WO2017138181A1 - Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ - Google Patents

Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ Download PDF

Info

Publication number
WO2017138181A1
WO2017138181A1 PCT/JP2016/076866 JP2016076866W WO2017138181A1 WO 2017138181 A1 WO2017138181 A1 WO 2017138181A1 JP 2016076866 W JP2016076866 W JP 2016076866W WO 2017138181 A1 WO2017138181 A1 WO 2017138181A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
steel sheet
ipm motor
rotor core
magnetic flux
Prior art date
Application number
PCT/JP2016/076866
Other languages
English (en)
French (fr)
Inventor
藤原 進
幸男 片桐
智永 岩津
Original Assignee
日新製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新製鋼株式会社 filed Critical 日新製鋼株式会社
Publication of WO2017138181A1 publication Critical patent/WO2017138181A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets

Definitions

  • the present invention relates to a steel plate for a rotor core of a permanent magnet embedded motor (hereinafter referred to as “IPM motor”) mainly used in an electric vehicle, a hybrid vehicle, a machine tool, and the like, a manufacturing method thereof, a rotor core of an IPM motor, and The present invention relates to an IPM motor.
  • IPM motor a permanent magnet embedded motor
  • an IPM motor uses an expensive permanent magnet as compared with an induction motor, so that the cost is high, but the efficiency is high, and the drive motor and power generation motor for hybrid and electric vehicles, as well as various types of work It has been widely used as a motor for machines.
  • stator stator
  • rotor rotor
  • an AC magnetic field is directly applied to the stator through a winding.
  • an electromagnetic steel sheet in which soft magnetic properties are improved by adding Si or Al to an extremely low carbon steel is used for the stator core.
  • a permanent magnet is embedded on the rotor side, and the iron core plays a role of increasing the magnetic flux density mainly as a yoke, and although the influence of a slight AC magnetic field generated from the stator side is affected, the influence is limited. .
  • the electromagnetic steel sheet is used only for the stator, the product yield of the electromagnetic steel sheet is lowered and the manufacturing cost of the motor is increased. Therefore, the same electromagnetic steel sheet as that of the stator side is usually used as the material.
  • the limit of the rotational speed depends on the yield strength of the rotor core when the thickness and shape of the rotor core are the same.
  • the yield strength after magnetic annealing is about 400 N / mm 2
  • the maximum rotational speed is about 15000 rpm. It is considered. So far, various studies have been made to increase the yield strength of iron cores based on electromagnetic steel sheets.
  • Patent Document 1 discloses an electrical steel sheet having excellent magnetic properties and deformation resistance and a method for manufacturing the same.
  • Patent Document 2 discloses a steel plate and a method for manufacturing the steel plate that are compatible with high strength by paying attention to improvement of eddy current loss rather than hysteresis loss among iron loss characteristics.
  • the production method disclosed in Patent Document 2 is characterized in that C is made higher than that of a normal electromagnetic steel sheet and transformation transformation is strengthened by continuous annealing equipment.
  • Patent Document 3 C: more than 0.06 mass% to 0.90 mass%, Si: 0.05 mass% to 3.0 mass%, Mn: 0.2 mass% to 2.5 mass% P: 0.05% by mass or less, S: 0.02% by mass or less, acid-soluble Al: 0.005% by mass to 4.95% by mass, and Si + Al: 5.0% by mass or less,
  • a hot-rolled steel sheet having a composition composed of Fe and unavoidable impurities in the balance is subjected to cold rolling twice or more including intermediate annealing to a predetermined sheet thickness, and then to a temperature of 200 to 500 ° C.
  • a method for manufacturing a steel sheet for a rotor core of an IPM motor to be heated is disclosed.
  • Patent Document 4 discloses a steel sheet for a rotor core of an IPM motor, which has been subjected to tension annealing or press temper treatment on a steel sheet after cold rolling having the same composition as that of Patent Document 3, and the flatness thereof, and a manufacturing method thereof. It is disclosed.
  • Patent Document 1 focuses on improving the soft magnetic characteristics, so that sufficient strength cannot be ensured. Further, in the method disclosed in Patent Document 2, the hysteresis loss becomes too large as it is quenched, and even if an AC magnetic field is applied, sufficient excitation cannot be performed and the magnetic flux density is lowered. As a result, the reluctance torque of the IPM motor is reduced and the motor efficiency is reduced. In FIG. 2 of Patent Document 2, the as-quenched electromagnetic steel sheet has a lower eddy current loss than the conventional electromagnetic steel sheet having the same volume resistivity, which is excited under the same conditions. This is probably because the movement of the domain wall cannot follow the change in the magnetic field, and the change width of the magnetic field is apparently reduced.
  • the electrical steel sheet disclosed in Patent Document 2 has a very high dislocation density in the steel and is intricately intertwined. Therefore, even when excited, the domain wall cannot follow the change in the magnetic field. However, the value of magnetic flux density is low. Moreover, in patent document 3, although it is possible to obtain a steel strip with high strength and high magnetic flux density, sufficient flatness may not be obtained with cold rolling using work strengthening. Therefore, when the rotor is manufactured by laminating the steel plates obtained in Patent Document 3, the space factor is lowered, the productivity of the rotor is deteriorated, the balance of the rotor is deteriorated, and a large vibration is generated at high speed rotation. There was a problem that it might be easy to do.
  • Patent Document 4 a steel sheet for a rotor core of an IPM motor, which is heated to a temperature range of 200 to 500 ° C. after cold rolling and subjected to tension annealing or press temper for the purpose of improving flatness, and The manufacturing method is disclosed.
  • the effect of improving the plate shape is sufficiently obtained, and the torque characteristics in the high-speed rotation range are superior to those of the electromagnetic steel sheet, but the torque characteristics in the high-speed rotation range are not always sufficient.
  • the present invention has been made to solve the above problems, and when used as a core for a rotor of an IPM motor, has excellent torque characteristics in a high-speed rotation region without causing a decrease in reluctance torque of the IPM motor.
  • An object of the present invention is to provide a steel sheet for a rotor core having excellent flatness capable of smooth high-speed rotation by increasing strength.
  • Another object of the present invention is to provide a method for manufacturing a steel sheet for a rotor core of an IPM motor, a rotor core of an IPM motor, and an IPM motor.
  • the present inventors have sought a method for making the maximum use of the reluctance torque of the motor while at the same time increasing the strength to withstand high-speed rotation. And, as a result of earnestly examining the component composition of the steel material, the adjustment method of the metal structure, etc., the present inventors made a specific component composition, and increased the strength by work strengthening by cold rolling, cold rolling By applying a tension annealing treatment by heating to a relatively high temperature region below the recrystallization temperature, the dislocations introduced by cold rolling cause rearrangement and fine carbides are precipitated, resulting in residual magnetic flux density.
  • the steel sheet has a high strength to withstand high speed rotation, high magnetic flux density to obtain high reluctance torque, and excellent flatness to obtain smooth high speed rotation. Has been found, and the present invention has been completed.
  • the present invention includes C: more than 0.01 mass% to 0.90 mass%, Si: 0 mass% to 3.0 mass%, Mn: 0.05 mass% to 2.5 mass%, P: 0 0.05% by mass or less, S: 0.02% by mass or less, acid-soluble Al: 0.005% by mass to 3.0% by mass and Si + Al: 5.0% by mass or less, the balance being Fe and inevitable impurities
  • the magnetic flux density B 8000 when the magnetic field strength is 8000 A / m is 1.75 T or more and the residual magnetic flux density Br when magnetized up to 8000 A / m exceeds 1.30 T and has a length.
  • the total of one or more components selected from the group consisting of Ti, Nb and V is 0.01 mass% to 0.20 mass%, and / or Mo: 0.1 mass% to 0 .6 mass%, Cr: 0.1 mass% to 1.0 mass%, Cu: 0.1 mass% to 1.5 mass%, Ni: 0.1 mass% to 1.0 mass%, and B: 0
  • One or more components selected from the group consisting of .0005% by mass to 0.005% by mass may be contained.
