WO2017136972A1 - 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 - Google Patents

金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 Download PDF

Info

Publication number
WO2017136972A1
WO2017136972A1 PCT/CN2016/075362 CN2016075362W WO2017136972A1 WO 2017136972 A1 WO2017136972 A1 WO 2017136972A1 CN 2016075362 W CN2016075362 W CN 2016075362W WO 2017136972 A1 WO2017136972 A1 WO 2017136972A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alloy
cemented carbide
diamond
composite coating
Prior art date
Application number
PCT/CN2016/075362
Other languages
English (en)
French (fr)
Inventor
伍尚华
陈健
邓欣
刘伟
刘汝德
陈少华
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2017136972A1 publication Critical patent/WO2017136972A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/28Details of hard metal, i.e. cemented carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/04Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by chemical vapour deposition [CVD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/08Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner applied by physical vapour deposition [PVD]

Definitions

  • the invention relates to the technical field of cemented carbide cutters, in particular to a diamond composite coating, a gradient ultrafine cemented carbide cutter having the composite coating and a preparation method thereof.
  • Carbide tools are subjected to great mechanical and thermal loads during processing, and are prone to wear and tear, which affects their service life. Therefore, the surface modification of the tool material improves the surface properties, which improves the tool material. The service life is of great significance.
  • the coating is basically a hard and brittle material, and the coefficient of thermal expansion of the cemented carbide substrate is different. There is a stress concentration at the interface between the coating and the substrate, and usually the crack is easily generated on the surface of the coating and diffused into the interior of the alloy. Material failure.
  • a diamond composite coating suitable for surface performance enhancement of a cemented carbide tool, a gradient ultrafine cemented carbide tool having the composite coating, and a preparation method thereof are provided to overcome the disadvantages of the prior art. As necessary.
  • One of the objectives of the present invention is to provide a gradient ultra-fine cemented carbide tool having a diamond composite coating and a preparation method thereof.
  • the diamond composite coating has good bonding property with the tool base, and the tool has good wear resistance and high temperature strength. Excellent impact resistance.
  • Another object of the present invention is to provide a diamond composite coating and a preparation method thereof, which avoids the deficiencies of the prior art, and the diamond composite coating has good bonding property with the tool base, and has wear resistance and temperature resistance of the coating. Good, high strength and excellent impact resistance.
  • the tool substrate comprises a normal tissue layer, a cobalt-rich transition layer and a cobalt-depleted cubic phase layer, and the normal tissue layer, the cobalt-rich transition layer and the cobalt-depleted cubic phase layer are arranged in order from the inside to the outside;
  • the diamond composite coating includes a Ti-Al-Si-Cr alloy layer for deposition on the surface of the cobalt-depleted cubic phase layer as a transition layer and a diamond layer deposited as a functional layer on the transition layer.
  • the content of cobalt in the tool base is 5-15 wt.%
  • the normal tissue layer is an ultrafine cemented carbide, and the WC grain size is 1-1000 nm;
  • the thickness of the normal tissue layer is greater than 2 mm, the thickness of the cobalt-rich transition layer is 20-100 microns; and the thickness of the cobalt-depleted cubic phase layer is 20-50 microns;
  • the thickness of the Ti-Al-Si-Cr alloy layer is 2-3 microns, and the thickness of the diamond layer is 15-20 microns.
  • the content of cobalt in the tool base is 8-12 wt.%; the WC grain size of the normal tissue layer is 1 nm-400 nm; and the Ti-Al-Si-Cr alloy layer is prepared by physical vapor deposition, the diamond The layers were prepared by chemical vapor deposition.
  • the specific preparation method of the above Ti-Al-Si-Cr alloy layer is as follows.
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD apparatus, and when the vacuum is 0.5 ⁇ 1O -1 -1.5 ⁇ 1O -1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool base. 2-5 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1-2 hours; at this time, the surface of the cobalt-rich cubic phase layer of the cemented carbide tool substrate is coated with a layer of Ti-Al having a thickness of 2-3 microns. -Si-Cr alloy layer;
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows.
  • High purity pure titanium sponge with a purity of 99.99%, high purity aluminum with a purity of 99.99%, high purity silicon with a purity of 99.99%, and high purity chromium with a purity of 99.99% are used as raw materials, in terms of weight percentage: Ti accounts for 70-80%, and Al accounts for 5 -10%, Si accounted for 5-10%, and Cr accounted for 10-20%.
  • the alloy ingot was vacuum smelted, and then the alloy ingot was processed into a cylindrical target with a diameter of 120 mm and a length of 200 mm as Ti-Al-Si-Cr. Alloy target
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD device, and when the vacuum is reached to 1 ⁇ 10 ⁇ 1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool substrate for 3 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1.5 hours; at this time, the surface of the cobalt-depleted cubic phase layer of the tool substrate is plated with a Ti-Al-Si-Cr alloy having a thickness of 2-3 ⁇ m. Floor;
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows.
  • a method for preparing a gradient ultra-fine cemented carbide tool having a diamond composite coating comprising preparing a tool base and preparing a diamond composite coating on a surface of the tool base; and preparing the diamond composite coating by physical vapor deposition
  • the surface of the cobalt-depleted cubic phase layer of the tool base is plated with Ti-Al-Si-Cr alloy layer, and the cemented carbide tool substrate with Ti-Al-Si-Cr alloy layer deposited on the surface is cleaned and dried by propylene, and then placed in chemistry.
  • the corundum layer is formed by chemical vapor deposition.
  • the specific preparation method of the above Ti-Al-Si-Cr alloy layer is as follows.
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD apparatus, and when the vacuum is 0.5 ⁇ 1O -1 -1.5 ⁇ 1O -1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool base. 2-5 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1-2 hours; at this time, the surface of the cobalt-rich cubic phase layer of the cemented carbide tool substrate is coated with a layer of Ti-Al having a thickness of 2-3 microns. -Si-Cr alloy layer;
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows.
  • High purity pure titanium sponge with a purity of 99.99%, high purity aluminum with a purity of 99.99%, high purity silicon with a purity of 99.99%, and high purity chromium with a purity of 99.99% are used as raw materials, in terms of weight percentage: Ti accounts for 70-80%, and Al accounts for 5 -10%, Si accounted for 5-10%, and Cr accounted for 10-20%.
  • the alloy ingot was vacuum smelted, and then the alloy ingot was processed into a cylindrical target with a diameter of 120 mm and a length of 200 mm as Ti-Al-Si-Cr. Alloy target
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD device, and when the vacuum is reached to 1 ⁇ 10 ⁇ 1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool substrate for 3 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1.5 hours; at this time, the surface of the cobalt-depleted cubic phase layer of the tool substrate is plated with a Ti-Al-Si-Cr alloy having a thickness of 2-3 ⁇ m. Floor;
