WO2017135415A1 - 遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法 - Google Patents

遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法 Download PDF

Info

Publication number
WO2017135415A1
WO2017135415A1 PCT/JP2017/004001 JP2017004001W WO2017135415A1 WO 2017135415 A1 WO2017135415 A1 WO 2017135415A1 JP 2017004001 W JP2017004001 W JP 2017004001W WO 2017135415 A1 WO2017135415 A1 WO 2017135415A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydroxide
lithium
composite oxide
transition metal
specific surface
Prior art date
Application number
PCT/JP2017/004001
Other languages
English (en)
French (fr)
Inventor
酒井 智弘
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201780009569.6A priority Critical patent/CN109071264B/zh
Priority to JP2017565653A priority patent/JP6979880B2/ja
Priority to US16/074,079 priority patent/US10763504B2/en
Priority to EP17747566.2A priority patent/EP3412634B1/en
Priority to KR1020187021049A priority patent/KR102636760B1/ko
Publication of WO2017135415A1 publication Critical patent/WO2017135415A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a transition metal-containing hydroxide that is a precursor of a lithium-containing composite oxide and a method for producing a lithium-containing composite oxide.
  • a lithium-containing composite oxide particularly LiCoO 2
  • discharge the discharge capacity of the lithium ion secondary battery per unit mass of the positive electrode active material
  • a positive electrode active material that can further increase the discharge capacity of a lithium ion secondary battery As a positive electrode active material that can further increase the discharge capacity of a lithium ion secondary battery, a positive electrode active material having a high content of Li and Mn, a so-called lithium-rich positive electrode active material has attracted attention.
  • a lithium ion secondary battery using a lithium-rich positive electrode active material has a problem that characteristics for maintaining charge / discharge capacity (hereinafter referred to as cycle characteristics) are lowered when a charge / discharge cycle is repeated.
  • Patent Document 1 A positive electrode active material obtained by mixing a metal precursor and a lithium precursor and firing in an oxidizing atmosphere (Patent Document 1).
  • Patent Document 1 describes that if the lithium-rich positive electrode active material obtained above is used, a lithium ion secondary battery excellent in rate characteristics, life characteristics, and charge / discharge efficiency can be obtained.
  • a lithium ion secondary battery using a positive electrode active material obtained by firing a mixture of a transition metal precursor containing saccharides and a lithium precursor in an oxidizing atmosphere has a discharge capacity. There was a problem of lowering.
  • the present invention relates to a lithium ion secondary battery that is a precursor of a lithium-containing composite oxide, and that is excellent in discharge capacity and cycle characteristics by using the lithium-containing composite oxide obtained by using the precursor as a positive electrode active material. It is an object of the present invention to provide a method capable of producing a transition metal-containing hydroxide capable of obtaining a lithium-containing composite oxide capable of obtaining a lithium ion secondary battery excellent in discharge capacity and cycle characteristics.
  • the present invention has the following aspects.
  • a transition metal-containing hydroxide which is a precursor of a lithium-containing composite oxide, and the logarithmic differential pore specific surface area of the entire distribution in the distribution of the logarithmic differential pore specific surface area with respect to the pore diameter determined by the BJH method.
  • the transition metal containing hydroxide whose ratio of the value which totaled the logarithm differential pore specific surface area whose pore diameter is 10 nm or more among the value 100% which totaled was 23% or more.
  • ⁇ 2> In the distribution of the logarithmic differential pore specific surface area with respect to the pore diameter, the value obtained by summing the logarithmic differential pore specific surface area with a pore diameter of 10 nm or more was 300 m.
  • ⁇ 1> a transition metal-containing hydroxide which is 2 / g or more.
  • ⁇ 3> The transition metal-containing hydroxide according to ⁇ 1> or ⁇ 2>, which is a transition metal-containing hydroxide represented by the following (formula 1).
  • Ni ⁇ Co ⁇ Mn ⁇ M ⁇ (OH) 2 (Formula 1)
  • M is a metal element other than Li, Ni, Co and Mn
  • 0.15 to 0.5
  • 0 to 0.2
  • 0.3 to 0.8
  • Yes ⁇ is 0 to 0.1
  • ⁇ + ⁇ + ⁇ + ⁇ 1.
  • the transition metal-containing hydroxide, D 50 is a 3.5 ⁇ 15.5, ⁇ 1> ⁇ one transition metal-containing hydroxide ⁇ 3>.
  • ⁇ 5> A method for producing a lithium-containing composite oxide, comprising a step of mixing the transition metal-containing hydroxide according to any one of the above ⁇ 1> to ⁇ 4> and a lithium compound and firing at 900 ° C. or higher.
  • a lithium ion secondary battery having excellent discharge capacity and cycle characteristics can be obtained by using the lithium-containing composite oxide obtained by using this as a positive electrode active material. Can do.
  • a lithium-containing composite oxide capable of obtaining a lithium ion secondary battery excellent in discharge capacity and cycle characteristics can be produced.
  • FIG. 7 is a graph showing the distribution of logarithmic differential pore specific surface area dA / dlog (D) with respect to the pore diameter of the transition metal-containing hydroxides of Examples 1 to 7.
  • 8 is a graph showing the relationship between ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of the transition metal-containing hydroxides of Examples 1 to 7 and the initial discharge capacity of the lithium secondary battery. .
  • the “BJH method” is a method for determining the mesopore size distribution by Barrett, Joyner and Halenda, which is one of the methods for obtaining the pore size distribution from the adsorption isotherm.
  • nitrogen gas is used as the adsorption gas.
  • a hydroxide dried under the conditions described in Examples is used.
  • the “logarithmic differential pore specific surface area” is the difference between the pore surface area dA, which is an increase in the pore surface area A between the measurement points (pore diameter section), and the common logarithm of the upper and lower values of the pore diameter D in the section.
  • Logarithmic differential pore specific surface area distribution with respect to pore diameter means that the logarithmic differential pore specific surface area dA / dlog (D) between each measurement point (pore diameter interval) is the average value of the pore diameter D in each interval. This is the distribution plotted.
  • “Distribution of logarithmic differential pore specific surface area with respect to pore diameter determined by BJH method” is a method of measuring an adsorption isotherm using a commercially available specific surface area / pore distribution measuring apparatus, and attaching the apparatus to the apparatus from the adsorption isotherm. Calculate using analysis software.
  • the “BET specific surface area” is a specific surface area obtained from an adsorption isotherm by the BET (Brunauer, Emmet, Teller) method.
  • nitrogen gas is used as the adsorption gas.
  • a hydroxide dried under the conditions described in Examples is used.
  • D 50 is a particle diameter at a point of 50% in a cumulative volume distribution curve with the total volume distribution determined on a volume basis being 100%, that is, a volume-based cumulative 50% diameter.
  • the “particle size distribution” is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring device (for example, a laser diffraction / scattering particle size distribution measuring device). The measurement is performed by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like.
  • the “crystallite diameter” is determined from the diffraction angle 2 ⁇ (deg) and the half-value width B (rad) of a specific (abc) plane in the X-ray diffraction pattern by the following Scherrer equation.
  • D abc (0.9 ⁇ ) / (Bcos ⁇ ) Where D abc is the crystallite diameter of the (abc) plane, and ⁇ is the wavelength of the X-ray.
  • the “crystallite size distribution” is obtained by analyzing a specific peak in an X-ray diffraction pattern using a crystallite size distribution analysis software CSDA manufactured by Rigaku Corporation.
  • the “hydroxide” includes a hydroxide and an oxyhydroxide in which the hydroxide is partially oxidized. That is, the compound described as Me (OH) 2 (where Me is a metal element other than Li) includes Me (OH) 2 , MeOOH, and mixtures thereof.
  • the notation “Li” indicates that the element is not Li alone but a Li element unless otherwise specified. The same applies to other elements such as Ni, Co, and Mn.
  • the composition analysis of the transition metal-containing hydroxide and the lithium-containing composite oxide is performed by inductively coupled plasma analysis (hereinafter referred to as ICP).
  • ICP inductively coupled plasma analysis
  • the element ratio of the lithium-containing composite oxide is a value in the lithium-containing composite oxide before the first charge (also referred to as activation treatment).
  • the transition metal-containing hydroxide of the present invention (hereinafter also referred to as the present hydroxide) is suitably used as a precursor of a lithium-containing composite oxide.
  • the hydroxide preferably contains Ni and Mn as essential elements because the discharge voltage and discharge capacity of the lithium ion secondary battery are further excellent.
  • This hydroxide may further contain Co because the rate characteristics of the lithium ion secondary battery are further improved.
  • This hydroxide may contain metal elements other than Li, Ni, Co, and Mn as needed.
  • This hydroxide has a logarithmic differential pore specific surface area of the entire distribution in the distribution of the logarithmic differential pore specific surface area dA / dlog (D) with respect to the pore diameter D, for example, as shown in FIG.
  • the total value of logarithmic differential pore specific surface areas with pore diameters of 10 nm or more (hereinafter also referred to as ⁇ dA / dlog (D ) ⁇ D ⁇ 10 nm ) (hereinafter also referred to as ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total ) is 23% or more.
  • the ratio is preferably 24% or more, and more preferably 25% or more.
  • the lithium-containing composite oxide obtained therefrom is used as the positive electrode active material.
  • a lithium ion secondary battery excellent in discharge capacity and cycle characteristics can be obtained.
  • ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total is 24% or more or 25% or more, the lithium-containing composite oxide obtained therefrom is used as the positive electrode active material.
  • the upper limit of ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of the present hydroxide is not particularly limited and is ideally 100%.
  • ⁇ DA / dlog (D) ⁇ D ⁇ 10 nm of the present hydroxide is preferably 300 m 2 / g or more, more preferably 305 m 2 / g or more, from the viewpoint that the initial discharge capacity of the lithium ion secondary battery is further excellent. More preferably, it is 315 m 2 / g or more.
  • ⁇ DA / dlog (D) ⁇ D ⁇ 10nm of the hydroxide from the viewpoint of cycle characteristics of the lithium ion secondary battery is more excellent, preferably from 500 meters 2 / g or less, more preferably 450 m 2 / g, 400 meters 2 / g or less is more preferable.
  • the hydroxide represented by the following (Formula 1) is preferable.
  • M is a metal element other than Li
  • Ni, Co and Mn ⁇ is 0.15 to 0.5
  • is 0 to 0.2
  • is 0.3 to 0.8.
  • Yes ⁇ is 0 to 0.1
  • ⁇ + ⁇ + ⁇ + ⁇ 1.
  • is the molar ratio of Ni contained in the hydroxide.
  • is more preferably 0.2 to 0.4.
  • is the molar ratio of Co contained in the hydroxide.
  • is more preferably 0 to 0.09.
  • is a molar ratio of Mn contained in the hydroxide.
  • This hydroxide may contain the other metal element M as needed.
  • the other metal element M one or more elements selected from the group consisting of Na, Mg, Ti, Zr, Al, W and Mo are preferable because the discharge capacity of the lithium ion secondary battery is further excellent.
  • One or more selected from the group consisting of Ti, Zr, and Al is more preferable from the viewpoint of easily suppressing a decrease in the discharge voltage of the lithium ion secondary battery by repeating the discharge cycle.
  • is the molar ratio of M contained in the hydroxide. ⁇ is more preferably 0 to 0.08.
  • the present hydroxide preferably has a D 50 of 3.5 to 15.5 ⁇ m.
  • the D 50 is more preferably 3.5 to 14 ⁇ m. Within D 50 is the range of the hydroxide, further excellent in the discharge capacity of the lithium ion secondary battery.
  • the hydroxide preferably has a BET specific surface area of 10 to 200 m 2 / g.
  • the BET specific surface area is more preferably 20 to 100 m 2 / g.
  • the specific surface area of the hydroxide is at least the lower limit of the above range, the discharge capacity of the lithium ion secondary battery is further improved.
  • the specific surface area of the hydroxide is not more than the upper limit of the above range, the cycle characteristics of the lithium ion secondary battery are further improved.
  • ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total is 23% or more, and thus was obtained from the following reason. It is considered that a lithium ion secondary battery excellent in discharge capacity and cycle characteristics can be obtained by using a lithium-containing composite oxide as a positive electrode active material.
  • the BET specific surface area of the lithium-containing composite oxide may be increased.
  • the homogeneity of the crystal structure of the lithium-containing composite oxide may be increased.
  • the present inventors have found that the temperature at which the mixture of the hydroxide and the lithium compound is fired is increased.
  • the BET specific surface area of the lithium-containing composite oxide may be reduced.
  • the present hydroxide has ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of 23% or more, that is, there are relatively many large pores. is doing. Therefore, even if the mixture of the present hydroxide and the lithium compound is fired at a high temperature, it is considered that a more appropriate pore structure is formed in the secondary particles of the lithium-containing composite oxide. As a result, since the BET specific surface area can be increased while increasing the homogeneity of the crystal structure of the lithium-containing composite oxide, the discharge capacity and cycle characteristics of the lithium ion secondary battery can be increased.
  • the hydroxide can be produced, for example, by the following method (I) or method (II).
  • the method (II) is preferably .
  • the method (I) is a hydroxide ⁇ dA / dlog (D) ⁇ D ⁇ 10nm / ⁇ dA / dlog (D) ⁇ the total to more than 23%, conditions in the alkali co-precipitation method (reaction temperature, This is a method for adjusting the reaction time, the pH of the mixed solution, and the amount of the complexing agent.
  • reaction temperature This is a method for adjusting the reaction time, the pH of the mixed solution, and the amount of the complexing agent.
  • a metal salt aqueous solution and a pH adjusting solution containing an alkali metal hydroxide are continuously supplied to a reaction vessel and mixed, and the hydroxide in the mixture is kept constant while maintaining the pH constant.
  • the method of precipitating is preferable.
  • Examples of the metal salt include nitrates, acetates, chloride salts, and sulfates of each transition metal element, and the sulfate is preferable because the material cost is relatively low and excellent battery characteristics can be obtained.
  • Examples of the sulfate of Ni include nickel (II) sulfate hexahydrate, nickel (II) sulfate heptahydrate, nickel sulfate (II) ammonium hexahydrate, and the like.
  • Examples of Co sulfate include cobalt sulfate (II) heptahydrate, cobalt sulfate (II) ammonium hexahydrate, and the like.
  • Examples of the sulfate of Mn include manganese sulfate (II) pentahydrate, manganese sulfate (II) ammonium hexahydrate, and the like.
  • the ratio of Ni, Co, Mn and M in the aqueous metal salt solution is the same as the ratio of Ni, Co, Mn and M contained in the hydroxide.
