WO2017135315A1 - リーン車両 - Google Patents

リーン車両 Download PDF

Info

Publication number
WO2017135315A1
WO2017135315A1 PCT/JP2017/003641 JP2017003641W WO2017135315A1 WO 2017135315 A1 WO2017135315 A1 WO 2017135315A1 JP 2017003641 W JP2017003641 W JP 2017003641W WO 2017135315 A1 WO2017135315 A1 WO 2017135315A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
electric motor
control
upstream
acceleration
Prior art date
Application number
PCT/JP2017/003641
Other languages
English (en)
French (fr)
Inventor
関口 直樹
拓仁 村山
哲彦 西村
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to JP2017565595A priority Critical patent/JP6766080B2/ja
Priority to EP17747470.7A priority patent/EP3412530A4/en
Priority to EP24166745.0A priority patent/EP4371833A3/en
Priority to EP21170691.6A priority patent/EP3871934A1/en
Priority to CN201780009965.9A priority patent/CN108602506B/zh
Priority to TW106103625A priority patent/TWI624405B/zh
Publication of WO2017135315A1 publication Critical patent/WO2017135315A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • B60W20/19Control strategies specially adapted for achieving a particular effect for achieving enhanced acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K11/00Motorcycles, engine-assisted cycles or motor scooters with one or two wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2300/00Indexing codes relating to the type of vehicle
    • B60W2300/36Cycles; Motorcycles; Scooters
    • B60W2300/365Scooters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/10Arrangements of batteries for propulsion
    • B62J43/16Arrangements of batteries for propulsion on motorcycles or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J43/00Arrangements of batteries
    • B62J43/20Arrangements of batteries characterised by the mounting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J50/00Arrangements specially adapted for use on cycles not provided for in main groups B62J1/00 - B62J45/00
    • B62J50/20Information-providing devices
    • B62J50/21Information-providing devices intended to provide information to rider or passenger
    • B62J50/22Information-providing devices intended to provide information to rider or passenger electronic, e.g. displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a lean vehicle.
  • a lean vehicle such as a motorcycle generates a driving force transmitted from the vehicle to the road surface.
  • the lean vehicle travels by controlling the attitude of the vehicle by controlling the driving force.
  • a lean vehicle is a vehicle having a vehicle body frame that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left.
  • the motorcycle of Patent Document 1 has been proposed.
  • the motorcycle of Patent Document 1 is provided with an electric motor type automatic control transmission.
  • the electric motor type automatic control transmission changes the transmission gear ratio by the electric motor.
  • the accelerator grip is operated so that the accelerator opening degree is closed by the rider, and control is performed so that the opening degree of the throttle valve becomes smaller.
  • the throttle valve is controlled to be fully closed, intake air is not introduced into the combustion chamber of the engine body. That is, no engine output is generated by the engine body. In addition, engine loss such as pumping loss occurs.
  • a negative driving force of an amount obtained by multiplying the torque generated by the engine loss by the gear ratio is generated.
  • the negative driving force is a so-called braking force. Therefore, in the electric motor type automatic control transmission apparatus of Patent Document 1, when the throttle valve is fully closed, the transmission gear ratio is set based on the accelerator opening degree. That is, the electric motor type automatic control transmission device of Patent Document 1 generates a negative driving force based on the transmission gear ratio set along with the accelerator operation.
  • An object of the present invention is to provide a lean vehicle provided with an electric motor type automatic control transmission that can improve the followability of the driving force to the rider's accelerator operation during deceleration and acceleration of the lean vehicle.
  • the inventors of the present invention repeatedly used the lean vehicle equipped with the electric motor type automatic control transmission of Patent Document 1 to repeat tests on deceleration and acceleration of the lean vehicle. Then, it has been realized that the followability of the driving force to the accelerator operation can be further improved.
  • the electric motor type automatic control transmission has a large time lag until the transmission ratio is actually changed after it issues a transmission command based on the transmission ratio set according to the accelerator operation. That is, when the transmission gear ratio is controlled by the electric motor type automatic control transmission, a time lag from when a gear change command based on the transmission gear ratio accompanying the accelerator operation is issued until when the driving force is controlled is large. Then, the inventors of the present application considered that if the time lag can be shortened, the followability of the driving force to the accelerator operation can be further enhanced.
  • the inventors of the present invention have conceived of providing a lean vehicle with a rotary electric machine that can be controlled with higher responsiveness than an electric motor type automatic transmission.
  • the followability of the driving force to the accelerator operation can be improved by generating the engine output or the engine loss by the rotating electric machine having higher responsiveness than the electric motor type automatic control transmission.
  • the followability of the driving force to the accelerator operation can be improved by providing an upstream rotating electrical machine that generates engine output or engine loss upstream of the electric motor type automatic control transmission in the power transmission direction.
  • the lean vehicle is configured such that the length in the left-right direction is smaller than the length in the front-rear direction as compared to a four-wheeled vehicle such as an automobile. It is preferable to improve the maneuverability in the left and right direction of the lean vehicle from the viewpoint of the followability of the driving force to the accelerator operation of the lean vehicle. Therefore, in a lean vehicle, it is preferable to place a heavy load near the center of the lean vehicle.
  • power is transmitted from the crankshaft to the drive wheels. That is, an engine main body having a crankshaft is disposed upstream of the power transmission direction. A drive wheel is disposed downstream of the power transmission direction. The engine body is heavy and disposed near the center of a lean vehicle.
  • drive wheels are disposed at the end of a lean vehicle.
  • the rotating electrical machine is also heavy.
  • the rotary electric machine is disposed closer to the center of the lean vehicle if it is provided upstream of the electric motor type automatic control transmission in the power transmission direction than on the downstream side. Therefore, by providing the upstream rotary electric machine upstream of the electric motor type automatic control transmission in the power transmission direction, the maneuverability in the left and right direction of the lean vehicle can be improved.
  • the upstream rotary electric machine provided upstream of the electric motor-type automatic control transmission in the power transmission direction is a downstream rotary electric machine provided downstream of the electric motor-type automatic control transmission in the power transmission direction. It may rotate at a higher rotational speed. The efficiency of the motor depends on the rotational speed.
  • the upstream rotary electric machine provided upstream of the electric motor type automatic control transmission of the power transmission direction is a motor than the downstream rotary electric machine provided downstream of the electric motor type automatic control transmission of the power transmission direction.
  • Efficiency may be good.
  • the larger the size of the rotating electric machine the larger the output. Therefore, the upstream rotary electric machine provided upstream of the electric motor type automatic control transmission of the power transmission direction is more effective than the downstream rotary electric machine provided downstream of the electric motor type automatic control transmission of the power transmission direction. If the efficiency is good, the same output can be obtained even with a small size. Therefore, by providing the upstream rotary electric machine upstream of the electric motor type automatic control transmission of the power transmission direction, it may be possible to suppress the enlargement of the vehicle.
  • the upstream rotating electrical machine has a battery. If, during acceleration of a lean vehicle, the capacity of the battery runs out while the upstream rotating electrical machine applies torque in the positive rotation direction of the crankshaft upstream of the electric motor type automatic control transmission in the power transmission direction, The rotating electrical machine can not apply torque. Therefore, when the upstream rotary electric machine can not apply a torque, the followability of the driving force to the rider's accelerator operation is delayed. In addition, at the time of deceleration of a lean vehicle, the capacity of the battery is fully charged while the upstream rotating electric machine applies torque in the reverse rotation direction of the crankshaft upstream of the electric motor type automatic control transmission of the power transmission direction. When this occurs, the upstream rotating electrical machine can not apply torque.
  • the electric motor type automatic control transmission has a large time lag until the driving force is controlled after a shift command based on the gear ratio accompanied by the accelerator operation is issued. Therefore, when the upstream rotating electrical machine is provided to a lean vehicle equipped with an electric motor type automatic control transmission, when the upstream rotating electrical machine can not apply torque, the followability of the driving force to the rider's accelerator operation is further delayed. Is considered. Therefore, it is hard to think of providing the upstream rotating electrical machine in a lean vehicle provided with an electric motor type automatic control transmission.
  • the inventors of the present application focused on the fact that the electric motor type automatic control transmission and the upstream rotary electric machine have different responsiveness. Then, by utilizing the difference in responsiveness between the electric motor type automatic control transmission and the rotary electric machine, the control device controls the electric motor to change the transmission gear ratio, and controls the upstream rotary electric machine. It has been realized that it is only necessary to be able to implement both the rotary electric machine control to change the torque applied upstream of the electric motor type automatic control transmission in the power transmission path. As a result, it has been found that, even when the upstream rotary electric machine can not apply torque, it may be possible to prevent a delay in the followability of the driving force with respect to the rider's accelerator operation.
  • a lean vehicle is a lean vehicle that has a vehicle body frame that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left, and has an engine that has a crankshaft
  • An automatic control transmission of an electric motor type for transmitting power of the engine main body at a transmission gear ratio connected to a main body and the crankshaft and set by an electric motor, and an automatic control transmission of the electric motor type In at least one drive wheel that is connected and generates driving force by power transmitted from the electric motor type automatic control transmission, and in a power transmission path where power is transmitted from the crankshaft to the drive wheel
  • An electric rotating machine disposed upstream of the electric motor type automatic control transmission, wherein the electric motor type automatic control transmission in the power transmission path An upstream electric rotating machine which applies torque in the reverse rotation direction of the crankshaft and applies torque in the forward rotation direction of the crankshaft upstream, and the electric motor type automatic at the time of acceleration or deceleration of the lean vehicle Transmission control that controls the electric motor
  • the lean vehicle includes the engine main body, the electric motor-type automatic control transmission, the drive wheels, the upstream rotary electric machine, and the control device.
  • a lean vehicle has a body frame that leans to the right of the vehicle when turning to the right and leans to the left of the vehicle when turning to the left.
  • the engine body generates an engine output at the time of acceleration of a lean vehicle. Further, the engine body generates an engine loss at the time of deceleration of a lean vehicle.
  • the engine body has a crankshaft.
  • An electric motor type automatic control transmission is connected to the crankshaft. The electric motor type automatic control transmission transmits power of the engine main body at a transmission gear ratio set by the electric motor.
  • the electric motor type automatic transmission power is transmitted from the crankshaft.
  • Power is engine power and engine loss.
  • the gear ratio is determined, for example, by the accelerator opening and the vehicle speed.
  • At least one drive wheel is connected to an electrically controlled automatic transmission. At least one drive wheel generates a driving force by the power transmitted from the electric motor type automatic control transmission.
  • the electric motor type automatic control transmission controls the driving force of the drive wheels by controlling the electric motor to change the gear ratio.
  • the upstream rotary electric machine is a rotary electric machine disposed upstream of an electric motor type automatic control transmission in a power transmission path through which power is transmitted from the crankshaft to the drive wheels.
  • the upstream rotary electric machine applies torque in the reverse rotation direction of the crankshaft to the upstream of the electric motor-type automatic control transmission in the power transmission path at the time of deceleration of a lean vehicle. Further, the upstream rotary electric machine applies torque in the positive rotation direction of the crankshaft upstream of the electric motor type automatic control transmission in the power transmission path at the time of acceleration of the lean vehicle.
  • the upstream rotating electrical machine generates an engine loss by applying torque in the reverse rotation direction of the crankshaft upstream of the electric motor type automatic control transmission in the power transmission path at the time of deceleration of the lean vehicle.
  • the upstream rotary electric machine increases the engine output by applying torque in the positive rotation direction of the crankshaft upstream of the electric motor-type automatic transmission in the power transmission path during acceleration of a lean vehicle.
  • the positive driving force increases.
  • the reverse rotation direction of the crankshaft is generated, the negative driving force is increased.
  • the upstream rotating electrical machine controls the driving force by applying torque in the reverse rotation direction of the crankshaft or applying torque in the forward rotation direction of the crankshaft.
  • the electric motor type automatic control transmission has an electric motor and other mechanisms.
  • the upstream rotary electric machine has few or no mechanisms disposed between it and the crankshaft. Therefore, after the upstream rotary electric machine controls the upstream rotary electric machine to change the torque to be applied upstream of the electric motor type automatic control transmission in the power transmission path, the driving force of the drive wheel is controlled.
  • the control device can perform both transmission control and rotary electric machine control during acceleration or deceleration of a lean vehicle.
  • the transmission control is control for changing the gear ratio by controlling the electric motor of the electric motor type automatic control transmission.
  • the rotary electric machine control is control for controlling the upstream rotary electric machine to change the torque to be applied upstream of the electric motor type automatic control transmission in the power transmission path.
  • the control device performs acceleration transmission control or acceleration electric rotating machine control at the time of acceleration of a lean vehicle.
  • the acceleration transmission control is control for controlling the electric motor of the electric motor type automatic control transmission to change the gear ratio.
  • the acceleration rotary electric machine control is control for controlling the upstream rotary electric machine to change the torque in the positive rotation direction of the crankshaft applied upstream of the electric motor type automatic control transmission in the power transmission path.
  • the control device performs speed reduction device control at the time of deceleration or rotation electrical machine control at the time of deceleration when the lean vehicle is decelerating.
  • the speed reduction transmission control is control for controlling the electric motor of the electric motor type automatic control transmission to change the transmission gear ratio.
  • the decelerating rotary electric machine control is a control that controls the upstream rotary electric machine to change the torque in the reverse rotation direction of the crankshaft, which is applied upstream of the electric motor type automatic control transmission in the power transmission path.
  • the control device performs rotating electric machine control at acceleration or rotating electric machine control at deceleration, so that the rotating electric machine applies a torque upstream of the electric motor type automatic control transmission in the power transmission path. Then, the driving force obtained by multiplying the transmission ratio by the torque applied by the upstream rotating electrical machine is transmitted to the driving wheel.
  • the electric motor type automatic control transmission the number of times of changing the transmission ratio becomes unnecessary, or the amount of changing the transmission ratio decreases. Therefore, it becomes possible to eliminate or shorten the time lag until the electric motor type automatic control transmission changes the transmission ratio. That is, the followability of the driving force to the rider's accelerator operation can be improved.
  • the lean vehicle of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the lean vehicle is configured such that the length in the left-right direction is smaller than the length in the front-rear direction as compared to a four-wheeled vehicle such as an automobile. It is preferable to improve the maneuverability in the left and right direction of the lean vehicle from the viewpoint of the followability of the driving force to the accelerator operation of the lean vehicle. Therefore, in a lean vehicle, it is preferable to place a heavy load near the center of the lean vehicle.
  • power is transmitted from the crankshaft to the drive wheels. That is, an engine main body having a crankshaft is disposed upstream of the power transmission direction. A drive wheel is disposed downstream of the power transmission direction. The engine body is heavy and disposed near the center of a lean vehicle.
  • drive wheels are disposed at the end of a lean vehicle.
  • the rotating electrical machine is also heavy.
  • the rotary electric machine is disposed closer to the center of the lean vehicle if it is provided upstream of the electric motor type automatic control transmission in the power transmission direction than on the downstream side. Therefore, by providing the upstream rotary electric machine upstream of the electric motor type automatic control transmission in the power transmission direction, the maneuverability in the left-right direction of the lean vehicle can be further improved.
  • the upstream rotary electric machine provided upstream of the electric motor-type automatic control transmission in the power transmission direction is a downstream rotary electric machine provided downstream of the electric motor-type automatic control transmission in the power transmission direction. It may rotate at a higher rotational speed. The efficiency of the motor depends on the rotational speed.
  • the upstream rotary electric machine provided upstream of the electric motor type automatic control transmission of the power transmission direction is a motor than the downstream rotary electric machine provided downstream of the electric motor type automatic control transmission of the power transmission direction.
  • Efficiency may be good.
  • the larger the size of the rotating electric machine the larger the output. Therefore, the upstream rotary electric machine provided upstream of the electric motor type automatic control transmission of the power transmission direction is more effective than the downstream rotary electric machine provided downstream of the electric motor type automatic control transmission of the power transmission direction. If the efficiency is good, the same output can be obtained even with a small size. Therefore, by providing the upstream rotary electric machine upstream of the electric motor type automatic control transmission in the power transmission direction, it may be possible to suppress the enlargement of the lean vehicle.
  • the control device performs (1) switching between the acceleration transmission control and the acceleration rotary electric machine control at the time of acceleration of the lean vehicle, or The acceleration transmission control and the acceleration rotary electric machine control are performed simultaneously, and (2) the deceleration transmission control and the deceleration electric rotating machine control are switched at the time of deceleration of the lean vehicle, or the deceleration The time shift device control and the reduction electric rotating machine control are performed simultaneously.
  • the control device performs switching between acceleration transmission control or acceleration electric machine control at the time of acceleration of the lean vehicle. That is, at the time of acceleration, the control device performs only either the acceleration transmission control or the acceleration electric machine control during acceleration of the lean vehicle, or the acceleration electric machine control after the acceleration transmission control, or the acceleration Carried out at the time of acceleration transmission control after rotary electric machine control. Further, the control device simultaneously performs acceleration transmission control and acceleration electric machine control at the time of acceleration of the lean vehicle. Further, the control device switches and performs the speed change device control at the time of deceleration or the control of the rotating electric machine at the time of deceleration at the time of deceleration of the lean vehicle.
  • control device performs only either one of the decelerating transmission control or the decelerating rotary electric machine control during deceleration of the lean vehicle, or performs the decelerating electric rotating machine control after the decelerating transmission control or
  • the transmission control at the time of deceleration is performed after the rotating electrical machine control.
  • control device simultaneously performs the speed reduction device control at the time of deceleration and the control of the rotating electric machine at the time of deceleration when the lean vehicle is decelerating.
  • the control device can perform control corresponding to the responsiveness of the control of the driving force by switching control of the electric motor type automatic control transmission or the upstream rotating electric machine. And responsiveness of control of driving force can be improved.
  • control device can improve the responsiveness of the control of the driving force by simultaneously controlling the electric motor type automatic control transmission and the upstream rotating electrical machine.
  • the lean vehicle of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the electric motor type automatic transmission has two primary sheaves, and the width of the two primary sheaves is changed by the electric motor.
  • Continuously variable transmission having a configured primary pulley, a secondary pulley, and a dry belt wound around the primary pulley and the secondary pulley, and a sliding portion between the primary pulley and the secondary pulley is not lubricated with a lubricant
  • the control device controls the electric motor to change the widths of the two primary sheaves to change the transmission gear ratio.
  • the electric motor type automatic control transmission is a continuously variable transmission using a dry belt.
  • the continuously variable transmission has a primary pulley, a secondary pulley, a dry belt, and a dry belt case portion.
  • the primary pulley has two primary sheaves.
  • the primary pulleys are configured such that the widths of the two primary sheaves are varied by the electric motor.
  • the dry belt is wound around a primary pulley and a secondary pulley.
  • the dry belt does not lubricate the sliding portions with the primary and secondary pulleys.
  • the controller controls the electric motor to change the widths of the two primary sheaves and change the transmission ratio.
  • a continuously variable transmission using a dry belt in which the sliding portion is not lubricated with a lubricant friction occurs in the sliding portion.
  • a continuously variable transmission using a dry belt has lower responsiveness of control of the driving force as compared with a transmission using a wet belt. Therefore, the continuously variable transmission using the dry belt is larger after the control to change the transmission ratio is performed based on the transmission ratio set according to the accelerator operation until the driving force is controlled. There is a time lag.
  • control device can enhance responsiveness of control of the driving force by enabling both of the transmission control and the rotating electrical machine control.
  • the lean vehicle of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the electric motor type automatic control transmission includes an actuator driven by the electric motor, and a plurality of transmission gears configured to be selectable by the actuator.
  • the control device controls the actuator with the electric motor to select one transmission gear from the plurality of transmission gears, and changes a gear ratio.
  • the electric motor-type automatically controlled transmission is a stepped transmission having an actuator and a plurality of transmission gears.
  • the actuator is driven by an electric motor.
  • the plurality of transmission gears are configured to be selectable by the actuator.
  • the control device controls the actuator with the electric motor to select one transmission gear from the plurality of transmission gears and change the transmission gear ratio.
  • a time lag occurs from when the control for changing the gear ratio is performed based on the gear ratio set in accordance with the accelerator operation until the driving force is controlled. Therefore, the control device can enhance responsiveness of control of the driving force by enabling both of the transmission control and the rotating electrical machine control.
  • the lean vehicle of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • a rotary electric machine rotation axis which is a rotary axis of the upstream rotary electric machine is disposed on the same straight line as a crank rotary axis which is a rotary axis of the crankshaft.
  • the rotating electrical machine is coupled to the crankshaft.
  • the rotary electric machine rotation axis which is the rotation axis of the upstream rotary electric machine is disposed on the same straight line as the crank rotation axis which is the rotation axis of the crankshaft.
  • the upstream rotating electrical machine can directly apply torque to the crankshaft upstream of the electric motor type automatic control transmission in the power transmission path. That is, the upstream rotating electrical machine can improve the responsiveness of the control of the driving force.
  • the lean vehicle of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • a rotating electrical machine rotational axis which is a rotational axis of the upstream rotating electrical machine is disposed parallel to a crank rotational axis which is a rotational axis of the crankshaft Is coupled to the crankshaft via a power transmission mechanism that transmits power.
  • the rotary electric machine rotation axis which is the rotation axis of the upstream rotary electric machine is disposed in parallel with the crank rotation axis which is the rotation axis of the crankshaft.
  • the upstream rotary electric machine is coupled to the crankshaft via a power transmission mechanism.
  • the upstream rotary electric machine can apply torque to the crankshaft upstream of the electric motor type automatic control transmission in the power transmission path via the power transmission mechanism. That is, the upstream rotating electrical machine can improve the responsiveness of the control of the driving force.
  • the lean vehicle of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the power transmission mechanism is a gear or a chain.
  • the control device controls the rotational speed of the crankshaft and the rotational speed of the upstream rotating electrical machine during acceleration or deceleration of the lean vehicle.
  • the torque applied by the upstream rotary electric machine is calculated based on at least one of an upstream rotary electric machine rotational speed and a transmission gear ratio of the electric motor type automatic control transmission.
  • the control device calculates the torque applied by the upstream rotary electric machine based on at least one of the engine rotational speed, the upstream rotary electric machine rotational speed, and the gear ratio at the time of acceleration or deceleration of the lean vehicle.
  • the engine rotational speed is the rotational speed of the crankshaft.
  • the upstream rotary electric machine rotational speed is the rotational speed of the upstream rotary electric machine.
  • the gear ratio is a gear ratio set by an electric motor type automatic control transmission.
  • the control device is based on at least one of an operation amount of an accelerator grip and a speed of the lean vehicle at the time of acceleration or deceleration of the lean vehicle. And calculating the transmission ratio to be changed by the electric motor type automatic transmission.
  • the control device calculates, based on at least one of the operation amount of the accelerator grip and the speed of the vehicle, the transmission gear ratio at which the electric motor type automatic control transmission is changed.
  • the lean vehicle of the present invention can calculate the transmission gear ratio to be changed by the electric motor type automatic transmission according to the state of the lean vehicle. And, when the condition of the lean vehicle is the same condition, similar traveling can be realized. That is, the lean vehicle can improve the repeatability at the time of deceleration or acceleration of the lean vehicle, and can improve the followability of the driving force to the rider's accelerator operation.
  • the control device in the lean vehicle, includes a transmission control unit that performs the transmission control and a rotating electrical machine control unit that performs the rotating electrical machine control.
  • the device control unit and the rotating electrical machine control unit are configured in one and the same device.
  • the control device includes the transmission control unit that performs transmission control and the rotating electrical machine control unit that performs the rotating electrical machine control.
  • the transmission control unit and the rotating electrical machine control unit are configured in one and the same device. Note that one and the same device refers to a physically configured device.
  • the control device can be made compact. And the enlargement of a lean vehicle can be suppressed.
  • the control device in the lean vehicle, includes a transmission control unit that performs the transmission control and a rotating electrical machine control unit that performs the rotating electrical machine control.
  • the device control unit and the rotating electrical machine control unit are respectively configured in two different devices.
  • the control device includes the transmission control unit that performs transmission control and the rotating electrical machine control unit that performs the rotating electrical machine control.
  • the transmission control unit and the rotary electric machine control unit are respectively configured in two different electrically connected devices. Note that two different devices are devices that are physically configured in two and are devices electrically connected to each other. This improves the degree of freedom in the layout of the control device. And the enlargement of a lean vehicle can be suppressed.
  • the upstream rotating electrical machine has a battery, and the upstream rotating electrical machine and the battery are electrically connected.
  • the upstream rotating electrical machine has the battery.
  • the upstream rotating electrical machine is electrically connected to the battery.
  • the battery can supply power to the upstream rotating electrical machine to apply torque in the positive rotation direction of the crankshaft. Further, the battery can apply torque in the reverse rotation direction of the crankshaft to the upstream rotating electrical machine, and store the power generated by the upstream rotating electrical machine.
  • the control device performs at least one of the transmission control and the rotating electrical machine control based on the remaining capacity of the battery.
  • the control device controls the upstream rotary electric machine based on the remaining capacity of the battery.
  • the control device controls the electric motor of the electric motor type automatic control transmission based on the remaining capacity of the battery.
  • the control device controls the electric motor to change the gear ratio of the electric motor type automatic control transmission before the capacity of the battery runs out, thereby improving the followability of the driving force to the rider's accelerator operation. be able to.
  • the control device controls the electric motor to change the transmission gear ratio of the electric motor type automatic control transmission before the full capacity of the battery is charged, thereby following the driving force to the rider's accelerator operation.
  • the control device controls at least one of the transmission control and the rotating electric machine control based on the remaining capacity of the battery by utilizing the difference in responsiveness between the electric motor type automatic control transmission and the upstream rotating electric machine. By doing this, the followability of the driving force to the rider's accelerator operation can be improved.
  • the upstream rotation is performed.
  • the electric motor is controlled at the same time as the electric motor of the electric motor type automatic control transmission is controlled, and (b) the electric motor type automatic control when the remaining capacity of the battery is less than a predetermined lower acceleration limit
  • the electric motor of the transmission is controlled, and at the time of deceleration of the lean vehicle, (c) when the remaining capacity of the battery is smaller than a predetermined deceleration upper limit value, the electric motor is controlled at the same time (D) controlling the electric motor of the automatic control transmission of the formula, when the remaining capacity of the battery is equal to or greater than a predetermined deceleration upper limit, the electric motor type automatic Controlling the electric motor of the control transmission.
  • the control device controls the upstream rotary electric machine and simultaneously controls the electric motor type automatic control shift. Control the electric motor of the device. Further, the control device controls the electric motor of the electric motor type automatic control transmission when the remaining capacity of the battery (b) is equal to or less than a predetermined acceleration lower limit value at the time of acceleration of the lean vehicle. Further, when the remaining capacity of the battery is smaller than a predetermined deceleration upper limit during deceleration of the lean vehicle, the control device controls the upstream rotary electric machine and at the same time controls the electric motor type automatic control transmission at the same time. Control the motor.
  • control device controls the electric motor of the electric motor type automatic control transmission when the remaining capacity of the battery (d) is equal to or more than a predetermined deceleration upper limit during deceleration of the lean vehicle.
  • the control device controls the electric motor and changes the transmission gear ratio of the electric motor type automatic control transmission without changing the upstream rotary electric machine, thereby improving the followability of the driving force to the rider's accelerator operation. be able to.
  • the control device controls the upstream rotating electrical machine, there is a high possibility that the battery capacity will be fully charged during control of the upstream rotating electrical machine. Therefore, the control device controls the electric motor of the automatic control transmission of the electric motor type to change the gear ratio without controlling the upstream rotary electric machine, thereby improving the followability of the driving force to the rider's accelerator operation. be able to. Therefore, full charge or over charge of the battery can be prevented. In addition, regardless of the state of charge of the battery, it is possible to suppress a rapid change in driving force at the time of acceleration or deceleration of the lean vehicle.
  • the power transmission path is a path through which power is transmitted from the crankshaft to the drive wheels.
  • the crankshaft is upstream in the power transmission path.
  • the driving wheel is downstream in the power transmission path.
  • the positive rotation direction of the crankshaft is the same as the direction in which the crankshaft rotates when the lean vehicle advances.
  • the reverse rotation direction of the crankshaft is the direction opposite to the direction in which the crankshaft rotates when the lean vehicle advances.
  • the operation amount of the accelerator grip is the operation amount of the accelerator grip operated by the rider.
  • the operation amount of the accelerator grip may be a rotation angle of the accelerator grip, or may be an opening degree of a throttle valve of the engine body.
  • the lubricating space is a space in which a lubricant is present, and refers to a space in which components disposed inside are lubricated by the lubricant.
  • the lubricant is oil, grease or the like.
  • a component is exposed to the lubricating space formed by the crankcase portion means that the space in which the component is disposed is not isolated in the lubricating space.
  • the sliding portion of the dry belt refers to the portion that slides in contact with the primary and secondary pulleys of the dry belt.
  • the widths of two primary pulleys refer to the width of a groove formed by the two primary pulleys.
  • the width of the primary pulley refers to the width of the groove formed by the primary moving sheave and the primary fixed sheave.
  • the end of a part means a part of the end of the part and the vicinity thereof.
  • a and B aligned in the X direction indicate the following states.
  • both A and B are arranged on an arbitrary straight line indicating the X direction.
  • a and B aligned in the X direction as viewed from the Y direction indicate the following states.
  • both A and B are arranged on an arbitrary straight line indicating the X direction.
  • one of A and B may not be disposed on an arbitrary straight line indicating the X direction.
  • a and B may be in contact with each other.
  • a and B may be separated. C may be present between A and B.
  • a is disposed in front of B indicates the following state.
  • a and B are aligned in the front-rear direction, and a portion facing B of A is disposed in front of B.
  • A is disposed in front of B.
  • A may or may not be disposed in front of B.
  • the front of B is a surface that can be seen when B is viewed from the front.
  • the front surface of B may not be one continuous surface but may be composed of a plurality of surfaces.
  • a and B are aligned in the front-rear direction, and when viewed in the left-right direction, a portion facing B in A is disposed in front of B.
  • a and B may not be aligned in the front-rear direction in three dimensions. This definition applies to directions other than the front-back direction.
  • the use of the terms “including,” “including,” “comprising,” or “having” and variations thereof describes the features, steps, operations, described. Identifying the presence of elements, components and / or their equivalents, may include one or more of steps, operations, elements, components, and / or groups thereof.
  • the terms “attached”, “connected”, “coupled” and / or their equivalents are widely used, direct and indirect attachment, connection and Includes both bonds.
  • “connected” and “coupled” are not limited to physical or mechanical connections or couplings, but can include direct or indirect electrical connections or couplings.
  • a lean vehicle provided with an electric motor type automatic control transmission that can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration of the lean vehicle.
  • FIG. 1 is a left side view of a motorcycle according to a first embodiment.
  • FIG. 2 is a front view of the motorcycle of FIG. 1 in a turning state. It is a block diagram explaining schematic structure of the two-wheeled motor vehicle of FIG.
  • FIG. 2 is a cross-sectional view showing an engine unit of the motorcycle of FIG. 1;
  • FIG. 2 is a cross-sectional view showing an electric motor type automatic control transmission of the motorcycle of FIG. 1;
  • It is a schematic block diagram which shows the upstream rotary electric machine of the two-wheeled motor vehicle of FIG. 5 is a flowchart illustrating an example of control by the control device at the time of deceleration of the motorcycle.
  • 5 is a graph showing an example of an accelerator opening degree at the time of deceleration of the motorcycle and a change with time of rear wheel driving force.
  • 5 is a flowchart showing an example of control by the control device at the time of acceleration of the motorcycle.
  • 5 is a graph showing an example of temporal changes in an accelerator opening degree and a rear wheel driving force at the time of acceleration of the motorcycle.
  • Fig. 6 is a left side view of a motorcycle according to a second embodiment. It is a schematic block diagram which shows the two-wheeled motor vehicle of FIG. 5 is a graph showing an example of temporal changes in accelerator opening degree, rear wheel driving force, and engine rotational speed at the time of acceleration of the motorcycle. It is a block diagram explaining a schematic structure of a lean vehicle of this embodiment.
  • the lean vehicle 1 includes an engine main body 20, an electric motor-type automatic control transmission 50, a drive wheel 3, an upstream rotary electric machine 90, and a control device 105.
  • the lean vehicle 1 has a vehicle body frame 7 that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left.
  • the engine body unit 20 generates an engine output when the lean vehicle 1 accelerates. Further, the engine main body 20 generates an engine loss when the lean vehicle 1 decelerates.
  • the engine body 20 has a crankshaft 21.
  • the electric motor type automatic control transmission 50 is connected to the crankshaft 21.
  • the electric motor type automatic control transmission 50 transmits the motive power of the engine main body 20 at the transmission gear ratio set by the electric motor 71. That is, power is transmitted from the crankshaft 21 to the electric motor type automatic control transmission 50. Power is engine power and engine loss.
  • the gear ratio is determined, for example, by the accelerator opening and the vehicle speed.
  • At least one drive wheel 3 is connected to an electric motor type automatic control transmission 50. At least one drive wheel 3 generates a driving force by the power transmitted from the electric motor type automatic control transmission 50.
  • the electric motor type automatic control transmission 50 controls the driving force of the drive wheel 3 by controlling the electric motor 71 to change the gear ratio.
  • the upstream rotary electric machine 90 is a rotary electric machine disposed upstream of the electric motor type automatic control transmission 50 in a power transmission path where power is transmitted from the crankshaft 21 to the drive wheel 3.
  • the upstream rotary electric machine 90 applies torque in the reverse rotation direction of the crankshaft 21 to the upstream of the electric motor-type automatic control transmission 50 in the power transmission path when the lean vehicle 1 decelerates. Further, when the lean vehicle 1 accelerates, the upstream rotary electric machine 90 applies a torque in the positive rotation direction of the crankshaft 21 upstream of the electric motor-type automatic control transmission 50 in the power transmission path.
  • the upstream rotary electric machine 90 applies torque in the reverse rotation direction of the crankshaft 21 to the upstream of the electric motor-type automatic control transmission 50 in the power transmission path.
  • the upstream rotary electric machine 90 applies the torque in the positive rotation direction of the crankshaft 21 to the upstream of the electric motor type automatic control transmission 50 in the power transmission path at the time of acceleration of the lean vehicle 1. increase.
  • the torque in the positive rotation direction of the crankshaft 21 is increased, the positive driving force is increased.
  • torque in the reverse rotation direction of the crankshaft 21 is generated, the negative driving force is increased.
  • the upstream rotary electric machine 90 controls the driving force by applying torque in the reverse rotation direction of the crankshaft 21 or applying torque in the forward rotation direction of the crankshaft 21.
  • the control device 105 can perform both transmission control and rotary electric machine control when the lean vehicle 1 accelerates or decelerates.
  • the transmission control is control for controlling the electric motor 71 of the electric motor type automatic control transmission 50 to change the gear ratio.
  • the rotary electric machine control is control for controlling the upstream rotary electric machine 90 to change the torque to be applied upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the control device 105 performs acceleration transmission control or acceleration electric machine control when the lean vehicle 1 accelerates.
  • the acceleration transmission control is control for controlling the electric motor 71 of the electric motor type automatic control transmission 50 to change the transmission gear ratio. Specifically, the acceleration transmission control changes the transmission ratio to a lower transmission ratio by controlling the electric motor 71 of the electric motor type automatic control transmission 50.
  • the acceleration rotary electric machine control is control to control the upstream rotary electric machine 90 to change the torque in the positive rotation direction of the crankshaft 21 applied upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the control device 105 performs decelerating transmission control or decelerating electric rotating machine control.
  • the speed reduction transmission control is control for controlling the electric motor 71 of the electric motor type automatic control transmission 50 to change the transmission gear ratio. Specifically, the speed reduction transmission control controls the electric motor 71 of the electric motor type automatic control transmission 50 to change the transmission ratio to a lower transmission ratio.
  • the decelerating rotary electric machine control is control for controlling the upstream rotary electric machine 90 to change the torque in the reverse rotation direction of the crankshaft 21 applied upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the lean vehicle 1 of the present embodiment has the following features.
  • the electric motor type automatic control transmission 50 has an electric motor 71 and other mechanisms. That is, in the control of changing the gear ratio by the electric motor type automatic control transmission 50, there is a restriction due to the mechanism of the electric motor type automatic control transmission 50 including the electric motor 71. Therefore, after the control for changing the transmission gear ratio is performed based on the transmission gear ratio set according to the accelerator operation, the electric motor type automatic control transmission apparatus 50 is controlled until the driving force of the driving wheel 3 is controlled. Time lag occurs.
  • the upstream rotary electric machine 90 has few or no mechanisms disposed between it and the crankshaft 21.
  • the upstream rotary electric machine 90 controls the upstream rotary electric machine 90 to change the torque to be applied upstream of the electric motor type automatic control transmission 50 in the power transmission path, the drive of the drive wheel 3 is performed. There is almost no time lag before the force is controlled. Therefore, the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90 have different responsiveness to control the driving force.
  • the control device 105 performs acceleration electric rotating machine control or deceleration electric rotating machine control, whereby the upstream rotary electric machine 90 applies a torque upstream of the electric motor type automatic control transmission 50 in the power transmission path. Then, a driving force obtained by multiplying the torque applied by the upstream rotary electric machine 90 by the transmission ratio is transmitted to the driving wheel 3.
  • the electric motor type automatic control transmission apparatus 50 the number of times of changing the transmission ratio becomes unnecessary, or the amount of changing the transmission ratio decreases. Therefore, it becomes possible to eliminate or shorten the time lag until the electric motor type automatic control transmission apparatus 50 changes the transmission ratio. That is, the followability of the driving force to the rider's accelerator operation can be improved.
  • the lean vehicle 1 of the present invention can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the lean vehicle 1 is configured such that the length in the left-right direction is smaller than the length in the front-rear direction as compared to a four-wheeled vehicle such as an automobile. From the viewpoint of the followability of the driving force to the accelerator operation of the lean vehicle 1, it is preferable to improve the maneuverability of the lean vehicle 1 in the left-right direction. Therefore, in the lean vehicle 1, it is preferable to place the heavy load near the center of the lean vehicle 1.
  • power is transmitted from the crankshaft 21 to the drive wheel 3. That is, the engine main body 20 having the crankshaft 21 is disposed upstream of the power transmission direction.
  • the drive wheel 3 is disposed downstream of the power transmission direction.
  • the engine body portion 20 is a heavy load and is disposed near the center of the lean vehicle 1.
  • the drive wheel 3 is disposed at the end of the lean vehicle 1.
  • the rotating electrical machine is also heavy.
  • the rotary electric machine is disposed closer to the center of the lean vehicle 1 when it is provided upstream of the electric motor-type automatic control transmission device 50 in the power transmission direction than on the downstream side. Therefore, by providing the upstream rotary electric machine 90 upstream of the electric motor type automatic control transmission device 50 in the power transmission direction, the maneuverability in the left-right direction of the lean vehicle 1 can be further improved.
  • the lean vehicle 1 is more compact than a four-wheeled vehicle such as a car. From the viewpoint of the followability of the driving force to the accelerator operation of the lean vehicle 1, it is not preferable that the vehicle be enlarged. Therefore, it is desirable that the size of the rotating electrical machine be small. Further, in the lean vehicle 1, the upstream rotary electric machine 90 provided upstream of the electric motor type automatic control transmission 50 in the power transmission direction is provided downstream of the electric motor type automatic control transmission 50 in the power transmission direction. It may rotate at a higher rotational speed than the downstream rotary electric machine. The efficiency of the motor depends on the rotational speed.
  • the upstream rotary electric machine 90 provided upstream of the electric motor type automatic control transmission 50 in the power transmission direction is the downstream rotary electric machine provided downstream of the electric motor type automatic control transmission 50 in the power transmission direction.
  • Even motor efficiency may be good.
  • the larger the size of the rotating electric machine the larger the output. Therefore, the upstream rotary electric machine 90 provided upstream of the electric motor type automatic control transmission 50 in the power transmission direction is a downstream rotary electric machine provided downstream of the electric motor type automatic control transmission 50 in the power transmission direction. Even if the motor efficiency is good, the same output can be obtained even with a small size. Therefore, by providing the upstream rotary electric machine 90 upstream of the electric motor type automatic control transmission device 50 in the power transmission direction, the enlargement of the lean vehicle 1 may be suppressed in some cases.
  • the motorcycles 1 and 201 of the first and second embodiments are examples of a lean vehicle on which the engine unit of the present invention is mounted.
  • the longitudinal direction, the lateral direction, and the vertical direction of the vehicle mean the longitudinal direction, the lateral direction, and the vertical direction as viewed from a rider seated on a seat 8 or 208 described later of the motorcycle 1 or 201, respectively. It shall be. However, it is assumed that the motorcycle is disposed on the level ground.
  • Arrows F, B, L, R, U, and D attached to the respective drawings indicate the forward direction, the backward direction, the left direction, the right direction, the upward direction, and the downward direction, respectively.
  • all the configurations of the embodiment of FIG. 14 are included. And about the same member as embodiment of FIG. 14, the same code
  • FIG. 1 shows a motorcycle 1 disposed upright on a horizontal road surface.
  • the motorcycle 1 includes a front wheel 2 and a rear wheel 3 which are wheels, and a vehicle body frame 7.
  • the rear wheel 3 is a drive wheel.
  • the vehicle body frame 7 is an underbone type vehicle body frame.
  • the body frame 7 is inclined to the right of the vehicle 1 when turning right, and is inclined to the left of the vehicle 1 when turning left. In FIG. 1, only a part of the vehicle body frame 7 is indicated by a broken line.
  • the body frame 7 has a head pipe 7a at its front.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 7a.
  • the upper end of the steering shaft is connected to the steering wheel unit 4.
  • Upper ends of the pair of front forks 5 are fixed to the handle unit 4.
  • the lower end portion of the front fork 5 supports the front wheel 2.
  • An engine unit 6 is swingably supported by the vehicle body frame 7.
  • the engine unit 6 is disposed below the upper end of a seat 8 described later.
  • the rear end portion of the engine unit 6 supports the rear wheel 3.
  • the engine unit 6 is connected to one end of the rear suspension 7b at the boss 6b.
  • the other end of the rear suspension 7 b is connected to the vehicle body frame 7.
  • a seat 8 is supported on the upper portion of the vehicle body frame 7.
  • the upper portion of the front fork 5 is covered by a front cover 9.
  • a side cover 10 is disposed below the seat 8.
  • a step board 11 is disposed between the front cover 9 and the side cover 10. The step boards 11 are disposed on the left and right sides of the lower part of the motorcycle 1.
  • a fuel tank (not shown) is disposed below the seat 8.
  • the vehicle body frame 7 supports a battery 94 (see FIG. 3) for supplying power to various sensors described later and electronic devices such as an ECU (Electronic Control Unit) 100.
  • the ECU 100 is a component of the motorcycle 1.
  • the ECU 100 includes the control device of the present invention described later.
  • the steering wheel unit 4, the steering shaft, the front fork 5, and the front wheel 2 are integrally provided to rotate left and right.
  • the front wheel 2 is steered by the operation of the steering wheel unit 4.
  • the steering wheel unit 4 When the steering wheel unit 4 is turned in the left-right direction, the plane passing through the widthwise center of the front wheel 2 is inclined with respect to the front-rear direction (FB direction) of the vehicle 1.
  • Arrows UF, DF, FF, BF, LF, and RF shown in FIGS. 1 to 2 indicate the upward, downward, forward, backward, leftward, and rightward directions of the vehicle body frame 7, respectively.
  • the vertical direction (UFDF direction) of the vehicle body frame 7 is a direction parallel to the axial direction of the head pipe 7a of the vehicle body frame 7.
  • the left-right direction (LFRF direction) of the vehicle body frame 7 is a direction orthogonal to a plane passing through the widthwise center of the vehicle body frame 7.
  • the longitudinal direction (FFBF direction) of the vehicle body frame 7 is a direction orthogonal to both the vertical direction (UFDF direction) of the vehicle body frame 7 and the lateral direction (LFRF direction) of the vehicle body frame 7.
  • the vehicle 1 is disposed upright on a horizontal road surface. Therefore, the left-right direction of the vehicle 1 and the left-right direction of the vehicle body frame 7 coincide with each other.
  • FIG. 2 is a front view of the motorcycle of FIG. 1 in a turning state. That is, FIG. 2 shows the motorcycle 1 in which the vehicle body frame 7 of the motorcycle 1 is inclined to a horizontal road surface.
  • the motorcycle 1 is a lean vehicle.
  • the vehicle body frame 7 inclines to the right of the vehicle 1 when turning right, and inclines to the left of the vehicle 1 when turning left.
  • the left and right direction (LR direction) of the vehicle 1 and the left and right direction (LFRF direction) of the vehicle body frame 7 do not match in a front view.
  • the vertical direction (UD direction) of the vehicle 1 and the vertical direction (UFDF direction) of the vehicle body frame 7 do not coincide in a front view.
  • the front-rear direction (FB direction) of the vehicle 1 and the front-rear direction (FFBF direction) of the vehicle body frame 7 coincide with each other.
  • a plane passing through the center of the front wheel 2 in the width direction viewed from the vertical direction is relative to the longitudinal direction (FB direction) of the vehicle 1 and the longitudinal direction (FFBF direction) of the vehicle body frame 7 Incline.
  • the traveling direction of the vehicle 1 does not necessarily coincide with the front-rear direction of the vehicle 1.
  • the steering wheel unit 4 is provided with an accelerator grip 4 a and a brake lever 4 c.
  • the right grip of the handle unit 4 constitutes an accelerator grip 4a.
  • the accelerator grip 4a is operated by the rider to rotate.
  • the accelerator grip 4a is operated to adjust the output of the engine.
  • a brake lever 4 c is provided on the right grip of the handle unit 4.
  • the brake lever 4c is operated by the rider.
  • the brake lever 4 c is operated to suppress the rotation of the front wheel 2.
  • the handle unit 4 is provided with various switches such as a main switch.
  • the handle unit 4 is provided with a display device 110.
  • the display device 110 displays a vehicle speed, an engine rotational speed, and the like.
  • the display device 110 is provided with an indicator (indicating light).
  • FIG. 3 is a schematic configuration view showing the motorcycle 1 according to the first embodiment.
  • axes connecting the crankshaft 21, the upstream rotary electric machine 90, the electric motor automatic control transmission 50, the clutch 56 and the rear wheel 3 which will be described later are schematically shown by straight lines.
  • these shafts are power transmission paths that indicate paths of mechanical power transmitted.
  • the engine unit 6 includes an engine body 20 and an electric motor type automatic transmission 50.
  • the electric motor type automatic control transmission 50 includes a transmission 40 and a transmission control device 70.
  • the electric motor type automatic control transmission 50 transmits the power of the engine main body 20 to the rear wheel 3.
  • the electric motor type automatic control transmission 50 is a continuously variable transmission using a dry belt 32.
  • the transmission 40 has a primary pulley 42, a secondary pulley 52, and a dry belt 32.
  • the primary pulley 42 is disposed in front of the secondary pulley 52.
  • the dry belt 32 is wound around the primary pulley 42 and the secondary pulley 52.
  • the engine body 20 is a single-cylinder engine having one cylinder.
  • the engine body 20 is a four-stroke, one-stroke engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke.
  • the engine body portion 20 has a crankcase portion 22 in which a crankshaft 21 is accommodated, a cylinder body 23, a cylinder head 24, and a head cover 25.
  • the head cover 25 forms the front of the engine unit 6.
  • the cylinder head 24 is connected to the rear end of the head cover 25.
  • the cylinder body 23 is connected to the rear end of the cylinder head 24.
  • the engine body 20 is a forced air cooling type engine.
  • the engine body 20 has a shroud 20a.
  • the shroud 20a covers the cylinder body 23 and the cylinder head 24 all around. Furthermore, the shroud 20 a covers the right portion of the crankcase portion 22.
  • An air inlet 20b is formed on the right of the shroud 20a.
  • an air outlet (not shown) is formed at the front of the shroud 20a.
  • the right end portion of the crankshaft 21, which will be described later, protrudes from the crankcase portion 22 and is connected to the cooling fan 20c.
  • the cooling fan 20 c is rotationally driven as the crankshaft 21 rotates. By driving the cooling fan 20c, air is introduced into the shroud 20a from the air inlet 20b.
  • the air introduced into the shroud 20a comes into contact with cooling fins 23b of the cylinder body 23 described later, whereby the cylinder body 23 dissipates heat.
  • the air introduced into the shroud 20a
  • a cylinder hole 23 a is formed in the cylinder body 23.
  • the central axis of the cylinder hole 23a is a cylinder axis.
  • the engine body 20 is mounted on the vehicle body frame 7 (see FIG. 1) with the cylinder axis largely inclined forward.
  • the inclination angle of the cylinder axis with respect to the horizontal direction is 0 degrees or more and 45 degrees or less.
  • the piston 26 is slidably accommodated in the cylinder hole 23a.
  • a combustion chamber 24 a is formed by the lower surface of the cylinder head 24, the cylinder hole 23 a and the piston 26.
  • the cylinder head 24 is provided with a spark plug (ignition device) 24 b.
  • the spark plug 24b ignites mixed gas of fuel and air in the combustion chamber 24a.
  • the crankshaft 21 has two crank webs 21 a and two main shafts 21 b.
  • the two crank webs 21a are disposed between the two main shafts 21b.
  • the two crank webs 21a are connected by an eccentric shaft (not shown).
  • the eccentric shaft is a connection that connects the two crank webs 21a.
  • the center line of the eccentric shaft is offset from the center line of the crankshaft.
  • a piston 26 is connected to the eccentric shaft of the crankshaft 21 via a connecting rod 26a.
  • a bearing 27a is disposed on the right of the right crank web 21a.
  • a bearing 27b is disposed on the left side of the left crank web 21a.
  • the crankshaft 21 is supported by the crankcase portion 22 via a bearing 27a and a bearing 27b.
  • a drive cam chain sprocket 28 a is fitted to the crankshaft 21. Further, a driven cam chain sprocket 28 b is disposed in the cylinder head 24. Then, the cam chain 28c is bridged between the drive cam chain sprocket 28a and the driven cam chain sprocket 28b. The driven cam chain sprocket 28b is mounted on the valve operating camshaft 28d. The torque of the crankshaft 21 is transmitted to the valve operating camshaft 28d via the cam chain 28c.
  • the valve operating camshaft 28 d opens and closes an intake valve and an exhaust valve (not shown) at required timings in synchronization with the crankshaft 21.
  • an intake pipe 20 i is connected to the cylinder head 24.
  • the intake pipe 20i is provided with an injector 27 for injecting fuel in a fuel tank (not shown) into the intake pipe 20i.
  • the injector 27 is connected to the fuel tank via a fuel hose (not shown).
  • the fuel in the fuel tank is pumped to the fuel hose by a fuel pump (not shown).
  • the fuel injected by the injector 27 is supplied to the combustion chamber 24a.
  • the injector 27 is an electronically controlled fuel supply device, and the injection amount of fuel by the injector 27 is controlled by the ECU 100.
  • An exhaust pipe 20 e is connected to the cylinder head 24. The exhaust pipe 20e discharges the exhaust gas generated by the combustion of the fuel.
  • the intake pipe 20i is connected to the throttle body 29. Inside the throttle body 29, a throttle valve 29a is disposed.
  • the throttle valve 29 a adjusts the amount of air flowing through the throttle body 29.
  • An air cleaner (not shown) is provided at the end of the intake pipe 20i upstream of the throttle body 29.
  • the air cleaner has an air inlet for drawing air.
  • the air taken into the intake pipe 20i from the air intake port flows into the throttle body.
  • the air that has passed through the throttle valve 29a passes through the intake pipe 20i and is supplied to the combustion chamber 24a.
  • the throttle valve 29a is an electronically controlled throttle.
  • the throttle body 29 is provided with a throttle actuator 29b.
  • the throttle actuator 29b opens and closes the throttle valve 29a by electronic control.
  • Throttle actuator 29 b includes a motor operated by the power supplied from ECU 100.
  • the opening degree of the throttle valve 29a is referred to as the throttle opening degree.
  • the ECU 100 controls the throttle opening by changing the power supplied to the motor
  • the piston 26 is connected to a crankshaft 21 disposed inside the crankcase portion 22.
  • the piston 26 reciprocates by burning the fuel supplied to the combustion chamber 24 a. Reciprocation of the piston 26 rotates the crankshaft 21.
  • an upstream rotary electric machine 90 is connected to the crankshaft 21. That is, the crankshaft 21 and the upstream rotary electric machine 90 are arranged to be coaxial.
  • the upstream rotary electric machine 90 is disposed coaxially with the crankshaft 21 means that the rotary electric machine rotation axis Ag1 that is the rotation axis of the upstream rotary electric machine 90 is the crank rotation axis Ac1 that is the rotation axis of the crankshaft 21. It is to be arranged on the same straight line.
  • the upstream rotary electric machine 90 is a three-phase generator, and is a permanent magnet generator.
  • the driving state of the upstream rotary electric machine 90 includes a power generation state and a power running state.
  • the drive state in which the upstream rotary electric machine 90 generates power by applying torque in the reverse rotation direction of the crankshaft 21 to the crankshaft 21 is a power generation state.
  • the power generation state part of the torque in the positive rotation direction of the crankshaft 21 is applied from the crankshaft 21 to the upstream rotary electric machine 90, and the upstream rotary electric machine 90 is rotated in the same direction as the positive rotation direction of the crankshaft 21 Ru.
  • the driving state in which the crankshaft 21 is positively rotated by applying torque in the positive rotation direction of the crankshaft 21 to the crankshaft 21 by the electric power supplied from the battery 94 described later by the upstream rotary electric machine 90 is there.
  • the upstream rotary electric machine 90 is driven in a power running state as a starter motor at the time of engine start. Further, during normal operation after engine start, the upstream rotary electric machine 90 is driven in a power running state or a power generation state.
  • the rotary electric machine is configured as a device integrated with the starter motor.
  • the starter motor and the rotary electric machine may be configured as separate devices.
  • the upstream rotary electric machine 90 has an inner stator 91 and an outer rotor 92.
  • the outer rotor 92 is attached to the crankshaft 21 so as to rotate with the crankshaft 21.
  • the outer rotor 92 is a rotating body for increasing the inertia of the crankshaft 21.
  • permanent magnet parts (not shown) made of a plurality of permanent magnets are provided on the inner peripheral surface of the outer rotor 92.
  • the inner stator 91 is provided to face the permanent magnet portion of the outer rotor 92.
  • the upstream rotating electrical machine 90 has an inverter 93 and a battery 94.
  • the inverter 93 controls the on / off of the upstream rotary electric machine 90.
  • the battery 94 supplies power to the upstream rotary electric machine 90 to drive it by the powering function. That is, the battery 94 supplies power to the upstream rotating electrical machine 90 to apply torque in the positive rotation direction of the crankshaft 21.
  • the battery 94 stores the electric power generated by the upstream rotary electric machine 90 by the regeneration function. That is, the battery 94 applies torque in the reverse rotation direction of the crankshaft 21 to the upstream rotating electrical machine 90, and stores the electric power generated by the upstream rotating electrical machine 90.
  • the dry belt case portion 31 is disposed at the rear of the cylinder body 23.
  • the dry belt case portion 31 is also called a transmission case.
  • the dry belt case portion 31 forms a dry space.