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows.
  • a diamond composite coating for a gradient ultrafine cemented carbide tool including for deposition A Ti-Al-Si-Cr alloy layer as a transition layer on the surface of the cobalt-depleted cubic phase layer of the tool base and a diamond layer deposited as a functional layer on the transition layer.
  • a method for preparing a diamond composite coating is provided, and the specific preparation method is as follows.
  • High purity pure titanium sponge with a purity of 99.99%, high purity aluminum with a purity of 99.99%, high purity silicon with a purity of 99.99%, and high purity chromium with a purity of 99.99% are used as raw materials, in terms of weight percentage: Ti accounts for 70-80%, and Al accounts for 5 -10%, Si accounted for 5-10%, and Cr accounted for 10-20%.
  • the alloy ingot was vacuum smelted, and then the alloy ingot was processed into a cylindrical target with a diameter of 120 mm and a length of 200 mm as Ti-Al-Si-Cr. Alloy target
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD device, and when the vacuum is reached to 1 ⁇ 10 ⁇ 1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool substrate for 3 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1.5 hours; at this time, the surface of the cobalt-depleted cubic phase layer of the tool substrate is plated with a Ti-Al-Si-Cr alloy having a thickness of 2-3 ⁇ m. Floor;
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows.
  • the gradient ultra-fine cemented carbide tool with the diamond composite coating has good bonding property between the tool base and the diamond composite coating, and the overall cutter has good wear resistance and temperature resistance, high strength and excellent impact resistance.
  • the diamond composite coating has good adhesion to the tool base, and the adhesion between the coatings of the composite coating is good, and the high temperature resistance, corrosion resistance and wear resistance are good.
  • Figure 1 is a schematic illustration of a gradient ultrafine cemented carbide tool having a diamond composite coating of the present invention.
  • FIG. 2 is a schematic view showing the interlayer structure of a gradient ultrafine cemented carbide tool having a diamond composite coating of the present invention.
  • a gradient ultra-fine cemented carbide tool having a diamond composite coating is composed of a tool base and a diamond composite coating disposed on the tool body.
  • the tool substrate comprises a normal tissue layer, a cobalt-rich transition layer and a cobalt-depleted cubic phase layer, and the normal tissue layer, the cobalt-rich transition layer and the cobalt-depleted cubic phase layer are arranged in order from the inside to the outside.
  • the content of cobalt in the tool base is 5-15 wt.%, preferably the content of cobalt is 8-12 wt.%.
  • the normal tissue layer is an ultrafine cemented carbide having a WC grain size of 1-1000 nm, preferably a WC grain size of 1-500 nm.
  • the cobalt-depleted cubic phase layer is rich in cubic phase nitrides or carbonitrides, and the cubic phase nitrides and carbonitrides in the cemented carbide have a higher hardness than the densely packed hexagonal phase WC. Therefore, the cobalt-poor rich cube
  • the surface layer of the phase has a higher hardness.
  • the cobalt-rich transition layer is rich in a binder phase.
  • the core is a rigid tissue region, that is, a normal tissue layer.
  • the WC crystal grain is uniform and fine, and the average WC grain size is less than or equal to 500 nm, which has excellent mechanical properties of the ultrafine cemented carbide.
  • the thickness of the normal tissue layer is greater than 2 mm, the thickness of the cobalt-rich transition layer is 20-100 microns, and the thickness of the cobalt-depleted cubic phase layer is 20-50 microns.
  • the diamond composite coating as a whole has a thickness of from 1 to 25 microns, preferably from 2 to 10 microns.
  • the coating thickness is less than 1 micrometer, the wear resistance is poor, and it is quickly worn during the cutting process, which cannot effectively improve the cutting performance and the life of the tool.
  • the coating thickness exceeds 25 micrometers, The adhesion between the coating and the substrate is poor. Excessive compressive stress causes the coating to crack and peel off, shortening the tool life.
  • the thickness of the coating is controlled by adjusting the deposition time.
  • the Ti-Al-Si-Cr alloy layer has a thickness of 2-3 microns and the diamond layer has a thickness of 15-20 microns.
  • the invention provides a Ti-Al-Si-Cr alloy layer as a transition layer between the tool base and the diamond, and utilizes the characteristics of the titanium and chromium strong carbide forming materials to have good wettability with the base cemented carbide and diamond.
  • the bonding force is used to eliminate the internal stress caused by the lattice mismatch and the difference in thermal expansion coefficient between the film composite coating and the tool base, which can prevent the carbon from excessively infiltrating into the tool base and prevent the cobalt from diffusing from the deep part of the substrate to the surface.
  • the transition layer enhances its bond with the cobalt-poor cubic phase layer and reduces internal stress. Through the transition layer, depositing a diamond layer on the transition layer can not only ensure the original strength and sharpness of the cemented carbide tool, but also greatly improve the wear resistance, processing efficiency and service life of the tool through the diamond coating.
  • the gradient ultra-fine cemented carbide tool with the diamond composite coating has good bonding property between the tool base and the diamond composite coating, and the overall cutter has good wear resistance and temperature resistance, high strength and excellent impact resistance.
  • a method for preparing a gradient ultra-fine cemented carbide tool having a diamond composite coating comprising preparing a tool base and preparing a diamond composite coating on a surface of the tool base.
  • the cemented carbide substrate precursor is prepared by four steps of sintering.
  • cemented carbide precursor precursor after the finish grinding process is subjected to gradient sintering to prepare a cemented carbide tool base with surface cobalt-depleted and cubic phase-rich structure.
  • the Ti-Al-Si-Cr alloy layer is prepared by a physical vapor deposition method, and the diamond layer is prepared by a chemical vapor deposition method.
  • the diamond composite coating is prepared by physically depositing a Ti-Al-Si-Cr alloy layer on the surface of the cobalt-depleted cubic phase layer of the tool substrate by physical vapor deposition, and depositing a hard layer of Ti-Al-Si-Cr alloy layer on the surface.
  • the base of the alloy tool is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to chemically vapor deposit the corundum layer.
  • the specific preparation method of the Ti-Al-Si-Cr alloy layer is as follows:
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD apparatus, and when the vacuum is 0.5 ⁇ 1O -1 -1.5 ⁇ 1O -1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool base. 2-5 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1-2 hours; at this time, the surface of the cobalt-rich cubic phase layer of the cemented carbide tool substrate is coated with a layer of Ti-Al having a thickness of 2-3 microns. -Si-Cr alloy layer.
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene hydride, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows:
  • a Ti-Al-Si-Cr layer is first plated on the cemented carbide tool substrate by a PVD method as a transition layer, and then a diamond layer is deposited on the transition layer by a CVD method.