  • the total concentration of Ni, Co, Mn and M in the aqueous metal salt solution is preferably 0.1 to 3 mol / kg, more preferably 0.5 to 2.5 mol / kg. If the total concentration of Ni, Co, Mn and M is equal to or higher than the lower limit, productivity is excellent. If the total concentration of Ni, Co, Mn and M is not more than the above upper limit value, the metal salt can be sufficiently dissolved in water.
  • an aqueous solution containing an alkali metal hydroxide is preferable.
  • the alkali metal hydroxide sodium hydroxide or potassium hydroxide is preferably used.
  • the pH of the mixed solution is preferably 10 to 12, and more preferably 10.5 to 11.5. If the pH of the mixed solution is equal to or higher than the lower limit of the above range, the ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of the hydroxide is likely to be 23% or higher. If pH of the mixture is less than the upper limit of the range, the D 50 and the specific surface area of hydroxide can in a desired range.
  • a complexing agent may be added to the mixed solution in order to adjust the solubility of each of Ni, Co, Mn and M ions.
  • the complexing agent include an aqueous ammonia solution and an aqueous ammonium sulfate solution.
  • the ratio of the molar amount of ammonia or ammonium ions to the total molar amount (Me) of Ni, Co, Mn and M (NH 3 / Me or NH 4 + / Me) is preferably 0.01 to 0.3. 01 to 0.1 are more preferable.
  • the ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of the hydroxide is 23% or more. Easy to do. If NH 3 / Me or NH 4 + / Me is equal to or less than the upper limit of the above range, the D 50 and specific surface area of the hydroxide can be set to a desired range.
  • the temperature of the mixed solution (reaction temperature) during the mixing of the aqueous metal salt solution and the pH adjusting solution is preferably 20 to 80 ° C., more preferably 25 to 60 ° C. If reaction temperature is more than the lower limit of the said range, reaction will be fully accelerated
  • stimulated. If reaction temperature is below the upper limit of the said range, it will be easy to make ⁇ dA / dlog (D) ⁇ D> 10nm / ⁇ dA / dlog (D) ⁇ total of a hydroxide 23% or more.
  • the aqueous metal salt solution and the pH adjusting solution are preferably mixed in the reaction vessel 10 while being stirred by the stirring blade 14 attached to the stirring device 12.
  • the stirring device include a three-one motor.
  • the stirring blade include an anchor type, a propeller type, and a paddle type.
  • the mixing of the aqueous metal salt solution and the pH adjusting solution is preferably performed in an inert atmosphere such as a nitrogen atmosphere or an argon atmosphere from the viewpoint of suppressing oxidation of the hydroxide. It is particularly preferable to carry out in a nitrogen atmosphere from the viewpoint of production cost.
  • the mixed solution in the reaction vessel 10 is extracted using a filter medium 16 (filter cloth or the like) and the precipitation reaction is performed while concentrating the hydroxide ( Hereinafter, it is referred to as a concentration method.) And a method in which a mixed solution in a reaction vessel is extracted together with hydroxide without using a filter medium and a precipitation reaction is performed while keeping the concentration of hydroxide low (hereinafter referred to as overflow method). ).
  • the concentration method is preferable because the spread of the particle size distribution can be narrowed.
  • the obtained hydroxide is preferably washed to remove impurity ions. If impurity ions remain, impurities may be present on the surface and crystals of the positive electrode active material obtained by firing, which may adversely affect battery characteristics.
  • the washing method include a method of repeatedly performing pressure filtration and dispersion in distilled water. When performing washing, it is preferable to repeat until the electrical conductivity of the supernatant or filtrate when the hydroxide is dispersed in distilled water is 50 mS / m or less, and more preferably until 20 mS / m or less. preferable.
  • the drying temperature of the hydroxide is preferably 60 to 200 ° C, more preferably 80 to 130 ° C. If drying temperature is more than the said lower limit, drying time can be shortened. If a drying temperature is below the said upper limit, the progress of oxidation of a hydroxide can be suppressed.
  • the drying time may be appropriately set depending on the amount of hydroxide, and is preferably 1 to 300 hours, more preferably 5 to 120 hours.
  • Method (II) In the method (II), at least nickel salt, manganese is used in the alkali coprecipitation method in order to make the hydroxide ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total 23% or more.
  • a salt, an alkali metal hydroxide, and a water-soluble organic substance (excluding saccharides) are mixed in an aqueous solution state.
  • the alkali coprecipitation method may be performed in the same manner as in method (I), and preferable conditions are also the same as in method (I).
  • water-soluble organic substance a straight-chain compound is preferable because the specific surface area of the hydroxide is large and pores are easily formed.
  • a nonionic compound is preferable because it does not inhibit crystal growth. Examples of nonionic water-soluble organic substances include alcohols and ethers.
  • the alcohol examples include methanol, ethanol, 1-propanol, 2-propanol, ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, polyethylene glycol, butanediol, glycerin and the like.
  • polyethylene glycol is particularly preferable from the viewpoint of low volatility.
  • the ratio of the mass of the water-soluble organic substance to the mass of the hydroxide is preferably 0.001 to 0.08, and more preferably 0.001 to 0.05. If the water-soluble organic matter / Me is not less than the lower limit of the above range, the ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of the hydroxide can be sufficiently increased. If water-soluble organic matter / Me is below the upper limit of the said range, a uniform product can be obtained.
  • the water-soluble organic substance may be dissolved in advance in either or both of the metal salt aqueous solution and the pH adjusting solution; an aqueous solution of the water-soluble organic substance is prepared separately from the metal salt aqueous solution and the pH adjusting solution, and this is added to the reaction vessel. You may supply.
  • the method for producing a lithium-containing composite oxide of the present invention includes a step of mixing the present hydroxide and a lithium compound and baking the mixture at 900 ° C. or higher.
  • the lithium compound is preferably one selected from the group consisting of lithium carbonate, lithium hydroxide and lithium nitrate. From the viewpoint of ease of handling in the production process, lithium carbonate is more preferable.
  • the ratio (Li / Me) of the molar amount of Li contained in the lithium compound to the total molar amount (Me) of Ni, Co, Mn and M contained in the hydroxide is preferably 1.1 to 1.7, 1.2 to 1.7 is more preferable, and 1.3 to 1.7 is more preferable.
  • the Li / Me ratio is a factor that determines the composition of the lithium-containing composite oxide. That is, the Li / Me ratio is appropriately set within the above-described range depending on the composition of the target lithium-containing composite oxide.
  • Examples of the method of mixing the hydroxide and the lithium compound include a method using a rocking mixer, a nauta mixer, a spiral mixer, a cutter mill, a V mixer, and the like.
  • the temperature for firing the mixture (firing temperature) is 900 ° C. or higher, preferably 950 ° C. or higher, and more preferably 980 ° C. or higher.
  • the firing temperature is preferably 1100 ° C. or lower, and more preferably 1050 ° C. or lower.
  • the firing temperature is equal to or higher than the lower limit of the above range, a lithium-containing composite oxide capable of obtaining a lithium ion secondary battery having excellent cycle characteristics can be produced.
  • the firing temperature is not more than the upper limit of the above range, Li volatilization can be suppressed during the firing process, and a lithium-containing composite oxide close to the Li / Me ratio during mixing can be obtained.
  • the baking apparatus include an electric furnace, a continuous baking furnace, and a rotary kiln.
  • firing is preferably performed in the atmosphere, and particularly preferably while supplying air.
  • the air supply rate is preferably 10 to 200 mL / min, more preferably 40 to 150 mL / min per liter of the furnace internal volume of the baking apparatus.
  • the firing time is preferably 4 to 40 hours, and more preferably 4 to 20 hours.
  • the firing may be one-stage firing, or may be two-stage firing in which temporary firing is performed before main firing at 900 ° C. or higher.
  • the two-stage firing is preferable because Li easily diffuses uniformly into the lithium-containing composite oxide.
  • the firing temperature is set within the above-described firing temperature range.
  • the pre-baking temperature is preferably 400 to 700 ° C., more preferably 500 to 650 ° C.
  • Li (Li 1/3 Mn 2/3 ) O having a layered rock salt type crystal structure with a space group of C2 / m.
  • LiM′O 2 having a layered rock-salt type crystal structure of lithium (excessive lithium phase) and space group R-3m (where M ′ contains Ni and Mn as essential elements, and Co or other metal element M is optionally included)
  • M ′ contains Ni and Mn as essential elements, and Co or other metal element M is optionally included
  • the composite oxide is more preferably a composite oxide represented by the following (Formula 2).
  • (Formula 2) Li x Ni ⁇ Co ⁇ Mn ⁇ M ⁇ O y (Formula 2)
  • M is a metal element other than Li, Ni, Co and Mn
  • x is 1.1 to 1.7
  • is 0.15 to 0.5
  • is 0 to 0.2.
  • is 0.3 to 0.8
  • is 0 to 0.1
  • ⁇ + ⁇ + ⁇ + ⁇ 1, and y is necessary to satisfy the valences of Li, Ni, Co, Mn and M
  • x is a molar ratio of Li contained in the composite oxide. When x is within the above range, the discharge capacity of the lithium ion secondary battery is further improved. x is more preferably 1.2 to 1.7.
  • the ranges of ⁇ , ⁇ , ⁇ , and ⁇ are the same as those in Formula 1, and the preferred ranges are also the same.
  • M is the same as M in Formula 1, and the preferred form is also the same.
  • the composite oxide preferably has a logarithmic standard deviation of a crystallite size distribution obtained from a peak of the (003) plane attributed to the crystal structure of the space group R-3m in the X-ray diffraction pattern is 0.198 or less. 0.185 or less is more preferable, and 0.180 or less is more preferable.
  • the lower limit value of the logarithmic standard deviation of the crystallite size distribution is preferably 0.040.
  • the logarithmic standard deviation of the crystallite size distribution of the (003) plane peak attributed to the crystal structure of the space group R-3m is not more than the above upper limit value. It means narrow. When this composite oxide having a narrow crystallite size distribution is used as the positive electrode active material, non-uniform reactions are reduced in the charge / discharge reaction of the lithium ion secondary battery, and the cycle characteristics of the lithium ion secondary battery are improved.
  • Plane peak integrated intensity (I 020 ) ratio (I 020 / I 003 ) is preferably 0.02 to 0.3, more preferably 0.02 to 0.28, and 0.02 to 0.25. Is more preferable.
  • I 020 / I 003 is within the above range, the composite oxide has the two crystal structures in a well-balanced manner, so that the discharge capacity of the lithium ion secondary battery can be easily increased.
  • each Li diffuses in the ab axis direction in the same layer during charge and discharge, and Li enters and exits at the end of the crystallite.
  • the c-axis direction of the crystallite is the stacking direction, and the shape having a long c-axis direction increases the number of ends where Li can enter and exit from other crystallites having the same volume.
  • the crystallite diameter in the ab axis direction is the crystallite diameter determined by the Scherrer equation from the peak of the (110) plane attributed to the crystal structure of the space group R-3m in the X-ray diffraction pattern of the present composite oxide ( D 110 ).
  • the crystallite diameter in the c-axis direction is the crystallite diameter (D 003 ) determined by the Scherrer equation from the (003) plane peak of the space group R-3m in the X-ray diffraction pattern of the present composite oxide.
  • D 003 in the composite oxide is preferably 60 to 140 nm, more preferably 70 to 120 nm, and still more preferably 80 to 115 nm.
  • D 003 is equal to or greater than the lower limit of the above range, it is easy to improve the cycle characteristics of the lithium ion secondary battery. If D 003 is not more than the upper limit of the above range, the discharge capacity of the lithium ion secondary battery can be easily increased.
  • D 110 in this composite oxide is preferably 30 to 80 nm, more preferably 35 to 75 nm, and further preferably 40 to 70 nm. If D 110 is more than the lower limit of the range, the stability of the crystal structure is improved. When D 003 is equal to or less than the upper limit of the above range, it is easy to improve the cycle characteristics of the lithium ion secondary battery.
  • the positive electrode active material in the present invention (hereinafter referred to as the present positive electrode active material) may be the present composite oxide itself, or may be obtained by subjecting the present composite oxide to a surface treatment.
  • the surface treatment is a treatment in which a substance (surface adhesion substance) having a composition different from that of the substance constituting the complex oxide is adhered to the surface of the complex oxide.
  • surface adhesion substances include oxides (aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, etc.), sulfate (sodium sulfate, potassium sulfate, sulfuric acid).
  • oxides aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, etc.
  • sulfate sodium sulfate, potassium sulfate, sulfuric acid.
  • carbonates calcium carbonate, magnesium carbonate, etc.
  • the mass of the surface adhering substance is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and particularly preferably 0.1% by mass or more with respect to the mass of the present composite oxide.
  • the mass of the surface adhering substance is preferably 10% by mass or less, more preferably 5% by mass or less, and particularly preferably 3% by mass or less with respect to the mass of the present composite oxide.
  • the surface treatment is performed by spraying a liquid (coating liquid) containing a predetermined amount of a surface adhering substance onto the present complex oxide and removing the solvent of the coating liquid by baking, or It can be carried out by immersing the composite oxide in a coating solution and performing solid-liquid separation by filtration and solvent removal by firing.
  • the positive electrode active material is preferably secondary particles in which a plurality of primary particles are aggregated.
  • the D 50 of the secondary particles of the positive electrode active material is preferably 3 to 15 ⁇ m, more preferably 3 to 12 ⁇ m, and even more preferably 3.5 to 10 ⁇ m. If D 50 of MotoTadashi active material within the range, easily increase the discharge capacity of the lithium ion battery.
  • BET specific surface area of MotoTadashi active material is preferably 0.5 ⁇ 5m 2 / g, more preferably 1 ⁇ 5m 2 / g, 2 ⁇ 4m 2 / g is more preferred. If the BET specific surface area of the positive electrode active material is not less than the lower limit of the above range, the discharge capacity of the lithium ion secondary battery can be easily increased. If the specific surface area of the positive electrode active material is not more than the upper limit of the above range, the cycle characteristics of the lithium ion secondary battery can be easily improved.
  • the positive electrode for lithium ion secondary batteries in the present invention includes the present positive electrode active material. Specifically, a positive electrode active material layer including the present positive electrode active material, a conductive material, and a binder is formed on a positive electrode current collector.