  • the primary pulley 42, the secondary pulley 52, and the dry belt 32 are disposed in the dry space.
  • the dry belt case portion 31 is provided from the rear end portion of the cylinder body 23 to the rear wheel 3 toward the rear of the vehicle.
  • the dry belt case portion 31 is rotatably supported by the vehicle body frame 7.
  • An oil filter (not shown) is attached to the lower portion of the dry belt case portion 31.
  • a lubrication space 22c is formed in which a lubricant such as oil is present in the crankshaft 21 and the like.
  • the transmission 40 includes a primary shaft 41, a primary pulley 42, a secondary shaft 51, a secondary pulley 52, and a dry belt 32.
  • the primary shaft portion 41 is integrally formed with the crankshaft 21. That is, the primary rotation axis Ap that is the rotation axis of the primary shaft portion 41 is disposed on the same straight line as the crank rotation axis Ac1 of the crankshaft 21.
  • the primary pulley 42 is provided on the primary shaft 41.
  • the primary pulley 42 is rotatable integrally with the primary shaft 41.
  • the dry belt 32 is formed in an annular shape. The dry belt 32 is wound around the primary pulley 42 and the secondary pulley 52. The rotation of the primary pulley 42 is transmitted to the secondary pulley 52 via the dry belt 32.
  • Secondary pulley 52 is provided on secondary shaft 51.
  • the secondary pulley 52 is rotatable with the secondary shaft 51.
  • the transmission control device 70 moves a primary movable sheave 44 (described later) of the primary pulley 42 in the direction of the primary rotation axis Ap. Then, the transmission control device 70 controls the transmission gear ratio of the electric motor type automatic control transmission 50.
  • the detailed configurations of the transmission 40 and the transmission control device 70 will be described later.
  • the secondary pulley 52 is coupled to the drive shaft 60 via the clutch 56, the secondary shaft 51, and the main shaft 64.
  • the drive shaft 60 is an axle of the rear wheel 3.
  • the clutch 56 switches between connection and disconnection of the secondary pulley 52 and the secondary shaft 51.
  • the clutch 56 of the present embodiment is an automatic clutch that is automatically connected or disconnected without requiring a rider's clutch operation.
  • the clutch 56 is a centrifugal clutch.
  • the clutch 56 connects the secondary pulley 52 and the secondary shaft 51 when the engine rotational speed exceeds a preset value.
  • the secondary shaft 51 is connected to the main shaft 64 such that power can be transmitted. Further, the main shaft 64 is connected to the drive shaft 60 so that power can be transmitted.
  • the clutch 56 disconnects the secondary pulley 52 and the secondary shaft 51 when the engine rotational speed is equal to or less than a preset value. That is, power is not transmitted from the secondary pulley 52 to the secondary shaft 51, the main shaft 64, and the drive shaft 60.
  • the motorcycle 1 includes a vehicle speed sensor 3c, an accelerator sensor 4b, a throttle opening degree sensor 29c, an engine rotational speed sensor 21s, a sheave position detection sensor 85, and a secondary pulley rotational speed sensor 51b. , And a rotor position detection sensor 90a. These sensors are connected to the ECU 100.
  • the vehicle speed sensor 3 c is disposed on the drive shaft 60 of the rear wheel 3.
  • the vehicle speed sensor 3 c outputs a signal of a frequency according to the rotational speed of the drive shaft 60.
  • the ECU 100 calculates the vehicle speed based on the output signal of the vehicle speed sensor 3c.
  • the accelerator sensor 4b detects a rotation angle (hereinafter referred to as an accelerator opening degree) of an accelerator grip 4a operated by a rider.
  • the accelerator sensor 4 b is, for example, a potentiometer provided on the accelerator grip 4 a.
  • the accelerator sensor 4b outputs an electrical signal according to the accelerator opening degree of the rider.
  • the ECU 100 detects the accelerator opening degree of the rider based on the output signal of the accelerator sensor 4b.
  • the throttle opening sensor (throttle position sensor) 29 c is provided on the throttle body 29.
  • the throttle opening degree sensor 29c detects a throttle opening degree which is an opening degree of the throttle valve 29a.
  • the throttle opening degree sensor 29c is configured by, for example, a potentiometer.
  • the throttle opening degree sensor 29c outputs a voltage signal or a current signal according to the throttle opening degree.
  • the ECU 100 detects the throttle opening based on the output signal of the throttle opening sensor 29c.
  • the engine rotational speed sensor 21s is provided in the engine main body 20.
  • the engine rotational speed sensor 21 s outputs a signal of a frequency corresponding to the rotational speed of the crankshaft 21 and the rotational speed of the primary shaft portion 41.
  • the rotational speed of the crankshaft 21 and the rotational speed of the primary shaft portion 41 are engine rotational speeds.
  • the ECU 100 calculates the engine rotation speed based on the output signal of the engine rotation speed sensor 21s.
  • the sheave position detection sensor 85 is provided in the transmission 40.
  • the sheave position detection sensor 85 detects the transmission gear ratio of the electric motor type automatic control transmission 50.
  • the transmission gear ratio corresponds to the position of the primary movable sheave 44 of the primary pulley 42.
  • the sheave position detection sensor 85 outputs an electrical signal according to the position of the primary movable sheave 44.
  • the sheave position detection sensor 85 is constituted by, for example, a rotation meter including a sensor shaft 85a and a sensor arm 85b. The detailed configuration of the sheave position detection sensor 85 will be described later.
  • the ECU 100 detects the transmission gear ratio based on the output signal of the sheave position detection sensor 85, the rotation speed of the crankshaft 21 described above, and the rotation speed of the secondary pulley 52 described later.
  • Secondary pulley rotational speed sensor 51 b is provided in transmission 40. Secondary pulley rotational speed sensor 51 b outputs a signal of a frequency corresponding to the rotational speed of secondary pulley 52. The ECU 100 calculates the rotational speed of the secondary pulley 52 based on the output signal of the secondary pulley rotational speed sensor 51b.
  • the rotational speed of the secondary pulley 52 is referred to as a secondary pulley rotational speed.
  • the rotor position detection sensor 90 a is provided to the upstream rotary electric machine 90.
  • the rotor position detection sensor 90 a detects the rotational position of the outer rotor 92.
  • the rotor position detection sensor 90 a outputs an electrical signal corresponding to the rotational position of the outer rotor 92.
  • the rotor position detection sensor 90a calculates the rotational speed and the rotational position of the outer rotor 92 based on the electrical signal of the rotor position detection sensor 90a.
  • the rotational speed of the outer rotor 92 is the same as the rotational speed of the crankshaft 21. Therefore, the rotor position detection sensor 90a calculates the rotational speed of the crankshaft 21 based on the output signal of the rotor position detection sensor 90a.
  • the electric motor type automatic control transmission 50 includes a transmission 40, a transmission control device 70, and a clutch.
  • the transmission 40 includes the dry belt 32, the primary shaft 41, the primary pulley 42, the secondary shaft 51, and the secondary pulley 52.
  • the primary shaft portion 41 is formed integrally with the crankshaft 21 at the left end of the crankshaft 21 in the left-right direction of the vehicle. That is, the primary shaft 41 is disposed coaxially with the crankshaft 21.
  • that the primary shaft 41 is disposed coaxially with the crankshaft 21 means that the primary rotation axis Ap, which is the rotation axis of the primary shaft 41, is disposed on the same straight line as the crank rotation axis Ac1 of the crankshaft 21. (See Figure 3).
  • the power of the crankshaft 21 is transmitted to the primary shaft 41.
  • the primary shaft portion 41 is a portion on the left side of the cam chain 28 c wound around the crankshaft 21.
  • the diameter of the primary shaft portion 41 is smaller than the diameter of the portion of the crankshaft 21 on which the cam chain 28c is wound.
  • Primary shaft portion 41 is formed such that the left portion in the left-right direction of the vehicle has a smaller diameter than the portion on the right side.
  • the primary shaft portion 41 is formed to penetrate the crankcase portion 22. That is, the right portion of the primary shaft portion 41 is disposed in the lubrication space 22 c formed by the crankcase portion 22 in the vehicle left-right direction. Further, the left portion of the primary shaft portion 41 is disposed in the dry space 31 a formed by the dry belt case portion 31.
  • the lubrication space is a space in which a lubricant such as oil is present, and refers to a space in which components disposed inside are lubricated by the lubricant.
  • the primary pulley 42 is attached to the primary shaft 41.
  • the primary pulley 42 includes a collar 43, a primary movable sheave 44, and a primary fixed sheave 45.
  • Primary moving sheave 44 and primary fixed sheave 45 are two primary sheaves.
  • the collar member 43 is disposed on the outer peripheral surface of the primary shaft 41.
  • the collar member 43 is fastened to the primary shaft 41 by the lock nut 47 via the spacer 46 and the disc spring 46 a so as to rotate with the primary shaft 41.
  • the collar member 43 is disposed to the right of the primary fixed sheave 45 in the lateral direction of the vehicle.
  • Primary movable sheave 44 and primary fixed sheave 45 are disposed on the left side in the left-right direction of the vehicle with respect to crankcase portion 22. That is, the primary movable sheave 44 and the primary fixed sheave 45 are disposed in the dry space 31a.
  • a slide member 44 a is integrally formed at the right end of the primary movable sheave 44. That is, the slide member 44 a is coupled to the primary movable sheave 44.
  • the slide member 44a is formed in a cylindrical shape.
  • the primary movable sheave 44 and the slide member 44 a are attached to the collar member 43.
  • the primary movable sheave 44 and the slide member 44 a are movably supported by the collar member 43 in the axial direction of the primary shaft portion 41. Furthermore, the primary movable sheave 44 and the slide member 44 a rotate with the collar member 43 and the primary shaft 41.
  • the primary movable sheave 44 is movable in the axial direction of the primary shaft 41 together with the slide member 44a and is configured to rotate with the slide member 44a.
  • a seal member 44 d is disposed between the inner peripheral surface of the primary movable sheave 44 and the collar member 43.
  • a space formed between the slide member 44 a and the collar member 43 communicates with the lubrication space 22 c. That is, the collar member 43 is exposed to the lubrication section 22c.
  • that a component is exposed to the lubricating space formed by the crankcase portion 22 means that the space in which the component is disposed is not isolated in the lubricating space.
  • the seal member 44d prevents oil that lubricates the space between the slide member 44a and the collar member 43 from leaking from the lubrication space 22c to the dry space 31a.
  • the primary fixed sheave 45 is spline-fitted to the primary shaft portion 41 so as to contact the left surface of the collar member 43 in the vehicle left-right direction.
  • a spacer 46, a disc spring 46a and a lock nut 47 are disposed at the left end of the primary shaft 41 on the left side of the primary fixed sheave 45 in the left-right direction of the vehicle.
  • the primary stationary sheave 45 is configured to rotate with the primary shaft 41.
  • On the left side of the primary fixed sheave 45 a large number of radially arranged cooling fins 45c are integrally formed.
  • An air inlet (not shown) is formed at the front of the dry belt case 31 (see FIG. 4).
  • the primary fixed sheave 45 is rotationally driven as the primary shaft 41 rotates.
  • the rotation of the large number of cooling fins 45 c introduces air into the dry belt case 31 from the air inlet.
  • the air introduced into the dry belt case 31 comes in contact with the dry belt 32, the primary pulley 42 and the secondary pulley 52, whereby the dry belt 32, the primary pulley 42 and the secondary pulley 52 radiate heat.
  • the air introduced into the dry belt case 31 is discharged from an air outlet (not shown) at the rear or lower portion of the dry belt case 31.
  • the cooling fan 45 c introduces outside air into the dry belt case portion 31.
  • the secondary shaft 51 is disposed in parallel to the primary shaft portion 41.
  • a gear case 61 is disposed on the right of the rear end of the dry belt case 31.
  • the gear case 61 is connected to a case main body 62 disposed on the right side of the gear case 61.
  • the gear case 61 and the case main body 62 form a lubrication space 60 a lubricated with oil.
  • Secondary shaft 51 is formed penetrating gear case 61. That is, in the left-right direction of the vehicle, the right portion of the secondary shaft 51 is disposed in the lubrication space 60 a formed by the gear case 61 and the case main body 62.
  • the left portion of the secondary shaft 51 is disposed in the dry space 31 a in the dry belt case portion 31.
  • a drive shaft 60 for rotating the rear wheel 3 is disposed in the lubrication space 60a.
  • the drive shaft 60 is disposed parallel to the secondary shaft 51.
  • a main shaft 64 (see FIG. 3) is disposed in parallel with the secondary shaft 51 and the drive shaft 60.
  • a seal member 51 a is disposed between the outer peripheral surface of the secondary shaft 51 and the gear case 61. The seal member 51a prevents oil from leaking from the lubrication space 60a to the dry space 31a.
  • the secondary shaft 51 is supported by the gear case 61 via a bearing 61 a. Further, the right end portion of the secondary shaft 51 is supported by the case main body 62 via the bearing 62a. In addition, the left end portion of the secondary shaft 51 is supported by the dry belt case portion 31 via the bearing 63 and the spacer 63a.
  • Secondary pulley 52 is mounted on secondary shaft 51.
  • Secondary pulley 52 includes collar member 53, secondary movable sheave 54, and secondary fixed sheave 55.
  • the collar member 53 is formed in a cylindrical shape.
  • the collar member 53 is rotatably mounted on the outer peripheral surface of the secondary shaft 51 via the bearing 55 a and the bearing 55 b. Further, the collar member 53 is mounted on the secondary shaft 51 so as not to be movable in the axial direction.
  • the slide member 53 a is attached to the collar member 53.
  • the slide member 53 a is disposed between the inner peripheral surface of the secondary movable sheave 54 and the outer peripheral surface of the collar member 53.
  • the slide member 53 a and the secondary movable sheave 54 are movably supported by the collar member 53 in the rotation axis direction of the secondary shaft 51. Furthermore, the slide member 53 a and the secondary movable sheave 54 rotate together with the collar member 53 and the secondary shaft 51. Therefore, the secondary movable sheave 54 is movable together with the collar member 53 in the direction of the rotation axis of the secondary shaft 51, and is mounted to rotate with the slide member 53a.
  • the secondary fixed sheave 55 is fitted and fixed to the collar member 53. That is, the secondary fixed sheave 55 is rotatably mounted on the secondary shaft 51 via the collar member 53 and immovable in the rotational axis direction.
  • a centrifugal clutch 56 is disposed on the left side of the secondary pulley 52.
  • the centrifugal clutch 56 is attached to the secondary shaft 51.
  • the centrifugal clutch 56 includes a weight arm 56a, a weight 56b, and an outer clutch 56c.
  • the weight arm 56 a is fitted and fixed to the collar member 53 so as to rotate with the collar member 53.
  • the weight 56 b is mounted on the weight arm 56 a so as to be able to swing in the radial direction of the secondary shaft 51.
  • the outer clutch 56c is disposed to surround the weight 56b.
  • the outer clutch 56 c is fitted and fixed to the secondary shaft 51 so as to rotate with the secondary shaft 51.
  • a spring 57 is disposed between the secondary movable sheave 54 and the weight arm 56a.
  • the secondary movable sheave 54 is biased by the spring 57 in the direction in which the effective diameter of the secondary pulley 52 is increased.
  • the weight 56b moves outward in the radial direction of the secondary shaft 51 by centrifugal force and abuts on the inner surface of the outer clutch 56c. Thereby, the rotation of the secondary pulley 52 is transmitted to the secondary shaft 51.
  • the rotation of the secondary shaft 51 is transmitted to the rear wheel 3 via the main shaft 64 and the drive shaft 60.
  • the dry belt 32 is wound around the primary pulley 42 and the secondary pulley 52.
  • the dry belt 32 is a rubber or resin transmission belt.
  • the solid line shows the dry belt 32 in the low speed position.
  • the low speed position of the dry belt 32 is referred to as the low position of the dry belt 32.
  • a two-dot chain line indicates the dry belt 32 at the high speed position.
  • the high speed position of the dry belt 32 is referred to as the top position of the dry belt 32.
  • the top position of the dry belt 32 is a position where the width of the primary pulley 42 is the smallest.
  • the top position of the dry belt 32 is a position where the winding diameter of the dry belt 32 wound around the primary pulley 42 is the largest, and the speed change ratio is the slowest position.
  • the low position of the dry belt 32 is the position where the width of the primary pulley 42 is the largest. That is, the low position of the dry belt 32 is the position where the winding diameter of the dry belt 32 wound around the primary pulley 42 is the smallest, and is the position where the speed ratio is the highest.
  • the width of the primary pulley 42 refers to the width of the groove formed by the primary movable sheave 44 and the primary fixed sheave 45.
  • the sliding portion 32a with the primary pulley 42 and the secondary pulley 52 is not lubricated with a lubricant.
  • the dry belt 32, the primary pulley 42 and the secondary pulley 52 are disposed in a dry space 31 a in the dry belt case 31.
  • the width of the primary pulley 42 is the width of the groove formed by the primary movable sheave 44 and the primary fixed sheave 45.
  • the transmission control device 70 includes an electric motor 71, a rotational force conversion mechanism 72, and a rotational force transmission mechanism 80.
  • the electric motor 71 is disposed between the cylinder body 23 and the throttle body 29 (see FIG. 3).
  • the electric motor 71 is fixed to the outer wall of the crankcase 22 by a bolt 71 a.
  • An output gear 81 described later is formed on the rotation shaft 71 b of the electric motor 71.
  • the electric motor 71 is disposed in the dry space 70a. Further, the output gear 81 is disposed in the lubrication space 22c.
  • the slide member 44 a is integrally formed at the right end of the primary movable sheave 44 of the primary pulley 42 as described above.
  • the slide member 44 a is attached to the collar member 43.
  • the slide member 44 a is formed to penetrate the crankcase portion 22.
  • a seal member 22 d is disposed between the outer peripheral surface of the slide member 44 a and the crankcase portion 22.
  • the seal member 22d prevents oil from leaking from the lubrication space 22c to the dry space 31a.
  • the right end portion of the slide member 44a is smaller in diameter than the other portions.
  • a first bearing 75 described later is fitted to the outer peripheral surface of the right end portion of the slide member 44a.
  • the rotational force conversion mechanism 72 includes a relative moving unit 73, a rotating unit 74, a first bearing 75, a second bearing 76, and a sheave gear 79.
  • the rotational force conversion mechanism 72 converts the rotational force (torque) of the sheave gear 79 into the axial movement force of the primary movable sheave 44. That is, the rotational force conversion mechanism 72 converts the rotational force of the electric motor 71 to be described later into a moving force in the direction of the primary rotational axis Ap.
  • the rotational force conversion mechanism 72 is disposed in the lubrication space 22c.
  • the torque conversion mechanism 72 has the following structure in detail.
  • the relative moving part 73 has a cylindrical body part 73a.
  • the right end portion of the slide member 44 a is fitted to the cylindrical portion 73 a via the first bearing 75.
  • the relative moving unit 73 is connected to the slide member 44a.
  • the relative moving unit 73 contacts a rotating unit 74 described later.
  • the relative moving unit 73 is movable relative to the rotating unit 74 in the direction of the primary rotation axis Ap by the rotational force of the rotating unit 74.
  • the protrusion 73 b is formed on the outer peripheral surface of the cylindrical portion 73 a.
  • the portion on the right side of the protrusion 73 b of the cylindrical portion 73 a is formed to have a smaller diameter than the portion on the left side of the protrusion 73 b of the cylindrical portion 73 a.
  • a ring body 77 is press-fitted to the outer peripheral surface on the right side of the protrusion 73 b of the cylindrical portion 73 a.
  • the ring body 77 can not move to the primary pulley 42 side by the projection 73 b.
  • the ring body 77 is formed with a detent portion 77 a that protrudes radially outward.
  • a slit portion 77b is formed at a circumferentially central portion of the rotation prevention portion 77a. Therefore, the detent portion 77a is U-shaped as viewed in the axial direction.
  • a bolt 78 fixed to the crankcase portion 22 is inserted into the slit portion 77b of the rotation prevention portion 77a.
  • the ring body 77 is locked by the bolt 78. That is, the relative moving unit 73 is configured to be non-rotatable by the ring body 77.
  • the rotating portion 74 is rotatably supported by the primary shaft portion 41 via the second bearing 76. The rotating unit 74 is rotated by the rotational force transmitted from the rotational force transmission mechanism 80.
  • a female screw (not shown) is formed on the inner peripheral surface of the cylindrical portion 73a.
  • An external thread (not shown) is formed on the outer peripheral surface of the rotating portion 74.
  • the internal thread of the relative movement portion 73 and the external thread of the rotation portion 74 are trapezoidal threads having a trapezoidal cross section along the axial direction.
  • the male screw is engaged with the female screw of the relative movement portion 73. That is, the rotating unit 74 meshes with the relative moving unit 73.
  • the sheave gear 79 is fixed to the rotating portion 74.
  • the sheave gear 79 is fixed to the right end of the rotating portion 74.
  • the sheave gear 79 has a diameter larger than that of the primary pulley 42.
  • On the left surface of the sheave gear 79 a plurality of bolts 79a are provided.
  • the plurality of bolts 79 a rotate with the sheave gear 79.
  • the position where the plurality of bolts 79 a abut on the sheave gear 79 is the low position of the primary movable sheave 44.
  • a support member 44 e is coupled to a left end portion of the outer peripheral surface of the collar member 43 at a position in contact with the primary fixed sheave 45.
  • the support member 44e is formed in a cylindrical shape.
  • the rotational force transmission mechanism 80 has an output gear 81, a rotational force transmission gear 82, and a rotating portion gear 83.
  • the output gear 81, the rotational force transmission gear 82, and the rotating portion gear 83 are made of metal.
  • the rotational force transmission mechanism 80 is disposed in the lubrication space 22c.
  • the rotational force transmission mechanism 80 transmits the rotational force from the electric motor 71 to the sheave gear 79 of the primary movable sheave 44.
  • the output gear 81 is integrally formed on the rotation shaft 71b.
  • the output gear 81 meshes with the rotational force transmission gear 82.
  • the rotational force transmission gear 82 is fixed to the rotational force transmission gear shaft 82 a by press-fitting.
  • the rotating portion gear 83 is integrally formed with the rotational force transmission gear shaft 82a.
  • the rotating portion gear 83 is meshed with the sheave gear 79. That is, the rotating portion gear 83 meshes with the sheave gear 79 which is a part of the rotational force conversion mechanism 72, and rotates by receiving the rotational force of the electric motor 71.
  • the rotational force transmission gear 82 and the rotational force transmission gear shaft 82 a constitute a rotational force transmission gear mechanism 84. Both end portions of the rotational force transmission gear shaft 82 a are supported by the crankcase portion 22 so as not to be movable in the axial direction.
  • the rotational force transmission gear 82 is larger in diameter than the output gear 81.
  • the rotating portion gear 83 is smaller in diameter than the rotational force transmission gear 82.
  • the sheave gear 79 has a diameter larger than that of the rotating portion gear 83.
  • the rotational speed of the electric motor 71 is reduced by the rotational force transmission gear mechanism 84.
  • a sheave position detection sensor 85 is disposed on the left side of the sheave gear 79 in the left-right direction of the vehicle.
  • the sheave position detection sensor 85 is disposed in the crankcase portion 22.
  • the sensor shaft 85a of the sheave position detection sensor 85 is disposed in a direction perpendicular to the direction of the primary rotation axis Ap.
  • the end of the sensor shaft 85 a is supported by the crankcase portion 22.
  • a sensor arm 85b is attached to the sensor shaft 85a.
  • the sensor arm 85 b rotates in contact with the relative movement unit 73. More specifically, the sensor arm 85b has a notch 85c in the outer peripheral portion. The notch 85 c contacts the end of the relative moving unit 73 on the primary pulley 42 side.
  • the end on the primary pulley 42 side in contact with the notch 85 c moves relative to the rotating portion 74 in the direction of the primary rotation axis Ap.
  • the notch 85c in contact with the relative moving part 73 is moved in the direction of the primary rotation axis Ap, and the sensor arm 85b rotates. That is, when the primary pulley 42 changes between the low position and the top position, the sensor arm 85b in contact with the relative moving part 73 is rotated.
  • the sheave position detection sensor 85 detects the movement position of the relative movement unit 73 in the direction of the primary rotation axis Ap.
  • the sheave position detection sensor 85 detects the amount of movement of the slide member 44 a relative to the rotating portion 74 in the direction of the primary rotation axis Ap.
  • the sheave position detection sensor 85 is disposed in the lubrication space 22c.
  • primary pulley 42 has primary movable sheave 44 and primary fixed sheave 45.
  • the primary moving sheave 44 is provided movably in the direction of the primary rotation axis Ap by the transmission control device 70. That is, when the electric motor 71 of the transmission control device 70 is driven, the relative moving unit 73 moves relative to the rotating unit 74 in the direction of the primary rotation axis Ap. Then, the primary movable sheave 44 connected to the relative moving unit 73 moves in the direction of the primary rotation axis Ap.
  • the primary fixed sheave 45 is fixed to the primary shaft 41 and provided. That is, the primary fixed sheave 45 is provided on the primary shaft portion 41 so that the movement in the direction of the primary rotation axis Ap is restricted.
  • the secondary pulley 52 has the secondary movable sheave 54 and the secondary fixed sheave 55.
  • the secondary movable sheave 54 is provided movably in the direction of the rotation axis of the secondary shaft 51.
  • the secondary fixed sheave 55 is fixedly provided in the rotation axis direction of the secondary shaft 51. That is, movement of the secondary fixed sheave 55 in the rotational axis direction of the secondary shaft 51 is restricted.
  • the secondary movable sheave 54 is biased closer to the secondary stationary sheave 55 by a spring (not shown).
  • the transmission control device 70 configured as described above can move the primary movable sheave 44 of the primary pulley 42 in the direction of the primary rotation axis Ap. That is, the electric motor type automatic control transmission 50 can control the electric motor 71 to change the widths of the two primary sheaves 44 and 45.
  • the gear ratio of the electric motor type automatic control transmission 50 changes. Specifically, when the primary movable sheave 44 of the primary pulley 42 is moved in the direction of the primary rotation axis Ap, the diameter of the dry belt 32 wound around the primary pulley 42 changes.
  • the secondary movable sheave 54 of the secondary pulley 52 moves in the rotation axis direction by the elastic force of the spring or against the elastic force. Then, the diameter of the dry belt 32 wound around the secondary pulley 52 also changes.
  • the width of the primary pulley 42 decreases. Then, the diameter of the dry belt 32 wound around the primary pulley 42 is increased.
  • the secondary-secondary movable sheave 54 of the secondary pulley 52 moves away from the secondary fixed sheave 55 in the rotational axis direction of the secondary shaft 51. Then, the width of the secondary pulley 52 increases, and the diameter of the dry belt 32 wound around the secondary pulley 52 decreases. Thereby, the transmission gear ratio of the electric motor type automatic control transmission 50 changes to the top position.
  • the primary movable sheave 44 of the primary pulley 42 is moved away from the primary fixed sheave 45 in the direction of the primary rotation axis Ap, the width of the primary pulley 42 becomes large. Then, the diameter of the dry belt 32 wound around the primary pulley 42 is reduced. At this time, the secondary movable sheave 54 of the secondary pulley 52 moves in a direction approaching the secondary fixed sheave 55 in the rotational axis direction of the secondary shaft 51. Then, the width of the secondary pulley 52 becomes smaller, and the diameter of the dry belt 32 wound around the secondary pulley 52 becomes larger. Thereby, the transmission gear ratio of the electric motor type automatic control transmission 50 changes to the low position.
  • the movement of the primary movable sheave 44 of the primary pulley 42 changes the transmission ratio of the electric motor type automatic control transmission 50. That is, the speed ratio of the primary movable sheave 44 of the primary pulley 42 closest to the primary fixed sheave 45 changes between the speed ratio when the primary movable sheave 44 of the primary pulley 42 is most distant from the primary fixed sheave 45.
  • the power transmission path is a path through which power is transmitted from the crankshaft 21 to the rear wheel 3.
  • the crankshaft 21 is upstream in the power transmission path.
  • the rear wheel 3 is downstream in the power transmission path.
  • the upstream rotary electric machine 90 is directly coupled to the crankshaft 21. That is, the upstream rotary electric machine 90 is connected to the crankshaft 21 so as to be able to transmit power.
  • the electric motor type automatic control transmission 50 is connected to the crankshaft 21 so as to be able to transmit power by the primary pulley 42 mounted on the primary shaft portion 41 formed coaxially with the crankshaft 21.
  • the power of the crankshaft 21 is transmitted to the secondary shaft 51 on which the secondary pulley 52 around which the dry belt 32 is wound together with the primary pulley 42 is mounted.
  • the secondary shaft 51, the main shaft 64 and the drive shaft 60 are configured to be able to transmit a rotational force by means of gears.
  • the power of the secondary shaft 51 is transmitted to the rear wheel 3 by the main shaft 64 and the drive shaft 60.
  • the crankshaft 21, the upstream rotary electric machine 90, the electric motor type automatic control transmission 50, and the rear wheel 3 are arranged in this order from the upstream to the downstream of the power transmission path. That is, the upstream rotary electric machine 90 is disposed upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the crankshaft 21 is disposed upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the engine unit 6 has an ECU 100.
  • the ECU 100 controls the operation of the engine unit 6.
  • the ECU 100 includes various sensors such as a vehicle speed sensor 3c, an accelerator sensor 4b, a throttle opening sensor 29c, an engine rotation speed sensor 21s, a sheave position detection sensor 85, and a secondary pulley rotation speed sensor 51b. Connected with the sensor. Further, the ECU 100 is connected to the ignition plug 24b, the injector 27, the throttle actuator 29b, the electric motor type automatic transmission and control device 50, the upstream rotary electric machine 90, the display device 110 and the like.
  • the ECU 100 is configured of a CPU, a ROM, a RAM, and the like.
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM.
  • each function of the plurality of function processing units is realized in the ECU 100.
  • the ECU 100 includes a combustion control unit 101, a throttle control unit 102, and an acceleration / deceleration control unit 105 as function processing units.
  • the acceleration / deceleration control unit 105 includes a rotating electrical machine control unit 103 and a transmission control unit 104.
  • the acceleration / deceleration control unit 105 is a control device of the present invention.
  • the combustion control unit 101 controls the ignition timing of the spark plug 24b.
  • the combustion control unit 101 also controls the driving of the injector 27 and the fuel pump. Thereby, the combustion control unit 101 controls the fuel supply amount.
  • the throttle control unit 102 operates the throttle actuator 29b to control the throttle opening based on the operation of the accelerator grip 4a by the rider.
  • the rotating electrical machine control unit 103 controls the energization of the upstream rotating electrical machine 90. Thereby, the rotating electrical machine control unit 103 controls the regeneration function and the power running function.
  • the transmission control unit 104 operates the electric motor 71 of the electric motor type automatic control transmission 50 to control the movement of the primary movable sheave 44 of the primary pulley 42. Then, the transmission control unit 104 controls the transmission gear ratio of the electric motor type automatic control transmission 50.
  • the combustion control unit 101 executes a program stored in a storage unit such as a ROM to control the combustion operation of the engine main unit 20.
  • the combustion control unit 101 controls the combustion operation of the engine body 20 by causing the spark plug 24b to perform an ignition operation by discharge. Further, the combustion control unit 101 controls the fuel supply amount by controlling the driving of the injectors 27 and the fuel pump to control the combustion operation of the engine main body 20.
  • the control of the fuel supply amount includes the control of the supply amount of fuel supplied from the fuel pump and the control of the injection time of the fuel injected by the injector 27.
  • the combustion control unit 101 controls the driving of the injector 27 and the fuel pump based on various information in addition to the engine rotation speed and the throttle opening degree.
  • the engine rotational speed is calculated based on the output signal of the engine rotational speed sensor 21s.
  • the throttle opening degree is detected by the output signal of the throttle opening degree sensor 29c.
  • Various information is calculated based on output signals of various sensors such as an engine temperature sensor and an oxygen sensor.
  • the throttle control unit 102 controls the throttle opening based on the rider's accelerator operation. That is, the throttle control unit 102 detects the accelerator opening degree which is the operation amount of the accelerator grip 4a by the rider based on the output signal of the accelerator sensor 4b. Then, the throttle control unit 102 operates the throttle actuator 29b based on the accelerator opening degree to control the throttle opening degree. That is, the throttle control unit 102 supplies drive power to the throttle actuator 29b to operate the throttle actuator 29b.
  • the throttle control unit 102 performs feedback control of the throttle opening with reference to a map, a relational expression, or the like that associates the accelerator opening with the throttle opening. That is, the throttle control unit 102 calculates a target throttle opening degree corresponding to the accelerator opening degree with reference to a map or the like. Then, the throttle control unit 102 is based on the difference between the throttle opening degree and the target throttle opening degree so that the throttle opening degree which is the actual throttle opening degree detected by the throttle opening degree sensor 29 c matches the target throttle opening degree. The throttle actuator 29b is operated. A map or the like that associates the accelerator opening degree with the throttle opening degree is stored in advance in the storage unit.
  • the acceleration / deceleration control unit 105 can execute both transmission control by the transmission control unit 104 and rotary electric machine control by the rotary electric machine control unit 103 at the time of acceleration or deceleration of the motorcycle 1.
  • the transmission control by the transmission control unit 104 is control for changing the transmission ratio by controlling the electric motor 71 of the automatic control transmission 50 of the electric motor type.
  • the rotary electric machine control by the rotary electric machine control unit 103 is control for controlling the upstream rotary electric machine 90 to change the torque to be applied upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • a crankshaft 21 is disposed upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the rotating electrical machine control unit 103 executes a program stored in the storage unit, controls energization of the upstream rotating electrical machine 90, and controls driving of the upstream rotating electrical machine 90. That is, the rotating electrical machine control unit 103 performs rotating electrical machine control.
  • the driving state of the upstream rotary electric machine 90 includes a power running state and a power generation state.
  • the rotary electric machine control unit 103 performs rotary electric machine control during acceleration. In the acceleration rotary electric machine control, the upstream rotary electric machine 90 is controlled to change the torque in the positive rotation direction of the crankshaft 21 applied to the crankshaft 21.
  • the rotary electric machine control unit 103 is controlled by the electric power supplied from the battery 94 to rotate the upstream rotary electric machine 90 in the positive rotation direction of the crankshaft 21. Thereby, the upstream rotary electric machine 90 generates an engine output. Then, the rotation of the crankshaft 21 is assisted by the upstream rotary electric machine 90 in the positive rotation direction.
  • the rotating electrical machine control unit 103 drives the upstream rotating electrical machine 90 in a power generation state at the time of deceleration of the motorcycle 1, the rotating electrical machine control unit 103 performs rotating electrical machine control during deceleration.
  • the upstream rotary electric machine 90 is controlled to change the torque in the reverse rotation direction of the crankshaft 21 applied to the crankshaft 21. That is, in the rotating electrical machine control during deceleration, the rotating electrical machine control unit 103 rotates the upstream rotating electrical machine 90 in the positive rotation direction of the crankshaft 21 to control the upstream rotating electrical machine 90 to absorb the torque of the crankshaft 21 . Thereby, the upstream rotary electric machine 90 generates an engine loss. Then, the rotation of the crankshaft 21 is loaded by the upstream rotary electric machine 90 in the reverse rotation direction. The torque of the crankshaft 21 absorbed by the upstream rotary electric machine 90 is stored in the battery 94 as electric power.
  • the transmission control unit 104 executes a program stored in the storage unit to control the transmission gear ratio of the electric motor type automatic control transmission 50. That is, the transmission control unit 104 performs transmission control.
  • the transmission control unit 104 performs transmission control during acceleration.
  • the electric motor 71 is controlled to change the transmission gear ratio of the electric motor type automatic control transmission 50.
  • the transmission control unit 104 performs transmission control at the time of deceleration.
  • the speed reduction transmission control controls the electric motor 71 to change the transmission gear ratio of the electric motor type automatic control transmission 50.
  • An output signal of the sheave position detection sensor 85 is input to the transmission control unit 104.
  • the transmission control unit 104 detects the currently-set gear ratio based on the output signal of the sheave position detection sensor 85. Then, the transmission control unit 104 operates the electric motor 71 to change the transmission gear ratio of the electric motor type automatic control transmission 50. That is, the transmission control unit 104 supplies drive power to the electric motor 71 to operate the electric motor 71.
  • the transmission control unit 104 automatically controls the electric motor type based on the vehicle speed calculated based on the output signal of the vehicle speed sensor 3c and various data such as the throttle opening detected by the output signal of the throttle opening sensor 29c.
  • the transmission gear ratio that the control transmission 50 changes is calculated.
  • the acceleration / deceleration control unit 105 performs acceleration control when the motorcycle 1 accelerates.
  • the acceleration / deceleration control unit 105 switches the acceleration transmission control of the transmission control unit 104 and the acceleration electric rotation control of the rotating electric machine control unit 103 in acceleration control.
  • the acceleration / deceleration control unit 105 simultaneously performs the acceleration transmission control of the transmission control unit 104 and the acceleration rotary electric machine control of the rotary electric machine control unit 103.
  • the acceleration / deceleration control unit 105 performs deceleration control at the time of deceleration of the motorcycle 1.
  • the acceleration / deceleration control unit 105 switches between the reduction gear transmission control of the transmission device control unit 104 and the reduction motor electrical control control of the rotating electrical machine control unit 103.
  • the acceleration / deceleration control unit 105 simultaneously performs the reduction transmission control of the transmission control unit 104 and the reduction electric control of the rotation electric machine control unit 103 at the same time.
  • Inner stator 91 has a plurality of stator windings 91a.
  • the plurality of stator windings 91a belong to any one of three phases (U phase, V phase, W phase).
  • the inverter 93 has six switching units 931 to 936.
  • the inverter 93 is a three-phase bridge inverter.
  • the switching unit 931 and the switching unit 932 are connected to any one phase (for example, U phase) of three phases of the stator winding 91a of a plurality of phases.
  • the switching portion 933 and the switching portion 934 are connected to any one of three phases (for example, V phase) of the three-phase stator winding 91 a.
  • Switching portion 935 and switching portion 936 are connected to any one of three phases (for example, W phase) of stator windings 91a of a plurality of phases.
  • Each of switching units 931 to 936 has a switching element.
  • the switching element is, for example, a transistor, and more specifically, an FET (Field Effect Transistor).
  • the switching units 931 to 936 may be, for example, thyristors and IGBTs (InsulatedGate Bipolar Transistors) in addition to the FETs.
  • Switching portions 931 to 936 electrically connect the stator windings 91a of a plurality of phases and the battery 94. That is, the inverter 93 electrically connects the upstream rotating electrical machine 90 and the battery 94.
  • the rotating electrical machine control unit 103 of the ECU 100 is connected to the inverter 93.
  • the rotating electrical machine control unit 103 controls the on / off switching of the plurality of switching units 931 to 936. That is, the rotating electrical machine control unit 103 switches on / off of the current between the plurality of phases of the stator winding 91a and the battery 94 by controlling the on / off of the switching units 931 to 936.
  • the rotary electric machine control unit 103 controls the three-phase alternating current rectification and the voltage output from the upstream rotary electric machine 90 by controlling the on / off switching timings of the plurality of switching units 931 to 936. Then, the rotating electrical machine control unit 103 controls the driving state of the upstream rotating electrical machine 90. More specifically, when controlling the upstream rotating electrical machine 90 in a powering state, the rotating electrical machine control unit 103 supplies current from the battery 94 to the stator windings 91a of a plurality of phases via the switching units 931 to 936. Do.
  • the rotary electric machine control unit 103 supplies a current to the battery 94 from the stator windings 91a of a plurality of phases via the plurality of switching units 931 to 936. To control.
  • the rotating electrical machine control unit 103 detects the voltage of the battery 94 by turning on the switch 96.
  • the rotating electrical machine control unit 103 detects the voltage of the battery 94 to detect the state of charge (SOC) of the battery 94. More specifically, the rotating electrical machine control unit 103 detects the remaining capacity of the battery 94.
  • the remaining capacity of the battery 94 may be detected based on other than the voltage of the battery 94.
  • the rotating electrical machine control unit 103 may detect based on the current flowing to the battery 94. When detecting based on the current flowing between the upstream rotating electrical machine 90 and the battery 94, the remaining capacity of the battery 94 can be more accurately grasped by integrating the current flowing into the battery 94 and the current flowing out of the battery 94. Can.
  • a starter switch 95 for starting the engine main body 20 is connected to the ECU 100.
  • the starter switch 95 is disposed on the handle unit 4 (see FIG. 3).
  • the starter switch 95 is operated by the rider when the engine body 20 is started.
  • the upstream rotary electric machine 90 includes a rotor position detection sensor 90a that detects the position of the outer rotor 92.
  • the outer rotor 92 rotates with the crankshaft 21. That is, the rotational speed of the outer rotor 92 is the same as the rotational speed of the crankshaft 21.
  • the rotor position detection sensor 90a may function as an engine rotational speed sensor.
  • the acceleration / deceleration control unit 105 detects the accelerator opening based on the signal output from the accelerator sensor 4b. Then, the acceleration / deceleration control unit 105 determines whether or not the accelerator is turned off. That is, the acceleration / deceleration control unit 105 determines whether or not the accelerator opening is fully closed (step S11). When it is determined that the accelerator opening is fully closed, the acceleration / deceleration control unit 105 starts deceleration control (step S11: YES).
  • the acceleration / deceleration control unit 105 acquires an output signal from the vehicle speed sensor 3c.
  • the acceleration / deceleration control unit 105 detects the vehicle speed from the output signal of the vehicle speed sensor 3c. Further, the acceleration / deceleration control unit 105 acquires an output signal from the engine rotation speed sensor 21s.
  • the acceleration / deceleration control unit 105 detects an engine rotational speed from an output signal of the engine rotational speed sensor 21s. Further, the acceleration / deceleration control unit 105 acquires an output signal from the throttle opening degree sensor 29c.
  • the acceleration / deceleration control unit 105 detects the throttle opening degree from the output signal of the throttle opening degree sensor 29c.
  • the acceleration / deceleration control unit 105 acquires an output signal from the sheave position detection sensor 85.
  • the acceleration / deceleration control unit 105 detects the transmission gear ratio from the output signal of the sheave position detection sensor 85.
  • the detected gear ratio is a gear ratio set in advance based on the vehicle speed and the throttle opening.
  • the acceleration / deceleration control unit 105 acquires an output signal from the inverter 93.
  • the acceleration / deceleration control unit 105 detects the remaining capacity SOC of the battery 94 from the output signal of the inverter 93 (step S12).
  • the acceleration / deceleration control unit 105 calculates the required torque T 1R required of the rear wheel 3 with reference to a map, a relational expression, etc. stored in advance Step S13).
  • step S14 the acceleration-deceleration control section 105, the gear ratio detected in step S12 and based on the engine rotational speed, calculates the motor regenerative torque MR 1 (step S14).
  • Motor regenerative torque MR 1 is a reverse rotational direction of the torque of the crank shaft 21 upstream rotating electrical machine 90 is given to the crank shaft 21. That is, the motor regenerative torque MR 1, by burdening the upstream rotating electrical machine 90 in the reverse rotation direction of the crankshaft 21, the torque which can be upstream rotating electrical machine 90 is absorbed.
  • the acceleration / deceleration control unit 105 determines whether the remaining capacity SOC of the battery 94 detected in step S12 is less than the deceleration upper limit value SOC 1R (step S15).
  • the deceleration upper limit value SOC 1 R is calculated based on a predetermined map or relational expression.
  • step S15 If the remaining capacity SOC of the battery 94 is less than the deceleration upper limit value SOC 1 R (step S15: YES), the acceleration / deceleration control unit 105 instructs the rotating electrical machine control unit 103 to perform a regenerative brake command for performing rotating electrical machine control during deceleration.
  • Send step S16.
  • the rotating electrical machine control unit 103 to which the regenerative brake command has been sent controls the inverter 93 to rotate the upstream rotating electrical machine 90 in the positive rotation direction of the crankshaft 21.
  • Rotary electric machine control section 103 imparts a motor regenerative torque MR 1 relative to the crank shaft 21 as the reverse rotational direction of the torque of the crankshaft 21.
  • the torque of the crankshaft 21 is absorbed by the upstream rotary electric machine 90, and a load in the reverse rotation direction is applied to the rotation of the crankshaft 21. Therefore, the upstream rotary electric machine 90 generates an engine loss.
  • the torque of the crankshaft 21 absorbed by the upstream rotary electric machine 90 is stored in the battery 94 as electric power.
  • the acceleration / deceleration control unit 105 calculates a target gear ratio G1R based on various data such as the throttle opening degree and the vehicle speed detected in step S12 (step S17).
  • the target gear ratio G1R is a lower speed gear ratio, a higher speed gear ratio, or the same gear ratio as the gear ratio detected in step S12.
  • step S15 the acceleration / deceleration control unit 105 determines various data such as the throttle opening and the vehicle speed detected in step S12.
  • the target gear ratio G1RL to be calculated is calculated (step S18).
  • Target gear ratio G 1RL is equal to or target gear ratio G 1R, a low speed gear ratio than the target gear ratio G 1R. In the case the target gear ratio G 1R is the slowest speed ratio, the target gear ratio G 1RL is the same as the target gear ratio G 1R.
  • the acceleration / deceleration control unit 105 causes the display device 110 to light a lamp indicating that the upstream rotary electric machine 90 can not be driven.
  • the acceleration / deceleration control unit 105 may not cause the display device 110 to light a lamp indicating that the upstream rotary electric machine 90 can not be driven.
  • the acceleration / deceleration control unit 105 causes the transmission control unit 104 to control the transmission control device 70 to perform transmission control at the time of deceleration. Then, to change the gear ratio of the automatic control transmission 50 of the electric motor type, the target speed ratio G 1RL calculated by the target gear ratio G 1R or step S18 calculated in step S17 (step S19). Note that when the detected gear ratio in step S12 is the same as the target gear ratio G 1R or target gear ratio G 1RL, acceleration and deceleration control section 105, the gear ratio of the automatic control transmission 50 of the electric motor type Not going to change.
  • FIG. 8 is a graph showing an example of temporal change of the next parameter at the time of deceleration of the motorcycle.
  • Fig.8 (a) shows an example of the time-dependent change of the throttle opening.
  • FIG. 8 (b) shows an example of the temporal change of the driving force generated on the rear wheel. That is, as shown in FIG. 8A, when the rider performs an accelerator operation indicating the intention to decelerate rapidly so that the opening degree of the accelerator grip 4a (accelerator opening degree) is fully closed.
  • the acceleration / deceleration control unit 105 controls as follows.
  • the acceleration / deceleration control unit 105 may simultaneously perform deceleration electric machine control and deceleration transmission control at the same time, or only deceleration transmission control without deceleration electric machine control. Do.
  • the acceleration / deceleration control unit 105 controls the upstream rotary electric machine 90 to apply torque in the reverse rotation direction to the crankshaft 21 at the same time as the electric motor type at the same time when performing deceleration electric machine control and deceleration transmission control simultaneously.
  • the electric motor 71 of the automatic control transmission 50 is controlled to change the gear ratio.
  • the acceleration / deceleration control unit 105 does not apply the torque in the reverse rotation direction to the crankshaft 21 to the upstream rotary electric machine 90 when performing only the reduction gear control at the time of deceleration without performing the rotary electric machine control at the time of deceleration. Control is performed to change the gear ratio of the automatic control transmission 50.
  • the acceleration / deceleration control unit 105 performs deceleration electric machine control and deceleration transmission control at the same time.
  • the acceleration / deceleration control unit 105 controls the upstream rotary electric machine 90 to apply torque in the reverse rotation direction to the crankshaft 21 and, at the same time, changes the gear ratio of the electric motor type automatic control transmission 50. Control.
  • acceleration and deceleration control section 105 controls the upstream rotary electric machine 90, imparts motor regenerative torque MR 1 a torque in the reverse rotation direction to the crankshaft 21.
  • the upstream rotary electric machine 90 absorbs torque from the crankshaft 21 to generate an engine loss.
  • the crankshaft 21 is subjected to a load in the reverse rotation direction on the crankshaft 21 by the upstream rotary electric machine 90.
  • the acceleration / deceleration control unit 105 controls the transmission gear ratio of the electric motor type automatic control transmission 50 to be changed to the target transmission gear ratio G1R determined based on the throttle opening degree and the speed.
  • the rear wheel 3 the motor regenerative torque MR 1 a target gear ratio G 1R is reverse rotational direction of the torque to the crankshaft 21 upstream rotary electric machine 90 has granted A negative driving force multiplied by is generated.
  • a two-dot chain line indicates the driving force generated on the rear wheel 3 when the upstream rotary electric machine 90 does not apply torque in the reverse rotation direction to the crankshaft 21.
  • the accelerator opening is fully closed, an engine loss occurs in the engine main body 20.
  • a negative driving force is generated on the rear wheel 3 by multiplying the torque due to the engine loss generated in the engine main body 20 by the gear ratio.
  • a negative driving force is generated in the rear wheel 3 based on the engine loss generated by the upstream rotary electric machine 90. That is, the dashed-two dotted line in FIG.8 (b) has shown the negative driving force which arises on the rear wheel 3 based on the engine loss which arose in the engine main-body part 20. As shown in FIG.
  • the acceleration / deceleration control unit 105 performs only the transmission control during deceleration without performing the rotating electrical machine control during deceleration.
  • the acceleration / deceleration control unit 105 performs control to change the gear ratio of the electric motor type automatic control transmission 50.
  • the acceleration / deceleration control unit 105 controls the transmission gear ratio of the electric motor type automatic control transmission 50 to be changed to the target transmission gear ratio G1RL determined based on the throttle opening degree and the speed.
  • Target gear ratio G 1RL is the low speed gear ratio than the target gear ratio G 1R.
  • acceleration control by acceleration / deceleration control unit (control device) An example of the operation of acceleration control by the acceleration / deceleration control unit (control device) 105 will be described based on FIG.
  • the acceleration / deceleration control unit 105 reads the accelerator opening based on the signal output from the accelerator sensor 4b. Then, the acceleration / deceleration control unit 105 determines whether the accelerator opening degree is equal to or more than a predetermined first opening degree (step S21). When the accelerator opening degree is equal to or more than a predetermined first opening degree, acceleration control is started (step S21: YES). The predetermined first opening degree is stored in advance in the acceleration / deceleration control unit 105. The time when the accelerator opening becomes equal to or more than the predetermined first opening is, for example, when the accelerator opening becomes fully open from fully closed.
  • the acceleration / deceleration control unit 105 acquires an output signal from the vehicle speed sensor 3c.
  • the acceleration / deceleration control unit 105 detects the vehicle speed from the output signal of the vehicle speed sensor 3c. Further, the acceleration / deceleration control unit 105 acquires an output signal from the engine rotation speed sensor 21s.
  • the acceleration / deceleration control unit 105 detects an engine rotational speed from an output signal of the engine rotational speed sensor 21s. Further, the acceleration / deceleration control unit 105 acquires an output signal from the throttle opening degree sensor 29c.
  • the acceleration / deceleration control unit 105 detects the throttle opening degree from the output signal of the throttle opening degree sensor 29c.
  • the acceleration / deceleration control unit 105 acquires an output signal from the sheave position detection sensor 85.
  • the acceleration / deceleration control unit 105 detects the transmission gear ratio from the output signal of the sheave position detection sensor 85.
  • the detected gear ratio is a gear ratio set in advance based on the vehicle speed and the throttle opening.
  • the acceleration / deceleration control unit 105 acquires an output signal from the inverter 93.
  • the acceleration / deceleration control unit 105 detects the remaining capacity SOC of the battery 94 from the output signal of the inverter 93 (step S22).
  • the acceleration / deceleration control unit 105 refers to a map, a relational expression, or the like stored in advance based on the vehicle speed and the accelerator opening detected in step S22, to request the required torque T 1A required for the rear wheel 3 Calculate (step S23).
  • the acceleration-deceleration control unit 105 calculates the motor assist torque MA 1 (step S24).
  • Motor assist torque MA 1 is a forward rotational direction of the torque of the crank shaft 21 upstream rotating electrical machine 90 is given to the crank shaft 21. That is, the motor assist torque MA 1 rotates the crankshaft 21 directly connected to the upstream rotating electrical machine 90 by rotating the upstream rotating electrical machine 90 in the positive rotation direction of the crankshaft 21 with the power supplied from the battery 94. It is a torque that can
  • the acceleration / deceleration control unit 105 determines whether the remaining capacity SOC of the battery 94 detected in step S22 exceeds the acceleration lower limit value SOC 1A (step S25).
  • the acceleration lower limit value SOC 1A is calculated based on a predetermined map or relational expression.
  • the acceleration / deceleration control unit 105 sends an assist command for performing the rotating electrical machine control during acceleration to the rotating electrical machine control unit 103 (Ste S26).
  • the rotary electric machine control unit 103 receiving the assist command controls the inverter 93 to rotate the upstream rotary electric machine 90 in the positive rotation direction of the crankshaft 21.
  • the rotating electrical machine control unit 103 applies a motor assist torque MA 1 to the crankshaft 21 as torque in the positive rotation direction of the crankshaft 21. Then, the torque supplied from the battery 94 is applied to the crankshaft 21 directly connected to the upstream rotary electric machine 90.
  • the acceleration / deceleration control unit 105 calculates a target gear ratio G1A based on various data such as the accelerator opening detected in step S21, the throttle opening detected in step S22, and the vehicle speed (step S27).
  • the target gear ratio G1A is a lower gear ratio, a higher gear ratio, or the same gear ratio as the gear ratio detected in step S22.
  • step S25: NO) the acceleration / deceleration control unit 105 calculates based on various data such as the throttle opening and vehicle speed detected in step S22.
  • a target gear ratio G1AL is calculated (step S28).
  • Target gear ratio G 1AL is equal to or target gear ratio G 1A, a low speed gear ratio than the target gear ratio G 1A. In the case the target gear ratio G 1A is a slowest speed ratio, the target gear ratio G 1AL is the same as the target gear ratio G 1A.
  • the acceleration / deceleration control unit 105 causes the display device 110 to light a lamp indicating that the upstream rotary electric machine 90 can not be driven.
  • the acceleration / deceleration control unit 105 may not cause the display device 110 to light a lamp indicating that the upstream rotary electric machine 90 can not be driven.
  • the acceleration / deceleration control unit 105 controls the transmission control device 70 by the transmission control unit 104 to perform acceleration transmission control. Then, to change the gear ratio of the automatic control transmission 50 of the electric motor type, the target speed ratio G 1AL calculated by the target gear ratio G 1R or step S28 calculated in step S27 (step S29). Note that when the detected gear ratio in step S22 is the same as the target gear ratio G 1R or target gear ratio G 1RL, acceleration and deceleration control section 105, the gear ratio of the automatic control transmission 50 of the electric motor type Not going to change.
  • FIG. 10 is a graph showing an example of temporal change of the next parameter at the time of acceleration of the motorcycle.
  • Fig.10 (a) shows an example of the time-dependent change of the throttle opening.
  • FIG. 10 (b) shows an example of the temporal change of the driving force generated on the rear wheel. That is, as shown in FIG. 10A, when the rider operates the accelerator grip 4a to the accelerator opening degree equal to or more than the predetermined first opening degree, that is, when the rider performs the accelerator operation indicating the intention to accelerate In, the acceleration / deceleration control unit 105 controls as follows.
  • the acceleration / deceleration control unit 105 performs acceleration electric machine control and acceleration transmission control at the same time according to the remaining capacity SOC of the battery 94, or only acceleration transmission control without acceleration electric machine control. Do.
  • the acceleration / deceleration control unit 105 simultaneously performs acceleration rotary electric machine control and acceleration transmission control, the electric power supplied from the battery 94 simultaneously applies the torque in the positive rotation direction to the crankshaft 21 by the upstream rotary electric machine 90.
  • the electric motor 71 of the electric motor type automatic control transmission 50 is controlled to change the gear ratio.
  • the acceleration / deceleration control unit 105 When the acceleration / deceleration control unit 105 performs only the acceleration transmission control without performing the acceleration rotary electric machine control, the upstream rotary electric machine 90 does not apply torque in the positive rotation direction to the crankshaft 21 and the electric motor type Control is performed to change the gear ratio of the automatic control transmission 50.
  • the acceleration / deceleration control unit 105 simultaneously performs acceleration rotary electric machine control and acceleration transmission control.
  • the electric power supplied from the battery 94 causes the upstream rotary electric machine 90 to apply torque in the positive rotation direction to the crankshaft 21 to rotate the crankshaft 21 in the positive rotation direction.
  • acceleration and deceleration control section 105 controls the upstream rotary electric machine 90, imparts motor assist torque MA 1 is a forward rotational direction of the torque to the crankshaft 21.
  • the upstream rotary electric machine 90 applies a torque to the crankshaft 21 to generate an engine output.
  • the acceleration / deceleration control unit 105 controls the transmission gear ratio of the electric motor type automatic control transmission 50 to be changed to the target transmission gear ratio G 1A determined based on the throttle opening degree and the speed.
  • the rear wheel 3 is provided with the target gear ratio G 1A at the motor assist torque MA 1 which is the torque in the positive rotation direction to the crankshaft 21 applied by the upstream rotary electric machine 90.
  • a positive driving force multiplied by is generated.
  • the two-dot chain line indicates the driving force generated on the rear wheel 3 when the upstream rotary electric machine 90 does not apply torque in the positive rotation direction to the crankshaft 21.
  • an engine output is generated in the engine main body 20.
  • a positive driving force is generated on the rear wheel 3 by multiplying the torque by the engine output generated in the engine body 20 by the gear ratio.
  • a positive driving force is generated on the rear wheel 3 based on the engine output generated by the upstream rotary electric machine 90, and the positive driving force is increased. it can. That is, the dashed-two dotted line in FIG.10 (b) has shown the positive driving force which arises on the rear wheel 3 based on the engine output which arose in the engine main-body part 20. As shown in FIG.
  • the acceleration / deceleration control unit 105 performs only the transmission control during acceleration without performing the rotating electrical machine control during acceleration.
  • the acceleration / deceleration control unit 105 performs control to change the gear ratio of the electric motor type automatic control transmission 50.
  • the acceleration / deceleration control unit 105 controls the transmission gear ratio of the electric motor type automatic control transmission 50 to be changed to the target transmission gear ratio G1AL determined based on the throttle opening degree and the speed.
  • Target gear ratio G 1AL is a low speed gear ratio than the target gear ratio G 1A.
  • an engine output is generated in the engine main body 20.
  • a positive driving force is generated on the rear wheel 3 by multiplying the target gear ratio G 1A by the torque of the engine output generated by the engine body 20. That is, the remaining capacity SOC of the battery 94 is in the case of less than the acceleration limit value SOC 1A, acceleration and deceleration control section 105 has changed the gear ratio, the target gear ratio G 1A slower target gear ratio G 1AL. Therefore, a larger positive driving force is generated on the rear wheel 3 than when the acceleration / deceleration control unit 105 sets the gear ratio to the target gear ratio G 1A .
  • the transmission 40 is connected to the crankshaft 21 so as to be able to transmit power. That is, the electric motor type automatic control transmission 50 is connected to the crankshaft 21.
  • the electric motor type automatic control transmission 50 transmits the motive power of the engine main body 20 at the transmission gear ratio set by the electric motor 71. That is, power is transmitted from the crankshaft 21 to the electric motor type automatic control transmission 50. That is, the crankshaft 21 is upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the rear wheel 3 which is a driving wheel is connected to an electric motor type automatic control transmission 50. The rear wheel 3 generates a driving force by the power transmitted from the electric motor type automatic control transmission 50.
  • the electric motor type automatic control transmission 50 controls the driving force of the rear wheel 3 by controlling the electric motor 71 to change the gear ratio.
  • the electric motor type automatic control transmission 50 controls the driving force of the rear wheel 3 by controlling the electric motor 71 to change the gear ratio.
  • the upstream rotary electric machine 90 is directly connected to the crankshaft 21.
  • the upstream rotary electric machine 90 is a rotary electric machine disposed upstream of the electric motor type automatic control transmission 50 in a power transmission path where power is transmitted from the crankshaft 21 to the rear wheel 3.
  • the upstream rotary electric machine 90 applies torque in the reverse rotation direction to the crankshaft 21 when the motorcycle 1 is decelerating.
