WO2017133242A1 - 一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法 - Google Patents

一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法 Download PDF

Info

Publication number
WO2017133242A1
WO2017133242A1 PCT/CN2016/098303 CN2016098303W WO2017133242A1 WO 2017133242 A1 WO2017133242 A1 WO 2017133242A1 CN 2016098303 W CN2016098303 W CN 2016098303W WO 2017133242 A1 WO2017133242 A1 WO 2017133242A1
Authority
WO
WIPO (PCT)
Prior art keywords
pentanediamine
salt
solution
solution system
evaporation
Prior art date
Application number
PCT/CN2016/098303
Other languages
English (en)
French (fr)
Inventor
刘修才
戴端芳
秦兵兵
杨晨
Original Assignee
上海凯赛生物技术研发中心有限公司
凯赛生物产业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术研发中心有限公司, 凯赛生物产业有限公司 filed Critical 上海凯赛生物技术研发中心有限公司
Priority to EP16889053.1A priority Critical patent/EP3412650B1/en
Priority to ES16889053T priority patent/ES2850225T3/es
Priority to US16/075,929 priority patent/US10759737B2/en
Publication of WO2017133242A1 publication Critical patent/WO2017133242A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/001Amines; Imines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0492Applications, solvents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/09Diamines
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds

Definitions

  • the invention relates to the field of separation and purification of chemical products, in particular to a method for extracting 1,5-pentanediamine from a solution system containing 1,5-pentanediamine salt.
  • Pentamethylenediamine i.e., 1,5-pentanediamine, 1,5-diaminopentane, cadaverine
  • 1,5-pentanediamine 1,5-pentanediamine, 1,5-diaminopentane, cadaverine
  • polyamides such as polyamide 56, polyamide 510, etc., or polyester amides, and is widely used in textiles, electronic appliances, mechanical equipment, automobiles and other fields.
  • pentamethylenediamine is produced by direct fermentation.
  • the fermentation broth was refluxed at 103 ° C for 5 hours to cleave by-products in the fermentation broth, followed by multiple extractions with butanol, and evaporation of the organic solvent to obtain a pentanediamine product.
  • pentanediamine is usually extracted by a polar organic solvent due to the influence of pentamethylenediamine characteristics.
  • an organic solvent such as chloroform or butanol is used, and in the extraction process, the solvent is inevitably volatilized, causing environmental pollution, and a subsequent solvent recovery step must be performed, which increases the extraction cost.
  • the pentamethylenediamine reaction solution is treated with a UF12000 molecular weight organic membrane to reduce the trifunctional organic matter in the reaction solution.
  • the treated pentamethylene amine solution is heated to 100 ° C or higher to decompose pentanediamine carbonate, and then pentane diamine is distilled to obtain a product.
  • the decomposition of carbonate requires higher temperature and long-time heating, and does not guarantee the complete decomposition of carbonate, which will affect the distillation process and product quality.
  • This method is only suitable for the separation of 1,5-pentanediamine from pentamethylenediamine carbonate, and its suitability is very limited.
  • Patent CN 101970393 A uses liquid alkali and nanofiltration instead of extraction to increase the recovery of pentanediamine.
  • the use of nanofiltration is not suitable for the presence of a large amount of solid impurities.
  • the system contains a large amount of solid impurities such as bacteria or inorganic salt precipitates or macromolecular impurities, if nanofiltration is used, it must be before nanofiltration.
  • Pre-filtration is carried out by microfiltration or even ultrafiltration. Otherwise, the nanofiltration flux is low and easily blocked, which consumes time and energy and damages the service life of the nanofiltration membrane.
  • the method is basically only applicable to the case of adding a soluble alkali or alkali solution.
  • sodium pentoxide salt is replaced by sodium hydroxide or potassium hydroxide
  • a large amount of sodium sulfate or a salt such as sodium chloride or potassium sulfate is present in the final solution system, and precipitation in the later distillation may affect the evaporation yield of pentanediamine.
  • an object of the present invention is to provide a process for extracting 1,5-pentanediamine from a solution system containing 1,5-pentanediamine salt.
  • the present invention provides an extraction method: adding a basic substance to the solution system to form a solution system containing free 1,5-pentanediamine; wherein the 1,5-pentanediamine salt contains at least 1,5 - one or more of a sulfate, a carbonate, a phosphate of pentamethylenediamine; the alkaline substance comprising at least one or more of solid calcium hydroxide, magnesium hydroxide, calcium oxide, magnesium oxidekind.
  • the molar amount of the sulfate, carbonate and phosphate of 1,5-pentanediamine in the solution system is not lower than the total mole of 1,5-pentanediamine salt in the solution system. 70%, preferably not less than 75%, more preferably not less than 80%, further preferably not less than 85%, and most preferably not less than 90%.
  • the solution system containing 1,5-pentanediamine salt further contains a hydrochloride and/or a dicarboxylate of 1,5-pentanediamine.
  • the alkaline substance further comprises one or more of sodium hydroxide, potassium hydroxide and ammonia.
  • the solution system containing 1,5-pentanediamine salt is an aqueous solution containing 1,5-pentanediamine salt, 1,5-pentanediaminease conversion solution or 1,5-pentyl Diamine fermentation broth.
  • the temperature at which the basic substance is added is not particularly limited, but increasing the temperature accelerates the reaction rate.
  • the reaction temperature after the addition of the base is from room temperature to 95 ° C; more preferably, it is greater than 60 ° C.
  • the method provided by the present invention further comprises subjecting the obtained solution system containing the free 1,5-pentanediamine to distillation/evaporation to obtain a 1,5-pentanediamine solution.
  • the method further comprises separating the solid matter therein after forming a solution system containing the free 1,5-pentanediamine.
  • the obtained solution system containing the free 1,5-pentanediamine is further concentrated.
  • the distillation/evaporation temperature is 40 to 250 ° C, and the pressure is not higher than -0.05 MPa.
  • the method provided by the present invention further comprises a pretreatment for sterilization and/or decolorization and/or concentration prior to the addition of the alkaline substance.
  • the existing technology In the selection of the base, a dilute solution such as sodium hydroxide, potassium hydroxide solution or poorly soluble alkali is added to avoid the formation of solids in the conversion process of the pentamethylene salt, or the solid solution is strengthened after the alkali reaction. Separation process to avoid the effect of solid precipitation on distillation/evaporation and increase the recovery of pentamethylenediamine.
  • the present inventors have found through a large number of experiments that it is also desirable to purify pentamethylenediamine using a weak base or a poorly soluble alkali or a basic substance such as calcium oxide, calcium hydroxide, magnesium hydroxide or the like under specific conditions.
  • the yield and extraction efficiency can be obtained by the extraction method of the present invention even in the presence of solid impurities such as bacteria or a solid inorganic salt precipitate in the solution system, and finally, a desired yield of pentamethylenediamine can be obtained.
  • the extraction method of the present invention is directed to the type of sulfate, phosphate, carbonate, etc. of pentamethylenediamine, and is different from the prior art in that a poorly soluble base such as calcium oxide, calcium hydroxide, magnesium hydroxide or the like is added to make it in a solution system.
  • a poorly soluble base such as calcium oxide, calcium hydroxide, magnesium hydroxide or the like is added to make it in a solution system.
  • the formation of a poorly soluble inorganic salt precipitates, and the formation of the precipitate promotes the continuous dissolution process of the above-mentioned poorly soluble alkali in the solution, thereby continuously and stably converting the pentamethyleneamine salt to pentamethylenediamine, thereby greatly increasing the pentamethylenediamine. Conversion rate.
  • the invention overcomes the conventional belief that the poorly soluble substance is not sufficiently reacted in the solution or that the weak base cannot prepare the strong base, and an unexpected technical effect is obtained.
  • insoluble bases such as calcium oxide and calcium hydroxide are more cost-competitive than conventional bases such as sodium hydroxide.
  • poorly soluble bases are directly fed in solid form, which is more conducive to storage, plant operation and transport.
  • the extraction method of the present invention further comprises a distillation/evaporation step to obtain a solution comprising free pentanediamine.
  • the alkaline substance is a strong base such as sodium hydroxide, although the salt formed is soluble in the solution system, in the distillation/evaporation step, the inorganic salt gradually precipitates as the water is distilled out, if in the solution system It also contains impurities such as bacteria, proteins, polysaccharides, organic pigments, etc., and it will form a viscous distillation/evaporation bottom liquid, which will affect the stirring and heat and mass transfer efficiency.
  • the distillation/evaporation of the bottom liquid can not contain pentamethylenediamine.
  • the extraction method of the invention forms a solid inorganic salt precipitate before distillation/evaporation, which can be conveniently removed by filtration, centrifugation, etc., and no more inorganic salt precipitates in the subsequent distillation/evaporation process, so that the distillation/evaporation process It's easier to do.
  • the inventors have also found that, by using the method of the present invention, even if the presence of a solid inorganic salt does not affect the distillation/evaporation process, the addition of the poorly soluble base can also be carried out directly without distillation by solid-liquid separation.
  • the presence of the inorganic salt solids and the unreacted base can disperse the organic impurities in the solution, making it less prone to agglomeration and improving the evaporation efficiency, thereby increasing the final yield of the pentamethylenediamine.
  • another significant advantage of the present invention is that the water-soluble inorganic salt content in the wastewater is significantly reduced, and the difficulty in wastewater treatment is alleviated, and the distillation/evaporation obtained by the present invention is obtained in the case where the current environmental protection requirements are gradually increased. Waste is easier to handle the three wastes, which can significantly reduce costs and reduce environmental pressure.
  • the extraction method provided by the invention has the advantages of high practicability, simple process and simple operation, and can obviously reduce the raw material cost and operation cost of the whole process.
  • the method of the invention has high recovery rate of pentamethylenediamine, and the recovered pentamethyleneamine solution has good purity. High purity grade pentamethylenediamine products can be obtained directly or by simple treatment.
  • the method of the invention is simple in process, low in cost, environmentally friendly, and more suitable for industrial production.
  • the present invention provides a method for extracting 1,5-pentanediamine from a solution system containing 1,5-pentanediamine salt by adding a basic substance to the solution system to form a free state 1 a solution system of 5-pentanediamine; wherein the 1,5-pentanediamine salt comprises at least one or more of a sulfate, a carbonate, and a phosphate of 1,5-pentanediamine;