  • Examples of the conductive material include carbon black (acetylene black, ketjen black, etc.), graphite, vapor grown carbon fiber, carbon nanotube, and the like.
  • Binders include fluorine resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.), polyolefins (polyethylene, polypropylene, etc.), polymers or copolymers with unsaturated bonds (styrene / butadiene rubber, isoprene rubber, butadiene rubber, etc.) ), Acrylic acid polymers or copolymers (acrylic acid copolymers, methacrylic acid copolymers, etc.).
  • Examples of the positive electrode current collector include aluminum foil and stainless steel foil.
  • This positive electrode can be manufactured by the following method, for example.
  • the positive electrode active material, the conductive material, and the binder are dissolved or dispersed in a medium to obtain a slurry.
  • the obtained slurry is applied to a positive electrode current collector, and the medium is removed by drying or the like to form a positive electrode active material layer.
  • you may roll with a roll press etc. Thereby, this positive electrode is obtained.
  • a kneaded product is obtained by kneading the positive electrode active material, the conductive material, and the binder with a medium.
  • the positive electrode is obtained by rolling the obtained kneaded material into a positive electrode current collector.
  • the lithium ion secondary battery (hereinafter referred to as the present battery) in the present invention has the present positive electrode. Specifically, the positive electrode, the negative electrode, and the nonaqueous electrolyte are included.
  • the negative electrode includes a negative electrode active material. Specifically, a negative electrode active material, and a negative electrode active material layer containing a conductive material and a binder as necessary are formed on the negative electrode current collector.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • the negative electrode active material lithium metal, lithium alloy, lithium compound, carbon material, oxide mainly composed of Group 14 metal, oxide mainly composed of Group 15 metal, carbon compound, silicon carbide compound , Silicon oxide compounds, titanium sulfide, boron carbide compounds and the like.
  • Carbon materials for the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbons, cokes (pitch coke, needle coke, petroleum coke, etc.), graphites, glassy carbons, organic high Examples include molecular compound fired bodies (phenol resins, furan resins, etc., fired at an appropriate temperature and carbonized), carbon fibers, activated carbon, carbon blacks, and the like.
  • Examples of the Group 14 metal used in the negative electrode active material include Si and Sn, with Si being preferred.
  • Other negative electrode active materials include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and other nitrides.
  • the negative electrode conductive material and binder the same materials as those for the positive electrode can be used.
  • the negative electrode current collector include metal foils such as nickel foil and copper foil.
  • the negative electrode can be produced, for example, by the following method.
  • a negative electrode active material, a conductive material, and a binder are dissolved or dispersed in a medium to obtain a slurry.
  • the obtained slurry is applied to a negative electrode current collector, dried, pressed, and the like to remove the medium to obtain a negative electrode.
  • Nonaqueous electrolyte examples include a non-aqueous electrolyte solution in which an electrolyte salt is dissolved in an organic solvent; an inorganic solid electrolyte; a solid or gel polymer electrolyte in which an electrolyte salt is mixed or dissolved.
  • organic solvents include those known as organic solvents for non-aqueous electrolytes. Specifically, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetate ester, butyric acid Examples thereof include esters and propionic acid esters. From the viewpoint of voltage stability, cyclic carbonates (such as propylene carbonate) and chain carbonates (such as dimethyl carbonate and diethyl carbonate) are preferable.
  • An organic solvent may be used individually by 1 type, and may mix and use 2 or more types.
  • the inorganic solid electrolyte may be a material having lithium ion conductivity.
  • Examples of the inorganic solid electrolyte include lithium nitride and lithium iodide.
  • polymer used in the solid polymer electrolyte examples include ether polymer compounds (polyethylene oxide, cross-linked products thereof), polymethacrylate ester polymer compounds, acrylate polymer compounds, and the like.
  • the polymer compound may be used alone or in combination of two or more.
  • Polymers used in the gel polymer electrolyte include fluorine polymer compounds (polyvinylidene fluoride, vinylidene fluoride-hexafluoropropylene copolymer, etc.), polyacrylonitrile, acrylonitrile copolymers, ether polymer compounds ( Polyethylene oxide, a cross-linked product thereof, and the like.
  • Examples of the monomer to be copolymerized with the copolymer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • the polymer compound is preferably a fluorine-based polymer compound from the viewpoint of stability against redox reaction.
  • electrolyte salt may be used as long as it is used for a lithium ion secondary battery.
  • electrolyte salt examples include LiClO 4 , LiPF 6 , LiBF 4 , and CH 3 SO 3 Li.
  • a separator may be interposed between the positive electrode and the negative electrode to prevent a short circuit.
  • the separator include a porous film.
  • a non-aqueous electrolyte is used by impregnating the porous membrane.
  • a gelled electrolyte obtained by impregnating a porous membrane with a non-aqueous electrolyte may be used.
  • Examples of the battery exterior material include nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, a resin material, and a film material.
  • Examples of the shape of the lithium ion secondary battery include a coin shape, a sheet shape (film shape), a folded shape, a wound bottomed cylindrical shape, a button shape, and the like, and can be appropriately selected according to the application.
  • the hydroxide or positive electrode active material is sufficiently dispersed in water by ultrasonic treatment, and measured with a laser diffraction / scattering particle size distribution measuring device (manufactured by Nikkiso Co., Ltd., MT-3300EX). Frequency distribution and cumulative volume distribution curve To obtain a volume-based particle size distribution. From the obtained cumulative volume distribution curve was determined D 50.
  • a measuring device As a measuring device, a specific surface area / pore distribution measuring device (manufactured by Shimadzu Corporation, ASAP2020) was used. 0.5 g of hydroxide is put into a sample cell for measurement, and 90 ° C. and 500 ⁇ Hg (66.7 Pa) at 10 ° C./min, 1 mmHg / min (133.3 Pa / min) using a degassing port of the measuring device. The solution was heated up and evacuated until 60 minutes. The temperature was raised to 105 ° C. at 3 ° C./min, maintained for 8 hours, and then purged with nitrogen gas.
  • BET specific surface area of hydroxide Using the analysis software attached to the specific surface area / pore distribution measuring device (ASAP2020 manufactured by Shimadzu Corporation), the relative pressure P / P 0 on the adsorption isotherm is 10 points from 0.06 to 0.3 and the BET method. was used to calculate the BET specific surface area.
  • BET specific surface area of positive electrode active material The BET specific surface area of the positive electrode active material was calculated by a nitrogen adsorption BET method using a specific surface area measuring device (manufactured by Mountec, HM model-1208). Deaeration was performed at 200 ° C. for 20 minutes.
  • composition analysis The composition analysis of the hydroxide and the lithium-containing composite oxide was performed using a plasma emission analyzer (manufactured by SII Nanotechnology, SPS3100H). ⁇ , ⁇ , ⁇ , and x in Formula 1 and Formula 2 were calculated from the molar ratio of Li, Ni, Co, and Mn determined from the composition analysis.
  • X-ray diffraction X-ray diffraction of the lithium-containing composite oxide was measured using an X-ray diffractometer (manufactured by Rigaku Corporation, apparatus name: SmartLab). Table 1 shows the measurement conditions. The measurement was performed at 25 ° C. Before the measurement, 1 g of the lithium-containing composite oxide and 30 mg of the X-ray diffraction standard sample 640d were mixed in an agate mortar, and this was used as a measurement sample. The obtained X-ray diffraction pattern was subjected to peak search using integrated powder X-ray analysis software PDXL2 manufactured by Rigaku Corporation. From each peak, D 003 , D 110 and I 020 / I 003 were determined.
  • CSDA Crystallite size distribution analysis software
  • the logarithmic standard deviation of the crystallite size distribution was determined from the crystallite size distribution (number distribution) by the crystallite size distribution analysis software CSDA (Ver. 1.3) manufactured by Rigaku Corporation.
  • the logarithmic standard deviation of the crystallite size distribution of the lithium-containing composite oxide is a measure of the cycle characteristics of the lithium secondary battery. When the logarithmic standard deviation of the crystallite size distribution of the lithium-containing composite oxide is 0.198 or less, the cycle characteristics of the lithium secondary battery are good.
  • a positive electrode sheet obtained by punching a positive electrode material sheet into a circular shape of 18 mm ⁇ was used.
  • Lithium foil was used as the negative electrode material, and a negative electrode was obtained by punching out a lithium foil into a 19 mm ⁇ circle.
  • porous polypropylene having a thickness of 25 ⁇ m was used.
  • electrolytic solution a solution in which LiPF 6 was dissolved in a mixed solution of ethylene carbonate and diethyl carbonate in a volume ratio of 3: 7 so as to have a concentration of 1 mol / dm 3 was used.
  • a positive electrode, a negative electrode, a separator, and an electrolytic solution a flange-type lithium secondary battery was assembled in a glove box in an argon atmosphere.
  • Nickel (II) sulfate hexahydrate and manganese (II) sulfate pentahydrate were mixed so that the molar ratio of Ni and Mn was as shown in Table 2, and the total amount of sulfate was 1.5 mol. / Kg was dissolved in distilled water to obtain a sulfate aqueous solution.
  • a pH adjusting solution an aqueous sodium hydroxide solution in which sodium hydroxide was dissolved in distilled water to a concentration of 1.5 mol / kg was obtained.
  • As a complexing agent ammonium sulfate was dissolved in distilled water to a concentration of 1.5 mol / kg to obtain an aqueous ammonium sulfate solution.
  • Distilled water was put into a 2 L baffled glass reaction vessel and heated to 50 ° C. with a mantle heater. While stirring the liquid in the reaction vessel with a paddle type stirring blade, an aqueous sulfate solution was added at a rate of 5.0 g / min and an aqueous ammonium sulfate solution at a rate of 0.5 g / min for 12 hours, and the pH of the mixed solution was 10. A pH adjusting solution was added so as to maintain the value of 5, and a hydroxide containing Ni and Mn was precipitated. During the addition of the raw material solution, nitrogen gas was flowed into the reaction vessel at a flow rate of 1.0 L / min.
  • the liquid which does not contain a hydroxide was continuously extracted using a filter cloth so that the liquid volume in the reaction tank did not exceed 2 L.
  • washing was performed by repeating pressure filtration and dispersion in distilled water. When the electrical conductivity of the filtrate reached 20 mS / m or less, washing was terminated, and the hydroxide was dried at 120 ° C. for 15 hours.
  • Examples 2 and 3 The lithium-containing composite oxides of Examples 2 and 3 were obtained in the same manner as Example 1 except that the conditions shown in Tables 2 and 3 were used. The lithium-containing composite oxide was used as a positive electrode active material. Tables 3 and 4 show the results of various measurements and evaluations.
  • Example 4 Sucrose (manufactured by Kanto Chemical Co., Inc., reagent) was prepared as a water-soluble organic substance (saccharide). Sucrose was added to the sulfate aqueous solution so that the ratio of sucrose mass to sucrose mass (sucrose / hydroxide) was 0.076, and the conditions shown in Table 2 and Table 3 were used. The lithium-containing composite oxide of Example 4 was obtained in the same manner as in Example 1. The lithium-containing composite oxide was used as a positive electrode active material. Tables 3 and 4 show the results of various measurements and evaluations.
  • Example 5 The ratio of the mass of polyethylene glycol to the mass of polyethylene glycol (PEG # 6000, manufactured by Kanto Chemical Co., Inc.) as a water-soluble organic substance (excluding sugars) instead of sucrose (polyethylene glycol / hydroxide)
  • the lithium-containing composite oxide of Example 5 was obtained in the same manner as in Example 4 except that the amount was 0.05.
  • the lithium-containing composite oxide was used as a positive electrode active material. Tables 3 and 4 show the results of various measurements and evaluations.
  • Example 6 instead of sucrose, the ratio of the weight of polyethylene glycol to the weight of hydroxide to obtain polyethylene glycol (PEG # 20000, manufactured by Kanto Chemical Co., Inc.) as a water-soluble organic substance (excluding sugars) (polyethylene glycol / hydroxide)
  • polyethylene glycol / hydroxide polyethylene glycol / hydroxide
  • the lithium-containing composite oxide of Example 6 was obtained in the same manner as in Example 4 except that the amount was 0.05.
  • the lithium-containing composite oxide was used as a positive electrode active material. Tables 3 and 4 show the results of various measurements and evaluations.
  • Example 7 The ratio of the mass of polyethylene glycol to the mass of polyethylene glycol (PEG # 200, manufactured by Kanto Chemical Co., Inc.) as a water-soluble organic substance (excluding sugars) instead of sucrose (polyethylene glycol / hydroxide)
  • the lithium-containing composite oxide of Example 7 was obtained in the same manner as in Example 4 except that the amount was 0.05.
  • the lithium-containing composite oxide was used as a positive electrode active material. Tables 3 and 4 show the results of various measurements and evaluations.
  • the main firing temperature was 990 ° C., and firing was performed at a high temperature.
  • all of the lithium-containing composite oxides obtained in each example had a small logarithmic standard deviation of the crystallite size distribution obtained from the (003) plane peak attributed to the crystal structure of R-3m. This is considered to show that the homogeneity of the crystal structure of the lithium-containing composite oxide of each example is high.
  • FIG. 3 shows the relationship between ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of hydroxide and initial discharge capacity of the lithium secondary battery.
  • FIG. 4 shows the relationship between ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total of hydroxide and 1C discharge capacity of the lithium secondary battery.
  • FIG. 5 shows the relationship between the BET specific surface area of the hydroxide and the initial discharge capacity of the lithium secondary battery. As shown in FIG. 3 and FIG.
  • Example 4 ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ of Examples (Examples 2, 3, 5 to 7) where total is 23% or more
  • a lithium secondary battery finally obtained using a hydroxide is a comparative example (Example 1) where ⁇ dA / dlog (D) ⁇ D ⁇ 10 nm / ⁇ dA / dlog (D) ⁇ total is less than 23%.
  • the initial discharge capacity and the discharge capacity of 1C were higher.
  • FIG. 5 even when the BET specific surface area of the hydroxide was high, the initial discharge capacity and the 1C discharge capacity of the lithium secondary battery were not sufficiently high.
  • a lithium ion secondary battery excellent in discharge capacity and cycle characteristics can be obtained by using the lithium-containing composite oxide obtained therefrom as a positive electrode active material.
  • reaction tanks 12 stirring devices, 14 stirring blades, 16 filter media.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