  • the upstream rotary electric machine 90 generates an engine loss by applying torque in the reverse rotation direction to the crankshaft 21 when the motorcycle 1 decelerates. Further, the upstream rotary electric machine 90 increases the engine output by applying torque in the positive rotation direction to the crankshaft 21 when the motorcycle 1 is accelerated. When the torque in the positive rotation direction of the crankshaft 21 is increased, the positive driving force is increased. In addition, when torque in the reverse rotation direction of the crankshaft 21 is generated, the negative driving force is increased. The upstream rotary electric machine 90 controls the driving force by applying torque in the forward rotation direction of the crankshaft 21 or applying torque in the reverse rotation direction of the crankshaft 21.
  • the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90 have different responsiveness to control the driving force.
  • the electric motor type automatic control transmission 50 is controlled to change the transmission ratio.
  • the electric motor type automatic control transmission 50 includes an electric motor 71, a rotational force conversion mechanism 72, and a rotational force transmission mechanism 80. That is, in the control of changing the gear ratio by the electric motor type automatic control transmission 50, there is a restriction due to the mechanism of the electric motor type automatic control transmission 50 including the electric motor 71. Therefore, the driving force is controlled after the transmission control unit 104 controls the electric motor type automatic control transmission 50 to change the transmission ratio based on the transmission ratio set according to the accelerator operation. There is a time lag before it is controlled.
  • the upstream rotary electric machine 90 is connected to the crankshaft 21. Therefore, after the control of changing the torque to be applied to the upstream of the electric motor type automatic control transmission 50 in the power transmission path is performed to control the upstream rotary electric machine 90, the driving force is controlled. There is almost no time lag before Therefore, the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90 have different responsiveness to control the driving force.
  • the electric motor type automatic control transmission 50 is a continuously variable transmission using a dry belt 32.
  • the sliding portion 32a with the primary pulley 42 and the secondary pulley 52 is not lubricated with a lubricant.
  • the dry belt 32 is disposed in the dry space 31a.
  • the dry belt 32 is formed of rubber or resin.
  • the belt is formed of metal such as a metal belt or a chain. Therefore, in the electric motor type automatic control transmission 50 using a dry belt, friction in the sliding portion between the primary pulley and the secondary pulley is more likely to occur than the electric motor type automatic control transmission using a metal belt.
  • the responsiveness of the control of the driving force is reduced as compared with the electric motor type automatic control transmission apparatus using the metal belt. That is, in the electric motor type automatic control transmission apparatus 50 using the dry belt, more time lags occur until the driving force is controlled after the control for changing the transmission ratio is started.
  • the upstream rotating electrical machine 90 is directly connected to the crankshaft 21, and there is no mechanism disposed between the upstream rotating electrical machine 90 and the crankshaft 21. Therefore, after the control of changing the torque to be applied to the upstream of the electric motor type automatic control transmission device 50 in the power transmission path by the rotating electrical machine control unit 103 controlling the upstream rotating electrical machine 90 is performed. There is almost no time lag before the driving force is controlled. Therefore, the response in which the upstream rotary electric machine 90 controls the driving force is faster than the response in which the electric motor type automatic control transmission 50 controls the driving force. That is, the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90 have different responsiveness to control the driving force.
  • the acceleration / deceleration control unit 105 can execute both transmission control by the transmission control unit 104 and rotary electric machine control by the rotary electric machine control unit 103 at the time of acceleration or deceleration of the motorcycle 1.
  • the transmission control unit 104 of the acceleration / deceleration control unit 105 controls the electric motor 71 of the automatic control transmission 50 of the electric motor type to change the transmission gear ratio.
  • the rotating electrical machine control unit 103 of the acceleration / deceleration control unit 105 controls the upstream rotating electrical machine 90 to change the torque to be applied upstream of the electric motor type automatic control transmission 50 in the power transmission path.
  • the acceleration / deceleration control unit 105 performs acceleration transmission control at the acceleration by the transmission control unit 104 or acceleration rotation at the rotation electric machine control unit 103 when the motorcycle 1 accelerates.
  • the transmission control unit 104 controls the electric motor 71 of the electric motor-type automatic control transmission 50 to change the transmission gear ratio.
  • the rotary electric machine control unit 103 controls the upstream rotary electric machine 90 to change the torque in the positive rotation direction of the crankshaft 21 applied to the crankshaft 21.
  • the acceleration / deceleration control unit 105 performs the reduction gear control at the time of deceleration by the transmission control unit 104 or the control at the time of reduction by the rotating electrical machine control unit 103 when the motorcycle 1 is decelerated.
  • the transmission control unit 104 controls the electric motor 71 of the electric motor-type automatic control transmission 50 to change the transmission gear ratio.
  • the rotary electric machine control unit 103 controls the upstream rotary electric machine 90 to change the torque in the reverse rotation direction of the crankshaft 21 applied to the crankshaft 21.
  • the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90 have different responsiveness to control the driving force. Therefore, when the acceleration / deceleration control unit 105 controls the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90, the controllability of the driving force can be improved.
  • the upstream rotary electric machine 90 is disposed upstream of the electric motor type automatic control transmission 50 in the power transmission direction from the crankshaft 21 to the rear wheel 3. That is, in the power transmission path, the upstream rotary electric machine 90 is disposed upstream of the electric motor type automatic control transmission 50. Then, a driving force obtained by multiplying the torque given by the upstream rotary electric machine 90 by the transmission ratio of the electric motor-type automatic control transmission 50 is transmitted to the rear wheel 3. As a result, in the electric motor type automatic control transmission apparatus 50, the number of times of changing the transmission ratio becomes unnecessary, or the amount of changing the transmission ratio decreases. Therefore, it becomes possible to eliminate or shorten the time lag until the electric motor type automatic control transmission apparatus 50 changes the transmission ratio.
  • the followability of the driving force to the rider's accelerator operation can be improved.
  • the upstream rotary electric machine 90 that can be controlled with higher responsiveness than the electric motor type automatic control transmission device 50 upstream of the electric motor type automatic control transmission device 50 in the power transmission direction, The followability of the driving force can be improved.
  • the driving force can be changed also by a small change in engine output or engine loss generated by the upstream rotary electric machine 90.
  • the motorcycle 1 of the present embodiment can improve the followability of the driving force to the accelerator operation of the rider at the time of deceleration or acceleration.
  • the motorcycle 1 is configured such that the length in the left-right direction is smaller than the length in the front-rear direction as compared to a four-wheeled vehicle such as an automobile. From the viewpoint of the followability of the driving force to the accelerator operation of the motorcycle 1, it is preferable to improve the maneuverability in the left-right direction of the motorcycle 1. Therefore, in the motorcycle 1, it is preferable to place a heavy load near the center of the motorcycle 1.
  • power is transmitted from the crankshaft 21 to the rear wheel 3. That is, the engine main body 20 having the crankshaft 21 is disposed upstream of the power transmission direction.
  • the rear wheel 3 is disposed downstream of the power transmission direction.
  • the engine main body 20 is heavy and is disposed near the center of the motorcycle 1.
  • the rear wheel 3 is disposed at an end of the motorcycle 1.
  • the rotating electrical machine is also heavy.
  • the rotary electric machine is disposed closer to the center of the motorcycle 1 than the rotary electric machine provided downstream of the electric motor-type automatic control transmission 50 in the power transmission direction. Therefore, by providing the upstream rotary electric machine 90 upstream of the electric motor type automatic control transmission 50 in the power transmission direction, the maneuverability in the left-right direction of the motorcycle 1 can be improved.
  • the motorcycle 1 is more compact than a four-wheeled vehicle such as a car. From the viewpoint of the followability of the driving force to the accelerator operation of the motorcycle 1, it is not preferable that the vehicle be enlarged. Therefore, it is desirable that the size of the rotating electrical machine be small. Further, in the motorcycle 1, the upstream rotary electric machine 90 provided upstream of the electric motor type automatic control transmission 50 in the power transmission direction is provided downstream of the electric motor type automatic control transmission 50 in the power transmission direction. It may rotate at a higher rotational speed than the downstream rotary electric machine. The efficiency of the motor depends on the rotational speed.
  • the upstream rotary electric machine 90 provided upstream of the electric motor type automatic control transmission 50 in the power transmission direction is the downstream rotary electric machine provided downstream of the electric motor type automatic control transmission 50 in the power transmission direction.
  • Even motor efficiency may be good.
  • the larger the size of the rotating electric machine the larger the output. Therefore, the upstream rotary electric machine 90 provided upstream of the electric motor type automatic control transmission 50 in the power transmission direction is a downstream rotary electric machine provided downstream of the electric motor type automatic control transmission 50 in the power transmission direction. Even if the motor efficiency is good, the same output can be obtained even with a small size. Therefore, by providing the upstream rotary electric machine 90 upstream of the electric motor type automatic control transmission device 50 in the power transmission direction, the enlargement of the motorcycle 1 may be suppressed in some cases.
  • the acceleration / deceleration control unit 105 switches the acceleration transmission control by the transmission control unit 104 or the acceleration electric control by the rotation electric machine control unit 103 during acceleration of the motorcycle 1.
  • the acceleration / deceleration control unit 105 simultaneously performs acceleration transmission control by the transmission control unit 104 and acceleration rotary electric machine control by the rotating electric machine control unit 103 when the motorcycle 1 is accelerated. Further, the acceleration / deceleration control unit 105 switches the transmission control at the time of deceleration by the transmission control unit 104 or the control at the time of deceleration by the rotating electrical machine control unit 103 when the motorcycle 1 is decelerated.
  • the acceleration / deceleration control unit 105 simultaneously performs the reduction gear transmission control by the transmission control unit 104 and the reduction rotary electric machine control by the rotating electric machine control unit 103 simultaneously when the motorcycle 1 is decelerated.
  • the acceleration / deceleration control unit 105 can perform control according to responsiveness of control of the driving force by switching control of the electric motor type automatic control transmission 50 or the upstream rotary electric machine 90. And responsiveness of control of driving force can be improved.
  • the acceleration / deceleration control unit 105 can improve the responsiveness of the control of the driving force by simultaneously controlling the electric motor type automatic control transmission 50 and the upstream rotary electric machine 90. Then, the motorcycle 1 can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the acceleration / deceleration control unit 105 controls the driving of the upstream rotary electric machine 90 in accordance with the remaining capacity SOC of the battery 94.
  • the acceleration / deceleration control unit 105 controls the electric motor 71 of the electric motor type automatic control transmission 50 according to the remaining capacity SOC of the battery 94.
  • the acceleration / deceleration control unit 105 causes the rotating electrical machine control unit 103 to use the upstream rotating electrical machine
  • the transmission control unit 104 controls the electric motor 71 of the automatic control transmission 50 of the electric motor type.
  • the acceleration / deceleration control unit 105 automatically controls the electric motor type by the transmission control unit 104 when (b) the remaining capacity of the battery 94 is less than or equal to a predetermined acceleration lower limit value during acceleration of the motorcycle 1.
  • the electric motor 71 of the transmission 50 is controlled.
  • the acceleration / deceleration control unit 105 (c) controls the upstream rotary electric machine 90 by the rotary electric machine control unit 103 when the remaining capacity of the battery 94 is smaller than a predetermined deceleration upper limit value.
  • the transmission control unit 104 controls the electric motor 71 of the automatic control transmission 50 of the electric motor type.
  • the acceleration / deceleration control unit 105 controls the electric motor of the electric motor type automatic control transmission 50 when (d) the remaining capacity of the battery 94 is equal to or greater than a predetermined deceleration upper limit value at the time of deceleration of the motorcycle 1. Control 71 Thereby, when acceleration / deceleration control unit 105 controls upstream rotary electric machine 90 when the remaining capacity of battery 94 is small at the time of acceleration of motorcycle 1, the capacity of battery 94 may be lost during control of upstream rotary electric machine 90. Is high.
  • the acceleration / deceleration control unit 105 does not control the upstream rotary electric machine 90, and controls the electric motor 71 of the automatic control transmission device 50 of the electric motor type by the transmission control unit 104 to change the gear ratio, It is possible to improve the followability of the driving force to the rider's accelerator operation. Further, when the remaining capacity of the battery 94 is large when the motorcycle 1 is decelerating, if the acceleration / deceleration control unit 105 controls the upstream rotary electric machine 90, the capacity of the battery 94 is fully charged while the upstream rotary electric machine 90 is controlled.
  • the acceleration / deceleration control unit 105 controls the electric motor 71 of the automatic control transmission device 50 of the electric motor type by the transmission device control unit 104 without changing the upstream rotary electric machine 90 to change the gear ratio, It is possible to improve the followability of driving force to the rider's accelerator operation. Therefore, full charge and overcharge of the battery 94 can be prevented. In addition, regardless of the state of charge of the battery 94, it is possible to suppress a sudden change in driving force at the time of acceleration or deceleration of the motorcycle 1.
  • the acceleration / deceleration control unit 105 calculates the accelerator opening degree calculated based on the output signal from the accelerator sensor 4b and the output signal from the throttle opening degree sensor 29c at the time of acceleration or deceleration of the motorcycle 1.
  • a target gear ratio is calculated based on various data such as the vehicle speed calculated based on the throttle opening and the output signal of the vehicle speed sensor 3c.
  • the target gear ratio is a gear ratio that the electric motor type automatic control transmission 50 changes.
  • the motorcycle 1 of the present embodiment can calculate the target gear ratio from the state of the vehicle of the motorcycle 1. And, when the condition of the vehicle of the motorcycle 1 is the same condition, similar traveling can be realized. That is, in the motorcycle 1 of the present embodiment, the reproducibility can be improved at the time of deceleration or acceleration of the motorcycle 1, and the followability of the driving force to the rider's accelerator operation can be improved.
  • the acceleration / deceleration control unit 105 is configured such that the upstream rotary electric machine 90 is a crankshaft based on the output signal from the engine rotational speed sensor 21s and the output signal from the sheave position detection sensor 85 during acceleration or deceleration of the motorcycle 1. Calculate the torque to be applied to 21.
  • the motorcycle 1 of the present embodiment can calculate the torque that the upstream rotating electrical machine applies to the crankshaft from the state of the vehicle of the motorcycle 1. And when the state of the vehicle of the two-wheeled motor vehicle 1 is the same conditions, similar traveling can be realized. That is, the motorcycle 1 can improve the repeatability at the time of deceleration or acceleration of the motorcycle 1, and can improve the followability of the driving force to the rider's accelerator operation.
  • a rotary electric machine rotation axis Ag1 which is a rotation axis of the upstream rotary electric machine 90 is disposed on the same straight line as a crank rotation axis Ac1 which is a rotation axis of the crankshaft 21. Then, the upstream rotating electrical machine 90 can directly apply torque to the crankshaft 21 upstream of the electric motor type automatic control transmission 50 in the power transmission path. That is, the upstream rotary electric machine 90 can enhance the responsiveness of control of the driving force. Then, the motorcycle 1 of the present embodiment can improve the followability of the driving force to the accelerator operation of the rider at the time of deceleration or acceleration.
  • the acceleration / deceleration control unit 105 includes a transmission control unit 104 that performs transmission control and a rotating electrical machine control unit 103 that performs rotating electrical machine control.
  • the transmission control unit 104 and the rotating electrical machine control unit 103 are configured in the ECU 100 which is one and the same device.
  • the acceleration / deceleration control unit 105 can be made compact.
  • the enlargement of the motorcycle 1 can be suppressed.
  • FIG. 11 shows a motorcycle 201 disposed upright on a horizontal road surface.
  • the motorcycle 201 includes front and rear wheels 202 and 203, which are wheels, and a vehicle body frame 207.
  • the rear wheel 203 is a drive wheel.
  • the motorcycle 201 is a so-called motorcycle type motorcycle.
  • the body frame 207 is inclined to the right of the vehicle 201 when turning right, and is inclined to the left of the vehicle 201 when turning left.
  • the vehicle body frame 207 includes a head pipe 207a, a main frame 207b, a seat rail 207c, and a seat pillar tube 207d.
  • the main frame 207b extends rearward and obliquely downward from the head pipe 207a.
  • the seat rails 207c are provided on both the left and right sides, and extend rearward and obliquely upward from the middle of the main frame 207b.
  • the seat pillar tubes 207d are provided on the left and right sides, and are connected to the rear end portion of the main frame 207b and the middle portion of the seat rail 207c.
  • the head pipe 207 a is formed at the front of the vehicle body frame 207.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 207a. The upper end of the steering shaft is connected to the steering wheel unit 204. Upper ends of the pair of front forks 205 are fixed to the handle unit 204. The lower end portion of the front fork 205 supports the front
  • a pair of left and right rear arm brackets 207b1 is provided at the rear end of the main frame 207b.
  • the rear arm bracket 207b1 protrudes downward from the rear end of the main frame 207b.
  • the rear arm bracket 207b1 is provided with a pivot shaft 207e.
  • the front end portion of the rear arm 207f is swingably supported by the pivot shaft 207e.
  • a rear wheel 203 is supported at the rear end of the rear arm 207f.
  • the rear arm bracket 207b1 is included in part of the vehicle body frame 207.
  • An engine unit 206 for driving the rear wheel 203 is supported by the vehicle body frame 207.
  • a part of the engine unit 206 is covered by a front cowl 209 and a leg shield 211 which will be described later.
  • the engine unit 206 is described by a solid line, and the front cowl 209 and the leg shield 211 are described by a two-dot chain line for the purpose of explanation.
  • the engine unit 206 is disposed below the upper end of a seat 208 described later.
  • the engine unit 206 is supported in a suspended state on the main frame 207b.
  • a seat 208 and a fuel tank 210 are supported on the upper portion of the vehicle body frame 207.
  • the seat 208 extends from the rear end of the fuel tank 210 toward the rear end of the seat rail 207 c.
  • the fuel tank 210 is disposed above the front half of the seat rail 207c.
  • the upper part of the front fork 205 is covered with a front cowl 209.
  • the leg shield 211 is disposed below the front cowl 209.
  • the leg shields 211 are disposed on the left and right sides of the lower part of the motorcycle 201.
  • the leg shield 211 is a cover member that covers the rider's leg.
  • the vehicle body frame 207 supports a battery 294 (see FIG. 12) for supplying power to electronic devices such as various sensors and an ECU (control device) 300.
  • the ECU 300 controls the operation of each part of the motorcycle 201.
  • the steering wheel unit 204, the steering shaft, the front fork 205, and the front wheel 202 are integrally provided to rotate left and right.
  • the front wheel 202 is steered by the operation of the steering wheel unit 204.
  • a plane passing through the widthwise center of the front wheel 202 is inclined with respect to the front-rear direction (FB direction) of the vehicle 201.
  • the steering wheel unit 204 includes an accelerator grip 204a and a brake lever 204c.
  • the right grip of the handle unit 204 constitutes an accelerator grip 204a.
  • the accelerator grip 204a is operated by the rider to rotate.
  • the accelerator grip 204a is operated to adjust the output of the engine.
  • An accelerator sensor 204b is provided on the accelerator grip 204a.
  • the accelerator sensor 204b detects the opening degree of the accelerator grip 204a operated by the rider (hereinafter referred to as the accelerator opening degree).
  • the accelerator sensor 204b is, for example, a potentiometer provided on the accelerator grip 204a, and outputs an electrical signal according to the accelerator opening degree of the rider.
  • the ECU 300 detects the accelerator opening degree of the rider based on the output signal of the accelerator sensor 204b.
  • the right grip of the handle unit 204 is provided with a brake lever 204 c.
  • the brake lever 204c is operated by the rider.
  • the brake lever 204 c is operated to suppress the rotation of the front wheel 202.
  • the handle unit 204 is provided with various switches such as a main switch.
  • a shift switch 243 is provided on the left side of the handle unit 204.
  • the shift switch 243 includes an upshift switch 243a and a downshift switch 243b, and can manually increase or decrease the gear position between neutral and the highest gear (here, the 6th gear).
  • the handle unit 204 is provided with a display device 245.
  • the display device 245 displays a vehicle speed, an engine rotational speed, a gear position, and the like.
  • the display device 245 is provided with an indicator (indicating light).
  • the inclination direction of the vehicle body frame 207 in the state where the motorcycle 201 which is a lean vehicle is turning is the same as that of the motorcycle 1 according to the first embodiment described based on FIG. Therefore, the description is omitted.
  • FIG. 12 is a block diagram for explaining a schematic configuration of a motorcycle 201 according to the second embodiment.
  • the axes connecting the crankshaft 252 and the upstream rotary electric machine 290, which will be described later, the drive shaft 258 of the transmission 280 and the rear wheel 203 are schematically shown by straight lines.
  • these shafts are power transmission paths that indicate paths of mechanical power transmitted.
  • the engine body 220 is a single-cylinder engine having one cylinder.
  • the engine body 20 is a four-stroke, one-stroke engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke.
  • the engine body portion 220 has a crankcase portion 221 and a cylinder portion 222.
  • a crank shaft 252 is accommodated in the crankcase portion 221.
  • the cylinder portion 222 has a cylinder body 223, a cylinder head 224, and a head cover 225 (see FIG. 11).
  • the head cover 225 forms the front of the engine unit 206.
  • the cylinder head 224 is connected to the rear end of the head cover 225.
  • the cylinder body 223 is connected to the rear end of the cylinder head 224.
  • a cylinder hole 223 a is formed in the cylinder body 223.
  • the central axis of the cylinder hole 223a is a cylinder axis.
  • the engine body 220 is mounted on the vehicle body frame 207 such that the cylinder axis extends in the vertical direction.
  • the engine body portion 220 is mounted on the vehicle body frame 207 with the cylinder axis inclined forward.
  • the inclination angle of the cylinder axis with respect to the horizontal direction is greater than 0 degrees and not more than 90 degrees.
  • a piston 226 is slidably accommodated in the cylinder hole 223a.
  • a combustion chamber 224 a is formed by the lower surface of the cylinder head 224, the cylinder hole 223 a and the piston 226.
  • the cylinder head 224 is provided with a spark plug (ignition device) 224 b.
  • the spark plug 224b ignites mixed gas of fuel and air in the combustion chamber 224a.
  • An intake pipe 220 a is connected to the cylinder head 224.
  • the intake pipe 220a is provided with an injector 227 for injecting fuel in a fuel tank (not shown) into the intake pipe 220a.
  • the fuel injected by the injector 227 is supplied to the combustion chamber 224a.
  • the injector 227 is an electronically controlled fuel supply device, and the injection amount of fuel by the injector 227 is controlled by the ECU 300.
  • An exhaust pipe 220 b is connected to the cylinder head 224. The exhaust pipe 220b discharges the exhaust gas generated by the combustion of the fuel.
  • the intake pipe 220 a is connected to the throttle body 229. Inside the throttle body 229, a throttle valve 229a is disposed. The throttle valve 229a adjusts the amount of air flowing through the throttle body 229.
  • An air cleaner (not shown) is provided at the end of the intake pipe 220a upstream of the throttle body 229. The air cleaner has an air inlet for drawing air.
  • the air taken into the intake pipe 220a from the air intake port flows into the throttle body.
  • the air that has passed through the throttle valve 229 a passes through the intake pipe 220 a and is supplied to the cylinder body 223.
  • the throttle valve 229a is an electronically controlled throttle.
  • the throttle body 229 is provided with a throttle actuator 229 b.
  • the throttle actuator 229 b opens and closes the throttle valve 229 a by electronic control.
  • Throttle actuator 229 b includes a motor operated by the power supplied from ECU 300.
  • the opening degree of the throttle valve 229a is referred to as the throttle opening degree.
  • the ECU 300 controls the throttle opening by changing the power supplied to the motor.
  • the piston 226 is connected to a crankshaft 252 disposed inside the crankcase portion 221.
  • the piston 226 reciprocates by burning the fuel supplied to the combustion chamber 224a. Reciprocation of the piston 226 causes the crankshaft 252 to rotate.
  • a power transmission mechanism 295 is connected to the crankshaft 252. Further, an upstream rotary electric machine 290 is connected to the power transmission mechanism 295. That is, the rotary electric machine rotation axis Ag2 which is a rotation axis of the upstream rotary electric machine 290 is disposed in parallel with the rotary electric machine rotation axis Ac2 which is a rotation axis of the crankshaft 252.
  • the power transmission mechanism 295 is a gear or a chain. Power is transmitted between the crankshaft 252 and the upstream rotary electric machine 290 via the power transmission mechanism 295.
  • the upstream rotary electric machine 290 is a three-phase generator and is a permanent magnet generator.
  • the driving state of the upstream rotary electric machine 290 includes a power generation state and a power running state.
  • the driving state in which the upstream rotary electric machine 290 generates power by applying torque in the reverse rotation direction of the crankshaft 252 to the crankshaft 252 is a power generation state.
  • part of the torque in the positive rotation direction of the crankshaft 252 is applied from the crankshaft 252 to the upstream rotary electric machine 290, and the upstream rotary electric machine 290 is rotated in the same direction as the positive rotation direction of the crankshaft 252 Ru.
  • the driving state in which the crankshaft 252 is positively rotated by applying torque in the positive rotation direction of the crankshaft 252 to the crankshaft 252 by electric power supplied from the battery 294 described later by the upstream rotary electric machine 290 is in a powering state.
  • the upstream rotary electric machine 290 is driven in a power running state as a starter motor at the time of engine start. Further, during normal operation after engine start, the upstream rotary electric machine 290 is driven in a power running state or a power generation state.
  • the upstream rotary electric machine 290 is configured as a device integrated with the starter motor.
  • the starter motor and the rotating electrical machine may be configured separately.
  • An engine rotational speed sensor 253 is provided at an end (not shown) of the crankshaft 252.
  • the crankshaft 252 is coupled to the main shaft 255 via a clutch 254.
  • the clutch 254 is a wet multi-plate type.
  • the clutch 254 includes a clutch housing 254 a, a clutch boss 254 b, and a pressure plate 278.
  • the clutch housing 254 a is rotatably provided relative to the main shaft 255.
  • a plurality of friction plates 254c are attached to the clutch housing 254a.
  • the clutch boss 254 b rotates integrally with the main shaft 255.
  • a plurality of clutch plates 254d are attached to the clutch boss 254b. Each clutch plate 254d is disposed between the adjacent friction plates 254c, 254c.
  • the pressure plate 278 is provided so as to be in contact with the friction plate 254 c.
  • the pressure plate 278 is provided with a spring.
  • the spring biases the pressure plate 278 in the direction in which the friction plate 254c is pressed against the clutch plate 254d.
  • the clutch 254 is not limited to a wet multi-plate clutch.
  • the clutch 254 may be, for example, a dry clutch or a single-plate clutch.
  • transmission gears 257 of multiple stages are mounted on the main shaft 255.
  • a main shaft rotational speed sensor 256 is installed on the main shaft 255.
  • the plurality of transmission gears 257 mounted on the main shaft 255 mesh with the plurality of transmission gears 259 mounted on the drive shaft 258.
  • the drive shaft 258 is an axis arranged parallel to the main shaft 255.
  • the drive shaft 258 is an axle of the rear wheel 203.
  • the plurality of transmission gears 257 and the plurality of transmission gears 259 are shown separately.
  • the electric motor type automatic control transmission device 250 has a transmission 280, a transmission control device 282 and an automatic clutch device 277.
  • the transmission 280 is a stepped transmission configured of a plurality of transmission gears 257, a plurality of transmission gears 259, and a shift cam 279 described later.
  • Transmission gear 257 and transmission gear 259 are mounted in an idle state with respect to main shaft 255 or drive shaft 258 except for the selected gear. That is, the transmission of power from the main shaft 255 to the drive shaft 258 is performed only via the selected pair of transmission gears.
  • a state in which the pair of transmission gears 257 and 259 are meshed so as to transmit the driving force from the main shaft 255 to the drive shaft 258 is referred to as a gear-in state.
  • the shift cam 279 is formed with a plurality of cam grooves 260. In the example of FIG. 12, three cam grooves 260 are formed. A shift fork 261 is attached to each cam groove 260. A part of the shift forks 261 among the plurality of shift forks 261 is engaged with a predetermined transmission gear 257 of the main shaft 255. The remaining shift fork 261 is engaged with a predetermined transmission gear 259 of the drive shaft 258. The rotation of the shift cam 279 causes the shift fork 261 to move axially along the cam groove 260.
  • predetermined transmission gears 257, 259 spline-fitted to the main shaft 255 and the drive shaft 258 move in the axial direction.
  • the transmission gear 257 and the transmission gear 259 moved in the axial direction are engaged with the other transmission gear 257 and the transmission gear 259 mounted idle on the main shaft 255 and the drive shaft 258, whereby Be changed.
  • the transmission 280 is driven by a shift actuator 265.
  • the shift actuator 265 is an electric motor 265.
  • the automatic clutch device 277 includes a clutch 254, a clutch actuator 263, a hydraulic pressure transmission mechanism 264, a rod 271, a lever 272, a pinion 273, and a rack 274.
  • the pressure plate 278 of the clutch 254 is driven by the clutch actuator 263 in the direction opposite to the biasing force of the spring.
  • the clutch actuator 263 is connected to the pressure plate 278 of the clutch 254 via the hydraulic pressure transmission mechanism 264, the rod 271, the lever 272, the pinion 273 and the rack 274.
  • the hydraulic pressure transmission mechanism 264 includes a hydraulic cylinder 264a, an oil tank (not shown), a piston (not shown), and the like.
  • the hydraulic pressure transmission mechanism 264 is a mechanism that generates hydraulic pressure by driving the clutch actuator 263 and transmits the hydraulic pressure to the rod 271.
  • the rod 271 is rotatably connected to the lever 272.
  • the lever 272 By driving the clutch actuator 263, the rod 271 reciprocates as shown by the arrow A, and the lever 272 rotates as shown by the arrow B.
  • the lever 272 is connected to the rack 274 via a pinion 273.
  • the rotation of the lever 272 as shown by arrow B moves the rack 274 connected to the pressure plate 278 of the clutch 254.
  • the pressure plate 278 of the clutch 254 is switched between the state in which the friction plate 254 c is pressed and the state in which the pressure plate 254 c is not pressed, depending on the movement direction of the rack 274.
  • the clutch 254 is switched between a connected state for transmitting the rotation of the crankshaft 252 to the main shaft 255 and a disconnected state for not transmitting according to the movement direction of the rack 274.
  • the clutch actuator 263 is composed of an electric motor. In the present embodiment, an electric motor is employed as the clutch actuator 263, but a solenoid, a solenoid valve or the like may be used. Further, although the automatic clutch device 277 employs the hydraulic pressure transmission mechanism 264, it may be a gear, a cam or the like.
  • a transmission control device 282 is configured of the shift actuator 265, the reduction mechanism 266, the rod 275, and the link mechanism 276.
  • the shift actuator 265 is connected to the shift cam 279 via the speed reduction mechanism 266, the rod 275 and the link mechanism 276.
  • the shift actuator 265 is connected to the reduction mechanism 266.
  • the reduction mechanism 266 includes a plurality of reduction gears (not shown).
  • the reduction mechanism 266 is connected to the rod 275.
  • the reduction mechanism 266 decelerates the rotation of the shift actuator 265, which is an electric motor, and transmits it to the rod 275.
  • the rod 275 converts the rotational force of the reduction mechanism 266 into a reciprocating motion.
  • the rod 275 is connected to the link mechanism 276.
  • the link mechanism 276 is connected to the shift cam 279 to convert the reciprocating motion of the rod 275 into rotational force of the shift cam 279.
  • the transmission control device 282 changes the transmission ratio of the electric motor type automatic transmission transmission 250.
  • the rod 275 reciprocates as shown by the arrow C by the drive of the shift actuator 265 which is an electric motor.
  • the shift cam 279 rotates by a predetermined angle via the link mechanism 276.
  • the shift fork 261 axially moves along the cam groove 260 by a predetermined amount.
  • the pair of transmission gears 257 and 259 are fixed to the main shaft 255 and the drive shaft 258, respectively.
  • power is transmitted from the main shaft 255 to the drive shaft 258.
  • a clutch position sensor 268 is installed in the hydraulic pressure transmission mechanism 264 connected to the clutch actuator 263.
  • the clutch position sensor 268 detects the clutch position by detecting the amount of movement of the piston of the hydraulic pressure transmission mechanism 264.
  • the amount of movement of the piston of the hydraulic pressure transmission mechanism 264 is the same as the distance between the friction plate 254 c and the clutch plate 254 d.
  • the clutch position sensor 268 is configured to detect the clutch position by detecting the amount of movement of the piston of the hydraulic pressure transmission mechanism 264, the present invention is not limited thereto.
  • the clutch position sensor 268 may detect the position of the transmission mechanism provided between the clutch actuator 263 and the clutch 254.
  • the clutch position sensor 268 may detect the position of the rod 271 or the rack 274.
  • the clutch position sensor 268 is not limited to the case of indirectly acquiring the clutch position from the movement amount of the piston of the hydraulic pressure transmission mechanism 264.
  • the clutch position sensor 268 may detect the clutch position directly. That is, the clutch position sensor 268 may be configured to directly measure the distance between the friction plate 254c and the clutch plate 254d.
  • a vehicle speed sensor 269 is installed on the drive shaft 258.
  • a gear position sensor 270 for detecting a gear position is installed on the shift cam 279. The gear position is the amount of rotation of the shift cam 279.
  • the transmission ratio of the electric motor type automatic transmission 250 is changed in the following two cases.
  • the first is a case where the ECU 300 performs drive control of the clutch actuator 263 and the shift actuator 265 in response to the operation of the shift up switch 243 a or the shift down switch 243 b.
  • the second is a case where the acceleration / deceleration control unit 305 performs drive control of the clutch actuator 263 and the shift actuator 265 automatically when the motorcycle 201 accelerates or decelerates.
  • the transmission ratio is changed during traveling, the following series of operations are performed based on a predetermined program or map. First, the clutch 254 is disconnected by the clutch actuator 263. Next, the shift actuator 265 moves the transmission gears 257 and 259 in the axial direction. Then, connection of the clutch 254 is performed by the clutch actuator 263.
  • the power transmission path of the engine unit 206 will be described based on FIG. As shown in FIG. 12, the power transmission path is a path through which power is transmitted from the crankshaft 252 to the rear wheel 203.
  • the crankshaft 252 is upstream in the power transmission path.
  • the rear wheel 203 is downstream in the power transmission path.
  • the upstream rotary electric machine 290 is coupled to the crankshaft 252 so as to be able to transmit power via the power transmission mechanism 295.
  • the electric motor type automatic control transmission 250 is connected to the crankshaft 252 so that power can be transmitted by the pair of transmission gears 257 and 259 selected by the shift cam 279.
  • the power of the crankshaft 252 is transmitted to the rear wheel 203 via the electric motor type automatic transmission 250 by the main shaft 255 and the drive shaft 258 engaged with the predetermined transmission gears 257 and 259.
  • the crankshaft 252, the upstream rotary electric machine 290, the electric motor type automatic control transmission 250, and the rear wheel 203 are arranged in this order from the upstream to the downstream of the power transmission path. That is, the upstream rotary electric machine 290 is disposed upstream of the electric motor automatic control transmission 250 in the power transmission path from the crankshaft 252 to the rear wheel 203.
  • the crankshaft 252 is disposed upstream of the electric motor-type automatic transmission 250 in the power transmission path.
  • Engine unit 206 has an ECU 300.
  • ECU 300 controls the operation of engine unit 206.
  • the ECU 300 includes various sensors such as an accelerator sensor 204b, a throttle opening sensor 229c, an engine rotational speed sensor 253, a main shaft rotational speed sensor 256, a clutch position sensor 268, a vehicle speed sensor 269, and a gear position sensor 270.
  • the ECU 100 is connected to an ignition plug 224b, an injector 227, a throttle actuator 229b, an upshift switch 243a, a downshift switch 243b, a clutch actuator 263, a shift actuator 265, an upstream rotary electric machine 290, a display 245 and the like.
  • the ECU 300 is configured of a CPU, a ROM, a RAM, and the like.
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM.
  • each function of the plurality of function processing units is realized in the ECU 300.
  • the ECU 300 includes a combustion control unit 301, a throttle control unit 302, and an acceleration / deceleration control unit 305 as function processing units.
  • the acceleration / deceleration control unit 305 includes a rotating electrical machine control unit 303 and a transmission control unit 304.
  • the acceleration / deceleration control unit 305 is a control device of the present invention.
  • the combustion control unit 301 controls the ignition timing of the spark plug 224b.
  • the combustion control unit 301 also controls the driving of the injector 227 and the fuel pump.
  • the combustion control unit 301 controls the fuel supply amount.
  • the throttle control unit 302 operates the throttle actuator 229 b to control the throttle opening based on the operation of the accelerator grip 204 a by the rider.
  • the rotating electrical machine control unit 303 controls energization of the upstream rotating electrical machine 290. Thereby, the rotating electrical machine control unit 303 controls the regeneration function and the power running function.
  • the transmission control unit 304 operates the electric motor 265 of the electric motor type automatic control transmission 250 to control the change of the transmission ratio of the electric motor type automatic control transmission 250.
  • the combustion control unit 301 executes a program stored in a storage unit such as a ROM to control the combustion operation of the engine body 220.
  • the combustion control unit 301 controls the combustion operation of the engine main body 220 by causing the ignition plug 224b to perform an ignition operation by discharge. Further, the combustion control unit 301 controls the fuel supply amount by controlling the driving of the injectors 227 and the fuel pump to control the combustion operation of the engine main body 220.
  • the control of the fuel supply amount includes the control of the supply amount of fuel supplied from the fuel pump and the control of the injection time of the fuel injected by the injector 227.
  • the combustion control unit 301 controls the driving of the injector 227 and the fuel pump based on various information in addition to the engine rotation speed and the throttle opening degree.
  • the engine rotational speed is calculated based on the output signal of the engine rotational speed sensor 253.
  • the throttle opening degree is detected by the output signal of the throttle opening degree sensor 229c.
  • Various information is calculated based on output signals of various sensors such as an engine temperature sensor and an oxygen sensor.
  • the throttle control unit 302 controls the throttle opening based on the rider's accelerator operation. That is, the throttle control unit 302 detects the accelerator opening degree which is the operation amount of the accelerator grip 204a by the rider based on the output signal of the accelerator sensor 204b. Then, the throttle control unit 302 operates the throttle actuator 229b based on the accelerator opening degree to control the throttle opening degree. That is, the throttle control unit 302 supplies drive power to the throttle actuator 229b to operate the throttle actuator 229b.
  • the throttle control unit 302 performs feedback control of the throttle opening with reference to a map, a relational expression, or the like that associates the accelerator opening with the throttle opening. That is, the throttle control unit 302 calculates a target throttle opening degree corresponding to the accelerator opening degree with reference to a map or the like. The throttle control unit 302 then determines the difference between the throttle opening degree and the target throttle opening degree so that the throttle opening degree, which is the actual throttle opening degree detected by the throttle opening degree sensor 229c, matches the target throttle opening degree. To operate the throttle actuator 229b. A map or the like that associates the accelerator opening degree with the throttle opening degree is stored in advance in the storage unit.
  • the acceleration / deceleration control unit 305 can execute both transmission control by the transmission control unit 304 and rotary electric machine control by the rotary electric machine control unit 303 when the motorcycle 201 accelerates or decelerates.
  • the transmission control by the transmission control unit 304 is control for changing the gear ratio by controlling the electric motor 265 of the electric motor type automatic control transmission 250.
  • the rotary electric machine control by the rotary electric machine control unit 103 is control for controlling the upstream rotary electric machine 290 to change the torque to be applied upstream of the electric motor type automatic control transmission 250 in the power transmission path.
  • a crankshaft 252 is positioned upstream of the electric motor automatic transmission 250 in the power transmission path.
  • the rotating electrical machine control unit 303 executes a program stored in the storage unit, controls energization of the upstream rotating electrical machine 290, and controls driving of the upstream rotating electrical machine 290. That is, the rotating electrical machine control unit 303 performs rotating electrical machine control.
  • the driving state of the upstream rotary electric machine 90 includes a power running state and a power generation state.
  • the rotating electrical machine control unit 303 performs rotating electrical machine control during acceleration.
  • the upstream rotary electric machine 290 is controlled to change the torque in the positive rotation direction of the crankshaft 252 applied to the crankshaft 252 via the power transmission mechanism 295.
  • the rotary electric machine control unit 303 is controlled to rotate the upstream rotary electric machine 290 in the forward rotation direction of the crankshaft 252 by the electric power supplied from the battery 294.
  • the upstream rotating electrical machine 290 generates an engine output.
  • the rotation of the crankshaft 252 is assisted by the upstream rotary electric machine 290 in the positive rotation direction.
  • the rotating electrical machine control unit 303 drives the upstream rotating electrical machine 290 in a power generation state at the time of deceleration of the motorcycle 201, the rotating electrical machine control unit 303 performs rotating electrical machine control during deceleration.
  • the upstream rotary electric machine 290 is controlled via the power transmission mechanism 295 so as to change the torque in the reverse rotation direction of the crankshaft 21 applied to the crankshaft 21. That is, in the rotating electrical machine control during deceleration, the rotating electrical machine control unit 103 rotates the upstream rotating electrical machine 90 in the positive rotation direction of the crankshaft 252 to control the upstream rotating electrical machine 290 to absorb the torque of the crankshaft 21 . Thus, the upstream rotating electrical machine 290 generates an engine loss. Then, the rotation of the crankshaft 252 is loaded by the upstream rotating electrical machine 290 in the reverse rotation direction. The torque of the crankshaft 252 absorbed by the upstream rotating electrical machine 290 is stored in the battery 294 as electric power.
  • the transmission control unit 304 controls the transmission ratio of the electric motor-type automatic transmission 250 according to an input signal from the upshift switch 243a or the downshift switch 243b. Alternatively, when the motorcycle 201 accelerates or decelerates, the transmission control unit 304 executes a program stored in the storage unit to automatically control the transmission gear ratio of the electric motor-type automatic control transmission 250. That is, the transmission control unit 304 performs transmission control. During acceleration of the motorcycle 201, the transmission control unit 304 performs transmission control during acceleration. The acceleration transmission control controls the electric motor 265 of the electric motor type automatic control transmission 250 to change the transmission gear ratio. During deceleration of the motorcycle 201, the transmission control unit 304 performs transmission control during deceleration.
  • the speed reduction transmission control controls the electric motor 265 of the electric motor type automatic control transmission 250 to change the transmission gear ratio.
  • Output signals of the clutch position sensor 268 and the gear position sensor 270 are input to the transmission control unit 304.
  • the transmission control unit 304 drives the clutch actuator 263 based on the output signal of the clutch position sensor 268 to control the automatic clutch device 277.
  • the transmission control unit 304 detects the currently-set gear ratio based on the output signal of the gear position sensor 270.
  • the transmission control unit 104 drives the shift actuator 265, which is an electric motor, to change the transmission ratio of the electric motor-type automatic transmission 250. That is, the transmission control unit 304 supplies driving power to the clutch actuator 263 and the shift actuator 265 to operate them.
  • the transmission control unit 304 automatically controls the electric motor type on the basis of the vehicle speed calculated based on the output signal of the vehicle speed sensor 269 and various data such as the throttle opening detected by the output signal of the throttle opening sensor 229c. A transmission gear ratio to be changed by the control transmission 250 is calculated.
  • the acceleration / deceleration control unit 305 performs acceleration control when the motorcycle 201 accelerates.
  • the acceleration / deceleration control unit 305 switches the acceleration transmission control of the transmission control unit 304 and the acceleration electric rotation control of the rotating electric machine control unit 303 in acceleration control.
  • the acceleration / deceleration control unit 305 simultaneously performs the acceleration transmission control of the transmission control unit 304 and the acceleration rotary electric machine control of the rotary electric machine control unit 303.
  • the acceleration / deceleration control unit 305 performs deceleration control at the time of deceleration of the motorcycle 201.
  • the acceleration / deceleration control unit 305 switches between the reduction gear transmission control of the transmission device control unit 304 and the reduction motor electrical control control of the rotating electrical machine control unit 303.
  • the acceleration / deceleration control unit 305 simultaneously performs the transmission control at the time of deceleration of the transmission control unit 304 and the control at the time of deceleration of the rotary electric machine control unit 303.
  • the configurations of the upstream rotary electric machine 290, the inner stator 291, the outer rotor 292, the inverter 293, the battery 294 and the rotor position detection sensor 290a of the second embodiment are the same as the upstream rotary electric machine 90, the inner stator 91 and the outer rotor 92 of the first embodiment.
  • the configuration is the same as that of the inverter 93, the battery 94, and the rotor position detection sensor 90a, and the description thereof is omitted.
  • An example of the operation of the deceleration control and acceleration control by the acceleration / deceleration control unit 305 in the second embodiment is the same as an example of the operation of the deceleration control and acceleration control by the acceleration / deceleration control unit 105 in the first embodiment I omit explanation.
  • the acceleration / deceleration control unit 305 of the second embodiment corresponds to the acceleration / deceleration control unit 105 of the first embodiment.
  • the rotating electrical machine control unit 303 and the transmission control unit 304 of the second embodiment correspond to the rotating electrical machine control unit 103 and the transmission control unit 104 of the first embodiment.
  • the accelerator sensor 204b, the vehicle speed sensor 269, the engine rotational speed sensor 253, the throttle opening sensor 229c, and the gear position sensor 270 according to the second embodiment are the accelerator sensor 4b, the vehicle speed sensor 3c, and the engine rotational speed sensor according to the first embodiment.
  • 21s corresponds to the throttle opening sensor 29c and the sheave position detection sensor 85.
  • the crankshaft 252, the electric motor type automatic control transmission 250, and the electric motor 265 of the second embodiment correspond to the crankshaft 21 of the first embodiment, the electric motor type automatic control transmission 50, and the electric motor 71.
  • the upstream rotating electrical machine 290, the inverter 293, and the battery 294 of the second embodiment correspond to the upstream rotating electrical machine 90, the inverter 93, and the battery 94 of the first embodiment.
  • the display device 245 of the second embodiment corresponds to the display device 110 of the first embodiment.
  • the motorcycle 201 of the second embodiment has the following features in addition to the features of the motorcycle 1 of the first embodiment.
  • the electric motor type automatic control transmission 250 is a stepped transmission having a shift actuator 265 and a plurality of transmission gears.
  • the actuator is driven by an electric motor.
  • the plurality of transmission gears are configured to be selectable by the actuator.
  • the geared transmission controls an actuator with an electric motor, selects one transmission gear from a plurality of transmission gears, and sets a gear ratio.
  • the clutch actuator 263 disconnects and connects the clutch 254.
  • a time lag occurs from the time when the control for changing the gear ratio is performed based on the gear ratio set in response to the accelerator operation until the driving force is controlled. . Therefore, the acceleration / deceleration control unit 305 can increase the responsiveness of the control of the driving force by enabling both the transmission control of the transmission control unit 304 and the rotating electric machine control of the rotating electric machine control unit 303.
  • the motorcycle 201 of the second embodiment can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • a rotary electric machine rotation axis Ag2 which is a rotation axis of the upstream rotary electric machine 290 is disposed in parallel with a crank rotation axis Ac2 which is a rotation axis of the crankshaft 252.
  • the upstream rotary electric machine 290 is connected to the crankshaft 252 via the power transmission mechanism 295.
  • the upstream rotary electric machine 290 can apply a torque to the crankshaft 252 upstream of the electric motor-type automatic control transmission 250 in the power transmission path via the power transmission mechanism 295. That is, the upstream rotary electric machine 290 can enhance the responsiveness of control of the driving force.
  • the motorcycle 201 of the second embodiment can improve the followability of the driving force to the rider's accelerator operation at the time of deceleration or acceleration.
  • the control device controls the drive of the upstream rotating electric machine and then the transmission control unit controls the electric motor type.
  • the gear ratio of the automatic control transmission is changed.
  • the control at the time of acceleration of the lean vehicle of the present invention is not limited to this.
  • the control device may control the drive of the upstream rotary electric machine after the transmission control unit changes the gear ratio of the electric motor automatic control transmission at the time of acceleration of the lean vehicle.
  • control device controls the drive of the upstream rotating electrical machine, and the transmission control unit is of the electric motor type.
  • the gear ratio of the automatic control transmission has been changed.
  • control during deceleration of a lean vehicle is not limited to this.
  • the control device may drive the upstream rotating electrical machine after the transmission control unit changes the transmission gear ratio of the electric motor automatic control transmission at the time of deceleration of the lean vehicle.
  • the control device simultaneously performs the rotating electrical machine control by the rotating electrical machine control unit and the transmission control by the transmission control unit when the remaining capacity of the battery is larger than the acceleration lower limit value at the time of acceleration of the lean vehicle.
  • the control at the time of acceleration of the lean vehicle of the present invention is not limited to this.
  • the control device may control as shown in FIG. 13 at the time of acceleration of a lean vehicle.
  • FIG. 13 is a graph showing an example of the temporal change of the next parameter at the time of deceleration of the lean vehicle.
  • Fig.13 (a) shows an example of the time-dependent change of the throttle opening.
  • FIG.13 (b) shows an example of a time-dependent change of the driving force which generate
  • FIG. 13 (c) shows an example of the change with time of the engine rotational speed.
  • the transmission ratio of the electric motor type automatic control transmission is changed by the transmission control unit, and as shown in FIG. 13 (c), as the engine speed increases, two points in FIG. 13 (b) are displayed by inertia. As indicated by the dashed line, the driving force generated on the driving wheel is suddenly reduced. Therefore, when an engine loss due to inertia occurs in a lean vehicle, the control device controls the drive of the upstream rotating electrical machine by the rotating electrical machine control unit, and upstream of the electric motor type automatic control transmission in the power transmission path.
  • torque may be applied in the positive rotation direction of the crankshaft. That is, as shown in FIG. 13B, the engine output generated by the upstream rotating electrical machine can be added to the engine loss generated by the inertia. Therefore, a positive driving force can be generated by the torque in the positive rotation direction of the crankshaft applied by the upstream rotating electrical machine, and the negative driving force generated on the drive wheels can be cancelled. Then, the followability of the driving force to the rider's accelerator operation can be improved.
  • the control device simultaneously performs rotating electric machine control by the rotating electric machine control unit and transmission control by the transmission control unit according to the remaining capacity of the battery, or Although only transmission control is performed by the transmission control unit, the present invention is not limited thereto.
  • the control device may further perform only the rotating electrical machine control by the rotating electrical machine control unit according to the remaining capacity of the battery at the time of deceleration or acceleration of the lean vehicle.
  • the control device performs a gear shift at a lower speed than the target gear ratio in the case of performing the rotating electrical machine control at the time of deceleration. It is calculated by ratio.
  • the control device calculates the target gear ratio in the case where the rotating electrical machine control at the time of deceleration is not performed with a gear ratio higher than that at the time of performing the rotating electrical machine control at the time of deceleration.
  • the control device may calculate the target gear ratio when the rotating electrical machine control at the time of deceleration is not performed, with the same gear ratio as the target gear ratio when the rotating electrical machine control at the time of deceleration is performed. .
  • the control device makes the target gear ratio when not performing the rotating electrical machine control during acceleration more than the target gear ratio when performing the rotating electrical machine control during acceleration. It is calculated at a low speed gear ratio.
  • the control device calculates the target gear ratio in the case where the rotating electrical machine control at the time of acceleration is not performed with a gear ratio faster than the target gear ratio when the rotating electrical machine control at the time of acceleration is performed. May be Further, in the lean vehicle of the present invention, the control device may calculate the target gear ratio in the case where the rotating electrical machine control at the time of acceleration is not performed with the same gear ratio as the target gear ratio when the rotating electrical machine control at the time of acceleration is performed. .
  • the control device performs acceleration transmission control or acceleration electric machine control at the time of acceleration of a lean vehicle.
  • the control device may not perform either the acceleration transmission control or the acceleration rotary electric machine control at the time of acceleration of the lean vehicle.
  • the control device performs the speed reduction device control at the time of deceleration or the control of the rotating electric machine at the time of deceleration when the lean vehicle is decelerating.
  • the control device may not perform either the deceleration transmission control or the deceleration rotary electric machine control.
  • the lean vehicle of the first embodiment calculates the vehicle speed based on the output signal from the vehicle speed sensor.
  • the method of calculating the vehicle speed of a lean vehicle according to the present invention is not limited thereto.
  • the lean vehicle of the present invention may calculate the vehicle speed based on the output signal from the rotor position detection sensor.
  • the lean vehicle of the present invention may calculate the vehicle speed based on the output signal from the secondary pulley rotational speed sensor.
  • the vehicle speed is calculated based on the output signal from the vehicle speed sensor.
  • the method of calculating the vehicle speed of a lean vehicle according to the present invention is not limited thereto.
  • the lean vehicle of the present invention may calculate the vehicle speed based on the output signal from the main shaft rotation speed sensor.
  • the throttle valve is an electronically controlled throttle.
  • the throttle valve may not be an electronically controlled throttle.
  • the throttle valve may be connected to the accelerator grip via a wire. In this case, no accelerator sensor is provided. Then, a shaft that rotates in response to the operation of the accelerator grip is provided on the throttle body. Then, the throttle opening degree sensor outputs an electric signal corresponding to the amount of rotation of the shaft.
  • the throttle valve is preferably an electronically controlled throttle. If the throttle valve is an electronically controlled throttle, the control device can control the driving force based on the output signals of the accelerator sensor and the throttle opening degree sensor. That is, the lean vehicle can improve the reproducibility of the controllability of the driving force at the time of deceleration or acceleration.
  • the control device is configured such that the combustion control unit, the throttle control unit, the rotating electrical machine control unit, and the transmission control unit are formed in one device not electrically connected.
  • the device constituting the combustion control unit and the throttle control unit may be electrically connected to another device constituting the rotating electrical machine control unit and the transmission control unit.
  • a device constituting the rotating electrical machine control unit and another device constituting the transmission control unit may be electrically connected to each other to be configured as a control device. This improves the degree of freedom in the layout of the control device. And the enlargement of a lean vehicle can be suppressed.
  • the transmission control device is disposed in the lubrication space.
  • the transmission control may be arranged in a dry space.
  • the lean vehicle of the above embodiment has one battery.
  • the lean vehicle of the present invention may have multiple batteries.
  • the crank rotation axis is in line with the rotary electric machine rotation axis, and the crankshaft is directly connected to the rotary electric machine.
  • the crank rotation axis and the rotary electric machine rotation axis may be arranged in parallel, and the upstream rotary electric machine may be connected to the crankshaft via the power transmission mechanism.
  • crank rotation axis and the rotary electric machine rotation axis are disposed in parallel, and the upstream rotary electric machine is connected to the crankshaft via the power transmission mechanism.
  • the crank rotation axis may be colinear with the rotary electric machine rotation axis, and the upstream rotary electric machine may be directly coupled to the crankshaft.
  • the upstream rotating electrical machine is integrated with the starter motor.
  • the upstream rotating electrical machine and the starter motor may be separately provided.
  • the rear wheels are drive wheels.
  • the front wheels may be drive wheels.
  • the lean vehicle of the said embodiment has one front wheel and one rear wheel.
  • the lean vehicle of the present invention may have a plurality of front wheels.
  • the lean vehicle of the present invention may have a plurality of rear wheels.
  • the primary shaft portion in the continuously variable transmission, is integrally formed with the crankshaft.
  • the primary shaft and the crankshaft may be provided separately.
  • the continuously variable transmission is not limited to the configuration of the continuously variable transmission of the above embodiment.
  • the continuously variable transmission may have any configuration as long as it has a primary pulley, a secondary pulley, and a dry belt.
  • the primary pulley has two primary sheaves, and the width of the two primary sheaves is changed by the electric motor.
  • the dry belt is wound around the primary pulley and the secondary pulley, and the sliding portion with the primary pulley and the secondary pulley is not lubricated with a lubricant.
  • the control device controls the electric motor to change the widths of the two primary sheaves to change the transmission ratio.
  • the stepped transmission is not limited to the configuration of the stepped transmission of the above embodiment.
  • the stepped transmission may have any configuration.
  • the stepped transmission includes an actuator driven by the electric motor and a plurality of transmission gears configured to be selectable by the actuator.
  • the control device controls the actuator with the electric motor to select one transmission gear from the plurality of transmission gears, and changes the transmission ratio.
  • the engine body of the engine unit may be a multi-cylinder engine having a plurality of cylinders.
  • the engine body of the engine unit may be a two-stroke engine.
  • the engine body of the engine unit may be a naturally air-cooled engine.
  • the engine body of the engine unit may be a water-cooled engine.
  • a two-wheeled motor vehicle was illustrated as a lean vehicle of the said embodiment.
  • the lean vehicle according to the present invention may be any lean vehicle as long as it is a lean vehicle that leans to the right of the vehicle when turning right and leans to the left when turning left.
  • the lean vehicle of the present invention may be a straddle-type vehicle other than a motorcycle.
  • a straddle-type vehicle generally refers to a vehicle on which a rider straddles a heel.
  • the straddle-type vehicles include motorcycles, tricycles, water bikes, snowmobiles and the like.
  • the lean vehicle of the present invention may not be a straddle-type vehicle. Further, the lean vehicle of the present invention may be such that the driver does not get on. Further, the lean vehicle of the present invention may be capable of traveling without carrying a person. In these cases, the forward direction of the lean vehicle is the forward direction of the lean vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Control Of Transmission Device (AREA)