  • the alkaline substance comprises at least one or more of solid calcium hydroxide, magnesium hydroxide, calcium oxide, magnesium oxide, and the sulfate, carbonate, phosphate of the 1,5-pentanediamine
  • One or more of the reactions are carried out.
  • the molar amount of sulfate, carbonate, and phosphate of 1,5-pentanediamine in the solution system is not lower than 1,5-pent in the solution system.
  • the total molar amount of the diamine salt is 70%, preferably not less than 75%, more preferably not less than 80%, further preferably not less than 85%, and most preferably not less than 90%.
  • the solution system containing 1,5-pentanediamine salt can be produced by biological fermentation.
  • Industrially available pentamidine salt solutions are generally obtained by fermentation or enzymatic conversion processes.
  • the pH of the aqueous solution is generally near neutral and the pentamethylenediamine is present in the aqueous solution in the form of a salt.
  • the enzyme conversion solution or fermentation broth of the present invention may be a stock solution containing no cells which has not been treated, and the present invention does not particularly require a fermentation broth or an enzyme conversion solution.
  • the solution system of 5-pentanediamine may also be a solution system (collectively referred to as a treatment liquid) obtained after further treatment, such as a clear solution obtained by filtering a macromolecular substance such as a bacterial cell or a protein with a ceramic membrane or an ultrafiltration membrane, or simply The obtained solution is filtered, or the supernatant obtained by centrifugation, or the solution obtained by decolorization and depuration
  • insoluble impurities or soluble impurities can be removed, and the 1,5-pentanediamine salt can be retained in the solution system.
  • the enzyme conversion solution or the fermentation broth, or the treated treatment liquid may be further concentrated, and the concentration may be carried out by any suitable prior art, such as evaporation, atmospheric distillation, vacuum distillation, reverse osmosis or the like. That is, the solution system containing the 1,5-pentanediamine salt is a mixed system of an inorganic salt or an organic salt aqueous solution containing 1,5-pentanediamine, and may be a pure solution system or a solid microorganism or Compound impurities and the like do not affect the extraction method of the present invention.
  • the solution system containing 1,5-pentanediamine salt according to the present invention refers to a pentamethylene salt solution obtained by reacting a lysine salt solution under the action of lysine decarboxylase (LDC); Or a solution of pentamethyleneamine salt obtained by direct fermentation.
  • LDC lysine decarboxylase
  • the specific preparation method for the pentamethylene salt salt enzyme conversion liquid or the direct fermentation preparation of pentamethylenediamine is not particularly limited, and those skilled in the art can determine the specific raw materials according to the prior art to determine the process parameters of the specific enzyme conversion process. Thereby, a solution system containing 1,5-pentanediamine salt is obtained.
  • the lysine salt for enzymatic conversion to produce pentanediamine may be an inorganic salt or an organic salt of lysine, such as commercially available lysine hydrochloride, lysine sulfate, etc., dissolved.
  • a solution of lysine salt formed in water is a lysine hydrochloride produced by biological fermentation, a lysine sulfate finished product or a fermentation broth, and a lysine salt solution formed by dissolving in water.
  • the medium uses ammonium sulfate as one of the nitrogen sources, so the fermentation liquid contains a large amount of sulfate, and the fermentation liquid can also be used as a lysine salt solution.
  • the lysine fermentation broth may be directly used as a fermentation stock solution, or may be further decomposed to obtain a pretreated fermentation broth, such as a fermentation broth obtained by removing the cells by centrifugation, filtration, or membrane filtration, or The lysine fermentation broth is decolorized by adding activated carbon, and filtered to obtain a decolored lysine salt solution.
  • the above lysine decarboxylase refers to an enzyme capable of acting on lysine or a salt to form 1,5-pentanediamine.
  • the lysine decarboxylase may be a fermentation broth of lysine decarboxylase, or a decarboxylase cell obtained by centrifugation or filtration or other technical means, or a broken cell, or a fermentation broth solution obtained by filtering the cell by a fermentation broth. Or refined enzymes. It may also be a mixture of two or more enzymes.
  • the microorganism producing the lysine decarboxylase may be a wild strain, a mutagenized strain, or a genetically recombined strain.
  • the process for decarboxylation of lysine in the present invention is not particularly limited, and any of the existing enzyme conversion techniques can be employed, or a simple improvement can be made by those skilled in the art in the prior art.
  • pH-control enzyme reaction strong acid control reaction pH 5-6, lysine hydrochloride concentration 0.22mol / kg in the enzyme reaction system, reaction 2h, molar conversion rate 94.97%.
  • pH control batch enzyme reaction strong acid control reaction pH 5-6, the initial lysine hydrochloride concentration in the reaction system is 0.22mol / kg, the reaction of a certain time continuously in situ separation of products and enzymes, the final conversion substrate 0.87 Mol/kg, corpse
  • the amine yield was 94.61%.
  • Chinese Patent No. CN 102782146A discloses that the microorganisms expressing lysine decarboxylase are subjected to freeze-thaw, heat treatment, lysine salt treatment, etc. before the enzyme conversion to improve the efficiency.
  • Japanese Patent Publication No. JP5050147171 discloses enzyme catalysis using a lysine carbonate aqueous solution as a substrate and adjusting the pH with carbon dioxide.
  • Chinese Patent Application No. ZL 201410004636.3 discloses the preparation of 1,5-pentanediamine by decarboxylation of a lysine fermentation broth.
  • the reaction temperature is usually 20 ° C or more and 60 ° C or less.
  • the pentanediamine salt fermentation broth of the present invention refers to up-regulating the expression of lysine decarboxylase in a strain capable of producing lysine by genetic technology, or recombinantly expressing lysine decarboxylase can be produced in a fermentation process.
  • the lysine is simultaneously converted into pentanediamine, thereby directly obtaining a fermentation liquid containing a pentamethylenediamine salt.
  • the present invention has no particular requirement for recombinant bacteria as long as pentanediamine can be obtained.
  • PCT/CN2015/094121 discloses a process for the direct production of 1,5-pentanediamine by fermentation.
  • the pentanediamine salt fermentation broth may be a directly obtained fermentation stock solution, or may be a treatment liquid after the fermentation stock solution is removed, including, but not limited to, a fermentation broth after removing the bacteria, removing the pigment, and the like, and further, the pentanediamine salt fermentation.
  • the liquid may also be a concentrated solution of the fermentation stock solution or the concentrated liquid of the treatment liquid. Specific methods of impurity removal and concentration can be applied to any suitable prior art.
  • the pH of the pentamidine hydrochloride enzyme conversion solution or fermentation broth obtained by industrial production is generally less than 9, and under this condition, pentamethylenediamine is present in the form of a salt.
  • the pentamethylene salt has a high boiling point and low volatility and cannot be directly evaporated from an aqueous solution. To extract pentanediamine, it is usually necessary to liberate the pentamethyleneamine salt in the system for subsequent steps.
  • a solution containing a pentamethylene salt such as a pentane diamine enzyme conversion solution, is directly concentrated and evaporated by adding sodium hydroxide, because the inorganic salt content in the solution is high, and a large amount of impurities such as bacteria are contained, resulting in the final evaporation.
  • the amount of pentamethylenediamine is small, the yield is low, and at the same time, the inorganic salt precipitates after concentration, and the residue is more evaporated, and the residue contains pentanediamine or pentane.
  • the diamine salt contains a large amount of soluble inorganic salts, and the waste is difficult to handle.
  • a poorly soluble base such as calcium oxide, calcium hydroxide, magnesium hydroxide or the like is added to the extraction method of the present invention, and the poorly soluble inorganic salt produced can be easily removed by solid-liquid separation without remaining in the solution.
  • the subsequent distillation/evaporation treatment can also be carried out without filtering, and the precipitated inorganic salt can effectively disperse the bacteria or other impurities in the system, thereby reducing the influence on the distillation/evaporation process and obtaining the ideal extraction of pentamethylenediamine. Yield.
  • the amount of the poorly soluble base such as calcium oxide, calcium hydroxide, magnesium hydroxide or the like can be easily determined by those skilled in the art to make the sulfate, phosphate, carbonate of 1,5-pentanediamine in the solution system.
  • the reaction is completely suitable, and it can be appropriately increased in a theoretical amount to ensure that the reaction is complete without a large amount of residue. Moreover, it can be supplemented, reduced, etc. according to the actual reaction conditions, and the invention is not limited.
  • the alkaline substance of the present invention may further comprise one or more of sodium hydroxide, potassium hydroxide, and ammonia in a solid or liquid state.
  • the solution system contains an anion such as sulfate, carbonate or phosphate
  • the staff is easy to determine.
  • the alkaline material comprises solid calcium oxide.
  • the basic substance used in the present invention has a purity which is related to the source of the raw material, and can be used in the present invention as long as it does not contain a component which affects the quality of the pentanediamine product.
  • other materials that do not react with the pentasamine salt may be included in the alkaline material.
  • calcium carbonate impurities in calcium oxide which are impurities in the production process of calcium oxide, are present in industrial calcium oxide products, but it does not affect the reaction in the present invention.
  • the manner of adding the alkaline substance is not particularly limited, and may be one-time input or batchwise injection, or the components of the alkaline substance mixture may be separately charged or after the mixture is first mixed. Join once.
  • the strongly basic substance such as sodium hydroxide or potassium hydroxide may be added as an aqueous solution having a mass percentage concentration of 10 to 60%.
  • the basic substance to be used may be a single type or a mixture of two or more; a strong alkaline substance such as sodium hydroxide or potassium hydroxide may be added together with a poorly soluble base, or a poorly soluble base may be added first.
  • a strong alkaline substance is added to the reaction system before the subsequent treatment.
  • the amount of the added alkaline substance can be determined based on the amount of the 1,5-pentanediamine salt in the solution.
  • the alkaline material may suitably exceed the theoretical amount required to ensure complete reaction.
  • the solution system containing 1,5-pentanediamine salt has many sources, and the 1,5-pentanediamine salt may also contain a small amount.
  • Other ingredients such as hydrochlorides, dicarboxylates, etc., in which case the extraction process of the invention is still applicable, in one embodiment of the process according to the invention, the solution system containing 1,5-pentanediamine salt is also
  • the hydrochloride and/or dicarboxylate of 1,5-pentanediamine is included, but is not limited thereto.