  • the steel sheet for the rotor core of the IPM motor of the present invention has an insulating film made of an organic material, an insulating film made of an inorganic material, or an organic / inorganic film on at least one surface of the steel plate from the viewpoint of reducing iron loss in the rotor core. It is preferable that an insulating film made of a composite material is formed.
  • the steel sheet for the rotor core of the IPM motor described above is a hot-rolled steel sheet having the above-described component composition, with a predetermined sheet thickness by two or more cold rolling processes including one cold rolling or intermediate annealing, 500 ° C. was heated to a temperature of the super ⁇ 600 ° C. or 500 ° C. ultra ⁇ 650 ° C., is prepared by performing tension annealing treatment for imparting tension holding state of 5N / mm 2 ⁇ 50N / mm 2 at the same temperature range
  • the metal structure before cold rolling is composed of one or more selected from the group consisting of ferrite, ferrite, bainite, and martensite, which are ferromagnetic materials, and if necessary. It is desirable to contain a carbon / nitride containing at least one selected from the group consisting of Fe, Mo, Cr, Cu, Ni and B.
  • a steel sheet for a rotor core having excellent strength, residual magnetic flux density Br, and other magnetic characteristics and flatness.
  • this steel sheet as the rotor core of an IPM motor, a rotor of an IPM motor and further an IPM motor having high strength and excellent torque characteristics in a high speed rotation region can be obtained without causing a decrease in reluctance torque of the IPM motor.
  • FIG. 1 It is a front view which shows the rotor of an IPM motor provided with the rotor iron core formed by laminating
  • FIG. 1 is a front view showing a rotor of an IPM motor including a rotor core formed by laminating steel sheets for a rotor core of an IPM motor according to an embodiment of the present invention.
  • the rotor 1 of the IPM motor has a rotor core 10 (rotor main body) formed by laminating steel plates for rotor core (material steel plates) of the present invention, and a circumferential direction of the rotor core 10.
  • a plurality of permanent magnet insertion holes 11 provided in the rotor iron core 10 at intervals from each other and permanent magnets 12 embedded in the permanent magnet insertion holes 11 are included.
  • An IPM motor is configured by arranging a stator (not shown) on the outer periphery of the rotor 1.
  • Each permanent magnet insertion hole 11 has first and second insertion holes 11a, 11b arranged in a V shape so that the rotation center 10a side of the rotor core 10 is the top, and the first and second at the top.
  • a bridge 11c that partitions the insertion holes 11a and 11b is included.
  • the permanent magnet 12 is embedded in the first and second insertion holes 11a and 11b, respectively. That is, two permanent magnets 12 are embedded in the permanent magnet insertion hole 11.
  • an IPM motor using the rotor 1 as shown in FIG. 1 when operating in a high-speed rotation region, a magnetic flux in a direction to cancel the magnetic flux of the permanent magnet 12 is generated from the stator side, and an induced electromotive force is generated.
  • Field weakening control is performed to suppress the above.
  • the rated rotational speed of such an IPM motor is 7500 rpm when the rotor 1 of FIG. 1 is used.
  • the above-described field weakening control is performed in a high-speed rotation range exceeding these rotation speeds.
  • the steel sheet for the rotor core of the IPM motor of the present invention has C: more than 0.01 mass% to 0.90 mass%, Si: 0 mass% to 3.0 mass%, Mn: 0.05 mass% to 2.5 mass%. Mass%, P: 0.05 mass% or less, S: 0.02 mass% or less, acid-soluble Al: 0.005 mass% to 3.0 mass% and Si + Al: 5.0 mass% or less, the balance being Fe And a magnetic flux density B 8000 when the magnetic field strength is 8000 A / m and the residual magnetic flux density Br is 1.30 T when magnetized to 8000 A / m. And the maximum peak height when a steel plate or steel strip having a length of 1 m or more is placed on a surface plate is 1.0 mm or less.
  • the steel material components include a total of one or more components selected from the group consisting of Ti, Nb, and V, 0.01 mass% to 0.20 mass%, and / or Mo: 0.1 mass% to 0.6 mass%, Cr: 0.1 mass% to 1.0 mass%, Cu: 0.1 mass% to 1.5 mass%, Ni: 0.1 mass% to 1.0 mass%, and B: One or more components selected from the group consisting of 0.0005 mass% to 0.005 mass% may be contained.
  • C more than 0.01% to 0.90% by mass> C is an element effective in increasing strength by being precipitated in steel as solid solution or cementite (Fe 3 C).
  • Fe 3 C cementite
  • Si 0% by mass to 3.0% by mass>
  • Si is an element effective not only for increasing the strength but also for increasing the volume resistivity and reducing the eddy current loss.
  • Si may not be added in the present invention.
  • it is necessary to contain 0.01% by mass or more.
  • the content exceeds 3.0% by mass, the magnetic flux density is lowered and the toughness of the steel sheet is deteriorated.
  • Mn 0.05 mass% to 2.5 mass%> Mn is an element effective for increasing the strength. In order to acquire the effect, it is necessary to contain 0.05 mass% or more. However, if the content exceeds 2.5% by mass, the effect of improving the strength is saturated and the magnetic flux density is reduced.
  • P 0.05% by mass or less> P is an element effective for increasing the strength, but significantly reduces the toughness of the steel. Since 0.05 mass% is acceptable, the upper limit is made 0.05 mass%.
  • S is an element that causes high-temperature embrittlement. If it is contained in a large amount, S causes surface defects during hot rolling and degrades the surface quality. Therefore, it is desired to reduce as much as possible. Since 0.02 mass% is acceptable, the upper limit is set to 0.02 mass%.
  • Al is an element effective for increasing the volume resistivity of steel in the same manner as Si. In order to exhibit the effect, it is necessary to contain 0.005 mass% or more of acid-soluble Al. However, if Al alone is contained in an amount exceeding 3.0% by mass and the total amount of Si exceeds 5.0% by mass, the magnetic flux density is greatly reduced, and the performance of the motor is deteriorated.
  • Ti, Nb, and V are elements that form carbonitrides in steel and are effective in increasing strength by precipitation strengthening.
  • Ti, Nb, and V are elements that form carbonitrides in steel and are effective in increasing strength by precipitation strengthening.
  • it has the effect of preventing dislocation movement as a fine precipitate and as a solid solution element, even if the recrystallization temperature after cold rolling is increased and the temperature of tension annealing is increased, recrystallization hardly occurs and the strength decreases. Is also effective in improving the residual magnetic flux density.
  • it is necessary to add 0.01% by mass or more of one type or two or more types in total.
  • the effect of increasing the strength, suppressing recrystallization and improving the residual magnetic flux density due to the coarsening of the precipitate is reduced, and the manufacturing cost is increased.
  • Invite is necessary to add 0.01% by mass or more of one type or two or more types in total.
  • Mo, Cr, Cu, Ni, and B are elements that increase the hardenability of steel and are effective in increasing the strength.
  • Mo, Cr, Cu, Ni, and B are elements that increase the hardenability of steel and are effective in increasing the strength.
  • Mo, Cr, Cu, Ni, and B it is necessary to add one or more of Mo, Cr, Cu, Ni, and B to the set lower limit values or more.
  • the effect is saturated and the manufacturing cost is increased.
  • the effect is recognized by addition of only one kind or addition of two or more kinds.
  • the addition of an amount exceeding 1/2 of the set upper limit value compared with the effect. As the manufacturing cost increases, it is desirable to add in an amount of 1/2 or less.
  • ⁇ Flatness Maximum peak height when a steel plate or steel strip having a length of 1 m or more is placed on a surface plate is 1.0 mm or less> Since the rotor is manufactured by laminating steel plates punched into the shape of the rotor, it is necessary that the space factor when laminated is good. In order to obtain a good space factor, the maximum peak height when a steel plate or steel strip having a length of 1 m or more as a flatness was placed on a surface plate was set to 1.0 mm or less. The peak height is defined as a value obtained by subtracting the plate thickness from the maximum height of the steel plate surface measured using the surface plate as a reference plane.
  • the reason for limiting the magnetic characteristics as described above is as follows. ⁇ Magnetic flux density B 8000 when magnetic field strength is 8000 A / m: 1.75 T or more>
  • the steel plate used for the rotor core mainly serves as a yoke, and the difference in inductance value between the position where the magnet is inserted (d-axis) and the position where it is not inserted (q-axis) when rotating at high speed as the rotor.
  • the magnetic flux density when the magnetic field strength is 8000 A / m is 1.75 T or more. It is necessary to be.