Abstract

減速時および加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる電動モータ式の自動制御変速装置を備えたリーン車両を提供する。 リーン車両(1)では、クランク軸(21)から駆動輪(3)に至るまでの動力伝達経路において、上流回転電機(90)が電動モータ式の自動制御変速装置(50)の上流に配置される。制御装置(105)は、リーン車両(1)の加速時または減速時に、電動モータ式の自動制御変速装置(50)の電動モータ(71)を制御して変速比を変更する変速装置制御と、上流回転電機(90)を制御して動力伝達経路における電動モータ式の自動制御変速装置(50)の上流に付与するトルクを変更する回転電機制御の両方を実施可能である。リーン車両(1)の加速時の回転電機制御では、上流回転電機(90)を制御して、動力伝達経路における電動モータ式の自動制御変速装置(50)の上流に付与するクランク軸(21)の正回転方向のトルクを変更する。リーン車両(1)の減速時の回転電機制御では、上流回転電機(90)を制御して、動力伝達経路における電動モータ式の自動制御変速装置(50)の上流に付与するクランク軸(21)の逆回転方向のトルクを変更する。

Description

リーン車両
 本発明は、リーン車両に関する。
 自動二輪車のようなリーン車両は、車両から路面に伝えられる駆動力を発生させる。そして、リーン車両は、駆動力を制御することで、車両の姿勢を制御して走行する。ここで、リーン車両とは、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有する車両である。
 このようなリーン車両として、特許文献1の自動二輪車が提案されている。特許文献1の自動二輪車は、電動モータ式の自動制御変速装置を備えている。電動モータ式の自動制御変速装置は、電動モータで変速比を変更する。
特開2012-225443号公報
 リーン車両は、減速時に、ライダーによりアクセル開度が閉じられるようにアクセルグリップが操作されて、スロットル弁の開度が小さくなるように制御される。例えば、スロットル弁が全閉となるように制御されると、エンジン本体部の燃焼室には、吸入空気が導入されない。即ち、エンジン本体部による機関出力は発生しない。また、ポンピングロスなどの機関損失が発生する。そして、リーン車両には、機関損失より生じたトルクに変速比を乗じた量の負の駆動力が発生する。ここで、負の駆動力とは、いわゆる制動力のことである。そこで、特許文献1の電動モータ式の自動制御変速装置は、スロットル弁が全閉の時に、アクセル開度に基づいて変速比を設定している。つまり、特許文献1の電動モータ式の自動制御変速装置は、アクセル操作に伴って設定された変速比に基づいて、負の駆動力を発生させている。
 電動モータ式の自動制御変速装置を備えたリーン車両において、ライダーのアクセル操作に対する駆動力の追従性を向上させることが望まれている。特許文献1のリーン車両を用いて、減速時または加速時の試験を繰り返し行ったところ、アクセル操作に対する駆動力の追従性を、より高めることができることに気付いた。
 本発明は、リーン車両の減速時および加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる電動モータ式の自動制御変速装置を備えたリーン車両を提供することを目的とする。
 本願発明者らは、特許文献1の電動モータ式の自動制御変速装置を備えたリーン車両を用いて、リーン車両の減速時および加速時の試験を繰り返して行った。そうすると、アクセル操作に対する駆動力の追従性は、より高めることができることに気付いた。電動モータ式の自動制御変速装置は、アクセル操作に伴って設定された変速比に基づいた変速指令を出してから、実際に変速比が変更されるまでのタイムラグが大きい。即ち、電動モータ式の自動制御変速装置により変速比が制御される場合、アクセル操作に伴う変速比に基づいた変速指令が出されてから、駆動力が制御されるまでのタイムラグが大きい。そして、本願発明者らは、このタイムラグを短縮することができれば、アクセル操作に対する駆動力の追従性をより高めることができると考えた。
 しかし、電動モータ式の自動制御変速装置は、電動モータ等の制約によって、このタイムラグを短縮することが困難であることがわかった。そこで、本願発明者らは、リーン車両に、電動モータ式の自動制御変速装置よりも高い応答性で制御可能な回転電機を設けることを思いついた。つまり、電動モータ式の自動制御変速装置よりも応答性が高い回転電機で機関出力または機関損失を発生させることで、アクセル操作に対する駆動力の追従性を向上できることに気付いた。リーン車両において、動力伝達方向の電動モータ式の自動制御変速装置の上流に、機関出力または機関損失を発生させる上流回転電機を設けることで、アクセル操作に対する駆動力の追従性を向上できることにも気付いた。上流回転電機が発生させる機関出力または機関損失が駆動輪に伝達される際、上流回転電機のトルクが変速比を乗じたトルクとして駆動輪に伝達される。従って、電動モータ式の自動制御変速装置よりも動力伝達方向の上流に設けられた上流回転電機が発生させる小さな機関出力または機関損失の変化によって、駆動力を大きく変化させることができる。これにより、電動モータ式の自動制御変速装置により、変速比を切り替える回数が必要なくなる、または、変速比を変化させる量が少なくなる。そのため、電動モータ式の自動制御変速装置が変速比を変更するまでのタイムラグを取り除く、もしくは短縮することが可能になる。つまり、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。言い換えると、電動モータ式の自動制御変速装置よりも高い応答性で制御可能な上流回転電機を、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けることで、アクセル操作に対する駆動力の追従性を向上できることがわかった。
 また、リーン車両は、自動車等の四輪車両と比較して、左右方向の長さが前後方向の長さよりもより小さく構成されている。リーン車両のアクセル操作に対する駆動力の追従性の観点から、リーン車両の左右方向の操縦性を向上させることが好ましい。そのため、リーン車両では、重量物をリーン車両の中心付近に配置することが好ましい。動力伝達経路では、クランク軸から駆動輪に至るまで動力が伝達される。つまり、動力伝達方向の上流には、クランク軸を有するエンジン本体部が配置される。動力伝達方向の下流には、駆動輪が配置される。エンジン本体部は、重量物であり、リーン車両の中心付近に配置される。一方、駆動輪は、リーン車両の端部に配置される。ここで、回転電機も重量物である。回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けるよりも上流に設けた方が、リーン車両のより中心付近に配置される。従って、動力伝達方向の電動モータ式の自動制御変速装置の上流に上流回転電機を設けることで、リーン車両の左右方向の操縦性を向上させることができる。
 また、リーン車両は、自動車等の四輪車両と比較して、車両がコンパクトに構成されている。リーン車両のアクセル操作に対する駆動力の追従性の観点から、車両が大型化することは好ましくない。そのため、回転電機のサイズは小さいことが望ましい。また、リーン車両において、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けられた上流回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けられた下流回転電機よりも、高い回転速度で回転する場合がある。モータの効率は回転速度に依存する。つまり、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けられた上流回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けられた下流回転電機よりも、モータの効率が良い場合がある。回転電機は、一般的に、サイズが大きいほど、出力が大きい。そのため、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けられた上流回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けられた下流回転電機よりもモータの効率が良い場合、小さいサイズでも同じ出力を得ることができる。従って、動力伝達方向の電動モータ式の自動制御変速装置の上流に上流回転電機を設けることで、車両の大型化を抑制することができる場合がある。
 更に、上流回転電機はバッテリを有する。リーン車両の加速時に、上流回転電機が動力伝達方向の電動モータ式の自動制御変速装置の上流にクランク軸の正回転方向のトルクを付与している最中に、バッテリの容量がなくなると、上流回転電機がトルクを付与できなくなる。そのため、上流回転電機がトルクを付与できなくなった際に、ライダーのアクセル操作に対する駆動力の追従性が遅れる。また、リーン車両の減速時に、上流回転電機が動力伝達方向の電動モータ式の自動制御変速装置の上流にクランク軸の逆回転方向のトルクを付与している最中に、バッテリの容量が満充電になると、上流回転電機がトルクを付与できなくなる。そのため、上流回転電機がトルクを付与できなくなった際に、ライダーのアクセル操作に対する追従性が遅れる。電動モータ式の自動制御変速装置は、アクセル操作に伴う変速比に基づいた変速指令が出されてから、駆動力が制御されるまでのタイムラグが大きい。そのため、電動モータ式の自動制御変速装置を備えたリーン車両に上流回転電機を設けると、上流回転電機がトルクを付与できなくなった場合に、ライダーのアクセル操作に対する駆動力の追従性がより遅れることが考えられる。そのため、電動モータ式の自動制御変速装置を備えたリーン車両に上流回転電機を設けることは考えにくい。しかしながら、本願発明者らは、電動モータ式の自動制御変速装置と、上流回転電機とは、応答性が異なることに着目した。そして、電動モータ式の自動制御変速装置および回転電機の応答性の違いを利用して、制御装置により、電動モータを制御して変速比を変更する変速比制御と、上流回転電機を制御して動力伝達経路における電動モータ式の自動制御変速装置の上流に付与するトルクを変更する回転電機制御の両方を実施可能にすればよいことに気付いた。これにより、上流回転電機がトルクを付与できなくなった場合であっても、ライダーのアクセル操作に対する駆動力の追従性の遅れを防止することができる場合があることを見出した。
 本発明のひとつの観点によると、リーン車両は、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有するリーン車両であって、クランク軸を有するエンジン本体部と、前記クランク軸に接続され、電動モータにより設定された変速比で、前記エンジン本体部の動力を伝達する電動モータ式の自動制御変速装置と、前記電動モータ式の自動制御変速装置に接続され、前記電動モータ式の自動制御変速装置から伝達された動力により、駆動力を発生させる少なくとも1つの駆動輪と、前記クランク軸から前記駆動輪に至るまで動力が伝達される動力伝達経路において、前記電動モータ式の自動制御変速装置の上流に配置された回転電機であって、前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に、前記クランク軸の逆回転方向にトルクを付与するとともに、前記クランク軸の正回転方向にトルクを付与する上流回転電機と、前記リーン車両の加速時または減速時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御して変速比を変更する変速装置制御と、前記上流回転電機を制御して前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に付与するトルクを変更する回転電機制御の両方を実施可能であり、(1)前記リーン車両の加速時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御して変速比を変更する加速時変速装置制御、または、前記上流回転電機を制御して前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に付与する前記クランク軸の正回転方向のトルクを変更する加速時回転電機制御を行い、または、(2)前記リーン車両の減速時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御して変速比を変更する減速時変速装置制御、または、前記上流回転電機を制御して前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に付与する前記クランク軸の逆回転方向のトルクを変更する減速時回転電機制御を行う制御装置と、を備える。
 この構成によると、リーン車両は、エンジン本体部と、電動モータ式の自動制御変速装置と、駆動輪と、上流回転電機と、制御装置とを備える。リーン車両は、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有する。エンジン本体部は、リーン車両の加速時に、機関出力を発生させる。また、エンジン本体部は、リーン車両の減速時に、機関損失を発生させる。エンジン本体部は、クランク軸を有する。電動モータ式の自動制御変速装置は、クランク軸に接続される。電動モータ式の自動制御変速装置は、電動モータにより設定された変速比で、エンジン本体部の動力を伝達する。つまり、電動モータ式の自動制御変速装置は、クランク軸から動力が伝達される。動力は、機関出力および機関損失である。変速比は、例えば、アクセル開度と車速で決定される。少なくとも1つの駆動輪は、電動モータ式の自動制御変速装置に接続される。少なくとも1つの駆動輪は、電動モータ式の自動制御変速装置から伝達された動力により、駆動力を発生させる。電動モータ式の自動制御変速装置は、電動モータを制御して変速比を変更することで、駆動輪の駆動力を制御する。上流回転電機は、クランク軸から駆動輪に至るまで動力が伝達される動力伝達経路において、電動モータ式の自動制御変速装置の上流に配置された回転電機である。上流回転電機は、リーン車両の減速時に、動力伝達経路における電動モータ式の自動制御変速装置の上流に、クランク軸の逆回転方向にトルクを付与する。また、上流回転電機は、リーン車両の加速時に、動力伝達経路における電動モータ式の自動制御変速装置の上流に、クランク軸の正回転方向にトルクを付与する。ここで、上流回転電機は、リーン車両の減速時に、動力伝達経路における電動モータ式の自動制御変速装置の上流に、クランク軸の逆回転方向にトルクを付与することにより、機関損失を発生させる。また、上流回転電機は、リーン車両の加速時に、動力伝達経路における電動モータ式の自動制御変速装置の上流に、クランク軸の正回転方向にトルクを付与することにより、機関出力を増加させる。クランク軸の正回転方向のトルクが増加すると、正の駆動力が増加する。また、クランク軸の逆回転方向のトルクが発生すると、負の駆動力が増加する。上流回転電機は、クランク軸の逆回転方向にトルクを付与するか、クランク軸の正回転方向にトルクを付与することにより、駆動力を制御する。ここで、電動モータ式の自動制御変速装置は、電動モータや、その他の機構を有する。つまり、電動モータ式の自動制御変速装置で変速比を変更する制御では、電動モータを含む電動モータ式の自動制御変速装置の機構による制約がある。そのため、電動モータ式の自動制御変速装置は、アクセル操作に伴って設定された変速比に基づいて、変速比を変更する制御が行われてから、駆動輪の駆動力が制御されるまでにタイムラグが生じる。一方、上流回転電機は、クランク軸との間に配置される機構が少ないまたはない。そのため、上流回転電機は、上流回転電機を制御して動力伝達経路における電動モータ式の自動制御変速装置の上流に付与するトルクを変更する制御が行われてから、駆動輪の駆動力が制御されるまでにタイムラグがほとんどない。従って、電動モータ式の自動制御変速装置および上流回転電機は、駆動力を制御する応答性が異なる。制御装置は、リーン車両の加速時または減速時に、変速装置制御と、回転電機制御の両方を実施可能である。変速装置制御は、電動モータ式の自動制御変速装置の電動モータを制御して変速比を変更する制御である。回転電機制御は、上流回転電機を制御して動力伝達経路における電動モータ式の自動制御変速装置の上流に付与するトルクを変更する制御である。制御装置は、リーン車両の加速時に、加速時変速装置制御、または、加速時回転電機制御を行う。加速時変速装置制御は、電動モータ式の自動制御変速装置の電動モータを制御して変速比を変更する制御である。加速時回転電機制御は、上流回転電機を制御して動力伝達経路における電動モータ式の自動制御変速装置の上流に付与するクランク軸の正回転方向のトルクを変更する制御である。制御装置は、リーン車両の減速時に、減速時変速装置制御、または、減速時回転電機制御を行う。減速時変速装置制御は、電動モータ式の自動制御変速装置の電動モータを制御して変速比を変更する制御である。減速時回転電機制御は、上流回転電機を制御して動力伝達経路における電動モータ式の自動制御変速装置の上流に付与するクランク軸の逆回転方向のトルクを変更する制御である。
 制御装置が加速時回転電機制御または減速時回転電機制御を行うことで、回転電機は、動力伝達経路における電動モータ式の自動制御変速装置の上流にトルクを付与する。そして、上流回転電機が付与したトルクに変速比を乗じた駆動力が駆動輪に伝達される。これにより、電動モータ式の自動制御変速装置で、変速比を切り替える回数が必要なくなる、または、変速比を変化させる量が少なくなる。そのため、電動モータ式の自動制御変速装置が変速比を変更するまでのタイムラグを取り除く、もしくは短縮することが可能になる。つまり、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。言い換えると、電動モータ式の自動制御変速装置よりも高い応答性で制御可能な上流回転電機を、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けることで、アクセル操作に対する駆動力の追従性を向上できる。更に、上流回転電機が発生させる小さな機関出力または機関損失の変化によっても、駆動力を変化させることができる。以上から、本発明のリーン車両は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 また、リーン車両は、自動車等の四輪車両と比較して、左右方向の長さが前後方向の長さよりもより小さく構成されている。リーン車両のアクセル操作に対する駆動力の追従性の観点から、リーン車両の左右方向の操縦性を向上させることが好ましい。そのため、リーン車両では、重量物をリーン車両の中心付近に配置することが好ましい。動力伝達経路では、クランク軸から駆動輪に至るまで動力が伝達される。つまり、動力伝達方向の上流には、クランク軸を有するエンジン本体部が配置される。動力伝達方向の下流には、駆動輪が配置される。エンジン本体部は、重量物であり、リーン車両の中心付近に配置される。一方、駆動輪は、リーン車両の端部に配置される。ここで、回転電機も重量物である。回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けるよりも上流に設けた方が、リーン車両のより中心付近に配置される。従って、動力伝達方向の電動モータ式の自動制御変速装置の上流に上流回転電機を設けることで、リーン車両の左右方向の操縦性をより向上することができる。
 また、リーン車両は、自動車等の四輪車両と比較して、車両がコンパクトに構成されている。リーン車両のアクセル操作に対する駆動力の追従性の観点から、車両が大型化することは好ましくない。そのため、回転電機のサイズは小さいことが望ましい。また、リーン車両において、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けられた上流回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けられた下流回転電機よりも、高い回転速度で回転する場合がある。モータの効率は回転速度に依存する。つまり、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けられた上流回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けられた下流回転電機よりも、モータの効率が良い場合がある。回転電機は、一般的に、サイズが大きいほど、出力が大きい。そのため、動力伝達方向の電動モータ式の自動制御変速装置の上流に設けられた上流回転電機は、動力伝達方向の電動モータ式の自動制御変速装置の下流に設けられた下流回転電機よりもモータの効率が良い場合、小さいサイズでも同じ出力を得ることができる。従って、動力伝達方向の電動モータ式の自動制御変速装置の上流に上流回転電機を設けることで、リーン車両の大型化を抑制することができる場合がある。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、(1)前記リーン車両の加速時に、前記加速時変速装置制御および前記加速時回転電機制御を切り替えて行うか、または、前記加速時変速装置制御および前記加速時回転電機制御を同時に行い、(2)前記リーン車両の減速時に、前記減速時変速装置制御および前記減速時回転電機制御を切り替えて行うか、または、前記減速時変速装置制御および前記減速時回転電機制御を同時に行う。
 この構成によると、制御装置は、リーン車両の加速時に、加速時変速装置制御または加速時回転電機制御を切り替えて行う。つまり、制御装置は、リーン車両の加速時に、加速時変速装置制御または加速時回転電機制御のいずれか一方のみを行うか、加速時変速装置制御の後に加速時回転電機制御を行うか、加速時回転電機制御の後に加速時変速装置制御を行う。また、制御装置は、リーン車両の加速時に、加速時変速装置制御および加速時回転電機制御を同時に行う。また、制御装置は、リーン車両の減速時に、減速時変速装置制御または減速時回転電機制御を切り替えて行う。つまり、制御装置は、リーン車両の減速時に、減速時変速装置制御または減速時回転電機制御のいずれか一方のみを行うか、減速時変速装置制御の後に減速時回転電機制御を行うか、減速時回転電機制御の後に減速時変速装置制御を行う。また、制御装置は、リーン車両の減速時に、減速時変速装置制御および減速時回転電機制御を同時に行う。制御装置は、電動モータ式の自動制御変速装置または上流回転電機の制御を切り替えて行うことで、駆動力の制御の応答性に応じた制御を行うことができる。そして、駆動力の制御の応答性を向上できる。また、制御装置は、電動モータ式の自動制御変速装置および上流回転電機の制御を同時に行うことで、駆動力の制御の応答性を高めることができる。そして、本発明のリーン車両は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 本発明のひとつの観点によると、前記リーン車両において、前記電動モータ式の自動制御変速装置は、2つのプライマリシーブを有し、前記電動モータにより前記2つのプライマリシーブの幅が変化されるように構成されたプライマリプーリと、セカンダリプーリと、前記プライマリプーリおよび前記セカンダリプーリに巻回され、前記プライマリプーリおよび前記セカンダリプーリとの摺動部が潤滑剤で潤滑されない乾式ベルトと、を有する無段変速機であり、前記制御装置は、前記電動モータを制御して前記2つのプライマリシーブの幅を変化させ、変速比を変更する。
 この構成によると、電動モータ式の自動制御変速装置は、乾式ベルトを使用した無段変速機である。無段変速機は、プライマリプーリと、セカンダリプーリと、乾式ベルトと、乾式ベルトケース部と、を有する。プライマリプーリは、2つのプライマリシーブを有する。プライマリプーリは、電動モータにより2つのプライマリシーブの幅が変化されるように構成される。乾式ベルトは、プライマリプーリおよびセカンダリプーリに巻回される。乾式ベルトは、プライマリプーリおよびセカンダリプーリとの摺動部が潤滑剤で潤滑されない。制御装置は、電動モータを制御して2つのプライマリシーブの幅を変化させ、変速比を変更する。摺動部が潤滑剤で潤滑されない乾式ベルトを使用した無段変速機は、摺動部で摩擦が生じる。一方、摺動部が潤滑剤で潤滑される湿式ベルトを使用した変速機は、摺動部で摩擦が生じにくい。そのため、乾式ベルトを使用した無段変速機は、湿式ベルトを使用した変速機と比べて、駆動力の制御の応答性が低下する。従って、乾式ベルトを使用した無段変速機は、アクセル操作に伴って設定された変速比に基づいて、変速比を変更する制御が行われてから、駆動力が制御されるまでに、より大きいタイムラグが生じる。そこで、制御装置は、変速装置制御と、回転電機制御の両方を実施可能とすることで、駆動力の制御の応答性を高めることができる。そして、本発明のリーン車両は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 本発明のひとつの観点によると、前記リーン車両において、前記電動モータ式の自動制御変速装置は、前記電動モータにより駆動されるアクチュエータと、前記アクチュエータにより選択可能に構成される複数の変速ギアと、を有する有段変速機であり、前記制御装置は、前記電動モータにより前記アクチュエータを制御して前記複数の変速ギアから1つの変速ギアを選択し、変速比を変更する。
 この構成によると、電動モータ式の自動制御変速装置は、アクチュエータと、複数の変速ギアと、を有する有段変速機である。また、アクチュエータは、電動モータにより駆動される。複数の変速ギアは、アクチュエータにより選択可能に構成される。制御装置は、電動モータによりアクチュエータを制御して、複数の変速ギアから1つの変速ギアを選択し、変速比を変更する。電動モータにより駆動されるアクチュエータを含む電動モータ式の自動制御変速装置の機構による制約がある。更に、電動モータ式の自動制御変速装置により、変速比を変更する制御が行われる際にはアクチュエータにより、クラッチの切断と接続が行われる。従って、有段変速機は、アクセル操作に伴って設定された変速比に基づいて、変速比を変更する制御が行われてから、駆動力が制御されるまでにタイムラグが生じる。そこで、制御装置は、変速装置制御と、回転電機制御の両方を実施可能とすることで、駆動力の制御の応答性を高めることができる。そして、本発明のリーン車両は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 本発明のひとつの観点によると、前記リーン車両において、前記上流回転電機の回転軸線である回転電機回転軸線は、前記クランク軸の回転軸線であるクランク回転軸線と同一直線上に配置され、前記上流回転電機は、前記クランク軸に連結されている。
 この構成によると、上流回転電機の回転軸線である回転電機回転軸線は、クランク軸の回転軸線であるクランク回転軸線と同一直線上に配置される。そして、上流回転電機は、動力伝達経路における電動モータ式の自動制御変速装置の上流のクランク軸に直接トルクを付与することができる。つまり、上流回転電機は、駆動力の制御の応答性を高めることができる。そして、本発明のリーン車両は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 本発明のひとつの観点によると、前記リーン車両において、前記上流回転電機の回転軸線である回転電機回転軸線は、前記クランク軸の回転軸線であるクランク回転軸線と平行に配置され、前記上流回転電機は、動力を伝達する動力伝達機構を介して前記クランク軸と連結されている。
 この構成によると、上流回転電機の回転軸線である回転電機回転軸線は、クランク軸の回転軸線であるクランク回転軸線と平行に配置される。そして、上流回転電機は、動力伝達機構を介して、クランク軸と連結されている。上流回転電機は、動力伝達機構を介して、動力伝達経路における電動モータ式の自動制御変速装置の上流のクランク軸にトルクを付与することができる。つまり、上流回転電機は、駆動力の制御の応答性を高めることができる。そして、本発明のリーン車両は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。尚、動力伝達機構は、ギアまたはチェーン等である。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、前記リーン車両の加速時または減速時に、前記クランク軸の回転速度であるエンジン回転速度と、前記上流回転電機の回転速度である上流回転電機回転速度と、前記電動モータ式の自動制御変速装置の変速比の少なくともいずれか1つに基づいて、前記上流回転電機が付与する前記トルクを算出する。
 この構成によると、制御装置は、リーン車両の加速時または減速時に、エンジン回転速度、上流回転電機回転速度および変速比の少なくともいずれか1つに基づいて、上流回転電機が付与するトルクを算出する。エンジン回転速度は、クランク軸の回転速度である。上流回転電機回転速度は、上流回転電機の回転速度である。変速比は、電動モータ式の自動制御変速装置で設定される変速比である。これにより、本発明のリーン車両は、リーン車両の状態から、上流回転電機が付与するトルクを算出することができる。そして、リーン車両の状態が同じ条件の場合に、同じような走行を実現することができる。つまり、リーン車両は、リーン車両の減速時または加速時に、再現性を向上させて、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、前記リーン車両の加速時または減速時に、アクセルグリップの操作量と、前記リーン車両の速度の少なくともいずれか1つに基づいて、前記電動モータ式の自動制御変速装置で変更される前記変速比を算出する。
 この構成によると、制御装置は、アクセルグリップの操作量と、車両の速度の少なくともいずれか1つに基づいて、電動モータ式の自動制御変速装置が変更される変速比を算出する。これにより、本発明のリーン車両は、リーン車両の状態から、電動モータ式の自動制御変速装置で変更される変速比を算出することができる。そして、リーン車両の状態が同じ条件の場合に、同じような走行を実現することができる。つまり、リーン車両は、リーン車両の減速時または加速時に、再現性を向上させて、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、前記変速装置制御を実施する変速装置制御部と、前記回転電機制御を実施する回転電機制御部とを有し、前記変速装置制御部と前記回転電機制御部は、1つの同じ装置に構成される。
 この構成によると、制御装置は、変速装置制御を実施する変速装置制御部と、回転電機制御を実施する回転電機制御部とを有する。変速装置制御部と回転電機制御部は、1つの同じ装置に構成される。尚、1つの同じ装置とは、物理的に1つに構成された装置をいう。これにより、制御装置をコンパクトに形成することができる。そして、リーン車両の大型化を抑制することができる。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、前記変速装置制御を実施する変速装置制御部と、前記回転電機制御を実施する回転電機制御部とを有し、前記変速装置制御部と前記回転電機制御部は、2つの異なる装置にそれぞれ構成される。
 この構成によると、制御装置は、変速装置制御を実施する変速装置制御部と、回転電機制御を実施する回転電機制御部とを有する。変速装置制御部と回転電機制御部は、電気的に接続された2つの異なる装置にそれぞれ構成される。尚、2つの異なる装置とは、物理的に2つに構成された装置であって、相互に電気的に接続された装置をいう。これにより、制御装置の配置のレイアウトの自由度が向上する。そして、リーン車両の大型化を抑制することができる。
 本発明のひとつの観点によると、前記リーン車両において、前記上流回転電機は、バッテリを有し、前記上流回転電機と前記バッテリは電気的に接続される。
 この構成によると、リーン車両において、上流回転電機は、バッテリを有する。上流回転電機は、バッテリと電気的に接続される。これにより、バッテリは、上流回転電機に電力を供給して、クランク軸の正回転方向にトルクを付与することができる。また、バッテリは、上流回転電機にクランク軸の逆回転方向にトルクを付与して、上流回転電機が発電した電力を蓄電することができる。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、前記バッテリの残容量に基づいて、前記変速装置制御、または、前記回転電機制御の少なくともいずれか一方の制御を行う。
 この構成によると、制御装置は、バッテリの残容量に基づいて、上流回転電機を制御する。または、制御装置は、バッテリの残容量に基づいて、電動モータ式の自動制御変速装置の電動モータを制御する。ここで、例えば、リーン車両の加速時に、バッテリの容量がなくなると、上流回転電機がトルクを付与できなくなる。そして、上流回転電機がトルクを付与できなくなった際に、ライダーのアクセル操作に対する駆動力の追従性が遅れる。従って、バッテリの容量がなくなる前に、制御装置で、電動モータを制御して電動モータ式の自動制御変速装置の変速比を変更することにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。また、例えば、リーン車両の減速時に、バッテリの容量が満充電になると、上流回転電機がトルクを付与できなくなる。そのため、上流回転電機がトルクを付与できなくなった際に、ライダーのアクセル操作に対する追従性が遅れる。従って、バッテリの容量が満充電になる前に、制御装置で、電動モータを制御して電動モータ式の自動制御変速装置の変速比を変更することにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。つまり、電動モータ式の自動制御変速装置および上流回転電機の応答性の違いを利用して、制御装置が、バッテリの残容量に基づいて、変速装置制御または回転電機制御の少なくともいずれか一方の制御を行うことにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。
 本発明のひとつの観点によると、前記リーン車両において、前記制御装置は、前記リーン車両の加速時において、(a)前記バッテリの残容量が予め定めた加速下限値より大きい場合は、前記上流回転電機を制御すると同時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御し、(b)前記バッテリの残容量が予め定めた加速下限値以下の場合は、前記電動モータ式の自動制御変速装置の前記電動モータを制御し、前記リーン車両の減速時において、(c)前記バッテリの残容量が予め定めた減速上限値より小さい場合は、前記上流回転電機を制御すると同時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御し、(d)前記バッテリの残容量が予め定めた減速上限値以上の場合は、前記電動モータ式の自動制御変速装置の前記電動モータを制御する。
 この構成によると、制御装置は、リーン車両の加速時において、(a)バッテリの残容量が予め定めた加速下限値より大きい場合は、上流回転電機を制御すると同時に、電動モータ式の自動制御変速装置の電動モータを制御する。また、制御装置は、リーン車両の加速時において、(b)バッテリの残容量が予め定めた加速下限値以下の場合は、電動モータ式の自動制御変速装置の電動モータを制御する。また、制御装置は、リーン車両の減速時において、(c)バッテリの残容量が予め定めた減速上限値より小さい場合は、上流回転電機を制御すると同時に、電動モータ式の自動制御変速装置の電動モータを制御する。また、制御装置は、リーン車両の減速時において、(d)バッテリの残容量が予め定めた減速上限値以上の場合は、電動モータ式の自動制御変速装置の電動モータを制御する。これにより、リーン車両の加速時に、バッテリの残容量が少ない場合に、制御装置が上流回転電機を制御すると、上流回転電機の制御中にバッテリの容量がなくなる可能性が高い。そこで、制御装置は、上流回転電機を制御せず、電動モータを制御して電動モータ式の自動制御変速装置の変速比を変更することにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。また、リーン車両の減速時に、バッテリの残容量が多い場合に、制御装置が上流回転電機を制御すると、上流回転電機の制御中にバッテリの容量が満充電になる可能性が高い。そこで、制御装置が、上流回転電機を制御せず、電動モータ式の自動制御変速装置の電動モータを制御して変速比を変更することにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。したがって、バッテリの満充電や過充電を防ぐことができる。また、バッテリの充電状態にかかわらず、リーン車両の加速時または減速時の急激な駆動力の変化を抑えることができる。
 本明細書において、動力伝達経路は、クランク軸から駆動輪に至るまで動力が伝達される経路である。クランク軸が、動力伝達経路における上流である。駆動輪が、動力伝達経路における下流である。
 本明細書において、クランク軸の正回転方向とは、リーン車両が前進する際にクランク軸が回転する方向と同じ方向である。クランク軸の逆回転方向とは、リーン車両が前進する際にクランク軸が回転する方向と逆の方向である。
 本明細書において、アクセルグリップの操作量は、ライダーが操作するアクセルグリップの操作量である。アクセルグリップの操作量は、アクセルグリップの回転角度であってもよいし、エンジン本体部が有するスロットルバルブの開度であってもよい。
 本明細書において、潤滑空間とは、潤滑剤が存在する空間であり、内部に配置された部品が潤滑剤で潤滑される空間をいう。潤滑剤は、オイルやグリス等である。
 本明細書において、ある部品が、クランクケース部により形成される潤滑空間にさらされるとは、潤滑空間内において、ある部品が配置される空間が隔離されていないことをいう。
 本明細書において、乾式ベルトの摺動部は、乾式ベルトのプライマリプーリおよびセカンダリプーリと接触して摺動する部分をいう。
 本明細書において、2つのプライマリプーリの幅とは、2つのプライマリプーリで形成される溝の幅をいう。
 本明細書において、プライマリプーリの幅とは、プライマリ可動シーブおよびプライマリ固定シーブで形成される溝の幅をいう。
 本明細書において、ある部品の端部とは、部品の端とその近傍部とを合わせた部分を意味する。
 本明細書において、X方向に並ぶAとBとは、以下の状態を示す。X方向に垂直な方向からAとBを見たときに、AとBの両方がX方向を示す任意の直線上に配置されている状態である。本発明において、Y方向から見てX方向に並ぶAとBとは、以下の状態を示す。Y方向からAとBを見たときに、AとBの両方がX方向を示す任意の直線上に配置されている状態である。この場合、Y方向とは異なるW方向からAとBを見ると、AとBのいずれか一方がX方向を示す任意の直線上に配置されていない状態であってもよい。尚、AとBが接触していてもよい。AとBが離れていてもよい。AとBの間にCが存在していてもよい。
 本明細書において、AがBの前方に配置されるとは、以下の状態を指す。AとBが前後方向に並んでおり、且つ、AのBと対向する部分が、Bの前方に配置される。この定義において、Bの前面のうちAと対向する部分が、Bの最前端の場合には、AはBよりも前方に配置される。この定義において、Bの前面のうちAと対向する部分が、Bの最前端ではない場合には、AはBよりも前方に配置されてもよく、されなくてもよい。この定義は、前後方向以外の方向も適用される。尚、Bの前面とは、Bを前方から見た時に見える面のことである。Bの形状によっては、Bの前面とは、連続した1つの面ではなく、複数の面で構成される場合がある。
 本明細書において、左右方向に見て、AがBの前方に配置されるとは、以下の状態を指す。左右方向に見て、AとBが前後方向に並んでおり、且つ、左右方向に見て、AのBと対向する部分が、Bの前方に配置される。この定義において、AとBは、3次元では、前後方向に並んでいなくてもよい。この定義は、前後方向以外の方向も適用される。
 本明細書にて使用される専門用語は特定の実施例のみを定義する目的であって発明を制限する意図を有しない。本明細書にて使用される用語「および/または」はひとつの、または複数の関連した列挙された構成物のあらゆるまたはすべての組み合わせを含む。
 本明細書中で使用される場合、用語「含む、備える(including)」「含む、備える(comprising)」または「有する(having)」およびその変形の使用は、記載された特徴、工程、操作、要素、成分および/またはそれらの等価物の存在を特定するが、 ステップ、動作、要素、コンポーネント、および/またはそれらのグループのうちの1つまたは複数を含むことができる。本明細書中で使用される場合、用語「取り付けられた」、「接続された」、「結合された」および/またはそれらの等価物は広く使用され、直接的および間接的な取り付け、接続および結合の両方を包含する。 さらに、「接続された」および「結合された」は、物理的または機械的な接続または結合に限定されず、直接的または間接的な電気的接続または結合を含むことができる。
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、本明細書で明示的に定義されていない限り、理想的または過度に形式的な意味で解釈されることはない。本発明の説明においては、技術および工程の数が開示されていると理解される。これらの各々は個別の利益を有し、それぞれは、他の開示された技術の1つ以上、または、場合によっては全てと共に使用することもできる。したがって、明確にするために、この説明は、不要に個々のステップの可能な組み合わせをすべて繰り返すことを控える。それにもかかわらず、明細書および特許請求の範囲は、そのような組み合わせがすべて本発明および請求項の範囲内にあることを理解して読まれるべきである。
 以下の説明では、説明の目的で、本発明の完全な理解を提供するために多数の具体的な詳細を述べる。しかしながら、当業者には、これらの特定の詳細なしに本発明を実施できることが明らかである。本開示は、本発明の例示として考慮されるべきであり、本発明を以下の図面または説明によって示される特定の実施形態に限定することを意図するものではない。
 本発明によれば、リーン車両の減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる電動モータ式の自動制御変速装置を備えたリーン車両を提供することができる。
第1実施形態の自動二輪車の左側面図である。 図1の自動二輪車が旋回している状態の正面図である。 図1の自動二輪車の概略構成を説明するブロック図である。 図1の自動二輪車のエンジンユニットを示す断面図である。 図1の自動二輪車の電動モータ式の自動制御変速装置を示す断面図である。 図1の自動二輪車の上流回転電機を示す概略構成図である。 自動二輪車の減速時における制御装置による制御の一例を示すフローチャートである。 自動二輪車の減速時におけるアクセル開度と、後輪駆動力の経時変化の一例を示すグラフである。 自動二輪車の加速時における制御装置による制御の一例を示すフローチャートである。 自動二輪車の加速時におけるアクセル開度と、後輪駆動力の経時変化の一例を示すグラフである。 第2実施形態の自動二輪車の左側面図である。 図11の自動二輪車を示す概略構成図である。 自動二輪車の加速時におけるアクセル開度と、後輪駆動力と、エンジン回転速度の経時変化の一例を示すグラフである。 本実施形態のリーン車両の概略構成を説明するブロック図である。
 まず、本発明の実施形態について、図14に基づいて説明する。
 図14に示すように、リーン車両1は、エンジン本体部20と、電動モータ式の自動制御変速装置50と、駆動輪3と、上流回転電機90と、制御装置105とを備える。リーン車両1は、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレーム7を有する。エンジン本体部20は、リーン車両1の加速時に、機関出力を発生させる。また、エンジン本体部20は、リーン車両1の減速時に、機関損失を発生させる。エンジン本体部20は、クランク軸21を有する。
 電動モータ式の自動制御変速装置50は、クランク軸21に接続される。電動モータ式の自動制御変速装置50は、電動モータ71により設定された変速比で、エンジン本体部20の動力を伝達する。つまり、電動モータ式の自動制御変速装置50は、クランク軸21から動力が伝達される。動力は、機関出力および機関損失である。変速比は、例えば、アクセル開度と車速で決定される。少なくとも1つの駆動輪3は、電動モータ式の自動制御変速装置50に接続される。少なくとも1つの駆動輪3は、電動モータ式の自動制御変速装置50から伝達された動力により、駆動力を発生させる。電動モータ式の自動制御変速装置50は、電動モータ71を制御して変速比を変更することで、駆動輪3の駆動力を制御する。
 上流回転電機90は、クランク軸21から駆動輪3に至るまで動力が伝達される動力伝達経路において、電動モータ式の自動制御変速装置50の上流に配置された回転電機である。上流回転電機90は、リーン車両1の減速時に、動力伝達経路における電動モータ式の自動制御変速装置50の上流に、クランク軸21の逆回転方向にトルクを付与する。また、上流回転電機90は、リーン車両1の加速時に、動力伝達経路における電動モータ式の自動制御変速装置50の上流に、クランク軸21の正回転方向にトルクを付与する。ここで、上流回転電機90は、リーン車両1の減速時に、動力伝達経路における電動モータ式の自動制御変速装置50の上流に、クランク軸21の逆回転方向にトルクを付与することにより、機関損失を発生させる。また、上流回転電機90は、リーン車両1の加速時に、動力伝達経路における電動モータ式の自動制御変速装置50の上流に、クランク軸21の正回転方向にトルクを付与することにより、機関出力を増加させる。クランク軸21の正回転方向のトルクが増加すると、正の駆動力が増加する。また、クランク軸21の逆回転方向のトルクが発生すると、負の駆動力が増加する。上流回転電機90は、クランク軸21の逆回転方向にトルクを付与するか、クランク軸21の正回転方向にトルクを付与することにより、駆動力を制御する。
 制御装置105は、リーン車両1の加速時または減速時に、変速装置制御と、回転電機制御の両方を実施可能である。変速装置制御は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する制御である。回転電機制御は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するトルクを変更する制御である。制御装置105は、リーン車両1の加速時に、加速時変速装置制御、または、加速時回転電機制御を行う。加速時変速装置制御は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する制御である。具体的には、加速時変速装置制御は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比をより低速の変速比に変更する。加速時回転電機制御は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するクランク軸21の正回転方向のトルクを変更する制御である。制御装置105は、リーン車両1の減速時に、減速時変速装置制御、または、減速時回転電機制御を行う。減速時変速装置制御は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する制御である。具体的には、減速時変速装置制御は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比をより低速の変速比に変更する。減速時回転電機制御は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するクランク軸21の逆回転方向のトルクを変更する制御である。
 本実施形態のリーン車両1は、次の特徴を有する。電動モータ式の自動制御変速装置50は、電動モータ71や、その他の機構を有する。つまり、電動モータ式の自動制御変速装置50で変速比を変更する制御では、電動モータ71を含む電動モータ式の自動制御変速装置50の機構による制約がある。そのため、電動モータ式の自動制御変速装置50は、アクセル操作に伴って設定された変速比に基づいて、変速比を変更する制御が行われてから、駆動輪3の駆動力が制御されるまでにタイムラグが生じる。一方、上流回転電機90は、クランク軸21との間に配置される機構が少ないまたはない。そのため、上流回転電機90は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するトルクを変更する制御が行われてから、駆動輪3の駆動力が制御されるまでにタイムラグがほとんどない。従って、電動モータ式の自動制御変速装置50および上流回転電機90は、駆動力を制御する応答性が異なる。