  • the alkaline substance when the solution system further contains other salt components such as hydrochloride, contains both a poorly soluble basic substance and a soluble strong alkaline substance, and a poorly soluble basic substance such as calcium oxide or calcium hydroxide.
  • the amount of magnesium hydroxide or the like to be added is preferably such an amount that at least the sulfate, the phosphate, and the carbonate are completely precipitated, and may be appropriately added in excess.
  • the temperature at which the basic substance is added to the solution system is not particularly limited, and the pentanediamine salt and the basic substance may be sufficiently reacted.
  • the temperature is high, the reaction rate of the pentamethyleneamine salt with the alkaline substance is relatively fast; the temperature is low, and the reaction rate of the pentamethylenediamine with the alkaline substance is relatively slow.
  • the temperature at which the basic substance is added may range from room temperature to 95 °C. In some preferred embodiments, the temperature at which the alkaline material is added is greater than 60 °C, more preferably greater than 80 °C.
  • the reaction time after the addition of the basic substance to the solution system containing the 1,5-pentanediamine salt is not particularly limited, and the pentanediamine salt and the basic substance can be sufficiently reacted, and can be adjusted according to actual conditions, in some embodiments.
  • the reaction time of the pentanediamine salt with the basic substance is greater than 1 hour, preferably greater than 1.5 hours.
  • the inorganic salt may include a calcium salt/magnesium salt precipitate and/or a dissolved sodium salt/potassium salt, and the precipitate may, for example, be magnesium sulfate, calcium sulfate, magnesium carbonate, calcium carbonate, magnesium phosphate or calcium phosphate.
  • the method further comprises subjecting the resulting solution system containing free 1,5-pentanediamine to distillation/evaporation to produce a 1,5-pentanediamine solution.
  • the solids contained in the solution system may be removed prior to distillation/evaporation or may be directly subjected to distillation/evaporation without treatment.
  • the "distillation/evaporation" step means heating a solution system containing free 1,5-pentanediamine, evaporating water therein and pentaamine which has a lower boiling point, and then evaporating The water vapor containing pentamethylenediamine is collected to obtain an aqueous solution of 1,5-pentanediamine, which is known or readily available to those skilled in the art.
  • the method further comprises separating the solids in the solution system after forming a solution containing free 1,5-pentanediamine.
  • the manner of separation is not limited in the present invention, and common solid-liquid separation methods such as plate and frame filtration, membrane filtration, and various forms of centrifugation can be employed. Separation of solids may take away a small amount of unreacted calcium oxide, calcium hydroxide, magnesium oxide and other alkaline substances, so before separation The 1,5-pentanediamine salt should be completely reacted as much as possible, or the alkaline substance can be replenished after solid-liquid separation to avoid incomplete reaction of the pentamethylene salt, which affects the final yield of pentamethylenediamine.
  • the pentamethylenediamine in the aqueous solution of pentamethylenediamine obtained by distillation/evaporation can be separated from water to obtain a qualified pentamethylenediamine product.
  • the obtained aqueous solution of 1,5-pentanediamine can be further obtained by a conventional aqueous solution treatment to obtain pure pentaethylenediamine, including but not limited to rectification, and the like, and can also directly participate as a raw material in a downstream reaction such as a polymerization reaction.
  • the solution may be concentrated prior to distillation/evaporation.
  • the purpose of concentration is to use a less energy-efficient heating medium for heating and concentration to achieve energy saving, and to increase the concentration of the pentamethylenediamine product obtained in the distillation/evaporation stage.
  • concentration and the concentration factor can be carried out according to actual needs, and there is no particular limitation in the present invention.
  • the distillation/evaporation temperature may be from 40 to 250 ° C, and the pentane diamine and water may be distilled/evaporated to form an aqueous solution of pentamethylenediamine in a slow temperature rise manner.
  • the temperature of distillation/evaporation is preferably not lower than 120 ° C, more preferably not lower than 150 ° C.
  • the distillation/evaporation is carried out under vacuum conditions, under pressures not higher than -0.05 MPa, preferably not higher than -0.08 MPa, more preferably not higher than Under conditions of -0.09 MPa, it is most preferably carried out at a temperature not higher than -0.095 MPa.
  • the above pressure values are all gauge pressure values.
  • the temperature of the distillation/evaporation process is slowly increased from 70 ° C to 180 ° C and the distillation / evaporation pressure is -0.095 MPa.
  • the solution containing the 1,5-pentanediamine salt may also be subjected to a pretreatment such as sterilization, decolorization or the like before the addition of the alkaline substance.
  • the solution containing the 1,5-pentanediamine salt may also be subjected to a pretreatment such as sterilization, decolorization or the like before separating the 1,5-pentanediamine.
  • the process actually employed may not be limited to the above description, and may be simply or easily added or changed by the person skilled in the art for the raw materials, processing steps, etc., without causing the main body of the separation process.
  • the change in nature is merely to supplement or improve the main process in some aspects.
  • the purity of pentamethylenediamine or its salt is determined by gas chromatography normalization.
  • the detection method of pentamethylenediamine was carried out by NMR nuclear magnetic resonance spectrometry to detect the characteristic absorption peak of pentamethylenediamine.
  • pentamethylenediamine concentrations referred to in the following examples all refer to the mass concentration in terms of pentanediamine.
  • the temperature of the oil bath heating was gradually increased to 180 ° C to obtain 766 g of an aqueous solution containing 2.67% of pentamethylenediamine.
  • the yield of pentanediamine was 95.2%, and a trace of solid precipitate remained on the bottom of the bottle.
  • pentanediamine carbonate fermentation broth 600 g of pentanediamine carbonate fermentation broth, the mass concentration of pentanediamine was determined to be 2.0%. Evaporation on a rotary-0.095 MPa rotary evaporator, controlling the water bath temperature to 90 ° C, and concentrating to the remaining 100 g. Then, 10 g of magnesium hydroxide powder was added, and the temperature was controlled at 80 ° C and stirred for 90 minutes.
  • a concentrate of 600 g of the pentamethyleneamine sulfate conversion solution with a cell was measured, and the mass concentration of pentamethylenediamine was measured to be 15.1%.
  • 80 g of calcium hydroxide powder (content of 90% or more) was added, and the temperature was controlled at 95 ° C, and the mixture was stirred for 120 minutes.
  • 100 g of glass beads were added to the mixed solution to enhance the stirring, and the mixture was evaporated on a rotary-0.095 MPa rotary evaporator to gradually increase the temperature of the oil bath to 180 ° C to obtain 521 g of an aqueous solution containing pentanediamine 16.7%.
  • the yield of pentamethylenediamine was 96.0%, and a loose solid precipitate remained on the bottom of the bottle, and a non-viscous substance appeared.
  • a concentrate of 600 g of pentamethyleneamine salt enzyme conversion solution (prepared by using lysine sulfate) was measured for a mass concentration of pentanediamine of 15.1%.
  • 60 g of calcium oxide powder (content: 95% or more) was added, and the temperature was controlled at 75 ° C, and the mixture was stirred for 120 minutes.
  • the Buchner funnel was filtered, and then the filter cake was washed twice with 500 ml of deionized water and filtered. All filtrates were combined and evaporated.
  • the mixed solution was evaporated on a rotary-0.095 MPa rotary evaporator, and the temperature of the oil bath was gradually increased from 70 ° C to 180 ° C to obtain 942 g of an aqueous solution containing 9.84% of pentanediamine.
  • the yield of pentamethylenediamine was 95.0%, and a small amount of precipitate remained at the bottom of the bottle.
  • a concentrate of 100 kg of the pentamethyleneamine sulphate conversion solution containing the cells was measured for a pentanediamine concentration of 15.1%.
  • 11 kg of calcium oxide powder (content 95% or more) was added, the temperature was controlled at 85 to 95 ° C, stirred for 180 minutes, and then centrifuged in an industrial centrifuge to obtain a centrate.
  • the obtained solid was washed twice with 100 kg of deionized water, and centrifuged by an industrial centrifuge to obtain a total of 159 kg of a centrifuge solution.
  • the obtained centrifugation supernatant was evaporated in a vaporization vessel at a pressure of -0.095 MPa, and most of the water was first distilled off, and the heating temperature was gradually increased from 70 ° C to 180 ° C until no gas was distilled off.
  • the evaporates were combined to give 147 kg of a 9.9% aqueous solution of pentanediamine.
  • the evaporation yield of pentamethylenediamine is 93.5%, and the flow of a small amount of residue at the bottom of the evaporation vessel is good, and the pressure can be exothermic after being placed under normal pressure.
  • a concentrate of 1000 kg of a 1,5-pentanediamine sulfate enzyme conversion solution containing lysine decarboxylase cells was measured for a concentration of 15.1% of 1,5-pentanediamine.
  • the degree of vacuum was -0.09 to -0.08 Mpa
  • the temperature of the heat transfer oil was 200 ° C
  • the condensate of the evaporated gas was collected to obtain 827 kg of an aqueous solution containing 17.5% of 1,5-pentanediamine.
  • the yield of 1,5-pentanediamine was 95.6%, and the loose solid powder remained in the paddle vacuum dryer without agglomeration and wall formation.
  • a concentrate of 600 g of the pentamethyleneamine sulfate conversion solution with a cell was measured, and the mass concentration of pentamethylenediamine was measured to be 15.1%.
  • 76 g of sodium hydroxide powder (chemically pure) was slowly added while stirring, and the temperature was controlled to be 60 ° C or lower, followed by stirring for 120 minutes.
  • 100 g of glass beads were added to the mixed solution to enhance the stirring, and the mixture was evaporated on a rotary-0.095 MPa rotary evaporator, and the temperature of the oil bath was gradually increased to 180 ° C to obtain 515 g of an aqueous solution containing pentanediamine 11.3%.
  • the yield of pentamethylenediamine is 64.2%.
  • the precipitate of the eggplant type bottom is viscous and the fluidity is poor. After the pressure is put to normal pressure, it cannot be poured out by itself. At room temperature, the residue at the bottom of the bottle has agglomeration of the wall.
  • the method of the present invention can obtain the desired extraction yield of pentamethylenediamine without generating refractory distillation/evaporation waste; in addition, the basic substance using solid calcium/magnesium can be greatly increased.
  • Reduce raw material costs, Convenient storage and transportation; reaction and distillation/evaporation process allow the existence of solid precipitation without special intention of fine solid-liquid separation, thus greatly improving production efficiency, reducing production costs; more importantly, avoiding the production of a large amount of soluble salt waste It avoids the entry of soluble salts into wastewater, which can greatly reduce the difficulty of wastewater treatment, reduce the cost of wastewater treatment, and be environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

