WO2017135080A1 - パルスアーク溶接制御方法およびパルスアーク溶接装置 - Google Patents

パルスアーク溶接制御方法およびパルスアーク溶接装置 Download PDF

Info

Publication number
WO2017135080A1
WO2017135080A1 PCT/JP2017/002091 JP2017002091W WO2017135080A1 WO 2017135080 A1 WO2017135080 A1 WO 2017135080A1 JP 2017002091 W JP2017002091 W JP 2017002091W WO 2017135080 A1 WO2017135080 A1 WO 2017135080A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
feeding speed
current
speed
period
Prior art date
Application number
PCT/JP2017/002091
Other languages
English (en)
French (fr)
Inventor
潤司 藤原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2017565483A priority Critical patent/JP6814948B2/ja
Priority to EP17747239.6A priority patent/EP3412396B1/en
Priority to US15/781,165 priority patent/US11090752B2/en
Priority to CN201780005617.4A priority patent/CN108472758B/zh
Publication of WO2017135080A1 publication Critical patent/WO2017135080A1/ja
Priority to US17/370,208 priority patent/US11813704B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/124Circuits or methods for feeding welding wire

Definitions

  • the present invention relates to a pulse arc welding control method and a pulse arc welding apparatus for performing pulse arc welding while feeding a welding wire which is a consumable electrode.
  • Fig. 9 shows the waveform of the welding current I when a short circuit occurs in conventional pulse arc welding. In this method, constriction (neck) control is performed, and the welding current I is sharply reduced.
  • the welding current is fed at the feed speed while the welding current is supplied to the welding wire by alternately repeating the peak current period in which the welding current is a peak current and the base current period in which the welding current is smaller than the peak current.
  • the pulse arc welding apparatus is controlled so as to weld the workpiece by generating an arc between the welding wire and the workpiece to be fed.
  • the feed speed is set to the first feed speed during the base current period, and the feed speed is larger than the first feed speed and the first feed speed during the peak current period. Is set to the second feeding speed according to.
  • FIG. 1 is a schematic configuration diagram of a pulse arc welding apparatus according to the first embodiment.
  • FIG. 2 is a diagram showing a welding current, a welding voltage, a welding wire feed speed, and a state of droplet transfer in the operation of the pulse arc welding apparatus in the first embodiment.
  • FIG. 3 is a diagram showing a welding current, a welding voltage, a feeding speed, and a state of droplet transfer in the operation of the pulse arc welding apparatus of the comparative example.
  • FIG. 4 is a diagram showing a welding current, a welding voltage, a feeding speed, and a state of droplet transfer in another operation of the other pulse arc welding apparatus in the first embodiment.
  • FIG. 5 is a diagram showing the feed rate of the welding wire of the pulse arc welding apparatus in the first embodiment.
  • FIG. 6 is a diagram showing a schematic configuration of the pulse arc welding apparatus in the second embodiment.
  • FIG. 7A is a diagram showing a welding current, a welding voltage, and a welding wire feeding speed droplet transfer state in the operation of the pulse arc welding apparatus in the second embodiment.
  • FIG. 7B is an enlarged view of the feeding speed shown in FIG. 7A.
  • FIG. 8 is a diagram showing the feed speed of the welding wire of the pulse arc welding apparatus in the second embodiment.
  • FIG. 9 is a diagram showing a welding current in conventional pulse arc welding.
  • FIG. 1 is a schematic configuration diagram of a pulse arc welding apparatus 1001 according to the first embodiment.
  • the pulse arc welding apparatus 1001 mainly includes a welding power supply device 18 called a welding machine and a robot 21 called a manipulator.
  • the welding power source device 18 includes a welding power source unit 18a that outputs a welding output composed of a welding current I and a welding voltage V, and a welding control unit 18b that controls the welding power source unit 18a.
  • the welding power source device 18 includes a primary rectification unit 2 that rectifies the output of the input power source 1, a switching element 3 that controls the welding output by controlling the output of the primary rectification unit 2, and power from the switching element 3.
  • Transformer 4 that performs insulation conversion, secondary rectification unit 5 that rectifies the secondary output of transformer 4, reactor 6 (also referred to as DCL) connected in series to secondary rectification unit 5, and switching element 3
  • an output control unit 7 for driving is also referred to as DCL
  • the welding power supply device 18 includes a welding voltage detection unit 8 that detects the welding voltage V, a welding current detection unit 9 that detects the welding current I, and an output of the welding voltage detection unit 8 and / or an output of the welding current detection unit 9.
  • a short-circuit / arc detection unit 10 for determining whether the welding state is a short-circuit state or an arc state, a short-circuit control unit 11 for controlling the output control unit 7 during the short-circuit period, and an output control unit during the arc period 7 is further provided.
  • the welding power supply device 18 further includes a wire feed control unit 17, an output terminal 29a, and an output terminal 29b.
  • the arc control unit 12 includes a pulse waveform control unit 13 including a pulse rising control unit 14, a peak current control unit 15, and a pulse falling control unit 16.
  • the robot control unit 19 that controls the operation of the robot 21 includes a welding condition setting unit 20 for setting welding conditions.
  • the robot controller 19 is communicably connected to the welding power supply device 18. Note that a torch 26 is attached to the robot 21.
  • the welding condition setting unit 20 inside the robot control unit 19 connected to the welding power source device 18 is for setting a welding current, a welding voltage, and the like.
  • the output terminal 29 a of the welding power supply device 18 is electrically connected to the tip 27 that holds the welding wire 23 in the torch 26, and power is supplied to the welding wire 23 via the tip 27.
  • the output terminal 29 b of the welding power supply device 18 is electrically connected to the workpiece 24 and supplies power to the workpiece 24.
  • An arc 28 is generated between the tip of the welding wire 23 and the workpiece 24.
  • a wire feeding unit 25 including a feeding roller feeds the welding wire 23 toward the workpiece 24 at a feeding speed WF from the welding wire storage unit 22 that stores the welding wire 23 toward the tip 27. .
  • each component part which comprises the pulse arc welding apparatus 1001 shown in FIG. 1 may each be comprised independently, and you may make it comprise combining a some component part.
  • FIG. 2 shows the welding current I, welding voltage V, feed speed WF, and droplet transfer state of the pulse arc welding apparatus 1001.
  • the welding power source 18 supplies a welding voltage V and a welding current I to the welding wire 23 to generate an arc 28 between the welding wire 23 and the workpiece 24 and melt the welding wire 23 to weld the welding wire.
  • a droplet 23 d is formed at the tip of 23. The droplet 23d moves from the tip of the welding wire 23 to the workpiece 24 and adheres, and the workpiece 24 is welded.
  • the pulse arc welding apparatus 1001 is configured to keep the arc length H of the short arc 28 constant so that the welding wire 23 and the workpiece 24 are not short-circuited in the droplet transfer (detachment) state.
  • the arc 28 is generated between the droplet 23 d formed at the tip of the welding wire 23 and the workpiece 24. . Therefore, when the droplet 23d is formed at the tip of the welding wire 23 and connected to the welding wire 23, the arc length H of the arc 28 is substantially equal to the droplet 23d formed at the tip of the welding wire 23. This is the distance to the work piece 24. When the droplet 23d is not formed at the tip of the welding wire 23 or when the droplet 23d is not connected to the tip of the welding wire 23, the arc 28 is generated between the tip of the welding wire 23 and the workpiece 24. To do.
  • the arc length H of the arc 28 is substantially equal to the tip of the welding wire 23. This is the distance to the work piece 24.
  • the welding current I shown in FIG. 2 alternately repeats a peak current period IPT in which the welding current I is the peak current IP and a base current period IBT in which the welding current I is a base current IB smaller than the peak current IP.
  • the welding current I, the welding voltage V, the state of droplet transfer, and the feeding speed WF is increased in the peak current period IPT for growing the droplet 23d,
  • the feeding speed WF is increased in the peak current period IPT for growing the droplet 23d.
  • FIG. 3 shows the welding current I, welding voltage V, droplet transfer state, and feed speed WF of the pulse arc welding apparatus of the comparative example.
  • the feeding speed WF of the welding wire 23 is constant and the droplets are transferred (detached) in the base current period IBT.
  • the arc length H changes in the range from the value H1 to the value H2.
  • the pulse waveform of the welding current I shown in FIG. 3 is a basic pulse waveform that realizes stable droplet transfer (detachment) that is repeated periodically in a steady welding period.
  • the pulse waveform of the welding current I includes a pulse rising period IPRT in which the welding current I transitions from the base current IB to the peak current IP, a peak current period IPT in which the welding current I is the peak current IP, and a welding current I that is the peak current IP.
  • the welding control unit 18b causes the peak current IP, the base current IB, and the pulse rising period so as to realize one pulse and one drop in which the droplet 23d is detached once per pulse.
  • the pulse waveform parameters for determining the pulse waveforms such as IPRT, peak current period IPT, pulse falling period IPFT, base current period IBT, etc. are adjusted.
  • the pulse waveform parameter varies depending on the welding conditions of the work piece 24, the welding wire 23 to be used, and the like, and can be obtained in advance, for example, by confirmation of construction such as experiments.
  • the welding current I, welding voltage V, droplet transfer state, and feed speed WF of the pulse arc welding apparatus of the comparative example shown in FIG. 3 will be described in detail.
  • the welding control unit of the pulse arc welding apparatus of the comparative example starts the transition of the welding current I from the base current IB to the peak current IP at the time t1 when the pulse rising period IPRT starts, and the welding current I at the time t2 when the pulse rising period IPRT ends. To reach the peak current IP to start the peak current period IPT.
  • the welding controller maintains the welding current I substantially at the peak current IP in the peak current period IPT.
  • the welding control unit starts decreasing the welding current I from the peak current IP at the time t3 when the peak current period IPT ends, starts the pulse falling period IPFT, and sets the welding current I at the time t4 when the pulse falling period IPFT ends.
  • the base current period IBT is started by reaching the base current IB smaller than the peak current IP.
  • the welding control unit maintains the welding current I substantially at the base current IB in the base current period IBT.
  • the welding control unit starts transition of the welding current I from the base current IB to the peak current IP at time t1 when the base current period IBT ends and the pulse rising period IPRT starts.
  • the welding control unit repeats the pulse rising period IPRT, the peak current period IPT, the pulse falling period IPFT, and the base current IB at the pulse frequency PHz (pulse period (1 / PHz)).
  • the droplet 23d starts to grow in the pulse rising period IPRT in which the welding current I transitions from the base current IB to the peak current IP (state Sa), and the droplet 23d is in the peak current period IPT in which the welding current I is the peak current IP. It grows until it has the optimum size (state Sb).
  • the droplet 23d connected to the welding wire 23 just before the droplet 23d is detached from the welding wire 23 at the tip of the welding wire 23 in the pulse falling period IPFT in which the welding current I transits from the peak current IP to the base current IB.
  • a welding wire 23 to form a constriction that forms a constriction that is a portion having a locally small diameter (state Sc).
  • the droplet 23d is detached from the welding wire 23 (state Sd).
  • the droplet 23d slightly grows and becomes larger due to the residual heat at the tip of the welding wire 23.
  • the feeding speed WF of the welding wire 23 is a constant feeding speed WF1 according to the set current of the welding current I.
  • the arc length H changes between different values H1 and H2 in the peak current period IPT and the base current period IBT.
  • a large peak current IP is applied to the welding wire 23, the melting speed at which the welding wire 23 is melted becomes larger than the feeding speed WF1, and the arc length H is increased by forming the droplet 23d.
  • the base current period IBT a small base current IB is applied to the welding wire 23, the melting speed of the welding wire 23 becomes smaller than the feeding speed WF1, and the arc length H becomes short (value H1).
  • the arc length H changes between the value H1 and the value H2, and the change is repeated at the pulse frequency PHz.
  • the molten droplet 23d forms a molten pool on the workpiece 24 until it moves onto the workpiece 24 and solidifies.