 制御装置105が加速時回転電機制御または減速時回転電機制御を行うことで、上流回転電機90は、動力伝達経路における電動モータ式の自動制御変速装置50の上流にトルクを付与する。そして、上流回転電機90が付与したトルクに変速比を乗じた駆動力が駆動輪3に伝達される。これにより、電動モータ式の自動制御変速装置50で、変速比を切り替える回数が必要なくなる、または、変速比を変化させる量が少なくなる。そのため、電動モータ式の自動制御変速装置50が変速比を変更するまでのタイムラグを取り除く、もしくは短縮することが可能になる。つまり、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。言い換えると、電動モータ式の自動制御変速装置50よりも高い応答性で制御可能な上流回転電機90を、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けることで、アクセル操作に対する駆動力の追従性を向上できる。更に、上流回転電機90が発生させる小さな機関出力または機関損失の変化によっても、駆動力を変化させることができる。以上から、本発明のリーン車両1は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 また、リーン車両1は、自動車等の四輪車両と比較して、左右方向の長さが前後方向の長さよりもより小さく構成されている。リーン車両1のアクセル操作に対する駆動力の追従性の観点から、リーン車両1の左右方向の操縦性を向上させることが好ましい。そのため、リーン車両1では、重量物をリーン車両1の中心付近に配置することが好ましい。動力伝達経路では、クランク軸21から駆動輪3に至るまで動力が伝達される。つまり、動力伝達方向の上流には、クランク軸21を有するエンジン本体部20が配置される。動力伝達方向の下流には、駆動輪3が配置される。エンジン本体部20は、重量物であり、リーン車両1の中心付近に配置される。一方、駆動輪3は、リーン車両1の端部に配置される。ここで、回転電機も重量物である。回転電機は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けるよりも上流に設けた方が、リーン車両1のより中心付近に配置される。従って、動力伝達方向の電動モータ式の自動制御変速装置50の上流に上流回転電機90を設けることで、リーン車両1の左右方向の操縦性をより向上することができる。
 また、リーン車両1は、自動車等の四輪車両と比較して、車両がコンパクトに構成されている。リーン車両1のアクセル操作に対する駆動力の追従性の観点から、車両が大型化することは好ましくない。そのため、回転電機のサイズは小さいことが望ましい。また、リーン車両1において、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けられた上流回転電機90は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けられた下流回転電機よりも、高い回転速度で回転する場合がある。モータの効率は回転速度に依存する。つまり、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けられた上流回転電機90は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けられた下流回転電機よりも、モータの効率が良い場合がある。回転電機は、一般的に、サイズが大きいほど、出力が大きい。そのため、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けられた上流回転電機90は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けられた下流回転電機よりもモータの効率が良い場合、小さいサイズでも同じ出力を得ることができる。従って、動力伝達方向の電動モータ式の自動制御変速装置50の上流に上流回転電機90を設けることで、リーン車両1の大型化を抑制することができる場合がある。
 以下、本発明の具体的な実施形態について説明する。第1および第2実施形態の自動二輪車1、201は、本発明のエンジンユニットが搭載されたリーン車両(Lean Vehicle)の一例である。尚、以下の説明において、車両の前後方向、左右方向、上下方向とは、それぞれ自動二輪車1、201の後述するシート8、208に着座したライダーから見た前後方向、左右方向、上下方向を意味するものとする。但し、自動二輪車は、水平な地面に配置されたものとする。各図面に付した矢印F、B、L、R、U、Dは、それぞれ前方向、後方向、左方向、右方向、上方向、下方向を表す。また、以下で説明する具体的な実施形態においては、図14の実施形態の構成を全て有する。そして、図14の実施形態と同じ部材については、同じ符号を付している。
(第1実施形態)
 [自動二輪車の全体構成]
 第1実施形態に係る自動二輪車1の全体構成について、図1および図2に基づいて説明する。尚、図1は、水平な路面に直立した状態で配置された自動二輪車1を示している。自動二輪車1は、車輪である前輪2および後輪3と、車体フレーム7とを備えている。後輪3が駆動輪である。
 車体フレーム7は、アンダーボーン型の車体フレームである。車体フレーム7は、右旋回時に車両1の右方に傾斜し、左旋回時に車両1の左方に傾斜する。図1では、車体フレーム7の一部のみを破線で表示している。
 車体フレーム7は、その前部にヘッドパイプ7aを有する。ヘッドパイプ7aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット4に連結されている。ハンドルユニット4には、一対のフロントフォーク5の上端部が固定されている。フロントフォーク5の下端部は、前輪2を支持している。
 車体フレーム7には、エンジンユニット6が揺動可能に支持されている。エンジンユニット6は、後述するシート8の上端の下方に配置されている。エンジンユニット6の後端部は、後輪3を支持している。エンジンユニット6は、ボス部6bにおいて、リヤサスペンション7bの一端部と連結されている。リヤサスペンション7bの他端部は、車体フレーム7に連結されている。
 車体フレーム7の上部には、シート8が支持されている。フロントフォーク5の上部はフロントカバー9で覆われている。シート8の下方にはサイドカバー10が配置されている。フロントカバー9とサイドカバー10との間には、ステップボード11が配置されている。ステップボード11は、自動二輪車1の下部の左右両側に配置されている。
 シート8の下方には、燃料タンク(図示せず)が配置されている。また、車体フレーム7は、後述する各種センサやECU((Electronic Control Unit)100などの電子機器に電力を供給するバッテリ94(図3参照)が支持されている。ECU100は、自動二輪車1の各部の動作を制御する。ECU100は、後述する本発明の制御装置を含む。
 ハンドルユニット4と、ステアリングシャフトと、フロントフォーク5と、前輪2は、一体的に左右に回転するように設けられている。前輪2は、ハンドルユニット4の操作によって操舵される。ハンドルユニット4が左右方向に回されると、前輪2の幅方向中央を通る平面は、車両1の前後方向(FB方向)に対して傾斜する。
 図1~図2に示す矢印UF、DF、FF、BF、LF、RFは、車体フレーム7の上方向、下方向、前方向、後方向、左方向、右方向をそれぞれ表している。図1~図2において、車体フレーム7の上下方向(UFDF方向)とは、車体フレーム7のヘッドパイプ7aの軸方向に平行な方向である。車体フレーム7の左右方向(LFRF方向)とは、車体フレーム7の幅方向中央を通る平面に直交する方向である。車体フレーム7の前後方向(FFBF方向)とは、車体フレーム7の上下方向(UFDF方向)と車体フレーム7の左右方向(LFRF方向)の両方に直交する方向である。尚、図1において、車両1は、水平な路面に直立した状態で配置されている。そのため、車両1の左右方向と車体フレーム7の左右方向とは一致する。
 ここで、自動二輪車1が旋回している状態における車体フレーム7の傾斜方向について、図2に基づいて説明する。図2は、図1の自動二輪車が旋回している状態の正面図である。即ち、図2は、水平な路面に自動二輪車1の車体フレーム7が傾斜した状態で配置された自動二輪車1を示している。
 自動二輪車1は、リーン車両である。図2に示すように、車体フレーム7は、右旋回時は車両1の右方に傾斜し、左旋回時は車両1の左方に傾斜する。車体フレーム7が傾斜した状態では、正面視で、車両1の左右方向(LR方向)と、車体フレーム7の左右方向(LFRF方向)は一致しない。また、車体フレーム7が左右に傾斜した状態では、正面視で、車両1の上下方向(UD方向)と、車体フレーム7の上下方向(UFDF方向)は一致しない。上下方向から見て、車両1の前後方向(FB方向)と、車体フレーム7の前後方向(FFBF方向)は一致する。ハンドルユニット4が回転された状態では、上下方向から見て、前輪2の幅方向中央を通る平面は、車両1の前後方向(FB方向)および車体フレーム7の前後方向(FFBF方向)に対して傾斜する。車両1の進行方向は、車両1の前後方向と必ずしも一致しない。
 図3に示すように、ハンドルユニット4には、アクセルグリップ4aおよびブレーキレバー4cが設けられている。ハンドルユニット4の右グリップは、アクセルグリップ4aを構成する。アクセルグリップ4aは、ライダーによって操作されて回転する。アクセルグリップ4aは、エンジンの出力を調整するために操作される。ハンドルユニット4の右グリップには、ブレーキレバー4cが設けられる。ブレーキレバー4cは、ライダーによって操作される。ブレーキレバー4cは、前輪2の回転を抑制するために操作される。また、ハンドルユニット4には、メインスイッチ等の各種スイッチが設けられている。また、ハンドルユニット4には、表示装置110が設けられている。表示装置110には、車速や、エンジン回転速度などが表示される。また、表示装置110には、インジケータ(表示灯)が設けられている。
 [エンジンユニットの構成]
 次に、エンジンユニット6の構成について、図3および図4に基づいて説明する。図3は、第1実施形態に係る自動二輪車1を示す概略構成図である。尚、図3において、後述するクランク軸21、上流回転電機90、電動モータ式の自動制御変速装置50、クラッチ56および後輪3のそれぞれを結ぶ軸は、模式的に直線で示している。また、これらの軸は、機械的に伝達される動力の経路を示す動力伝達経路である。
 図3に示すように、エンジンユニット6は、エンジン本体部20、電動モータ式の自動制御変速装置50を備える。電動モータ式の自動制御変速装置50は、変速機40および変速機制御装置70を含む。電動モータ式の自動制御変速装置50は、エンジン本体部20の動力を後輪3に伝達する。本実施形態では、電動モータ式の自動制御変速装置50は、乾式ベルト32を使用した無段変速機である。変速機40は、プライマリプーリ42、セカンダリプーリ52、および、乾式ベルト32を有する。図1に示すように、プライマリプーリ42は、セカンダリプーリ52の前方に配置される。また、図1および図3に示すように、乾式ベルト32は、プライマリプーリ42およびセカンダリプーリ52に巻き掛けられる。
 まず、エンジン本体部20について、説明する。エンジン本体部20は、1つの気筒を有する単気筒エンジンである。エンジン本体部20は、吸気行程、圧縮行程、燃焼行程(膨張行程)、および排気行程を繰り返す4ストローク1サイクルエンジンである。
 図4に示すように、エンジン本体部20は、クランク軸21が収容されたクランクケース部22、シリンダボディ23、シリンダヘッド24、および、ヘッドカバー25を有する。ヘッドカバー25は、エンジンユニット6の前部を形成する。シリンダヘッド24は、ヘッドカバー25の後端部に接続されている。シリンダボディ23は、シリンダヘッド24の後端部に接続されている。
 エンジン本体部20は、強制空冷式のエンジンである。エンジン本体部20は、シュラウド20aを有する。シュラウド20aは、シリンダボディ23とシリンダヘッド24を全周にわたって覆っている。さらに、シュラウド20aは、クランクケース部22の右部を覆っている。シュラウド20aの右部には、空気流入口20bが形成されている。また、シュラウド20aの前部には、空気排出口(図示せず)が形成されている。後述するクランク軸21の右端部は、クランクケース部22から突出して、冷却ファン20cに連結されている。冷却ファン20cは、クランク軸21の回転に伴って回転駆動される。冷却ファン20cの駆動により、空気流入口20bからシュラウド20a内に空気が導入される。シュラウド20a内に導入された空気が、後述するシリンダボディ23の冷却フィン23bと接触することにより、シリンダボディ23は放熱する。シュラウド20a内に導入された空気は、空気排出口から排出される。
 シリンダボディ23には、シリンダ孔23aが形成される。シリンダ孔23aの中心軸線がシリンダ軸線である。エンジン本体部20は、シリンダ軸線を大きく前傾させて、車体フレーム7(図1参照)に搭載される。シリンダ軸線の水平方向に対する傾斜角度は、0度以上45度以下である。シリンダ孔23aには、ピストン26が摺動自在に収容される。シリンダヘッド24の下面とシリンダ孔23aとピストン26によって、燃焼室24aが形成される。シリンダヘッド24には、点火プラグ(点火装置)24bが設けられる。点火プラグ24bは、燃焼室24a内で燃料と空気との混合ガスに点火する。
 クランク軸21は、2つのクランクウェブ21aおよび2つのメイン軸21bを有する。2つのクランクウェブ21aは、2つのメイン軸21bの間に配置される。2つのクランクウェブ21aは、偏心軸(図示せず)によって接続される。偏心軸は、2つのクランクウェブ21aを接続する接続部である。偏心軸の中心線は、クランク軸の中心線から偏心している。クランク軸21の偏心軸には、コネクティングロッド26aを介してピストン26が接続されている。右のクランクウェブ21aの右側には、軸受27aが配置されている。左のクランクウェブ21aの左側には、軸受27bが配置されている。クランク軸21は、軸受27aおよび軸受27bを介して、クランクケース部22に支持されている。クランク軸21には駆動カムチェーンスプロケット28aが嵌着されている。また、シリンダヘッド24には、被動カムチェーンスプロケット28bが配置されている。そして、駆動カムチェーンスプロケット28aと被動カムチェーンスプロケット28bとの間にカムチェーン28cが架渡される。被動カムチェーンスプロケット28bは動弁カム軸28dに装着されている。クランク軸21のトルクは、カムチェーン28cを介して動弁カム軸28dに伝達される。動弁カム軸28dは、クランク軸21に同期して、図示しない吸気バルブおよび排気バルブをそれぞれ所要のタイミングで開閉駆動する。
 図3に示すように、シリンダヘッド24には、吸気管20iが接続されている。吸気管20iには、燃料タンク(不図示)内の燃料を、吸気管20i内に噴射するインジェクタ27が設けられる。インジェクタ27は、燃料ホース(不図示)を介して燃料タンクに接続されている。燃料タンク内の燃料は、燃料ポンプ(不図示)によって燃料ホースへと圧送される。インジェクタ27によって噴射された燃料は、燃焼室24aに供給される。インジェクタ27は、電子制御式の燃料供給装置であり、インジェクタ27による燃料の噴射量はECU100によって制御される。シリンダヘッド24には、排気管20eが接続されている。排気管20eは、燃料の燃焼によって発生した排ガスを排出する。
 吸気管20iは、スロットルボディ29に接続されている。スロットルボディ29の内部には、スロットル弁29aが配置されている。スロットル弁29aは、スロットルボディ29を流れる空気量を調整する。スロットルボディ29より上流の吸気管20iの端部には、エアクリーナ(図示せず)が設けられる。エアクリーナは、大気を吸入する空気吸入口を有する。空気吸入口から吸気管20i内に吸入された大気は、スロットルボディに流入される。スロットル弁29aを通過した空気は、吸気管20iを通過して、燃焼室24aに供給される。スロットル弁29aは電子制御式のスロットルである。スロットルボディ29には、スロットルアクチュエータ29bが設けられている。スロットルアクチュエータ29bは、スロットル弁29aを電子制御により開閉する。スロットルアクチュエータ29bは、ECU100から供給される電力によって動作するモータを含む。スロットル弁29aの開度を、スロットル開度と称する。ECU100は、モータに供給する電力を変化させることで、スロットル開度を制御している。
 ピストン26には、クランクケース部22の内部に配置されたクランク軸21に連結されている。ピストン26は、燃焼室24aに供給された燃料が燃焼することによって、往復動する。ピストン26が往復動することによってクランク軸21が回転する。
 また、クランク軸21には、上流回転電機90が連結されている。つまり、クランク軸21と上流回転電機90は、同軸となるように配置されている。ここで、上流回転電機90が、クランク軸21と同軸に配置されるとは、上流回転電機90の回転軸線である回転電機回転軸線Ag1が、クランク軸21の回転軸線であるクランク回転軸線Ac1と同一直線上に配置されることである。上流回転電機90は、三相発電機であり、永久磁石式発電機である。上流回転電機90の駆動状態は、発電状態と力行状態がある。具体的には、上流回転電機90が、クランク軸21にクランク軸21の逆回転方向のトルクを付与して発電する駆動状態は、発電状態である。言い換えると、発電状態では、クランク軸21の正回転方向の一部のトルクがクランク軸21から上流回転電機90に付与され、上流回転電機90がクランク軸21の正回転方向と同じ方向に回転される。また、上流回転電機90が後述するバッテリ94から供給された電力により、クランク軸21にクランク軸21の正回転方向のトルクを付与して、クランク軸21を正回転させる駆動状態は、力行状態である。上流回転電機90は、エンジン始動時には、スターターモータとして、力行状態で駆動される。また、エンジン始動後の通常運転時は、上流回転電機90は、力行状態または発電状態で駆動される。回転電機は、スターターモータと一体化された装置として構成される。尚、スターターモータと回転電機は別々の装置として構成されていてもよい。
 上流回転電機90は、インナーステータ91およびアウターロータ92を有する。アウターロータ92は、クランク軸21と共に回転するようにクランク軸21に取り付けられる。アウターロータ92は、クランク軸21のイナーシャを増加させるための回転体である。アウターロータ92の内周面には複数の永久磁石からなる永久磁石部(不図示)が設けられる。インナーステータ91は、アウターロータ92の永久磁石部と対向して設けられる。
 また、上流回転電機90は、インバータ93およびバッテリ94を有する。インバータ93は、上流回転電機90のオン・オフを制御する。バッテリ94は、力行機能により、上流回転電機90に電力を供給して駆動させる。つまり、バッテリ94は、上流回転電機90に電力を供給して、クランク軸21の正回転方向にトルクを付与する。また、バッテリ94は、回生機能により、上流回転電機90が発電した電力を蓄電する。つまり、バッテリ94は、上流回転電機90にクランク軸21の逆回転方向にトルクを付与して、上流回転電機90が発電した電力を蓄電する。
 図4に示すように、乾式ベルトケース部31は、シリンダボディ23の後方に配置されている。乾式ベルトケース部31は、伝動ケースとも呼ばれる。乾式ベルトケース部31は、乾式空間を形成する。プライマリプーリ42と、セカンダリプーリ52と、乾式ベルト32は、乾式空間に配置される。乾式ベルトケース部31は、シリンダボディ23の後端部から車両後方に向かって後輪3まで設けられている。乾式ベルトケース部31は、車体フレーム7に回動可能に支持される。乾式ベルトケース部31の下部には、オイルフィルタ(図示せず)が装着される。クランクケース部22内には、クランク軸21などをオイルなどの潤滑剤が存在する潤滑空間22cが形成される。
 変速機40は、プライマリ軸部41と、プライマリプーリ42と、セカンダリ軸51と、セカンダリプーリ52と、乾式ベルト32とを備える。プライマリ軸部41は、クランク軸21と一体的に形成されている。つまり、プライマリ軸部41の回転軸線であるプライマリ回転軸線Apがクランク軸21のクランク回転軸線Ac1と同一直線上に配置される。プライマリプーリ42は、プライマリ軸部41に設けられる。プライマリプーリ42は、プライマリ軸部41と一体的に回転可能となっている。乾式ベルト32は、環状に形成されている。乾式ベルト32は、プライマリプーリ42とセカンダリプーリ52とに巻かれる。プライマリプーリ42の回転は、乾式ベルト32を介して、セカンダリプーリ52に伝達される。セカンダリプーリ52はセカンダリ軸51に設けられる。セカンダリプーリ52は、セカンダリ軸51と回転可能となっている。変速機制御装置70は、プライマリプーリ42の後述するプライマリ可動シーブ44をプライマリ回転軸線Ap方向に移動させる。そして、変速機制御装置70は、電動モータ式の自動制御変速装置50の変速比を制御する。変速機40および変速機制御装置70の詳細な構成については、後述する。
 図3に示すように、セカンダリプーリ52は、クラッチ56、セカンダリ軸51、および、メイン軸64を介して、ドライブ軸60に連結される。ドライブ軸60は、後輪3の車軸である。クラッチ56は、セカンダリプーリ52とセカンダリ軸51との接続と切断とを切り替える。本実施形態のクラッチ56は、ライダーのクラッチ操作を要することなく、自動的に接続または切断される自動クラッチである。クラッチ56は、遠心式クラッチである。例えば、クラッチ56は、エンジン回転速度が予め設定された値を超えると、セカンダリプーリ52とセカンダリ軸51とを接続する。セカンダリ軸51は、メイン軸64と動力が伝達可能に接続されている。また、メイン軸64は、ドライブ軸60に動力が伝達可能に接続されている。つまり、セカンダリプーリ52から、セカンダリ軸51、メイン軸64、および、ドライブ軸60へ動力が伝達される。一方、クラッチ56は、エンジン回転速度が予め設定された値以下では、セカンダリプーリ52とセカンダリ軸51とを切断する。つまり、セカンダリプーリ52から、セカンダリ軸51、メイン軸64、および、ドライブ軸60へ動力が伝達されない。
 自動二輪車1が備えるセンサについて説明する。図3に示すように、自動二輪車1は、車速センサ3cと、アクセルセンサ4bと、スロットル開度センサ29cと、エンジン回転速度センサ21sと、シーブ位置検出センサ85と、セカンダリプーリ回転速度センサ51bと、ロータ位置検出センサ90aを有する。これらのセンサは、ECU100に接続される。
 車速センサ3cは、後輪3のドライブ軸60に配置される。車速センサ3cは、ドライブ軸60の回転速度に応じた周波数の信号を出力する。ECU100は、車速センサ3cの出力信号に基づいて車速を算出する。
 アクセルセンサ4bは、ライダーにより操作されるアクセルグリップ4aの回転角度(以下、アクセル開度)を検知する。アクセルセンサ4bは、例えばアクセルグリップ4aに設けられるポテンショメータである。アクセルセンサ4bは、ライダーのアクセル開度に応じた電気信号を出力する。ECU100は、アクセルセンサ4bの出力信号に基づいて、ライダーのアクセル開度を検知する。
 スロットル開度センサ(スロットルポジションセンサ)29cは、スロットルボディ29に設けられる。スロットル開度センサ29cは、スロットル弁29aの開度であるスロットル開度を検知する。スロットル開度センサ29cは、例えばポテンショメータによって構成される。スロットル開度センサ29cは、スロットル開度に応じた電圧信号または電流信号を出力する。ECU100は、スロットル開度センサ29cの出力信号に基づいてスロットル開度を検知する。
 エンジン回転速度センサ21sは、エンジン本体部20に設けられる。エンジン回転速度センサ21sは、クランク軸21の回転速度およびプライマリ軸部41の回転速度に応じた周波数の信号を出力する。クランク軸21の回転速度およびプライマリ軸部41の回転速度は、エンジン回転速度である。ECU100は、エンジン回転速度センサ21sの出力信号に基づいて、エンジン回転速度を算出する。
 シーブ位置検出センサ85は、変速機40に設けられる。シーブ位置検出センサ85は、電動モータ式の自動制御変速装置50の変速比を検知する。尚、変速比は、プライマリプーリ42のプライマリ可動シーブ44の位置に対応する。シーブ位置検出センサ85は、プライマリ可動シーブ44の位置に応じた電気信号を出力する。図5に示すように、シーブ位置検出センサ85は、例えば、センサ軸85aおよびセンサアーム85bからなる回転メータによって構成される。シーブ位置検出センサ85の詳細の構成については、後述する。ECU100は、シーブ位置検出センサ85の出力信号や、前述したクランク軸21の回転速度と後述するセカンダリプーリ52の回転速度に基づいて、変速比を検知する。
 セカンダリプーリ回転速度センサ51bは、変速機40に設けられる。セカンダリプーリ回転速度センサ51bは、セカンダリプーリ52の回転速度に応じた周波数の信号を出力する。ECU100は、セカンダリプーリ回転速度センサ51bの出力信号に基づいて、セカンダリプーリ52の回転速度を算出する。以下、セカンダリプーリ52の回転速度を、セカンダリプーリ回転速度と称する。
 ロータ位置検出センサ90aは、上流回転電機90に設けられる。ロータ位置検出センサ90aは、アウターロータ92の回転位置を検出する。ロータ位置検出センサ90aは、アウターロータ92の回転位置に応じた電気信号を出力する。ロータ位置検出センサ90aは、ロータ位置検出センサ90aの電気信号に基づいて、アウターロータ92の回転速度と回転位置を算出する。ここで、アウターロータ92の回転速度は、クランク軸21の回転速度と同じである。従って、ロータ位置検出センサ90aは、ロータ位置検出センサ90aの出力信号に基づいて、クランク軸21の回転速度を算出する。
[電動モータ式の自動制御変速装置の構成]
 ここで、電動モータ式の自動制御変速装置50の構成について、図4および図5に基づいて、詳細に説明する。電動モータ式の自動制御変速装置50は、変速機40、変速機制御装置70およびクラッチを有する。
 まず、変速機40について説明する。上述したように、変速機40は、乾式ベルト32と、プライマリ軸部41、プライマリプーリ42、セカンダリ軸51、および、セカンダリプーリ52を備える。
 図4に示すように、プライマリ軸部41は、クランク軸21の車両左右方向の左端部に、クランク軸21と一体で成形されている。つまり、プライマリ軸部41は、クランク軸21と同軸に配置される。ここで、プライマリ軸部41がクランク軸21と同軸に配置されるとは、プライマリ軸部41の回転軸線であるプライマリ回転軸線Apがクランク軸21のクランク回転軸線Ac1と同一直線上に配置されることである(図3参照)。そして、プライマリ軸部41は、クランク軸21の動力が伝達される。プライマリ軸部41は、クランク軸21に巻き掛けられているカムチェーン28cより左側の部分である。プライマリ軸部41の径は、カムチェーン28cが巻き掛けられているクランク軸21の部分の径よりも小さい。プライマリ軸部41は、車両左右方向の左側の部分が、右側の部分より、径が小さくなるように形成される。プライマリ軸部41は、クランクケース部22を貫通して形成される。つまり、車両左右方向において、プライマリ軸部41の右部は、クランクケース部22で形成される潤滑空間22cに配置される。また、プライマリ軸部41の左部は、乾式ベルトケース部31で形成される乾式空間31aに配置される。本明細書において、潤滑空間とは、オイル等の潤滑剤が存在する空間であり、内部に配置された部品が潤滑剤で潤滑される空間をいう。
 プライマリプーリ42は、プライマリ軸部41に装着される。プライマリプーリ42は、カラー部材43、プライマリ可動シーブ44、および、プライマリ固定シーブ45を備える。プライマリ可動シーブ44およびプライマリ固定シーブ45は、2つのプライマリシーブである。カラー部材43は、プライマリ軸部41の外周面に配置される。カラー部材43は、プライマリ軸部41と共に回転するように、スペーサ46および皿ばね46aを介して、ロックナット47でプライマリ軸部41に締結される。カラー部材43は、プライマリ固定シーブ45より車両左右方向の右側に配置される。プライマリ可動シーブ44およびプライマリ固定シーブ45は、クランクケース部22より車両左右方向の左側に配置される。つまり、プライマリ可動シーブ44およびプライマリ固定シーブ45は、乾式空間31aに配置される。
 図5に示すように、プライマリ可動シーブ44の右端部には、スライド部材44aが一体的に成形される。即ち、スライド部材44aは、プライマリ可動シーブ44に連結される。スライド部材44aは、円筒状に形成される。プライマリ可動シーブ44およびスライド部材44aは、カラー部材43に装着される。プライマリ可動シーブ44およびスライド部材44aは、カラー部材43に、プライマリ軸部41の軸方向に移動可能に支持される。さらに、プライマリ可動シーブ44およびスライド部材44aは、カラー部材43およびプライマリ軸部41と共に回転する。したがって、プライマリ可動シーブ44は、スライド部材44aと共にプライマリ軸部41の軸方向に移動可能であって、かつ、スライド部材44aと共に回転するよう構成される。尚、プライマリ可動シーブ44の内周面とカラー部材43との間には、シール部材44dが配置される。スライド部材44aとカラー部材43との間に形成される空間は、潤滑空間22cと連通する。つまり、カラー部材43は、潤滑区間22cにさらされる。本明細書において、ある部品が、クランクケース部22により形成される潤滑空間にさらされるとは、潤滑空間内において、ある部品が配置される空間が隔離されていないことをいう。シール部材44dは、スライド部材44aとカラー部材43との間を潤滑するオイルが潤滑空間22cから乾式空間31aに漏れるのを防いでいる。
 プライマリ固定シーブ45は、カラー部材43の車両左右方向の左面に接触するように、プライマリ軸部41にスプライン嵌合される。プライマリ固定シーブ45の車両左右方向の左側において、プライマリ軸部41の左端部には、スペーサ46、皿ばね46aおよびロックナット47が配置される。ロックナット47を締結することで、プライマリ固定シーブ45は、プライマリ軸部41に、軸方向に移動不能に固定される。プライマリ固定シーブ45は、プライマリ軸部41と共に回転するように構成される。プライマリ固定シーブ45の左面には、放射状に配置された多数の冷却フィン45cが一体的に形成されている。乾式ベルトケース部31(図4参照)の前部には、空気流入口(図示せず)が形成されている。プライマリ固定シーブ45はプライマリ軸部41の回転に伴って、回転駆動される。多数の冷却フィン45cが回転することにより、空気流入口から乾式ベルトケース部31内に空気が導入される。乾式ベルトケース部31内に導入された空気が、乾式ベルト32、プライマリプーリ42およびセカンダリプーリ52と接触することにより、乾式ベルト32、プライマリプーリ42およびセカンダリプーリ52は放熱する。乾式ベルトケース部31内に導入された空気は、乾式ベルトケース部31の後部または下部の空気排出口(図示せず)から排出される。冷却ファン45cは、外気を乾式ベルトケース部31内に導入する。
 図4に示すように、セカンダリ軸51は、プライマリ軸部41と平行に配置される。乾式ベルトケース部31の後端部の右方には、ギアケース61が配置されている。ギアケース61は、ギアケース61の右方に配置されたケース本体62に接続されている。ギアケース61およびケース本体62によって、オイルで潤滑される潤滑空間60aが形成されている。セカンダリ軸51は、ギアケース61を貫通して形成される。つまり、車両左右方向において、セカンダリ軸51の右部は、ギアケース61およびケース本体62によって形成される潤滑空間60aに配置される。また、セカンダリ軸51の左部は、乾式ベルトケース部31内の乾式空間31aに配置される。また、潤滑空間60aには、後輪3を回転させるドライブ軸60が配置される。ドライブ軸60は、セカンダリ軸51と平行に配置される。また、潤滑空間60aには、セカンダリ軸51およびドライブ軸60と平行に、メイン軸64(図3参照)が配置される。セカンダリ軸51の外周面とギアケース61との間には、シール部材51aが配置されている。シール部材51aは、潤滑空間60aから乾式空間31aにオイルが漏れるのを防いでいる。
 セカンダリ軸51は、軸受61aを介してギアケース61に支持される。また、セカンダリ軸51の右端部は、軸受62aを介してケース本体62に支持される。また、セカンダリ軸51の左端部は、軸受63およびスペーサ63aを介して乾式ベルトケース部31に支持される。
 セカンダリプーリ52は、セカンダリ軸51に装着される。セカンダリプーリ52は、カラー部材53と、セカンダリ可動シーブ54と、セカンダリ固定シーブ55とを備える。カラー部材53は、円筒状に形成される。カラー部材53は、セカンダリ軸51の外周面に、軸受55aおよび軸受55bを介して、回転可能に装着される。また、カラー部材53は、セカンダリ軸51に、軸方向に移動不能に装着される。スライド部材53aは、カラー部材53に装着される。スライド部材53aは、セカンダリ可動シーブ54の内周面とカラー部材53の外周面との間に配置される。スライド部材53aおよびセカンダリ可動シーブ54は、カラー部材53に、セカンダリ軸51の回転軸線方向に移動可動に支持される。さらに、スライド部材53aおよびセカンダリ可動シーブ54は、カラー部材53およびセカンダリ軸51と共に回転する。従って、セカンダリ可動シーブ54は、カラー部材53と共に、セカンダリ軸51の回転軸線方向に移動可能であって、かつ、スライド部材53aと共に回転するように装着される。
 セカンダリ固定シーブ55は、カラー部材53に嵌合されて固定される。すなわち、セカンダリ固定シーブ55は、セカンダリ軸51に、カラー部材53を介して、回転自在に、かつ、回転軸線方向に移動不能に装着される。
 セカンダリプーリ52より左側には遠心式クラッチ56が配置されている。遠心式クラッチ56は、セカンダリ軸51に取り付けられている。遠心式クラッチ56は、ウェイトアーム56a、ウェイト56b、アウタクラッチ56cを備える。ウェイトアーム56aは、カラー部材53と共に回転するように、カラー部材53に嵌合されて固定される。ウェイト56bは、ウェイトアーム56aに、セカンダリ軸51の径方向に揺動可能に装着される。アウタクラッチ56cは、ウェイト56bを囲むように配置される。アウタクラッチ56cは、セカンダリ軸51と共に回転するように、セカンダリ軸51に嵌合されて固定される。セカンダリ可動シーブ54とウェイトアーム56aとの間にはばね57が配設される。セカンダリ可動シーブ54は、このばね57により、セカンダリプーリ52の有効径が大きくなる方向に付勢される。
 セカンダリプーリ52の回転速度が上昇するに伴い、ウェイト56bは遠心力でセカンダリ軸51の径方向外側に移動して、アウタクラッチ56cの内面に当接する。これにより、セカンダリプーリ52の回転が、セカンダリ軸51に伝達される。そして、セカンダリ軸51の回転は、メイン軸64およびドライブ軸60を介して後輪3に伝達される。
 乾式ベルト32は、プライマリプーリ42およびセカンダリプーリ52に巻回される。乾式ベルト32は、ゴム製または樹脂製の伝動ベルトである。図4において、実線は、低速位置にある乾式ベルト32を示している。乾式ベルト32の低速位置を乾式ベルト32のロー位置という。また、図4において、二点鎖線は、高速位置にある乾式ベルト32を示している。乾式ベルト32の高速位置を、乾式ベルト32のトップ位置という。ここで、乾式ベルト32のトップ位置とは、プライマリプーリ42の幅が最も小さくなる位置である。即ち、乾式ベルト32のトップ位置とは、プライマリプーリ42に巻回される乾式ベルト32の巻径が最も大きくなる位置であり、変速比が最も低速となる位置である。一方、乾式ベルト32のロー位置とは、プライマリプーリ42の幅が最も大きくなる位置である。即ち、乾式ベルト32のロー位置とは、プライマリプーリ42に巻回される乾式ベルト32の巻径が最も小さくなる位置であり、変速比の最も高速となる位置である。尚、本明細書において、プライマリプーリ42の幅とは、プライマリ可動シーブ44およびプライマリ固定シーブ45で形成される溝の幅をいう。乾式ベルト32は、プライマリプーリ42およびセカンダリプーリ52との摺動部32aが潤滑剤で潤滑されない。乾式ベルト32、プライマリプーリ42およびセカンダリプーリ52は、乾式ベルトケース部31内の乾式空間31aに配置される。尚、プライマリプーリ42の幅とは、プライマリ可動シーブ44およびプライマリ固定シーブ45で形成される溝の幅である。
 次に、変速機制御装置70について説明する。図5に示すように、変速機制御装置70は、電動モータ71、回転力変換機構72、および、回転力伝達機構80を含む。
 電動モータ71は、シリンダボディ23とスロットルボディ29(図3参照)との間に配置される。電動モータ71は、クランクケース部22の外側壁にボルト71aにより固定されている。電動モータ71の回転軸71bには、後述する出力ギア81が形成される。電動モータ71は、乾式空間70aに配置される。また、出力ギア81は、潤滑空間22c内に配置される。
 スライド部材44aは、上述の通り、プライマリプーリ42のプライマリ可動シーブ44の右端部に一体的に成形される。スライド部材44aは、カラー部材43に装着される。スライド部材44aは、クランクケース部22を貫通して形成される。スライド部材44aの外周面とクランクケース部22との間には、シール部材22dが配置されている。シール部材22dは、潤滑空間22cから乾式空間31aにオイルが漏れるのを防いでいる。スライド部材44aの右端部は、他の部分より小径に形成されている。スライド部材44aの右端部の外周面には、後述する第1の軸受75が嵌合される。
 回転力変換機構72は、相対移動部73、回転部74、第1の軸受75、第2の軸受76、および、シーブ側ギア79を含む。回転力変換機構72は、シーブ側ギア79の回転力(トルク)をプライマリ可動シーブ44の軸方向移動力に変換する。即ち、回転力変換機構72は、後述する電動モータ71の回転力をプライマリ回転軸線Ap方向の移動力に変換する。回転力変換機構72は、潤滑空間22c内に配置される。回転力変換機構72は、詳細には以下の構造となる。
 相対移動部73は、円筒状の筒体部73aを有する。筒体部73aには、スライド部材44aの右端部が、第1の軸受75を介して嵌合されている。そして、相対移動部73は、スライド部材44aに接続される。相対移動部73は、後述する回転部74と接触する。相対移動部73は、回転部74の回転力により、プライマリ回転軸線Ap方向に回転部74に対して相対的に移動可能である。
 筒体部73aの外周面には、突起部73bが形成される。筒体部73aの突起部73bより右側の部分は、筒体部73aの突起部73bより左側の部分よりも小径に形成される。筒体部73aの突起部73bより右側の外周面には、リング体77が圧入により結合されている。リング体77は、突起部73bによりプライマリプーリ42側に移動不能となっている。リング体77には、径方向外側に突出する回り止め部77aが形成される。回り止め部77aの周方向中央部にはスリット部77bが形成されている。よって、回り止め部77aは、軸方向に見てU字状である。回り止め部77aのスリット部77bには、クランクケース部22に固定されたボルト78が挿入される。ボルト78により、リング体77は回り止めされる。即ち、相対移動部73は、リング体77により、回転不能に構成される。回転部74は、第2の軸受76を介して、プライマリ軸部41に回転自在に支持される。回転部74は、回転力伝達機構80から伝達された回転力により回転する。
 筒体部73aの内周面には雌ねじ(図示せず)が形成される。回転部74の外周面には、雄ねじ(図示せず)が形成される。相対移動部73の雌ねじおよび回転部74の雄ねじは、軸方向に沿った断面が台形の台形ねじである。雄ねじは、相対移動部73の雌ねじに噛み合わされる。つまり、回転部74は、相対移動部73に噛合する。
 シーブ側ギア79は、回転部74に固定される。詳細には、シーブ側ギア79は、回転部74の右端部に固定される。シーブ側ギア79は、プライマリプーリ42よりも径が大きい。シーブ側ギア79の左面には、複数のボルト79aが設けられている。複数のボルト79aは、シーブ側ギア79と共に回転する。プライマリ可動シーブ44がトップ位置からロー位置に変化し、相対移動部73が軸方向に右側に移動すると、リング体77が有する回り止め部77aが複数のボルト79aのいずれかに当たる。すると、複数のボルト79aが、相対移動部73の軸方向の移動を不能とさせる。複数のボルト79aがシーブ側ギア79と当接する位置が、プライマリ可動シーブ44のロー位置である。
 カラー部材43の外周面の左端部には、プライマリ固定シーブ45と接触する位置に支持部材44eが結合されている。支持部材44eは、円筒状に形成されている。プライマリ可動シーブ44がロー位置からトップ位置に変化し、相対移動部73が軸方向に沿って左側に移動すると、プライマリ可動シーブ44が支持部材44eに当接する。プライマリ可動シーブ44が支持部材44eに当接する位置が、プライマリ可動シーブ44のトップ位置である。
 回転力伝達機構80は、出力ギア81、回転力伝達ギア82、および、回転部ギア83を有する。出力ギア81、回転力伝達ギア82、および、回転部ギア83は、金属製である。回転力伝達機構80は、潤滑空間22cに配置される。
 回転力伝達機構80は、電動モータ71からの回転力をプライマリ可動シーブ44のシーブ側ギア79に伝達する。出力ギア81は、回転軸71bに一体的に成形される。出力ギア81は、回転力伝達ギア82に噛合する。回転力伝達ギア82は、回転力伝達ギア軸82aに圧入により固定されている。回転部ギア83は、回転力伝達ギア軸82aに一体的に形成される。回転部ギア83は、シーブ側ギア79に噛合される。つまり、回転部ギア83は、回転力変換機構72の一部であるシーブ側ギア79に噛み合い、電動モータ71の回転力を受けて回転するギアである。
 回転力伝達ギア82および回転力伝達ギア軸82aは、回転力伝達ギア機構84を構成する。回転力伝達ギア軸82aの両端部は、クランクケース部22に軸方向に移動不能に支持される。回転力伝達ギア82は、出力ギア81より径が大きい。回転部ギア83は、回転力伝達ギア82より径が小さい。シーブ側ギア79は、回転部ギア83より径が大きい。電動モータ71の回転速度は、回転力伝達ギア機構84により減速される。
 シーブ側ギア79より車両左右方向の左側には、シーブ位置検出センサ85が配置される。シーブ位置検出センサ85は、クランクケース部22内に配置される。シーブ位置検出センサ85のセンサ軸85aは、プライマリ回転軸線Ap方向と垂直の方向に配置される。センサ軸85aの端部は、クランクケース部22に支持される。センサ軸85aには、センサアーム85bが装着される。センサアーム85bは、相対移動部73と接触して回転する。より詳細には、センサアーム85bは、外周部に切り欠き部85cを有する。切り欠き部85cは、相対移動部73のプライマリプーリ42側の端部と接触する。切り欠き部85cと接触するプライマリプーリ42側の端部は、プライマリ回転軸線Ap方向に、回転部74に対して相対的に移動する。相対移動部73が軸方向に移動すると、相対移動部73と接触する切り欠き部85cがプライマリ回転軸線Ap方向に移動されて、センサアーム85bが回転する。即ち、プライマリプーリ42がロー位置とトップ位置との間で変化すると、相対移動部73と接触したセンサアーム85bが回転する。このようにして、シーブ位置検出センサ85は、相対移動部73のプライマリ回転軸線Ap方向の移動位置を検出する。つまり、シーブ位置検出センサ85は、スライド部材44aが回転部74に対してプライマリ回転軸線Ap方向に相対的に移動した移動量を検出する。シーブ位置検出センサ85は、潤滑空間22cに配置される。
 以上で説明したように、プライマリプーリ42は、プライマリ可動シーブ44とプライマリ固定シーブ45とを有する。プライマリ可動シーブ44は、変速機制御装置70により、プライマリ回転軸線Ap方向に移動可能に設けられる。つまり、変速機制御装置70の電動モータ71が駆動されることにより、相対移動部73が、プライマリ回転軸線Ap方向に、回転部74に対して相対的に移動する。そして、相対移動部73に接続されたプライマリ可動シーブ44は、プライマリ回転軸線Ap方向に移動する。プライマリ固定シーブ45は、プライマリ軸部41に固定されて設けられる。つまり、プライマリ固定シーブ45は、プライマリ軸部41に、プライマリ回転軸線Ap方向の移動が規制されて設けられる。
 以上で説明したように、セカンダリプーリ52は、セカンダリ可動シーブ54とセカンダリ固定シーブ55とを有する。セカンダリ可動シーブ54は、セカンダリ軸51の回転軸線方向に移動可能に設けられる。セカンダリ固定シーブ55は、セカンダリ軸51の回転軸線方向に固定されて設けられる。つまり、セカンダリ固定シーブ55は、セカンダリ軸51の回転軸線方向の移動が規制されて設けられる。セカンダリ可動シーブ54は、バネ(不図示)によって、セカンダリ固定シーブ55に近づくように付勢されている。
 以上のように構成された変速機制御装置70は、プライマリプーリ42のプライマリ可動シーブ44を、プライマリ回転軸線Ap方向に動かすことができる。つまり、電動モータ式の自動制御変速装置50は、電動モータ71を制御して、2つのプライマリシーブ44,45の幅を変化させることができる。プライマリプーリ42のプライマリ可動シーブ44と、セカンダリプーリ52のセカンダリ可動シーブ54とがそれぞれの回転軸線方向に動かされることによって、電動モータ式の自動制御変速装置50の変速比が変化する。詳細には、プライマリプーリ42のプライマリ可動シーブ44がプライマリ回転軸線Ap方向に動かされると、プライマリプーリ42に巻かれた乾式ベルト32の径が変化する。そして、プライマリプーリ42に巻かれた乾式ベルト32の径の変化に伴って、セカンダリプーリ52のセカンダリ可動シーブ54は、バネの弾性力によってまたは弾性力に抗して回転軸線方向に移動する。そして、セカンダリプーリ52に巻かれた乾式ベルト32の径も変化する。
 例えば、プライマリプーリ42のプライマリ可動シーブ44が、プライマリ回転軸線Ap方向のプライマリ固定シーブ45に近づく向きに移動されると、プライマリプーリ42の幅が小さくなる。そして、プライマリプーリ42に巻かれた乾式ベルト32の径が大きくなる。この時、セカンダリプーリ52のセカンダリセカンダリ可動シーブ54は、セカンダリ軸51の回転軸線方向のセカンダリ固定シーブ55から離れる向きに移動する。そして、セカンダリプーリ52の幅が大きくなり、セカンダリプーリ52に巻かれた乾式ベルト32の径は小さくなる。これにより、電動モータ式の自動制御変速装置50の変速比が、トップ位置に変化する。
 一方、プライマリプーリ42のプライマリ可動シーブ44が、プライマリ回転軸線Ap方向のプライマリ固定シーブ45から離れる向きに移動されると、プライマリプーリ42の幅が大きくなる。そして、プライマリプーリ42に巻かれた乾式ベルト32の径が小さくなる。この時、セカンダリプーリ52のセカンダリ可動シーブ54は、セカンダリ軸51の回転軸線方向のセカンダリ固定シーブ55に近づく向きに移動する。そして、セカンダリプーリ52の幅が小さくなり、セカンダリプーリ52に巻かれた乾式ベルト32の径は大きくなる。これにより、電動モータ式の自動制御変速装置50の変速比が、ロー位置に変化する。
 以上のように、プライマリプーリ42のプライマリ可動シーブ44の動きによって、電動モータ式の自動制御変速装置50の変速比が変化する。つまり、プライマリプーリ42のプライマリ可動シーブ44が、プライマリ固定シーブ45に最も近づいた時の変速比と、プライマリ固定シーブ45から最も離れた時の変速比との間で変化する。
[動力伝達経路]
 ここで、エンジンユニット6の動力伝達経路について、図3に基づいて説明する。