リチウム含有複合酸化物の前駆体であって、これを用いて得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができる遷移金属含有水酸化物の提供。 リチウム含有複合酸化物の前駆体である遷移金属含有水酸化物であり、BJH法によって求めた、細孔径に対する対数微分細孔比表面積の分布において、分布全体の対数微分細孔比表面積を合計した値100%のうちの、細孔径が10nm以上の対数微分細孔比表面積を合計した値の割合が、23%以上である遷移金属含有水酸化物。

Description

遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法
 本発明は、リチウム含有複合酸化物の前駆体である遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法に関する。
 リチウムイオン二次電池の正極に含まれる正極活物質としては、リチウム含有複合酸化物、特にLiCoOがよく知られている。しかし、近年、携帯型電子機器や車載用のリチウムイオン二次電池には、小型化、軽量化が求められ、正極活物質の単位質量あたりのリチウムイオン二次電池の放電容量(以下、単に放電容量とも記す。)のさらなる向上が要求されている。
 リチウムイオン二次電池の放電容量をさらに高くできる正極活物質としては、LiおよびMnの含有率が高い正極活物質、いわゆるリチウムリッチ系正極活物質が注目されている。しかし、リチウムリッチ系正極活物質を用いたリチウムイオン二次電池は、充放電サイクルを繰り返した際に充放電容量を維持する特性(以下、サイクル特性と記す。)が低くなるという問題を有する。
 リチウムリッチ系正極活物質としては、下記の(1)が提案されている。
 (1)Mn(OH1-x(ただし、Mは、Ni、Co、Mn、Al、Cu、Fe、Mg、B、Crおよび2周期の遷移金属からなる群から選択される2つ以上であり、0.4≦a≦1、0≦b≦0.6、a+b≦1、0<x<0.5である。)で表される複合遷移金属化合物および糖類を含む遷移金属前駆体と、リチウム前駆体とを混合し、酸化雰囲気で焼成して得られた正極活物質(特許文献1)。
 特許文献1には、上記で得られたリチウムリッチ系正極活物質を使用すれば、レート特性、寿命特性および充放電効率に優れたリチウムイオン二次電池を得ることができると記載されている。
日本特表2015-517186号公報
 しかし、本発明者が検討したところ、糖類を含む遷移金属前駆体とリチウム前駆体との混合物を酸化雰囲気で焼成して得られた正極活物質を用いたリチウムイオン二次電池は、放電容量が低くなるという課題があった。
 本発明は、リチウム含有複合酸化物の前駆体であって、これを用いて得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができる遷移金属含有水酸化物;および放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができるリチウム含有複合酸化物を製造できる方法の提供を目的とする。
 本発明は、以下の態様を有する。
 <1>リチウム含有複合酸化物の前駆体である遷移金属含有水酸化物であり、BJH法によって求めた、細孔径に対する対数微分細孔比表面積の分布において、分布全体の対数微分細孔比表面積を合計した値100%のうちの、細孔径が10nm以上の対数微分細孔比表面積を合計した値の割合が、23%以上である、遷移金属含有水酸化物。
 <2>前記遷移金属含有水酸化物は、BJH法によって求めた、細孔径に対する対数微分細孔比表面積の分布において、細孔径が10nm以上の対数微分細孔比表面積を合計した値が、300m/g以上である、<1>の遷移金属含有水酸化物。
 <3>下記(式1)で表される遷移金属含有水酸化物である、<1>または<2>の遷移金属含有水酸化物。
 NiαCoβMnγδ(OH) (式1)
 ただし、MはLi、Ni、CoおよびMn以外の金属元素であり、αは0.15~0.5であり、βは0~0.2であり、γは0.3~0.8であり、δは0~0.1であり、α+β+γ+δ=1である。
 <4>前記遷移金属含有水酸化物は、D50が、3.5~15.5μmである、<1>~<3>のいずれかの遷移金属含有水酸化物。
 <5>前記<1>~<4>のいずれかの遷移金属含有水酸化物と、リチウム化合物とを混合し、900℃以上で焼成する工程を含む、リチウム含有複合酸化物の製造方法。
 本発明の遷移金属含有水酸化物によれば、これを用いて得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができる。本発明のリチウム含有複合酸化物の製造方法によれば、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができるリチウム含有複合酸化物を製造できる。
濃縮法による遷移金属含有水酸化物の製造装置の一例を示す概略構成図である。 例1~7の遷移金属含有水酸化物の細孔径に対する対数微分細孔比表面積dA/dlog(D)の分布を示すグラフである。 例1~7の遷移金属含有水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalとリチウム二次電池の初回放電容量との関係を示すグラフである。 例1~7の遷移金属含有水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalとリチウム二次電池の1C放電容量との関係を示すグラフである。 例1~7の遷移金属含有水酸化物のBET比表面積とリチウム二次電池の初回放電容量との関係を示すグラフである。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「BJH法」は、吸着等温線から細孔径分布を求める方法の一つである、Barrett,JoynerおよびHalendaによるメソ細孔径分布の決定法である。吸着等温線の測定では、吸着ガスとして窒素ガスを用いる。また、遷移金属含有水酸化物の吸着等温線の測定では、実施例に記載の条件にて乾燥した水酸化物を用いる。
 「対数微分細孔比表面積」は、測定ポイント間(細孔径区間)の細孔表面積Aの増加分である差分細孔表面積dAを、該区間における細孔径Dの上値と下値との常用対数の差分値dlog(D)で割った値dA/dlog(D)である。
 「細孔径に対する対数微分細孔比表面積の分布」は、各測定ポイント間(細孔径区間)の対数微分細孔比表面積dA/dlog(D)を、各区間における細孔径Dの平均値に対してプロットした分布である。
 「BJH法によって求めた、細孔径に対する対数微分細孔比表面積の分布」は、市販の比表面積/細孔分布測定装置を用いて吸着等温線を測定し、該吸着等温線から装置に付属の解析ソフトウェアを用いて算出する。
 「BET比表面積」は、BET(Brunauer,Emmet,Teller)法によって吸着等温線から求めた比表面積である。吸着等温線の測定では、吸着ガスとして窒素ガスを用いる。また、遷移金属含有水酸化物の吸着等温線の測定では、実施例に記載の条件にて乾燥した水酸化物を用いる。
 「D50」は、体積基準で求めた粒度分布の全体積を100%とした累積体積分布曲線において50%となる点の粒子径、すなわち体積基準累積50%径である。
 「粒度分布」は、レーザー散乱粒度分布測定装置(たとえば、レーザー回折/散乱式粒子径分布測定装置等)で測定した頻度分布および累積体積分布曲線から求められる。測定は、粉末を水媒体中に超音波処理等で充分に分散させて行われる。
 「結晶子径」は、X線回折パターンにおける特定の(abc)面のピークについて、該ピークの回折角2θ(deg)および半値幅B(rad)から下記シェラーの式によって求める。
 Dabc=(0.9λ)/(Bcosθ)
 ただし、Dabcは、(abc)面の結晶子径であり、λは、X線の波長である。
 「結晶子径分布」は、X線回折パターンにおける特定のピークについて、リガク社製の結晶子サイズ分布解析ソフトウェアCSDAを用いて解析して得られたものである。解析原理の説明は、リガク社製の結晶子サイズ分布解析ソフトウェアCSDAのユーザーズマニュアルに記載され、詳細については、該マニュアルに記載の下記参考文献に記載されている。
 (1)井田 隆,2006年度名古屋工業大学セラミックス基盤工学研究センター年報,Vol.6,p.1(2006).
 (2)T.Ida,S.Shimazaki,H.Hibino and H.Toraya,J.Appl.Cryst.,36,1107(2003).
 (3)T.Ida and K.Kimura,J.Appl.Cryst.,32,982(1999).
 (4)T.Ida and K.Kimura,J.Appl.Cryst.,32,634(1999).
 (5)T.Ida,Rev.Sci.Instrum.,69,2268(1998).
 (6)International Tables for Crystallography Volume C Second Edition,Edited by A.J.C.Wilson and E.Prince,Kluwer Academic
 Publishers,Netherlands(1999).
 (7)X-Rays in Theory Experiment Second Edition,A.H.Compton and S.K.Allison,D.Van.Norstrand Company,New York(1936).
 「結晶子径分布の対数標準偏差」は、前記結晶子径分布(個数分布)からリガク社製の結晶子サイズ分布解析ソフトウェアCSDAによって求めた値である。
 「水酸化物」は、水酸化物、および水酸化物が一部酸化しているオキシ水酸化物を含む。すなわち、Me(OH)と記載している化合物(ただし、MeはLi以外の金属元素である)は、Me(OH)、MeOOHおよびこれらの混合物を含む。
 「Li」との表記は、特に言及しない限り当該金属単体ではなく、Li元素であることを示す。Ni、Co、Mn等の他の元素の表記も同様である。
 遷移金属含有水酸化物およびリチウム含有複合酸化物の組成分析は、誘導結合プラズマ分析法(以下、ICPと記す。)によって行う。また、リチウム含有複合酸化物の元素の比率は、初回充電(活性化処理ともいう。)前のリチウム含有複合酸化物における値である。
<遷移金属含有水酸化物>
 本発明の遷移金属含有水酸化物(以下、本水酸化物とも記す。)は、リチウム含有複合酸化物の前駆体として好適に使用される。本水酸化物は、リチウムイオン二次電池の放電電圧および放電容量がさらに優れる点から、NiおよびMnを必須元素として含むことが好ましい。本水酸化物は、リチウムイオン二次電池のレート特性がさらに優れる点から、Coをさらに含んでもよい。本水酸化物は、必要に応じてLi、Ni、CoおよびMn以外の金属元素を含んでもよい。
 本水酸化物は、たとえば図2に示すような、BJH法によって求めた、細孔径Dに対する対数微分細孔比表面積dA/dlog(D)の分布において、分布全体の対数微分細孔比表面積を合計した値(以下、{dA/dlog(D)}totalとも記す。)100%のうちの、細孔径が10nm以上の対数微分細孔比表面積を合計した値(以下、{dA/dlog(D)}D≧10nmとも記す。)の割合(以下、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalとも記す。)が、23%以上である。前記割合は、24%以上が好ましく、25%以上がより好ましい。
 本水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%以上であれば、これから得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができる。さらに、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが24%以上または25%以上であれば、これから得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性がより優れたリチウムイオン二次電池を得ることができる。
 本水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalの上限は、特に限定されず、理想的には100%である。
 本水酸化物の{dA/dlog(D)}D≧10nmは、リチウムイオン二次電池の初回の放電容量がさらに優れる点から、300m/g以上が好ましく、305m/g以上がより好ましく、315m/g以上がさらに好ましい。
 本水酸化物の{dA/dlog(D)}D≧10nmは、リチウムイオン二次電池のサイクル特性がさらに優れる点から、500m/g以下が好ましく、450m/g以下がより好ましく、400m/g以下がさらに好ましい。
 本水酸化物としては、下記(式1)で表される水酸化物が好ましい。
 NiαCoβMnγδ(OH)  (式1)
 ただし、MはLi、Ni、CoおよびMn以外の金属元素であり、αは0.15~0.5であり、βは0~0.2であり、γは0.3~0.8であり、δは0~0.1であり、α+β+γ+δ=1である。
 αは、本水酸化物に含まれるNiのモル比である。αが前記範囲内であれば、リチウムイオン二次電池の放電容量および放電電圧がさらに優れる。αは、0.2~0.4がより好ましい。
 βは、本水酸化物に含まれるCoのモル比である。βが前記範囲内であれば、リチウムイオン二次電池の放電容量および放電電圧がさらに優れる。βは、0~0.09がより好ましい。