  • the molten pool is made of a molten metal including a melted portion of the work piece 24. Even in the peak current period IPT, the molten pool becomes larger by temporarily increasing the arc length H to the value H2.
  • a bead is formed in the workpiece 24 as the molten pool solidifies.
  • the molten metal that becomes the bead begins to solidify from the edge of the cold bead, and the center of the hot bead finally solidifies as the final solidification point.
  • the bead When the work piece 24 is moved in the moving direction relative to the torch 26, the bead is elongated in the moving direction, and the final solidification point is the center in the width direction perpendicular to the moving direction of the bead. Therefore, the molten metal at the time of forming the bead solidifies so as to be pulled to the final freezing point. Therefore, as the distance between the edge of the bead having the lower temperature and the center of the bead having the higher temperature is larger, that is, the molten pool is larger, the amount of the molten metal at the edge of the bead tends to be insufficient.
  • the undercut can be suppressed by reducing the welding voltage V, shortening the arc length H, and reducing the weld pool.
  • the spatter due to the short-circuit between the welding wire 23 and the workpiece 24 may increase due to the drop 23d changing from the spray transfer to the short-circuit transfer due to the decrease in the welding voltage V.
  • the work piece 24 is maintained while keeping the short arc length H constant so that the molten pool is small and a short circuit is not generated even during high-speed welding. Can be welded.
  • the short arc length H that does not cause a short circuit is, for example, about 2 mm to 3 mm.
  • the droplet 23d begins to grow in the pulse rising period IPRT in which the welding current I transitions from the base current IB to the peak current IP, similarly to the pulse waveform shown in FIG. 3 (state Sa point). Thereafter, the droplet 23d is grown to have an optimum size in the peak current period IPT in which the welding current I is the peak current IP (state Sb). Thereafter, a constricted state in which a constriction is formed, which is a state immediately before the droplet 23d is detached from the welding wire 23 at the tip of the welding wire 23 in the pulse falling period IPFT in which the welding current I transitions from the peak current IP to the base current IB. (State Sc) is generated. Thereafter, the droplet 23d is detached from the welding wire 23 in the base current period IBT in which the welding current I is the base current IB (state Sd).
  • the welding control unit 18b sets the feeding speed WF to the feeding speed WF1.
  • the welding control unit 18b starts to increase the feed speed WF toward the feed speed WF2 larger than the feed speed WF1 at the time t1 when the pulse rising period IPRT starts to reach the feed speed WF2.
  • the welding current I reaches the feeding speed WF2 immediately after starting to increase from the feeding speed WF1 at time t1.
  • the welding control unit 18b starts to decrease the feed speed WF from the feed speed WF2 in the peak current period IPT toward the feed speed WF1 in the base current period IBT at the time t3 when the pulse falling period IPFT starts.
  • the feed speed WF1 is reached.
  • the welding current I reaches the feeding speed WF1 immediately after starting to decrease from the feeding speed WF2 at time t3.
  • the welding control unit 18b realizes a droplet transfer (detachment) state while periodically changing the feeding speed WF to the feeding speeds WF1 and WF2 at the pulse frequency PHz according to the pulse waveform of the welding current I. Thereby, a stable welding state can be realized while keeping the short arc length H constant, and a bead having a beautiful appearance with less spatter and no undercut can be formed.
  • FIG. 4 shows a welding current I, a welding voltage V, a feeding speed WF, and a droplet transfer state in another operation of the pulse arc welding apparatus 1001 for making the arc length H constant.
  • the same reference numerals are given to the same parts as those shown in FIG.
  • the welding control unit 18b starts increasing the feeding speed WF of the welding wire 23 from the feeding speed WF1 to the feeding speed WF2 with a predetermined slope at the time t1 when the pulse rising period IPRT starts.
  • the feed speed WF2 is reached after time t1, and then the feed speed WF2 is maintained.
  • the welding control unit 18b starts to decrease the feeding speed WF from the feeding speed WF2 toward the feeding speed WF1 with a predetermined inclination at the time t3 when the peak current period IPT ends and the pulse falling period IPFT starts. After t3, the feed speed WF1 is reached at time t4 and then maintained at the feed speed WF1.
  • the welding control unit 18b starts to increase the feed speed WF from the feed speed WF1 toward the feed speed WF2 at a predetermined gradient at time t1, and reaches the feed speed WF2 at time t2. After that, it is preferable to maintain the feeding speed WF2. That is, a predetermined period in which the feed speed WF increases from the feed speed WF1 to the feed speed WF2 so that the period during which the feed speed WF increases from the feed speed WF1 to the feed speed WF2 coincides with the pulse rising period IPRT. It is preferable to adjust the inclination.
  • the welding control unit 18b starts to decrease the feeding speed WF from the feeding speed WF2 toward the feeding speed WF1 at a predetermined inclination at time t3, and after reaching the feeding speed WF1 at time t4, the feeding speed. It is preferable to maintain WF1. That is, a predetermined period in which the feeding speed WF decreases from the feeding speed WF2 to the feeding speed WF1 so that the period during which the feeding speed WF decreases from the feeding speed WF2 to the feeding speed WF1 coincides with the pulse falling period IPFT. It is preferable to adjust the inclination.
  • FIG. 5 shows the feeding speed WF2 of the feeding speed WF.
  • the horizontal axis indicates the feeding speed WF1
  • the vertical axis indicates the amount of increase WFU from the feeding speed WF1 to the feeding speed WF2.
  • the increase amount WFU is 1 m / min.
  • the increase amount WFU is 2 m / min.
  • the rate of increase of the feed rate WF2 with respect to the feed rate WF1 that is, the ratio of the increased amount WFU to the feed rate WF1 is about 25%.
  • the welding current I increases, so the droplet 23d also increases. Therefore, when the feed speed WF1 increases, the increase rate of the feed speed WF2 is the same, but the increase amount WFU increases.
  • the appropriate amount of increase WFU (increase rate) of the feeding speed WF varies depending on the welding conditions such as the diameter and material of the welding wire 23 and the shield gas 24G, and can be obtained in advance by, for example, confirmation of construction through experiments or the like.
  • the material of the welding wire 23 is stainless as an example of a different material
  • the stainless steel has a high viscosity and the droplet 23d is difficult to separate, so the droplet 23d tends to be larger than the mild steel. Therefore, when the material of the welding wire 23 is stainless steel, the increase amount WFU from the feeding speed WF1 to the feeding speed WF2 is larger than that in the case of mild steel shown in FIG.
  • the diameter of the welding wire 23 when the diameter of the welding wire 23 is larger than ⁇ 1.2, the size of the droplet 23d tends to be larger than the diameter of ⁇ 1.2. Therefore, the increase amount WFU when the diameter of the welding wire 23 is thicker than ⁇ 1.2 is larger than that when the diameter is ⁇ 1.2 shown in FIG. Conversely, when the diameter of the welding wire 23 is smaller than ⁇ 1.2, the droplet 23d tends to be smaller than when the diameter of the welding wire 23 is ⁇ 1.2. Therefore, when the diameter of the welding wire 23 is thinner than ⁇ 1.2, the increase amount WFU is smaller than when the diameter of the welding wire 23 shown in FIG. 5 is ⁇ 1.2.
  • the ratio of the increase WFU to the feed speed WF1 is Basically, 10% to 30% is preferable.
  • the correlation between the feeding speed WF1 and the increase amount WFU is not limited to the linear function shown in FIG. 5, but may be a quadratic function.
  • the discrete values of the feeding speed WF1 and the increase amount WFU are expressed as follows.
  • the increase amount WFU may be determined by the database to be stored.
  • the arc length repeats long and short during one pulse period. If the arc length is too long, undercut is likely to occur during high-speed welding. Even if the arc length is shortened by lowering the voltage in order to suppress undercutting, it is inevitable that spatter at the short-circuit transition increases.
  • the short circuit current may be increased with a predetermined slope from the start of the short circuit until the short circuit is opened. Thereafter, the short-circuit current may be sharply reduced to a low value by detecting a constriction immediately before opening the short-circuit.
  • this method may not be able to significantly reduce spatter.
  • feeding speed WF of welding wire 23 in peak current period IPT is set to feeding speed WF2, and feeding speed WF is set to welding current I.
  • the feeding speed WF of the welding wire 23 is changed according to the peak current period IPT and the base current period IBT.
  • the feeding speed WF is set to the feeding speed WF1
  • the feeding speed WF is set to be larger than the feeding speed WF1 and to the feeding speed WF2 corresponding to the feeding speed WF1.
  • the pulse arc welding apparatus 1001 according to Embodiment 1 can achieve good welding quality with suppressed undercut even during high-speed welding.
  • the pulse arc welding apparatus 1001 in the first embodiment can suppress the spattering because the droplet 23d can be brought into the spray transition state instead of the short-circuit transition state in the peak current period IPT while suppressing the undercut. it can.
  • the welding current I becomes the short circuit current IS.
  • the short circuit control unit 11 receives a signal indicating that a short circuit has occurred from the short circuit / arc detection unit 10
  • the short circuit current IS is set so that the short circuit can be opened. Control.
  • pulse waveform parameters that determine the pulse waveform of the welding current I such as the peak current IP and the base current IB.
  • the feed speed WF is correlated with the set current or set current of the welding current I set in the welding condition setting unit 20 of the arc control unit 12.
  • the pulse rise control unit 14 of the pulse waveform control unit 13 outputs a timing signal that starts increasing the feed speed WF from the feed speed WF1 toward the feed speed WF2 at the time t1 when the pulse rise period IPRT starts.
  • the pulse falling control unit 16 outputs a timing signal for starting to decrease the feeding speed WF from the feeding speed WF2 toward the feeding speed WF1 at the time t3 when the pulse falling IPFT starts.
  • the pulse waveform controller 13 controls the peak current IP and the base current IB.
  • the wire feed control unit 17 of the welding power source device 18 is based on the set current of the welding current I set in the welding condition setting unit 20 provided in the robot control unit 19 and the feed speed corresponding to the set current.
  • the WF is determined and the feeding speed WF is output.
  • the pulse waveform control unit 13 of the arc control unit 12 receives the feed speed WF output from the wire feed control unit 17, and receives the peak current IP, the base current IB, and the pulse corresponding to the received feed speed WF.
  • Pulse waveform parameters that determine the pulse waveform of the welding current I such as the rising period IPRT, the peak current period IPT, and the pulse falling period IPFT, are output.
  • the wire feed unit 25 including a feed roller feeds the welding wire 23.
  • the pulse arc welding apparatus 1001 is configured to weld the workpiece 24 using the welding wire 23. Welding is performed while the welding current I flows through the welding wire 23 by alternately repeating a peak current period IPT in which the welding current I is the peak current IP and a base current period IBT in which the welding current I is a base current IB smaller than the peak current IP.
  • a pulse arc welding apparatus that feeds the wire 23 toward the workpiece 24 at a feeding speed WF, generates an arc 28 between the welding wire 23 and the workpiece 24, and welds the workpiece 24.
  • the welding control unit 18b controls the feed speed WF so as to keep the arc length H of the arc 28 constant.
  • the welding control unit 18b sets the feeding speed WF to the feeding speed WF1 in the base current period IBT, and the feeding speed WF is larger than the feeding speed WF1 and corresponds to the feeding speed WF1 in the peak current period IPT. Set to feed rate WF2.
  • the feeding speed WF2 may be larger than the feeding speed WF1 by a value corresponding to at least one of the diameter and material of the welding wire 23.
  • the welding control unit 18b may control the pulse arc welding apparatus 1001 so as to weld the workpiece 24 using the shield gas 24G.
  • the feeding speed WF2 may be larger than the feeding speed WF1 by a value corresponding to at least one of the diameter and material of the welding wire 23 and the shield gas 24G.
  • the welding control unit 18b shifts from the peak current period IPT to the base current period IBT, the welding current I starts to fall from the peak current IP to the base current IB, and at the same time the feed speed WF is fed from the feed speed WF2. You may start decreasing toward WF1.
  • the welding control unit 18b controls the feed speed WF so that the period until the feed speed WF2 reaches the feed speed WF2 is the same as the period until the welding current I reaches the base current IB to the peak current IP. May be. Note that the same period is a period in which not only the length but also the start time and the end time thereof are the same.