 図3に示すように、動力伝達経路は、クランク軸21から後輪3に至るまで動力が伝達される経路である。クランク軸21が、動力伝達経路における上流である。後輪3が、動力伝達経路における下流である。上流回転電機90は、クランク軸21に直接連結される。つまり、上流回転電機90は、クランク軸21に動力伝達可能に接続される。また、電動モータ式の自動制御変速装置50は、クランク軸21と同軸に形成されたプライマリ軸部41に装着されたプライマリプーリ42により、クランク軸21に動力伝達可能に接続される。そして、クランク軸21の動力は、プライマリプーリ42と共に乾式ベルト32が巻き掛けられたセカンダリプーリ52が装着されたセカンダリ軸51に伝達される。セカンダリ軸51、メイン軸64およびドライブ軸60は、ギアにより回転力が伝達可能に構成されている。そして、セカンダリ軸51の動力は、メイン軸64およびドライブ軸60により、後輪3に伝達される。クランク軸21、上流回転電機90、電動モータ式の自動制御変速装置50、後輪3は、この順番で、動力伝達経路の上流から下流に配置される。つまり、上流回転電機90は、動力伝達経路において、電動モータ式の自動制御変速装置50より上流に配置される。クランク軸21は、動力伝達経路における電動モータ式の自動制御変速装置50の上流に配置される。
[ECUの構成]
 エンジンユニット6は、ECU100を有する。ECU100は、エンジンユニット6の動作を制御する。図3に示すように、ECU100は、車速センサ3cと、アクセルセンサ4bと、スロットル開度センサ29cと、エンジン回転速度センサ21sと、シーブ位置検出センサ85と、セカンダリプーリ回転速度センサ51b等の各種センサと接続される。また、ECU100は、点火プラグ24b、インジェクタ27、スロットルアクチュエータ29b、電動モータ式の自動制御変速装置50、上流回転電機90、表示装置110等と接続される。
 ECU100は、CPU、ROM、RAMなどで構成されている。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。これにより、ECU100には複数の機能処理部の各機能が実現される。図3に示すように、ECU100は、機能処理部として、燃焼制御部101、スロットル制御部102、加速・減速制御部105を含む。加速・減速制御部105は、回転電機制御部103および変速装置制御部104を有する。加速・減速制御部105は、本発明の制御装置である。
 燃焼制御部101は、点火プラグ24bの点火時期を制御する。また、燃焼制御部101は、インジェクタ27と燃料ポンプの駆動を制御する。それによって、燃焼制御部101は、燃料供給量を制御する。スロットル制御部102は、ライダーによるアクセルグリップ4aの操作に基づいて、スロットルアクチュエータ29bを作動させて、スロットル開度を制御する。回転電機制御部103は、上流回転電機90への通電を制御する。それによって、回転電機制御部103は、回生機能と力行機能を制御する。変速装置制御部104は、電動モータ式の自動制御変速装置50の電動モータ71を作動させて、プライマリプーリ42のプライマリ可動シーブ44の動きを制御する。そして、変速装置制御部104は、電動モータ式の自動制御変速装置50の変速比を制御する。
 燃焼制御部101は、ROM等の記憶部に格納されたプログラムを実行して、エンジン本体部20の燃焼動作を制御する。燃焼制御部101は、点火プラグ24bに放電による点火動作を行わせることによって、エンジン本体部20の燃焼動作を制御する。また、燃焼制御部101は、インジェクタ27と燃料ポンプの駆動を制御することによって、燃料供給量を制御して、エンジン本体部20の燃焼動作を制御する。本明細書において、燃料供給量の制御には、燃料ポンプから供給される燃料の供給量の制御と、インジェクタ27が噴射する燃料の噴射時間の制御とが含まれる。
 例えば、燃焼制御部101は、エンジン回転速度やスロットル開度の他、各種情報に基づいて、インジェクタ27と燃料ポンプの駆動を制御する。エンジン回転速度は、エンジン回転速度センサ21sの出力信号に基づいて算出される。スロットル開度は、スロットル開度センサ29cの出力信号によって検知される。各種情報は、エンジン温度センサや酸素センサなど各種センサの出力信号に基づいて算出される。
 スロットル制御部102は、ライダーのアクセル操作に基づいてスロットル開度を制御する。つまり、スロットル制御部102は、アクセルセンサ4bの出力信号に基づいて、ライダーによるアクセルグリップ4aの操作量であるアクセル開度を検知する。そして、スロットル制御部102は、アクセル開度に基づいてスロットルアクチュエータ29bを作動させて、スロットル開度を制御する。つまり、スロットル制御部102は、スロットルアクチュエータ29bに駆動電力を供給し、スロットルアクチュエータ29bを作動させる。
 例えば、スロットル制御部102は、アクセル開度とスロットル開度とを対応付けるマップや関係式等を参照して、スロットル開度のフィードバック制御を行う。すなわち、スロットル制御部102は、マップ等を参照し、アクセル開度に対応する目標スロットル開度を算出する。そして、スロットル制御部102は、スロットル開度センサ29cによって検知した実際のスロットル開度であるスロットル開度が目標スロットル開度に一致するように、スロットル開度と目標スロットル開度との差に基づいて、スロットルアクチュエータ29bを作動させる。尚、アクセル開度とスロットル開度とを対応付けるマップ等は、記憶部に予め記憶される。
 加速・減速制御部105は、自動二輪車1の加速時または減速時に、変速装置制御部104による変速装置制御と、回転電機制御部103による回転電機制御の両方を実施可能である。変速装置制御部104による変速装置制御は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する制御である。回転電機制御部103による回転電機制御は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するトルクを変更する制御である。クランク軸21が、動力伝達経路における電動モータ式の自動制御変速装置50の上流に配置される。
 回転電機制御部103は、記憶部に格納されたプログラムを実行して、上流回転電機90への通電を制御して、上流回転電機90の駆動を制御する。つまり、回転電機制御部103は、回転電機制御を行う。上流回転電機90の駆動状態は、上述の通り、力行状態と発電状態がある。自動二輪車1の加速時に、上流回転電機90を力行状態で駆動させる際には、回転電機制御部103は加速時回転電機制御を行う。加速時回転電機制御では、上流回転電機90は、クランク軸21に対して付与するクランク軸21の正回転方向のトルクを変更するように制御される。つまり、加速時回転電機制御では、回転電機制御部103は、バッテリ94から供給された電力により、上流回転電機90をクランク軸21の正回転方向に回転するように制御される。これにより、上流回転電機90は、機関出力を発生させる。そして、クランク軸21の回転が、上流回転電機90によって正回転方向に補助される。また、自動二輪車1の減速時に、回転電機制御部103が上流回転電機90を発電状態で駆動させる際には、回転電機制御部103は減速時回転電機制御を行う。減速時回転電機制御では、上流回転電機90は、クランク軸21に対して付与するクランク軸21の逆回転方向のトルクを変更するように制御される。つまり、減速時回転電機制御では、回転電機制御部103は、上流回転電機90をクランク軸21の正回転方向に回転させて、上流回転電機90がクランク軸21のトルクを吸収するように制御する。これにより、上流回転電機90は、機関損失を発生させる。そして、クランク軸21の回転は、上流回転電機90により逆回転方向に負荷がかけられる。尚、上流回転電機90で吸収したクランク軸21のトルクは、バッテリ94に電力として蓄電される。
 変速装置制御部104は、記憶部に格納されたプログラムを実行して、電動モータ式の自動制御変速装置50の変速比を制御する。つまり、変速装置制御部104は、変速装置制御を行う。自動二輪車1の加速時に、変速装置制御部104は、加速時変速装置制御を行う。加速時変速装置制御は、電動モータ71を制御して電動モータ式の自動制御変速装置50の変速比を変更する。自動二輪車1の減速時に、変速装置制御部104は、減速時変速装置制御を行う。減速時変速装置制御は、電動モータ71を制御して電動モータ式の自動制御変速装置50の変速比を変更する。変速装置制御部104には、シーブ位置検出センサ85の出力信号が入力される。変速装置制御部104は、シーブ位置検出センサ85の出力信号に基づいて、現在設定されている変速比を検出する。そして、変速装置制御部104は、電動モータ71を作動させて、電動モータ式の自動制御変速装置50の変速比を変更する。つまり、変速装置制御部104は、電動モータ71に駆動電力を供給し、電動モータ71を作動させる。
 例えば、変速装置制御部104は、車速センサ3cの出力信号に基づいて算出した車速と、スロットル開度センサ29cの出力信号によって検知したスロットル開度等の各種データに基づいて、電動モータ式の自動制御変速装置50が変更する変速比を算出する。
 加速・減速制御部105は、自動二輪車1の加速時に、加速制御を行う。加速・減速制御部105は、加速制御では、変速装置制御部104の加速時変速装置制御および回転電機制御部103の加速時回転電機制御を切り替えて行う。または、加速・減速制御部105は、加速制御では、変速装置制御部104の加速時変速装置制御および回転電機制御部103の加速時回転電機制御を同時に行う。加速・減速制御部105は、自動二輪車1の減速時に、減速制御を行う。加速・減速制御部105は、減速制御では、変速装置制御部104の減速時変速装置制御および回転電機制御部103の減速時回転電機制御を切り替えて行う。または、加速・減速制御部105は、減速制御では、変速装置制御部104の減速時変速装置制御および回転電機制御部103の減速時回転電機制御を同時に行う。
[回転電機の構成]
 ここで、上流回転電機90および回転電機制御部103の電気構成について、図6に基づいて詳しく説明する。回転電機制御部103には、上流回転電機90、インバータ93、およびバッテリ94が接続されている。回転電機制御部103は、インバータ93の動作を通じて、上流回転電機90を制御する。
 インナーステータ91は、複数のステータ巻線91aを有する。複数のステータ巻線91aは、三相(U相、V相、W相)のいずれかに属する。インバータ93は、6個のスイッチング部931~936を有する。インバータ93は、三相ブリッジインバータである。スイッチング部931およびスイッチング部932は、複数相のステータ巻線91aの三相のいずれか一相(例えば、U相)と接続されている。スイッチング部933およびスイッチング部934は、複数相のステータ巻線91aの三相のいずれか別の一相(例えば、V相)と接続されている。スイッチング部935およびスイッチング部936は、複数相のステータ巻線91aの三相のいずれか別の一相(例えば、W相)と接続されている。スイッチング部931~936のそれぞれは、スイッチング素子を有する。スイッチング素子は、例えばトランジスタであり、より詳細にはFET(FieldEffect Transistor)である。ただし、スイッチング部931~936には、FET以外に、例えばサイリスタおよびIGBT(InsulatedGate Bipolar Transistor)であってもよい。
 スイッチング部931~936は、複数相のステータ巻線91aとバッテリ94とを電気的に接続する。つまり、インバータ93は、上流回転電機90とバッテリ94とを電気的に接続する。ECU100の回転電機制御部103は、インバータ93と接続されている。回転電機制御部103は、複数のスイッチング部931~936のオン・オフの切替えを制御する。つまり、回転電機制御部103は、スイッチング部931~936のオン・オフを制御することにより、複数相のステータ巻線91aとバッテリ94との間の電流の通過/遮断を切替える。尚、回転電機制御部103は、複数のスイッチング部931~936のオン・オフの切替えのタイミングを制御することによって、上流回転電機90から出力される三相交流の整流および電圧の制御を行う。そして、回転電機制御部103は、上流回転電機90の駆動状態を制御する。より詳細には、回転電機制御部103は、上流回転電機90を力行状態で制御する際には、バッテリ94からスイッチング部931~936を経由して、複数相のステータ巻線91aへ電流を供給する。または、回転電機制御部103は、上流回転電機90を発電状態で制御する際には、複数相のステータ巻線91aから複数のスイッチング部931~936を経由して、バッテリ94に電流を供給するように制御する。
 また、回転電機制御部103は、スイッチ96をオンにすることにより、バッテリ94の電圧を検出する。回転電機制御部103は、バッテリ94の電圧を検出することによって、バッテリ94の充電状態(SOC:state of charge)を検出する。より詳細には、回転電機制御部103は、バッテリ94の残容量を検出する。ただし、バッテリ94の残容量は、バッテリ94の電圧以外に基づいて検出してもよい。例えば、回転電機制御部103は、バッテリ94に流れる電流に基づいて検出してもよい。上流回転電機90とバッテリ94との間に流れる電流に基づいて検出する場合は、バッテリ94に流れ込む電流とバッテリ94から流れ出す電流を積算することによって、より正確にバッテリ94の残容量を把握することができる。
 ECU100には、エンジン本体部20を始動させるためのスタータスイッチ95が接続されている。スタータスイッチ95は、ハンドルユニット4(図3参照)に配置される。スタータスイッチ95は、エンジン本体部20の始動の際、ライダーによって操作される。
 尚、上流回転電機90は、アウターロータ92の位置を検出するロータ位置検出センサ90aを備える。アウターロータ92は、クランク軸21と共に回転する。つまり、アウターロータ92の回転速度は、クランク軸21の回転速度と同じである。そして、ロータ位置検出センサ90aをエンジン回転速度センサとして機能させてもよい。
[加速・減速制御部(制御装置)による減速制御]
 加速・減速制御部(制御装置)105による減速制御の動作の一例について、図7に基づいて説明する。
 まず、加速・減速制御部105は、アクセルセンサ4bから出力された信号に基づいて、アクセル開度を検出する。そして、加速・減速制御部105は、アクセルがオフになったか否かを判定する。つまり、加速・減速制御部105は、アクセル開度が全閉になったか否かを判定する(ステップS11)。アクセル開度が全閉になったと判定したとき、加速・減速制御部105は、減速制御を開始する(ステップS11:YES)。
 次に、加速・減速制御部105は、車速センサ3cからの出力信号を取得する。加速・減速制御部105は、車速センサ3cの出力信号から、車速を検出する。また、加速・減速制御部105は、エンジン回転速度センサ21sからの出力信号を取得する。加速・減速制御部105は、エンジン回転速度センサ21sの出力信号から、エンジン回転速度を検出する。また、加速・減速制御部105は、スロットル開度センサ29cからの出力信号を取得する。加速・減速制御部105は、スロットル開度センサ29cの出力信号から、スロットル開度を検出する。また、加速・減速制御部105は、シーブ位置検出センサ85からの出力信号を取得する。加速・減速制御部105は、シーブ位置検出センサ85の出力信号から、変速比を検出する。尚、検出された変速比は、車速およびスロットル開度に基づいて予め設定された変速比である。また、加速・減速制御部105は、インバータ93からの出力信号を取得する。加速・減速制御部105は、インバータ93の出力信号から、バッテリ94の残容量SOCを検出する(ステップS12)。
 そして、加速・減速制御部105は、ステップS12で検出された車速に基づいて、予め記憶されたマップや関係式等を参照して、後輪3に要求される要求トルクT1Rを算出する(ステップS13)。
 次に、加速・減速制御部105は、ステップS12で検出された変速比およびエンジン回転速度に基づいて、モータ回生トルクMRを算出する(ステップS14)。モータ回生トルクMRは、上流回転電機90がクランク軸21に対して付与するクランク軸21の逆回転方向のトルクである。つまり、モータ回生トルクMRは、上流回転電機90をクランク軸21の逆回転方向に負荷をかけることにより、上流回転電機90が吸収することができるトルクである。
 そして、加速・減速制御部105は、ステップS12で検出されたバッテリ94の残容量SOCが、減速上限値SOC1R未満かどうか判断する(ステップS15)。減速上限値SOC1Rは、予め定められたマップや関係式に基づいて、算出される。
 バッテリ94の残容量SOCが減速上限値SOC1R未満である場合(ステップS15:YES)、加速・減速制御部105は、回転電機制御部103に減速時回転電機制御を行うための回生ブレーキ指令を送る(ステップS16)。回生ブレーキ指令が送られた回転電機制御部103は、インバータ93を制御して、上流回転電機90をクランク軸21の正回転方向に回転させる。回転電機制御部103は、クランク軸21の逆回転方向のトルクとしてモータ回生トルクMRをクランク軸21に対して付与する。そして、上流回転電機90にクランク軸21のトルクを吸収させ、クランク軸21の回転に逆回転方向の負荷をかける。従って、上流回転電機90が機関損失を発生させる。尚、上流回転電機90が吸収したクランク軸21のトルクは、バッテリ94に電力として蓄電される。
 また、加速・減速制御部105は、ステップS12で検出されたスロットル開度および車速等の各種データに基づいて、目標変速比G1Rを算出する(ステップS17)。尚、目標変速比G1Rは、ステップS12で検出された変速比と比較して、より低速の変速比であるか、より高速の変速比であるか、または、同じ変速比である。
 一方、バッテリ94の残容量SOCが減速上限値SOC1R以上の場合(ステップS15:NO)、加速・減速制御部105は、ステップS12で検出されたスロットル開度および車速等の各種データに基づいて算出される目標変速比G1RLを算出する(ステップS18)。目標変速比G1RLは、目標変速比G1Rと同じか、目標変速比G1Rよりも低速の変速比である。尚、目標変速比G1Rが最も低速な変速比である場合は、目標変速比G1RLは、目標変速比G1Rと同じである。そして、加速・減速制御部105は、表示装置110に、上流回転電機90を駆動することができないことを示すランプを点灯させる。尚、加速・減速制御部105は、表示装置110に、上流回転電機90を駆動することができないことを示すランプを点灯させなくてよい。
 そして、加速・減速制御部105は、変速装置制御部104により変速機制御装置70を制御させて、減速時変速装置制御を行う。そして、電動モータ式の自動制御変速装置50の変速比を、ステップS17で算出された目標変速比G1RまたはステップS18で算出された目標変速比G1RLに変更する(ステップS19)。尚、ステップS12で検出された変速比が目標変速比G1Rまたは目標変速比G1RLと同じである場合は、加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を変更しない。
 以上により、自動二輪車1は、図8に示すように制御される。図8は、自動二輪車の減速時における次のパラメータの経時変化の一例を示すグラフである。図8(a)は、アクセル開度の経時変化の一例を示す。図8(b)は、後輪に生じる駆動力の経時変化の一例を示す。つまり、ライダーが、図8(a)に示すように、アクセルグリップ4aの開度(アクセル開度)を全閉となるように、ライダーが急激に減速する意思を示すアクセル操作を行った場合において、加速・減速制御部105は、次のように制御する。加速・減速制御部105は、バッテリ94の残容量SOCに応じて、減速時回転電機制御および減速時変速装置制御を同時に行うか、減速時回転電機制御を行わずに減速時変速装置制御のみを行う。加速・減速制御部105は、減速時回転電機制御および減速時変速装置制御を同時に行う場合、上流回転電機90を制御してクランク軸21に逆回転方向のトルクを付与すると同時に、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する。加速・減速制御部105は、減速時回転電機制御を行わずに減速時変速装置制御のみを行う場合、上流回転電機90にクランク軸21に逆回転方向のトルクを付与せず、電動モータ式の自動制御変速装置50の変速比を変更するように制御する。
 まず、バッテリ94の残容量SOCが減速上限値SOC1Rより小さい場合は、加速・減速制御部105が、減速時回転電機制御および減速時変速装置制御を同時に行う。加速・減速制御部105は、上流回転電機90を制御してクランク軸21に逆回転方向のトルクを付与するように制御すると同時に、電動モータ式の自動制御変速装置50の変速比を変更するように制御する。この場合は、加速・減速制御部105は、上流回転電機90を制御して、クランク軸21に逆回転方向のトルクであるモータ回生トルクMRを付与する。そして、上流回転電機90は、クランク軸21からトルクを吸収し、機関損失を発生させる。これにより、クランク軸21は、上流回転電機90によりクランク軸21に逆回転方向の負荷がかけられる。また、加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を、スロットル開度と速度に基づいて決定される目標変速比G1Rに変更するように制御する。これにより、図8(b)の実線に示すように、後輪3には、上流回転電機90が付与したクランク軸21に逆回転方向のトルクであるモータ回生トルクMRに目標変速比G1Rを乗じた負の駆動力が発生する。尚、図8(b)において、二点鎖線は、上流回転電機90がクランク軸21に逆回転方向のトルクを付与しなかった場合の後輪3に生じる駆動力を示している。ここで、アクセル開度が全閉であるため、エンジン本体部20には機関損失が発生している。これにより、後輪3には、エンジン本体部20で生じた機関損失によるトルクに変速比を乗じた負の駆動力が発生する。そして、後輪3には、エンジン本体部20で生じた機関損失に加えて、上記上流回転電機90により生じた機関損失に基づいた負の駆動力が発生する。つまり、図8(b)における二点鎖線が、エンジン本体部20で生じた機関損失に基づいて後輪3に生じる負の駆動力を示している。
 一方、バッテリ94の残容量SOCが減速上限値SOC1R以上の場合は、加速・減速制御部105が、減速時回転電機制御を行わずに減速時変速装置制御のみを行う。加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を変更するように制御する。この場合は、加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を、スロットル開度と速度に基づいて決定される目標変速比G1RLに変更するように制御する。目標変速比G1RLは、目標変速比G1Rよりも低速の変速比である。ここで、アクセル開度が全閉であるため、エンジン本体部20には機関損失が発生している。これにより、後輪3には、エンジン本体部20で生じた機関損失によるトルクに目標変速比G1Rを乗じた負の駆動力が発生する。つまり、バッテリ94の残容量SOCが減速上限値SOC1R以上の場合は、加速・減速制御部105が変速比を目標変速比G1Rより低速の目標変速比G1RLに変更している。そのため、後輪3には、加速・減速制御部105が変速比を目標変速比G1Rとした場合よりも大きな負の駆動力が発生する。つまり、図8(b)の二点鎖線で示す負の駆動力よりも大きな負の駆動力が後輪3に生じる。そして、図8(b)の実線で示す負の駆動力と同程度の負の駆動力を後輪3に生じさせることができる。
[加速・減速制御部(制御装置)による加速制御]
 加速・減速制御部(制御装置)105による加速制御の動作の一例について、図9に基づいて説明する。
 まず、加速・減速制御部105は、アクセルセンサ4bから出力された信号に基づいて、アクセル開度を読み込む。そして、加速・減速制御部105は、アクセル開度が所定の第1開度以上であるか否かを判定する(ステップS21)。アクセル開度が所定の第1開度以上であるとき、加速制御を開始する(ステップS21:YES)。所定の第1開度は、予め加速・減速制御部105に記憶される。アクセル開度が所定の第1開度以上になったときとは、例えば、アクセル開度が全閉から全開になった時である。
 次に、加速・減速制御部105は、車速センサ3cからの出力信号を取得する。加速・減速制御部105は、車速センサ3cの出力信号から、車速を検出する。また、加速・減速制御部105は、エンジン回転速度センサ21sからの出力信号を取得する。加速・減速制御部105は、エンジン回転速度センサ21sの出力信号から、エンジン回転速度を検出する。また、加速・減速制御部105は、スロットル開度センサ29cからの出力信号を取得する。加速・減速制御部105は、スロットル開度センサ29cの出力信号から、スロットル開度を検出する。また、加速・減速制御部105は、シーブ位置検出センサ85からの出力信号を取得する。加速・減速制御部105は、シーブ位置検出センサ85の出力信号から、変速比を検出する。尚、検出された変速比は、車速およびスロットル開度に基づいて予め設定された変速比である。また、加速・減速制御部105は、インバータ93からの出力信号を取得する。加速・減速制御部105は、インバータ93の出力信号から、バッテリ94の残容量SOCを検出する(ステップS22)。
 そして、加速・減速制御部105は、ステップS22で検出した車速とアクセル開度に基づいて、予め記憶されたマップや関係式等を参照して、後輪3に要求される要求トルクT1Aを算出する(ステップS23)。
 次に、加速・減速制御部105は、ステップS22で検出した変速比およびエンジン回転速度に基づいて、モータアシストトルクMAを算出する(ステップS24)。モータアシストトルクMAは、上流回転電機90がクランク軸21に対して付与するクランク軸21の正回転方向のトルクである。つまり、モータアシストトルクMAは、バッテリ94から供給された電力で、上流回転電機90をクランク軸21の正回転方向に回転させることにより、上流回転電機90に直結されたクランク軸21を回転させることができるトルクである。
 そして、加速・減速制御部105は、ステップS22で検出したバッテリ94の残容量SOCが、加速下限値SOC1Aを上回るかどうか判断する(ステップS25)。加速下限値SOC1Aは、予め決められたマップや関係式に基づいて、算出される。
 バッテリ94の残容量SOCが加速下限値SOC1Aを上回る場合(ステップS25:YES)、加速・減速制御部105は、回転電機制御部103に加速時回転電機制御を行うためのアシスト指令を送る(ステップS26)。アシスト指令を受けた回転電機制御部103は、インバータ93を制御して、上流回転電機90をクランク軸21の正回転方向に回転させる。回転電機制御部103は、クランク軸21の正回転方向のトルクとしてモータアシストトルクMAをクランク軸21に対して付与する。そして、バッテリ94から供給された電力で、上流回転電機90に直結されたクランク軸21にトルクを付加する。
 また、加速・減速制御部105は、ステップS21で検出したアクセル開度、ステップS22で検出したスロットル開度および車速等の各種データに基づいて、目標変速比G1Aを算出する(ステップS27)。尚、目標変速比G1Aは、ステップS22で検出された変速比と比較して、より低速の変速比であるか、より高速の変速比であるか、または、同じ変速比である。
 一方、バッテリ94の残容量SOCが加速下限値SOC1A以下の場合(ステップS25:NO)、加速・減速制御部105は、ステップS22で検出したスロットル開度および車速等の各種データに基づいて算出される目標変速比G1ALを算出する(ステップS28)。目標変速比G1ALは、目標変速比G1Aと同じか、目標変速比G1Aよりも低速の変速比である。尚、目標変速比G1Aが最も低速な変速比である場合は、目標変速比G1ALは、目標変速比G1Aと同じである。そして、加速・減速制御部105は、表示装置110に、上流回転電機90を駆動することができないことを示すランプを点灯させる。尚、加速・減速制御部105は、表示装置110に、上流回転電機90を駆動することができないことを示すランプを点灯させなくてよい。
 そして、加速・減速制御部105は、変速装置制御部104により変速機制御装置70を制御させて、加速時変速装置制御を行う。そして、電動モータ式の自動制御変速装置50の変速比を、ステップS27で算出された目標変速比G1RまたはステップS28で算出された目標変速比G1ALに変更する(ステップS29)。尚、ステップS22で検出された変速比が目標変速比G1Rまたは目標変速比G1RLと同じである場合は、加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を変更しない。
 以上により、自動二輪車1は、図10に示すように制御される。図10は、自動二輪車の加速時における次のパラメータの経時変化の一例を示すグラフである。図10(a)は、アクセル開度の経時変化の一例を示す。図10(b)は、後輪に生じる駆動力の経時変化の一例を示す。つまり、ライダーが、図10(a)に示すように、アクセルグリップ4aをアクセル開度が所定の第1開度以上に操作した場合、即ち、ライダーが加速する意思を示すアクセル操作を行った場合において、加速・減速制御部105は、次のように制御する。加速・減速制御部105は、バッテリ94の残容量SOCに応じて、加速時回転電機制御および加速時変速装置制御を同時に行うか、加速時回転電機制御を行わずに加速時変速装置制御のみを行う。加速・減速制御部105は、加速時回転電機制御および加速時変速装置制御を同時に行う場合、バッテリ94から供給された電力により上流回転電機90がクランク軸21に正回転方向のトルクを付与すると同時に、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する。加速・減速制御部105は、加速時回転電機制御を行わずに加速時変速装置制御のみを行う場合、上流回転電機90がクランク軸21に正回転方向のトルクを付与せず、電動モータ式の自動制御変速装置50の変速比を変更するように制御する。
 まず、バッテリ94の残容量SOCが加速下限値SOC1Aより大きい場合は、加速・減速制御部105が、加速時回転電機制御および加速時変速装置制御を同時に行う。加速・減速制御部105は、バッテリ94から供給された電力により上流回転電機90がクランク軸21に正回転方向のトルクを付与して、クランク軸21を正回転方向に回転させると同時に、電動モータ式の自動制御変速装置50の変速比を変更するように制御する。この場合は、加速・減速制御部105は、上流回転電機90を制御して、クランク軸21に正回転方向のトルクであるモータアシストトルクMAを付与する。そして、上流回転電機90は、クランク軸21にトルクを付与して、機関出力を発生させる。また、加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を、スロットル開度と速度に基づいて決定される目標変速比G1Aに変更するように制御する。これにより、図10(b)の実線に示すように、後輪3には、上流回転電機90が付与したクランク軸21に正回転方向のトルクであるモータアシストトルクMAに目標変速比G1Aを乗じた正の駆動力が発生する。尚、図10(b)において、二点鎖線は、上流回転電機90がクランク軸21に正回転方向のトルクを付与しなかった場合の後輪3に生じる駆動力を示している。ここで、エンジン本体部20には機関出力が発生している。これにより、後輪3には、エンジン本体部20で生じた機関出力によるトルクに変速比を乗じた正の駆動力が発生する。そして、後輪3に、エンジン本体部20で生じた機関出力に加えて、上記上流回転電機90により生じた機関出力に基づいた正の駆動力が発生し、正の駆動力を大きくすることができる。つまり、図10(b)における二点鎖線が、エンジン本体部20で生じた機関出力に基づいて後輪3に生じる正の駆動力を示している。
 一方、バッテリ94の残容量SOCが加速下限値SOC1A以下の場合は、加速・減速制御部105が、加速時回転電機制御を行わずに加速時変速装置制御のみを行う。加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を変更するように制御する。この場合は、加速・減速制御部105は、電動モータ式の自動制御変速装置50の変速比を、スロットル開度と速度に基づいて決定される目標変速比G1ALに変更するように制御する。目標変速比G1ALは、目標変速比G1Aよりも低速の変速比である。ここで、エンジン本体部20には機関出力が発生している。これにより、後輪3には、エンジン本体部20で生じた機関出力によるトルクに目標変速比G1Aを乗じた正の駆動力が発生する。つまり、バッテリ94の残容量SOCが加速下限値SOC1A以下の場合は、加速・減速制御部105が変速比を、目標変速比G1Aより低速の目標変速比G1ALに変更している。そのため、後輪3には、加速・減速制御部105が変速比を目標変速比G1Aとした場合よりも大きな正の駆動力が発生する。
 第1実施形態の自動二輪車1によると、変速機40は、クランク軸21に動力伝達可能に接続される。つまり、電動モータ式の自動制御変速装置50は、クランク軸21に接続される。電動モータ式の自動制御変速装置50は、電動モータ71により設定された変速比で、エンジン本体部20の動力を伝達する。つまり、電動モータ式の自動制御変速装置50は、クランク軸21から動力が伝達される。つまり、クランク軸21は、動力伝達経路における電動モータ式の自動制御変速装置50の上流にある。駆動輪である後輪3は、電動モータ式の自動制御変速装置50に接続される。後輪3は、電動モータ式の自動制御変速装置50から伝達された動力により、駆動力を発生させる。電動モータ式の自動制御変速装置50は、電動モータ71を制御して変速比を変更することで、後輪3の駆動力を制御する。電動モータ式の自動制御変速装置50は、電動モータ71を制御して変速比を変更することで、後輪3の駆動力を制御する。一方、上流回転電機90は、クランク軸21に直結される。上流回転電機90は、クランク軸21から後輪3に至るまで動力が伝達される動力伝達経路において、電動モータ式の自動制御変速装置50の上流に配置された回転電機である。上流回転電機90は、自動二輪車1の減速時に、クランク軸21に逆回転方向のトルクを付与する。上流回転電機90は、自動二輪車1の減速時に、クランク軸21に、逆回転方向のトルクを付与することにより、機関損失を発生させる。また、上流回転電機90は、自動二輪車1の加速時に、クランク軸21に、正回転方向のトルクを付与することにより、機関出力を増加させる。クランク軸21の正回転方向のトルクが増加すると、正の駆動力が増加する。また、クランク軸21の逆回転方向のトルクが発生すると、負の駆動力が増加する。上流回転電機90は、クランク軸21の正回転方向のトルクを付与するか、クランク軸21の逆回転方向のトルクを付与することにより、駆動力を制御する。
 ここで、電動モータ式の自動制御変速装置50および上流回転電機90は、駆動力を制御する応答性が異なる。電動モータ式の自動制御変速装置50は、変速比を変更する制御が行われる。電動モータ式の自動制御変速装置50は、電動モータ71、回転力変換機構72、および、回転力伝達機構80を有する。つまり、電動モータ式の自動制御変速装置50で変速比を変更する制御では、電動モータ71を含む電動モータ式の自動制御変速装置50の機構による制約がある。そのため、変速装置制御部104が、電動モータ式の自動制御変速装置50に対して、アクセル操作に伴って設定された変速比に基づいて、変速比を変更する制御が行われてから、駆動力が制御されるまでにタイムラグが生じる。一方、上流回転電機90は、クランク軸21に連結されている。そのため、上流回転電機90は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するトルクを変更する制御が行われてから、駆動力が制御されるまでにタイムラグがほとんどない。従って、電動モータ式の自動制御変速装置50および上流回転電機90は、駆動力を制御する応答性が異なる。
 更に、電動モータ式の自動制御変速装置50は、乾式ベルト32を使用した無段変速機である。乾式ベルト32は、プライマリプーリ42およびセカンダリプーリ52との摺動部32aが潤滑剤で潤滑されない。乾式ベルト32は、乾式空間31aに配置されている。乾式ベルト32は、ゴムまたは樹脂で形成される。一方、潤滑剤が潤滑される潤滑空間にベルトが配置される場合、ベルトは、金属ベルトまたはチェーン等の金属で形成される。従って、乾式ベルトを使用した電動モータ式の自動制御変速装置50は、金属ベルトを使用した電動モータ式の自動制御変速装置よりも、プライマリプーリおよびセカンダリプーリとの摺動部の摩擦が生じやすい。そのため、乾式ベルトを使用した電動モータ式の自動制御変速装置50は、金属ベルトを使用した電動モータ式の自動制御変速装置と比較して、駆動力の制御の応答性が低下する。つまり、乾式ベルトを使用した電動モータ式の自動制御変速装置50は、変速比を変更する制御を開始してから、駆動力が制御されるまでにタイムラグがより多く生じる。
 一方、上流回転電機90はクランク軸21に直結しており、上流回転電機90とクランク軸21との間に配置される機構がない。そのため、上流回転電機90は、回転電機制御部103が上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するトルクを変更する制御が行われてから、駆動力が制御されるまでにタイムラグがほとんどない。従って、上流回転電機90が駆動力を制御する応答性は、電動モータ式の自動制御変速装置50が駆動力を制御する応答性より早い。つまり、電動モータ式の自動制御変速装置50および上流回転電機90は、駆動力を制御する応答性が異なる。
 加速・減速制御部105は、自動二輪車1の加速時または減速時に、変速装置制御部104による変速装置制御と、回転電機制御部103による回転電機制御の両方を実施可能である。加速・減速制御部105の変速装置制御部104は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する。また、加速・減速制御部105の回転電機制御部103は、上流回転電機90を制御して動力伝達経路における電動モータ式の自動制御変速装置50の上流に付与するトルクを変更する。そして、加速・減速制御部105は、自動二輪車1の加速時に、変速装置制御部104による加速時変速装置制御、または、回転電機制御部103による加速時回転電機制御を行う。加速時変速装置制御では、変速装置制御部104は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する。加速時回転電機制御では、回転電機制御部103は、上流回転電機90を制御してクランク軸21に付与するクランク軸21の正回転方向のトルクを変更する。加速・減速制御部105は、自動二輪車1の減速時に、変速装置制御部104による減速時変速装置制御、または、回転電機制御部103による減速時回転電機制御を行う。減速時変速装置制御では、変速装置制御部104は、電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更する。減速時回転電機制御では、回転電機制御部103は、上流回転電機90を制御してクランク軸21に付与するクランク軸21の逆回転方向のトルクを変更する。ここで、電動モータ式の自動制御変速装置50および上流回転電機90は、駆動力を制御する応答性が異なる。従って、加速・減速制御部105が、電動モータ式の自動制御変速装置50および上流回転電機90の制御を行うことにより、駆動力の制御性を向上できる。さらに、上流回転電機90は、クランク軸21から後輪3に至るまでの動力伝達方向において、電動モータ式の自動制御変速装置50より上流に配置される。つまり、動力伝達経路において、上流回転電機90が、電動モータ式の自動制御変速装置50よりも上流に配置される。そして、上流回転電機90が付与したトルクに電動モータ式の自動制御変速装置50の変速比を乗じた駆動力が、後輪3に伝達される。これにより、電動モータ式の自動制御変速装置50で、変速比を切り替える回数が必要なくなる、または、変速比を変化させる量が少なくなる。そのため、電動モータ式の自動制御変速装置50が変速比を変更するまでのタイムラグを取り除く、もしくは短縮することが可能になる。つまり、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。言い換えると、電動モータ式の自動制御変速装置50よりも高い応答性で制御可能な上流回転電機90を、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けることで、アクセル操作に対する駆動力の追従性を向上できる。更に、上流回転電機90が発生させる小さな機関出力または機関損失の変化によっても、駆動力を変化させることができる。以上から、本実施形態の自動二輪車1は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 また、自動二輪車1は、自動車等の四輪車両と比較して、左右方向の長さが前後方向の長さよりもより小さく構成されている。自動二輪車1のアクセル操作に対する駆動力の追従性の観点から、自動二輪車1の左右方向の操縦性を向上させることが好ましい。そのため、自動二輪車1では、重量物を自動二輪車1の中心付近に配置することが好ましい。動力伝達経路では、クランク軸21から後輪3に至るまで動力が伝達される。つまり、動力伝達方向の上流には、クランク軸21を有するエンジン本体部20が配置される。動力伝達方向の下流には、後輪3が配置される。エンジン本体部20は、重量物であり、自動二輪車1の中心付近に配置される。一方、後輪3は、自動二輪車1の端部に配置される。ここで、回転電機も重量物である。回転電機は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けるよりも上流に設けた方が、自動二輪車1のより中心付近に配置される。従って、動力伝達方向の電動モータ式の自動制御変速装置50の上流に上流回転電機90を設けることで、自動二輪車1の左右方向の操縦性を向上させることができる。
 また、自動二輪車1は、自動車等の四輪車両と比較して、車両がコンパクトに構成されている。自動二輪車1のアクセル操作に対する駆動力の追従性の観点から、車両が大型化することは好ましくない。そのため、回転電機のサイズは小さいことが望ましい。また、自動二輪車1において、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けられた上流回転電機90は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けられた下流回転電機よりも、高い回転速度で回転する場合がある。モータの効率は回転速度に依存する。つまり、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けられた上流回転電機90は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けられた下流回転電機よりも、モータの効率が良い場合がある。回転電機は、一般的に、サイズが大きいほど、出力が大きい。そのため、動力伝達方向の電動モータ式の自動制御変速装置50の上流に設けられた上流回転電機90は、動力伝達方向の電動モータ式の自動制御変速装置50の下流に設けられた下流回転電機よりもモータの効率が良い場合、小さいサイズでも同じ出力を得ることができる。従って、動力伝達方向の電動モータ式の自動制御変速装置50の上流に上流回転電機90を設けることで、自動二輪車1の大型化を抑制することができる場合がある。
 また、加速・減速制御部105は、自動二輪車1の加速時に、変速装置制御部104による加速時変速装置制御または回転電機制御部103による加速時回転電機制御を切り替えて行う。また、加速・減速制御部105は、自動二輪車1の加速時に、変速装置制御部104による加速時変速装置制御および回転電機制御部103による加速時回転電機制御を同時に行う。また、加速・減速制御部105は、自動二輪車1の減速時に、変速装置制御部104による減速時変速装置制御または回転電機制御部103による減速時回転電機制御を切り替えて行う。また、加速・減速制御部105は、自動二輪車1の減速時に、変速装置制御部104による減速時変速装置制御および回転電機制御部103による減速時回転電機制御を同時に行う。加速・減速制御部105は、電動モータ式の自動制御変速装置50または上流回転電機90の制御を切り替えて行うことで、駆動力の制御の応答性に応じた制御を行うことができる。そして、駆動力の制御の応答性を向上できる。また、加速・減速制御部105は、電動モータ式の自動制御変速装置50および上流回転電機90の制御を同時に行うことで、駆動力の制御の応答性を高めることができる。そして、自動二輪車1は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 また、加速・減速制御部105は、バッテリ94の残容量SOCに応じて、上流回転電機90の駆動を制御する。または、加速・減速制御部105は、バッテリ94の残容量SOCに応じて、電動モータ式の自動制御変速装置50の電動モータ71を制御する。具体的には、加速・減速制御部105は、自動二輪車1の加速時において、(a)バッテリ94の残容量が予め定めた加速下限値より大きい場合は、回転電機制御部103により上流回転電機90を制御すると同時に、変速装置制御部104により電動モータ式の自動制御変速装置50の電動モータ71を制御する。また、加速・減速制御部105は、自動二輪車1の加速時において、(b)バッテリ94の残容量が予め定めた加速下限値以下の場合は、変速装置制御部104により電動モータ式の自動制御変速装置50の電動モータ71を制御する。また、加速・減速制御部105は、自動二輪車1の減速時において、(c)バッテリ94の残容量が予め定めた減速上限値より小さい場合は、回転電機制御部103により上流回転電機90を制御すると同時に、変速装置制御部104により電動モータ式の自動制御変速装置50の電動モータ71を制御する。また、加速・減速制御部105は、自動二輪車1の減速時において、(d)バッテリ94の残容量が予め定めた減速上限値以上の場合は、電動モータ式の自動制御変速装置50の電動モータ71を制御する。これにより、自動二輪車1の加速時に、バッテリ94の残容量が少ない場合に加速・減速制御部105が上流回転電機90を制御すると、上流回転電機90の制御中にバッテリ94の容量がなくなる可能性が高い。そこで、加速・減速制御部105は、上流回転電機90を制御せず、変速装置制御部104により電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更することにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。また、自動二輪車1の減速時に、バッテリ94の残容量が多い場合に、加速・減速制御部105が上流回転電機90を制御すると、上流回転電機90の制御中にバッテリ94の容量が満充電になる可能性が高い。そこで、加速・減速制御部105が、上流回転電機90を制御せず、変速装置制御部104により電動モータ式の自動制御変速装置50の電動モータ71を制御して変速比を変更することにより、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。したがって、バッテリ94の満充電や過充電を防ぐことができる。また、バッテリ94の充電状態にかかわらず、自動二輪車1の加速時または減速時における急激な駆動力の変化を抑えることができる。
 そして、加速・減速制御部105は、自動二輪車1の加速時または減速時に、アクセルセンサ4bからの出力信号に基づいて算出したアクセル開度、スロットル開度センサ29cからの出力信号に基づいて算出したスロットル開度および車速センサ3cの出力信号に基づいて算出した車速等の各種データに基づいて、目標変速比を算出する。目標変速比は、電動モータ式の自動制御変速装置50が変更する変速比である。これにより、本実施形態の自動二輪車1は、自動二輪車1の車両の状態から、目標変速比を算出することができる。そして、自動二輪車1の車両の状態が同じ条件の場合に同じような走行を実現することができる。つまり、本実施形態の自動二輪車1は、自動二輪車1の減速時または加速時に、再現性を向上させて、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。