  • the residual magnetic flux density Br is over 1.30 T as follows. That is, in the IPM motor, in addition to utilizing the magnetic flux generated by the permanent magnet, in order to obtain reluctance torque, a magnetic flux (q-axis magnetic flux) penetrating the rotor is passed from the stator side to increase torque and increase efficiency. Has achieved.
  • the steel sheet for the rotor core of the IPM motor of the present invention has a high magnetic flux density, particularly a high residual magnetic flux density, and also has a very good flatness in order to obtain a high torque in a high speed rotation range. Yes.
  • Such a steel sheet for the rotor core of an IPM motor cannot be obtained simply by adjusting the composition of the steel sheet, but is strengthened by cold rolling and tension by heating to a relatively high temperature range exceeding 500 ° C. after cold rolling. It can be obtained by an annealing process.
  • the hot rolling conditions do not need to be specified in particular and may be carried out according to a normal method, but the hot rolling finishing temperature is preferably carried out in the ⁇ single phase region. In addition, when the coiling temperature is too high, the oxide scale becomes thick and the subsequent pickling property is hindered.
  • the metal structure of the steel sheet obtained by hot rolling is selected from the group consisting of ferrite, pearlite, bainite and martensite which are ferromagnetic materials. It is desirable to contain at least one carbon / nitride containing at least one selected from the group consisting of Fe, Ti, Nb, V, Mo, Cr, and B as needed.
  • a magnetic flux density will fall if the austenite phase which is nonmagnetic is contained, it is set as the structure
  • the obtained hot-rolled steel sheet may be subjected to one cold rolling after annealing or two or more cold rollings including intermediate annealing, but the final rolling rate is 10% or more. It is desirable to do. When the cold rolling rate is less than 10%, rearrangement of dislocations and precipitation of carbide during tension annealing become insufficient, and the residual magnetic flux density becomes low.
  • ⁇ Tension annealing process> By subjecting the as-cold rolled steel sheet to a tension annealing treatment at a temperature exceeding 500 ° C. to 600 ° C. or exceeding 500 ° C. to 650 ° C., rearrangement of dislocations introduced by cold rolling occurs. The flatness can be greatly improved. Furthermore, by heating to a relatively high temperature range exceeding 500 ° C., precipitation of carbides is remarkably generated, and a high residual magnetic flux density exceeding 1.30 T can be obtained. On the other hand, when Ti, Nb, V, etc. are not contained, heating to a temperature range exceeding 600 ° C., and if included, heating to a temperature range exceeding 650 ° C.
  • the heating temperature has an upper limit of 600 ° C. when it does not contain Ti, Nb, V, etc., and has an upper limit of 650 ° C. when it contains.
  • the tension annealing need not be particularly increased as long as the shape of the steel sheet is kept flat, and a sufficient effect can be obtained with a tension of 5 N / mm 2 or more. On the other hand, there is no problem even if the tension is increased if the tension is such that cutting of the plate does not occur in the furnace, but even if a tension exceeding 50 N / mm 2 is applied, the shape improvement effect is saturated, meandering, cutting of the plate, etc.
  • the upper limit of the tension is set to 50 N / mm 2 .
  • a tension annealing treatment that imparts a tensile force of 2 may be performed.
  • an insulating film made of an organic material, an insulating film made of an inorganic material, or an insulating film made of an organic / inorganic composite material is formed on at least one surface of a steel plate. It is preferable to do.
  • the insulating film made of an inorganic material include an inorganic aqueous solution that does not contain a harmful substance such as hexavalent chromium and contains aluminum dihydrogen phosphate.
  • An insulating film made of an organic / inorganic composite material may be used.
  • the insulating coating can be formed by applying the material exemplified above to the surface of the steel plate. In addition, it is desirable from the viewpoint of manufacturing cost that the insulating film is applied in-line by using the post-treatment equipment of the tension annealing equipment.
  • the rotor core of the IPM motor of the present invention can be obtained by punching the steel sheet for the rotor core of the IPM motor of the present invention into a predetermined shape and stacking a plurality of punched pieces.
  • a rotor for an IPM motor can be obtained by embedding a permanent magnet in a magnet embedding accommodation hole provided in the rotor iron core. Since the steel sheet for the rotor core of the IPM motor of the present invention is extremely high in strength, the rotor strength that can withstand high-speed rotation can be ensured even if the center bridge between the permanent magnets is omitted. By omitting the center bridge in this way, leakage magnetic flux from the permanent magnet can be suppressed, so that an IPM motor with improved torque performance can be obtained. As a result, further downsizing of the IPM motor and downsizing of the permanent magnet can be expected.
  • Example 1 Steel having the composition shown in Table 1 is continuously cast, these continuous cast pieces are heated to 1250 ° C., finish-rolled at 830 ° C., wound at 560 ° C., and a hot-rolled steel plate having a thickness of 1.8 mm is obtained. Obtained. These hot-rolled steel sheets were pickled and then cold-rolled to obtain cold-rolled steel strips having a thickness of 0.35 mm. These cold-rolled steel strips are passed through a continuous annealing furnace set at 550 ° C. for 60 seconds and subjected to a tension annealing treatment that gives a tension of 20 N / mm 2 in the furnace, and then aluminum dihydrogen phosphate. A semi-organic composition-containing insulating film having a thickness of about 1 ⁇ m was formed on both surfaces of the steel sheet.
  • the obtained steel strip was placed on a 2 m long platen and the maximum peak height was measured. Moreover, a JIS No. 5 test piece was cut out from the obtained steel strip in a direction perpendicular to the rolling direction and subjected to a tensile test. Furthermore, a ring-shaped test piece having an inner diameter of 33 mm and an outer diameter of 45 mm was produced by punching and subjected to magnetization measurement.
  • the metallographic structure before cold rolling was observed using a scanning electron microscope after etching the sheet thickness section in the rolling direction of the steel sheet before cold rolling with 2% Nital reagent (2% nitric acid / ethyl alcohol solution). Thus, the structure was classified into a structure such as ferrite, pearlite, bainite, martensite and the like.
  • the residual magnetic flux density Br showed a low value of 1.30 T or less.
  • the addition amount of C, Mn, Si + Al exceeds the range of the present invention.
  • the 15 and 22 and 23 steel shows a value lower than any of the present invention the range of the residual magnetic flux density Br and B 8000.
  • those having a component composition that satisfies the scope of the present invention and subjected to tension annealing at 550 ° C. have a high magnetic flux density and a high residual magnetic flux density, and are excellent in flatness. It is suitable as a steel plate for a rotor of a motor.
  • Example 2 Of the steels having the composition shown in Table 1, No. For steels 3, 8, 21 and 24, cold rolled steel strips having a thickness of 0.35 mm were obtained in the same manner as in Example 1. These cold-rolled steel strips are passed through a continuous annealing furnace set at 400 ° C., 650 ° C. and 700 ° C. for 60 seconds and subjected to a tension annealing treatment that gives a tension of 10 N / mm 2 in the furnace. An insulating film having a thickness of about 1 ⁇ m and having a semi-organic composition containing aluminum dihydrogen phosphate was formed on both surfaces of the steel sheet.
  • the specifications of the manufactured rotor and stator are as follows. ⁇ Specifications of rotor> ⁇ Outer diameter: 80.1mm, shaft length 50mm -Number of stacked layers: 0.35 mm / 140-Center bridge and outer bridge width: 1.00 mm -Permanent magnet: Neodymium magnet (NEOMAX-38VH), 9.0mm width x 3.0mm thickness x 50mm length, embedded in 16 pieces in total ⁇ Stator specifications> ⁇ Gap length: 0.5mm ⁇ Outer diameter: 138.0 mm, yoke thickness: 10 mm, length: 50 mm -Iron core material: electromagnetic steel plate (35A300), plate thickness 0.35mm -Number of stacked layers: 140-Winding method: distributed winding
  • the maximum torque when the field-weakening control is performed and the high-speed rotation at 15000 rpm shows a tendency to increase as the residual magnetic flux density Br increases, and by setting the residual magnetic flux density higher than 1.30 T. , Higher value exceeding 3.0 N ⁇ m can be achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