 γは、本水酸化物に含まれるMnのモル比である。γを前記範囲内とし、かつ後述するLi/Me比を1.1以上とすることによって、リチウムリッチ系正極活物質が得られる。γは、リチウムイオン二次電池の放電容量と放電電圧にさらに優れる点から、0.45~0.8がより好ましい。
 本水酸化物は、必要に応じて他の金属元素Mを含んでいてもよい。他の金属元素Mとしては、リチウムイオン二次電池の放電容量がさらに優れる点から、Na、Mg、Ti、Zr、Al、WおよびMoからなる群から選ばれる1種以上の元素が好ましく、充放電サイクルを繰り返すことによるリチウムイオン二次電池の放電電圧の低下を抑えやすい点から、Ti、ZrおよびAlからなる群から選ばれる1種以上がより好ましい。
 δは、本水酸化物に含まれるMのモル比である。δは、0~0.08がより好ましい。
 本水酸化物は、D50が、3.5~15.5μmであることが好ましい。前記D50は、3.5~14μmがより好ましい。水酸化物のD50が前記範囲内であれば、リチウムイオン二次電池の放電容量がさらに優れる。
 本水酸化物は、BET比表面積が、10~200m/gであることが好ましい。前記BET比表面積は、20~100m/gがより好ましい。本水酸化物の比表面積が前記範囲の下限値以上であれば、リチウムイオン二次電池の放電容量がさらに優れる。本水酸化物の比表面積が前記範囲の上限値以下であれば、リチウムイオン二次電池のサイクル特性がさらに優れる。
 以上説明した本水酸化物にあっては、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%以上であるため、下記の理由から、これから得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができると考えられる。
 リチウムイオン二次電池の放電容量を高くするためには、リチウム含有複合酸化物のBET比表面積を大きくすればよいことが知られている。
 リチウムイオン二次電池のサイクル特性を高くするためには、リチウム含有複合酸化物の結晶構造の均質性を高くすればよい。ここで、リチウム含有複合酸化物の結晶構造の均質性を高くする方法として、本発明者らは、水酸化物とリチウム化合物との混合物を焼成する温度を高くすることを見出している。
 しかし、リチウム含有複合酸化物を得る際に、前記混合物を焼成する温度を高くすると、リチウム含有複合酸化物のBET比表面積が小さくなるおそれがある。
 これに対して、本水酸化物は、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%以上である、すなわち比較的大きい細孔が比較的多く存在している。そのため、本水酸化物とリチウム化合物との混合物を高温で焼成しても、リチウム含有複合酸化物の二次粒子内により適切な細孔構造が形成されると考えられる。その結果、リチウム含有複合酸化物の結晶構造の均質性を高くしつつ、BET比表面積を大きくできるため、リチウムイオン二次電池の放電容量とサイクル特性を高くできる。
<遷移金属含有水酸化物の製造方法>
 本水酸化物は、たとえば、下記の方法(I)または方法(II)によって製造できる。本水酸化物の製造方法としては、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが高い本水酸化物を製造しやすい点から、方法(II)が好ましい。
 方法(I):
 少なくともニッケル塩、マンガン塩、およびアルカリ金属水酸化物を水溶液状態にて混合し、水酸化物を析出させるアルカリ共沈法において、反応温度、反応時間、混合液のpH、錯化剤の量を調整する方法。
 方法(II):
 少なくともニッケル塩、マンガン塩、およびアルカリ金属水酸化物を水溶液状態にて混合し、水酸化物を析出させるアルカリ共沈法において、反応温度、反応時間、混合液のpH、錯化剤の量を調整し、さらに、水溶性有機物(ただし、糖類を除く。)を水溶液状態にて同時に混合する方法。
 (方法(I))
 方法(I)は、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを23%以上にするために、アルカリ共沈法における条件(反応温度、反応時間、混合液のpH、錯化剤の量)を調整する方法である。
 アルカリ共沈法としては、金属塩水溶液と、アルカリ金属水酸化物を含むpH調整液とを連続的に反応槽に供給して混合し、混合液中のpHを一定に保ちながら、水酸化物を析出させる方法が好ましい。
 金属塩としては、各遷移金属元素の硝酸塩、酢酸塩、塩化物塩、硫酸塩が挙げられ、材料コストが比較的安価であり、優れた電池特性が得られる点から、硫酸塩が好ましい。
 Niの硫酸塩としては、たとえば、硫酸ニッケル(II)・六水和物、硫酸ニッケル(II)・七水和物、硫酸ニッケル(II)アンモニウム・六水和物等が挙げられる。
 Coの硫酸塩としては、たとえば、硫酸コバルト(II)・七水和物、硫酸コバルト(II)アンモニウム・六水和物等が挙げられる。
 Mnの硫酸塩としては、たとえば、硫酸マンガン(II)・五水和物、硫酸マンガン(II)アンモニウム・六水和物等が挙げられる。
 金属塩水溶液におけるNi、Co、MnおよびMの比率は、水酸化物に含まれるNi、Co、MnおよびMの比率と同じにする。
 金属塩水溶液中のNi、Co、MnおよびMの合計濃度は、0.1~3mol/kgが好ましく、0.5~2.5mol/kgがより好ましい。Ni、Co、MnおよびMの合計濃度が前記下限値以上であれば、生産性に優れる。Ni、Co、MnおよびMの合計濃度が前記上限値以下であれば、金属塩を水に充分に溶解できる。
 pH調整液としては、アルカリ金属水酸化物を含む水溶液が好ましい。
 アルカリ金属水酸化物としては、水酸化ナトリウムまたは水酸化カリウムが好適に用いられる。
 混合液のpHは、10~12が好ましく、10.5~11.5がより好ましい。混合液のpHが前記範囲の下限値以上であれば、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを23%以上にしやすい。混合液のpHが前記範囲の上限値以下であれば、水酸化物のD50や比表面積を所望の範囲にできる。
 金属塩水溶液とpH調整液との混合中は、共沈反応を適切に進める点から、反応槽内のpHを前記範囲内で設定したpHに保つことが好ましい。
 混合液には、Ni、Co、MnおよびMの各イオンの溶解度を調整するために、錯化剤を加えてもよい。錯化剤としては、アンモニア水溶液または硫酸アンモニウム水溶液が挙げられる。
 Ni、Co、MnおよびMの合計モル量(Me)に対するアンモニアまたはアンモニウムイオンのモル量の比(NH/MeまたはNH /Me)は、0.01~0.3が好ましく、0.01~0.1がより好ましい。NH/MeまたはNH /Meが前記範囲の下限値以上であれば、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを23%以上にしやすい。NH/MeまたはNH /Meが前記範囲の上限値以下であれば、水酸化物のD50や比表面積を所望の範囲にできる。
 金属塩水溶液とpH調整液との混合中の混合液の温度(反応温度)は、20~80℃が好ましく、25~60℃がより好ましい。反応温度が前記範囲の下限値以上であれば、反応が充分に促進される。反応温度が前記範囲の上限値以下であれば、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを23%以上にしやすい。
 金属塩水溶液とpH調整液との混合時間(反応時間)は、1~48時間が好ましく、3~30時間がより好ましい。反応時間が前記範囲の下限値以上であれば、反応が充分に進行する。反応時間が前記範囲の上限値以下であれば、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを23%以上にしやすい。
 金属塩水溶液とpH調整液とは、図1に示すように、反応槽10中にて、撹拌装置12に取り付けられた撹拌翼14よって撹拌しながら混合することが好ましい。
 撹拌装置としては、スリーワンモータ等が挙げられる。撹拌翼としては、アンカー型、プロペラ型、パドル型等が挙げられる。
 金属塩水溶液とpH調整液との混合は、水酸化物の酸化を抑制する点から、窒素雰囲気下またはアルゴン雰囲気下等の不活性雰囲気化で行うことが好ましい。製造コストの点から、窒素雰囲気下で行うことが特に好ましい。
 水酸化物を析出させる方法としては、図1に示すように、反応槽10内の混合液をろ材16(ろ布等)を用いて抜き出して水酸化物を濃縮しながら析出反応を行う方法(以下、濃縮法と記す。)と、反応槽内の混合液をろ材を用いずに水酸化物とともに抜き出して水酸化物の濃度を低く保ちながら析出反応を行う方法(以下、オーバーフロー法と記す。)の2種類が挙げられる。粒度分布の広がりを狭くできる点から、濃縮法が好ましい。
 得られた水酸化物は、洗浄して不純物イオンを取り除くことが好ましい。不純物イオンが残ると、焼成して得られた正極活物質の表面および結晶内に不純物が存在し、電池特性に悪影響を与えるおそれがある。
 洗浄方法としては、加圧ろ過と蒸留水への分散とを繰り返し行う方法等が挙げられる。洗浄を行う場合、水酸化物を蒸留水へ分散させたときの上澄み液またはろ液の電気伝導度が50mS/m以下になるまで繰り返すことが好ましく、20mS/m以下になるまで繰り返すことがより好ましい。
 また、水酸化物の洗浄後には、必要に応じて水酸化物を乾燥させることが好ましい。
 水酸化物の乾燥温度は、60~200℃が好ましく、80~130℃がより好ましい。乾燥温度が前記下限値以上であれば、乾燥時間を短縮できる。乾燥温度が前記上限値以下であれば、水酸化物の酸化の進行を抑えることができる。
 乾燥時間は、水酸化物の量により適切に設定すればよく、1~300時間が好ましく、5~120時間がより好ましい。
 (方法(II))
 方法(II)は、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを23%以上にするために、アルカリ共沈法において少なくともニッケル塩、マンガン塩、アルカリ金属水酸化物、および水溶性有機物(ただし、糖類を除く。)を水溶液状態にて混合する方法である。
 アルカリ共沈法は、方法(I)と同様に行えばよく、好ましい条件も方法(I)と同様である。
 水溶性有機物としては、水酸化物の比表面積が大きくなり、細孔を形成しやすい点から、直鎖の化合物が好ましい。水溶性有機物としては、結晶成長を阻害しない点から、ノニオン性の化合物が好ましい。ノニオン性の水溶性有機物としては、アルコール、エーテル等が挙げられる。
 アルコールとしては、メタノール、エタノール、1-プロパノール、2-プロパノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、ポリエチレングリコール、ブタンジオール、グリセリン等が挙げられる。
 水溶性有機物としては、揮発性が低い点から、ポリエチレングリコールが特に好ましい。
 水酸化物の質量に対する水溶性有機物の質量の比(水溶性有機物/水酸化物)は、0.001~0.08が好ましく、0.001~0.05がより好ましい。水溶性有機物/Meが前記範囲の下限値以上であれば、水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalを充分に高くできる。水溶性有機物/Meが前記範囲の上限値以下であれば、均一な生成物を得ることができる。
 水溶性有機物は、金属塩水溶液およびpH調整液のいずれか一方または両方にあらかじめ溶解させてもよく;金属塩水溶液およびpH調整液とは別に水溶性有機物の水溶液を用意し、これを反応槽に供給してもよい。
 以上説明した方法(II)にあっては、少なくともニッケル塩、マンガン塩、アルカリ金属水酸化物、および水溶性有機物(ただし、糖類を除く。)を水溶液状態にて混合し、遷移金属含有水酸化物を析出させているため、一次粒子の間に水溶性有機物が存在することから、得られる水酸化物には、比較的大きい細孔が比較的多く存在するようになる。そのため、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%以上である本水酸化物、すなわち、これから得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができる本水酸化物を製造できる。
<リチウム含有複合酸化物の製造方法>
 本発明のリチウム含有複合酸化物の製造方法(以下、本製造方法と記す。)は、本水酸化物と、リチウム化合物とを混合し、混合物を900℃以上で焼成する工程を含む。
 リチウム化合物としては、炭酸リチウム、水酸化リチウムおよび硝酸リチウムからなる群から選ばれる1種が好ましい。製造工程での取扱いの容易性の点から、炭酸リチウムがより好ましい。
 本水酸化物に含まれるNi、Co、MnおよびMの合計モル量(Me)に対するリチウム化合物に含まれるLiのモル量の比(Li/Me)は、1.1~1.7が好ましく、1.2~1.7がより好ましく、1.3~1.7がさらに好ましい。Li/Me比は、リチウム含有複合酸化物の組成を決定する要素である。すなわち、目的とするリチウム含有複合酸化物の組成に応じて、Li/Me比は上記した範囲の中で適宜設定される。
 本水酸化物とリチウム化合物とを混合する方法としては、たとえば、ロッキングミキサ、ナウタミキサ、スパイラルミキサ、カッターミル、Vミキサ等を使用する方法等が挙げられる。