 さらに、加速・減速制御部105は、自動二輪車1の加速時または減速時に、エンジン回転速度センサ21sからの出力信号およびシーブ位置検出センサ85からの出力信号に基づいて、上流回転電機90がクランク軸21に付与するトルクを算出する。これにより、本実施形態の自動二輪車1は、自動二輪車1の車両の状態から、上流回転電機がクランク軸に付与するトルクを算出することができる。そして、自動二輪車1の車両の状態が同じ条件の場合に、同じような走行を実現することができる。つまり、自動二輪車1は、自動二輪車1の減速時または加速時に、再現性を向上させて、ライダーのアクセル操作に対する駆動力の追従性を向上させることができる。
 また、上流回転電機90の回転軸線である回転電機回転軸線Ag1は、クランク軸21の回転軸線であるクランク回転軸線Ac1と同一直線上に配置される。そして、上流回転電機90は、動力伝達経路における電動モータ式の自動制御変速装置50の上流のクランク軸21に直接トルクを付与することができる。つまり、上流回転電機90は、駆動力の制御の応答性を高めることができる。そして、本実施形態の自動二輪車1は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 また、加速・減速制御部105は、変速装置制御を実施する変速装置制御部104と、回転電機制御を実施する回転電機制御部103とを有する。変速装置制御部104と回転電機制御部103は、1つの同じ装置であるECU100に構成される。これにより、加速・減速制御部105をコンパクトに形成することができる。そして、自動二輪車1の大型化を抑制することができる。
(第2実施形態)
 [自動二輪車の全体構成]
 第2実施形態に係る自動二輪車201の全体構成について、図11に基づいて説明する。尚、図11は、水平な路面に直立した状態で配置された自動二輪車201を示している。自動二輪車201は、車輪である前輪202および後輪203と、車体フレーム207とを備えている。後輪203が駆動輪である。
 自動二輪車201は、いわゆるモーターサイクル型の自動二輪車である。車体フレーム207は、右旋回時に車両201の右方に傾斜し、左旋回時に車両201の左方に傾斜する。
 車体フレーム207は、ヘッドパイプ207aと、メインフレーム207bと、シートレール207cと、シートピラーチューブ207dとを備えている。メインフレーム207bは、ヘッドパイプ207aから後方斜め下向きに延びる。シートレール207cは、左右両側に設けられて、メインフレーム207bの中途部から後方斜め上向きに延びる。シートピラーチューブ207dは、左右両側に設けられて、メインフレーム207bの後端部とシートレール207cの中途部とに接続される。ヘッドパイプ207aは、車体フレーム207の前部に形成される。ヘッドパイプ207aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット204に連結されている。ハンドルユニット204には、一対のフロントフォーク205の上端部が固定されている。フロントフォーク205の下端部は、前輪202を支持している。
 メインフレーム207bの後端部には、左右一対のリヤアームブラケット207b1が設けられている。リヤアームブラケット207b1は、メインフレーム207bの後端部から下向きに突出している。これらリヤアームブラケット207b1には、ピボット軸207eが設けられている。このピボット軸207eに、リヤアーム207fの前端部が揺動自在に支持されている。リヤアーム207fの後端部には、後輪203が支持されている。尚、リヤアームブラケット207b1は、車体フレーム207の一部に含まれる。
 車体フレーム207には、後輪203を駆動するエンジンユニット206が支持されている。尚、エンジンユニット206の一部は、後述するフロントカウル209およびレッグシールド211に覆われている。しかしながら、図11では、説明のためにエンジンユニット206を実線で記載し、フロントカウル209およびレッグシールド211を二点鎖線で記載している。エンジンユニット206は、後述するシート208の上端よりも下方に配置されている。エンジンユニット206は、メインフレーム207bに吊り下げられた状態で支持されている。
 車体フレーム207の上部には、シート208および燃料タンク210が支持されている。シート208は、燃料タンク210の後端部からシートレール207cの後端部に向かって伸びている。燃料タンク210は、シートレール207cの前半部の上方に配置されている。
 フロントフォーク205の上部はフロントカウル209で覆われている。フロントカウル209の下方には、レッグシールド211が配置される。レッグシールド211は、自動二輪車201の下部の左右両側に配置されている。レッグシールド211は、ライダーの脚を覆うカバー部材である。
 車体フレーム207は、各種センサやECU(制御装置)300などの電子機器に電力を供給するバッテリ294(図12参照)が支持されている。ECU300は、自動二輪車201の各部の動作を制御する。
 ハンドルユニット204と、ステアリングシャフトと、フロントフォーク205と、前輪202は、一体的に左右に回転するように設けられている。前輪202は、ハンドルユニット204の操作によって操舵される。ハンドルユニット204が左右方向に回されると、前輪202の幅方向中央を通る平面は、車両201の前後方向(FB方向)に対して傾斜する。
 図11及び図12に示すように、ハンドルユニット204には、アクセルグリップ204aおよびブレーキレバー204cが構成される。ハンドルユニット204の右グリップは、アクセルグリップ204aを構成する。アクセルグリップ204aは、ライダーによって操作されて回転する。アクセルグリップ204aは、エンジンの出力を調整するために操作される。アクセルグリップ204aには、アクセルセンサ204bが設けられる。アクセルセンサ204bは、ライダーにより操作されるアクセルグリップ204aの開度(以下、アクセル開度)を検知する。アクセルセンサ204bは、例えばアクセルグリップ204aに設けられるポテンショメータであり、ライダーのアクセル開度に応じた電気信号を出力する。ECU300は、アクセルセンサ204bの出力信号に基づいて、ライダーのアクセル開度を検知する。ハンドルユニット204の右グリップには、ブレーキレバー204cが設けられる。ブレーキレバー204cは、ライダーによって操作される。ブレーキレバー204cは、前輪202の回転を抑制するために操作される。また、ハンドルユニット204には、メインスイッチ等の各種スイッチが設けられている。
 ハンドルユニット204の左側には、シフトスイッチ243が設けられている。シフトスイッチ243は、シフトアップスイッチ243aとシフトダウンスイッチ243bとからなり、手動操作によりギアポジションをニュートラルから最高ギア(ここでは6速ギア)までの間で増加または減少させることができる。さらに、ハンドルユニット204には、表示装置245が設けられている。表示装置245には、車速、エンジン回転速度、ギアポジションなどが表示される。また、表示装置245には、インジケータ(表示灯)が設けられている。
 リーン車両である自動二輪車201が旋回している状態における車体フレーム207の傾斜方向については、図2に基づいて説明した第1実施形態に係る自動二輪車1と同様である。そのため、その説明を省略する。
 [エンジンユニットの構成]
 次に、エンジンユニット206の構成について、図12に基づいて説明する。図12は、第2実施形態に係る自動二輪車201の概略構成を説明するブロック図である。尚、図12において、後述するクランク軸252および上流回転電機290、変速機280のドライブ軸258および後輪203のそれぞれを結ぶ軸は、模式的に直線で示している。また、これらの軸は、機械的に伝達される動力の経路を示す動力伝達経路である。
 エンジン本体部220は、1つの気筒を有する単気筒エンジンである。エンジン本体部20は、吸気行程、圧縮行程、燃焼行程(膨張行程)、および排気行程を繰り返す4ストローク1サイクルエンジンである。
 エンジン本体部220は、クランクケース部221およびシリンダ部222を有する。クランクケース部221には、クランク軸252が収容される。シリンダ部222は、シリンダボディ223、シリンダヘッド224、および、ヘッドカバー225(図11参照)を有する。ヘッドカバー225は、エンジンユニット206の前部を形成する。シリンダヘッド224は、ヘッドカバー225の後端部に接続されている。シリンダボディ223は、シリンダヘッド224の後端部に接続されている。
 図12に示すように、シリンダボディ223には、シリンダ孔223aが形成される。シリンダ孔223aの中心軸線がシリンダ軸線である。エンジン本体部220は、シリンダ軸線が垂直方向に延びるように、車体フレーム207に搭載される。または、エンジン本体部220は、シリンダ軸線を前傾させて、車体フレーム207に搭載される。シリンダ軸線の水平方向に対する傾斜角度は、0度より大きく90度以下である。シリンダ孔223aには、ピストン226が摺動自在に収容される。シリンダヘッド224の下面とシリンダ孔223aとピストン226によって、燃焼室224aが形成される。シリンダヘッド224には、点火プラグ(点火装置)224bが設けられる。点火プラグ224bは、燃焼室224a内で燃料と空気との混合ガスに点火する。
 シリンダヘッド224には、吸気管220aが接続されている。吸気管220aには、燃料タンク(不図示)内の燃料を、吸気管220a内に噴射するインジェクタ227が設けられる。インジェクタ227によって噴射された燃料は、燃焼室224aに供給される。インジェクタ227は、電子制御式の燃料供給装置であり、インジェクタ227による燃料の噴射量はECU300によって制御される。シリンダヘッド224には、排気管220bが接続されている。排気管220bは、燃料の燃焼によって発生した排ガスを排出する。
 吸気管220aは、スロットルボディ229に接続されている。スロットルボディ229の内部には、スロットル弁229aが配置されている。スロットル弁229aは、スロットルボディ229を流れる空気量を調整する。スロットルボディ229より上流の吸気管220aの端部には、エアクリーナ(図示せず)が設けられる。エアクリーナは、大気を吸入する空気吸入口を有する。空気吸入口から吸気管220a内に吸入された大気は、スロットルボディに流入される。スロットル弁229aを通過した空気は、吸気管220aを通過して、シリンダボディ223に供給される。スロットル弁229aは電子制御式のスロットルである。スロットルボディ229には、スロットルアクチュエータ229bが設けられている。スロットルアクチュエータ229bは、スロットル弁229aを電子制御により開閉する。スロットルアクチュエータ229bは、ECU300から供給される電力によって動作するモータを含む。スロットル弁229aの開度を、スロットル開度と称する。ECU300は、モータに供給する電力を変化させることで、スロットル開度を制御している。
 ピストン226には、クランクケース部221の内部に配置されたクランク軸252に連結されている。ピストン226は、燃焼室224aに供給された燃料が燃焼することによって、往復動する。ピストン226が往復動することによってクランク軸252が回転する。
 また、クランク軸252には、動力伝達機構295が連結されている。また、動力伝達機構295には、上流回転電機290が連結されている。つまり、上流回転電機290の回転軸線である回転電機回転軸線Ag2は、クランク軸252の回転軸線である回転電機回転軸線Ac2と平行に配置される。動力伝達機構295は、ギアまたはチェーン等である。クランク軸252および上流回転電機290は、動力伝達機構295を介して、互いに動力が伝達される。上流回転電機290は、三相発電機であり、永久磁石式発電機である。上流回転電機290の駆動状態は、発電状態と力行状態がある。具体的には、上流回転電機290が、クランク軸252にクランク軸252の逆回転方向のトルクを付与して発電する駆動状態は、発電状態である。言い換えると、発電状態では、クランク軸252の正回転方向の一部のトルクがクランク軸252から上流回転電機290に付与され、上流回転電機290がクランク軸252の正回転方向と同じ方向に回転される。また、上流回転電機290が後述するバッテリ294から供給された電力により、クランク軸252にクランク軸252の正回転方向のトルクを付与して、クランク軸252を正回転させる駆動状態は、力行状態である。上流回転電機290は、エンジン始動時には、スターターモータとして、力行状態で駆動される。また、エンジン始動後の通常運転時は、上流回転電機290は、力行状態または発電状態で駆動される。上流回転電機290は、スターターモータと一体化された装置として構成される。尚、スターターモータと回転電機は別々に構成されていてもよい。
 クランク軸252の図示しない端部には、エンジン回転速度センサ253が設けられている。クランク軸252は、クラッチ254を介してメイン軸255に連結されている。クラッチ254は、湿式多板式である。クラッチ254は、クラッチハウジング254a、クラッチボス254b、プレッシャープレート278を備えている。クラッチハウジング254aは、メイン軸255に対して相対的に回転可能に設けられている。クラッチハウジング254aには複数のフリクションプレート254cが取り付けられている。クラッチボス254bは、メイン軸255と一体的に回転する。クラッチボス254bには複数のクラッチプレート254dが取り付けられている。各クラッチプレート254dは、隣り合うフリクションプレート254c、254cの間に配置されている。プレッシャープレート278には、フリクションプレート254cに接触可能に設けられている。プレッシャープレート278には、バネが設けられている。このバネは、フリクションプレート254cがクラッチプレート254dに押し付けられる方向に、プレッシャープレート278を付勢する。フリクションプレート254cがクラッチプレート254dに押し付けられることで、クランク軸252の回転力が、メイン軸255に伝達される。尚、クラッチ254は湿式多板式のクラッチに限定されない。クラッチ254は、例えば、乾式クラッチでもよく、単板式のクラッチでもよい。
 メイン軸255には、多段(図12では6段)の変速ギア257が装着される。また、メイン軸255には、メイン軸回転速度センサ256が設置されている。メイン軸255に装着された複数の変速ギア257は、ドライブ軸258上に装着された複数の変速ギア259と噛み合っている。ドライブ軸258は、メイン軸255と平行に配置された軸である。ドライブ軸258は、後輪203の車軸である。尚、図12では、説明の便宜上、複数の変速ギア257と複数の変速ギア259とを分離して示している。
[電動モータ式の自動制御変速装置の構成]
 ここで、電動モータ式の自動制御変速装置250の構成について、図4および図5に基づいて、詳細に説明する。電動モータ式の自動制御変速装置250は、変速機280、変速機制御装置282および自動クラッチ装置277を有する。
 変速機280は、複数の変速ギア257、複数の変速ギア259および後述するシフトカム279により構成される有段変速機である。変速ギア257および変速ギア259は、選択されたギア以外は、いずれか一方がメイン軸255またはドライブ軸258に対して空転状態で装着されている。つまり、メイン軸255からドライブ軸258への動力の伝達は、選択された一対の変速ギアのみを介して行われる。尚、一対の変速ギア257、259が、メイン軸255からドライブ軸258へ駆動力を伝達可能に噛み合っている状態を、ギアイン状態という。
 変速機280において、変速ギア257および変速ギア259を選択して、変速比の変更を行う動作は、シフトカム279により行われる。シフトカム279には、複数のカム溝260が形成される。図12の例では、3本のカム溝260が形成される。各カム溝260には、シフトフォーク261が装着される。複数のシフトフォーク261のうちの一部のシフトフォーク261は、メイン軸255の所定の変速ギア257に係合している。残りのシフトフォーク261は、ドライブ軸258の所定の変速ギア259に係合している。シフトカム279が回転することにより、シフトフォーク261がカム溝260に沿って軸方向に移動する。シフトフォーク261の移動に連動して、メイン軸255およびドライブ軸258に対してスプライン嵌合されている所定の変速ギア257、259が軸方向に移動する。そして、軸方向に移動した変速ギア257および変速ギア259が、メイン軸255およびドライブ軸258に空転状態で装着されている他の変速ギア257および変速ギア259と係合することにより、変速比が変更される。変速機280は、シフトアクチュエータ265により駆動される。シフトアクチュエータ265は、電動モータ265である。
 自動クラッチ装置277は、クラッチ254、クラッチアクチュエータ263、油圧伝達機構264、ロッド271、レバー272、ピニオン273およびラック274から構成される。クラッチ254のプレッシャープレート278は、クラッチアクチュエータ263により、バネの付勢力と反対方向に駆動される。クラッチアクチュエータ263は、油圧伝達機構264、ロッド271、レバー272、ピニオン273およびラック274を介して、クラッチ254のプレッシャープレート278と接続されている。油圧伝達機構264は、油圧シリンダ264a、オイルタンク(図示せず)、ピストン(図示せず)等を備える。油圧伝達機構264は、クラッチアクチュエータ263の駆動により油圧を発生させ、その油圧をロッド271に伝達させる機構である。ロッド271は、レバー272に回動可能に接続されている。クラッチアクチュエータ263の駆動により、ロッド271が矢印Aのように往復動作し、レバー272が矢印Bのように回動する。レバー272は、ピニオン273を介してラック274に接続されている。レバー272が矢印Bのように回動することにより、クラッチ254のプレッシャープレート278に接続されたラック274を移動させる。これにより、クラッチ254のプレッシャープレート278が、ラック274の移動方向に応じて、フリクションプレート254cを押圧する状態と押圧しない状態に切り換えられる。つまり、クラッチ254は、ラック274の移動方向に応じて、クランク軸252の回転をメイン軸255への伝達する接続状態と伝達しない切断状態に切り換えられる。クラッチアクチュエータ263は、電動モータで構成される。尚、本実施形態では、クラッチアクチュエータ263として電動モータを採用しているが、ソレノイドや電磁弁等であってもよい。また、自動クラッチ装置277は、油圧伝達機構264を採用しているが、ギアやカム等であってもよい。
 シフトアクチュエータ265、減速機構266、ロッド275、および、リンク機構276により、変速機制御装置282が構成されている。シフトアクチュエータ265は、減速機構266、ロッド275およびリンク機構276を介して、シフトカム279と接続されている。シフトアクチュエータ265は、減速機構266に接続されている。減速機構266は、複数の減速ギア(図示せず)を備えている。減速機構266は、ロッド275に接続されている。減速機構266は、電動モータ構成されるシフトアクチュエータ265の回転を減速して、ロッド275に伝達する。ロッド275は、減速機構266の回転力を往復運動に変換する。ロッド275は、リンク機構276に接続される。リンク機構276は、シフトカム279に接続されて、ロッド275の往復運動をシフトカム279の回転力に変換する。
 変速機制御装置282が電動モータ式の自動制御変速装置250の変速比を変更する際の動作について説明する。まず、電動モータ式の自動制御変速装置250の変速比を変更する際には、電動モータであるシフトアクチュエータ265の駆動によりロッド275が矢印Cのように往復運動する。そして、シフトカム279は、リンク機構276を介して所定角度だけ回転する。これにより、カム溝260に沿って、シフトフォーク261が所定量だけ軸方向に移動する。そして、一対の変速ギア257、259が、それぞれ、メイン軸255およびドライブ軸258に固定状態となる。これにより、メイン軸255からドライブ軸258に動力が伝達される。
 クラッチアクチュエータ263に接続された油圧伝達機構264には、クラッチ位置センサ268が設置されている。クラッチ位置センサ268は、油圧伝達機構264のピストンの移動量を検出することによってクラッチ位置を検出する。油圧伝達機構264のピストンの移動量は、フリクションプレート254cとクラッチプレート254dとの距離と同じである。尚、本実施形態では、クラッチ位置センサ268は、油圧伝達機構264のピストンの移動量を検出することによって、クラッチ位置を検出するように構成されているが、それに限らない。クラッチ位置センサ268は、クラッチアクチュエータ263とクラッチ254との間に設けられている伝達機構の位置を検出するようにしてもよい。例えば、クラッチ位置センサ268は、ロッド271や、ラック274の位置を検出するようにしてもよい。また、クラッチ位置センサ268は、油圧伝達機構264のピストンの移動量から間接的にクラッチ位置を取得する場合に限定されない。クラッチ位置センサ268は、クラッチ位置を直接検出してもよい。つまり、クラッチ位置センサ268は、フリクションプレート254cとクラッチプレート254dとの距離を直接測定するように構成されていてもよい。また、ドライブ軸258には車速センサ269が設置されている。さらに、シフトカム279にはギアポジションを検出するギアポジションセンサ270が設置されている。ギアポジションとは、シフトカム279の回転量である。
 電動モータ式の自動制御変速装置250の変速比は以下の2つの場合に変更される。1つ目は、シフトアップスイッチ243aまたはシフトダウンスイッチ243bの操作に応じて、ECU300が、クラッチアクチュエータ263およびシフトアクチュエータ265の駆動制御を行う場合である。2つ目は、自動二輪車201の加速時または減速時に自動的に、加速・減速制御部305が、クラッチアクチュエータ263およびシフトアクチュエータ265の駆動制御を行う場合である。走行中に、変速比が変更されると、次のような一連の動作が、所定のプログラムやマップに基づいて行われる。まず、クラッチアクチュエータ263により、クラッチ254が切断される。次に、シフトアクチュエータ265により、変速ギア257、259の軸方向の移動が行われる。そして、クラッチアクチュエータ263により、クラッチ254の接続が行われる。
[動力伝達経路]
 ここで、エンジンユニット206の動力伝達経路について、図12に基づいて説明する。
 図12に示すように、動力伝達経路は、クランク軸252から後輪203に至るまで動力が伝達される経路である。クランク軸252が、動力伝達経路における上流である。後輪203が、動力伝達経路における下流である。上流回転電機290は、動力伝達機構295を介して、クランク軸252に動力伝達可能に連結される。また、電動モータ式の自動制御変速装置250は、シフトカム279により選択された一対の変速ギア257、259により、クランク軸252に動力が伝達可能に連結される。クランク軸252の動力は、所定の変速ギア257、259に係合したメイン軸255およびドライブ軸258により、電動モータ式の自動制御変速装置250を経由して、後輪203に伝達される。クランク軸252、上流回転電機290、電動モータ式の自動制御変速装置250、後輪203は、この順番で、動力伝達経路の上流から下流に配置される。つまり、上流回転電機290は、クランク軸252から後輪203までの動力伝達経路において、電動モータ式の自動制御変速装置250より上流に配置される。クランク軸252は、動力伝達経路における電動モータ式の自動制御変速装置250の上流に配置される。
[ECUの構成]
 エンジンユニット206は、ECU300を有する。ECU300は、エンジンユニット206の動作を制御する。図12に示すように、ECU300は、アクセルセンサ204b、スロットル開度センサ229c、エンジン回転速度センサ253、メイン軸回転速度センサ256、クラッチ位置センサ268、車速センサ269、ギアポジションセンサ270等の各種センサと接続される。また、ECU100は、点火プラグ224b、インジェクタ227、スロットルアクチュエータ229b、シフトアップスイッチ243a、シフトダウンスイッチ243b、クラッチアクチュエータ263、シフトアクチュエータ265、上流回転電機290、表示装置245等と接続される。
 ECU300は、CPU、ROM、RAMなどで構成されている。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。これにより、ECU300には複数の機能処理部の各機能が実現される。図12に示すように、ECU300は、機能処理部として、燃焼制御部301、スロットル制御部302、加速・減速制御部305を含む。加速・減速制御部305は、回転電機制御部303および変速装置制御部304を有する。加速・減速制御部305は、本発明の制御装置である。
 燃焼制御部301は、点火プラグ224bの点火時期を制御する。また、燃焼制御部301は、インジェクタ227と燃料ポンプの駆動を制御する。それによって、燃焼制御部301は、燃料供給量を制御する。スロットル制御部302は、ライダーによるアクセルグリップ204aの操作に基づいて、スロットルアクチュエータ229bを作動させて、スロットル開度を制御する。回転電機制御部303は、上流回転電機290への通電を制御する。それによって、回転電機制御部303は、回生機能と力行機能を制御する。変速装置制御部304は、電動モータ式の自動制御変速装置250の電動モータ265を作動させて、電動モータ式の自動制御変速装置250の変速比の変更を制御する。
 燃焼制御部301は、ROM等の記憶部に格納されたプログラムを実行して、エンジン本体部220の燃焼動作を制御する。燃焼制御部301は、点火プラグ224bに放電による点火動作を行わせることによって、エンジン本体部220の燃焼動作を制御する。また、燃焼制御部301は、インジェクタ227と燃料ポンプの駆動を制御することによって、燃料供給量を制御して、エンジン本体部220の燃焼動作を制御する。本明細書において、燃料供給量の制御には、燃料ポンプから供給される燃料の供給量の制御と、インジェクタ227が噴射する燃料の噴射時間の制御とが含まれる。
 例えば、燃焼制御部301は、エンジン回転速度やスロットル開度の他、各種情報に基づいて、インジェクタ227と燃料ポンプの駆動を制御する。エンジン回転速度は、エンジン回転速度センサ253の出力信号に基づいて算出される。スロットル開度は、スロットル開度センサ229cの出力信号によって検知される。各種情報は、エンジン温度センサや酸素センサなど各種センサの出力信号に基づいて算出される。
 スロットル制御部302は、ライダーのアクセル操作に基づいてスロットル開度を制御する。つまり、スロットル制御部302は、アクセルセンサ204bの出力信号に基づいて、ライダーによるアクセルグリップ204aの操作量であるアクセル開度を検知する。そして、スロットル制御部302は、アクセル開度に基づいてスロットルアクチュエータ229bを作動させて、スロットル開度を制御する。つまり、スロットル制御部302は、スロットルアクチュエータ229bに駆動電力を供給し、スロットルアクチュエータ229bを作動させる。
 例えば、スロットル制御部302は、アクセル開度とスロットル開度とを対応付けるマップや関係式等を参照して、スロットル開度のフィードバック制御を行う。すなわち、スロットル制御部302は、マップ等を参照し、アクセル開度に対応する目標スロットル開度を算出する。そして、スロットル制御部302は、スロットル開度センサ229cによって検知した実際のスロットル開度であるスロットル開度が目標スロットル開度に一致するように、スロットル開度と目標スロットル開度との差に基づいて、スロットルアクチュエータ229bを作動させる。尚、アクセル開度とスロットル開度とを対応付けるマップ等は、記憶部に予め記憶される。
 加速・減速制御部305は、自動二輪車201の加速時または減速時に、変速装置制御部304による変速装置制御と、回転電機制御部303による回転電機制御の両方を実施可能である。変速装置制御部304による変速装置制御は、電動モータ式の自動制御変速装置250の電動モータ265を制御して変速比を変更する制御である。回転電機制御部103による回転電機制御は、上流回転電機290を制御して動力伝達経路における電動モータ式の自動制御変速装置250の上流に付与するトルクを変更する制御である。クランク軸252が、動力伝達経路における電動モータ式の自動制御変速装置250の上流に配置される。
 回転電機制御部303は、記憶部に格納されたプログラムを実行して、上流回転電機290への通電を制御して、上流回転電機290の駆動を制御する。つまり、回転電機制御部303は、回転電機制御を行う。上流回転電機90の駆動状態は、上述の通り、力行状態と発電状態がある。自動二輪車201の加速時に、上流回転電機290を力行状態で駆動させる際には、回転電機制御部303は加速時回転電機制御を行う。加速時回転電機制御では、上流回転電機290は、動力伝達機構295を介して、クランク軸252に対して付与するクランク軸252の正回転方向のトルクを変更するように制御される。つまり、加速時回転電機制御では、回転電機制御部303は、バッテリ294から供給された電力により、上流回転電機290をクランク軸252の正回転方向に回転するように制御される。これにより、上流回転電機290は、機関出力を発生させる。そして、クランク軸252の回転が、上流回転電機290によって正回転方向に補助される。また、自動二輪車201の減速時に、回転電機制御部303が上流回転電機290を発電状態で駆動させる際には、回転電機制御部303は減速時回転電機制御を行う。減速時回転電機制御では、上流回転電機290は、動力伝達機構295を介して、クランク軸21に対して付与するクランク軸21の逆回転方向のトルクを変更するように制御される。つまり、減速時回転電機制御では、回転電機制御部103は、上流回転電機90をクランク軸252の正回転方向に回転させて、上流回転電機290がクランク軸21のトルクを吸収するように制御する。これにより、上流回転電機290は、機関損失を発生させる。そして、クランク軸252の回転は、上流回転電機290により逆回転方向に負荷がかけられる。尚、上流回転電機290で吸収したクランク軸252のトルクは、バッテリ294に電力として蓄電される。
 変速装置制御部304は、シフトアップスイッチ243aまたはシフトダウンスイッチ243bからの入力信号に応じて、電動モータ式の自動制御変速装置250の変速比を制御する。または、変速装置制御部304は、自動二輪車201の加速時または減速時に、記憶部に格納されたプログラムを実行して、自動的に電動モータ式の自動制御変速装置250の変速比を制御する。つまり、変速装置制御部304は、変速装置制御を行う。自動二輪車201の加速時に、変速装置制御部304は、加速時変速装置制御を行う。加速時変速装置制御は、電動モータ式の自動制御変速装置250の電動モータ265を制御して変速比を変更する。自動二輪車201の減速時に、変速装置制御部304は、減速時変速装置制御を行う。減速時変速装置制御は、電動モータ式の自動制御変速装置250の電動モータ265を制御して変速比を変更する。変速装置制御部304には、クラッチ位置センサ268およびギアポジションセンサ270の出力信号が入力される。変速装置制御部304は、クラッチ位置センサ268の出力信号に基づいてクラッチアクチュエータ263を駆動させて、自動クラッチ装置277を制御する。また、変速装置制御部304は、ギアポジションセンサ270の出力信号に基づいて、現在設定されている変速比を検出する。そして、変速装置制御部104は、電動モータであるシフトアクチュエータ265を駆動させて、電動モータ式の自動制御変速装置250の変速比を変更する。つまり、変速装置制御部304はクラッチアクチュエータ263およびシフトアクチュエータ265に駆動電力を供給して作動させる。
 例えば、変速装置制御部304は、車速センサ269の出力信号に基づいて算出した車速と、スロットル開度センサ229cの出力信号によって検知したスロットル開度等の各種データに基づいて、電動モータ式の自動制御変速装置250が変更する変速比を算出する。
 加速・減速制御部305は、自動二輪車201の加速時に、加速制御を行う。加速・減速制御部305は、加速制御では、変速装置制御部304の加速時変速装置制御および回転電機制御部303の加速時回転電機制御を切り替えて行う。または、加速・減速制御部305は、加速制御では、変速装置制御部304の加速時変速装置制御および回転電機制御部303の加速時回転電機制御を同時に行う。加速・減速制御部305は、自動二輪車201の減速時に、減速制御を行う。加速・減速制御部305は、減速制御では、変速装置制御部304の減速時変速装置制御および回転電機制御部303の減速時回転電機制御を切り替えて行う。または、加速・減速制御部305は、減速制御では、変速装置制御部304の減速時変速装置制御および回転電機制御部303の減速時回転電機制御を同時に行う。
[回転電機の構成]
 第2実施形態の上流回転電機290、インナーステータ291、アウターロータ292、インバータ293、バッテリ294およびロータ位置検出センサ290aの構成は、第1実施形態の上流回転電機90、インナーステータ91、アウターロータ92、インバータ93、バッテリ94およびロータ位置検出センサ90aの構成と同一であり、その説明を省略する。
[加速・減速制御部305による減速制御および加速制御]
 第2実施形態における加速・減速制御部305による減速制御および加速制御の動作の一例は、第1実施形態における加速・減速制御部105による減速制御および加速制御の動作の一例と同様であり、その説明を省略する。尚、第2実施形態の加速・減速制御部305は、第1実施形態の加速・減速制御部105に相当する。また、第2実施形態の回転電機制御部303および変速装置制御部304は、第1実施形態の回転電機制御部103および変速装置制御部104に相当する。また、第2実施形態のアクセルセンサ204b、車速センサ269、エンジン回転速度センサ253、スロットル開度センサ229c、ギアポジションセンサ270は、第1実施形態のアクセルセンサ4b、車速センサ3c、エンジン回転速度センサ21s、スロットル開度センサ29c、シーブ位置検出センサ85に相当する。また、第2実施形態のクランク軸252、電動モータ式の自動制御変速装置250、電動モータ265は、第1実施形態のクランク軸21、電動モータ式の自動制御変速装置50、電動モータ71に相当する。また、第2実施形態の上流回転電機290、インバータ293、バッテリ294は、第1実施形態の上流回転電機90、インバータ93、バッテリ94に相当する。また、第2実施形態の表示装置245は、第1実施形態の表示装置110に相当する。
 第2実施形態の自動二輪車201は、第1実施形態の自動二輪車1の特徴に加えて、次の特徴を有する。
 電動モータ式の自動制御変速装置250は、シフトアクチュエータ265と、複数の変速ギアと、を有する有段変速機である。また、アクチュエータは、電動モータにより駆動される。複数の変速ギアは、アクチュエータにより選択可能に構成される。有段変速機は、電動モータによりアクチュエータを制御して、複数の変速ギアから1つの変速ギアを選択し、変速比を設定する。シフトアクチュエータ265を含む電動モータ式の自動制御変速装置250の機構による制約がある。更に、電動モータ式の自動制御変速装置250により、変速比を変更する制御が行われる際には、クラッチアクチュエータ263により、クラッチ254の切断と接続が行われる。従って、電動モータ式の自動制御変速装置250は、アクセル操作に伴って設定された変速比に基づいて、変速比を変更する制御が行われてから、駆動力が制御されるまでにタイムラグが生じる。そこで、加速・減速制御部305は、変速装置制御部304の変速装置制御と、回転電機制御部303の回転電機制御の両方を実施可能とすることで、駆動力の制御の応答性を高めることができる。そして、第2実施形態の自動二輪車201は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 上流回転電機290の回転軸線である回転電機回転軸線Ag2は、クランク軸252の回転軸線であるクランク回転軸線Ac2と平行に配置される。そして、上流回転電機290は、動力伝達機構295を介して、クランク軸252と連結されている。上流回転電機290は、動力伝達機構295を介して、動力伝達経路における電動モータ式の自動制御変速装置250の上流のクランク軸252にトルクを付与することができる。つまり、上流回転電機290は、駆動力の制御の応答性を高めることができる。そして、第2実施形態の自動二輪車201は、減速時または加速時に、ライダーのアクセル操作に対する駆動力の追従性を向上できる。
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。
 上記実施形態では、制御装置は、リーン車両の加速時に、バッテリの残容量が加速下限値より大きい場合、回転電機制御部が上流回転電機の駆動を制御した後、変速装置制御部が電動モータ式の自動制御変速装置の変速比を変更している。しかし、本発明のリーン車両の加速時の制御は、これに限らない。例えば、制御装置は、リーン車両の加速時に、変速装置制御部が電動モータ式の自動制御変速装置の変速比を変更した後、回転電機制御部が上流回転電機の駆動を制御してもよい。また、制御装置は、リーン車両の減速時に、バッテリの残容量が減速上限値より小さいである場合、回転電機制御部が上流回転電機の駆動を制御した後、変速装置制御部が電動モータ式の自動制御変速装置の変速比を変更している。しかし、リーン車両の減速時の制御は、これに限らない。例えば、制御装置は、リーン車両の減速時に、変速装置制御部が電動モータ式の自動制御変速装置の変速比を変更した後、回転電機制御部が上流回転電機を駆動してもよい。
 上記実施形態では、制御装置は、リーン車両の加速時に、バッテリの残容量が加速下限値より大きい場合、回転電機制御部による回転電機制御と変速装置制御部による変速装置制御を同時に行っている。しかし、本発明のリーン車両の加速時の制御は、これに限らない。例えば、制御装置は、リーン車両の加速時に、図13に示すように制御してもよい。図13は、リーン車両の減速時における次のパラメータの経時変化の一例を示すグラフである。図13(a)は、アクセル開度の経時変化の一例を示す。図13(b)は、駆動輪に発生する駆動力の経時変化の一例を示す。図13(c)は、エンジン回転速度の経時変化の一例を示す。変速装置制御部によって電動モータ式の自動制御変速装置の変速比を変更し、図13(c)に示すように、エンジン回転数が上昇していくと、イナーシャにより図13(b)の二点鎖線に示すように、駆動輪に生じる駆動力が急に低くなる。そこで、リーン車両にイナーシャによる機関損失が発生する際に、制御装置が、回転電機制御部によって、上流回転電機の駆動を制御して、動力伝達経路における電動モータ式の自動制御変速装置の上流に、クランク軸の正回転方向のトルクを付与するようにしてもよい。つまり、図13(b)に示すように、イナーシャにより生じた機関損失に対して、上流回転電機により生じた機関出力を加えることができる。よって、上流回転電機によって付与されたクランク軸の正回転方向のトルクにより、正の駆動力を発生することができ、駆動輪に生じる負の駆動力を打ち消すことができる。そして、ライダーのアクセル操作に対する駆動力の追従性を向上することができる。
 上記実施形態では、リーン車両の減速時および加速時に、制御装置は、バッテリの残容量に応じて、回転電機制御部による回転電機制御と変速装置制御部による変速装置制御を同時に行うか、または、変速装置制御部による変速装置制御のみを行っているが、それに限らない。本発明のリーン車両では、制御装置は、リーン車両の減速時または加速時に、バッテリの残容量に応じて、更に、回転電機制御部による回転電機制御のみを行ってもよい。
 上記実施形態の制御装置の減速制御の動作では、制御装置は、減速時回転電機制御を行わない場合の目標変速比を、減速時回転電機制御を行う場合の目標変速比よりもより低速の変速比で算出している。しかし、本発明のリーン車両は、制御装置は、減速時回転電機制御を行わない場合の目標変速比を、減速時回転電機制御を行う場合の目標変速比よりもより高速の変速比で算出してもよい。また、本発明のリーン車両は、制御装置は、減速時回転電機制御を行わない場合の目標変速比を、減速時回転電機制御を行う場合の目標変速比と同じ変速比で算出してもよい。同様に、上記実施形態の制御装置の加速制御の動作では、制御装置は、加速時回転電機制御を行わない場合の目標変速比を、加速時回転電機制御を行う場合の目標変速比よりもより低速の変速比で算出している。しかし、本発明のリーン車両は、制御装置は、加速時回転電機制御を行わない場合の目標変速比を、加速時回転電機制御を行う場合の目標変速比よりもより高速の変速比で算出してもよい。また、本発明のリーン車両は、制御装置は、加速時回転電機制御を行わない場合の目標変速比を、加速時回転電機制御を行う場合の目標変速比と同じ変速比で算出してもよい。
 上記実施形態では、制御装置は、リーン車両の加速時に、加速時変速装置制御または加速時回転電機制御を行っている。しかし、制御装置は、リーン車両の加速時に、加速時変速装置制御または加速時回転電機制御のいずれも行わなくてもよい。制御装置は、リーン車両の減速時に、減速時変速装置制御または減速時回転電機制御を行っている。しかし、制御装置は、リーン車両の減速時に、減速時変速装置制御または減速時回転電機制御のいずれも行わなくてもよい。
 上記第1実施形態のリーン車両は、車速センサからの出力信号に基づいて、車速を算出している。しかし、本発明のリーン車両の車速の算出方法は、それに限らない。本発明のリーン車両は、ロータ位置検出センサからの出力信号に基づいて、車速を算出してもよい。または、本発明のリーン車両は、セカンダリプーリ回転速度センサからの出力信号に基づいて、車速を算出してもよい。また、第2実施形態のリーン車両は、車速センサからの出力信号に基づいて、車速を算出している。しかし、本発明のリーン車両の車速の算出方法は、それに限らない。本発明のリーン車両は、メイン軸回転速度センサからの出力信号に基づいて、車速を算出してもよい。
 上記実施形態のリーン車両は、スロットル弁が電子制御式のスロットルである。しかし、本発明のリーン車両は、スロットル弁が電子制御式のスロットルでなくてもよい。スロットル弁は、ワイヤーを介してアクセルグリップと接続されていてもよい。この場合は、アクセルセンサは設けられない。そして、アクセルグリップの操作に応じて回転する軸がスロットルボディに設けられる。そして、スロットル開度センサがこの軸の回転量に応じた電気信号を出力する。尚、スロットル弁は、電子制御式のスロットルであることが好ましい。スロットル弁が電子制御式のスロットルであると、制御装置が、アクセルセンサおよびスロットル開度センサの出力信号に基づいて、駆動力を制御することができる。つまり、リーン車両が、減速時または加速時に、駆動力の制御性の再現性を向上させることができる。
 上記実施形態のリーン車両では、制御装置は、電気的に接続されていない1つの装置に燃焼制御部、スロットル制御部、回転電機制御部、および、変速装置制御部が構成されている。しかし、本発明のリーン車両は、燃焼制御部およびスロットル制御部を構成する装置と、回転電機制御部および変速装置制御部を構成する別の装置が、それぞれ電気的に接続されてもよい。また、本発明のリーン車両は、回転電機制御部を構成する装置と、変速装置制御部を構成する別の装置が、それぞれ電気的に接続されて、制御装置として構成されてもよい。これにより、制御装置の配置のレイアウトの自由度が向上する。そして、リーン車両の大型化を抑制することができる。
 上記第1実施形態のリーン車両は、変速機制御装置が潤滑空間に配置される。しかしながら、変速機制御装置は、乾式空間に配置されてもよい。
 上記実施形態のリーン車両は、1つのバッテリを有する。しかしながら、本発明のリーン車両は、複数のバッテリを有してよい。
 上記第1実施形態のリーン車両において、クランク回転軸線は回転電機回転軸線と同一線上にあり、クランク軸は回転電機に直結されている。しかし、本発明のリーン車両は、クランク回転軸線と回転電機回転軸線が平行に配置され、上流回転電機が、動力伝達機構を介してクランク軸と接続されてもよい。
 上記第2実施形態のリーン車両では、クランク回転軸線と回転電機回転軸線が平行に配置され、上流回転電機が動力伝達機構を介してクランク軸と接続されている。しかし、リーン車両は、クランク回転軸線は回転電機回転軸線と同一線上にあり、上流回転電機が、クランク軸に直結されてもよい。
 上記実施形態のリーン車両は、上流回転電機は、スターターモータと一体化されている。しかし、本発明のリーン車両は、上流回転電機と、スターターモータとが、別々に設けられてもよい。
 上記実施形態のリーン車両は、後輪が駆動輪である。しかし、本発明のリーン車両は、前輪が駆動輪でもよい。また、上記実施形態のリーン車両は、1つの前輪と1つの後輪を有している。しかし、本発明のリーン車両は、複数の前輪を有してもよい。または、本発明のリーン車両は、複数の後輪を有してもよい。
 上記実施形態のリーン車両では、無段変速機は、プライマリ軸部がクランク軸と一体で構成されている。しかしながら、本発明のリーン車両は、プライマリ軸部とクランク軸とが別々に設けられていてもよい。
 本発明のリーン車両では、無段変速機は、上記実施形態の無段変速機の構成に限らない。本発明のリーン車両では、無段変速機は、プライマリプーリと、セカンダリプーリと、乾式ベルトと、を有していれば、どのような構成であってもよい。但し、本発明の無段変速機は、プライマリプーリは、2つのプライマリシーブを有し、電動モータにより2つのプライマリシーブの幅が変化されるように構成される。また、乾式ベルトは、プライマリプーリおよびセカンダリプーリに巻回され、プライマリプーリおよびセカンダリプーリとの摺動部が潤滑剤で潤滑されない。また、制御装置は、電動モータを制御して前記2つのプライマリシーブの幅を変化させ、変速比を変更する。
 本発明のリーン車両では、有段変速機は、上記実施形態の有段変速機の構成に限らない。本発明のリーン車両では、有段変速機は、どのような構成であってもよい。また、本発明のリーン車両では、有段変速機は、電動モータにより駆動されるアクチュエータと、アクチュエータにより選択可能に構成される複数の変速ギアと、を有していることが好ましいこの場合、本発明の有段変速機は、制御装置が、電動モータによりアクチュエータを制御して複数の変速ギアから1つの変速ギアを選択し、変速比を変更する。
 本発明のリーン車両は、エンジンユニットのエンジン本体部が、複数の気筒を有する多気筒エンジンであってもよい。本発明のリーン車両は、エンジンユニットのエンジン本体部が、2ストロークエンジンであってもよい。本発明のリーン車両は、エンジンユニットのエンジン本体部が、自然空冷式のエンジンであってもよい。本発明のリーン車両は、エンジンユニットのエンジン本体部が、水冷式のエンジンであってもよい。
 上記実施形態のリーン車両として、自動二輪車を例示した。本発明のリーン車両は、右旋回時に車両の右方に傾斜し、左旋回時に前記車両の左方に傾斜する車体フレームを有するリーン車両であれば、どのようなリーン車両であってもよい。本発明のリーン車両は、自動二輪車以外の鞍乗型車両であってもよい。鞍乗型車両とは、ライダーが鞍にまたがるような状態で乗車する車両全般を指す。鞍乗型車両には、自動二輪車、三輪車、水上バイク、スノーモービル等が含まれる。本発明のリーン車両は、鞍乗型車両でなくてもよい。また、本発明のリーン車両は、運転者が乗車しないものであってもよい。また、本発明のリーン車両は、人を乗せずに走行可能なものであってもよい。これらの場合、リーン車両の前方向とは、リーン車両の前進方向のことである。
1,201 自動二輪車(リーン車両)
3,203 後輪(駆動輪)
6,206 エンジンユニット
7,207 車体フレーム
20,220 エンジン本体部
21,252 クランク軸
31a 乾式空間
32 乾式ベルト
42 プライマリプーリ
50 電動モータ式の自動制御変速装置(無段変速機)
52 セカンダリプーリ
71 電動モータ
90,290 上流回転電機
103,303 回転電機制御部
104,304 変速装置制御部
105,305 加速・減速制御部(制御装置)
250 電動モータ式の自動制御変速装置(有段変速機)
257,259 変速ギア
265 シフトアクチュエータ(電動モータ)
295 動力伝達機構
Ac1,Ac2 クランク回転軸線
Ag1,Ag2 回転電機回転軸線