提供了一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法,向所述溶液体系中加入难溶碱性物质以形成含有游离态1,5-戊二胺的溶液体系。提供的方法实用性强、操作简便、环境友好,可明显降低整个工艺流程原料成本和操作成本。该方法对于戊二胺的回收率高,环境友好,更加适用于工业化生产。

Description

一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法 技术领域
本发明涉及化工产品分离、纯化领域,具体涉及一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法。
背景技术
戊二胺(即1,5-戊二胺、1,5-二氨基戊烷、尸胺)是一种重要的聚合物单体。从1,5-戊二胺出发,可以合成系列聚酰胺,如聚酰胺56、聚酰胺510等,或聚酯酰胺等产品,广泛应用于纺织、电子电器、机械设备、汽车等领域。
1,5-戊二胺的生产和纯化专利,可以列举以下的报道:
在专利CN101981202A中,通过直接发酵生产戊二胺。发酵液在103℃下,回流5小时,裂解发酵液中的副产物,之后用丁醇多次萃取,蒸发有机溶剂得到戊二胺产品。在采用有机溶剂萃取戊二胺的工艺中,因戊二胺特性的影响,常用极性有机溶剂萃取。此类工艺中利用氯仿或丁醇等有机溶剂,在萃取过程中不可避免会有溶剂挥发,造成环境污染,并且必须有后续的溶剂回收步骤,增加了提取成本。
在专利CN200980121108中,戊二胺酶反应液用UF12000分子量的有机膜处理,以降低反应液中三官能团有机物。处理后的戊二胺溶液加热到100℃以上分解戊二胺碳酸盐,然后蒸馏戊二胺得到产品。碳酸盐的分解需要较高的温度和长时间加热,而且不能保证碳酸盐的全部分解,对精馏工艺和产品质量均会造成影响。此方法仅适用于从戊二胺碳酸盐中分离1,5-戊二胺,适用性非常受限制。
专利CN 101970393 A采用加液态碱并纳滤的方式代替萃取,以提高戊二胺的回收率。但纳滤的使用不适用有大量固态杂质存在的情况,当体系中含有大量菌体、无机盐沉淀等固体杂质或大分子杂质存在的情况下,如果使用纳滤,则必须在纳滤之前先经过微滤甚至超滤进行预过滤,否则纳滤通量很低而且容易被堵塞,耗时耗能,并损坏纳滤膜的使用寿命。而且,该方法基本上只适用于添加溶解性碱或碱溶液的情形。若使用氢氧化钠或氢氧化钾置换戊二胺盐,最终的溶液体系中存在大量硫酸钠或氯化钠、硫酸钾等盐,在后期蒸馏中析出会影响戊二胺的蒸发收率。
发明内容
为克服现有戊二胺纯化、分离工艺中存在的工艺复杂、成本高昂、分离回收率较低的 缺陷,本发明的目的是提供一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法。
本发明提供的提取方法为:向所述溶液体系中加入碱性物质以形成含有游离态1,5-戊二胺的溶液体系;其中,所述1,5-戊二胺盐至少包含1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐中的一种或多种;所述碱性物质至少包含固态的氢氧化钙、氢氧化镁、氧化钙、氧化镁中的一种或多种。
本发明提供的方法中,所述溶液体系中1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐的摩尔量不低于所述溶液体系中1,5-戊二胺盐总摩尔量的70%,优选为不低于75%,更优选为不低于80%,进一步优选为不低于85%,最优选不低于90%。
本发明提供的方法中,所述含1,5-戊二胺盐的溶液体系中还包含1,5-戊二胺的盐酸盐和/或二羧酸盐。
本发明提供的方法中,所述碱性物质还包含氢氧化钠、氢氧化钾、氨中的一种或多种。
本发明提供的方法中,所述含1,5-戊二胺盐的溶液体系为含1,5-戊二胺盐的水溶液、1,5-戊二胺酶转化液或1,5-戊二胺发酵液。
本发明提供的方法中,加入所述碱性物质时的温度没有特殊限定,但提高温度可加快反应速度。优选加碱后反应温度为室温~95℃;更优选为大于60℃。
本发明提供的方法中,还包括将所得的含有游离态1,5-戊二胺的溶液体系进行蒸馏/蒸发以制得1,5-戊二胺溶液。
本发明提供的方法中,所述方法还包括形成含有游离态1,5-戊二胺的溶液体系之后分离出其中的固态物。
本发明提供的方法中,所述蒸馏/蒸发之前还包括将所得的含有游离态1,5-戊二胺的溶液体系进行浓缩。
本发明提供的方法中,所述蒸馏/蒸发的温度为40~250℃,压力为不高于-0.05Mpa。
本发明提供的方法中,还包括在加入所述碱性物质之前先进行除菌和/或脱色和/或浓缩的预处理。
目前的戊二胺分离提取技术中,普遍的认知为添加强碱如氢氧化钠溶液等将戊二胺盐置换为游离的戊二胺以及可溶性无机盐,而当使用弱碱或难溶性碱时,通常认为由于戊二胺的碱性较强,添加弱碱或难溶性碱难以使戊二胺盐反应完全,体系中残留的固体碱以及生成的难溶性无机盐沉淀等固体杂质会影响戊二胺的收率。在这样的技术观念下,现有技 术在碱的选择上多采用加入可溶性碱如氢氧化钠、氢氧化钾溶液或难溶性碱的稀溶液等以避免戊二胺盐的转化过程有固体生成,或者在加碱反应后强化固液分离工艺,以期避免固体沉淀对蒸馏/蒸发的影响,提高戊二胺的回收率。但是,本发明人通过大量的实验发现,在特定的条件下使用弱碱或难溶性的碱或碱性物质如氧化钙、氢氧化钙、氢氧化镁等提纯戊二胺,也可获得理想的收率和提取效率,即使溶液体系中有菌体等固体杂质或有固体无机盐沉淀物存在的情况下,本发明的提取方法亦可行,并最终能够得到理想收率的戊二胺。
本发明的提取方法针对戊二胺的硫酸盐、磷酸盐、碳酸盐等类型,与现有技术不同,加入难溶性碱如氧化钙、氢氧化钙、氢氧化镁等,使其在溶液体系中生成难溶性的无机盐沉淀,沉淀的生成促使了上述难溶性碱在溶液中的持续溶解过程,从而可使戊二胺盐持续地、稳定地向戊二胺转化,大大提高了戊二胺的转化率。本发明克服了传统上认为难溶性物质在溶液中反应不充分或者弱碱不能制备强碱的认识,得到了意想不到的技术效果。而且,氧化钙、氢氧化钙等难溶性碱比常用的氢氧化钠等强碱更具成本竞争力,尤其在工业应用上,难溶性碱以固体形式直接投料,更有利于储存、工厂操作和运输。
本发明的提取方法还包括蒸馏/蒸发步骤,以得到包含游离态戊二胺的溶液。当碱性物质为氢氧化钠等强碱时,虽然生成的盐可溶于溶液体系之中,但在蒸馏/蒸发步骤中随着水分的蒸出仍会有无机盐逐渐析出,如果溶液体系中还含有菌体、蛋白、多糖、有机色素等杂质,则更会形成粘稠状蒸馏/蒸发釜底液,影响搅拌和传热传质效率,蒸馏/蒸发的釜底液中夹带戊二胺不能蒸出,造成最终的蒸馏/蒸发收率较低,蒸馏/蒸发废物也非常难以处理,在工业上会极大增加制造成本和环境压力。本发明的提取方法在蒸馏/蒸发前即生成固体无机盐沉淀,可经过滤、离心等方式方便地除去,后续的蒸馏/蒸发过程中不再有大量无机盐析出的现象,使得蒸馏/蒸发过程更容易进行。此外,本发明人还发现,利用本发明的方法,即便有固体无机盐的存在对于蒸馏/蒸发过程也不会造成影响,加入难溶性碱后也可不经固液分离直接进行蒸馏/蒸发,初始就存在的无机盐固体以及未反应的碱存在,可以分散溶液中的有机杂质,使之不易结块,提高了蒸发效率,从而提高了戊二胺的最终收率。