 混合物を焼成する温度(焼成温度)は、900℃以上であり、950℃以上が好ましく、980℃以上がより好ましい。焼成温度は、1100℃以下が好ましく、1050℃以下がより好ましい。焼成温度が前記範囲の下限値以上であれば、サイクル特性に優れたリチウムイオン二次電池を得ることができるリチウム含有複合酸化物を製造できる。焼成温度が前記範囲の上限値以下であれば、焼成過程においてLiの揮発を抑制でき、混合時のLi/Me比に近いリチウム含有複合酸化物が得られる。
 焼成装置としては、電気炉、連続焼成炉、ロータリーキルン等が挙げられる。
 焼成時には、水酸化物を酸化する必要があることから、大気下で焼成を行うことが好ましく、空気を供給しながら行うことが特に好ましい。
 空気の供給速度は、焼成装置の炉内容積1Lあたり、10~200mL/分が好ましく、40~150mL/分がより好ましい。焼成時に空気を供給することによって、水酸化物に含まれる金属元素が充分に酸化される。
 焼成時間は、4~40時間が好ましく、4~20時間がより好ましい。
 焼成は、1段焼成であってもよく、900℃以上の本焼成を行う前に仮焼成を行う2段焼成であってもよい。Liがリチウム含有複合酸化物中に均一に拡散しやすい点から、2段焼成が好ましい。2段焼成を行う場合、本焼成の温度を上記した焼成温度の範囲で行う。そして、仮焼成の温度は、400~700℃が好ましく、500~650℃がより好ましい。
 以上説明した本製造方法にあっては、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%以上である本水酸化物と、リチウム化合物とを混合し、900以上で焼成しているため、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができるリチウム含有複合酸化物を製造できる。
<リチウム含有複合酸化物>
 本製造方法で得られるリチウム含有複合酸化物(以下、本複合酸化物とも記す。)としては、空間群C2/mの層状岩塩型結晶構造を有するLi(Li1/3Mn2/3)O(リチウム過剰相)と空間群R-3mの層状岩塩型結晶構造を有するLiM'O(ただし、M'は、NiおよびMnを必須元素として含み、Coまたは他の金属元素Mを任意に含むものである。)との固溶体が好ましい。本複合酸化物がこれらの結晶構造を有することは、X線回折測定により確認できる。
 典型的には、X線回折測定において、空間群C2/mの(020)面のピークが、2θ=20~22degに見られる。また、X線回折測定において、空間群R-3mの(003)面のピークが、2θ=18~20degに見られ、空間群R-3mの(110)面のピークが、2θ=64~66degに見られる。
 本複合酸化物としては、下記(式2)で表される複合酸化物がより好ましい。
 LiNiαCoβMnγδ (式2)
 ただし、MはLi、Ni、CoおよびMn以外の金属元素であり、xは1.1~1.7であり、αは0.15~0.5であり、βは0~0.2であり、γは0.3~0.8であり、δは0~0.1であり、α+β+γ+δ=1であり、yはLi、Ni、Co、MnおよびMの原子価を満足するのに必要な酸素(O)のモル数である。
 xは、本複合酸化物に含まれるLiのモル比である。xが前記範囲内であれば、リチウムイオン二次電池の放電容量がさらに優れる。xは、1.2~1.7がより好ましい。
 α、β、γおよびδの範囲は、式1における範囲と同じであり、好ましい範囲も同様である。
 Mは、式1におけるMと同じであり、好ましい形態も同様である。
 本複合酸化物は、X線回折パターンにおける空間群R-3mの結晶構造に帰属する(003)面のピークから求めた結晶子径分布の対数標準偏差が0.198以下であることが好ましく、0.185以下がより好ましく、0.180以下がさらに好ましい。結晶子径分布の対数標準偏差の下限値は、0.040が好ましい。
 固溶体系の本複合酸化物において、空間群R-3mの結晶構造に帰属する(003)面のピークの結晶子径分布の対数標準偏差が前記上限値以下であることは、結晶子径分布が狭いことを意味する。結晶子径分布が狭い本複合酸化物を正極活物質として用いると、リチウムイオン二次電池の充放電の反応において、不均一な反応が減少し、リチウムイオン二次電池のサイクル特性が向上する。
 本複合酸化物のX線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)は、0.02~0.3が好ましく、0.02~0.28がより好ましく、0.02~0.25がさらに好ましい。I020/I003が前記範囲内であれば、本複合酸化物が前記2つの結晶構造をバランスよく有するため、リチウムイオン二次電池の放電容量を高くしやすい。
 空間群R-3mの層状岩塩型結晶構造を有する結晶子においては、充放電時に各々のLiは同一層内でa-b軸方向に拡散し、結晶子の端でLiの出入りが起こる。結晶子のc軸方向は積層方向であり、c軸方向が長い形状は、同一体積の他の結晶子に対して、Liが出入りできる端の数が増える。a-b軸方向の結晶子径は、本複合酸化物のX線回折パターンにおける、空間群R-3mの結晶構造に帰属する(110)面のピークからシェラーの式によって求めた結晶子径(D110)である。c軸方向の結晶子径は、本複合酸化物のX線回折パターンにおける、空間群R-3mの(003)面のピークからシェラーの式によって求めた結晶子径(D003)である。
 本複合酸化物におけるD003は、60~140nmが好ましく、70~120nmがより好ましく、80~115nmがさらに好ましい。D003が前記範囲の下限値以上であれば、リチウムイオン二次電池のサイクル特性を良好にしやすい。D003が前記範囲の上限値以下であれば、リチウムイオン二次電池の放電容量を高くしやすい。
 本複合酸化物におけるD110は、30~80nmが好ましく、35~75nmがより好ましく、40~70nmがさらに好ましい。D110が前記範囲の下限値以上であれば、結晶構造の安定性が向上する。D003が前記範囲の上限値以下であれば、リチウムイオン二次電池のサイクル特性を良好にしやすい。
<正極活物質>
 本発明における正極活物質(以下、本正極活物質と記す。)は、本複合酸化物そのものであってもよく、本複合酸化物に表面処理を施したものであってもよい。
 表面処理は、本複合酸化物を構成する物質とは異なる組成の物質(表面付着物質)を、本複合酸化物の表面に付着させる処理である。表面付着物質としては、たとえば、酸化物(酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等)、硫酸塩(硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等)、炭酸塩(炭酸カルシウム、炭酸マグネシウム等)等が挙げられる。
 表面付着物質の質量は、本複合酸化物の質量に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましく、0.1質量%以上が特に好ましい。表面付着物質の質量は、本複合酸化物の質量に対して10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が特に好ましい。本複合酸化物の表面に表面付着物質が存在することで、本複合酸化物の表面での非水電解液の酸化反応を抑制でき電池寿命を向上できる。
 本複合酸化物を表面処理する場合、表面処理は、たとえば、所定量の表面付着物質を含む液(コート液)を本複合酸化物に噴霧し、コート液の溶媒を焼成により除去する、または、コート液中に本複合酸化物を浸漬し、ろ過による固液分離、焼成による溶媒除去を行う、ことによって実施できる。
 本正極活物質は、複数の一次粒子が凝集した二次粒子であることが好ましい。
 本正極活物質の二次粒子のD50は、3~15μmが好ましく、3~12μmがより好ましく、3.5~10μmがさらに好ましい。本正極活物質のD50が前記範囲内であれば、リチウムイオン電池の放電容量を高くしやすい。
 本正極活物質のBET比表面積は、0.5~5m/gが好ましく、1~5m/gがより好ましく、2~4m/gがさらに好ましい。本正極活物質のBET比表面積が前記範囲の下限値以上であれば、リチウムイオン二次電池の放電容量を高くしやすい。本正極活物質の比表面積が前記範囲の上限値以下であれば、リチウムイオン二次電池のサイクル特性を良好にしやすい。
<リチウムイオン二次電池用正極>
 本発明におけるリチウムイオン二次電池用正極(以下、本正極と記す。)は、本正極活物質を含むものである。具体的には、本正極活物質、導電材およびバインダを含む正極活物質層が、正極集電体上に形成されたものである。
 導電材としては、カーボンブラック(アセチレンブラック、ケッチェンブラック等)、黒鉛、気相成長カーボン繊維、カーボンナノチューブ等が挙げられる。
 バインダとしては、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、ポリオレフィン(ポリエチレン、ポリプロピレン等)、不飽和結合を有する重合体または共重合体(スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム等)、アクリル酸系重合体または共重合体(アクリル酸共重合体、メタクリル酸共重合体等)等が挙げられる。
 正極集電体としては、アルミニウム箔、ステンレススチール箔等が挙げられる。
 本正極は、たとえば、下記の方法によって製造できる。
 本正極活物質、導電材およびバインダを、媒体に溶解または分散させてスラリーを得る。得られたスラリーを正極集電体に塗工し、乾燥等により、媒体を除去することによって、正極活物質層を形成する。必要に応じて、正極活物質層を形成した後に、ロールプレス等で圧延してもよい。これにより、本正極を得る。
 または本正極活物質、導電材およびバインダを、媒体と混練することによって、混練物を得る。得られた混練物を正極集電体に圧延することにより本正極を得る。
<リチウムイオン二次電池>
 本発明におけるリチウムイオン二次電池(以下、本電池と記す。)は、本正極を有するものである。具体的には、本正極、負極、および非水電解質を含むものである。
 (負極)
 負極は、負極活物質を含むものである。具体的には、負極活物質、必要に応じて導電材およびバインダを含む負極活物質層が、負極集電体上に形成されたものである。
 負極活物質は、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよい。負極活物質としては、リチウム金属、リチウム合金、リチウム化合物、炭素材料、周期表14族の金属を主体とする酸化物、周期表15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタン、炭化ホウ素化合物等が挙げられる。
 負極活物質の炭素材料としては、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、コークス類(ピッチコークス、ニードルコークス、石油コークス等)、グラファイト類、ガラス状炭素類、有機高分子化合物焼成体(フェノール樹脂、フラン樹脂等を適当な温度で焼成し炭素化したもの)、炭素繊維、活性炭、カーボンブラック類等が挙げられる。
 負極活物質に使用する周期表14族の金属としては、Si、Snが挙げられ、Siが好ましい。他の負極活物質としては、酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物、その他の窒化物等が挙げられる。
 負極の導電材、バインダとしては、正極と同様のものを用いることができる。負極集電体としては、ニッケル箔、銅箔等の金属箔が挙げられる。
 負極は、たとえば、下記の方法によって製造できる。
 負極活物質、導電材およびバインダを、媒体に溶解または分散させてスラリーを得る。得られたスラリーを負極集電体に塗布、乾燥、プレスすること等によって媒体を除去し、負極を得る。
 (非水電解質)
 非水電解質としては、有機溶媒に電解質塩を溶解させた非水電解液;無機固体電解質;電解質塩を混合または溶解させた固体状またはゲル状の高分子電解質等が挙げられる。
 有機溶媒としては、非水電解液用の有機溶媒として公知のものが挙げられる。具体的には、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等が挙げられる。電圧安定性の点からは、環状カーボネート類(プロピレンカーボネート等)、鎖状カーボネート類(ジメチルカーボネート、ジエチルカーボネート等)が好ましい。有機溶媒は、1種を単独で用いてもよく、2種類以上を混合して用いてもよい。
 無機固体電解質は、リチウムイオン伝導性を有する材料であればよい。
 無機固体電解質としては、窒化リチウム、ヨウ化リチウム等が挙げられる。
 固体状高分子電解質に用いられる高分子としては、エーテル系高分子化合物(ポリエチレンオキサイド、その架橋体等)、ポリメタクリレートエステル系高分子化合物、アクリレート系高分子化合物等が挙げられる。該高分子化合物は、1種を単独で用いてもよく、2種類以上を混合して用いてもよい。
 ゲル状高分子電解質に用いられる高分子としては、フッ素系高分子化合物(ポリフッ化ビニリデン、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体等)、ポリアクリロニトリル、アクリロニトリル共重合体、エーテル系高分子化合物(ポリエチレンオキサイド、その架橋体等)等が挙げられる。共重合体に共重合させるモノマとしては、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等が挙げられる。