Claims (10)

  1.  右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有するリーン車両であって、
     クランク軸を有するエンジン本体部と、
     前記クランク軸に接続され、電動モータにより設定された変速比で、前記エンジン本体部の動力を伝達する電動モータ式の自動制御変速装置と、
     前記電動モータ式の自動制御変速装置に接続され、前記電動モータ式の自動制御変速装置から伝達された動力により、駆動力を発生させる少なくとも1つの駆動輪と、
     前記クランク軸から前記駆動輪に至るまで動力が伝達される動力伝達経路において、前記電動モータ式の自動制御変速装置の上流に配置された回転電機であって、前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に、前記クランク軸の逆回転方向にトルクを付与するとともに、前記にトルクを付与する上流回転電機と、
     前記リーン車両の加速時または減速時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御して変速比を変更する変速装置制御と、前記上流回転電機を制御して前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に付与するトルクを変更する回転電機制御の両方を実施可能であり、(1)前記リーン車両の加速時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御して変速比を変更する加速時変速装置制御、または、前記上流回転電機を制御して前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に付与する前記クランク軸の正回転方向のトルクを変更する加速時回転電機制御を行い、または、(2)前記リーン車両の減速時に、前記電動モータ式の自動制御変速装置の前記電動モータを制御して変速比を変更する減速時変速装置制御、または、前記上流回転電機を制御して前記動力伝達経路における前記電動モータ式の自動制御変速装置の上流に付与する前記クランク軸の逆回転方向のトルクを変更する減速時回転電機制御を行う制御装置と、を備えることを特徴とするリーン車両。
  2.  前記制御装置は、
    (1)前記リーン車両の加速時に、前記加速時変速装置制御および前記加速時回転電機制御を切り替えて行うか、または、前記加速時変速装置制御および前記加速時回転電機制御を同時に行い、
    (2)前記リーン車両の減速時に、前記減速時変速装置制御および前記減速時回転電機制御を切り替えて行うか、または、前記減速時変速装置制御および前記減速時回転電機制御を同時に行うことを特徴とする請求項1に記載のリーン車両。
  3.  前記電動モータ式の自動制御変速装置は、2つのプライマリシーブを有し、前記電動モータにより前記2つのプライマリシーブの幅が変化されるように構成されたプライマリプーリと、セカンダリプーリと、前記プライマリプーリおよび前記セカンダリプーリに巻回され、前記プライマリプーリおよび前記セカンダリプーリとの摺動部が潤滑剤で潤滑されない乾式ベルトと、を有する無段変速機であり、
     前記制御装置は、前記電動モータを制御して前記2つのプライマリシーブの幅を変化させ、変速比を変更することを特徴とする請求項1または2に記載のリーン車両。
  4.  前記電動モータ式の自動制御変速装置は、前記電動モータにより駆動されるアクチュエータと、前記アクチュエータにより選択可能に構成される複数の変速ギアと、を有する有段変速機であり、
     前記制御装置は、前記電動モータにより前記アクチュエータを制御して前記複数の変速ギアから1つの変速ギアを選択させ、変速比を変更することを特徴とする請求項1~3のいずれか一項に記載のリーン車両。
  5.  前記上流回転電機の回転軸線である回転電機回転軸線は、前記クランク軸の回転軸線であるクランク回転軸線と同一直線上に配置され、
     前記上流回転電機は、前記クランク軸に連結されていることを特徴とする請求項1~4のいずれか一項に記載のリーン車両。
  6.  前記上流回転電機の回転軸線である回転電機回転軸線は、前記クランク軸の回転軸線であるクランク回転軸線と平行に配置され、
     前記上流回転電機は、動力を伝達する動力伝達機構を介して前記クランク軸と連結されていることを特徴とする請求項1~4のいずれか一項に記載のリーン車両。
  7.  前記制御装置は、前記リーン車両の加速時または減速時に、前記クランク軸の回転速度であるエンジン回転速度、前記上流回転電機の回転速度である回転電機回転速度および前記電動モータ式の自動制御変速装置の変速比の少なくともいずれか1つに基づいて、前記上流回転電機が付与する前記トルクを算出することを特徴とする請求項1~6のいずれか一項に記載のリーン車両。
  8.  前記制御装置は、前記リーン車両の加速時または減速時に、アクセルグリップの操作量と、前記リーン車両の速度の少なくともいずれか1つに基づいて、前記電動モータ式の自動制御変速装置で変更される前記変速比を算出することを特徴とする請求項1~7のいずれか一項に記載のリーン車両。
  9.  前記制御装置は、前記変速装置制御を実施する変速装置制御部と、前記回転電機制御を実施する回転電機制御部とを有し、
     前記変速装置制御部と前記回転電機制御部は、1つの同じ装置に構成されることを特徴とする請求項1~8のいずれか一項に記載のリーン車両。
  10.  前記制御装置は、前記変速装置制御を実施する変速装置制御部と、前記回転電機制御を実施する回転電機制御部とを有し、
     前記変速装置制御部と前記回転電機制御部は、2つの異なる装置にそれぞれ構成されることを特徴とする請求項1~8のいずれか一項に記載のリーン車両。
PCT/JP2017/003641 2016-02-04 2017-02-01 リーン車両 WO2017135315A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017565595A JP6766080B2 (ja) 2016-02-04 2017-02-01 リーン車両
EP17747470.7A EP3412530A4 (en) 2016-02-04 2017-02-01 TILT VEHICLE
EP24166745.0A EP4371833A3 (en) 2016-02-04 2017-02-01 Leaning vehicle
EP21170691.6A EP3871934A1 (en) 2016-02-04 2017-02-01 Leaning vehicle
CN201780009965.9A CN108602506B (zh) 2016-02-04 2017-02-01 倾斜式车辆
TW106103625A TWI624405B (zh) 2016-02-04 2017-02-03 傾斜車輛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019983 2016-02-04
JP2016019983 2016-02-04

Publications (1)

Publication Number Publication Date
WO2017135315A1 true WO2017135315A1 (ja) 2017-08-10

Family

ID=59500719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003641 WO2017135315A1 (ja) 2016-02-04 2017-02-01 リーン車両

Country Status (5)

Country Link
EP (3) EP3871934A1 (ja)
JP (2) JP6766080B2 (ja)
CN (1) CN108602506B (ja)
TW (1) TWI624405B (ja)
WO (1) WO2017135315A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110171518A (zh) * 2019-05-27 2019-08-27 深圳傲科海科技有限公司 自平衡车控制系统及自平衡车
WO2020039670A1 (ja) * 2018-08-23 2020-02-27 ヤマハ発動機株式会社 ストラドルドビークル
WO2021149145A1 (ja) * 2020-01-21 2021-07-29 ヤマハ発動機株式会社 Mt型ストラドルドビークル
US11932346B2 (en) 2019-11-14 2024-03-19 Honda Motor Co., Ltd. Saddle-type vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020141570A1 (ja) * 2019-01-04 2020-07-09 ヤマハ発動機株式会社 Mt型シフトペダル付エンジンユニット、及び同エンジンユニットを備えた鞍乗型車両
US11691530B2 (en) * 2020-06-05 2023-07-04 Pet Projects, Inc. Mobile electric vehicle charging station employing multiple power sources
JPWO2022034632A1 (ja) * 2020-08-11 2022-02-17

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103384A (ja) * 1998-09-30 2000-04-11 Honda Motor Co Ltd ハイブリッド式パワーユニット付車両
US20030098188A1 (en) * 2001-11-28 2003-05-29 Huan-Lung Gu Hybrid power system with external auxiliary motor
JP2012225443A (ja) * 2011-04-21 2012-11-15 Honda Motor Co Ltd 自動二輪車の自動変速制御装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7328766B2 (en) * 1996-04-26 2008-02-12 Christini Technologies, Inc. Two-wheel drive two-wheeled vehicle
TW587592U (en) * 1998-09-28 2004-05-11 Honda Motor Co Ltd Motorcycle
JP3967308B2 (ja) * 2003-09-29 2007-08-29 本田技研工業株式会社 ハイブリッド車両
TWI302501B (en) * 2005-02-15 2008-11-01 Honda Motor Co Ltd Power control unit
JP5039341B2 (ja) * 2006-09-05 2012-10-03 ヤマハ発動機株式会社 回転電機、エンジン及び鞍乗型車両
JP5253786B2 (ja) * 2007-03-20 2013-07-31 ヤマハ発動機株式会社 変速装置、それを備えたパワーユニット、車両、変速装置の制御装置および変速装置の制御方法
CN102596697B (zh) * 2009-09-08 2014-12-10 Ino8私人有限公司 用于倾斜车辆的倾斜控制
JP5244875B2 (ja) * 2010-09-08 2013-07-24 ジヤトコ株式会社 無段変速機及びその制御方法
JP5921812B2 (ja) * 2011-02-25 2016-05-24 本田技研工業株式会社 ハイブリッド車両用駆動装置
US9358969B2 (en) * 2013-11-11 2016-06-07 Ford Global Technologies, Llc Load-based vehicle operating control
JP2015104953A (ja) * 2013-11-28 2015-06-08 ヤマハ発動機株式会社 パワーユニット及びこれを備える鞍乗り型車両

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000103384A (ja) * 1998-09-30 2000-04-11 Honda Motor Co Ltd ハイブリッド式パワーユニット付車両
US20030098188A1 (en) * 2001-11-28 2003-05-29 Huan-Lung Gu Hybrid power system with external auxiliary motor
JP2012225443A (ja) * 2011-04-21 2012-11-15 Honda Motor Co Ltd 自動二輪車の自動変速制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3412530A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020039670A1 (ja) * 2018-08-23 2020-02-27 ヤマハ発動機株式会社 ストラドルドビークル
CN110171518A (zh) * 2019-05-27 2019-08-27 深圳傲科海科技有限公司 自平衡车控制系统及自平衡车
US11932346B2 (en) 2019-11-14 2024-03-19 Honda Motor Co., Ltd. Saddle-type vehicle
WO2021149145A1 (ja) * 2020-01-21 2021-07-29 ヤマハ発動機株式会社 Mt型ストラドルドビークル
WO2021149709A1 (ja) * 2020-01-21 2021-07-29 ヤマハ発動機株式会社 Mt型ストラドルドビークル

Also Published As

Publication number Publication date
EP3412530A4 (en) 2019-02-13
EP4371833A2 (en) 2024-05-22
EP3412530A1 (en) 2018-12-12
JP6766080B2 (ja) 2020-10-07
TWI624405B (zh) 2018-05-21
JPWO2017135315A1 (ja) 2018-10-18
CN108602506A (zh) 2018-09-28
TW201728496A (zh) 2017-08-16
EP3871934A1 (en) 2021-09-01
CN108602506B (zh) 2021-11-23
EP4371833A3 (en) 2024-08-14
JP2020169022A (ja) 2020-10-15

Similar Documents

Publication Publication Date Title
WO2017135315A1 (ja) リーン車両
RU2570242C2 (ru) Электромобиль и зарядное устройство бортового аккумулятора для этого электромобиля
US7497288B2 (en) Motor cooling structure for electric vehicle
JP4008437B2 (ja) パワーモジュールの駆動制御装置、及び、ハイブリッド車両
CN102918763B (zh) 休闲车
US10837550B2 (en) Straddled vehicle
CN110891838B (zh) 车辆
JP7235771B2 (ja) 4ストロークエンジンユニット、及び同エンジンユニットを備えたストラドルドビークル
KR100347859B1 (ko) 자동이륜차
JP7118159B2 (ja) エンジン式鞍乗型車両
TWI725373B (zh) 傾斜車輛
CN110891839A (zh) 车辆
CN110914124B (zh) 车辆
CN113260784B (zh) 具有手动变速式换挡踏板的发动机单元和包括其的骑乘式车辆
JP7560680B2 (ja) アイドルストップ制御装置
WO2022176694A1 (ja) ストラドルドビークル
CN113994086A (zh) 发动机
JP2020070913A (ja) スイングユニット
JP2000097136A (ja) エンジンの始動兼発電装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747470

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565595

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017747470

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017747470

Country of ref document: EP

Effective date: 20180904