  • a specific process to determine the composition and preparation method of the target through the selection and control of the specific PVD process parameters, the film layer is prevented from bursting or falling due to excessive internal stress caused by excessive temperature rise, so that the film layer and the tool base are It has good adhesion.
  • the diamond layer is prepared by the plating of the transition layer, and finally the gradient ultra-fine cemented carbide tool with excellent performance is obtained.
  • the gradient ultra-fine cemented carbide tool with the diamond composite coating prepared by the invention has good combination of the tool base and the diamond composite coating, and the overall cutter has good wear resistance and temperature resistance, high strength and excellent impact resistance. .
  • a method for preparing a gradient ultra-fine cemented carbide tool having a diamond composite coating comprising preparing a tool base and preparing a diamond composite coating on a surface of the tool base.
  • the tool base is sintered from the following mass percent components: 5-15% TiC, 2-5% TaC, 10-15% alloy binder phase, and the balance is WC.
  • the alloy binder phase consists of the following mass percentages of powder: 0.5-5.5% Cr, 0.5-5.5% Mo, 0.5-5.5% B, 0.5-5.5% Al, 0.5-5.5% V, 0.5- 5.5% Y, 0.5-5.5% Si, the balance is Co, and the sum of the masses of Cr, Mo, B, Al, V, Y and Si in the alloy binder phase is 7-20 of the quality of the alloy binder phase. %.
  • the preparation method of the tool base comprises the following steps:
  • alloy binder phase Eight kinds of powders of Cr, Mo, B, Al, V, Y, Si and Co are weighed according to the mass percentage, and eight kinds of powders are uniformly mixed to obtain an alloy binder phase. Preferably, eight powders are placed in a ball mill, ball milled with a cemented carbide ball for 72 hours, and ball milled for 10 minutes after each ball mill for 1 hour to obtain an alloy binder phase.
  • the blank can be first press-molded by a molding machine to obtain a green body; and the green body is further pressed by a cold isostatic press to obtain a green body.
  • the blank is placed in a sintering furnace, heated to 1200-1250 ° C at a rate of 5-8 ° C / min, maintained for 18-22 min, and maintained at a vacuum below 10 -3 Pa; then into the sintering furnace Fill with nitrogen and raise the temperature to 1420-1450 ° C at 1-3 ° C / min, keep the pressure for 55-65 min and maintain the pressure above 0.2 MPa; then cool down to 1000-1200 ° C at 2-6 ° C / min, The temperature is maintained for 110-130 min, and the pressure of 0.2 MPa or more is maintained; then the green body is cooled with the furnace and maintained at a pressure of 0.2 MPa or more to obtain a surface hardened gradient cemented carbide.
  • a pre-sintering step is performed in which the green body is placed in a sintering furnace and sintered at 1400 ° C for 10 min under an inert gas atmosphere; the green body is refined with the furnace to refine the shape of the green body.
  • the content of cobalt in the tool base of the cemented carbide prepared by the method is 5-15 wt.%.%.
  • the normal tissue layer is an ultra-fine cemented carbide with a WC grain size of 1-1000 nm.
  • the tool base has excellent mechanical properties and improves the red hardness of the cemented carbide.
  • the grain in the cemented carbide matrix is small, which is the normal tissue layer; the surface layer of the cemented carbide is rich in cubic phase and the binder phase is lean in cobalt-rich cubic phase, and there is a transition layer rich in alloyed binder phase under the surface layer. Cobalt transition layer, so that the cemented carbide has excellent hardness, wear resistance and toughness.
  • the alloy substrate After the alloy substrate is prepared, it is chemically cleaned and then a diamond composite coating is deposited on the surface.
  • the diamond composite coating is prepared by physically depositing a Ti-Al-Si-Cr alloy layer on the surface of the cobalt-depleted cubic phase layer of the tool substrate by physical vapor deposition, and depositing a hard layer of Ti-Al-Si-Cr alloy layer on the surface.
  • the base of the alloy tool is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to chemically vapor deposit the corundum layer.
  • the specific preparation method of the Ti-Al-Si-Cr alloy layer is as follows.
  • High purity pure titanium sponge with a purity of 99.99%, high purity aluminum with a purity of 99.99%, high purity silicon with a purity of 99.99%, and high purity chromium with a purity of 99.99% are used as raw materials, in terms of weight percentage: Ti accounts for 70-80%, and Al accounts for 5 -10%, Si accounted for 5-10%, and Cr accounted for 10-20%.
  • the alloy ingot was vacuum smelted, and then the alloy ingot was processed into a cylindrical target with a diameter of 120 mm and a length of 200 mm as Ti-Al-Si-Cr. Alloy target
  • the ultrasonically cleaned carbide tool base is placed in the vacuum chamber of the PVD device, and when the vacuum is reached to 1 ⁇ 10 ⁇ 1 Pa, the arc source is turned on, and ion bombardment is performed to clean the surface of the cemented carbide tool substrate for 3 minutes;
  • the arc power is turned off, the vacuum chamber is slowly cooled, and the sample is taken out after 1.5 hours; at this time, the surface of the cobalt-depleted cubic phase layer of the tool substrate is plated with a Ti-Al-Si-Cr alloy having a thickness of 2-3 ⁇ m. Floor;
  • the cemented carbide tool substrate on which the Ti-Al-Si-Cr alloy layer is deposited is cleaned and dried by propylene, and then placed in a chemical vapor deposition gold device to prepare a green stone layer.
  • the specific method for preparing the diamond layer is as follows.
  • a Ti-Al-Si-Cr layer is first plated on the cemented carbide tool substrate by a PVD method as a transition layer, and then a diamond layer is deposited on the transition layer by a CVD method.
  • a specific process to determine the composition and preparation method of the target through the selection and control of the specific PVD process parameters, the film layer is prevented from bursting or falling due to excessive internal stress caused by excessive temperature rise, so that the film layer and the tool base are It has good adhesion.
  • the diamond layer is prepared by the plating of the transition layer, and finally the gradient ultra-fine cemented carbide tool with excellent performance is obtained.
  • the gradient ultra-fine cemented carbide tool with the diamond composite coating prepared by the invention has good combination of the tool base and the diamond composite coating, and the overall cutter has good wear resistance and temperature resistance, high strength and excellent impact resistance. .
  • a diamond composite coating for a gradient ultra-fine cemented carbide tool having the same structure as the diamond composite coating of any of embodiments 1-3, including a cobalt-depleted rich cubic phase for deposition on a tool substrate A Ti-Al-Si-Cr alloy layer having a layer as a transition layer and a diamond layer deposited as a functional layer on the transition layer.
  • the diamond composite coating prepared by the invention has good bonding property with the tool base, the adhesion between the coating layers of the composite coating is good, the high temperature resistance, the corrosion resistance and the wear resistance are good, the strength is high, and the impact resistance is excellent. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种金刚石复合涂层、具有金刚石复合涂层的梯度超细硬质合金刀具及其制备方法。合金刀具由刀具基体和金刚石复合涂层构成。刀具基体设置有正常组织层、富钴过渡层和贫钴富立方相层。金刚石复合涂层包括作为过渡层的Ti-Al-Si-Cr合金层和作为功能层的金刚石层。该金刚石复合涂层的梯度超细硬质合金刀具,其刀具基体与金刚石复合涂层结合性好,整体刀具具有良好的耐磨耐温性能,强度高、抗冲击性能优良。金刚石复合涂层,其与刀具基体结合性良好,复合涂层的涂层之间附着力良好,其耐高温性、耐腐蚀性、耐磨性良好。