  • the welding controller 18b controls the feed speed WF so that the period during which the feed speed WF reaches from the feed speed WF2 to the feed speed WF1 is the same as the period during which the welding current I reaches from the peak current to the base current IB. May be.
  • the feeding speed WF2 may be larger than the feeding speed WF1 by a value in the range of 10% to 30% of the feeding speed WF1.
  • the feeding speed WF is larger than the feeding speed WF1 and the feeding speed is increased.
  • the feeding speed WF2 is increased according to the feeding speed WF1.
  • the arc length H of the peak current period IPT can be made the same as that of the base current period IBT and can be shortened so as not to be short-circuited. Accordingly, the droplet 23d is detached from the welding wire 23 in the spray transfer state without being in the short-circuit transfer state, so that the spatter due to the occurrence of the short-circuit does not occur and the spatter can be hardly generated. Thereby, the favorable welding quality which suppressed undercut at the time of high-speed welding is realizable.
  • FIG. 6 is a schematic configuration diagram of pulse arc welding apparatus 1002 in the second embodiment.
  • the welding control unit 18b of the pulse arc welding apparatus 1002 according to the second embodiment includes a droplet detachment detecting unit 30 that detects a point in time when the droplet 23d detaches from the welding wire 23.
  • the droplet detachment detection unit 30 detects a constriction 23p that is formed between the droplet 23d connected to the welding wire 23 and the welding wire 23 and has a small diameter locally. Is detected.
  • FIG. 7A shows the welding current I, the welding voltage V, the feeding speed WF of the welding wire 23, and the state of droplet transfer in the operation of the pulse arc welding apparatus 1002.
  • welding control unit 18b sets feeding speed WF of welding wire 23 to feeding speed WF1 in base current period IBT.
  • the welding control unit 18b sets the feeding speed WF of the welding wire 23 to a feeding speed WF2 larger than the feeding speed WF1 during the peak current period IPT.
  • the welding control unit 18b starts to decrease the feed speed WF toward the feed speed WF3 smaller than the feed speed WF1, and reaches the feed speed WF3. Thereafter, the welding control unit 18b maintains the feeding speed WF at the feeding speed WF3 and keeps the arc length H constant until the detachment of the droplet 23d from the welding wire 23 is detected.
  • the welding current I, welding voltage V, droplet transfer state, and feed speed WF of the pulse arc welding apparatus 1002 shown in FIG. 7A will be described in detail.
  • the droplet 23d begins to grow at time t1 when the pulse rising period IPRT in which the welding current I transitions from the base current IB to the peak current IP begins (state Sa). Thereafter, the droplet 23d is grown until it has an optimum size in the peak current period IPT in which the welding current I is the peak current IP (state Sb). Thereafter, a constriction state in which a constriction 23p is formed immediately before the droplet 23d is detached from the tip of the welding wire 23 in the pulse falling period IPFT in which the welding current I transitions from the peak current IP to the base current IB is realized. (State Sc). Thereafter, the droplet 23d is detached from the welding wire 23 in the base current period IBT in which the welding current I is the base current IB (state Sd).
  • the control of the feeding speed WF for feeding the welding wire 23 is the main difference between the operation shown in FIG. 7A and the operation in the first embodiment shown in FIG.
  • the welding controller 18b changes the feed speed WF from the feed speed WF1 in the base current period IBT to the feed speed WF2 at the time t1 when the base current period IBT ends and the pulse rising period IPRT starts. And increase at a predetermined inclination to reach the feeding speed WF2.
  • the feed rate WF reaches the feed rate WF2 at the time t2 when the pulse rising period IPRT ends and the peak current period IPT starts.
  • the welding control unit 18b changes the feed speed WF from the feed speed WF2 of the peak current period IPT to the feed speed WF1 of the base current period IBT at the time t3 when the peak current period IPT ends and the pulse falling period IPFT starts.
  • the feed rate starts to decrease at a predetermined gradient toward the lower feed rate WF3, and is maintained at the feed rate WF3 after reaching the feed rate WF3.
  • the welding controller 18b increases the feeding speed WF from the feeding speed WF3 to the feeding speed WF1 at the detachment time td when the droplet detachment detecting section 30 detects the detachment of the droplet 23d from the welding wire 23. Then, after the feed speed WF1 is reached, the feed speed WF1 is maintained.
  • FIG. 7B is an enlarged view of the feeding speed WF of the partial MA shown in FIG. 7A, and shows the feeding speed WF before and after the detachment time td when the detachment of the droplet 23d is detected.
  • the welding control unit 18b starts to decrease the feed speed WF from the feed speed WF2 during the peak current period IPT toward the feed speed WF3 with a predetermined slope at time t3, as shown in FIG. 7B. As described above, after the feed speed WF3 is reached, the feed speed WF3 is maintained.
  • the welding control unit 18b continues to further decrease the feeding speed WF toward the feeding speed WF3 at the same predetermined inclination, reaches the feeding speed WF3 at time t41, and then maintains the feeding speed WF3. To do. Thereafter, at the separation time td when the droplet detachment detecting unit 30 detects the detachment of the droplet 23d from the welding wire 23, the welding control unit 18b starts to increase the feeding speed WF from the feeding speed WF3 to the feeding speed WF1.
  • the feeding speed WF1 After reaching the feeding speed WF1, the feeding speed WF1 is maintained. Thereafter, as shown in FIG. 7A, the welding control unit 18b maintains the feed speed WF at the feed speed WF1 until the time point t1 when the base current period IBT ends.
  • the feed speed WF2 larger than the feed speed WF1 is changed to the feed speed WF3 smaller than the feed speed WF1.
  • the decreased feeding speed WF starts to be increased to a feeding speed WF1 smaller than the feeding speed WF2 at the detachment time td when the detachment of the droplet 23d is detected.
  • a constriction 23p is formed between the droplet 23d connected to the welding wire 23 and the welding wire.
  • the droplet detachment detecting unit 30 of the welding control unit 18b monitors the welding voltage V and determines the detachment time td when the droplet 23d detaches based on the detection of the formation of the constriction 23p. To do.
  • the feeding speed WF3 is smaller than the feeding speed WF1 by a value corresponding to at least one of the welding conditions including the material of the welding wire 23 and the shielding gas 24G.
  • the horizontal axis represents the feeding speed WF1
  • the vertical axis represents the decrease amount WFD.
  • the decrease amount WFD is ⁇ 0.5 m / min.
  • the decrease amount WFD is ⁇ 0.75 m / min.
  • the constriction 23p may increase and the droplet 23d may extend.
  • the arc length H is kept constant by making the feeding speed WF smaller than the feeding speed WF1 in accordance with the elongation of the droplet 23d. Since the welding current I increases as the feeding speed WF increases, the droplet 23d and the constriction 23p tend to be longer. Therefore, the reduction amount WFD from the feed speed WF1 to the feed speed WF3 also increases.
  • the appropriate reduction amount WFD varies depending on the welding conditions such as the wire material of the welding wire 23 and the shielding gas, and can be obtained, for example, by confirming the construction such as an experiment.
  • the material of the welding wire 23 is stainless as an example of a different material
  • the stainless steel has a high viscosity and the droplet 23d is difficult to separate, so that the droplet 23d and the constriction 23p tend to be long. Therefore, the reduction amount WFD to the feeding speed WF3 with respect to the feeding speed WF1 tends to be larger than the reduction amount WFD when the welding wire 23 shown in FIG. 8 is made of mild steel.
  • the droplet 23d is easily detached, as shown in FIG.
  • the relationship between the feeding speed WF1 and the decrease amount WFD may be not only a quadratic function but also a linear function, and is based on a database that stores discrete values of the feeding speed WF1 and the decrease amount WFD.
  • the decrease amount WFD may be determined.
  • the droplet detachment detection unit 30 monitors the welding voltage V detected by the welding voltage detection unit 8 in real time and obtains a time differential value obtained by differentiating the welding voltage V with respect to time. .
  • the droplet detachment detection unit 30 transmits a droplet detachment signal Cd to the wire feed control unit 17 when the time differential value of the welding voltage V exceeds a predetermined value, and the time differential value is equal to or less than the predetermined value. In some cases, the droplet separation signal Cd is not transmitted to the wire feed controller 17.
  • the time point at which the time differential value of the welding voltage V exceeds a predetermined value is determined as the detachment time point td at which the droplet 23d detaches from the welding wire 23.
  • the welding control unit 18b is a predetermined state indicating a state in which the constriction 23p of the droplet 23d is formed from a state in which the feed speed WF is decreased toward the feed speed WF3 from the time t3 when the pulse falling period IPFT starts.
  • the feeding speed WF starts to increase from the feeding speed WF3 toward the feeding speed WF1.
  • the pulse waveform control unit 13 of the pulse arc welding apparatus 1002 outputs a pulse waveform of the welding current I based on the set current set in the welding condition setting unit 20 or the feed speed WF controlled by the wire feed control unit 17. To do.
  • the pulse rise control unit 14 of the pulse waveform control unit 13 sends the feed speed WF of the welding wire 23 in the base current period IBT at the time t1 when the pulse rise period IPRT transitioning from the base current period IBT to the peak current period IPT starts. A signal for starting to increase toward the feeding speed WF2 larger than the feeding speed WF1 is transmitted.
  • the pulse falling control unit 16 changes the feed speed WF from the feed speed WF2 to the feed speed WF1 smaller than the feed speed WF1 at the time t3 when the pulse fall period IPFT transitioning from the peak current period IPT to the base current period IBT starts. A signal that starts to decrease toward WF3 is transmitted.
  • the welding wire 23 is melted by forming the droplet 23d by flowing the welding current I through the welding wire 23, and the droplet 23d is connected to the welding wire 23.
  • the pulse arc welding apparatus 1002 is controlled so that a constriction 23p is generated between it and 23d.
  • the welding control unit 18b shifts from the peak current period IPT to the base current period IBT, the welding control unit 18b changes the feed speed WF from the feed speed WF2 to the feed speed WF3 that is smaller than the feed speed WF1 and corresponds to the feed speed WF1. Decrease.
  • the welding control unit 18b detects that the constriction 23p has occurred, the welding control unit 18b increases the feeding speed WF from the feeding speed WF3 to the feeding speed WF1.
  • the feed speed WF may be maintained at the feed speed WF1 until the base period ends after the feed speed WF is increased to the feed speed WF1 in the step of increasing the feed speed WF from the feed speed WF3 to the feed speed WF1.
  • the feeding speed WF3 may be smaller than the feeding speed WF1 by a value corresponding to at least one of the material of the welding wire 23 and the shielding gas 24G.
  • the feed speed WF of the welding wire 23 is set to the base current period IBT during the peak current period IPT in which the arc length H becomes long.
  • the feeding speed is increased to a feeding speed larger than the feeding speed WF1.
  • the feed rate WF3 is smaller than the feed rate WF1 by a value corresponding to the extension.
  • the feed speed WF is decreased, and the feed speed WF is increased to the feed speed WF1 at the separation time td when the droplet transfer (detachment detection) is detected.
  • the welding control unit 18b adjusts the feeding speed WF of the welding wire 23 according to the welding conditions such as the material of the welding wire 23 and the shielding gas 24G.
  • the arc length H can be kept small enough not to be short-circuited, including the peak current period IPT, similarly to the base current period IBT, and welding can be performed in a spray transition state instead of a short-circuit transition. Therefore, it is possible to substantially prevent the spatter accompanying the occurrence of a short circuit.
  • the arc length H of the peak current period IPT can be shortened, and the arc length H of the peak current period IPT and the base current period IBT can be made short and constant. Good spatter reduction and good welding quality with undercut suppressed even during high-speed welding.
  • the pulse arc welding control method of the present invention it is possible to reduce the occurrence of spatter, maintain a short arc length, realize a bead having a good appearance with suppressed undercut even at high speed welding, and continuously use a welding wire as a consumable electrode. It is useful for a pulse arc welding apparatus that performs arc welding while feeding it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