 該高分子化合物としては、酸化還元反応に対する安定性の点から、フッ素系高分子化合物が好ましい。
 電解質塩は、リチウムイオン二次電池に用いられるものであればよい。電解質塩としては、LiClO、LiPF、LiBF、CHSOLi等が挙げられる。
 正極と負極の間には、短絡を防止するためにセパレータを介在させてもよい。セパレータとしては、多孔膜が挙げられる。非水電解液は該多孔膜に含浸させて用いる。また、多孔膜に非水電解液を含浸させてゲル化させたものをゲル状電解質として用いてもよい。
 電池外装体の材料としては、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。
 リチウムイオン二次電池の形状としては、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等が挙げられ、用途に応じて適宜選択することができる。
 以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
 例2、3、5~7は実施例であり、例1、4は比較例である。
 (水酸化物および正極活物質のD50
 水酸化物または正極活物質を水中に超音波処理によって充分に分散させ、レーザー回折/散乱式粒子径分布測定装置(日機装社製、MT-3300EX)により測定を行い、頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得た。得られた累積体積分布曲線からD50を求めた。
 (水酸化物の吸着等温線)
 測定装置としては、比表面積/細孔分布測定装置(島津製作所社製、ASAP2020)を用いた。
 水酸化物の0.5gを測定用のサンプルセルに入れ、測定装置の脱ガスポートを用いて10℃/分、1mmHg/分(133.3Pa/分)で90℃、500μHg(66.7Pa)まで昇温、真空引きを行い、60分間保持した。3℃/分で105℃まで昇温し、8時間保持した後、窒素ガスによってパージした。
 測定装置の分析ポートにサンプルセルを取り付け、液体窒素温度(77K)で窒素ガスを用いて、相対圧力(P/P。P=約100kPa)が0.01から0.995の範囲内で吸着側の吸着等温線を測定した。
 (水酸化物のBET比表面積)
 比表面積/細孔分布測定装置(島津製作所社製、ASAP2020)に付属の解析ソフトウェアを用い、吸着等温線における相対圧力P/Pが0.06から0.3の間の10点からBET法によってBET比表面積を算出した。
 (水酸化物の対数微分細孔比表面積)
 比表面積/細孔分布測定装置(島津製作所社製、ASAP2020)に付属の解析ソフトウェアを用い、吸着等温線における相対圧力P/Pが0.14~0.995の26点からBJH法によって対数微分細孔比表面積dA/dlog(D)を算出し、細孔径Dに対する対数微分細孔比表面積dA/dlog(D)の分布を求めた。該分布から、分布全体の対数微分細孔比表面積dA/dlog(D)を合計した値{dA/dlog(D)}totalおよび細孔径が10nm以上の対数微分細孔比表面積dA/dlog(D)を合計した値{dA/dlog(D)}D≧10nmを算出した。
 (正極活物質のBET比表面積)
 正極活物質のBET比表面積は、比表面積測定装置(マウンテック社製、HM model-1208)を用い、窒素吸着BET法によって算出した。脱気は、200℃、20分の条件で行った。
 (組成分析)
 水酸化物およびリチウム含有複合酸化物の組成分析は、プラズマ発光分析装置(SIIナノテクノロジー社製、SPS3100H)によって行った。組成分析から求めたLi、Ni、Co、Mnのモル量の比から、式1および式2におけるα、β、γ、xを算出した。
 (X線回折)
 リチウム含有複合酸化物のX線回折は、X線回折装置(リガク社製、装置名:SmartLab)を用いて測定した。測定条件を表1に示す。測定は25℃で行った。測定前にリチウム含有複合酸化物の1gとX線回折用標準試料640dの30mgとをメノウ乳鉢で混合し、これを測定試料とした。
 得られたX線回折パターンについてリガク社製の統合粉末X線解析ソフトウェアPDXL2を用いてピーク検索を行った。各ピークから、D003、D110およびI020/I003を求めた。
Figure JPOXMLDOC01-appb-T000001
 また、リチウム含有複合酸化物のX線回折パターンのうち、図1に示すような空間群R-3mの結晶構造に帰属する(003)面のピークのプロファイル(2θ=17.002~20.2deg)について、リガク社製の結晶子サイズ分布解析ソフトウェアCSDA(Ver.1.3)を用い、下記設定にて解析して結晶子径分布を得た。
 〔Instrument Parameters〕
 Goniometer Radius:300、
 Axial Divergence:5、
 Equatorial Divergence:0.3333333。
 〔Sample Parameters〕
 Sample Width:20、
 Sample Thickness:0.5、
 Linear Abs.Coef.:20。
 結晶子径分布(個数分布)からリガク社製の結晶子サイズ分布解析ソフトウェアCSDA(Ver.1.3)によって結晶子径分布の対数標準偏差を求めた。リチウム含有複合酸化物の結晶子径分布の対数標準偏差は、リチウム二次電池のサイクル特性の目安となる。リチウム含有複合酸化物の結晶子径分布の対数標準偏差が0.198以下であれば、リチウム二次電池のサイクル特性が良好となる。
 (正極体シートの製造)
 各例で得られた正極活物質、導電材である導電性カーボンブラック、およびバインダであるポリフッ化ビニリデンを、質量比で88:6:6となるように秤量し、これらをN-メチルピロリドンに加えて、スラリーを調製した。
 該スラリーを、正極集電体である厚さ20μmのアルミニウム箔の片面にドクターブレードにより塗工した。ドクターブレードのギャップは圧延後のシート厚さが20μmとなるように調整した。これを120℃で乾燥した後、ロールプレス圧延を2回行い、正極材シートを作製した。
 (リチウム二次電池の製造)
 正極材シートを18mmφの円形に打ち抜いたものを正極とした。
 負極材にはリチウム箔を用い、リチウム箔を19mmφの円形に打ち抜いたものを負極とした。
 セパレータとしては、厚さ25μmの多孔質ポリプロピレンを用いた。
 電解液としては、エチレンカーボネートとジエチルカーボネートとの容積比3:7の混合溶液に、濃度が1mol/dmとなるようにLiPFを溶解させた液を用いた。
 正極、負極、セパレータおよび電解液を用い、フランジ型のリチウム二次電池をアルゴン雰囲気のグローブボックス内で組み立てた。
 (活性化処理)
 各例の正極活物質を用いたリチウム二次電池について、正極活物質1gにつき26mAの負荷電流で4.8Vまで定電流充電した後、正極活物質1gにつき26mAの負荷電流で2Vまで定電流放電し、活性化処理とした。この際の放電容量を初回放電容量とした。
 (1C放電容量)
 活性化処理されたリチウム二次電池について、正極活物質1gにつき200mAの負荷電流で4.5Vまで定電流・定電圧充電を合計で1.5時間行った後、正極活物質1gにつき200mAの負荷電流で2Vまで定電流放電することで1Cの放電容量を測定した。
 (例1)
 硫酸ニッケル(II)六水和物および硫酸マンガン(II)五水和物を、NiおよびMnのモル量の比が表2に示す比になるように、かつ硫酸塩の合計量が1.5mol/kgとなるように蒸留水に溶解して、硫酸塩水溶液を得た。
 pH調整液として、水酸化ナトリウムを、濃度が1.5mol/kgとなるように蒸留水に溶解した水酸化ナトリウム水溶液を得た。
 錯化剤として、硫酸アンモニウムを、濃度が1.5mol/kgとなるように蒸留水に溶解して硫酸アンモニウム水溶液を得た。
 2Lのバッフル付きガラス製反応槽に蒸留水を入れてマントルヒータで50℃に加熱した。反応槽内の液をパドル型の撹拌翼で撹拌しながら、硫酸塩水溶液を5.0g/分、硫酸アンモニウム水溶液を0.5g/分の速度で12時間添加し、かつ混合液のpHを10.5に保つようにpH調整液を添加して、NiおよびMnを含む水酸化物を析出させた。原料溶液を添加している間、反応槽内に窒素ガスを流量1.0L/分で流した。また、反応槽内の液量が2Lを超えないようにろ布を用いて連続的に水酸化物を含まない液の抜き出しを行った。得られた水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰り返し、洗浄を行った。ろ液の電気伝導度が20mS/m以下となった時点で洗浄を終了し、水酸化物を120℃で15時間乾燥させた。
 水酸化物と炭酸リチウムとを、Liのモル量とNiおよびMnの合計モル量(Me)との比(Li/Me)が表3に示す比となるように混合し、混合物を得た。
 電気炉内にて、空気を供給しながら、空気中、600℃で混合物を3時間かけて仮焼成して、仮焼成物を得た。
 電気炉内にて、空気を供給しながら、空気中、990℃で仮焼成物を16時間かけて本焼成して、リチウム含有複合酸化物を得た。該リチウム含有複合酸化物を正極活物質として用いた。各種測定および評価の結果を表3および表4に示す。
 (例2、3)
 表2および表3に示す条件とした以外は、例1と同様にして例2、3のリチウム含有複合酸化物を得た。該リチウム含有複合酸化物を正極活物質として用いた。各種測定および評価の結果を表3および表4に示す。
 (例4)
 水溶性有機物(糖類)としてスクロース(関東化学社製、試薬)を用意した。
 硫酸塩水溶液にスクロースを、得られる水酸化物の質量に対するスクロースの質量の比(スクロース/水酸化物)が0.076となるように添加し、表2および表3に示す条件とした以外は、例1と同様にして例4のリチウム含有複合酸化物を得た。該リチウム含有複合酸化物を正極活物質として用いた。各種測定および評価の結果を表3および表4に示す。
 (例5)
 スクロースの代わりに、水溶性有機物(糖類を除く。)としてポリエチレングリコール(関東化学社製、PEG#6000)を得られる水酸化物の質量に対するポリエチレングリコールの質量の比(ポリエチレングリコール/水酸化物)が0.05となるように添加した以外は、例4と同様にして例5のリチウム含有複合酸化物を得た。該リチウム含有複合酸化物を正極活物質として用いた。各種測定および評価の結果を表3および表4に示す。
 (例6)
 スクロースの代わりに、水溶性有機物(糖類を除く。)としてポリエチレングリコール(関東化学社製、PEG#20000)を得られる水酸化物の質量に対するポリエチレングリコールの質量の比(ポリエチレングリコール/水酸化物)が0.05となるように添加した以外は、例4と同様にして例6のリチウム含有複合酸化物を得た。該リチウム含有複合酸化物を正極活物質として用いた。各種測定および評価の結果を表3および表4に示す。
 (例7)
 スクロースの代わりに、水溶性有機物(糖類を除く。)としてポリエチレングリコール(関東化学社製、PEG#200)を得られる水酸化物の質量に対するポリエチレングリコールの質量の比(ポリエチレングリコール/水酸化物)が0.05となるように添加した以外は、例4と同様にして例7のリチウム含有複合酸化物を得た。該リチウム含有複合酸化物を正極活物質として用いた。各種測定および評価の結果を表3および表4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 例1~7では、いずれも本焼成の温度が990℃であり、高温で焼成を行った。そのため、各例で得られたリチウム含有複合酸化物はいずれもR-3mの結晶構造に帰属する(003)面のピークから求めた結晶子径分布の対数標準偏差が小さかった。これは各例のリチウム含有複合酸化物の結晶構造の均質性が高いことを示していると考えられる。
 水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalとリチウム二次電池の初回放電容量との関係を図3に示す。
 水酸化物の{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalとリチウム二次電池の1C放電容量との関係を図4に示す。
 水酸化物のBET比表面積とリチウム二次電池の初回放電容量との関係を図5に示す。
 図3および図4に示すように、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%以上である実施例(例2、3、5~7)の水酸化物を用いて最終的に得られたリチウム二次電池は、{dA/dlog(D)}D≧10nm/{dA/dlog(D)}totalが23%未満である比較例(例1、4)の水酸化物を用いて最終的に得られたリチウム二次電池に比べ、初回放電容量および1Cの放電容量が高かった。
 一方、図5に示すように、水酸化物のBET比表面積が高くても、リチウム二次電池の初回放電容量および1Cの放電容量は充分に高くならなかった。
 本発明の遷移金属含有水酸化物によれば、これから得られたリチウム含有複合酸化物を正極活物質として用いることによって、放電容量およびサイクル特性に優れたリチウムイオン二次電池を得ることができる。
 なお、2016年2月3日に出願された日本特許出願2016-019043号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 10 反応槽、12 撹拌装置、14 撹拌翼、16 ろ材。