C:0.01質量%超~0.90質量%、Si:0~3.0質量%、Mn:0.05質量%~2.5質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005質量%~3.0質量%かつSi+Al:5.0質量%以下、残部がFe及び不可避的不純物からなる成分組成を有し、磁界の強さが8000A/mのときの磁束密度B8000が1.75T以上で、8000A/mまで磁化したときの残留磁束密度Brが1.30Tを超えるとともに、長さ1m以上の鋼板又は鋼帯を定盤に静置した際の最大山高さが1.0mm以下であることを特徴とするIPMモータのロータ鉄心用鋼板である。

Description

IPMモータのロータ鉄心用鋼板、その製造方法、IPMモータのロータ鉄心及びIPMモータ
 本発明は、電気自動車やハイブリッド自動車或いは工作機械などに主に使用される永久磁石埋め込み型モータ(以下、「IPMモータ」と記す)のロータ鉄心用鋼板、その製造方法、IPMモータのロータ鉄心及びIPMモータに関する。
 一般に、IPMモータは、誘導電動機モータと比べ、高価な永久磁石を使用するため、コストは高くなるものの、高効率であり、ハイブリッド自動車や電気自動車の駆動用モータや発電用モータ、さらには各種工作機械用のモータとして広く使用されてきている。
 IPMモータの鉄心は、ステータ(固定子)とロータ(回転子)とに分けられるが、ステータ側には巻線を通じて、交流磁界が直接付与されるため、高効率化のためには、鉄心には高透磁率であることが求められるとともに、体積抵抗率を高めて、鉄損を低減する必要があった。そのため、ステータ用の鉄心には、極低炭素鋼にSiやAlを添加して軟磁気特性を改善した電磁鋼板が用いられている。
 一方、ロータ側には、永久磁石が埋め込まれ、鉄心は主にヨークとして磁束密度を高める役割を担っており、ステータ側から発生する僅かな交流磁界の影響は受けるもののその影響は限定的である。しかし、ステータのみに電磁鋼板を使用すると、電磁鋼板の製品歩留りが低下してモータの製造コストが高くなることもあって、通常はステータ側と全く同じ電磁鋼板を素材として用いていた。
 一般に、自動車駆動用のIPMモータでは、高速回転化による体格の小型化が推進されているが、ロータには永久磁石を埋め込んでいるため、回転速度が速くなり過ぎると、永久磁石に働く遠心力によってロータの突極部近傍が変形してステータと接触し、最終的にはモータの破損に至る。
 回転速度の限界は、ロータ用鉄心の板厚や形状が同一の場合には、ロータ用鉄心の降伏強度に依存する。例えば、3質量%程度のSiを含有する無方向性電磁鋼板(35A300)の場合、磁性焼鈍後の降伏強度は約400N/mm2程度であり、現状ではせいぜい15000rpm程度までが回転速度の限界と考えられている。これまでも、電磁鋼板をベースに鉄心の降伏強度を高くする検討が種々行われている。
 例えば、特許文献1には磁気特性及び耐変形性の優れた電磁鋼板及びその製造方法が開示されている。また、特許文献2には、鉄損特性の内、ヒステリシス損よりも渦電流損の改善に着目し、高強度化との両立を図った鋼板及びその製造方法が開示されている。特許文献2に開示される製造方法は、Cを通常の電磁鋼板よりも高め、連続焼鈍設備にて変態強化することを特徴とする。また、特許文献3には、C:0.06質量%超~0.90質量%、Si:0.05質量%~3.0質量%、Mn:0.2質量%~2.5質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005質量%~4.95質量%を、Si+Al:5.0質量%以下なる条件で含み、残部がFe及び不可避的不純物からなる成分組成を有する熱間圧延鋼板を1回又は中間焼鈍を含む2回以上の冷間圧延を施して所定の板厚とし、その後、200~500℃の温度まで加熱するIPMモータのロータ鉄心用鋼板の製造方法が開示されている。更に特許文献4には、特許文献3と同様な成分組成を有する冷間圧延後の鋼板にテンションアニーリング又はプレステンパー処理を施し平坦度を向上させたIPMモータのロータ鉄心用鋼板及びその製造方法が開示されている。
特開2005-133175号公報 特開2005-60811号公報 特開2009-46738号公報 特開2013-76161号公報
 しかしながら、特許文献1で提案される方法では、軟磁気特性の改善に力を注いでいるため、十分な強度を確保することができない。また、特許文献2に開示される方法では、焼入れままではヒステリシス損が大きくなり過ぎて交流磁界を付与しても十分に励磁することができず、磁束密度が低くなる。そのため、IPMモータのリラクタンストルクが低下してモータ効率が低下する。なお、特許文献2の図2において、焼入れままの電磁鋼板は、同じ体積抵抗率の従来技術による電磁鋼板よりも渦電流損が低い値となっているが、これは、同じ条件で励磁しても、磁壁の移動が磁界の変化に追随できず、磁界の変化幅が見かけ上小さくなったためと考えられる。すなわち、特許文献2に開示される電磁鋼板では、鋼中の転位密度が非常に高く、しかも複雑に絡み合っているために、励磁しても磁壁の移動が磁界の変化に追随できず、結果的に磁束密度の値が低くなっている。また、特許文献3では、高強度かつ高磁束密度の鋼帯を得ることが可能であるが、加工強化を利用した冷間圧延のままでは、十分な平坦度が得られない場合がある。そのため、特許文献3で得られる鋼板を積層してロータを作製すると、占積率が低くなり、ロータの製造性の悪化を招くとともに、ロータのバランスが悪化して、高速回転時に大きな振動が発生しやすくなる場合があるといった問題があった。特許文献4では、平坦度を改善することを目的として冷間圧延後に200~500℃の温度域まで加熱してテンションアニーリング又はプレステンパーを施すことを特徴とするIPMモータの回転子鉄心用鋼板及びその製造方法が開示されている。しかし、板形状の改善効果は十分に得られ、また、高速回転域におけるトルク特性は電磁鋼板と比較すると優れるものの、高速回転域におけるトルク特性は必ずしも十分ではなかった。
 本発明は、上記の課題を解決するためになされたものであり、IPMモータのロータ用鉄心として用いるときに、IPMモータのリラクタンストルクの低下を招くことなく、高速回転域におけるトルク特性に優れ、高強度化によるスムーズな高速回転が可能な平坦度に優れるロータ鉄心用鋼板を提供することを目的とする。
 また、本発明は、そのようなIPMモータのロータ鉄心用鋼板の製造方法、IPMモータのロータ鉄心及びIPMモータを提供することも目的とする。
 そこで、本発明者らは、上記課題を解決すべく、高速回転に耐え得る高強度化を図ると同時に、モータのリラクタンストルクを最大限に有効活用する方策を探索した。そして、本発明者らは、鋼材の成分組成、金属組織の調整法等を鋭意検討した結果、特定の成分組成とした上で、冷間圧延による加工強化によって高強度化を図り、冷間圧延後の再結晶温度以下の比較的高温域に加熱してテンションアニーリング処理を施すことにより、冷間圧延によって導入された転位が再配列を生じるとともに微細な炭化物が析出し、これに伴い残留磁束密度が上昇して高速回転時のトルク特性を大幅に改善できること及び高速回転に耐え得る高強度、高いリラクタンストルクを得るための高磁束密度及びスムーズな高速回転を得るための優れた平坦度を有する鋼板が得られることを見出し、本発明を完成するに至った。