此外,和传统提取方法相比,本发明另一个显著优势是废水中水溶性的无机盐含量显著减少,减轻了废水处理难度,在当前环保要求逐渐提高的情况下,本发明得到的蒸馏/蒸发废物更容易进行三废处理,可明显降低成本、减小环境压力。
本发明提供的提取方法实用性强、工艺简单、操作简便,可明显降低整个工艺流程原料成本和操作成本。本发明的方法对于戊二胺的回收率高,回收的戊二胺溶液纯度好,可 直接使用或通过简单处理即可得到高纯度级别的戊二胺产品。综上所述,本发明的方法工艺简单、成本低廉、环境友好,更加适用于工业化生产。
具体实施方式
本发明提供了一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法,该方法为:向所述溶液体系中加入碱性物质以形成含有游离态1,5-戊二胺的溶液体系;其中,所述1,5-戊二胺盐至少包含1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐中的一种或多种;所述碱性物质至少包含固态的氢氧化钙、氢氧化镁、氧化钙、氧化镁中的一种或多种,其与所述1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐中的一种或多种进行反应。
在根据本发明的方法的一个实施方式中,所述溶液体系中1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐的摩尔量不低于所述溶液体系中1,5-戊二胺盐总摩尔量的70%,优选为不低于75%,更优选为不低于80%,进一步优选为不低于85%,最优选不低于90%。
目前,工业上制备1,5-戊二胺多采用生物法,因此在根据本发明的方法的一个实施方式中,含1,5-戊二胺盐的溶液体系可以为生物发酵法生产的含1,5-戊二胺盐的发酵液,或酶转化液或赖氨酸盐在赖氨酸脱羧酶(LDC)的作用下,反应得到的戊二胺盐酶转化液,或也可以为含有1,5-戊二胺盐的水溶液。工业上戊二胺盐溶液的获得一般通过发酵或酶转化工艺得到。在发酵或酶转化结束时,水溶液pH一般接近中性,戊二胺以盐的形式存在于水溶液中。本发明所述的酶转化液或发酵液可以是含有菌体的未经任何处理的原液,本发明对发酵液或酶转化液没有特别要求。本发明的技术效果之一在于能处理含有大量可溶/不可溶杂质的发酵/酶转化原液,可省略传统工艺上的除菌除杂等分离前步骤,但这并不限制含有1,5-戊二胺的溶液只能为发酵/酶转化原液,可以推断不含有/部分含有可溶/不可溶杂质的1,5-戊二胺溶液体系当然也不会影响本发明的效果,因此含有1,5-戊二胺的溶液体系也可以是进一步处理后得到的溶液体系(统称处理液),如用陶瓷膜或超滤膜过滤菌体和蛋白等大分子物质后得到的澄清溶液,或简单过滤得到的溶液,或离心得到的清液,或用活性炭脱色除杂后得到的溶液、或者也可以是戊二胺溶于水形成的戊二胺水溶液。在这些过程中,不溶性杂质或可溶性杂质可被去除掉,1,5-戊二胺盐得以保留在溶液体系之中。此外,酶转化液或发酵液,或处理后的处理液还可以进一步浓缩,浓缩的方法可以采用任一适用的现有技术,例如蒸发、常压蒸馏、减压蒸馏、反渗透等。即,所述的含1,5-戊二胺盐的溶液体系为含有1,5-戊二胺的无机盐或有机盐水溶液的混合体系,可以为纯溶液体系,亦可包含固体的微生物或化合物杂质等,不会对本发明的提取方法产生影响。
具体来说,本发明所述的含1,5-戊二胺盐的溶液体系是指赖氨酸盐溶液在赖氨酸脱羧酶(LDC)的作用下,反应得到的戊二胺盐溶液;或直接发酵得到的戊二胺盐溶液。本发明对戊二胺盐酶转化液或直接发酵制备戊二胺的具体制备方法没有特别限定,本领域普通技术人员可以根据现有技术决定选择具体的原料,确定具体的酶转化过程的工艺参数,从而得到含1,5-戊二胺盐的溶液体系。
其中,所述用于酶转化生产戊二胺的赖氨酸盐可以为赖氨酸的无机盐或有机盐,如市场上销售的赖氨酸盐酸盐、赖氨酸硫酸盐等商品,溶解在水中生成的赖氨酸盐溶液。又如生物发酵生产的赖氨酸盐酸盐、赖氨酸硫酸盐成品或发酵液,溶解在水中生成的赖氨酸盐溶液。在工业大规模发酵生产赖氨酸过程中,培养基采用硫酸铵作为氮源之一,因此发酵液中含有大量的硫酸根,发酵液也可作为赖氨酸盐溶液使用。赖氨酸发酵液可以直接采用发酵原液,也可将其进一步除杂得到的经预处理的发酵液,如通过离心、过滤、或膜过滤等处理去除菌体以后得到的发酵清液,或将赖氨酸发酵液加如活性炭脱色,过滤得到经脱色的赖氨酸盐溶液。
上述赖氨酸脱羧酶是指能作用于赖氨酸或盐生成1,5-戊二胺的酶。赖氨酸脱羧酶可以是赖氨酸脱羧酶的发酵液,或通过离心或过滤或其他技术手段得到的脱羧酶细胞,或破碎的细胞,或发酵液滤除细胞后得到的发酵液清液,或精制酶。也可以是两种以上酶的混合物。产生赖氨酸脱羧酶的微生物可以是野生菌株,也可以是诱变菌株,也可以是经过基因重组的菌株。
本发明对赖氨酸脱羧反应的工艺没有特别的限制,可采用现有任一的酶转化技术,或在现有技术上由本领域普通技术人员作出简单的改进。
例如,朱婧(“微生物转化L-赖氨酸为尸胺的研究”,硕士论文,天津科技大学,2009年3月)提出了以下四种方法:
(1)、直接反应:将赖氨酸盐酸盐直接添加到赖氨酸脱羧酶发酵液中至到底物浓度为0.05mol/kg,反应2h,摩尔转化率36.05%。
(2)、缓冲体系酶反应:用0.6N乙酸缓冲液缓冲反应体系pH变化,赖氨酸盐酸盐在缓冲溶液中的终浓度为0.22mol/kg,反应2h,摩尔转化率81.30%。
(3)、控pH酶反应:强酸控制反应pH5-6,酶反应体系中赖氨酸盐酸盐浓度0.22mol/kg,反应2h,摩尔转化率94.97%。
(4)、控pH分批酶反应:强酸控制反应pH5-6,反应体系中初始赖氨酸盐酸盐浓度0.22mol/kg,反应一定时间不断原位分离产物和酶,终转化底物0.87mol/kg,尸 胺收率为94.61%。
又如,中国专利CN 102782146A公开了酶转化前对表达赖氨酸脱羧酶的微生物进行冷冻融解、热处理、赖氨酸盐等方式处理,以提高效率。日本专利文献JP20050147171公开了以赖氨酸碳酸盐水溶液作为底物来进行酶催化,并以二氧化碳调节pH。
又如,申请号为ZL 201410004636.3的中国专利公开了以赖氨酸发酵液进行脱羧反应制备1,5-戊二胺。
在赖氨酸脱羧反应中,可以根据需要额外添加其他成分,如无机盐、维生素、或其他有助于酶反应过程的任何添加剂。
在赖氨酸脱羧反应中,反应温度一般在20℃以上、60℃以下。
