のフッ化水素の含有量が、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下である、精製フッ素ガスの製造方法。
  11. 精製フッ素ガス中の、Fe、Cr、Mn、Co、Ti、Mo、Cu、Niのそれぞれの含有量が、いずれも10質量ppb以下である、請求項10に記載の精製フッ素ガスの製造方法。
  12. 精製フッ素ガス中のフッ化水素の含有量が、50体積ppm以下である、請求項10または請求項11に記載の精製フッ素ガスの製造方法。
  13. 請求項10に記載の精製フッ素ガスの製造方法を適用して、精製フッ素ガスを得る工程と、
     前記精製フッ素ガスを用いて、半導体素子のエッチングを行う工程と、
    を具備する、エッチング方法。
  14. フッ素ガス供給部と、
     前記フッ素ガス供給部から供給されたフッ素ガスを固体の金属フッ化物に接触させる金属フッ化物充填部と、
     前記金属フッ化物充填部の出口ガスが供給されるエッチングチャンバーと、
    を有する、エッチング装置。
  15. さらに、前記フッ素ガス供給部と前記金属フッ化物充填部の間に、フッ素ガス中のフッ化水素の含有量を、フッ素ガス、フッ化水素及び金属成分の合計体積に対して50体積ppm以上、1体積%以下に調整するフッ化水素濃度調整部を有する、請求項14に記載のエッチング装置。
  16. 前記フッ化水素濃度調整部が、フッ素ガスにフッ化水素を添加するフッ化水素供給部を有する、請求項15に記載のエッチング装置。
PCT/JP2017/002854 2016-02-09 2017-01-27 フッ素ガスの精製方法 WO2017138367A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/076,552 US20190047858A1 (en) 2016-02-09 2017-01-27 Method for Purifying Fluorine Gas
KR1020187025979A KR102165773B1 (ko) 2016-02-09 2017-01-27 불소 가스의 정제 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-022455 2016-02-09
JP2016022455 2016-02-09
JP2017-010593 2017-01-24
JP2017010593A JP6867581B2 (ja) 2016-02-09 2017-01-24 フッ素ガスの精製方法

Publications (1)

Publication Number Publication Date
WO2017138367A1 true WO2017138367A1 (ja) 2017-08-17

Family

ID=59563884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002854 WO2017138367A1 (ja) 2016-02-09 2017-01-27 フッ素ガスの精製方法

Country Status (1)

Country Link
WO (1) WO2017138367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054007A (zh) * 2021-11-26 2022-02-18 天津海嘉斯迪新材料合伙企业(有限合伙) 一种氟气纯化用吸附剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215588A (ja) * 2008-03-10 2009-09-24 Toyo Tanso Kk フッ素ガス発生装置
JP2009242215A (ja) * 2008-04-01 2009-10-22 Iwatani Internatl Corp フッ素回収方法及びフッ化カルシウムの精製方法
JP2013535397A (ja) * 2010-08-05 2013-09-12 ソルヴェイ(ソシエテ アノニム) フッ素の精製方法
WO2015076415A1 (ja) * 2013-11-25 2015-05-28 ギガフォトン株式会社 ガスレーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009215588A (ja) * 2008-03-10 2009-09-24 Toyo Tanso Kk フッ素ガス発生装置
JP2009242215A (ja) * 2008-04-01 2009-10-22 Iwatani Internatl Corp フッ素回収方法及びフッ化カルシウムの精製方法
JP2013535397A (ja) * 2010-08-05 2013-09-12 ソルヴェイ(ソシエテ アノニム) フッ素の精製方法
WO2015076415A1 (ja) * 2013-11-25 2015-05-28 ギガフォトン株式会社 ガスレーザ装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114054007A (zh) * 2021-11-26 2022-02-18 天津海嘉斯迪新材料合伙企业(有限合伙) 一种氟气纯化用吸附剂的制备方法
CN114054007B (zh) * 2021-11-26 2024-04-19 天津海嘉斯迪新材料合伙企业(有限合伙) 一种氟气纯化用吸附剂的制备方法

Similar Documents

Publication Publication Date Title
JP6792158B2 (ja) フッ素化合物ガスの精製方法
JP6867581B2 (ja) フッ素ガスの精製方法
WO2017138366A1 (ja) フッ素化合物ガスの精製方法
CN111918839B (zh) 六氟化钼的制造方法和制造装置
JP6201496B2 (ja) If7由来フッ化ヨウ素化合物の回収方法及び回収装置
EP3569573A1 (en) Method for producing polycrystalline silicon
JP2008260676A (ja) 高純度シリコンの製造方法
JP3785418B1 (ja) フッ酸生成装置及びフッ酸生成方法
WO2017138367A1 (ja) フッ素ガスの精製方法
WO2017179458A1 (ja) フッ素化ハロゲン間化合物の精製方法
JP2006117509A (ja) フッ素ガスの製造方法
JP2007176770A (ja) 高純度フッ素ガスの製造方法および高純度フッ素ガス製造装置
CN115583631A (zh) 一种三氟化氯的制备方法及装置
WO2021070550A1 (ja) 五フッ化臭素の製造方法
CN111886674B (zh) 基板处理用气体、保管容器和基板处理方法
JP2017190284A (ja) フッ素化ハロゲン間化合物の精製方法
JP3512285B2 (ja) 精ヨウ化水素の製造方法
JP3986376B2 (ja) 四フッ化珪素の製造法
WO2013123185A1 (en) Deposition system and method of forming a metalloid-containing material therewith

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17750092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020187025979

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 17750092

Country of ref document: EP

Kind code of ref document: A1