 即ち、本発明は、C:0.01質量%超~0.90質量%、Si:0質量%~3.0質量%、Mn:0.05質量%~2.5質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005質量%~3.0質量%かつSi+Al:5.0質量%以下、残部がFe及び不可避的不純物からなる成分組成を有し、磁界の強さが8000A/mのときの磁束密度B8000が1.75T以上で、8000A/mまで磁化したときの残留磁束密度Brが1.30Tを超えるとともに、長さ1m以上の鋼板又は鋼帯を定盤に静置した際の最大山高さが1.0mm以下であることを特徴とするIPMモータのロータ鉄心用鋼板である。必要に応じて、Ti、Nb及びVからなる群から選択される1種以上の成分を合計して0.01質量%~0.20質量%、及び/又はMo:0.1質量%~0.6質量%、Cr:0.1質量%~1.0質量%、Cu:0.1質量%~1.5質量%、Ni:0.1質量%~1.0質量%及びB:0.0005質量%~0.005質量%からなる群から選択される1種以上の成分が含有されてもよい。
 また、本発明のIPMモータのロータ鉄心用鋼板は、ロータ鉄心での鉄損低減の観点から、鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜が形成されていることが好ましい。
 上述のIPMモータのロータ鉄心用鋼板は、上述の成分組成を有する熱間圧延鋼板を、1回の冷間圧延又は中間焼鈍を含む2回以上の冷間圧延で所定の板厚とし、その後、500℃超~600℃又は500℃超~650℃の温度まで加熱し、同温度域に保持した状態で5N/mm2~50N/mm2の張力を付与するテンションアニール処理を施すことにより製造される。
 高磁束密度の鋼板を得る観点から、冷間圧延前の金属組織が、強磁性体であるフェライト、パーライト、ベイナイト及びマルテンサイトからなる群から選択される1種以上からなるとともに、必要に応じてFe、Mo、Cr、Cu、Ni及びBからなる群から選択される1種以上を含む炭・窒化物を含有することが望ましい。
 本発明によれば、強度、残留磁束密度Brを始めとする磁気特性及び平坦度の優れるロータ鉄心用鋼板を提供することができる。この鋼板をIPMモータのロータ鉄心として用いることにより、IPMモータのリラクタンストルクの低下を招くことなく、高強度で高速回転域でのトルク特性に優れるIPMモータのロータ、更にはIPMモータが得られる。
本発明の実施の形態によるIPMモータのロータ鉄心用鋼板が積層されることにより形成されたロータ鉄心を備えるIPMモータのロータを示す正面図である。 残留磁束密度Brと15,000rpmにおける最大トルクとの関係を示す図である。
 以下、本発明を実施するための形態について、図面を参照して説明する。
 図1は、本発明の実施の形態によるIPMモータのロータ鉄心用鋼板が積層されることにより形成されたロータ鉄心を備えるIPMモータのロータを示す正面図である。図に示すように、IPMモータのロータ1には、本発明のロータ鉄心用鋼板(素材鋼板)が積層されることにより形成されたロータ鉄心10(ロータ本体)と、ロータ鉄心10の周方向に沿って互いに間隔を置いてロータ鉄心10に設けられた複数の永久磁石挿入孔11と、各永久磁石挿入孔11に埋め込まれた永久磁石12とが含まれている。なお、ロータ1の外周に図示しないステータが配置されることで、IPMモータが構成される。
 各永久磁石挿入孔11には、ロータ鉄心10の回転中心10a側を頂部とするようにV字状に配置された第1及び第2挿入孔11a,11bと、その頂部において第1及び第2挿入孔11a,11b間を仕切るブリッジ11cとが含まれている。永久磁石12は、第1及び第2挿入孔11a,11b内にそれぞれ埋め込まれている。すなわち、永久磁石挿入孔11に2つの永久磁石12が埋め込まれている。
 図1に示すようなロータ1を用いたIPMモータでは、周知のように、高速回転域で運転する際に、永久磁石12の磁束を打ち消す方向の磁束を固定子側から発生させ、誘導起電力を抑制する弱め界磁制御が行われる。このようなIPMモータの定格回転速度は、図1のロータ1を用いた場合には7500rpmとされる。上述の弱め界磁制御は、これらの回転速度を超える高速回転域で行われる。
 本発明のIPMモータのロータ鉄心用鋼板は、C:0.01質量%超~0.90質量%、Si:0質量%~3.0質量%、Mn:0.05質量%~2.5質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005質量%~3.0質量%かつSi+Al:5.0質量%以下、残部がFe及び不可避的不純物からなる成分組成を有し、磁界の強さが8000A/mのときの磁束密度B8000が1.75T以上で、8000A/mまで磁化したときの残留磁束密度Brが1.30Tを超えるとともに、長さ1m以上の鋼板又は鋼帯を定盤に静置した際の最大山高さが1.0mm以下であることを特徴とするものである。鋼材の成分には、Ti、Nb及びVからなる群から選択される1種以上の成分を合計して0.01質量%~0.20質量%、及び/又はMo:0.1質量%~0.6質量%、Cr:0.1質量%~1.0質量%、Cu:0.1質量%~1.5質量%、Ni:0.1質量%~1.0質量%及びB:0.0005質量%~0.005質量%からなる群から選択される1種以上の成分が含有されてもよい。
 上記のように鋼材の成分組成を限定した理由は以下の通りである。
<C:0.01質量%超~0.90質量%>
 Cは、鋼中に固溶又はセメンタイト(Fe3C)として析出し、高強度化に有効な元素である。780N/mm2以上の降伏強度を得るためには、0.01質量%を超えるCを含有させる必要がある。しかし、0.90質量%を超えて含有させると、磁束密度が低くなる。
<Si:0質量%~3.0質量%>
 Siは、高強度化に有効である上に、体積抵抗率を高め、渦電流損を小さくするのに有効な元素であるが、本発明では添加しなくてもよい。渦電流損の抑制や高強度化の効果を得ようとするためには、0.01質量%以上含有させる必要がある。しかし、3.0質量%を超えて含有させると、かえって磁束密度の低下を招くとともに、鋼板の靭性が劣化する。
<Mn:0.05質量%~2.5質量%>
 Mnは、高強度化に有効な元素である。その効果を得るためには、0.05質量%以上の含有させることが必要である。しかし、2.5質量%を超えて含有させると、強度の向上効果は飽和するとともに、かえって磁束密度の低下を招く。
<P:0.05質量%以下>
 Pは、高強度化に有効な元素であるが、鋼の靭性を著しく低下させる。0.05質量%までは許容できるため、上限を0.05質量%とする。
<S:0.02質量%以下>
 Sは、高温脆化を引き起こす元素であり、大量に含有させると、熱間圧延時に表面欠陥を生じ、表面品質を劣化させる。したがって、できるだけ低減することが望まれる。0.02質量%までは許容できるため、上限を0.02質量%とする。
<酸可溶Al:0.005質量%~3.0質量%、Si+Al:5.0質量%以下>
 Alは脱酸剤として添加されるほか、Siと同様に鋼の体積抵抗率を上昇させるのに有効な元素である。その効果を発揮するためには、0.005質量%以上の酸可溶Alを含有させることが必要である。しかしAl単独で3.0質量%、Siとの合計で5.0質量%を越えて含有させると磁束密度の低下が大きくなり、モータの性能が劣化する。
<Ti、Nb及びVの1種以上:0.01質量%~0.20質量%>