溶接電流がピーク電流であるピーク電流期間と、溶接電流がピーク電流より小さいベース電流であるベース電流期間とを交互に繰り返して溶接電流を溶接ワイヤに流しながら溶接ワイヤを送給速度で被溶接物に向かって送給して溶接ワイヤと被溶接物との間でアークを発生させて被溶接物を溶接するようにパルスアーク溶接装置を制御する。アークのアーク長を一定に保つように、ベース電流期間では送給速度を第1送給速度に設定し、ピーク電流期間では送給速度を第1送給速度よりも大きくかつ第1送給速度に応じた第2送給速度に設定する。この方法により、スパッタを低減しかつアンダーカットを抑制した良好な溶接品質が得られる。

Description

パルスアーク溶接制御方法およびパルスアーク溶接装置
 本発明は、消耗電極である溶接ワイヤを送給しながらパルスアーク溶接を行うパルスアーク溶接制御方法およびパルスアーク溶接装置に関する。
 従来のパルスアーク溶接において、軟鋼パルスMAG溶接による高速溶接する場合は、被溶接物が掘られて、掘られた部分に対して溶融した金属で十分充填されなく溝となって残るアンダーカットの抑制のため、溶接電圧を下げてアーク長を短くし、溶滴を短絡移行させながら溶接を行うのが一般的な施工パターンである。しかし、短絡時には短絡開始時から短絡電流を所定の傾きで短絡開放するまで上昇させる。これにより、短絡開放時には短絡電流が200~300Aまで高い値に到達することもあり、短絡開放時にはスパッタが発生する場合がある。
 スパッタの発生を抑えるために、短絡時には短絡開始時から短絡電流を所定の傾きで短絡開放するまで上昇させる過程で、短絡開放直前にくびれ(ネック)を検出すると急峻に短絡電流を低い値まで低減させるパルスアーク溶接法が知られている(例えば、特許文献1参照)。
 図9に従来のパルスアーク溶接での短絡発生時の溶接電流Iの波形を示す。この方法では、くびれ(ネック)制御を実施し、溶接電流Iを急峻に低減させる。
 パルス溶接中に短絡が発生した場合、この短絡を開放するためにパルス電流の立上り時の傾きよりも小さな傾きの電流を通電し、この通電により生じる短絡の解放の際にくびれを検知して溶接電流を急峻に低減させる。したがって、短絡開放時のスパッタ発生に関する溶接電流の影響を低減することができ、この結果、短絡開放時のスパッタ発生量を低減することができる。
特開2006-334601号公報
 溶接電流がピーク電流であるピーク電流期間と、溶接電流がピーク電流より小さいベース電流であるベース電流期間とを交互に繰り返して溶接電流を溶接ワイヤに流しながら溶接ワイヤを送給速度で被溶接物に向かって送給して溶接ワイヤと被溶接物との間でアークを発生させて被溶接物を溶接するようにパルスアーク溶接装置を制御する。アークのアーク長を一定に保つように、ベース電流期間では送給速度を第1送給速度に設定し、ピーク電流期間では送給速度を第1送給速度よりも大きくかつ第1送給速度に応じた第2送給速度に設定する。
 この方法により、スパッタを低減しかつアンダーカットを抑制した良好な溶接品質が得られる。
図1は実施の形態1におけるパルスアーク溶接装置の概略構成図である。 図2は実施の形態1におけるパルスアーク溶接装置の動作での溶接電流と溶接電圧と溶接ワイヤの送給速度と溶滴移行の状態とを示す図である。 図3は比較例のパルスアーク溶接装置の動作での溶接電流と溶接電圧と送給速度と溶滴移行の状態とを示す図である。 図4は実施の形態1における他のパルスアーク溶接装置の他の動作での溶接電流と溶接電圧と送給速度と溶滴移行の状態とを示す図である。 図5は実施の形態1におけるパルスアーク溶接装置の溶接ワイヤの送給速度を示す図である。 図6は実施の形態2におけるパルスアーク溶接装置の概略構成を示す図である。 図7Aは実施の形態2におけるパルスアーク溶接装置の動作での溶接電流と溶接電圧と溶接ワイヤの送給速度溶滴移行の状態とを示す図である。 図7Bは図7Aに示す送給速度の拡大図である。 図8は実施の形態2におけるパルスアーク溶接装置の溶接ワイヤの送給速度を示す図である。 図9は従来のパルスアーク溶接での溶接電流を示す図である。
 (実施の形態1)
 図1は実施の形態1におけるパルスアーク溶接装置1001の概略構成図である。パルスアーク溶接装置1001は主に溶接機と呼ばれる溶接電源装置18と、マニュピレータとも呼ばれるロボット21とを備える。
 溶接電源装置18は、溶接電流Iと溶接電圧Vよりなる溶接出力を出力する溶接電源部18aと、溶接電源部18aを制御する溶接制御部18bとを備える。溶接電源装置18は、入力電源1の出力を整流する1次整流部2と、1次整流部2の出力を制御することで溶接出力を制御するスイッチング素子3と、スイッチング素子3からの電力を絶縁して変換するトランス4と、トランス4の2次側出力を整流する2次整流部5と、2次整流部5に直列に接続されたリアクタ6(DCLともいう)と、スイッチング素子3を駆動させるための出力制御部7とを備えている。溶接電源装置18は、溶接電圧Vを検出する溶接電圧検出部8と、溶接電流Iを検出する溶接電流検出部9と、溶接電圧検出部8の出力および/または溶接電流検出部9の出力に基づいて溶接状態が短絡状態であるのかアーク状態であるのかを判定する短絡/アーク検出部10と、短絡期間中に出力制御部7を制御する短絡制御部11と、アーク期間中に出力制御部7を制御するアーク制御部12とをさらに備えている。溶接電源装置18は、ワイヤ送給制御部17と出力端子29aおよび出力端子29bをさらに備えている。
 アーク制御部12は、パルス立上り制御部14とピーク電流制御部15とパルス立下り制御部16を備えたパルス波形制御部13を備えている。
 ロボット21の動作を制御するロボット制御部19は、溶接条件を設定するための溶接条件設定部20を備えている。そして、ロボット制御部19は、溶接電源装置18と通信可能に接続されている。なお、ロボット21には、トーチ26が取り付けられている。
 溶接電源装置18と接続されたロボット制御部19の内部にある溶接条件設定部20は、溶接電流や溶接電圧等を設定するためのものである。溶接電源装置18の出力端子29aは、トーチ26内にある溶接ワイヤ23を保持するチップ27に電気的に接続され、チップ27を介して溶接ワイヤ23に電力が供給される。溶接電源装置18の出力端子29bは、被溶接物24に電気的に接続され、被溶接物24に電力を供給する。溶接ワイヤ23の先端部と被溶接物24との間でアーク28が発生する。送給ローラを備えたワイヤ送給部25は、溶接ワイヤ23を保存する溶接ワイヤ保存部22からチップ27に向けて、溶接ワイヤ23を送給速度WFで被溶接物24に向かって送給する。
 なお、図1で示したパルスアーク溶接装置1001を構成する各構成部は、各々単独に構成してもよいし、複数の構成部を複合して構成するようにしてもよい。
 図2はパルスアーク溶接装置1001の溶接電流Iと溶接電圧Vと送給速度WFと溶滴移行の状態とを示す。溶接電源装置18は、溶接ワイヤ23に溶接電圧Vと溶接電流Iとを供給ことで溶接ワイヤ23と被溶接物24との間にアーク28を発生させ、かつ溶接ワイヤ23を溶融させて溶接ワイヤ23の先端に溶滴23dを形成する。溶滴23dは溶接ワイヤ23の先端から被溶接物24に移って付着し、被溶接物24を溶接する。パルスアーク溶接装置1001は、溶滴移行(離脱)状態において、溶接ワイヤ23と被溶接物24とが短絡しない程度の短いアーク28のアーク長Hを一定に保つように構成されている。溶接ワイヤ23の先端に溶滴23dが形成されて溶接ワイヤ23に繋がっている場合には、アーク28は溶接ワイヤ23の先端に形成された溶滴23dと被溶接物24との間に発生する。したがって、溶接ワイヤ23の先端に溶滴23dが形成されて溶接ワイヤ23に繋がっている場合には、アーク28のアーク長Hは実質的には溶接ワイヤ23の先端に形成された溶滴23dと被溶接物24との間の距離である。溶接ワイヤ23の先端に溶滴23dが形成されていないもしくは溶接ワイヤ23の先端に溶滴23dが繋がっていない場合には、アーク28は溶接ワイヤ23の先端と被溶接物24との間に発生する。すなわち、溶接ワイヤ23の先端に溶滴23dが形成されていないもしくは溶接ワイヤ23の先端に溶滴23dが繋がっていない場合には、アーク28のアーク長Hは実質的に溶接ワイヤ23の先端と被溶接物24との間の距離である。図2に示す溶接電流Iは、溶接電流Iがピーク電流IPであるピーク電流期間IPTと、溶接電流Iがピーク電流IPより小さいベース電流IBであるベース電流期間IBTとを交互に繰り返す。
 図2に示すパルスアーク溶接装置1001での溶接電流Iと溶接電圧Vと溶滴移行の状態と送給速度WFでは、溶滴23dを成長させるピーク電流期間IPTで送給速度WFを増加させ、ベース電流期間IBTで安定した溶滴移行(離脱)状態を実現することでアーク長Hの変化を抑制してアーク長Hを一定の値H1に保たれる。
 図3は比較例のパルスアーク溶接装置の溶接電流Iと溶接電圧Vと溶滴移行の状態と送給速度WFを示す。比較例のパルスアーク溶接装置では、溶接ワイヤ23の送給速度WFが一定であり、かつベース電流期間IBTで溶滴移行(離脱)させる。これによりアーク長Hは値H1から値H2までの範囲で変化する。
 図3に示す溶接電流Iのパルス波形は、定常溶接期間で、周期的に繰り返される安定した溶滴移行(離脱)を実現する基本的なパルス波形である。溶接電流Iのパルス波形は、溶接電流Iがベース電流IBからピーク電流IPへ遷移するパルス立上り期間IPRTと、溶接電流Iがピーク電流IPであるピーク電流期間IPTと、溶接電流Iがピーク電流IPからベース電流IBへ遷移するパルス立下り期間IPFTと、溶接電流Iがベース電流IBであるベース電流期間IBTとを含む。パルス立上り期間IPRTとピーク電流期間IPTとパルス立下り期間IPFTとベース電流期間IBTとをパルス周波数PHzで周期的に繰り返すことにより周期的な溶滴移行状態が得られる。
 図2と図3に示す溶滴移行では、溶接制御部18bは、1パルスあたりで溶滴23dが1回離脱する1パルス1ドロップを実現するようにピーク電流IPとベース電流IBとパルス立上り期間IPRTとピーク電流期間IPTとパルス立下り期間IPFTとベース電流期間IBT等のパルス波形を決定するパルス波形パラメータを調整する。パルス波形パラメータは、被溶接物24や使用する溶接ワイヤ23等の溶接条件によって異なり、例えば、実験等の施工確認により予め求めておくことができる。
 図3に示す比較例のパルスアーク溶接装置の溶接電流Iと溶接電圧Vと溶滴移行の状態と送給速度WFを詳細に説明する。比較例のパルスアーク溶接装置の溶接制御部は、パルス立上り期間IPRTが始まる時点t1に溶接電流Iをベース電流IBからピーク電流IPへ遷移させ始め、パルス立上り期間IPRTが終わる時点t2に溶接電流Iをピーク電流IPに到達させてピーク電流期間IPTを開始する。溶接制御部はピーク電流期間IPTにおいて溶接電流Iを実質的にピーク電流IPに維持する。その後、溶接制御部は、ピーク電流期間IPTが終わる時点t3に溶接電流Iをピーク電流IPから減少させ始めてパルス立下り期間IPFTを開始させ、パルス立下り期間IPFTが終わる時点t4に溶接電流Iをピーク電流IPより小さいベース電流IBに到達させてベース電流期間IBTを開始させる。溶接制御部はベース電流期間IBTにおいて溶接電流Iを実質的にベース電流IBに維持する。溶接制御部は、ベース電流期間IBTが終わりパルス立上り期間IPRTが始まる時点t1に溶接電流Iをベース電流IBからピーク電流IPへ遷移させ始める。このように、溶接制御部は、パルス立上り期間IPRTとピーク電流期間IPTとパルス立下り期間IPFTとベース電流IBとをパルス周波数PHz(パルス周期(1/PHz))で繰り返す。溶接電流Iがベース電流IBからピーク電流IPへ遷移するパルス立上り期間IPRTで溶滴23dが成長し始め(状態Sa)、溶接電流Iがピーク電流IPであるピーク電流期間IPTにて溶滴23dは最適な大きさを有するまでに成長する(状態Sb)。その後、溶接電流Iがピーク電流IPからベース電流IBへ遷移するパルス立下り期間IPFTで溶接ワイヤ23の先端で溶滴23dが溶接ワイヤ23から離脱する直前で溶接ワイヤ23に繋がっている溶滴23dと溶接ワイヤ23との間に形成されて局部的に小さい径を有する部分であるくびれを形成するくびれ状態にさせる(状態Sc)。その後、溶接電流Iがベース電流IBであるベース電流期間IBTで、溶滴23dが溶接ワイヤ23から離脱する(状態Sd)。ここで、ベース電流期間IBTにおいて、溶滴23dが離脱した(状態Sd)後に、溶接ワイヤ23の先端の余熱により溶滴23dがわずかに成長して大きくなる。
 図3に示す比較例のパルスアーク溶接装置では、溶接ワイヤ23の送給速度WFは、溶接電流Iの設定電流に応じた一定の送給速度WF1である。
 この溶滴移行(離脱)状態がパルス周波数PHzにて繰り返し行われることにより、安定した溶接状態を実現でき、スパッタの少ない美しい外観のビードを実現することができる。
 図3に示す比較例のパルスアーク溶接装置では、ピーク電流期間IPTとベース電流期間IBTではアーク長Hが異なる値H1と値H2の間で変化する。ピーク電流期間IPTでは大きいピーク電流IPが溶接ワイヤ23に印加されて、送給速度WF1よりも溶接ワイヤ23が溶融する溶融速度が大きくなり、溶滴23dが形成されることでアーク長Hが長くなる(値H2)。ベース電流期間IBTでは小さいベース電流IBが溶接ワイヤ23に印加されて、送給速度WF1よりも溶接ワイヤ23の溶融速度が小さくなり、アーク長Hは短くなる(値H1)。
 このように、パルス波形の1周期にはアーク長Hが値H1と値H2とに変化し、その変化はパルス周波数PHzで繰り返される。溶滴23dは被溶接物24上に移動して凝固するまでは被溶接物24上に溶融池を形成する。溶融池は被溶接物24の溶融した部分を含む溶融金属よりなる。ピーク電流期間IPTで一時的にもアーク長Hが値H2と長くなることで溶融池が大きくなる。溶融池が凝固することで被溶接物24にビードを形成する。ビードとなる溶融した金属は、温度の低いビードの縁から凝固し始め、温度の高いビードの中心が最終凝固点として最後に凝固する。被溶接物24をトーチ26に対して相対的に移動方向に移動させる場合には、ビードは移動方向に細長く形成され、最終凝固点はビードの移動方向と直角の幅方向の中心となる。したがって、ビードを形成する時の溶融金属は、最終凝固点に引っ張られるように凝固していく。よって、温度の低いビードの縁と温度の高いビードの中心との距離が大きい、すなわち溶融池が大きいほど、ビードの縁での溶融金属の量が不足しやすくアンダーカットが発生しやすい。