Description

金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 技术领域
本发明涉及硬质合金刀具技术领域,特别是涉及一种金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法。
背景技术
硬质合金刀具在加工过程中承受极大的机械负荷和热负荷,极易产生磨损,从而影响其使用寿命,因此,对刀具材料进行表面改性,提高其表面性能,这对提高刀具材料的使用寿命具有重要的意义。
在硬质合金表面涂上薄层的TiN、TiN、TiCN或Al2O3等高硬度耐磨材料,可提高刀具的耐磨性同时保持基体良好的韧性,可显著改善刀具材料的工作性能和使用寿命。然而涂层基本上为硬脆材料,并且和硬质合金基体材料热膨胀系数不同,在涂层与基体之间的界面存在应力集中现象,通常裂纹容易在涂层表面产生并向合金内部扩散导致的材料失效。
金刚石虽然具有高硬度、高导热率、低摩擦系数、化学稳定性好等特点,但是由于金刚石涂层与硬质合金之间的结合力无法有效解决,限制了金刚石涂层在硬质合金刀具方面的应用。
因此,针对现有技术不足,提供一种适用于硬质合金刀具表面性能增强的金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法以克服现有技术不足甚为必要。
发明内容
本发明的目的之一在于提供一种具有金刚石复合涂层的梯度超细硬质合金刀具及其制备方法,金刚石复合涂层与刀具基体结合性良好,刀具耐磨耐温性好,强度高,抗冲击性能优良。
本发明的另一目的在于避免现有技术的不足之处而提供一种金刚石复合涂层及其制备方法,金刚石复合涂层与刀具基体结合性良好,具有该涂层的刀具耐磨耐温性好,强度高,抗冲击性能优良。
本发明的上述目的通过如下技术手段实现。
提供一种具有金刚石复合涂层的梯度超细硬质合金刀具,由刀具基体和设置于刀具基体上的金刚石复合涂层构成;
所述刀具基体包括正常组织层、富钴过渡层和贫钴富立方相层,所述正常组织层、富钴过渡层和贫钴富立方相层按照从内而外的顺序依次排列;
所述金刚石复合涂层包括用于沉积于贫钴富立方相层表面作为过渡层的Ti-Al-Si-Cr合金层和沉积于过渡层上作为功能层的金刚石层。
上所述刀具基体中钴的含量为5-15wt.%;
所述正常组织层为超细硬质合金,WC晶粒尺寸为1-10000nm;
所述正常组织层的厚度大于2mm,所述富钴过渡层的厚度为20-100微米;所述贫钴富立方相层的厚度为20-50微米;
所述Ti-Al-Si-Cr合金层的厚度为2-3微米,所述金刚石层的厚度为 15-20微米。
上述刀具基体中钴的含量为8-12wt.%;所述正常组织层的WC晶粒尺寸为1nm-400nm;所述Ti-Al-Si-Cr合金层通过物理气相沉积法制备,所述金刚石层通过化学气相沉积法制备。
上述Ti-Al-Si-Cr合金层的具体制备方法如下,
(1.1)准备Ti-Al-Si-Cr合金靶材
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到0.5×1O-1-1.5×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面2-5分钟;
然后在轰击偏压200-300V、弧电源50-90A的条件下,镀膜20-60分钟;
然后关闭弧电源,使真空室缓慢冷却,1-2小时后取出样品;此时,硬质合金刀具基体贫的钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝2mm-6mm;
(2.2)打开冷却水系统,先抽真空到8-15托,然后打开热丝电源,缓慢加电流,电流达到500-650A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为100-300SDDM,1.5-3小时后减小电流,关闭甲烷流量计,15-30分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
进一步的,上述Ti-Al-Si-Cr合金层的具体制备方法如下,
(1.1)Ti-Al-Si-Cr合金靶材的制备
采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
(2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
提供一种具有金刚石复合涂层的梯度超细硬质合金刀具的制备方法,包括刀具基体的制备和在刀具基体表面制备金刚石复合涂层;金刚石复合涂层的制备是先通过物理气相沉积法在刀具基体的贫钴富立方相层表面镀制Ti-Al-Si-Cr合金层,表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中以化学气相沉积法刚石生层。
上述Ti-Al-Si-Cr合金层的具体制备方法如下,
(1.1)准备Ti-Al-Si-Cr合金靶材
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到0.5×1O-1-1.5×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面2-5分钟;
然后在轰击偏压200-300V、弧电源50-90A的条件下,镀膜20-60分钟;
然后关闭弧电源,使真空室缓慢冷却,1-2小时后取出样品;此时,硬质合金刀具基体贫的钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉 积设备的真空室,使刀具基体距离电阻丝2mm-6mm;
(2.2)打开冷却水系统,先抽真空到8-15托,然后打开热丝电源,缓慢加电流,电流达到500-650A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为100-300SDDM,1.5-3小时后减小电流,关闭甲烷流量计,15-30分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