 Ti、Nb及びVは、鋼中で炭窒化物を形成し、析出強化による高強度化に有効な元素である。また、微細析出物としてまた固溶元素として転位の移動を妨げる効果を有しているため、冷間圧延後の再結晶温度を高めテンションアニーリングの温度を高めても再結晶を生じ難く、強度低下を抑制するとともに、磁壁の移動も妨げるため残留磁束密度の向上にも有効である。その効果を得るためには、1種又は2種以上を合計で、0.01質量%以上の添加が必要である。しかし、0.20質量%を超えて添加しても、析出物の粗大化により強度上昇、再結晶の抑制及び残留磁束密度の向上効果は飽和しかえって低下するようになるとともに、製造コストの増大を招く。
<Mo:0.1質量%~0.6質量%、Cr:0.1質量%~1.0質量%、Cu:0.1質量%~1.5質量%、Ni:0.1質量%~1.0質量%及びB:0.0005質量%~0.005質量%の1種以上>
 Mo、Cr、Cu、Ni及びBは、鋼の焼入れ性を高め、高強度化に有効な元素である。その効果を得るためには、Mo、Cr、Cu、Ni及びBの1種以上を、それぞれ設定した下限値以上添加することが必要である。しかし、それぞれ設定した上限値を超えて添加してもその効果は飽和するととともに製造コストの増加を招く。なお、1種だけの添加でも2種以上の添加でもその効果は認められるが、2種以上を添加する場合は、それぞれ設定した上限値の1/2を超える量を添加すると、その効果に比して製造コストの上昇が大きくなるので、1/2以下の量で添加することが望ましい。
<平坦度:長さ1m以上の鋼板又は鋼帯を定盤に静置した際の最大山高さが1.0mm以下>
 ロータは、ロータの形状に打抜いた鋼板を積層して製造されるため、積層した際の占積率が良好であることが必要である。良好な占積率を得るため、平坦度として長さ1m以上の鋼板又は鋼帯を定盤に静置した際の最大山高さが1.0mm以下とした。なお、山高さは、定盤を基準面として測定した鋼板表面の最大高さから板厚を引いた値として定義される。
 上記のように磁気特性を限定した理由は以下の通りである。
<磁界の強さが8000A/mのときの磁束密度B8000:1.75T以上>
 ロータ鉄心に用いられる鋼板は、主にヨークの役割を果たすとともに、ロータとして高速回転する際に磁石を挿入した位置(d軸)と挿入していない位置(q軸)でのインダクタンスの値の差に基づくリラクタンストルクを有効に活用し、特に高速回転領域において従来の鋼板と同等以上のトルク性能を発揮するためには、磁界の強さが8000A/mのときの磁束密度が1.75T以上であることが必要である。
<8000A/mまで磁化したときの残留磁束密度Br:1.30T超>
 残留磁束密度Brが1.30T超とされているのは、以下の通りである。即ち、IPMモータでは、永久磁石による磁石磁束を活用するのに加え、リラクタンストルクを得るために固定子側から回転子内を貫通する磁束(q軸磁束)を流し、高トルク化、高効率化を達成している。しかし、例えば「平成23年度電気学会産業応用部門大会講演論文集、3-24(2011)、PIII-179」のように、モータへの入力電流を増加させ、q軸磁束を増加させると、d軸磁束との相互干渉により磁石磁束の向きがずれて偏り、d軸、q軸インダクタンスの変化を通じて最大トルクを減少させることが知られている。この現象はdq軸相互干渉と呼ばれ、d軸よりも回転方向前方では磁束が強め合い、後方では弱め合うことに起因しているが、電磁鋼板のように保磁力が小さく、残留磁束密度も小さい高透磁率材料では、回転方向の後方における磁束の弱め合いがスムーズに進行するのに対して、残留磁束密度Brが大きな低透磁率材料では磁束の弱め合いが抑制されるため、前述の磁石磁束のずれによる偏りが小さくなる。その結果として、dq軸相互干渉に伴う最大トルクの減少を抑制することが可能となる。本発明者らが種々の鋼板を素材としてIPMモータを試作し、モータの性能評価を行ったところ、0.5T以上の残留磁束密度Brを有する鋼板を用いて回転子鉄心を形成することで、高速回転時に行う弱め界磁制御の消費電力を低減でき、出力トルクを向上できることが分かっていたが、本発明では、更に高い1.30Tを超える残留磁束密度Brを得る事が可能となるため、高速回転域でより高いトルクが得られる。
 上述した通り、本発明のIPMモータのロータ鉄心用鋼板は、高速回転域で高トルクを得るため、高い磁束密度、特に高い残留磁束密度を有すると同時に、非常に良好な平坦度も有している。このようなIPMモータのロータ鉄心用鋼板は、鋼板の成分組成を調整するだけでは得られず、冷間圧延による加工強化と冷間圧延後の500℃を超える比較的高温域までの加熱によるテンションアニーリング処理によって得ることができる。これは、再結晶温度付近の比較的高温域で加熱しつつテンションアニーリング処理を施すことによって、冷間圧延によって導入された転位の再配列及び炭化物粒子の析出を十分に生じ、磁壁の移動を効果的に妨げる結果であると考えられる。以下に、製造条件の詳細について説明する。
<熱間圧延条件>
 熱間圧延条件は、特に規定する必要は無く、通常の方法に従い実施すればよいが、熱間圧延の仕上げ温度は、γ単相域で実施することが望ましい。また、巻取り温度は高温になり過ぎると酸化スケールが厚くなり、その後の酸洗性を阻害するため、700℃以下とすることが望ましい。
<金属組織>
 熱間圧延により得られた鋼板(冷間圧延前の鋼板)の金属組織は、高い磁束密度を得るためには、強磁性体であるフェライト、パーライト、ベイナイト及びマルテンサイトからなる群から選択される1種以上からなるとともに、必要に応じてFe、Ti、Nb、V、Mo及びCr及びBからなる群から選択される1種以上を含む炭・窒化物を含有することが望ましい。なお、非磁性であるオーステナイト相が含まれると磁束密度が低下するので、オーステナイトを含まない組織とする。なお、高残留磁束密度化の観点から、冷間圧延ままの未再結晶組織であることが望ましいが、面積率で50%以下であれば再結晶組織が混在しても残留磁束密度を1.30Tを超える高い範囲に維持することが可能である。
<冷間圧延条件>
 得られた熱間圧延鋼板は、焼鈍後に1回の冷間圧延を施してもよいし、中間焼鈍を含む2回以上の冷間圧延を施してもよいが、最終圧延率を10%以上とすることが望ましい。冷間圧延率が10%未満では、テンションアニーリング時の転位の再配列及び炭化物の析出が不十分となり、残留磁束密度が低くなる。
<テンションアニーリング処理>
 冷間圧延ままの鋼板に、500℃超~600℃又は500℃超~650℃にてテンションアニーリング処理を施すことにより、冷間圧延によって導入された転位の再配列を生じ、これに伴い鋼板の平坦度を大幅に改善することが可能となる。さらに、500℃を超える比較的高温域まで加熱することで炭化物の析出を顕著に生じ、1.30Tを超える高い残留磁束密度を得ることが可能となる。一方、Ti、Nb、V等を含有しない場合は600℃を超える温度域、含有する場合は650℃を超える温度域まで加熱すると面積率で50%を超える再結晶を生じ、強度低下を招くとともに残留磁束密度が大幅に低下する。そのため加熱温度は、Ti、Nb、V等を含有しない場合は600℃を上限とし、含有する場合は650℃を上限とする。テンションアニーリングの張力は鋼板の形状が平坦に保たれる程度であれば、特別に大きくする必要は無く、5N/mm2以上の張力で十分にその効果が得られる。一方、炉内で板切断が生じ無い程度の張力であれば張力を高めても問題ないが、50N/mm2を超える張力を付与しても形状改善効果は飽和するとともに、蛇行、板切れ等の通板上のトラブルを生じる可能性があり、本発明では張力の上限は50N/mm2までとする。なお、過時効炉を有する連続焼鈍設備を用いてテンションアニーリング処理を実施する場合、前記の比較的高温域でのテンションアニーリング処理に引続き300℃以上かつ500℃以下の温度域で5~50N/mm2の引張力を付与するテンションアニーリング処理を施してもよい。