本发明所述的戊二胺盐发酵液是指通过基因技术,在能够生成赖氨酸的菌株中上调赖氨酸脱羧酶的表达,或重组表达赖氨酸脱羧酶可以在发酵过程中使产生的赖氨酸同步转化为戊二胺,由此直接得到含戊二胺盐的发酵液。本发明对重组菌没有特别的要求,只要能得到戊二胺即可。例如,“一步法生产1,5-戊二胺谷氨酸棒杆菌基因工程菌的构建”(牛涛等,中国生物工程杂志,2010,30(8):93-99)公开了一株以蜂房哈夫尼菌(Hafniaalvei)基因组为模板,通过PCR扩增,得到赖氨酸脱羧酶基因ldc,并以大肠杆菌(Escherichia coli)/谷氨酸棒杆菌(Corynebacteriumglutamicum)穿梭质粒为载体,将扩增得到的目的基因片段克隆至谷氨酸棒杆菌,获得的重组菌株。又如,PCT/CN2015/094121公开了发酵法直接生产1,5-戊二胺的方法。本领域技术人员应该知道如何根据具体的重组菌优化培养基的组分、比例和发酵工艺参数。戊二胺盐发酵液可以是直接得到的发酵原液,也可以是发酵原液除杂后的处理液,包括但不限于,去除菌体、去除色素等后的发酵液,此外,戊二胺盐发酵液还可以是发酵原液或处理液浓缩后的浓缩液。具体的除杂、浓缩的方法可采用任何适用的现有技术。
工业化生产得到的戊二胺盐酶转化液或发酵液的pH值一般小于9,在这一条件下,戊二胺以盐的形式存在。戊二胺盐的沸点高、挥发性低,无法从水溶液中直接蒸发出来。为提取戊二胺,通常需使戊二胺盐在体系中游离出来,以便进行后续步骤。通常地,含戊二胺盐的溶液,如戊二胺酶转化液等,加入氢氧化钠后直接浓缩蒸发,因溶液中无机盐含量高,且含有菌体等大量杂质,导致最后蒸发得到的戊二胺量很少,收率低,同时浓缩后无机盐析出,蒸发残渣多,残渣中夹带戊二胺或戊 二胺盐并含有大量可溶性无机盐,废弃物难以处理。
为了克服上述缺陷,在本发明的提取方法中加入难溶性碱如氧化钙、氢氧化钙、氢氧化镁等等,产生的难溶性无机盐可通过固液分离方便地除去,不会残留在溶液体系之中,也可不经过滤直接进行后续蒸馏/蒸发处理,析出的无机盐可有效分散体系中的菌体或其他杂质,从而减轻对蒸馏/蒸发过程的影响,获得理想的戊二胺的提取收率。
难溶性碱如氧化钙、氢氧化钙、氢氧化镁等的添加量可由本领域技术人员容易地确定,以使溶液体系中的1,5-戊二胺的硫酸盐、磷酸盐、碳酸盐反应完全为宜,通常可在理论量上适当增加,以保证反应完全而又不大量残留,而且,还可根据实际反应情况进行补充、减少等,本发明不做限定。
在一些优选的实施例中,本发明所述的碱性物质还可以包含固态或液态的氢氧化钠、氢氧化钾、氨中的一种或多种。当溶液体系中含有除硫酸根、碳酸根、磷酸根等阴离子时,优选添加适量可溶性强碱物质,如氢氧化钠、氢氧化钾等进行反应来置换戊二胺,其添加量可由本领域技术人员容易地确定。以使溶液体系中的1,5-戊二胺的盐反应完全为宜,通常可在理论量上适当增加,以保证反应完全而又不大量残留,而且,还可根据实际反应情况进行补充、减少等,本发明不做限定。
在一些优选的实施例中,碱性物质包含固态的氧化钙。
本发明中使用的碱性物质,其纯度与原料的来源有关系,只要杂质中不含有影响戊二胺产品质量的成分,均可用于本发明。在一些实施例中,碱性物质中可以包含不与戊二胺盐反应的其他物质。例如氧化钙中的碳酸钙杂质,碳酸钙作为氧化钙生产过程中的杂质,存在于工业氧化钙产品中,但它不影响本发明中的反应。
在本发明中,碱性物质的添加方式没有特别限制,可以是一次投入,也可以是分批投入,还可以是将碱性物质混合物的各组分分别投入,或是先将混合物混合完毕后一次加入。优选地,氢氧化钠、氢氧化钾等强碱性物质可以质量百分比浓度为10~60%的水溶液形式加入。投入时的碱性物质可以采用单一种类,也可采用两种或以上的混合物;氢氧化钠、氢氧化钾等强碱性物质可以和难溶性碱同时加入,也可以先加入难溶性碱,再后续处理之前再将强碱性物质加入反应体系。
一般来说,可根据溶液中1,5-戊二胺盐的量来确定加碱性物质的添加量。碱性物质可以适当超过所需的理论量,以确保反应完全。
含1,5-戊二胺盐的溶液体系来源途径较多,其中的1,5-戊二胺盐也可能包含少量 其他成分,如盐酸盐、二羧酸盐等,此时本发明的提取方法仍然适用,在根据本发明的方法的一个实施方式中,含1,5-戊二胺盐的溶液体系中还包含1,5-戊二胺的盐酸盐和/或二羧酸盐,但不限于此。
在一些实施例中,当溶液体系中还含有盐酸盐等其它盐成分时,碱性物质同时包含难溶性碱性物质以及可溶性强碱性物质,难溶性碱性物质如氧化钙、氢氧化钙、氢氧化镁等的添加量需保证为至少使硫酸盐、磷酸盐、碳酸盐沉淀完全的量,也可适当过量。
在根据本发明的方法的一个实施方式中,向溶液体系中加入碱性物质时的温度没有特别限定,戊二胺盐与碱性物质可以充分反应即可。一般而言,温度高,戊二胺盐与碱性物质反应速度比较快;温度低,戊二胺与碱性物质反应速度比较慢。在一些实施例中,加入所述碱性物质时的温度可以为室温~95℃。在一些优选的实施例中,加入所述碱性物质时的温度为大于60℃,更优选为大于80℃。含1,5-戊二胺盐的溶液体系加入碱性物质后的反应时间也没有特别限制,戊二胺盐与碱性物质可以充分反应即可,可以根据实际情况调整,在一些实施例中,戊二胺盐与碱性物质反应时间大于1小时,优选大于1.5小时。
含1,5-戊二胺盐的溶液体系中加入碱性物质反应后,溶液中形成了游离的1,5戊二胺和其他化合物,例如反应生成的无机盐、未反应的1,5-戊二胺盐、以及1,5-戊二胺的发酵液或酶转化液中未分离的菌体或蛋白、残糖等杂质。无机盐可包括钙盐/镁盐沉淀物和/或溶解的钠盐/钾盐,沉淀物可举例如硫酸镁、硫酸钙、碳酸镁、碳酸钙、磷酸镁或磷酸钙等。
在根据本发明的方法的一个实施方式中,所述方法还包括将所得的含有游离态1,5-戊二胺的溶液体系进行蒸馏/蒸发以制得1,5-戊二胺溶液。溶液体系中含有的固体物可以在蒸馏/蒸发之前除去,也可以不经处理直接进行蒸馏/蒸发。在本发明中,所述“蒸馏/蒸发”的步骤是指将含有游离态1,5-戊二胺的溶液体系进行加热,蒸发其中的水以及沸点较低的戊二胺,然后将蒸发所得的含有戊二胺的水蒸汽进行收集,从而得到1,5-戊二胺的水溶液,该操作步骤是本领域技术人员知晓或容易获得的。
在根据本发明的方法的一个实施方式中,方法还包括形成含有游离态1,5-戊二胺的溶液之后分离除去所述溶液体系中的固态物。分离的方式本发明不做限定,可以采用板框抽滤、膜过滤、各种形式的离心等常见固液分离方式。由于分离固态物可能会同时带走少量未反应的氧化钙、氢氧化钙、氧化镁等碱性物质,因此,在分离之前 应尽量使1,5-戊二胺盐完全反应,也可固液分离之后适量补充碱性物质,以避免戊二胺盐反应不完全,影响最终的戊二胺收率。
本发明中,蒸馏/蒸发得到的戊二胺水溶液中的戊二胺可与水分离后得到合格的戊二胺产品。所得到的1,5-戊二胺水溶液,可进一步通过常规的水溶液处理方式得到戊二胺纯品,包括但不限于精馏等,也可以直接作为原料参与下游反应如聚合反应等。在本发明一些优选的实施例中,蒸馏/蒸发之前可先对所述溶液进行浓缩。由于水的沸点比戊二胺的沸点低,浓缩的目的是利用较低能效的加热介质进行加热浓缩,以达到节能的目的,并可提高蒸馏/蒸发阶段所得戊二胺产品的浓度。对浓缩的方式和浓缩倍数可根据实际需要进行,本发明中没有特别限制。