进一步的,上述Ti-Al-Si-Cr合金层的具体制备方法如下,
(1.1)Ti-Al-Si-Cr合金靶材的制备
采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
(2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
提供一种用于梯度超细硬质合金刀具的金刚石复合涂层,包括用于沉积 于刀具基体的贫钴富立方相层表面作为过渡层的Ti-Al-Si-Cr合金层和沉积于过渡层上作为功能层的金刚石层。
提供一种金刚石复合涂层的制备方法,具体制备方法如下,
(1.1)Ti-Al-Si-Cr合金靶材的制备
采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
(2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
本发明具有该金刚石复合涂层的梯度超细硬质合金刀具,其刀具基体与金刚石复合涂层结合性好,整体刀具具有良好的耐磨耐温性能,强度高、抗冲击性能优良。金刚石复合涂层,其与刀具基体结合性良好,复合涂层的涂层之间附着力良好,其耐高温性、耐腐蚀性、耐磨性良好。
附图说明
利用附图对本发明作进一步的说明,但附图中的内容不构成对本发明的 任何限制。
图1是本发明一种具有金刚石复合涂层的梯度超细硬质合金刀具的示意图。
图2是本发明一种具有金刚石复合涂层的梯度超细硬质合金刀具的层间结构示意图。
具体实施方式
结合以下实施例对本发明作进一步描述。
实施例1。
一种具有金刚石复合涂层的梯度超细硬质合金刀具,如图1、图2所示,由刀具基体和设置于刀具基体上的金刚石复合涂层构成。
刀具基体包括正常组织层、富钴过渡层和贫钴富立方相层,正常组织层、富钴过渡层和贫钴富立方相层按照从内而外的顺序依次排列。刀具基体中钴的含量为5-15wt.%,优选钴的含量为8-12wt.%。正常组织层为超细硬质合金,WC晶粒尺寸为1-10000nm,优选WC晶粒尺寸为1-500nm。
贫钴富立方相层中富含立方相氮化物或碳氮化物,硬质合金中的立方相氮化物和碳氮化物具有比密排六方相的WC更高的硬度.因此,贫钴富立方相的表层具有更高的硬度。富钴过渡层中富含粘结相,当涂层中形成的裂纹扩散到该区域时,由于其良好的韧性,可以吸收裂纹扩散时的能量,因此,能够有效地阻止裂纹向合金内部扩散,并且能较好地吸收刀具切削时的冲击能量,因而有高的抗冲击韧性特性,进而有利于提高刀具材料的使用寿命。芯部为刚性组织区域即正常组织层,WC晶粒分布均匀且细小,平均WC晶粒尺寸小于等于500nm,具有超细硬质合金优异的力学性能。
正常组织层的厚度大于2mm,富钴过渡层的厚度为20-100微米,贫钴富立方相层的厚度为20-50微米。
金刚石复合涂层整体的厚度为1-25微米,优选为2-10微米。当涂层厚度低于1微米时,其耐磨性较差,在切削加工过程中很快被磨损,不能起到有效改善刀具切削性能和寿命的作用,而当涂层厚度超过25微米时,涂层与基体的结合力差,过高的压应力导致涂层开裂和剥落,缩短刀具使用寿命。涂层的厚度是通过调节沉积时间来控制的。
Ti-Al-Si-Cr合金层的厚度为2-3微米,金刚石层的厚度为15-20微米。
本发明在刀具基体与金刚石之间设置一层Ti-Al-Si-Cr合金层作为过渡层,利用钛、铬强碳化物形成材料的特性,与基体硬质合金和金刚石均有良好的浸润性和结合力,用以消除薄膜复合涂层与刀具基体因晶格失配、热膨胀系数差异而造成的内应力,既可以防止碳过度渗入刀具基体,又可以防止钴从基体深处向表面扩散。过渡层增进其与贫钴富立方相层之间的结合力,降低内应力。通过过渡层,在过渡层上沉积金刚石层,既能保证硬质合金刀具原有的强度和锋利度,又可以通过金刚石涂层,大幅度提高刀具的耐磨性,加工效率和使用寿命。
本发明具有该金刚石复合涂层的梯度超细硬质合金刀具,其刀具基体与金刚石复合涂层结合性好,整体刀具具有良好的耐磨耐温性能,强度高、抗冲击性能优良。
实施例2。
提供一种具有金刚石复合涂层的梯度超细硬质合金刀具的制备方法,包括刀具基体的制备和在刀具基体表面制备金刚石复合涂层。
刀具基体的具体制备过程如下:
(1)以难熔金属碳化物、粘结金属和TiCN和其他粉末如TiC,TaC,或其他强氮化物形成元素的碳化物、碳氮化物为原料,通过球磨混合、干燥过筛、压制成型和烧结四个步骤制备得到硬质合金基体前驱体。
(2)对硬质合金基体前驱体进行精磨加工处理。
(3)对精磨加工处理后的硬质合金基体前驱体进行梯度烧结,制备得到表层贫钴和富立方相梯度结构硬质合金刀具基体。
(4)对刀具基体进行化学清洗后,然后在其表面沉积金刚石复合涂层。
金刚石复合涂层中,Ti-Al-Si-Cr合金层通过物理气相沉积法制备,所述金刚石层通过化学气相沉积法制备。
金刚石复合涂层的制备是先通过物理气相沉积法在刀具基体的贫钴富立方相层表面镀制Ti-Al-Si-Cr合金层,表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中以化学气相沉积法刚石生层。
Ti-Al-Si-Cr合金层的具体制备方法如下:
(1.1)准备Ti-Al-Si-Cr合金靶材
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到0.5×1O-1-1.5×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面2-5分钟;
然后在轰击偏压200-300V、弧电源50-90A的条件下,镀膜20-60分钟;
然后关闭弧电源,使真空室缓慢冷却,1-2小时后取出样品;此时,硬质合金刀具基体贫的钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层。
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下:
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝2mm-6mm;