<絶縁皮膜の形成>
 本発明では、ロータに発生する渦電流損の低減を目的として、鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜を形成することが好ましい。無機材料からなる絶縁皮膜の例としては、六価クロムのような有害物質を含まず、リン酸二水素アルミニウムを含有する無機質系水溶液が挙げられるが、良好な絶縁が得られれば、有機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜を用いてもよい。絶縁被膜は、上記で例示した材料を鋼板の表面に塗布することにより形成することができる。なお、絶縁皮膜の塗布は、前記テンションアニーリング設備の後処理設備を活用してインラインにて塗布することが製造コストの点で望ましい。
 本発明のIPMモータのロータ鉄心用鋼板を所定の形状に打抜いて打抜き片とし、これを複数枚積層させることにより、IPMモータのロータ鉄心を得ることができる。このロータ鉄心に設けられた磁石埋め込み用の収容孔に永久磁石を埋め込むことで、IPMモータ用のロータを得ることができる。本発明のIPMモータのロータ鉄心用鋼板は、極めて高強度であるために、永久磁石間のセンターブリッジを省略しても、高速回転に耐え得るロータ強度を確保することができる。このようにセンターブリッジを省略することで、永久磁石からの漏れ磁束を抑止することができるので、トルク性能の向上したIPMモータとすることができる。結果として、IPMモータの更なる小型化や永久磁石の小型化が期待できる。
<実施例1>
 表1に示す成分組成を有する鋼を連続鋳造し、これらの連鋳片を1250℃に加熱し、830℃で仕上げ圧延して560℃で巻取り、板厚1.8mmの熱間圧延鋼板を得た。これらの熱間圧延鋼板を酸洗後、冷間圧延して板厚0.35mmの冷間圧延鋼帯を得た。これらの冷間圧延鋼帯を550℃に設定した連続焼鈍炉に60秒通板するとともに、炉中にて20N/mm2の張力を付与するテンションアニーリング処理を施し、その後、リン酸二水素アルミニウムを含有する半有機組成の約1μmの厚さの絶縁皮膜を鋼板の両面に形成した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 得られた鋼帯は長さ2mの定盤の上に静置して最大山高さを測定した。また、得られた鋼帯から圧延方向と直角方向にJIS 5号試験片を切り出し、引張試験に供した。さらに、内径33mm及び外形45mmのリング状の試験片を打抜きにより作製し、磁化測定に供した。冷間圧延前の金属組織は、冷間圧延前の鋼板の圧延方向の板厚断面を2%ナイタール試薬(2%硝酸・エチルアルコール溶液)にてエッチングを施し、走査型電子顕微鏡を用いた観察により、その組織形態から、フェライト、パーライト、ベイナイト、マルテンサイト等の組織に分類した。
 鋼帯の最大山高さ及び各サンプルの降伏強さ、引張強さ、磁界の強さが8000A/mのときの磁束密度(B8000)、残留磁束密度、さらには冷間圧延前の金属組織を表3及び4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3及び表4の結果から明らかなように、C含有量の少ないNo.1鋼では、残留磁束密度Brが1.30T以下の低い値を示した。また、C、Mn、Si+Alの添加量が本発明の範囲を超えるNo.15、22及び23鋼では、残留磁束密度Br及びB8000のいずれも本発明範囲よりも低い値を示す。
 一方、本発明の範囲を満足する成分組成を有し、550℃でテンションアニーリング処理を施したものに関しては、高磁束密度かつ高残留磁束密度を有するとともに平坦度にも優れており、高速回転IPMモータのロータ用鋼板として好適である。
<実施例2>
 表1に示した成分組成を有する鋼の内、No.3、8、21及び24鋼について実施例1と同様にして板厚0.35mmの冷延間圧鋼帯を得た。これらの冷間圧延鋼帯を400℃、650℃及び700℃に設定した連続焼鈍炉に60秒通板するとともに、炉中にて10N/mm2の張力を付与するテンションアニーリング処理を施し、その後、リン酸二水素アルミニウムを含有する半有機組成の約1μmの厚さの絶縁皮膜を鋼板の両面に形成した。
 鋼帯の最大山高さ及び各サンプルの降伏強さ、引張強さ、磁界の強さが8000A/mのときの磁束密度(B8000)、残留磁束密度、さらには冷間圧延前の金属組織を比較のためテンションアニーリング処理を施さなかったサンプルの試験結果と合わせて表5に示す。
Figure JPOXMLDOC01-appb-T000005
 また、冷延ままを除き、得られた鋼帯からそれぞれ8極(4極対)構造のロータを打抜き加工により作製し、負荷トルクを付与したモータ性能評価試験に供した。なお、比較のため市販の電磁鋼板(35A300)を素材としたロータも同時に作製し、同様の評価に供した。また、ステータは1ヶのみ製造し、製造したロータを組替えてモータとしての性能評価に供した。
 なお、市販の電磁鋼板(35A300、板厚:0.35mm)について、本発明の素材鋼板と同様の方法による機械的特性及び磁気的特性を評価したところ、降伏強さが381N/mm2であり、引張強さが511N/mm2であり、飽和磁束密度B8000が1.76Tであり、残留磁束密度Brが0.42Tであり、保磁力Hcが61A/mであった。
 作製したロータ及びステータの仕様は以下の通りである。
 <ロータの仕様>
  ・外径:80.1mm、軸長50mm
  ・積層枚数:0.35mm/140枚
  ・センターブリッジ、アウターブリッジの幅:1.00mm
  ・永久磁石:ネオジム磁石(NEOMAX-38VH)、9.0mm幅×3.0mm厚×50mm長さ、合計16ヶ埋め込み
 <ステータの仕様>
  ・ギャップ長:0.5mm
  ・外径:138.0mm、ヨーク厚:10mm、長さ:50mm
  ・鉄心素材:電磁鋼板(35A300)、板厚0.35mm
  ・積層枚数:140枚
  ・巻線方式:分布巻き
 キャリア周波数:20kHz、最大電圧:220V、最大電流:24Aの入力条件において、それぞれのロータを組み込んだIPMモータの最大トルクが得られるように電流進角(β)を30°として弱め界磁制御を施した15000rpmにおける最大トルクを求め、図2に残留磁束密度との関係を示した。
 表5から明らかなように、テンションアニーリング処理を本発明範囲よりも低い400℃で実施すると、平坦度は良好となるものの残留磁束密度Brが1.30T以下の低い値を示す。一方、Ti、Nb及びVを含有しないNo.3、8及び21鋼では650℃以上で、Ti、Nbを含有するNo.24鋼では700℃でテンションアニーリング処理を実施すると残留磁束密度Brが大きく低下することがわかる。これは、温度が上がる事で再結晶が進行し、再結晶組織が50%以上となることに起因している。本願発明範囲の温度でテンションアニーリング処理を施せば、残留磁束密度Brが1.30Tを超える高い値が得られるとともに、非常に良好な平坦度が得られる。
 図2からわかるように、弱め界磁制御を施して15000rpmで高速回転させたときの最大トルクは、残留磁束密度Brが高くなるほど高くなる傾向を示し、1.30Tを超える高い残留磁束密度とすることにより、3.0N・mを超える高い値にすることが可能となる。