 比較例のパルスアーク溶接装置では、溶接電圧Vを下げてアーク長Hを短くし、溶融池を小さくすることでアンダーカットを抑制することはできる。しかし、溶接電圧Vの低下により溶滴23dがスプレー移行から短絡移行になることで、溶接ワイヤ23と被溶接物24との短絡に起因するスパッタが増加する場合がある。
 実施の形態1におけるパルスアーク溶接装置1001での図2に示す動作では、高速溶接時でも溶融池を小さく、かつ短絡を発生させ」ないように短いアーク長Hを一定に保ちながら被溶接物24を溶接できる。この動作を以下に説明する。なお、短絡しない程度の短いアーク長Hとは例えば2mm~3mm程度である。
 図2に示す溶接電流Iのパルス波形では図3に示すパルス波形と同様に、溶接電流Iがベース電流IBからピーク電流IPへ遷移するパルス立上り期間IPRTで溶滴23dが成長し始める(状態Sa点)。その後、溶接電流Iがピーク電流IPであるピーク電流期間IPTにて溶滴23dを最適な大きさを有するまでに成長させる(状態Sb)。その後、溶接電流Iがピーク電流IPからベース電流IBへ遷移するパルス立下り期間IPFTで溶接ワイヤ23の先端で溶滴23dが溶接ワイヤ23から離脱する直前の状態であるくびれが形成されるくびれ状態(状態Sc)を発生させる。その後、溶接電流Iがベース電流IBであるベース電流期間IBTで溶滴23dが溶接ワイヤ23から離脱する(状態Sd)。
 図2に示す動作は図3に示す比較例の動作に対して溶接ワイヤ23を送給する送給速度WFが異なる。溶接制御部18bは、送給速度WFを送給速度WF1に設定する。溶接制御部18bは、パルス立上り期間IPRTが始まる時点t1に送給速度WFを送給速度WF1よりも大きい送給速度WF2に向かって増加させ始めて、送給速度WF2に到達させる。図2に示す動作では、溶接電流Iは時点t1に送給速度WF1から増加し始めた直後に送給速度WF2に到達する。その後、溶接制御部18bは、パルス立下り期間IPFTが始まる時点t3に送給速度WFをピーク電流期間IPTでの送給速度WF2からベース電流期間IBTでの送給速度WF1へ向かって減少させ始めて、送給速度WF1に到達させる。図2に示す動作では、溶接電流Iは時点t3に送給速度WF2から減少し始めた直後に送給速度WF1に到達する。
 溶接制御部18bは、溶接電流Iのパルス波形に合せて送給速度WFを送給速度WF1、WF2にパルス周波数PHzで周期的に変化させながら溶滴移行(離脱)状態を実現する。これにより、短いアーク長Hを一定に保ちながら安定した溶接状態を実現でき、アンダーカットのないスパッタの少ない美しい外観のビードを形成することができる。
 図4はアーク長Hを一定にするためのパルスアーク溶接装置1001の他の動作での溶接電流Iと溶接電圧Vと送給速度WFと溶滴移行の状態とを示す。図4において、図2に示す動作と同じ部分には同じ参照番号を付す。図4に示す動作では、溶接制御部18bは、パルス立上り期間IPRTが始まる時点t1に溶接ワイヤ23の送給速度WFを送給速度WF1から送給速度WF2に向かって所定の傾きで増加させ始め、時点t1の後に送給速度WF2に到達させてから送給速度WF2に維持する。その後、溶接制御部18bは、ピーク電流期間IPTが終わりパルス立下り期間IPFTが始まる時点t3に送給速度WFを送給速度WF2から送給速度WF1へ向かって所定の傾きで減少させ始め、時点t3の後に時点t4で送給速度WF1に到達させてから送給速度WF1に維持する。
 図4に示すように、溶接制御部18bは、時点t1に送給速度WFを送給速度WF1から送給速度WF2に向かって所定の傾きで増加させ始め、時点t2に送給速度WF2に到達させてから送給速度WF2に維持することが好ましい。すなわち、送給速度WFが送給速度WF1から送給速度WF2に増加する期間はパルス立上り期間IPRTに一致するように、送給速度WFが送給速度WF1から送給速度WF2に増加する所定の傾きを調整することが好ましい。さらに溶接制御部18bは、時点t3に送給速度WFを送給速度WF2から送給速度WF1へ向かって所定の傾きで減少させ始め、時点t4に送給速度WF1に到達させてから送給速度WF1に維持することが好ましい。すなわち、送給速度WFが送給速度WF2から送給速度WF1に減少する期間はパルス立下り期間IPFTに一致するように送給速度WFが送給速度WF2から送給速度WF1に減少する所定の傾きを調整することが好ましい。
 図5は、送給速度WFの送給速度WF2を示す。詳細には、図5は、溶接ワイヤ23がφ1.2の径を有する軟鋼よりなり、ArガスとCOガスとが混合されたシールドガス24G(図1参照)を用いたパルスMAG溶接(Ar:CO=80:20)における、送給速度WF2から送給速度WF1を引いた差である増加量WFUと、送給速度WF1との関係を示す(WF2=WF1+WFU)。
 図5において、横軸は送給速度WF1を示し、縦軸は送給速度WF1から送給速度WF2への増加量WFUを示す。例えば、送給速度WF1が4m/minである場合、増加量WFUは1m/minとなる。送給速度WF1が8m/minである場合、増加量WFUは2m/minとなる。図5に示す関係では、送給速度WF2の送給速度WF1に対する増加率、すなわち増加量WFUの送給速度WF1に対する割合は25%程度である。送給速度WFが増加していくほど、溶接電流Iは大きいので、溶滴23dも大きくなる。したがって、送給速度WF1が大きくなると、送給速度WF2の増加率は同じであるが、増加量WFUは大きくなる。
 溶接ワイヤ23の径、材質、シールドガス24Gなどの溶接条件により送給速度WFの適正な増加量WFU(増加率)は異なり、例えば、実験等の施工確認により予め求めておくことができる。
 例えば、材質が異なる例として、溶接ワイヤ23の材質がステンレスである場合では、ステンレスは粘性が高く、溶滴23dが離脱しにくいので、軟鋼よりも溶滴23dが大きくなる傾向がある。したがって、溶接ワイヤ23の材質がステンレスである場合は送給速度WF1から送給速度WF2への増加量WFUは、図5に示す軟鋼の場合よりも大きくなる。
 また、シールドガス24Gが異なる例として、Arガス比率が多いシールドガス24Gを用いたMAG溶接(Ar:CO=90:10)の場合では、MAG溶接(Ar:CO2=80:20)の場合より溶滴23dが離脱しやすく、溶滴23dが小さくなる傾向がある。したがって、Arガス比率が多いMAG溶接(Ar:CO2=90:10)での増加量WFUは、図5に示すMAG溶接(Ar:CO2=80:20)の場合よりも小さくなる。
 また、ワイヤの径が異なる例として、溶接ワイヤ23の径がφ1.2よりも太くなると、溶滴23dの大きさもφ1.2の径よりも大きくなる傾向がある。したがって、溶接ワイヤ23の径がφ1.2よりも太い場合の増加量WFUは、図5に示すφ1.2の径の場合よりも大きくなる。逆に、溶接ワイヤ23の径がφ1.2よりも細くなると、溶滴23dは溶接ワイヤ23の径がφ1.2である場合よりも小さくなる傾向がある。したがって、溶接ワイヤ23の径がφ1.2よりも細い場合には、増加量WFUは図5に示す溶接ワイヤ23の径がφ1.2である場合よりも小さくなる。
 アーク長Hが短くても特にピーク電流期間IPTで溶接ワイヤ23と被溶接物24との短絡が発生せず、アーク長Hを一定とするために、送給速度WF1に対する増加量WFUの割合は、基本的には10%~30%が好ましい。なお、送給速度WF1と増加量WFUとの相関関係は図5に示す1次関数だけでなく、2次関数であってもよく、送給速度WF1と増加量WFUとの離散的な値を保存するデータベースにより増加量WFUを決定してもよい。
 通常のパルスアーク溶接は、ピーク電流期間では高い電流を印加し、ワイヤ溶融が早いために溶滴形成によりアーク長が長くなり、ベース電流期間は低い電流の印加によりワイヤ溶融が遅いためにアーク長は短くなる。
 そのため、パルスの1周期の間にはアーク長が長短を繰り返していることになる。一時的にもアーク長が長いと、高速溶接時にはアンダーカットが発生しやすい。アンダーカットを抑制するために電圧を下げることでアーク長を短くしても短絡移行でのスパッタが増加することは避けられない。
 スパッタの抑制のため、短絡時には短絡開始時から短絡電流を所定の傾きで短絡開放するまで上昇させてもよい。その後、短絡の開放の直前にくびれを検出することで急峻に短絡電流を低い値まで低減させてもよい。しかし、この方法でも大幅にスパッタを低減することはできない場合がある。
 従って、従来のパルスアーク溶接においては、アンダーカットの抑制とスパッタの低減を両立することは困難である。
 前述のように、実施の形態1におけるパルスアーク溶接装置1001では、ピーク電流期間IPTでの溶接ワイヤ23の送給速度WFを送給速度WF2に設定し、送給速度WFを、溶接電流Iのピーク電流IPとベース電流IBとの切替えに同期させて送給速度WF1、WF2に変化させることで、アンダーカットを抑制したスパッタの少ないパルスアーク溶接を実現できる。
 実施の形態1におけるパルスアーク溶接装置1001では、ピーク電流期間IPTとベース電流期間IBTに応じて溶接ワイヤ23の送給速度WFを変える。特に、ベース電流期間IBTでは送給速度WFを送給速度WF1に設定し、ピーク電流期間IPTでは送給速度WFを送給速度WF1よりも大きくかつ送給速度WF1に応じた送給速度WF2に設定する。これにより、アーク長Hを短く一定にでき、溶融池を安定して小さくできる。また、ビードの縁とビードの幅方向の中心との温度差が小さくなり、最終凝固点であるビードの幅方向の中心に溶融金属が引っ張られにくくなる。よって、ビードの縁の溶融金属の量が不足しにくくなることでアンダーカットを抑制することができる。実施の形態1におけるパルスアーク溶接装置1001は、特に、高速溶接時でもアンダーカットを抑制した良好な溶接品質を実現できる。また、実施の形態1におけるパルスアーク溶接装置1001は、アンダーカットを抑制しながら、ピーク電流期間IPTにおいて溶滴23dを短絡移行の状態ではなくスプレー移行の状態にすることができるので、スパッタも抑制できる。
 溶接ワイヤ23と被溶接物24との間に短絡が発生していると、溶接電流Iは短絡電流ISとなる。図1に示す溶接電源装置18において、短絡制御部11は、短絡/アーク検出部10から短絡が発生していることを示す信号を受けると、短絡を開放させることができるように短絡電流ISを制御する。
 アーク制御部12は、短絡/アーク検出部10からアーク28が発生していることを示す信号を受けると、ワイヤ送給制御部17に制御される送給速度WFに基づいてパルス電流波形の信号を出力するパルス波形制御部13は、ピーク電流IPとベース電流IBなどの溶接電流Iのパルス波形を決めるパルス波形パラメータを出力制御部7に送る。送給速度WFは、アーク制御部12の溶接条件設定部20に設定された溶接電流Iの設定電流または設定電流と相関関係にある。パルス波形制御部13のパルス立上り制御部14は、パルス立上り期間IPRTが始まる時点t1に、送給速度WFを送給速度WF1から送給速度WF2へ向かって増加させ始めるタイミング信号を出力する。パルス立下り制御部16は、パルス立下りIPFTが始まる時点t3に、送給速度WFを送給速度WF2から送給速度WF1へ向かって減少させ始めるタイミング信号を出力する。パルス波形制御部13は、ピーク電流IPとベース電流IBを制御する。
 溶接電源装置18のワイヤ送給制御部17は、ロボット制御部19内に設けられた溶接条件設定部20に設定されている溶接電流Iの設定電流に基づいて、設定電流に対応した送給速度WFを決定して送給速度WFを出力する。アーク制御部12のパルス波形制御部13はそして、ワイヤ送給制御部17から出力された送給速度WFを受信して、受信した送給速度WFに応じたピーク電流IPとベース電流IB、パルス立上り期間IPRTとピーク電流期間IPTとパルス立下り期間IPFTなどの、溶接電流Iのパルス波形を決めるパルス波形パラメータを出力する。ワイヤ送給制御部17の信号に基づいて、送給ローラを備えたワイヤ送給部25は、溶接ワイヤ23を送給する。
 上述のように、パルスアーク溶接装置1001は溶接ワイヤ23を用いて被溶接物24を溶接するように構成されている。溶接電流Iがピーク電流IPであるピーク電流期間IPTと、溶接電流Iがピーク電流IPより小さいベース電流IBであるベース電流期間IBTとを交互に繰り返して溶接電流Iを溶接ワイヤ23に流しながら溶接ワイヤ23を送給速度WFで被溶接物24に向かって送給して溶接ワイヤ23と被溶接物24との間でアーク28を発生させて被溶接物24を溶接するようにパルスアーク溶接装置を制御する。溶接制御部18bは、アーク28のアーク長Hを一定に保つように送給速度WFを制御する。溶接制御部18bは、ベース電流期間IBTでは送給速度WFを送給速度WF1に設定し、ピーク電流期間IPTでは送給速度WFを送給速度WF1よりも大きくかつ送給速度WF1に応じた送給速度WF2に設定する。
 送給速度WF2は、溶接ワイヤ23の径と材質の少なくとも一つに応じた値だけ送給速度WF1よりも大きくてもよい。
 溶接制御部18bは、シールドガス24Gを用いて被溶接物24を溶接するようにパルスアーク溶接装置1001を制御してもよい。この場合には、送給速度WF2は、溶接ワイヤ23の径、材質およびシールドガス24Gの少なくとも一つに応じた値だけ送給速度WF1よりも大きくてもよい。
 溶接制御部18bは、ピーク電流期間IPTからベース電流期間IBTに移行する際に溶接電流Iがピーク電流IPからベース電流IBへ立下り始めると同時に送給速度WFを送給速度WF2から送給速度WF1へ向かって減少させ始めてもよい。
 溶接制御部18bは、送給速度WF1から送給速度WF2に達するまでの期間を、溶接電流Iがベース電流IBからピーク電流IPまで達するまでの期間と同じになるように送給速度WFを制御してもよい。なお、同じ期間とは、長さのみならず、それらの始まる時点と終わる時点がそれぞれ同じである期間である。
 溶接制御部18bは、送給速度WFが送給速度WF2から送給速度WF1まで達する期間を、溶接電流Iがピーク電流からベース電流IBまで達する期間と同じになるように送給速度WFを制御してもよい。
 送給速度WF2は送給速度WF1より送給速度WF1の10%~30%の範囲の値だけ大きくてもよい。