(2.2)打开冷却水系统,先抽真空到8-15托,然后打开热丝电源,缓慢加电流,电流达到500-650A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为100-300SDDM,1.5-3小时后减小电流,关闭甲烷流量计,15-30分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
本发明的制备方法采用用PVD法先在硬质合金刀具基体上镀制一层Ti-Al-Si-Cr层作为过渡层,然后再用CVD方法在过渡层上沉积金刚石层。通过具体工艺确定靶材的成分和制备方法,通过具体PVD工艺参数的选择和控制,避免了膜层因升温过快引起的内应力过大而发生爆裂或脱落现象,使膜层与刀具基体之间具有很好的附着力。本发明通过过渡层的镀制,再制备金刚石层,最终获得性能优良的梯度超细硬质合金刀具。
本发明所制备的具有该金刚石复合涂层的梯度超细硬质合金刀具,其刀具基体与金刚石复合涂层结合性好,整体刀具具有良好的耐磨耐温性能,强度高、抗冲击性能优良。
实施例3。
提供一种具有金刚石复合涂层的梯度超细硬质合金刀具的制备方法,包括刀具基体的制备和在刀具基体表面制备金刚石复合涂层。
刀具基体由以下质量百分比的各组分烧结而成:5-15%的TiC,2-5%的TaC,10-15%合金粘结相,余量为WC。合金粘结相由以下质量百分比的粉体组成:0.5-5.5%的Cr,0.5-5.5%的Mo,0.5-5.5%的B,0.5-5.5%的Al,0.5-5.5%的V,0.5-5.5%的Y,0.5-5.5%的Si,余量为Co,且合金粘结相中Cr、Mo、B、Al、V、Y和Si的质量之和为合金粘结相质量的7-20%。
刀具基体的制备方法,包括以下步骤:
S1、制备合金粘结相:按质量百分比分别称取Cr、Mo、B、Al、V、Y、Si、Co八种粉体,将八种粉体混合均匀,得合金粘结相。优选将八种粉体置于球磨机中,用硬质合金研磨球球磨72小时,且每球磨1h就暂停球磨10min,得到合金粘结相。
S2、制备坯料:按质量百分比分别称取合金粘结相、TiC、TaC、WC四种组分,四种组分组成原料粉体;按原料粉体总质量的1.5-2.5%称取石蜡,并将石蜡与原料粉体混合均匀,得到坯料。
S3、压制坯体:将坯料压制成型,得坯体。
可先用压模机将坯料压制成型,得初坯体;再用冷等静压机进一步压制初坯体,得坯体。
S4、烧结:将坯体置于烧结炉中,以5-8℃/min的速度升温至1200-1250℃,保温18-22min,并保持10-3Pa以下的真空度;然后向烧结炉中充入氮气并以1-3℃/min的速度升温至1420-1450℃,保温55-65min且保持0.2MPa以上的压强;接着再以2-6℃/min的速度降温至1000-1200℃,保温110-130min,并保持0.2MPa以上的压强;再接着坯体随炉冷却,并保持0.2MPa 以上的压强,制得表面硬化的梯度硬质合金。
可在步骤S4前,进行预烧结步骤,所述预烧结步骤是将坯体置于烧结炉中,在惰性气体气氛下,以1400℃烧结10min;坯体随炉冷却后精修坯体外形。
该方法所制备的硬质合金的刀具基体中钴的含量为5-15wt.%.%。正常组织层为超细硬质合金,WC晶粒尺寸为1-10000nm。刀具基体具有优异的力学性能,改善了硬质合金的红硬性。硬质合金基体内的晶粒细小,为正常组织层;硬质合金的表层富立方相而贫粘结相即贫钴富立方相,且表层下还有一富合金化粘结相的过渡层即富钴过渡层,从而使硬质合金具有优异的硬度、耐磨性和韧性。
合金基体制备完成后,对其进行化学清洗,然后在其表面沉积金刚石复合涂层。
金刚石复合涂层的制备是先通过物理气相沉积法在刀具基体的贫钴富立方相层表面镀制Ti-Al-Si-Cr合金层,表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中以化学气相沉积法刚石生层。
Ti-Al-Si-Cr合金层的具体制备方法如下,
(1.1)Ti-Al-Si-Cr合金靶材的制备
采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
(1.2)物理气相沉积方法镀膜
把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
(2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
(2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
(2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
(2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
本发明的制备方法采用用PVD法先在硬质合金刀具基体上镀制一层Ti-Al-Si-Cr层作为过渡层,然后再用CVD方法在过渡层上沉积金刚石层。通过具体工艺确定靶材的成分和制备方法,通过具体PVD工艺参数的选择和控制,避免了膜层因升温过快引起的内应力过大而发生爆裂或脱落现象,使膜层与刀具基体之间具有很好的附着力。本发明通过过渡层的镀制,再制备金刚石层,最终获得性能优良的梯度超细硬质合金刀具。
本发明所制备的具有该金刚石复合涂层的梯度超细硬质合金刀具,其刀具基体与金刚石复合涂层结合性好,整体刀具具有良好的耐磨耐温性能,强度高、抗冲击性能优良。
实施例4。
一种用于梯度超细硬质合金刀具的金刚石复合涂层,其结构与实施例1-3中任意一项中的金刚石复合涂层相同,包括用于沉积于刀具基体的贫钴富立方相层表面作为过渡层的Ti-Al-Si-Cr合金层和沉积于过渡层上作为功能层的金刚石层。
本发明制备的金刚石复合涂层,其与刀具基体结合性良好,复合涂层的涂层之间附着力良好,其耐高温性、耐腐蚀性、耐磨性良好,强度高、抗冲击性能优良。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (10)