Claims (5)

  1.  リチウム含有複合酸化物の前駆体である遷移金属含有水酸化物であり、
     BJH法によって求めた、細孔径に対する対数微分細孔比表面積の分布において、分布全体の対数微分細孔比表面積を合計した値100%のうちの、細孔径が10nm以上の対数微分細孔比表面積を合計した値の割合が、23%以上である、遷移金属含有水酸化物。
  2.  前記遷移金属含有水酸化物は、BJH法によって求めた、細孔径に対する対数微分細孔比表面積の分布において、細孔径が10nm以上の対数微分細孔比表面積を合計した値が、300m/g以上である、請求項1に記載の遷移金属含有水酸化物。
  3.  下記(式1)で表される遷移金属含有水酸化物である、請求項1または2に記載の遷移金属含有水酸化物。
     NiαCoβMnγδ(OH) (式1)
     ただし、MはLi、Ni、CoおよびMn以外の金属元素であり、αは0.15~0.5であり、βは0~0.2であり、γは0.3~0.8であり、δは0~0.1であり、α+β+γ+δ=1である。
  4.  前記遷移金属含有水酸化物は、D50が、3.5~15.5μmである、請求項1~3のいずれか一項に記載の遷移金属含有水酸化物。
  5.  請求項1~4のいずれか一項に記載の遷移金属含有水酸化物と、リチウム化合物とを混合し、900℃以上で焼成する工程を含む、リチウム含有複合酸化物の製造方法。
PCT/JP2017/004001 2016-02-03 2017-02-03 遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法 WO2017135415A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780009569.6A CN109071264B (zh) 2016-02-03 2017-02-03 含过渡金属的氢氧化物和含锂复合氧化物的制造方法
JP2017565653A JP6979880B2 (ja) 2016-02-03 2017-02-03 遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法
US16/074,079 US10763504B2 (en) 2016-02-03 2017-02-03 Transition metal-containing hydroxide, and method for producing lithium-containing composite oxide
EP17747566.2A EP3412634B1 (en) 2016-02-03 2017-02-03 Transition metal-containing hydroxide, and method for producing lithium-containing composite oxide
KR1020187021049A KR102636760B1 (ko) 2016-02-03 2017-02-03 천이 금속 함유 수산화물 및 리튬 함유 복합 산화물의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019043 2016-02-03
JP2016019043 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017135415A1 true WO2017135415A1 (ja) 2017-08-10

Family

ID=59500438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004001 WO2017135415A1 (ja) 2016-02-03 2017-02-03 遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法

Country Status (6)

Country Link
US (1) US10763504B2 (ja)
EP (1) EP3412634B1 (ja)
JP (1) JP6979880B2 (ja)
KR (1) KR102636760B1 (ja)
CN (1) CN109071264B (ja)
WO (1) WO2017135415A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512932A (ja) * 2018-01-03 2020-04-30 エルジー・ケム・リミテッド 共沈反応器
CN111279529A (zh) * 2017-10-30 2020-06-12 住友化学株式会社 锂复合金属化合物、锂二次电池用正极活性物质、锂二次电池用正极以及锂二次电池
JP6976392B1 (ja) * 2020-09-04 2021-12-08 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
US20220238871A1 (en) * 2019-09-26 2022-07-28 Lg Chem, Ltd. Positive Electrode Active Material Precursor for Secondary Battery, Preparation Method Thereof, and Method of Preparing Positive Electrode Active Material
JP2022536318A (ja) * 2019-12-20 2022-08-15 エルジー・ケム・リミテッド 正極活物質前駆体、その製造方法及び製造装置
JP7441998B1 (ja) 2023-05-31 2024-03-01 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、および、リチウム二次電池
JP7483987B1 (ja) 2023-05-31 2024-05-15 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、及び、リチウム二次電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220090505A (ko) * 2019-10-29 2022-06-29 바스프 에스이 캐소드 활물질용 전구체의 제조 방법, 전구체, 및 캐소드 활물질
KR20210064557A (ko) * 2019-11-26 2021-06-03 (주)포스코케미칼 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075826A (ja) * 2012-12-27 2013-04-25 Univ Of Miyazaki 水酸化ニッケルヘキサゴナルプレートおよびその製造方法
JP2014116161A (ja) * 2012-12-07 2014-06-26 Agc Seimi Chemical Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2016017017A (ja) * 2014-07-09 2016-02-01 旭硝子株式会社 リチウム含有複合酸化物の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2016199414A (ja) * 2015-04-08 2016-12-01 旭硝子株式会社 リチウム含有複合酸化物、その製造方法、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007018883A (ja) 2005-07-07 2007-01-25 Toshiba Corp 負極活物質、非水電解質電池及び電池パック
GB0602547D0 (en) 2006-02-08 2006-03-22 Nanotecture Ltd Improved electrochemical cell construction
CN101836314B (zh) * 2007-11-01 2013-08-28 Agc清美化学股份有限公司 锂二次电池正极活性物质的原料用过渡金属化合物的造粒产物粉末及其制造方法
EP2555287B1 (en) 2010-04-01 2018-05-02 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
KR101497909B1 (ko) 2012-05-04 2015-03-03 주식회사 엘지화학 리튬 복합 전이금속 산화물 제조용 전구체 및 그 제조방법
JP5701343B2 (ja) 2013-07-10 2015-04-15 株式会社田中化学研究所 リチウム二次電池用正極活物質、正極および二次電池
KR101593401B1 (ko) * 2014-10-14 2016-02-12 주식회사 이엔에프테크놀로지 다공성 구조를 갖는 리튬전지용 양극활물질 및 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116161A (ja) * 2012-12-07 2014-06-26 Agc Seimi Chemical Co Ltd リチウムイオン二次電池用正極活物質の製造方法
JP2013075826A (ja) * 2012-12-27 2013-04-25 Univ Of Miyazaki 水酸化ニッケルヘキサゴナルプレートおよびその製造方法
JP2016017017A (ja) * 2014-07-09 2016-02-01 旭硝子株式会社 リチウム含有複合酸化物の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP2016199414A (ja) * 2015-04-08 2016-12-01 旭硝子株式会社 リチウム含有複合酸化物、その製造方法、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111279529A (zh) * 2017-10-30 2020-06-12 住友化学株式会社 锂复合金属化合物、锂二次电池用正极活性物质、锂二次电池用正极以及锂二次电池
EP3706214A4 (en) * 2017-10-30 2021-08-11 Sumitomo Chemical Company, Limited LITHIUM COMPOUND METAL COMPOUND, POSITIVE ELECTRODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERIES, POSITIVE ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY
JP2020512932A (ja) * 2018-01-03 2020-04-30 エルジー・ケム・リミテッド 共沈反応器
US20220238871A1 (en) * 2019-09-26 2022-07-28 Lg Chem, Ltd. Positive Electrode Active Material Precursor for Secondary Battery, Preparation Method Thereof, and Method of Preparing Positive Electrode Active Material
JP2022536318A (ja) * 2019-12-20 2022-08-15 エルジー・ケム・リミテッド 正極活物質前駆体、その製造方法及び製造装置
JP7301450B2 (ja) 2019-12-20 2023-07-03 エルジー・ケム・リミテッド 正極活物質前駆体、その製造方法及び製造装置
JP6976392B1 (ja) * 2020-09-04 2021-12-08 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
WO2022050314A1 (ja) * 2020-09-04 2022-03-10 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
JP2022043733A (ja) * 2020-09-04 2022-03-16 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極及びリチウム二次電池
JP7441998B1 (ja) 2023-05-31 2024-03-01 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、および、リチウム二次電池
JP7483987B1 (ja) 2023-05-31 2024-05-15 住友化学株式会社 リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極、及び、リチウム二次電池

Also Published As

Publication number Publication date
KR20180111807A (ko) 2018-10-11
EP3412634B1 (en) 2023-08-23
KR102636760B1 (ko) 2024-02-14
US10763504B2 (en) 2020-09-01
CN109071264A (zh) 2018-12-21
CN109071264B (zh) 2021-02-02
EP3412634A4 (en) 2019-11-13
US20190044139A1 (en) 2019-02-07
EP3412634A1 (en) 2018-12-12
JP6979880B2 (ja) 2021-12-15
JPWO2017135415A1 (ja) 2018-11-22

Similar Documents

Publication Publication Date Title
JP6979880B2 (ja) 遷移金属含有水酸化物およびリチウム含有複合酸化物の製造方法
JP6496177B2 (ja) リチウム含有複合酸化物、その製造方法、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6983152B2 (ja) 正極活物質、その製造方法およびリチウムイオン二次電池用正極
JP6587804B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6377983B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6495819B2 (ja) 正極活物質
JP6607670B2 (ja) 正極活物質、その製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6487279B2 (ja) リチウム含有複合酸化物、正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2014192759A1 (ja) 正極活物質
JP6316687B2 (ja) リチウム含有複合酸化物の製造方法
JP6600136B2 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
WO2017135416A1 (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
JP6495824B2 (ja) リチウム含有複合酸化物の製造方法、リチウムイオン二次電池用正極およびリチウムイオン二次電池
US10811682B2 (en) Cathode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6692632B2 (ja) 正極活物質の製造方法
JP6851529B2 (ja) 遷移金属含有水酸化物
JP6899419B2 (ja) 正極活物質の製造方法、リチウムイオン二次電池用正極の製造方法及びリチウムイオン二次電池の製造方法
JP2018163892A (ja) 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747566

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565653

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20187021049

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747566

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747566

Country of ref document: EP

Effective date: 20180903