Claims (8)

  1.  C:0.01質量%超~0.90質量%、Si:0質量%~3.0質量%、Mn:0.05質量%~2.5質量%、P:0.05質量%以下、S:0.02質量%以下、酸可溶Al:0.005質量%~3.0質量%かつSi+Al:5.0質量%以下、残部がFe及び不可避的不純物からなる成分組成を有し、磁界の強さが8000A/mのときの磁束密度B8000が1.75T以上で、8000A/mまで磁化したときの残留磁束密度Brが1.30Tを超えるとともに、長さ1m以上の鋼板又は鋼帯を定盤に静置した際の最大山高さが1.0mm以下であることを特徴とするIPMモータのロータ鉄心用鋼板。
  2.  Ti、Nb及びVからなる群から選択される1種以上の成分を合計して0.01質量%~0.20質量%さらに含有する請求項1に記載のIPMモータのロータ鉄心用鋼板。
  3.  Mo:0.1質量%~0.6質量%、Cr:0.1質量%~1.0質量%、Cu:0.1質量%~1.5質量%、Ni:0.1質量%~1.0質量%及びB:0.0005質量%~0.005質量%からなる群から選択される1種以上の成分をさらに含有する請求項1又は2に記載のIPMモータのロータ鉄心用鋼板。
  4.  鋼板の少なくとも片方の表面に、有機材料からなる絶縁皮膜、無機材料からなる絶縁皮膜又は有機・無機複合材料からなる絶縁皮膜が形成されていることを特徴とする請求項1~3のいずれか1項に記載のIPMモータのロータ鉄心用鋼板。
  5.  請求項1に記載の成分組成を有する熱間圧延鋼板を、1回の冷間圧延又は中間焼鈍を含む2回以上の冷間圧延で所定の板厚とし、その後、500℃超~600℃の温度域まで加熱し、同温度域に保持した状態で5N/mm2~50N/mm2の張力を付与することを特徴とするIPMモータのロータ鉄心用鋼板の製造方法。
  6.  請求項2又は3に記載の成分組成を有する熱間圧延鋼板を、1回の冷間圧延又は中間焼鈍を含む2回以上の冷間圧延で所定の板厚とし、その後、500℃超~650℃の温度域まで加熱し、同温度域に保持した状態で5N/mm2~50N/mm2の張力を付与することを特徴とするIPMモータのロータ鉄心用鋼板の製造方法。
  7.  請求項1~4のいずれか1項に記載のIPMモータのロータ鉄心用鋼板の打抜き片を積層させたことを特徴とするIPMモータのロータ鉄心。
  8.  請求項7に記載のロータ鉄心に永久磁石を埋め込んでなるロータを備えることを特徴とするIPMモータ。
PCT/JP2016/076866 2015-03-24 2016-09-12 Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ WO2017138181A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015060310 2015-03-24
JP2016023444A JP2016180176A (ja) 2015-03-24 2016-02-10 Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP2016-023444 2016-02-10

Publications (1)

Publication Number Publication Date
WO2017138181A1 true WO2017138181A1 (ja) 2017-08-17

Family

ID=57131559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/076866 WO2017138181A1 (ja) 2015-03-24 2016-09-12 Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ

Country Status (2)

Country Link
JP (1) JP2016180176A (ja)
WO (1) WO2017138181A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119173A (zh) * 2018-05-14 2020-12-22 杰富意钢铁株式会社 马达

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016180176A (ja) * 2015-03-24 2016-10-13 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837122A (ja) * 1981-08-29 1983-03-04 Nippon Steel Corp 低級電磁鋼板の製造方法
JPS60106915A (ja) * 1983-11-15 1985-06-12 Kawasaki Steel Corp 打抜き性の優れたセミプロセス電磁鋼板の製造方法
JP2011084761A (ja) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法
EP2385147A2 (en) * 2010-05-04 2011-11-09 Tempel Steel Company An electrical steel, a motor, and a method for manufacture of electrical steel with high strenght and low electrical losses
JP2012177188A (ja) * 2011-01-31 2012-09-13 Kobe Steel Ltd 永久磁石モータ用ロータ鉄心
JP2013076159A (ja) * 2011-09-15 2013-04-25 Nisshin Steel Co Ltd 平坦度に優れるipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
WO2013146886A1 (ja) * 2012-03-30 2013-10-03 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板の製造方法
JP2014196535A (ja) * 2013-03-29 2014-10-16 日新製鋼株式会社 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法
JP2016180176A (ja) * 2015-03-24 2016-10-13 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837122A (ja) * 1981-08-29 1983-03-04 Nippon Steel Corp 低級電磁鋼板の製造方法
JPS60106915A (ja) * 1983-11-15 1985-06-12 Kawasaki Steel Corp 打抜き性の優れたセミプロセス電磁鋼板の製造方法
JP2011084761A (ja) * 2009-10-13 2011-04-28 Sumitomo Metal Ind Ltd 回転子用無方向性電磁鋼板およびその製造方法
EP2385147A2 (en) * 2010-05-04 2011-11-09 Tempel Steel Company An electrical steel, a motor, and a method for manufacture of electrical steel with high strenght and low electrical losses
JP2012177188A (ja) * 2011-01-31 2012-09-13 Kobe Steel Ltd 永久磁石モータ用ロータ鉄心
JP2013076159A (ja) * 2011-09-15 2013-04-25 Nisshin Steel Co Ltd 平坦度に優れるipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
WO2013146886A1 (ja) * 2012-03-30 2013-10-03 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板の製造方法
JP2014196535A (ja) * 2013-03-29 2014-10-16 日新製鋼株式会社 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法
JP2016180176A (ja) * 2015-03-24 2016-10-13 日新製鋼株式会社 Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112119173A (zh) * 2018-05-14 2020-12-22 杰富意钢铁株式会社 马达
US11551839B2 (en) 2018-05-14 2023-01-10 Jfe Steel Corporation Motor

Also Published As

Publication number Publication date
JP2016180176A (ja) 2016-10-13

Similar Documents

Publication Publication Date Title
JP5186036B2 (ja) Ipmモータの回転子及びそれを用いたipmモータ
US20080060728A1 (en) Method of manufacturing a nonoriented electromagnetic steel sheet
JP5699642B2 (ja) モータコア
US20160362762A1 (en) Steel sheet for rotor core for ipm motor, and method for manufacturing same
JP2013076159A (ja) 平坦度に優れるipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP5448979B2 (ja) Ipmモータのロータ鉄心用鋼板、その製造方法およびipmモータのロータ鉄心
JP5584829B2 (ja) Ipmモータのロータ鉄心用鋼板の製造方法
JP6339768B2 (ja) 弱め界磁性に優れたipmモータのロータ鉄心用鋼板及びその製造方法
WO2017138181A1 (ja) Ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP4311127B2 (ja) 高張力無方向性電磁鋼板およびその製造方法
JP2013076161A (ja) 高速回転ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
TW201728768A (zh) 永久磁鐵內嵌式馬達的轉子鐵芯用鋼板及其製造方法、永久磁鐵內嵌式馬達的轉子鐵芯以及永久磁鐵內嵌式馬達
JP2013076160A (ja) 打抜き性に優れるipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP2013076158A (ja) 平坦度に優れるipmモータのロータ鉄心用冷延鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP5561148B2 (ja) 圧縮応力下での鉄損劣化の小さいモータコア
JP6110097B2 (ja) 高出力リラクタンスモータ鉄心用鋼板とその製造方法、これを素材とするリラクタンスモータ用ロータ、ステータおよびリラクタンスモータ
JP2016194144A (ja) Ipmモータのロータ鉄心用鋼板及びその製造方法
JP5947539B2 (ja) 磁気特性の異方性に優れる高速回転ipmモータのロータ鉄心用鋼板、その製造方法、ipmモータのロータ鉄心及びipmモータ
JP2016194145A (ja) Ipmモータのロータ鉄心用鋼板及びその製造方法
JP2012092446A (ja) 磁気特性に優れたipmモータのロータ鉄心用鋼板
JP5561094B2 (ja) 圧縮応力下での鉄損劣化の小さいモータコア
JP5561068B2 (ja) 圧縮応力下での鉄損劣化の小さいモータコア

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889882

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889882

Country of ref document: EP

Kind code of ref document: A1