 以上のように、本実施の形態におけるパルスアーク溶接制御方法およびパルスアーク溶接装置1001では、アーク長Hが長くなるピーク電流期間IPTには、送給速度WFを送給速度WF1よりも大きくかつ送給速度WF1に応じた送給速度WF2に増加させる。これにより、ピーク電流期間IPTのアーク長Hをベース電流期間IBTと同じにして、かつ短絡しない程度に短くすることができる。これにより、短絡移行状態とならずにスプレー移行状態で溶滴23dが溶接ワイヤ23から離脱し、短絡の発生に伴うスパッタが発生せず、スパッタをほぼ発生させなくすることができる。これにより、高速の溶接時でもアンダーカットを抑制した良好な溶接品質を実現できる。
 (実施の形態2)
 図6は実施の形態2におけるパルスアーク溶接装置1002の概略構成図である。図6において、図1に示す実施の形態1におけるパルスアーク溶接装置1001と同じ部分には同じ参照番号を付す。実施の形態2におけるパルスアーク溶接装置1002の溶接制御部18bは、溶滴23dが溶接ワイヤ23から離脱した時点を検出する溶滴離脱検出部30を備える。溶滴離脱検出部30は、溶接ワイヤ23に繋がっている溶滴23dと溶接ワイヤ23との間に形成されて局部的に小さい径を有するくびれ23pを検出することで溶滴23dが離脱した時点を検出する。
 図7Aはパルスアーク溶接装置1002の動作での溶接電流Iと溶接電圧Vと溶接ワイヤ23の送給速度WFと溶滴移行の状態とを示す。図7Aにおいて、図4と図5に示す実施の形態1におけるパルスアーク溶接装置1001の動作と同じ部分には同じ参照番号を付す。実施の形態2におけるパルスアーク溶接装置1002では、溶接制御部18bは、ベース電流期間IBTでは溶接ワイヤ23の送給速度WFを送給速度WF1にする。溶接制御部18bは、ピーク電流期間IPTでは溶接ワイヤ23の送給速度WFを送給速度WF1よりも大きい送給速度WF2にする。その後、溶接制御部18bは、パルス立下り期間IPFTが始まる時点t3に、送給速度WFを送給速度WF1よりも小さい送給速度WF3に向かって減少させ始め、送給速度WF3に到達させる。その後、溶滴23dの溶接ワイヤ23からの離脱を検出するまで、溶接制御部18bは送給速度WFを送給速度WF3に維持してアーク長Hを一定に保つ。
 図7Aに示すパルスアーク溶接装置1002の溶接電流Iと溶接電圧Vと溶滴移行の状態と送給速度WFを詳細に説明する。溶接電流Iがベース電流IBからピーク電流IPへ遷移するパルス立上り期間IPRTが始まる時点t1で溶滴23dが成長し始める(状態Sa)。その後、溶接電流Iがピーク電流IPであるピーク電流期間IPTで溶滴23dを最適な大きさを有するまで成長させる(状態Sb)。その後、溶接電流Iがピーク電流IPからベース電流IBへ遷移するパルス立下り期間IPFTで溶接ワイヤ23の先端から溶滴23dが離脱する直前の状態でくびれ23pが形成されているくびれ状態を実現する(状態Sc)。その後、溶接電流Iがベース電流IBであるベース電流期間IBTで溶滴23dを溶接ワイヤ23から離脱させる(状態Sd)。
 溶接ワイヤ23を送給する送給速度WFの制御が図7Aに示す動作と図4に示す実施の形態1における動作との主な違いである。図7Aに示す動作では、溶接制御部18bは、ベース電流期間IBTが終わりパルス立上り期間IPRTが始まる時点t1に送給速度WFをベース電流期間IBTでの送給速度WF1から送給速度WF2に向かって所定の傾きで増加させて、送給速度WF2に到達させる。実施の形態2の動作では実施の形態1の動作と同様に、送給速度WFは、パルス立上り期間IPRTが終わりピーク電流期間IPTが始まる時点t2に送給速度WF2に達する。その後、溶接制御部18bは、ピーク電流期間IPTが終わりパルス立下り期間IPFTが始まる時点t3に送給速度WFをピーク電流期間IPTの送給速度WF2からベース電流期間IBTの送給速度WF1よりも小さい送給速度WF3へ向かって所定の傾きで減少させ始め、送給速度WF3に到達させた後に送給速度WF3に維持する。その後、溶接制御部18bは、溶滴離脱検出部30が、溶滴23dの溶接ワイヤ23からの離脱を検出した離脱時点tdに、送給速度WFを送給速度WF3から送給速度WF1へ増加させ始め、送給速度WF1に到達させた後に送給速度WF1に維持する。
 実施の形態2におけるパルスアーク溶接装置1002の特にピーク電流期間IPTからベース電流期間IBTに遷移するときの動作について以下に詳細に説明する。図7Bは図7Aに示す部分MAの送給速度WFの拡大図であり、溶滴23dの離脱を検出した離脱時点td前後の送給速度WFを示す。溶接制御部18bは、図7Aに示すように、時点t3に送給速度WFをピーク電流期間IPTの送給速度WF2から送給速度WF3へ向かって所定の傾きで減少させ始め、図7Bに示すように、送給速度WF3に到達させた後に送給速度WF3に維持する。実施の形態2における動作では、送給速度WFが送給速度WF2から送給速度WF3に減少している途中で、図4に示す実施の形態1における動作と同様に、時点t4に送給速度WFは送給速度WF1となる。その後、溶接制御部18bは、送給速度WFを同じ所定の傾きで送給速度WF3に向かってさらに減少させ続けて、時点t41で送給速度WF3に到達させ、その後、送給速度WF3に維持する。その後、溶滴離脱検出部30が溶滴23dの溶接ワイヤ23からの離脱を検出した離脱時点tdに、溶接制御部18bは送給速度WFを送給速度WF3から送給速度WF1へ増加させ始め、送給速度WF1に到達させた後に送給速度WF1に維持する。その後、溶接制御部18bは、図7Aに示すように、ベース電流期間IBTが終わる時点t1まで送給速度WFを送給速度WF1に維持する。
 このように、実施の形態2におけるパルスアーク溶接制御方法では、上述の実施の形態1に加えて、送給速度WF1よりも大きい送給速度WF2から送給速度WF1よりも小さい送給速度WF3に減少させた送給速度WFを、溶滴23dの離脱を検出した離脱時点tdに送給速度WF2より小さい送給速度WF1に増加させ始める。溶滴23dが溶接ワイヤ23の先端から離脱する直前に、溶接ワイヤ23に繋がった溶滴23dと溶接ワイヤとの間にくびれ23pが形成される。実施の形態2における溶接制御部18bの溶滴離脱検出部30は、溶接電圧Vを監視し、くびれ23pが形成されたことを検出した時点に基づき、溶滴23dが離脱した離脱時点tdを判定する。
 図7Aに示すこの溶滴移行(離脱)状態がパルス周波数PHzで繰り返されることにより、短いアーク長Hを一定に保ちながら安定した溶接状態を実現でき、アンダーカットのないスパッタの少ない美しい外観のビードが得られる。
 送給速度WF3は、溶接ワイヤ23の材質およびシールドガス24Gからなる溶接条件の少なくとも一つに応じた値だけ送給速度WF1より小さい。
 図8は送給速度WF1、WF3の関係を示す。詳細には、図8は、溶接ワイヤ23がφ1.2の径を有する軟鋼よりなり、ArガスとCOガスとが混合されたシールドガス24Gを用いたパルスMAG溶接(Ar:CO=80:20)における、送給速度WF3から送給速度WF1を引いた差である減少量WFDと、送給速度WF1との関係を示す(WF1+WFD=WF3)。
 図8において、横軸は送給速度WF1を示し、縦軸は減少量WFDを示す。例えば、送給速度WF1が4m/minである場合、減少量WFDは-0.5m/minとなる。送給速度WF1が8m/minである場合、減少量WFDは-0.75m/minとなる。
 溶滴移行(離脱)時に溶接ワイヤ23の材質によってはくびれ23pが大きくなり溶滴23dが伸びる場合がある。図8に示す関係に基づいて、溶滴23dの伸びに応じて送給速度WFを送給速度WF1よりも小さくすることでアーク長Hを一定に保つ。送給速度WFが大きいほど溶接電流Iが大きくなるので、溶滴23dやくびれ23pが長くなる傾向にある。したがって、送給速度WF1からの送給速度WF3への減少量WFDも大きくなる。
 溶接ワイヤ23のワイヤ材質、シールドガスなどの溶接条件により適正な減少量WFDは変わり、例えば、実験等の施工確認により求めておくことができる。
 例えば、材質が異なる例として、溶接ワイヤ23の材質がステンレスの場合では、ステンレスは粘性が高く、溶滴23dが離脱しにくいので、溶滴23dやくびれ23pが長くなる傾向がある。したがって、送給速度WF1に対する送給速度WF3への減少量WFDは、図8に示す溶接ワイヤ23が軟鋼よりなる場合の減少量WFDよりも大きくなる傾向がある。
 また、シールドガス24Gが異なる例として、Arガスの比率が多いシールドガス24Gを用いたMAG溶接(Ar:CO=90:10)の場合では、溶滴23dが離脱しやくなり、図8に示すシールドガス24G(Ar:CO=80:20)を用いたMAG溶接での減少量WFDよりも溶滴23dとくびれ23pが短くなる傾向がある。したがって、送給速度WF1に対する送給速度WF3への減少量WFDは、図8に示すMAG溶接(Ar:CO=80:20)の場合よりも小さくなる傾向がある。
 なお、送給速度WF1と減少量WFDとの関係は、2次関数だけでなく、1次関数であってもよく、送給速度WF1と減少量WFDとの離散的な値を保存するデータベースにより減少量WFDを決定してもよい。
 図6に示すパルスアーク溶接装置1001において、溶滴離脱検出部30は、溶接電圧検出部8で検出された溶接電圧Vをリアルタイムに監視し、溶接電圧Vを時間で微分した時間微分値を得る。溶滴離脱検出部30は、溶接電圧Vの時間微分値が所定の値を超えた時点に、ワイヤ送給制御部17に溶滴離脱信号Cdを送信し、時間微分値が所定の値以下であるときには、ワイヤ送給制御部17に溶滴離脱信号Cdを送信しない。溶接電圧Vの時間微分値が所定の値を超えた時点を溶滴23dが溶接ワイヤ23から離脱した離脱時点tdとして判定する。溶接制御部18bは、パルス立下り期間IPFTが始まる時点t3から送給速度WFを送給速度WF3へ向かって減少させている状態から、溶滴23dのくびれ23pが形成されている状態を示す所定の値を溶接電圧Vの時間微分値が超えたことを検出すると、送給速度WFを送給速度WF3から送給速度WF1に向かって増加させ始める。
 パルスアーク溶接装置1002のパルス波形制御部13は、溶接条件設定部20に設定された設定電流またはワイヤ送給制御部17に制御された送給速度WFに基づいて溶接電流Iのパルス波形を出力する。パルス波形制御部13のパルス立上り制御部14は、ベース電流期間IBTからピーク電流期間IPTへ遷移するパルス立上り期間IPRTが始まる時点t1に、溶接ワイヤ23の送給速度WFをベース電流期間IBTの送給速度WF1よりも大きい送給速度WF2に向かって増加させ始める信号を送信する。パルス立下り制御部16は、ピーク電流期間IPTからベース電流期間IBTへ遷移するパルス立下り期間IPFTが始まる時点t3に送給速度WFを送給速度WF2から送給速度WF1よりも小さい送給速度WF3に向かって減少させ始める信号を送信する。
 上述のように、溶接電流Iを溶接ワイヤ23に流すことにより溶接ワイヤ23を溶融させて溶滴23dを形成させて、かつ溶滴23dが溶接ワイヤ23に繋がった状態で溶接ワイヤ23と溶滴23dとの間にくびれ23pが発生するようにパルスアーク溶接装置1002を制御する。溶接制御部18bは、ピーク電流期間IPTからベース電流期間IBTに移行する際に、送給速度WF1よりも小さく送給速度WF1に応じた送給速度WF3に送給速度WFを送給速度WF2から減少させる。溶接制御部18bは、くびれ23pが発生したことを検出した時に、送給速度WFを送給速度WF3から送給速度WF1に増加させる。
 送給速度WFを送給速度WF3から送給速度WF1に増加させるステップで送給速度WFを送給速度WF1に増加させてからベース期間が終わるまで送給速度WF1に維持してもよい。
 送給速度WF3は、溶接ワイヤ23の材質およびシールドガス24Gの少なくとも一つに応じた値だけ送給速度WF1より小さくてもよい。
 以上のように、実施の形態2におけるパルスアーク溶接制御方法およびパルスアーク溶接装置1002により、アーク長Hが長くなるピーク電流期間IPTには、溶接ワイヤ23の送給速度WFをベース電流期間IBTでの送給速度WF1よりも大きい送給速度に増加させる。それに加え、溶接ワイヤ23の材質によっては、溶滴移行(離脱)時にくびれ23pが大きく溶滴23dが伸びる場合に、その伸びる分に応じた値だけ送給速度WF1よりも小さい送給速度WF3に送給速度WFを減少させ、溶滴移行(離脱検出)を検出した離脱時点tdに送給速度WFを送給速度WF1に増加させる。このように、溶接制御部18bは溶接ワイヤ23の材質やシールドガス24Gなどの溶接条件に応じて溶接ワイヤ23の送給速度WFを調整する。これにより、ピーク電流期間IPTも含めてベース電流期間IBTと同様にアーク長Hを短絡しない程度に小さく維持でき、短絡移行ではなくスプレー移行状態で溶接を行うことができる。したがって、短絡の発生に伴うスパッタをほぼ発生させなくすることができる。このように、実施の形態2におけるパルスアーク溶接装置1002では、ピーク電流期間IPTのアーク長Hを短くして、ピーク電流期間IPTとベース電流期間IBTとのアーク長Hを短くかつ一定にでき、大幅なスパッタ低減と高速溶接時でもアンダーカットを抑制した良好な溶接品質を実現することができる。
 本発明におけるパルスアーク溶接制御方法により、スパッタの発生を低減させ、短いアーク長を保持でき、高速溶接でもアンダーカットを抑制した良好な外観を有するビードを実現でき、消耗電極である溶接ワイヤを連続的に送給しながらアーク溶接を行うパルスアーク溶接装置に有用である。
I  溶接電流
V  溶接電圧
WF  送給速度
H  アーク長
IP  ピーク電流
IB  ベース電流
IBT  ベース電流期間
IPRT  パルス立上り期間
IPT  ピーク電流期間
IPFT  パルス立下り期間
PHz  パルス周波数
WF1  送給速度(第1送給速度)
WF2  送給速度(第2送給速度)
WF3  送給速度(第3送給速度)
1  入力電源
2  1次整流部
3  スイッチング素子
4  トランス
5  2次整流部
6  リアクタ
7  出力制御部
8  溶接電圧検出部
9  溶接電流検出部
10  短絡/アーク検出部
11  短絡制御部
12  アーク制御部
13  パルス波形制御部
14  パルス立上り制御部
15  ピーク電流制御部
16  パルス立下り制御部
17  ワイヤ送給制御部
18  溶接電源装置
19  ロボット制御部
20  溶接条件設定部
21  ロボット
22  溶接ワイヤ保存部
23  溶接ワイヤ
24  被溶接物
25  ワイヤ送給部
26  トーチ
27  チップ
28  アーク
29a  出力端子
29b  出力端子
30  溶滴離脱検出部