在根据本发明的方法的一个实施方式中,蒸馏/蒸发的温度可以为40~250℃,可采用缓慢升温的方式,蒸馏/蒸发出戊二胺以及水形成戊二胺水溶液。蒸馏/蒸发的温度优选不低于120℃,更优选不低于150℃。
在根据本发明的方法的一个实施方式中,蒸馏/蒸发在真空条件下进行,可以在不高于-0.05MPa压力条件下,优选在不高于-0.08MPa条件下,更优选在不高于-0.09MPa条件下,最优选在不高于-0.095MPa条件下进行。以上压力值均为表压值。
在本发明一些优选的实施例中,蒸馏/蒸发过程的温度由70℃缓慢升至180℃,蒸馏/蒸发压力为-0.095MPa。
在本发明的方法条件下进行的戊二胺的蒸馏/蒸发分离,戊二胺的回收更加彻底。随着蒸馏/蒸发过程的进行,体系中多余的碱会进一步与残留的戊二胺盐反应,生成更多的戊二胺,而这些胺都可以被有效蒸发出去,得到理想的戊二胺回收率。
在根据本发明的方法的一个实施方式中,所述含1,5-戊二胺盐的溶液在加入碱性物质之前还可先进行除菌、脱色等的预处理。
在根据本发明的方法的一个实施方式中,所述含1,5-戊二胺盐的溶液在分离1,5-戊二胺之前还可先进行除菌、脱色等的预处理。
在实现本发明分离工艺的过程中,实际采用的工艺可以不仅仅限于以上描述,可由本领域普通技术人员对原料、处理步骤等作出简单、易行的增加或改变,不会使分离工艺的主体产生本质上变化,仅仅是在某些方面对主体工艺进行了补充或完善。
下面通过实施例对本发明进行详细说明,以使本发明的特征和优点更清楚。但应该指出,本发明并不仅仅局限于本文中所列出的实施例。
如没有特别指出,实施例和比较例所有的浓度均为重量百分比浓度,所述压力均为表 压。
戊二胺或其盐的纯度为气相色谱归一化法测得。戊二胺的检测方法采用NMR核磁共振仪检测戊二胺的特征吸收峰。
以下实施例中提到的戊二胺浓度均是指以戊二胺计的质量浓度。
实施例1
600g带菌体的戊二胺硫酸盐酶转化液,测定戊二胺质量浓度为3.9%。加入22g氢氧化钙粉末(含量90%以上),控制温度在95℃以下,搅拌90分钟,布氏漏斗过滤并以200mL清水淋洗滤饼,滤液全部移入1L的烧瓶内。将混合溶液在压力-0.095MPa旋转蒸发仪上蒸发,逐步提高油浴加热的温度到180℃,得到765g含戊二胺2.9%的水溶液。戊二胺的收率为94.8%,瓶底残留微量沉淀物。
实施例2
600g戊二胺盐酶转化液(磷酸根占阴离子总摩尔数的89%,氯离子为11%),测定其戊二胺质量浓度为3.58%。加入18克氢氧化钙粉末(含量90%以上),控制温度在60℃,搅拌60分钟,布氏漏斗过滤,200ml去离子水淋洗滤饼,合并滤液全部移入1L的烧瓶内,并加3克固体氢氧化钾于滤液中,加20克玻璃珠,加热并逐渐降低压力至-0.095MPa下蒸发。逐步提高油浴加热的温度到180℃,得到766g含戊二胺2.67%的水溶液。戊二胺的收率95.2%,瓶底残留微量固体沉淀物。
实施例3
600g戊二胺碳酸盐发酵液,测定其戊二胺质量浓度为2.0%。在压力-0.095MPa旋转蒸发仪上蒸发,控制水浴温度90℃,浓缩至剩余100g时结束。然后加入10g氢氧化镁粉末,控制温度在80℃,搅拌90分钟。布氏漏斗过滤,300g纯净水淋洗固体层,合并滤液,将上述滤液在压力-0.095MPa旋转蒸发仪上蒸发,逐步提高油浴加热的温度,从70℃提高到180℃,蒸馏至基本没有液体蒸出。合并蒸发液,得到377g含戊二胺2.95%的水溶液。戊二胺的收率92.6%,瓶底残留微量沉淀物。
实施例4
600g带菌体的戊二胺硫酸盐酶转化液的浓缩液,测定戊二胺质量浓度15.1%。加入80g氢氧化钙粉末(含量90%以上),控制温度在95℃,搅拌120分钟。向混合溶液中加入100g玻璃珠加强搅拌,在压力-0.095MPa旋转蒸发仪上蒸发,逐步提高油浴加热的温度到180℃,得到521g含戊二胺16.7%的水溶液。戊二胺的收率96.0%,瓶底残留松散状固体沉淀物,无粘稠状物质出现。
实施例5
600g戊二胺盐酶转化液(用赖氨酸硫酸盐制备得到)的浓缩液,测定戊二胺质量浓度15.1%。加入60g氧化钙粉末(含量95%以上),控制温度在75℃,搅拌120分钟。布氏漏斗过滤,然后用500ml去离子水分两次洗涤滤饼,过滤。合并所有滤液,然后蒸发。将混合溶液在压力-0.095MPa旋转蒸发仪上蒸发,逐步提高油浴加热的温度,从70℃提高到180℃,得到942g含戊二胺9.14%的水溶液。戊二胺的收率95.0%,瓶底残留少量沉淀物。
实施例6
100kg带菌体的戊二胺硫酸盐酶转化液的浓缩液,测定戊二胺浓度15.1%。加入11kg氧化钙粉末(含量95%以上),控制温度在85~95℃,搅拌180分钟,然后采用工业离心机离心,得到离心液。用100kg去离子水分二次洗涤得到的固体,并用工业离心机离心,共得到159kg离心清液。将得到的离心清液在压力为-0.095MPa于蒸发釜内蒸发,先有大部分水分被蒸出,逐步提高加热的温度,从70℃提高到180℃,直到无气体蒸出为止。合并蒸发液,得到147kg含戊二胺9.6%的水溶液。戊二胺的蒸发收率93.5%,蒸发釜底少量残留物流动性良好,压力放至常压后可趁热排出。
实施例7
1000kg带赖氨酸脱羧酶菌体的1,5-戊二胺硫酸盐酶转化液的浓缩液,测定1,5-戊二胺浓度15.1%。加入110kg氧化钙粉末(含量95%以上),控制温度在90℃左右,充分搅拌180分钟,然后将所得混合溶液体系逐步送入桨叶真空干燥机(KJG/110)加热蒸发,转速20rpm,控制真空度-0.09~-0.08Mpa,导热油温度200℃,收集蒸发气体冷凝液,得到827kg含1,5-戊二胺17.4%的水溶液。1,5-戊二胺收率95.6%,桨叶真空干燥机中残留松散的固体粉末,无结块结壁现象。
对比例
600g带菌体的戊二胺硫酸盐酶转化液的浓缩液,测定戊二胺质量浓度15.1%。边搅拌边缓慢加入76g氢氧化钠粉末(化学纯),控制温度在60℃以下,搅拌120分钟。向混合溶液中加入100g玻璃珠加强搅拌,在压力-0.095MPa旋转蒸发仪上蒸发,逐步提高油浴加热的温度到180℃,得到515g含戊二胺11.3%的水溶液。戊二胺的收率64.2%,茄型瓶底析出物粘稠、流动性差,压力放至常压后不能自行倒出,室温时瓶底残留物有结壁结块现象。
由实施例以及对比例可知,本发明的方法既能得到理想的戊二胺提取收率,且不会产生难处理的蒸馏/蒸发废弃物;此外,利用固体钙/镁的碱性物质可大幅降低原材料成本, 储运便捷;反应和蒸馏/蒸发过程容许固体沉淀的存在不必特意做精细的固液分离,因此可大幅提高生产效率、降低生产成本;更重要的是,由于避免了大量可溶性盐废弃物的产生,避免了可溶性盐进入废水,可大幅减轻废水处理难度,降低废水处理成本,绿色环保。
虽然为了说明本发明,已经公开了本发明的优选实施方案,但是本领域的技术人员应当理解,在不脱离权利要求书所限定的本发明构思和范围的情况下,可以对本发明做出各种修改、添加和替换。