  1. 一种具有金刚石复合涂层的梯度超细硬质合金刀具,其特征在于:
    由刀具基体和设置于刀具基体上的金刚石复合涂层构成;
    所述刀具基体包括正常组织层、富钴过渡层和贫钴富立方相层,所述正常组织层、富钴过渡层和贫钴富立方相层按照从内而外的顺序依次排列;
    所述金刚石复合涂层包括用于沉积于贫钴富立方相层表面作为过渡层的Ti-Al-Si-Cr合金层和沉积于过渡层上作为功能层的金刚石层。
  2. 根据权利要求1所述的具有金刚石复合涂层的梯度超细硬质合金刀具,其特征在于:
    所述刀具基体中钴的含量为5-15wt.%;
    所述正常组织层为超细硬质合金,WC晶粒尺寸为1-10000nm;
    所述正常组织层的厚度大于2mm,所述富钴过渡层的厚度为20-100微米;所述贫钴富立方相层的厚度为20-50微米;
    所述Ti-Al-Si-Cr合金层的厚度为2-3微米,所述金刚石层的厚度为15-20微米。
  3. 根据权利要求2所述的具有金刚石复合涂层的梯度超细硬质合金刀具,其特征在于:所述刀具基体中钴的含量为8-12wt.%;所述正常组织层的WC晶粒尺寸为1nm-400nm;所述Ti-Al-Si-Cr合金层通过物理气相沉积法制备,所述金刚石层通过化学气相沉积法制备。
  4. 根据权利要求3所述的具有金刚石复合涂层的梯度超细硬质合金刀具,其特征在于:
    所述Ti-Al-Si-Cr合金层的具体制备方法如下,
    (1.1)准备Ti-Al-Si-Cr合金靶材
    (1.2)物理气相沉积方法镀膜
    把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到0.5×1O-1-1.5×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面2-5分钟;
    然后在轰击偏压200-300V、弧电源50-90A的条件下,镀膜20-60分钟;
    然后关闭弧电源,使真空室缓慢冷却,1-2小时后取出样品;此时,硬质合金刀具基体贫的钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
    表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
    (2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝2mm-6mm;
    (2.2)打开冷却水系统,先抽真空到8-15托,然后打开热丝电源,缓慢加电流,电流达到500-650A时,打开氢气质量流量计,流量为900-1000SDDM;
    (2.3)3分钟后打开甲烷质量流量计,流量为100-300SDDM,1.5-3小时后减小电流,关闭甲烷流量计,15-30分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
    (2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
  5. 根据权利要求4所述的具有金刚石复合涂层的梯度超细硬质合金刀具,其特征在于:
    所述Ti-Al-Si-Cr合金层的具体制备方法如下,
    (1.1)Ti-Al-Si-Cr合金靶材的制备
    采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
    (1.2)物理气相沉积方法镀膜
    把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
    然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
    然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
    表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
    (2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
    (2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
    (2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
    (2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
  6. 如权利要求1至5任意一项所述的具有金刚石复合涂层的梯度超细硬质合金刀具的制备方法,其特征在于:
    包括刀具基体的制备和在刀具基体表面制备金刚石复合涂层;金刚石复 合涂层的制备是先通过物理气相沉积法在刀具基体的贫钴富立方相层表面镀制Ti-Al-Si-Cr合金层,表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中以化学气相沉积法刚石生层。
  7. 如权利要求6所述的具有金刚石复合涂层的梯度超细硬质合金刀具的制备方法,其特征在于:
    所述Ti-Al-Si-Cr合金层的具体制备方法如下,
    (1.1)准备Ti-Al-Si-Cr合金靶材
    (1.2)物理气相沉积方法镀膜
    把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到0.5×1O-1-1.5×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面2-5分钟;
    然后在轰击偏压200-300V、弧电源50-90A的条件下,镀膜20-60分钟;
    然后关闭弧电源,使真空室缓慢冷却,1-2小时后取出样品;此时,硬质合金刀具基体贫的钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
    表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
    (2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝2mm-6mm;
    (2.2)打开冷却水系统,先抽真空到8-15托,然后打开热丝电源,缓慢加电流,电流达到500-650A时,打开氢气质量流量计,流量为900-1000SDDM;
    (2.3)3分钟后打开甲烷质量流量计,流量为100-300SDDM,1.5-3小时后减小电流,关闭甲烷流量计,15-30分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
    (2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
  8. 如权利要求7所述的具有金刚石复合涂层的梯度超细硬质合金刀具的制备方法,其特征在于:
    所述Ti-Al-Si-Cr合金层的具体制备方法如下,
    (1.1)Ti-Al-Si-Cr合金靶材的制备
    采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
    (1.2)物理气相沉积方法镀膜
    把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
    然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
    然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
    表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
    (2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
    (2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
    (2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
    (2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
  9. 一种用于梯度超细硬质合金刀具的金刚石复合涂层,其特征在于:包括用于沉积于刀具基体的贫钴富立方相层表面作为过渡层的Ti-Al-Si-Cr合金层和沉积于过渡层上作为功能层的金刚石层。
  10. 如权利要求9所述的金刚石复合涂层的制备方法,其特征在于:具体制备方法如下,
    (1.1)Ti-Al-Si-Cr合金靶材的制备
    采用纯度99.99%的高纯海绵钛、纯度99.99%的高纯铝、纯度99.99%的高纯硅、99.99%的高纯铬作为原料,以重量百分比计:Ti占70-80%、Al占5-10%、Si占5-10%、Cr占10-20%的比例进行真空冶炼得到合金锭,然后将合金锭加工成直径120mm、长200mm的柱形靶材作为Ti-Al-Si-Cr合金靶材;
    (1.2)物理气相沉积方法镀膜
    把经超声波清洗的硬质合金刀具基体放入PVD设备的真空室,抽真空达到1×1O-1Pa时,开启电弧源,进行离子轰击,清洗硬质合金刀具基体表面3分钟;
    然后在轰击偏压250V、弧电源60A的条件下,镀膜30-40分钟;
    然后关闭弧电源,使真空室缓慢冷却,1.5小时后取出样品;此时,刀 具基体的贫钴富立方相层表面镀制了一层厚度为2-3微米的Ti-Al-Si-Cr合金层;
    表面沉积了Ti-Al-Si-Cr合金层的硬质合金刀具基体经丙酣清洗干燥后,放入化学气相沉积金设备中制备刚石生层,制备金刚石层的具体方法如下,
    (2.1)把镀有Ti-Al-Si-Cr合金层的硬质合金刀具基体放入化学气相沉积设备的真空室,使刀具基体距离电阻丝3mm-4mm;
    (2.2)打开冷却水系统,先抽真空到10托,然后打开热丝电源,缓慢加电流,电流达到600A时,打开氢气质量流量计,流量为900-1000SDDM;
    (2.3)3分钟后打开甲烷质量流量计,流量为150-200SDDM,2小时后减小电流,关闭甲烷流量计,20分钟后电流为零,此时关闭氢气流量计,保持冷却系统正常运转;
    (2.4)1-1.5小时后关闭冷却系统,打开真空室门,取出整体刀具,此时,Ti-Al-Si-Cr合金层表面镀有一层厚度为15-20微米的金刚石层。
PCT/CN2016/075362 2016-02-11 2016-03-02 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法 WO2017136972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610083495.8 2016-02-11
CN201610083495.8A CN105671551B (zh) 2016-02-11 2016-02-11 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法