Claims (12)

  1. 溶接ワイヤを用いて被溶接物を溶接するパルスアーク溶接装置を準備するステップと、
    溶接電流がピーク電流であるピーク電流期間と、前記溶接電流が前記ピーク電流より小さいベース電流であるベース電流期間とを交互に繰り返して前記溶接電流を前記溶接ワイヤに流しながら前記溶接ワイヤを送給速度で被溶接物に向かって送給して前記溶接ワイヤと前記被溶接物との間でアークを発生させて前記被溶接物を溶接するように前記パルスアーク溶接装置を制御するステップと、
    前記アークのアーク長を一定に保つように前記送給速度を制御するステップと、
    を含み、
    前記送給速度を制御する前記ステップは、前記ベース電流期間では前記送給速度を第1送給速度に設定し、前記ピーク電流期間では前記送給速度を前記第1送給速度よりも大きくかつ前記第1送給速度に応じた第2送給速度に設定するステップを含む、パルスアーク溶接制御方法。
  2. 前記第2送給速度は、前記溶接ワイヤの径と材質の少なくとも一つに応じた値だけ前記第1送給速度よりも大きい、請求項1に記載のパルスアーク溶接制御方法。
  3. 前記パルスアーク溶接装置を制御する前記ステップは、前記ピーク電流期間と前記ベース電流期間とを交互に繰り返して前記溶接電流を前記溶接ワイヤに流しながら前記溶接ワイヤを前記送給速度で前記被溶接物に向かって送給して前記溶接ワイヤと前記被溶接物との間でアークを発生させてかつシールドガスを用いて前記被溶接物を溶接するように前記パルスアーク溶接装置を制御するステップを含み、
    前記第2送給速度は、前記溶接ワイヤの径、材質および前記シールドガスの少なくとも一つに応じた値だけ前記第1送給速度よりも大きい、請求項1に記載のパルスアーク溶接制御方法。
  4. 前記送給速度を制御するステップは、
       前記ベース電流期間から前記ピーク電流期間に移行する際に前記溶接電流が前記ベース電流から前記ピーク電流へ立上り始めると同時に前記送給速度を前記第1送給速度から前記第2送給速度へ向かって増加させ始めるステップと、
       前記ピーク電流期間から前記ベース電流期間に移行する際に前記溶接電流が前記ピーク電流から前記ベース電流へ立下り始めると同時に前記送給速度を前記第2送給速度から前記第1送給速度へ向かって減少させ始めるステップと、
    をさらに含む、請求項1から3のいずれか一項に記載のパルスアーク溶接制御方法。
  5. 前記送給速度を制御するステップは、前記第1送給速度から前記第2送給速度に達するまでの期間を、前記溶接電流が前記ベース電流から前記ピーク電流まで達するまでの期間と同じになるように前記送給速度を制御するステップをさらに含む、請求項1から4のいずれか一項に記載のパルスアーク溶接制御方法。
  6. 前記送給速度を制御するステップは、前記送給速度が前記第2送給速度から前記第1送給速度まで達する期間を、前記溶接電流が前記ピーク電流から前記ベース電流まで達する期間と同じになるように前記送給速度を制御するステップをさらに含む、請求項1から5のいずれか一項に記載のパルスアーク溶接制御方法。
  7. 前記パルスアーク溶接装置を制御するステップは、前記溶接電流を前記溶接ワイヤに流すことにより前記溶接ワイヤを溶融させて溶滴を発生させて、かつ前記溶滴が前記溶接ワイヤに繋がった状態で前記溶接ワイヤと前記溶滴との間にくびれが発生するように前記パルスアーク溶接装置を制御するステップを含み、
    前記送給速度を制御するステップは、
       前記ピーク電流期間から前記ベース電流期間に移行する際に、前記第1送給速度よりも小さく前記第1送給速度に応じた第3送給速度に前記送給速度を前記第2送給速度から減少させるステップと、
       前記くびれが発生したことを検出した時に、前記送給速度を前記第3送給速度から前記第1送給速度に増加させるステップと、
    を含む、請求項1から6のいずれか一項に記載のパルスアーク溶接制御方法。
  8. 前記送給速度を制御するステップは、前記送給速度を前記第3送給速度から前記第1送給速度に増加させる前記ステップで前記送給速度を前記第1送給速度に増加させてから前記ベース期間が終わるまで前記第1送給速度に維持するステップをさらに含む、請求項7に記載のパルスアーク溶接制御方法。
  9. 前記第3送給速度は、前記溶接ワイヤの材質およびシールドガスの少なくとも一つに応じた値だけ前記第1送給速度より小さい、請求項7または8に記載のパルスアーク溶接制御方法。
  10. 前記第2送給速度は前記第1送給速度より前記第1送給速度の10%~30%の範囲の値だけ大きい、請求項1から9のいずれか一項に記載のパルスアーク溶接制御方法。
  11. 溶接ワイヤを用いて被溶接物を溶接するパルスアーク溶接装置であって、
    前記溶接ワイヤを送給するワイヤ送給部と、
    溶接電流を出力する溶接電源部と、
    前記溶接電源部と前記ワイヤ送給部とを制御する溶接制御部と、
    を備え、
    前記溶接制御部は、
       前記溶接電流がピーク電流であるピーク電流期間と、前記溶接電流が前記ピーク電流より小さいベース電流であるベース電流期間とを交互に繰り返して前記溶接電流を前記溶接ワイヤに流しながら前記溶接ワイヤを送給速度で被溶接物に向かって送給して前記溶接ワイヤと前記被溶接物との間でアークを発生させて前記被溶接物を溶接し、
       前記アークのアーク長を一定に保つように、前記ピーク電流期間と前記ベース電流期間とで前記送給速度を変える、
    ように構成されている、パルスアーク溶接装置。
  12. 前記溶接制御部は、前記アーク長を一定に保つように、前記ベース電流期間では前記送給速度を第1送給速度に設定し、前記ピーク電流期間では前記送給速度を前記第1送給速度よりも大きくかつ前記第1送給速度に応じた第2送給速度に設定するように構成されている、請求項11に記載のパルスアーク溶接装置。
PCT/JP2017/002091 2016-02-04 2017-01-23 パルスアーク溶接制御方法およびパルスアーク溶接装置 WO2017135080A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017565483A JP6814948B2 (ja) 2016-02-04 2017-01-23 パルスアーク溶接制御方法およびパルスアーク溶接装置
EP17747239.6A EP3412396B1 (en) 2016-02-04 2017-01-23 Pulsed arc welding control method and pulsed arc welding device
US15/781,165 US11090752B2 (en) 2016-02-04 2017-01-23 Pulsed arc welding control method and pulsed arc welding device
CN201780005617.4A CN108472758B (zh) 2016-02-04 2017-01-23 脉冲电弧焊接控制方法以及脉冲电弧焊接装置
US17/370,208 US11813704B2 (en) 2016-02-04 2021-07-08 Pulsed arc welding control method and pulsed arc welding device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-019856 2016-02-04
JP2016019856 2016-02-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/781,165 A-371-Of-International US11090752B2 (en) 2016-02-04 2017-01-23 Pulsed arc welding control method and pulsed arc welding device
US17/370,208 Division US11813704B2 (en) 2016-02-04 2021-07-08 Pulsed arc welding control method and pulsed arc welding device

Publications (1)

Publication Number Publication Date
WO2017135080A1 true WO2017135080A1 (ja) 2017-08-10

Family

ID=59499779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002091 WO2017135080A1 (ja) 2016-02-04 2017-01-23 パルスアーク溶接制御方法およびパルスアーク溶接装置

Country Status (5)

Country Link
US (2) US11090752B2 (ja)
EP (1) EP3412396B1 (ja)
JP (1) JP6814948B2 (ja)
CN (1) CN108472758B (ja)
WO (1) WO2017135080A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112004631A (zh) * 2018-04-18 2020-11-27 松下知识产权经营株式会社 电弧焊接的控制方法
JP2021090994A (ja) * 2019-12-12 2021-06-17 株式会社ダイヘン アーク溶接制御方法
EP3778090A4 (en) * 2018-03-28 2022-03-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) GAS ARC WELDING CONTROL METHOD AND CONTROL DEVICE