Claims (12)

  1. 一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法,其特征在于,向所述溶液体系中加入碱性物质以形成含有游离态1,5-戊二胺的溶液体系;其中,所述1,5-戊二胺盐至少包含1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐中的一种或多种;所述碱性物质至少包含固态的氢氧化钙、氢氧化镁、氧化钙、氧化镁中的一种或多种。
  2. 根据权利要求1所述的方法,其特征在于,所述溶液体系中1,5-戊二胺的硫酸盐、碳酸盐、磷酸盐的摩尔量不低于所述溶液体系中1,5-戊二胺盐总摩尔量的70%,优选为不低于75%,更优选为不低于80%,进一步优选为不低于85%,最优选不低于90%。
  3. 根据权利要求1或2所述的方法,其特征在于,所述含1,5-戊二胺盐的溶液体系中还包含1,5-戊二胺的盐酸盐和/或二羧酸盐。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述碱性物质还包含氢氧化钠、氢氧化钾、氨中的一种或多种。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述含1,5-戊二胺盐的溶液体系为含1,5-戊二胺盐的水溶液、1,5-戊二胺酶转化液或1,5-戊二胺发酵液。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,加入所述碱性物质时的温度为室温~95℃;优选为大于60℃。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括将所得的含有游离态1,5-戊二胺的溶液体系进行蒸馏/蒸发以制得1,5-戊二胺溶液。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括蒸馏/蒸发之前分离出所述溶液体系中的固态物。
  9. 根据权利要求7或8所述的方法,其特征在于,所述蒸馏/蒸发之前还包括将所得的含有游离态1,5-戊二胺的溶液体系进行浓缩。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述蒸馏/蒸发的温度 为40~250℃。
  11. 根据权利要求7-9任一项所述的方法,其特征在于,所述蒸馏/蒸发的压力为不高于-0.05Mpa。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述方法还包括在加入所述碱性物质之前先进行除菌和/或脱色和/或浓缩的预处理。
PCT/CN2016/098303 2016-02-06 2016-09-07 一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法 WO2017133242A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16889053.1A EP3412650B1 (en) 2016-02-06 2016-09-07 Method for extracting 1,5-pentanediamine from solution system containing 1,5-pentanediamine salt
ES16889053T ES2850225T3 (es) 2016-02-06 2016-09-07 Procedimiento para extraer 1,5-pentanodiamina del sistema de solución que contiene sal de 1,5-pentanodiamina
US16/075,929 US10759737B2 (en) 2016-02-06 2016-09-07 Method for extracting 1,5-pentanediamine from solution system containing 1,5-pentanediamine salt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610083713.8A CN107043330B (zh) 2016-02-06 2016-02-06 一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法
CN201610083713.8 2016-02-06

Publications (1)

Publication Number Publication Date
WO2017133242A1 true WO2017133242A1 (zh) 2017-08-10

Family

ID=59499304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098303 WO2017133242A1 (zh) 2016-02-06 2016-09-07 一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法

Country Status (5)

Country Link
US (1) US10759737B2 (zh)
EP (1) EP3412650B1 (zh)
CN (1) CN107043330B (zh)
ES (1) ES2850225T3 (zh)
WO (1) WO2017133242A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110787638B (zh) * 2018-08-01 2023-09-22 上海凯赛生物技术股份有限公司 一种戊二胺的浓缩系统及浓缩方法
CN108997141B (zh) * 2018-08-28 2021-10-19 河北美邦工程科技股份有限公司 一种1,5-戊二胺的制备方法
CN108997130A (zh) * 2018-08-29 2018-12-14 南京工业大学 一种1,5-戊二胺萃取和成盐耦合的方法
CN109402189B (zh) * 2018-12-06 2020-08-21 黑龙江伊品新材料有限公司 发酵生产戊二胺的方法及其提取方法
CN109704978A (zh) * 2018-12-25 2019-05-03 天津大学 一种戊二胺的纯化方法
CN110372521B (zh) * 2019-07-30 2020-11-24 南京工业大学 一种从含有戊二胺的水相中汽提回收戊二胺的方法
CN110372522B (zh) * 2019-07-30 2020-10-02 南京工业大学 一种从含有戊二胺的固相中汽提回收戊二胺的方法
CN114315603B (zh) * 2020-09-30 2024-04-05 上海凯赛生物技术股份有限公司 一种1,5-戊二胺的提取方法及其所得的1,5-戊二胺产品
CN113200867A (zh) * 2021-05-08 2021-08-03 中石油吉林化工工程有限公司 从有机胺盐水溶液中回收有机胺的方法
CN116410094A (zh) * 2021-12-31 2023-07-11 惠州市绿色能源与新材料研究院 一种聚合级生物基戊二胺精制提纯工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096796A (ja) * 2007-05-29 2009-05-07 Mitsubishi Chemicals Corp ペンタメチレンジアミンの製造方法
JP2009131239A (ja) * 2007-10-30 2009-06-18 Mitsubishi Chemicals Corp ペンタメチレンジアミンの製造方法
CN101981202A (zh) * 2008-01-23 2011-02-23 巴斯夫欧洲公司 发酵生产1,5-二氨基戊烷的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008193898A (ja) 2005-05-19 2008-08-28 Ajinomoto Co Inc カダベリンの製造法
WO2007079944A1 (en) * 2006-01-11 2007-07-19 Dsm Ip Assets B.V. Process for isolation of an organic amine
US8334411B2 (en) * 2008-03-12 2012-12-18 Toray Industries, Inc. Process for producing diamine and polyamide
CN102056889B (zh) 2008-07-03 2016-01-20 三菱化学株式会社 五亚甲基二胺的制造方法和聚酰胺树脂的制造方法
US9404132B2 (en) 2010-03-01 2016-08-02 Mitsui Chemicals, Inc. Method for producing 1,5-pentamethylenediamine, 1,5-pentamethylenediamine, 1,5-pentamethylene diisocyanate, method for producing 1,5-pentamethylene diisocyanate, polyisocyanate composition, and polyurethane resin
US9914694B2 (en) * 2013-01-28 2018-03-13 Cathay R&D Center Co., Ltd. Purification of cadaverine using high boiling point solvent
WO2014113999A1 (en) 2013-01-28 2014-07-31 Cathay R&D Center Co., Ltd. Purification of cadaverine
EP3037407B1 (en) * 2013-08-23 2018-12-26 Ajinomoto Co., Inc. Method for producing 1,5-pentanediamine
EP3072880A4 (en) * 2013-11-19 2017-07-19 Toray Industries, Inc. 1, 5-pentamethylene diamine and method for producing same
CN104762336B (zh) 2014-01-06 2019-10-29 上海凯赛生物技术股份有限公司 1,5-戊二胺的制备方法
CN104974046B (zh) * 2014-04-03 2017-11-17 凯赛(金乡)生物材料有限公司 一种戊二胺的纯化方法
KR20150115533A (ko) 2014-04-04 2015-10-14 씨제이제일제당 (주) 1,5-디아미노펜탄의 정제방법
CN204400884U (zh) * 2014-12-17 2015-06-17 上海凯赛生物技术研发中心有限公司 1,5-戊二胺连续提纯装置
WO2017079872A1 (en) 2015-11-09 2017-05-18 Cathay R & D Center Co., Ltd. Modified membrane permeability

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096796A (ja) * 2007-05-29 2009-05-07 Mitsubishi Chemicals Corp ペンタメチレンジアミンの製造方法
JP2009131239A (ja) * 2007-10-30 2009-06-18 Mitsubishi Chemicals Corp ペンタメチレンジアミンの製造方法
CN101981202A (zh) * 2008-01-23 2011-02-23 巴斯夫欧洲公司 发酵生产1,5-二氨基戊烷的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GONG, TINGYUN: "Recent Advances in the Production and Application of 1,5-Diaminopentane", JOURNAL OF CHEMICAL INDUSTRY & ENGINEERING, vol. 34, no. 1, 1 February 2013 (2013-02-01), pages 55 - 58, XP055559580 *

Also Published As

Publication number Publication date
US20190055186A1 (en) 2019-02-21
CN107043330A (zh) 2017-08-15
ES2850225T3 (es) 2021-08-26
US10759737B2 (en) 2020-09-01
EP3412650A1 (en) 2018-12-12
EP3412650A4 (en) 2019-09-18
EP3412650B1 (en) 2021-01-13
CN107043330B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
US10759737B2 (en) Method for extracting 1,5-pentanediamine from solution system containing 1,5-pentanediamine salt
CN109504719B (zh) 一种提高谷氨酸产酸率及提取率的方法
CN102753514B (zh) 制备琥珀酸的方法
CN107043331B (zh) 一种1,5-戊二胺的提取方法
CN109504720B (zh) 谷氨酸的绿色生产工艺
CN110845326A (zh) 一种通过脱水萃取制备乳酸和丙交酯的方法
JP2005139156A (ja) コハク酸モノアンモニウム塩の製造法
CN110055292B (zh) 一种丙酮酸和左旋多巴联产工艺与应用
KR20130057540A (ko) 젖산의 정제 방법
CN107043333B (zh) 一种从含1,5-戊二胺盐的溶液体系中提取1,5-戊二胺的方法
CN113045441A (zh) 一种饲料和食品级甘氨酸的生产方法及用于实施其的装置
CN110903201B (zh) 一种1,5-戊二胺的制备方法
CN113005161A (zh) 一种聚唾液酸的制备方法及聚唾液酸制品
TW201610164A (zh) 製備琥珀酸及琥珀酸酯之方法
CN113045610B (zh) 一种从n-乙酰氨基葡萄糖发酵液中提取氨基葡萄糖的方法
CN107043332B (zh) 一种1,5-戊二胺的提取方法
KR940000810B1 (ko) 결정상태의 글루타민산을 제조하는 방법
CN108220351B (zh) 一种生物酶法制备L-精氨酸-α-酮戊二酸的方法
CN112813115A (zh) 一种高纯度l-精氨酸的生产工艺
CN114599634B (zh) 允许氨的循环能够持续的支链氨基酸的结晶化方法
CN116162665B (zh) 一种由d,l-草铵膦反应液制备l-草铵膦的方法及装置
JPS60133893A (ja) L−フエニルアラニンの製造方法
JP2502990B2 (ja) ▲l▼−リンゴ酸の製造法
CN109206313B (zh) 丁二酸盐厌氧发酵液制备丁二酸的方法
CN118026894A (zh) 一种瓜氨酸的分离纯化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889053

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016889053

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016889053

Country of ref document: EP

Effective date: 20180906