Publications (1)

Publication Number Publication Date
WO2017136972A1 true WO2017136972A1 (zh) 2017-08-17

Family

ID=56302857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075362 WO2017136972A1 (zh) 2016-02-11 2016-03-02 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法

Country Status (2)

Country Link
CN (1) CN105671551B (zh)
WO (1) WO2017136972A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057992A (zh) * 2020-01-07 2020-04-24 汇专科技集团股份有限公司 宽范围钴含量硬质合金表面制备金刚石涂层的方法及具有金刚石涂层的工模具
CN112538612A (zh) * 2020-11-19 2021-03-23 贵州大学 一种涂层微结构化仿生表面金刚石刀具的加工方法
CN113392554A (zh) * 2021-06-15 2021-09-14 南京航空航天大学 一种热致相变膜调控刀具涂层应力的评估方法
CN113802087A (zh) * 2021-09-15 2021-12-17 科汇纳米技术(深圳)有限公司 汽车传动部件表面镀制类金刚石涂层的方法及汽车传动部件
CN115229192A (zh) * 2022-07-28 2022-10-25 廊坊西波尔钻石技术有限公司 一种聚晶金刚石复合片的复合方法
CN117845180A (zh) * 2024-03-07 2024-04-09 湖南沃尔博精密工具有限公司 一种刀具及其镀膜方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106270513B (zh) * 2016-09-18 2018-10-19 广东工业大学 激光选区熔化3d直接打印方法制备的表层富含立方相硬质合金及其应用
CN106637130A (zh) * 2016-12-29 2017-05-10 东莞市吉和金属制品有限公司 一种硬质合金刀片及其制备方法
WO2018174139A1 (ja) 2017-03-22 2018-09-27 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金切削工具
CN109385600B (zh) * 2017-08-02 2023-11-03 深圳先进技术研究院 具有复合渗层的钛铝合金件及其制备方法、具有金刚石涂层的钛铝合金件及其制备方法
CN110265093A (zh) * 2019-06-20 2019-09-20 蓬莱市超硬复合材料有限公司 高强高韧超细硬质合金材料体系组织结构定向调控方法
CN116926542B (zh) * 2023-07-12 2024-03-19 北方工业大学 一种低摩擦系数的铜-镍-金刚石复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905973A (zh) * 2004-07-08 2007-01-31 住友电工硬质合金株式会社 具有压缩应力的强度分布的有涂膜的表面涂敷切削工具
CN101214743A (zh) * 2008-01-11 2008-07-09 株洲钻石切削刀具股份有限公司 用于加工铸铁的涂层刀片
WO2010104094A1 (ja) * 2009-03-10 2010-09-16 株式会社タンガロイ サーメットおよび被覆サーメット
US20140059943A1 (en) * 2012-08-30 2014-03-06 Diamond Innovations, Inc. Infiltration compositions for pcd by using coated carbide substrates
CN105216021A (zh) * 2014-06-24 2016-01-06 厦门金鹭特种合金有限公司 一种复合材料加工用金刚石涂层刀具及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2695835B2 (ja) * 1988-05-06 1998-01-14 株式会社日立製作所 セラミック被覆耐熱部材
JPH02133584A (ja) * 1988-11-11 1990-05-22 Citizen Watch Co Ltd 硬質膜を被覆したアルミニウム合金部材
JP2005014164A (ja) * 2003-06-26 2005-01-20 Kyocera Corp 切削工具
CN104988373B (zh) * 2015-08-06 2017-08-08 广东工业大学 一种表面硬化的梯度硬质合金及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1905973A (zh) * 2004-07-08 2007-01-31 住友电工硬质合金株式会社 具有压缩应力的强度分布的有涂膜的表面涂敷切削工具
CN101214743A (zh) * 2008-01-11 2008-07-09 株洲钻石切削刀具股份有限公司 用于加工铸铁的涂层刀片
WO2010104094A1 (ja) * 2009-03-10 2010-09-16 株式会社タンガロイ サーメットおよび被覆サーメット
US20140059943A1 (en) * 2012-08-30 2014-03-06 Diamond Innovations, Inc. Infiltration compositions for pcd by using coated carbide substrates
CN105216021A (zh) * 2014-06-24 2016-01-06 厦门金鹭特种合金有限公司 一种复合材料加工用金刚石涂层刀具及其制备方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111057992A (zh) * 2020-01-07 2020-04-24 汇专科技集团股份有限公司 宽范围钴含量硬质合金表面制备金刚石涂层的方法及具有金刚石涂层的工模具
CN112538612A (zh) * 2020-11-19 2021-03-23 贵州大学 一种涂层微结构化仿生表面金刚石刀具的加工方法
CN112538612B (zh) * 2020-11-19 2024-02-27 贵州大学 一种涂层微结构化仿生表面金刚石刀具的加工方法
CN113392554A (zh) * 2021-06-15 2021-09-14 南京航空航天大学 一种热致相变膜调控刀具涂层应力的评估方法
CN113802087A (zh) * 2021-09-15 2021-12-17 科汇纳米技术(深圳)有限公司 汽车传动部件表面镀制类金刚石涂层的方法及汽车传动部件
CN113802087B (zh) * 2021-09-15 2023-08-11 科汇纳米技术(深圳)有限公司 汽车传动部件表面镀制类金刚石涂层的方法及汽车传动部件
CN115229192A (zh) * 2022-07-28 2022-10-25 廊坊西波尔钻石技术有限公司 一种聚晶金刚石复合片的复合方法
CN115229192B (zh) * 2022-07-28 2024-03-29 廊坊西波尔钻石技术有限公司 一种聚晶金刚石复合片的复合方法
CN117845180A (zh) * 2024-03-07 2024-04-09 湖南沃尔博精密工具有限公司 一种刀具及其镀膜方法
CN117845180B (zh) * 2024-03-07 2024-05-28 湖南沃尔博精密工具有限公司 一种刀具及其镀膜方法

Also Published As

Publication number Publication date
CN105671551B (zh) 2018-01-19
CN105671551A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017136972A1 (zh) 金刚石复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
WO2017136971A1 (zh) (Ti,Al,Zr)N多组元复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN105624618B (zh) TiAlSiZrN基复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
WO2017136969A1 (zh) 氮化硼系复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
WO2017136968A1 (zh) 氧化铝系复合涂层、具有该复合涂层的梯度超细硬质合金刀具及其制备方法
CN111235453B (zh) 一种表面具有高熵合金层的硬质合金及其制备方法
CN108642361B (zh) 一种高强度高硬度陶瓷材料及其生产工艺
CN101892409A (zh) 一种铣削涂层硬质合金及其制备方法
CN109161711A (zh) 一种表面具有双梯度层结构的超细晶梯度硬质合金及其制备方法
CN113373359A (zh) 一种层状梯度结构颗粒增强镁基复合材料及其制备方法
CN112024891A (zh) 一种硬质合金复合材料及其制造方法
CN112941389B (zh) 一种碳氮化钛基金属陶瓷及其制备方法和应用
CN112941390B (zh) 一种碳氮化钛基金属陶瓷及其制备方法和应用
JP2012511437A (ja) 高い寸法精度が必要とされている切削工具インサートの製造方法
JP5381616B2 (ja) サーメットおよび被覆サーメット
CN114951656A (zh) 一种高熵合金-陶瓷涂层复合材料的制备方法
JPWO2020067138A1 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆TiN基サーメット製切削工具
CN111850369A (zh) WC-6Ni-石墨自润滑硬质刀具材料机械合金化的制备方法
CN112091220A (zh) 一种具有良好导热性能的聚晶金刚石复合片及其制备方法
JP2000144298A (ja) ダイヤモンド含有硬質部材およびその製造方法
Sui et al. Microstructure and mechanical properties of WC-Co-Ti (C0. 5, N0. 5)-Mo cemented carbides
CN112059191B (zh) 切削工具及其制造方法
JP2013181188A (ja) 硬質材料とその製造方法、並びに切削工具
CN113621921B (zh) 梯度陶瓷镍多层膜及其化学热处理制备方法
JPH11172361A (ja) 表面被覆超硬合金及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 16889701

Country of ref document: EP

Kind code of ref document: A1