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3530395B1 (en) * 2016-10-24 2021-12-01 Daihen Corporation Ac pulse arc welding control method
JP7188858B2 (ja) * 2019-02-13 2022-12-13 株式会社ダイヘン アーク溶接方法
JP7335677B2 (ja) * 2019-11-27 2023-08-30 株式会社ダイヘン アーク溶接制御方法
WO2021140970A1 (ja) * 2020-01-06 2021-07-15 パナソニックIpマネジメント株式会社 アーク溶接制御方法及びアーク溶接装置
US20220143730A1 (en) * 2020-11-10 2022-05-12 Illinois Tool Works Inc. Systems and Methods to Control Welding Processes Using Weld Pool Attributes
CN114367720A (zh) * 2021-12-27 2022-04-19 唐山松下产业机器有限公司 基于直流电弧焊机稳定熔池的控制方法及装置、存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312186A (ja) * 2005-05-09 2006-11-16 Babcock Hitachi Kk 両面アーク溶接のアーク長制御方法と溶接装置
JP2015030017A (ja) * 2013-08-05 2015-02-16 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3376473A (en) * 1964-07-23 1968-04-02 Matsushita Electric Ind Co Ltd Automatic arc welders
GB1152002A (en) * 1965-05-27 1969-05-14 Welding Inst Improvements relating to Arc Welding
US3475586A (en) * 1966-08-18 1969-10-28 Air Reduction Arc welding
US3622744A (en) * 1969-01-06 1971-11-23 Gen Dynamics Corp Arc-welding system
US3657724A (en) * 1969-10-24 1972-04-18 Lincoln Electric Co Method of and power supply for electric arc welding
JPS55147479A (en) * 1979-05-08 1980-11-17 Mitsubishi Heavy Ind Ltd Automatic welding method
JPS56139286A (en) * 1980-03-31 1981-10-30 Mitsubishi Electric Corp Pulse arc welding equipment
JPS5885473U (ja) 1981-12-07 1983-06-09 株式会社三社電機製作所 パルスア−ク浴接機
DE3219726C2 (de) * 1982-05-26 1992-07-23 Universal Tiefpunkt Schweißmaterial GmbH & Co, 7812 Bad Krozingen Vorrichtung zum Lichtbogenschweißen mit einer nachgeführten abschmelzenden Elektrode
CA1187562A (en) * 1982-08-31 1985-05-21 Edward Shmakov Welding method and apparatus
USRE33330E (en) * 1983-08-11 1990-09-11 Kabushiki Kaisha Kobe Seiko Sho Output control of short circuit welding power source
US4887046A (en) * 1985-10-25 1989-12-12 Gilliland Malcolm T Apparatus for linearizing the output of an amplifier without using feedback
US5073695A (en) * 1985-10-25 1991-12-17 Gilliland Malcolm T Welding power supply with short circuit protection
US4716274A (en) * 1985-10-25 1987-12-29 Gilliland Malcolm T Distributed station welding system
US4910635A (en) * 1985-10-25 1990-03-20 Gilliland Malcolm T Apparatus for protecting an integrated circuit from reverse voltages caused by a relay
US5057665A (en) * 1985-10-25 1991-10-15 Gilliland Malcolm T Electronic arc welding station with input voltage compensation
US4785149A (en) * 1985-10-25 1988-11-15 Gilliland Malcolm T Distributed station welding system
US4794232A (en) * 1986-09-17 1988-12-27 Kinetic Energy Corporation Control for gas metal arc welding system
US5001326A (en) * 1986-12-11 1991-03-19 The Lincoln Electric Company Apparatus and method of controlling a welding cycle
JPH01133680A (ja) * 1987-11-19 1989-05-25 Babcock Hitachi Kk 非消耗電極溶接装置
US5495091A (en) * 1989-02-27 1996-02-27 Mitsubishi Denki Kabushiki Kaisha Pulse welding apparatus
US5406052A (en) 1989-02-28 1995-04-11 Mitsubishi Denki Kabushiki Kaisha Pulsed arc welding equipment
JP2809683B2 (ja) * 1989-04-10 1998-10-15 松下電器産業株式会社 パルスアーク溶接機
US5025127A (en) * 1989-06-30 1991-06-18 Gilliland Malcolm T Electronic welding station with AC and reversible polarity DC outputs
US5063282A (en) * 1989-06-30 1991-11-05 Gilliland Malcolm T Apparatus and method for optimizing a welding operation
US5136138A (en) * 1989-06-30 1992-08-04 Gilliland Malcolm T Transistor failure selection circuit and structure for ease of maintenance of a welding station
DE4023155C2 (de) * 1989-07-21 1997-02-06 Hitachi Seiko Kk Wechselstrom-Schutzgaslichtbogenschweißverfahren und Vorrichtung mit verbrauchbarer Elektrode
WO1991016168A1 (en) * 1990-04-17 1991-10-31 Daihen Corporation Mag arc-welding method and welding apparatus
JP3033368B2 (ja) * 1992-10-28 2000-04-17 トヨタ自動車株式会社 消耗電極式パルスアーク溶接方法
US5473139A (en) * 1993-01-18 1995-12-05 Toyota Jidosha Kabushiki Kaisha Pulsed arc welding apparatus having a consumable electrode wire
US5406051A (en) * 1993-04-29 1995-04-11 Electric Power Research Institute Welding machine with a high frequency converter
JP3206714B2 (ja) * 1995-11-14 2001-09-10 日立ビアメカニクス株式会社 パルスアーク溶接方法および装置
WO1997049497A1 (en) * 1996-06-24 1997-12-31 Tafa, Incorporated Apparatus for rotary spraying a metallic coating
JP3033368U (ja) 1996-07-09 1997-01-21 鈴木 満江 手洗い付ロータンクのカバー
FR2756036B1 (fr) * 1996-11-20 1999-01-08 Dehon Sa Anciens Etablissement Procede pour re-eprouver un emballage rempli d'un fluide actif et d'un propulseur et appareillage pour la mise en oeuvre du procede
US6255618B1 (en) * 1997-02-05 2001-07-03 Komatsu Ltd. Method and apparatus for spot welding a work having a plurality of welding materials placed on top of each other by boring a hole to release vapors
JPH10277740A (ja) * 1997-04-01 1998-10-20 Kobe Steel Ltd パルスアーク溶接装置
JPH10286671A (ja) * 1997-04-11 1998-10-27 Kobe Steel Ltd 消耗電極式交流パルスアーク溶接装置
US6051810A (en) * 1998-01-09 2000-04-18 Lincoln Global, Inc. Short circuit welder
US6087626A (en) * 1998-02-17 2000-07-11 Illinois Tool Works Inc. Method and apparatus for welding
US6003788A (en) * 1998-05-14 1999-12-21 Tafa Incorporated Thermal spray gun with improved thermal efficiency and nozzle/barrel wear resistance
JP3003673B2 (ja) * 1998-06-17 2000-01-31 松下電器産業株式会社 消耗電極式パルスアーク溶接方法
US6160241A (en) * 1999-03-16 2000-12-12 Lincoln Global, Inc. Method and apparatus for electric arc welding
US6172333B1 (en) * 1999-08-18 2001-01-09 Lincoln Global, Inc. Electric welding apparatus and method
JP3641174B2 (ja) * 1999-11-24 2005-04-20 株式会社ダイヘン 交流パルスアーク溶接の制御方法及び溶接電源装置
JP2001219269A (ja) * 2000-02-07 2001-08-14 Hitachi Ltd 水中加工装置及びその加工方法
JP4846898B2 (ja) * 2000-09-12 2011-12-28 株式会社ダイヘン 交流パルスアーク溶接制御方法及び溶接電源装置
US6501049B2 (en) * 2001-01-23 2002-12-31 Lincoln Global, Inc. Short circuit arc welder and method of controlling same
US6515259B1 (en) * 2001-05-29 2003-02-04 Lincoln Global, Inc. Electric arc welder using high frequency pulses
US6717107B1 (en) * 2001-05-29 2004-04-06 Lincoln Global, Inc. Two stage welder and method of operating same
JP4490088B2 (ja) * 2003-09-12 2010-06-23 株式会社ダイヘン パルスアーク溶接の出力制御方法及びアーク長揺動パルスアーク溶接の出力制御方法
JP4319586B2 (ja) * 2004-06-23 2009-08-26 株式会社ダイヘン 交流パルスアーク溶接方法
US7271365B2 (en) * 2005-04-11 2007-09-18 Lincoln Global, Inc. System and method for pulse welding
JP3844004B1 (ja) 2005-05-31 2006-11-08 松下電器産業株式会社 パルスアーク溶接制御方法及びパルスアーク溶接装置
JP5036197B2 (ja) * 2006-03-10 2012-09-26 株式会社神戸製鋼所 パルスアーク溶接方法
JP4916759B2 (ja) * 2006-04-20 2012-04-18 株式会社ダイヘン 消耗電極交流パルスアーク溶接の極性切換制御方法
JP2008018436A (ja) * 2006-07-11 2008-01-31 Yorozu Corp 溶接方法および溶接物
EP2093009B1 (en) * 2006-10-19 2016-08-31 Panasonic Intellectual Property Management Co., Ltd. Method for controlling arc welding and arc welding apparatus
JP5090765B2 (ja) * 2007-03-29 2012-12-05 株式会社ダイヘン 消耗電極交流アーク溶接の送給制御方法
JP4857163B2 (ja) * 2007-03-29 2012-01-18 株式会社神戸製鋼所 消耗電極式ガスシールドアーク溶接制御装置及び溶接制御方法
US9061365B2 (en) * 2007-07-23 2015-06-23 Daihen Corporation Pulse arc welding method
CN102149502A (zh) * 2008-09-30 2011-08-10 大阳日酸株式会社 钢板的气体保护电弧钎焊方法
JP5557238B2 (ja) * 2008-12-24 2014-07-23 株式会社ダイヘン 交流パルスアーク溶接制御方法
US20150158106A1 (en) * 2009-01-13 2015-06-11 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
US20150090703A1 (en) * 2009-01-13 2015-04-02 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
US20150183044A1 (en) * 2009-01-13 2015-07-02 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
US20150183045A1 (en) * 2009-01-13 2015-07-02 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
US20150158108A1 (en) * 2009-01-13 2015-06-11 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
US20150151375A1 (en) * 2009-01-13 2015-06-04 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
US20150158105A1 (en) * 2009-01-13 2015-06-11 Lincoln Global, Inc. Method and system to use combination filler wire feed and high intensity energy source for welding with controlled arcing frequency
WO2010086933A1 (ja) * 2009-01-28 2010-08-05 パナソニック株式会社 交流パルスアーク溶接方法
JP5199910B2 (ja) * 2009-02-12 2013-05-15 株式会社神戸製鋼所 消耗電極式パルスアーク溶接の溶接制御装置およびそのアーク長制御方法、並びにその溶接制御装置を備えた溶接システム
EP2292362B1 (en) * 2009-04-08 2016-08-10 Panasonic Intellectual Property Management Co., Ltd. Arc welding method and arc welding device
JP2011050967A (ja) * 2009-08-31 2011-03-17 Daihen Corp アーク溶接方法
US8610031B2 (en) * 2009-11-11 2013-12-17 Lincoln Global, Inc. Method of arc welding root pass
JP2012066288A (ja) * 2010-09-24 2012-04-05 Fanuc Ltd アークスタート時のスパッタの発生を低減するアーク溶接方法
JP5801058B2 (ja) * 2011-02-07 2015-10-28 株式会社ダイヘン 溶接装置および炭酸ガスアーク溶接方法
JP5998355B2 (ja) 2012-10-05 2016-09-28 パナソニックIpマネジメント株式会社 アーク溶接制御方法およびアーク溶接装置
US20140263231A1 (en) * 2013-03-15 2014-09-18 Lincoln Global, Inc. Tandem hot-wire systems
JP5667654B2 (ja) * 2013-04-10 2015-02-12 本田技研工業株式会社 アーク溶接方法及びアーク溶接装置
CN105829006B (zh) * 2014-03-17 2018-05-01 株式会社达谊恒 电弧焊接控制方法
US10179369B2 (en) * 2015-10-27 2019-01-15 Lincoln Global, Inc. Welding system for AC welding with reduced spatter
CN105345226B (zh) * 2015-12-08 2017-03-08 哈尔滨工业大学(威海) 一种焊条自动焊接系统及自动焊接方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312186A (ja) * 2005-05-09 2006-11-16 Babcock Hitachi Kk 両面アーク溶接のアーク長制御方法と溶接装置
JP2015030017A (ja) * 2013-08-05 2015-02-16 パナソニック株式会社 アーク溶接制御方法およびアーク溶接装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3778090A4 (en) * 2018-03-28 2022-03-16 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) GAS ARC WELDING CONTROL METHOD AND CONTROL DEVICE
US11931830B2 (en) 2018-03-28 2024-03-19 Kobe Steel, Ltd. Gas shielded arc welding control method and control device
CN112004631A (zh) * 2018-04-18 2020-11-27 松下知识产权经营株式会社 电弧焊接的控制方法
CN112004631B (zh) * 2018-04-18 2023-10-17 松下知识产权经营株式会社 电弧焊接的控制方法
JP2021090994A (ja) * 2019-12-12 2021-06-17 株式会社ダイヘン アーク溶接制御方法
JP7329300B2 (ja) 2019-12-12 2023-08-18 株式会社ダイヘン アーク溶接制御方法

Also Published As

Publication number Publication date
EP3412396A1 (en) 2018-12-12
US20210331264A1 (en) 2021-10-28
US11813704B2 (en) 2023-11-14
US20180345399A1 (en) 2018-12-06
US11090752B2 (en) 2021-08-17
EP3412396B1 (en) 2021-09-15
CN108472758A (zh) 2018-08-31
CN108472758B (zh) 2020-05-08
EP3412396A4 (en) 2019-03-20
JP6814948B2 (ja) 2021-01-20
JPWO2017135080A1 (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
WO2017135080A1 (ja) パルスアーク溶接制御方法およびパルスアーク溶接装置
CN108290240B (zh) 脉冲电弧焊接控制方法以及脉冲电弧焊接装置
JP6695030B2 (ja) アーク溶接の制御方法
JPWO2009051107A1 (ja) アークスタート制御方法
JP2011073022A (ja) 炭酸ガスパルスアーク溶接方法
JP6757892B2 (ja) アーク溶接制御方法
JPWO2018079345A1 (ja) 交流パルスアーク溶接制御方法
JPWO2017169899A1 (ja) アーク溶接制御方法
JP4715813B2 (ja) パルスアーク溶接制御方法およびパルスアーク溶接装置
JP2016168617A (ja) アーク溶接制御方法
JP7113329B2 (ja) アーク溶接制御方法
JP2012071334A (ja) 交流パルスアーク溶接制御方法
CN111315520B (zh) 电弧焊接控制方法
JP6596675B2 (ja) アーク溶接制御方法
JP6555824B2 (ja) アーク溶接方法
JP6948528B2 (ja) アーク溶接方法およびアーク溶接装置
JP2019188434A (ja) 交流アーク溶接の制御方法
JP7407398B2 (ja) アーク溶接の制御方法
JP2011110600A (ja) プラズマミグ溶接方法
EP4155019A1 (en) Direct current arc welding control method
JP2023169061A (ja) 溶接ビード形状の制御方法、電源制御方法、積層造形方法、制御装置、電源装置、溶接システム、積層造形システム及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017565483

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE