WO2017133080A1 - 一种低收缩高强度大规格陶瓷板及其制备方法 - Google Patents

一种低收缩高强度大规格陶瓷板及其制备方法 Download PDF

Info

Publication number
WO2017133080A1
WO2017133080A1 PCT/CN2016/079299 CN2016079299W WO2017133080A1 WO 2017133080 A1 WO2017133080 A1 WO 2017133080A1 CN 2016079299 W CN2016079299 W CN 2016079299W WO 2017133080 A1 WO2017133080 A1 WO 2017133080A1
Authority
WO
WIPO (PCT)
Prior art keywords
shrinkage
strength
preparation
acicular wollastonite
ceramic
Prior art date
Application number
PCT/CN2016/079299
Other languages
English (en)
French (fr)
Inventor
刘一军
汪庆刚
潘利敏
杨晓峰
谢志军
张松竹
闫振华
董军乐
赵勇
杨元东
Original Assignee
蒙娜丽莎集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒙娜丽莎集团股份有限公司 filed Critical 蒙娜丽莎集团股份有限公司
Priority to JP2018538744A priority Critical patent/JP6646752B2/ja
Priority to US16/075,075 priority patent/US11084759B2/en
Priority to ES16888904T priority patent/ES2882678T3/es
Priority to EP16888904.6A priority patent/EP3412640B1/en
Publication of WO2017133080A1 publication Critical patent/WO2017133080A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62805Oxide ceramics
    • C04B35/62807Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/22Grog products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/131Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/132Waste materials; Refuse; Residues
    • C04B33/1321Waste slurries, e.g. harbour sludge, industrial muds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/16Lean materials, e.g. grog, quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/20Preparing or treating the raw materials individually or as batches for dry-pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/32Burning methods
    • C04B33/34Burning methods combined with glazing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/36Reinforced clay-wares
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62847Coating fibres with oxide ceramics
    • C04B35/62849Silica or silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3454Calcium silicates, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5276Whiskers, spindles, needles or pins
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/60Production of ceramic materials or ceramic elements, e.g. substitution of clay or shale by alternative raw materials, e.g. ashes

Definitions

  • the present invention relates to a ceramic board preparation process, and more particularly to a low shrinkage high strength large size ceramic plate and a preparation method thereof.
  • ceramic plates greatly save raw materials, energy and transportation costs, they also save space and reduce the weight of building structures, especially in line with the national energy conservation and environmental protection green industry policy.
  • industrial production of large-size ceramic plates has two types of dry press forming and wet extrusion molding.
  • the extrusion process requires a large moisture content of the billet, and the body is prone to pores and cracks during the drying process, which reduces the quality and yield of the product after firing.
  • the dry press forming process is more mature, and the quality and yield of the product are higher.
  • CN1191853 A discloses a method for producing a large flat ceramic sintered body. After adding acicular wollastonite and water to a ceramic raw material, it is extruded into a cylindrical shape by a vacuum and a mud machine, and then calendered and formed. High-strength large flat ceramic sintered body. Due to the wet extrusion process, the acicular wollastonite is easily oriented in the direction of extrusion, resulting in an anisotropic strength of the finished product, a high strength in the direction of the vertical extrusion, and a low strength in the direction of the parallel extrusion. .
  • Dry pressing requires pulping, is limited to equipment, and is capable of being sprayed by a wet spray granulation process for fibers having a certain aspect ratio, for example, CN102173760A, a method for producing a large-sized silicon oxide ceramic sheet,
  • the raw material clay particles were prepared, and acicular wollastonite was added to the raw material, and granulated by spray drying.
  • acicular wollastonite has a great influence on the flow rate of the slurry, it is difficult to spray powder, and the aspect ratio is large, and it is difficult to screen and remove iron, which has a great influence on the whiteness of the green body.
  • the technical problem to be solved by the present invention is to provide a low-shrinkage, high-strength, large-size ceramic plate and a preparation method thereof.
  • the ceramic plate has high strength, good toughness, and small shrinkage.
  • the present invention provides a method for preparing a low-shrinkage, high-strength, large-size ceramic plate, comprising the following steps:
  • acicular wollastonite is surface-wrapped with a silane coupling agent and pre-dispersed with fumed silica to obtain pretreated acicular wollastonite;
  • the present invention fully utilizes the characteristics of acicular wollastonite reinforcement and small firing shrinkage, and introduces acicular wollastonite in the preparation of large-sized ceramic plates, thereby improving the strength of large-size ceramic plates and reducing
  • the shrinkage rate of the large-size ceramic plate has been obtained, and a low-shrinkage, high-strength, large-size ceramic plate has been obtained.
  • the dry pressing process can improve the quality and yield of the product.
  • the acicular wollastonite is pretreated, specifically, surface-modified with a silane coupling agent and pre-dispersed with a fumed silica, and the surface modification solves the problem that the powder is easily agglomerated and dispersible, and the white carbon black is loose.
  • the structure can further improve the powder dispersibility, thereby solving the problem of acicular wollastonite dispersion, and further improving the product quality and the harvest rate.
  • the formula of the ceramic raw material is: water washed mud 8 ⁇ 20%, mixed mud 4 ⁇ 16%, potassium sand 12 ⁇ 20 ⁇ 3 ⁇ 4, medium temperature sand 24 ⁇ 30 ⁇ 3 ⁇ 4, 1 # ⁇ 6 ⁇ 12 ⁇ 3 ⁇ 4, 2# Sodium sand 16 ⁇ 22 ⁇ 3 ⁇ 4, black talc 1 ⁇ 2.
  • the preparation method of the ceramic raw material powder comprises: pre-pulverizing each ceramic raw material and passing through a 120 mesh sieve, and sieving the raw materials according to the formula, grinding and processing, controlling 250 mesh. Screening ⁇ 2%.
  • the granulation by the dry granulation process can be better mixed with the acicular wollastonite.
  • the acicular wollastonite has an aspect ratio of 10 to 18.
  • acicular wollastonite with an aspect ratio of 10 to 18 it is advantageous for the dispersion of acicular wollastonite and the strength of the ceramic plate.
  • the step (2) comprises: the acicular wollastonite is sprayed with a silane coupling agent in the surface modification device.
  • the silane coupling agent is at least one of KH550, KH560, and KH570.
  • the granulation is carried out by dry granulation.
  • the dry granulation can be carried out without limitation to the equipment, and it is easy to obtain a powder containing acicular wollastonite.
  • the pressure of the dry press molding is 86000 to 96000 KN, and the molding specification is
  • the firing temperature is from 1190 to 1220 °C.
  • the present invention provides a low-shrinkage, high-strength, large-size ceramic plate prepared by any of the above methods, the ceramic plate having a specification of (1100 ⁇ 1260) mmx (2200 ⁇ 2500) mmx (3 ⁇ 6) ) mm.
  • the ceramic plate comprises a porcelain product and a enamel tile product, wherein the porcelain product has a shrinkage ratio of 5 to 8%, a flexural strength of 55 to 68 MPa (preferably 58 to 68 MPa), and a water absorption rate of less than 0.5%; The rate is 1 ⁇ 5 ⁇ 3 ⁇ 4, the flexural strength is 40 ⁇ 55MPa, and the water absorption rate is 0.5 ⁇ 10 ⁇ 3 ⁇ 4.
  • the present invention it is possible to provide a large-sized ceramic plate having high strength, good toughness, and small firing shrinkage. It can not only improve the regularity of product firing, but also reduce consumables and further save energy and reduce consumption.
  • FIG. 1 shows a process flow diagram of one embodiment of the present invention.
  • Table 2 shows a chemical composition table of ceramic raw materials (Table 1) of one example of the present invention.
  • the invention adopts a dry pressing process to prepare a low-shrinkage high-strength large-size ceramic plate. Compared with wet extrusion molding, the dry pressing process is more mature, and the quality and yield of the product are higher.
  • the invention is in the original of the ceramic plate
  • the needle-shaped wollastonite is added to the material to further improve the strength and toughness of the ceramic plate, and the firing shrinkage rate can be reduced, and the size regularity can be improved.
  • the acicular wollastonite is pretreated to solve the problem of acicular wollastonite dispersion.
  • Figure 1 shows a process flow diagram of one embodiment of the present invention. Hereinafter, a method of preparing the low shrinkage high strength large-size ceramic plate of the present invention will be described with reference to FIG.
  • the ceramic raw material is not particularly limited, and a usual ceramic raw material can be used.
  • the ceramic raw material is formulated as follows:
  • the ceramic raw materials used are dried. Preferably, it is dried to a moisture content of ⁇ 4%. After drying, the individual ceramic raw materials were pre-pulverized using a pre-comminuted apparatus and passed through a 120 mesh screen. The sieving material is continuously pulverized; the sieving material is pre-mixed according to the formula, and then pulverized together (grinding and milling) to control the remaining 2 mesh of the 250 mesh sieve. The powder is mixed to obtain a ceramic raw material powder.
  • the aspect ratio of the acicular wollastonite is preferably from 10 to 18. If the aspect ratio is greater than 18, it will be difficult to disperse; if the aspect ratio is less than 10, the enhancement will be affected.
  • the acicular wollastonite may have a diameter of 10 ⁇ m to 60 ⁇ m.
  • the acicular wollastonite is subjected to the following pretreatment: surface encapsulation treatment with a silane coupling agent and pre-dispersion with gas phase white carbon black.
  • the silane coupling agent can surface-modify the acicular wollastonite to enhance its compatibility with the ceramic raw material.
  • the fumed silica can be pre-dispersed with acicular wollastonite. Thereby, the dispersibility of the acicular wollastonite can be remarkably improved, so that the acicular wollastonite can be uniformly dispersed in the ceramic raw material.
  • the silane coupling agent but not limited to KH550, KH560, KH570, preferably KH550.
  • the specific method of pretreatment is as follows: acicular wollastonite is sprayed with a silane coupling agent (addition amount: 0.1 to 0.8%) to form a coating layer of the modifier in the surface modification equipment, and then with the gas phase White carbon black (addition amount 0.1 to 0.5%) is thoroughly mixed for pre-dispersion treatment.
  • the percentage of addition here is for acicular wollastonite.
  • the pretreated acicular wollastonite is thoroughly mixed with the above ceramic raw material powder to form a mixed powder.
  • the mixing method can be, for example, ball milling mixing.
  • the amount of acicular wollastonite added is preferably 10 ⁇ 3 ⁇ 4 ⁇ 30 ⁇ 3 ⁇ 4.
  • the addition amount is more than 30%, the firing temperature is low, the sintering range is small, and it is not conducive to firing; if the addition amount is less than 10%, the shrinkage is relatively large, and the increase in size is small, and the effect is not obtained. More preferably, the acicular wollastonite is added in an amount of 15% to 20 ⁇ 3 ⁇ 4.
  • the mixed powder is granulated. Since the powdering by the wet spray granulation process cannot be carried out for fibers having a certain aspect ratio, the present invention is preferably dry granulation. Moreover, since the acicular wollastonite has good dispersibility after pretreatment, it is suitable for dry granulation.
  • the bismuth micropowder particles spontaneously agglomerate due to surface tension and intermolecular forces.
  • the raw material contains about 25% of clay-based raw materials, which further enhances the agglomeration ability of the micropowder.
  • the first-formed particles have smaller particle size and lower strength, and then enter the special cyclone.
  • the material entering the cyclone barrel is rubbed along the wall of the cylinder and rubbed by friction, and the materials collide with each other, so that the particles are further agglomerated and the sphericity is further improved. Perfect, the strength of the powder is also increased, helping to keep the powder spherical.
  • the particles formed by granulation may have a particle diameter of 0.1 to 1 mm.
  • the above particles are then dry pressed into shape.
  • the particles may be further dried, sieved, aged (e.g., 24 hours) prior to dry pressing to be more suitable for dry pressing.
  • the pressure for dry pressing can be from 86,000 KN to 96000 KN.
  • the molding specification can be (1150 ⁇ 1300) mmx (2400 ⁇ 2600) mmx (3 ⁇ 6) mm
  • the molded green body is fired to obtain a ceramic plate.
  • the firing temperature is 11 90 to 1220 ° C.
  • the firing time can be 50 to 65 minutes.
  • glaze printing can be applied to glaze.
  • it can be fired once after glazing printing on the green body.
  • the green body may be dried prior to firing. For example, it can be dried at 180 to 210 ° C for 25 to 35 minutes.
  • the finished product after firing is a large-sized ceramic plate, and the specification thereof may be (1100 to 1260) mmx (2200 to 2500) mmx (3 to 6) mm.
  • the edging can also be cut to obtain the final product.
  • the present invention makes full use of the characteristics of small shrinkage of acicular wollastonite, and the firing shrinkage of the porcelain product is 5 to 8%.
  • the ceramic sheet of the present invention has a flexural strength as high as 58 to 68 MPa due to the reinforcing effect of the acicular wollastonite. And a water absorption of less than 0. 5 ⁇ 3 ⁇ 4.
  • the ceramic plate of the present invention may be a porcelain tile product or a tantalum tile product.
  • Porcelain brick product shrinkage rate is 5 ⁇ 8%, flexural strength is 55 ⁇ 68MPa, water absorption is less than 0.5%; ⁇ tile product shrinkage is 1 ⁇ 5 ⁇ 3 ⁇ 4, flexural strength is 40 ⁇ 55MPa, water absorption is 0.5 ⁇ 10 ⁇ 3 ⁇ 4.
  • test methods in the following embodiments are as follows:
  • TXY digital ceramic water absorption measuring instrument can be used to measure the water absorption rate, apparent porosity and bulk density of building sanitary ceramics (vacuum degree: ⁇ 0.095MPa adjustable; vacuum Daytime: 0 ⁇ 99 minutes 59 seconds continuously adjustable; Soaking daytime: 0 ⁇ 99 small ⁇ 59 points continuously adjustable; Volume: ⁇ 40 0x450mm; Power: ⁇ 220V).
  • Ceramic raw material formula water washing mud 15%, mixed mud 10%, potassium sand 16%, medium temperature sand 28 ⁇ 3 ⁇ 4, 1# sodium sand 10%, 2# sodium sand 20%, black talc 1%; The chemical composition is as shown in Table 1 above; [0047] Needle-shaped wollastonite: an aspect ratio of 15, a diameter of 30 micrometers, purchased from Jiangxi Aote Fine Powder Co., Ltd., model AT-acicular powder.
  • acicular wollastonite is surface-wrapped with a silane coupling agent and pre-dispersed with 0.4% fumed silica, and the specific steps are as follows: acicular wollastonite is sprayed with silane by a surface modification device.
  • the crosslinking agent (addition amount: 0.5%) forms a coating layer of a modifier to reduce agglomeration, and is sufficiently mixed with the gas phase white carbon (addition amount: 0.4%) to carry out a pre-dispersion treatment.
  • step 3 The powder obtained in the step 1) is thoroughly mixed with the pretreated acicular wollastonite obtained in the step 2), and the amount of the pretreated acicular wollastonite is 13%. Then, the granulation method is a dry suspension granulation process.
  • the product shrinkage is 7.5%
  • the flexural strength is 60Mpa
  • the water absorption is 0.27 ⁇ 3 ⁇ 4.
  • Example 2 Compared with Example 1, the only difference is that the amount of pretreated acicular wollastonite added was 22%.
  • the final specification of the finished ceramic plate is 1204mm*2407mm*5.4mm, the shrinkage of the finished product is 5.6%, the flexural strength is 65MPa, and the water absorption is 0.34%.
  • Example 2 Compared with Example 1, the only difference is that the amount of pretreated acicular wollastonite added was 28%.
  • the final specification of the finished ceramic plate is 1210mm*2420mm*5.6mm, the shrinkage of the finished product is 5.1%, the flexural strength is 66MPa, and the water absorption is 0.45 ⁇ 3 ⁇ 4.
  • Example 2 Compared with Example 1, the only difference is that the amount of pretreated acicular wollastonite added was 11%.
  • the finished ceramic plate product ( ⁇ ceramic tile product) has a specification of 1223mm*2445mm*5.5mm, and the finished product shrinks. The rate was 4.1%, the flexural strength was 42 MPa, and the water absorption was 9 ⁇ 3 ⁇ 4.
  • Example 2 Compared with Example 1, the only difference was that the amount of pretreated acicular wollastonite added was 27%.
  • the finished ceramic plate product ( ⁇ ceramic tile product) has a specification of 1250mm*2499mm*5.5mm, a shrinkage rate of 2%, a flexural strength of 47MPa, and a water absorption of 6 ⁇ 3 ⁇ 4.
  • Example 1 Compared with Example 1, ceramic sheets were prepared using only the above ceramic raw materials without adding acicular wollastonite.
  • the final specification of the finished ceramic plate is 1141mm*2282mm*5.4mm, the shrinkage of the finished product is 10.5%, the flexural strength is 48MPa, and the water absorption is 0.23 ⁇ 3 ⁇ 4.
  • Example 2 Compared with Example 1, acicular wollastonite was added, but acicular wollastonite was not pretreated, and the remaining steps were the same as in Example 1. As a result, it was found that the acicular wollastonite dispersion was very uneven, the agglomerate temperature was high, and the local sintering degree was inconsistent, and the finished product was easily broken in a weak place, and the physical and chemical properties were poor.
  • the final specification of the finished ceramic plate is 1173mm*2346mm*5.5mm, the shrinkage of the finished product is 8%, the flexural strength is 48MPa, and the water absorption is 0.6 ⁇ 3 ⁇ 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Finishing Walls (AREA)

Abstract

一种低收缩高强度大规格陶瓷板及其制备方法,包括以下步骤:(1)制备陶瓷原料粉体;(2)将针状硅灰石用硅烷偶联剂进行表面包裹处理并用气相白炭黑进行预分散,得到经预处理的针状硅灰石;(3)将陶瓷原料粉体与经预处理的针状硅灰石充分混合并造粒,其中所述经预处理的针状硅灰石的添加量为所述陶瓷原料粉体的10wt%~30wt%,干压成型,烧成,制得低收缩高强度大规格陶瓷板。充分利用了针状硅灰石增强作用及烧成收缩小的特性,在大规格陶瓷板的制备中引入针状硅灰石,既降低了产品烧成收缩率,又提高了成品强度,得到了低收缩高强度大规格陶瓷板。

Description

说明书 发明名称:一种氐收缩高强度大规格陶瓷板及其制备方法 技术领域
[0001] 本发明涉及一种陶瓷板制备工艺, 特别涉及一种低收缩高强度大规格陶瓷板及 其制备方法。
背景技术
[0002] 由于陶瓷板极大地节约原材料、 能源和运输成本, 同吋节约空间并降低建筑结 构承重, 特别符合国家的节能环保绿色产业政策。 目前大规格陶瓷板工业化生 产有干压成型和湿法挤压成型两种。 挤压成型工艺要求坯料的含水率大, 在干 燥过程中坯体容易产生气孔和裂纹, 这些都会降低烧成后产品的质量和成品率 。 相比之下, 干压成型工艺更为成熟, 产品的质量和收成率更高。
[0003] 为了进一步提高陶瓷板强度及韧性, 可以加入高长径比纤维。 例如 CN1191853 A公幵一种大型平板状陶瓷烧结体的制造方法, 其在陶瓷原料中添加针状硅灰石 和水后, 用真空和泥机挤出成圆筒状后压延成型, 最后得到具有较高强度的大 型平板状陶瓷烧结体。 由于采用湿法挤压工艺, 针状硅灰石容易沿着挤压的方 向形成定向排列, 造成成品抗折强度各向异性, 垂直挤压方向测成品强度高, 平行挤压方向测成品强度低。
[0004] 干压成型需要制粉, 限于设备, 采用湿法喷雾造粒工艺制粉对于具有一定长径 比的纤维无法喷出, 例如 CN102173760A公幵一种氧化硅陶瓷大薄板的制造方法 , 在制备原料坯土颗粒吋, 在原料中添加针状硅灰石, 并采用喷雾干燥造粒。 但是针状硅灰石对浆料流速影响很大, 难喷粉, 且长径比大不易过筛除铁, 对 坯体白度影响较大。 因此, 对于含有具有一定长径比的纤维的陶瓷, 优选的是 采用干法制粉工艺, 但是采用干法制粉存在纤维难以均匀分散的问题。 同吋现 有陶瓷板配方存在烧成收缩大 (10%左右) , 容易导致尺码不规整等问题。 技术问题
[0005] 鉴于以上所述, 本发明所要解决的技术问题在于提供一种低收缩高强度大规格 陶瓷板及其制备方法。 使陶瓷板强度高、 韧性好、 烧成收缩小。 问题的解决方案
技术解决方案
[0006] 一方面, 本发明提供一种低收缩高强度大规格陶瓷板的制备方法, 包括以下步 骤:
[0007] ( 1) 制备陶瓷原料粉体;
[0008] (2) 将针状硅灰石用硅烷偶联剂进行表面包裹处理并用气相白炭黑进行预分 散, 得到经预处理的针状硅灰石;
[0009] (3) 将陶瓷原料粉体与经预处理的针状硅灰石充分混合并造粒, 其中所述经 预处理的针状硅灰石的添加量为所述陶瓷原料粉体的 10wt%〜30wt%, 干压成型
, 烧成, 制得低收缩高强度大规格陶瓷板。
[0010] 本发明充分利用了针状硅灰石增强作用及烧成收缩小的特性, 在大规格陶瓷板 的制备中引入针状硅灰石, 从而提高了大规格陶瓷板的强度, 并降低了大规格 陶瓷板的烧成收缩率, 得到了低收缩高强度大规格陶瓷板。 同吋, 采用干压成 型工艺, 可以提高产品的质量和收成率。 而且, 将针状硅灰石进行预处理, 具 体而言, 用硅烷偶联剂进行表面改性并用气相白炭黑进行预分散, 表面改性解 决粉体容易团聚分散性差问题, 白碳黑疏松状结构可以进一步提高粉体分散性 , 从而解决了针状硅灰石分散问题, 进一步提高产品质量和收成率。
[0011] 较佳地, 步骤 (1) 中, 陶瓷原料的配方为: 水洗泥 8〜20%、 混合泥 4〜16%、 钾砂 12〜20<¾、 中温砂 24〜30<¾、 1#钠砂 6〜12<¾、 2#钠砂 16〜22<¾、 黑滑石 1〜2 。
[0012] 较佳地, 步骤 (1) 中, 陶瓷原料粉体的制备方法包括: 将各陶瓷原料干燥后 预粉碎并过 120目筛, 筛下原料按配方混合后粉磨加工, 控制 250目筛余 <2%。 根 据本发明, 采用干法造粒工艺一起造粒, 可以更好的与针状硅灰石混合均匀。
[0013] 较佳地, 所述针状硅灰石的长径比为 10〜18。 通过采用长径比为 10〜18的针状 硅灰石, 既利于针状硅灰石的分散又可以增强陶瓷板的强度。
[0014] 较佳地, 步骤 (2) 包括: 针状硅灰石在表面改性设备中通过喷洒硅烷偶联剂
(添加量 0.1~0.8%) 形成一层改性剂包覆层以减少团聚, 再与气相白炭黑 (添加 量 0.1~0.5%) 充分混合进行预分散处理。 [0015] 较佳地, 所述硅烷偶联剂为 KH550、 KH560、 KH570中的至少一种。
[0016] 较佳地, 步骤 (3) 中, 所述造粒采用干法造粒。 采用干法造粒可以不限于设 备, 易于制得含针状硅灰石的粉体。
[0017] 较佳地, 步骤 (3) 中, 所述干压成型的压力为 86000〜96000KN, 成型规格为
(1150〜1300) mmx (2400〜2600) mmx (3〜6) mm。 根据本发明, 可以制得 大规格的陶瓷坯体。
[0018] 较佳地, 烧成温度为 1190〜1220°C。
[0019] 另一方面, 本发明提供由上述任意一种方法制备的低收缩高强度大规格陶瓷板 , 所述陶瓷板的规格为 (1100〜1260) mmx (2200〜2500) mmx (3〜6) mm。 所述陶瓷板包括瓷质产品和炻瓷砖产品, 其中, 瓷质产品收缩率为 5〜8%, 抗折 强度为 55〜68Mpa (优选 58〜68Mpa) , 吸水率小于 0.5%; 炻瓷砖产品收缩率为 1〜5<¾, 抗折强度为 40〜55MPa, 吸水率 0.5~10<¾。
发明的有益效果
有益效果
[0020] 根据本发明, 可以提供强度高、 韧性好、 烧成收缩小的大规格陶瓷板。 既可以 提高产品烧成规整性, 又可以减少耗材, 进一步起到节能降耗的作用。
对附图的简要说明
附图说明
[0021] 图 1示出本发明一个实施方式的工艺流程图。
[0022] 图 2示出本发明一个示例的陶瓷原料化学成分表 (表 1) 。
实施该发明的最佳实施例
本发明的最佳实施方式
[0023] 以下结合附图和下述实施方式进一步说明本发明, 应理解, 附图及下述实施方 式仅用于说明本发明, 而非限制本发明。 如无特别说明, 本发明中述及的含量 (添加量) 百分比均为质量百分比。
[0024] 本发明采用干压成型工艺制备低收缩高强度大规格陶瓷板。 相较于湿法挤压成 型, 干压成型工艺更为成熟, 产品的质量和收成率更高。 本发明在陶瓷板的原 料中加入针状硅灰石, 以进一步提高陶瓷板强度及韧性, 并且可以降低烧成收 缩率, 提高尺码规整度。 另外, 在加入针状硅灰石之前, 对针状硅灰石进行预 处理, 以解决针状硅灰石分散问题。 图 1示出本发明一个实施方式的工艺流程图 。 以下参照图 1说明本发明低收缩高强度大规格陶瓷板的制备方法。
[0025] 陶瓷原料粉体的制备
[0026] 陶瓷原料: 本发明中, 对陶瓷原料没有特别限定, 可以采用常用的陶瓷原料。
在一个示例中, 所用原料及其化学成分如表 1所示。
[0027] 优选地, 陶瓷原料配方如下:
[0028] 水洗泥 8〜20<¾、 混合泥 4〜16<¾、 钾砂 12〜20<¾、 中温砂 24〜30<¾、 1#钠砂 6〜
12% 2#钠砂 16〜22<¾、 黑滑石 1〜2<¾。
[0029] 将所用陶瓷原料进行干燥。 优选地, 干燥至水分 <4%。 干燥后, 采用预粉碎设 备对单个陶瓷原料进行预粉碎并过 120目筛。 筛上料继续粉磨; 筛下原料按配方 进行预混配料, 然后一起进行粉磨加工 (研磨制粉) , 控制 250目筛余 <2%。 将 粉料混合, 得到陶瓷原料粉体。
[0030] 针状硅灰石
[0031] 本发明中, 针状硅灰石的长径比优选为 10~18。 如果长径比大于 18, 会难以分 散; 如果长径比小于 10, 会影响增强效果。 针状硅灰石的直径可为 10微米〜 60微 米。
[0032] 针状硅灰石的预处理
[0033] 本发明中, 对针状硅灰石进行如下预处理: 用硅烷偶联剂进行表面包裹处理并 用气相白炭黑进行预分散。 硅烷偶联剂可对针状硅灰石进行表面改性, 以增强 其与陶瓷原料的相容性。 气相白炭黑可对针状硅灰石进行预分散。 由此, 可以 明显改善针状硅灰石的分散性, 从而使针状硅灰石可以均匀地分散在陶瓷原料 中。 作为硅烷偶联剂, 包括但不限于 KH550、 KH560、 KH570, 优选为 KH550。 在一个示例中, 预处理的具体方法为: 针状硅灰石在表面改性设备中通过喷洒 硅烷偶联剂 (添加量 0.1~0.8%) 形成一层改性剂包覆层, 再与气相白炭黑 (添加 量 0.1~0.5%) 充分混合进行预分散处理。 这里的添加量百分比都是针对针状硅灰 石而言。 [0034] 将经预处理的针状硅灰石与上述陶瓷原料粉体充分混合, 形成混合粉。 混合方 法例如可为球磨混合。 针状硅灰石的添加量优选为 10<¾〜30<¾。 如果其添加量大 于 30%, 会烧成温度偏低, 烧结范围小, 不利于烧成; 如果其添加量小于 10%, 收缩比较大, 增大尺码小, 达不到效果。 更优选地, 针状硅灰石的添加量为 15% 〜20<¾。
[0035] 然后, 将混合粉造粒。 由于采用湿法喷雾造粒工艺制粉对于具有一定长径比的 纤维无法喷出, 因此本发明优选为干法造粒。 而且, 由于针状硅灰石经预处理 后具有良好的分散性, 因此适于干法造粒。 在一个示例中, 造粒的具体方法为 : 干法悬浮态造粒工艺: 陶瓷墙地砖的原料包括粘土类原料、 石英类以及长石 类原料。 陶瓷原料经过配比使用新型盘式磨机干法粉磨至粒径 D 50= 11.3 μηι的微 粉。 根据粉体表面物理化学原理, 此吋微粉颗粒本身受表面张力、 分子间作用 力作用会自发产生团聚现象, 再加上原料中含有大约 25%的粘土类原料使得微粉 自身的团聚能力进一步增强, 当微粉进入悬浮造粒设备的混合直筒内, 在风力 作用下均匀分散并与有一定黏性的雾化液滴充分接触、 粘结, 微粉以雾滴或者 大颗粒微粉为颗粒核心, 晶核附近的微粉物料会一层层地包在核心之上从而成 为较大的固体颗粒, 同吋由于雾化液滴具有一定黏性它可以把更多的微粉颗粒 粘结在一起, 进一步团聚成形。 初次成形的颗粒粒度较小、 强度较低, 随即进 入特制旋风筒内, 进入旋风筒内的物料沿着筒壁摩擦滚动受摩擦、 物料彼此撞 击作用力作用, 从而使颗粒进一步团聚、 球形度更加完美, 粉体的强度也相应 提高, 有助于保持粉料球形状态。 造粒形成的颗粒的粒径可为 0.1~lmm。
[0036] 然后将上述颗粒干压成型。 在干压成型之前, 还可以将颗粒进一步干燥、 筛分 、 陈腐 (例如 24小吋) 等, 以更适于干压成型。 干压成型的压力可为 86000KN〜 96000KN。 成型规格可为 (1150〜1300) mmx (2400〜2600) mmx (3〜6) mm
[0037] 然后, 将成型后的生坯进行烧成, 制得陶瓷板。 在一个示例中, 烧成温度为 11 90〜1220°C。 烧成吋间可为 50〜65分钟。 烧成后还可以再施釉印花装饰进行釉烧 。 或者也可以在生坯上施釉印花装饰后一次烧成。 另外, 在烧成之前, 还可先 将生坯干燥。 例如可在 180〜210°C干燥 25〜35分钟。 [0038] 本发明中, 烧成后的成品为大规格陶瓷板, 其规格可为 (1100〜1260) mmx ( 2200〜2500) mmx (3〜6) mm。 烧成后还可切割磨边以获得最终产品。 本发明 充分利用了针状硅灰石烧成收缩小的特性, 瓷质产品的烧成收缩率为 5〜8%。 同 吋, 由于针状硅灰石的增强作用, 本发明的陶瓷板的抗折强度高达 58〜68MPa。 且吸水率小于 0.5<¾。 本发明的陶瓷板可为瓷质砖产品或炻瓷砖产品。 瓷质砖产 品收缩率为 5〜8%, 抗折强度为 55〜68MPa, 吸水率小于 0.5%; 炻瓷砖产品收缩 率为 1〜5<¾, 抗折强度为 40〜55MPa, 吸水率 0.5~10<¾。
本发明的实施方式
[0039] 下面进一步例举实施例以详细说明本发明。 同样应理解, 以下实施例只用于对 本发明进行进一步说明, 不能理解为对本发明保护范围的限制, 本领域的技术 人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保 护范围。 下述示例具体的工艺参数也仅是合适范围中的一个示例, 即本领域技 术人员可以通过本文的说明做合适的范围内选择, 而并非要限定于下文示例的 具体数值。
[0040] 下述实施例中的测试方法如下:
[0041] 针状硅灰石长径比的测定: 偏光显微镜;
[0042] 烧成收缩率的测定: 烧前在砖面中心部位画两条相互垂直的直线, 利用游标卡 尺过直线交叉点取 10mm长的线段, 烧后再测该线段的长度, 就可计算出收缩率
[0043] 抗折强度的测定: SKZ数显式抗折仪;
[0044] 吸水率的测定: TXY数显式陶瓷吸水率测定仪, 采用真空法可对建筑卫生陶瓷 的吸水率、 显气孔率、 体积密度进行测定 (真空度: ≥0.095MPa可调; 抽真空吋 间: 0〜99分钟 59秒连续可调; 浸泡吋间: 0〜99小吋 59分连续可调; 容积: φ40 0x450mm; 电源: 〜220V) 。
[0045] 实施例 1
[0046] 陶瓷原料配方: 水洗泥 15%、 混合泥 10%、 钾砂 16%、 中温砂 28<¾、 1#钠砂 10% 、 2#钠砂 20%、 黑滑石 1%; 各原料的化学成分如上述表 1所示; [0047] 针状硅灰石: 长径比为 15, 直径为 30微米, 购自江西奥特精细粉体有限公司, 型号 AT-针状粉。
[0048] 具体步骤如下:
[0049] 1) 将所用陶瓷原料进行干燥 (控制水分 <4%) ; 再采用预粉碎设备对单个陶 瓷原料进行预粉碎并过 120目筛; 筛上料继续粉磨; 筛下原料按配方进行预混配 料, 然后一起进行粉磨加工, 控制 250目筛余 <2%, 获得粉体。
[0050] 2) 将针状硅灰石用硅烷偶联剂进行表面包裹处理并用 0.4%气相白炭黑进行预 分散, 具体步骤为: 针状硅灰石在表面改性设备中通过喷洒硅烷偶联剂 (添加 量 0.5%) 形成一层改性剂包覆层以减少团聚, 再与气相白炭黑 (添加量 0.4%) 充分混合进行预分散处理。
[0051] 3) 将步骤 1) 所得的粉体与步骤 2) 所得的经预处理的针状硅灰石充分混合, 经预处理的针状硅灰石的添加量为 13%。 然后造粒, 造粒方法为干法悬浮态造粒 工艺。
[0052] 4) 粒子陈腐 24小吋后送压机成型, 压制压力为 90000KN, 成型后的坯体的规 格为 1275mm*2550mm*5.9mm。
[0053] 5) 将坯体于 1210°C烧成 55分钟, 得到陶瓷板。 成品规格为 1180mm*2359mm*5
.5mm, 成品收缩率为 7.5%, 抗折强度为 60Mpa, 吸水率为 0.27<¾。
[0054] 实施例 2
[0055] 与实施例 1相比, 不同之处仅在于经预处理的针状硅灰石的添加量为 22%。 最 终得到的陶瓷板成品规格为 1204mm*2407mm*5.4mm, 成品收缩率为 5.6%, 抗 折强度为 65MPa, 吸水率为 0.34%。
[0056] 实施例 3
[0057] 与实施例 1相比, 不同之处仅在于经预处理的针状硅灰石的添加量为 28%。 最 终得到的陶瓷板成品规格为 1210mm*2420mm*5.6mm, 成品收缩率为 5.1%, 抗 折强度为 66MPa, 吸水率为 0.45<¾。
[0058] 实施例 4
[0059] 与实施例 1相比, 不同之处仅在于经预处理的针状硅灰石的添加量为 11%。 最 终得到的陶瓷板成品 (炻瓷砖产品) 规格为 1223mm*2445mm*5.5mm, 成品收缩 率为 4.1%, 抗折强度为 42MPa, 吸水率为 9<¾。
[0060] 实施例 5
[0061] 与实施例 1相比, 不同之处仅在于经预处理的针状硅灰石的添加量为 27%。 最 终得到的陶瓷板成品 (炻瓷砖产品) 规格为 1250mm*2499mm*5.5mm, 成品收缩 率为 2%, 抗折强度为 47MPa, 吸水率为 6<¾。
[0062] 对比例 1
[0063] 与实施例 1相比, 不添加针状硅灰石, 仅用上述陶瓷原料制备陶瓷板。 最终得 到的陶瓷板成品规格为 1141mm*2282mm*5.4mm, 成品收缩率为 10.5%, 抗折强 度为 48MPa, 吸水率为 0.23<¾。
[0064] 对比例 2
[0065] 与实施例 1相比, 添加针状硅灰石, 但不对针状硅灰石进行预处理, 其余步骤 同实施例 1。 结果发现, 针状硅灰石分散很不均匀, 团聚体温度很高, 造成局部 烧结度不一致, 成品容易在薄弱的地方断裂, 理化性能差。 最终得到的陶瓷板 成品规格为 1173mm*2346mm*5.5mm, 成品收缩率为 8%, 抗折强度为 48MPa, 吸水率为 0.6<¾。

Claims

权利要求书 一种低收缩高强度大规格陶瓷板的制备方法, 其特征在于, 包括以下 步骤:
( 1) 制备陶瓷原料粉体;
(2) 将针状硅灰石用硅烷偶联剂进行表面包裹处理并用气相白炭黑 进行预分散, 得到经预处理的针状硅灰石;
(3) 将陶瓷原料粉体与经预处理的针状硅灰石充分混合并造粒, 其 中所述经预处理的针状硅灰石的添加量为所述陶瓷原料粉体的 10wt% 〜30wt%, 干压成型, 烧成, 制得低收缩高强度大规格陶瓷板。 根据权利要求 1所述的制备方法, 其特征在于, 步骤 (1) 中, 陶瓷原 料的配方为: 水洗泥 8〜20%、 混合泥 4〜16%、 钾砂 12〜20%、 中温 砂 24〜30<¾、 1#钠砂 6〜12<¾、 2#钠砂 16〜22<¾、 黑滑石 1〜2<¾。 根据权利要求 1或 2所述的制备方法, 其特征在于, 步骤 (1) 中, 陶 瓷原料粉体的制备方法包括: 将各陶瓷原料干燥后预粉碎并过 120目 筛, 筛下原料按配方混合后粉磨加工, 控制 250目筛余 <2%。
根据权利要求 1至 3中任一项所述的制备方法, 其特征在于, 所述针状 硅灰石的长径比为 10〜18。
根据权利要求 1至 4中任一项所述的制备方法, 其特征在于, 步骤 (2 ) 包括: 针状硅灰石在表面改性设备中通过喷洒硅烷偶联剂形成一层 改性剂包覆层, 再与气相白炭黑充分混合进行预分散处理, 其中硅烷 偶联剂的添加量为针状硅灰石的 0.1〜0.8wt%, 气相白炭黑的添加量 为针状硅灰石的 0.1〜0.5 wt 。
根据权利要求 1至 5中任一项所述的制备方法, 其特征在于, 所述硅烷 偶联剂为 KH550、 KH560、 KH570中的至少一种。
根据权利要求 1至 6中任一项所述的制备方法, 其特征在于, 步骤 (3 ) 中, 所述造粒采用干法造粒。
根据权利要求 1至 7中任一项所述的制备方法, 其特征在于, 步骤 (3 ) 中, 所述干压成型的压力为 86000〜96000KN, 成型规格为 (1150 〜1300) mmx (2400〜2600) mmx (3〜6) mm。
[权利要求 9] 根据权利要求 1至 8中任一项所述的制备方法, 其特征在于, 步骤 (3
) 中, 烧成温度为 1190〜1220°C。
[权利要求 10] —种由权利要求 1至 8中任一项所述的制备方法制备的低收缩高强度大 规格陶瓷板, 其特征在于, 所述陶瓷板的规格为 (1100〜1260) mm
X (2200〜2500) mmx (3〜6) mm。
[权利要求 11] 根据权利要求 10所述的低收缩高强度大规格陶瓷板, 其特征在于, 所 述陶瓷板包括瓷质产品和炻瓷砖产品, 其中, 瓷质产品收缩率为 5〜8
%, 抗折强度为 55〜68MPa, 吸水率小于 0.5% ; 炻瓷砖产品收缩率为
1〜5<¾, 抗折强度为 40〜55MPa, 吸水率 0.5〜10<¾。
PCT/CN2016/079299 2016-02-03 2016-04-14 一种低收缩高强度大规格陶瓷板及其制备方法 WO2017133080A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018538744A JP6646752B2 (ja) 2016-02-03 2016-04-14 低収縮かつ高強度である大型サイズのセラミックスプレート及びその製造方法
US16/075,075 US11084759B2 (en) 2016-02-03 2016-04-14 Low-shrinkage, high-strength, and large ceramic plate and manufacturing method thereof
ES16888904T ES2882678T3 (es) 2016-02-03 2016-04-14 Placa de cerámica grande con una contracción baja y una resistencia elevada y procedimiento de fabricación de la misma
EP16888904.6A EP3412640B1 (en) 2016-02-03 2016-04-14 Low-shrinkage, high-strength, and large ceramic plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610078095.8A CN105753460B (zh) 2016-02-03 2016-02-03 一种低收缩高强度大规格陶瓷板及其制备方法
CN201610078095.8 2016-02-03

Publications (1)

Publication Number Publication Date
WO2017133080A1 true WO2017133080A1 (zh) 2017-08-10

Family

ID=56329940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079299 WO2017133080A1 (zh) 2016-02-03 2016-04-14 一种低收缩高强度大规格陶瓷板及其制备方法

Country Status (6)

Country Link
US (1) US11084759B2 (zh)
EP (1) EP3412640B1 (zh)
JP (1) JP6646752B2 (zh)
CN (1) CN105753460B (zh)
ES (1) ES2882678T3 (zh)
WO (1) WO2017133080A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028616A (zh) * 2020-09-05 2020-12-04 肇庆市来德利陶瓷有限公司 一种岩板生产工艺
CN113860739A (zh) * 2021-10-22 2021-12-31 蒙娜丽莎集团股份有限公司 一种改性圆珠干粒超平薄型陶瓷板及其制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106747378A (zh) * 2016-12-01 2017-05-31 姚均甫 一种陶瓷大薄板的加工方法
CN109852030A (zh) * 2017-11-30 2019-06-07 洛阳尖端技术研究院 复合介质基材及其制备方法
CN110483010B (zh) * 2019-08-21 2022-10-28 蒙娜丽莎集团股份有限公司 一种成型性能好、高强的大规格陶瓷板及其制备方法
CA3094576C (en) * 2019-09-26 2023-10-03 Cpg International Llc Polymeric-based building materials
CN110615683B (zh) * 2019-10-08 2021-08-06 景德镇陶瓷大学 一种提高建筑陶瓷干法造粒粉料流动性用添加剂的制备方法
CN111592330B (zh) * 2020-05-14 2022-05-03 东莞市唯美陶瓷工业园有限公司 一种炻质砖坯料及其制备方法与炻质砖
CN111925218A (zh) * 2020-07-22 2020-11-13 江西广源化工有限责任公司 一种改性硅灰石及其制备方法和应用
CN112063233B (zh) * 2020-09-25 2023-01-24 广东福美新材料科技有限公司 一种浸渍纸用耐磨耐刮的印刷油墨及其制备方法
CN112552036B (zh) * 2020-12-24 2022-07-05 景德镇陶瓷大学 一种硅灰石尾砂补强增韧低温瓷砖及其制备方法
CN114474343B (zh) * 2022-01-10 2024-01-09 蒙娜丽莎集团股份有限公司 幻彩布料设备和使用该幻彩布料设备获得的幻彩通体陶瓷板及其制备方法
CN114656268A (zh) * 2022-03-10 2022-06-24 蒙娜丽莎集团股份有限公司 一种大规格ZrO2纤维/片状Al2O3复合薄型陶瓷板及其制备方法
CN114956791B (zh) * 2022-04-20 2023-04-25 广东欧文莱陶瓷有限公司 一种具有良好加工性能的岩板及其制备方法
CN115010994B (zh) * 2022-05-13 2023-12-05 江西广源化工有限责任公司 一种改性超细硅灰石粉体及其制备方法和应用
CN115108818B (zh) * 2022-07-21 2024-03-19 中国联合重型燃气轮机技术有限公司 一种低收缩低挠度硅基陶瓷型芯的原料及其制备方法
CN115448693A (zh) * 2022-09-28 2022-12-09 武汉苏泊尔炊具有限公司 陶瓷材料的制备方法及陶瓷材料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613627A (en) * 1982-12-13 1986-09-23 Usg Acoustical Products Company Process for the manufacture of shaped fibrous products and the resultant product
CN102329562A (zh) * 2011-07-13 2012-01-25 大连美宸特科技有限公司 一种含有超细针状硅灰石粉的液体橡胶喷涂料
CN104513055A (zh) * 2013-09-30 2015-04-15 Toto株式会社 大型陶瓷板及其制造方法
CN104743881A (zh) * 2015-02-06 2015-07-01 佛山石湾鹰牌陶瓷有限公司 一种微晶陶瓷复合板、其坯料及制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4286999A (en) * 1980-03-04 1981-09-01 Raybestos-Manhattan, Inc. Method of improving properties of ceramic fibers
JPS6033250A (ja) * 1983-07-28 1985-02-20 株式会社興人 セラミツク成形物の製造方法
JP2998072B2 (ja) 1997-02-25 2000-01-11 株式会社クレ−・バ−ン・セラミックス 針状結晶鉱物が同一方向に配向整列された組織をもつ大形平板状焼結体並にその製造方法及び製造装置
CN101555121A (zh) * 2009-05-13 2009-10-14 湖南工业大学 一种新型防火隔热用复合珍珠岩板材及其制作方法
CN101608106B (zh) * 2009-07-23 2012-06-27 中国西电电气股份有限公司 一种瓷套粘接用室温固化胶粘剂
CN101774594A (zh) * 2010-02-10 2010-07-14 朱自学 一种改性针状硅灰石制备方法
CN102173760B (zh) 2011-02-17 2013-05-01 山东德惠来装饰瓷板有限公司 一种氧化硅陶瓷大薄板的制造方法
CN104693684A (zh) * 2015-03-06 2015-06-10 廊坊市高瓷电子技术有限公司 粘合剂、有机陶瓷板及有机陶瓷板的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4613627A (en) * 1982-12-13 1986-09-23 Usg Acoustical Products Company Process for the manufacture of shaped fibrous products and the resultant product
CN102329562A (zh) * 2011-07-13 2012-01-25 大连美宸特科技有限公司 一种含有超细针状硅灰石粉的液体橡胶喷涂料
CN104513055A (zh) * 2013-09-30 2015-04-15 Toto株式会社 大型陶瓷板及其制造方法
CN104743881A (zh) * 2015-02-06 2015-07-01 佛山石湾鹰牌陶瓷有限公司 一种微晶陶瓷复合板、其坯料及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI, BAOZHI: "Application of Silane Coupling Agent in Silicate Mineral Powder Surface Modification", NON-METALLIC MINES, vol. 30, 15 September 2007 (2007-09-15), pages 8 - 10, XP009511459, ISSN: 1000-8098 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112028616A (zh) * 2020-09-05 2020-12-04 肇庆市来德利陶瓷有限公司 一种岩板生产工艺
CN113860739A (zh) * 2021-10-22 2021-12-31 蒙娜丽莎集团股份有限公司 一种改性圆珠干粒超平薄型陶瓷板及其制备方法

Also Published As

Publication number Publication date
US11084759B2 (en) 2021-08-10
ES2882678T3 (es) 2021-12-02
EP3412640A4 (en) 2019-09-11
EP3412640B1 (en) 2021-08-04
JP2019509191A (ja) 2019-04-04
JP6646752B2 (ja) 2020-02-14
US20200361823A1 (en) 2020-11-19
CN105753460A (zh) 2016-07-13
EP3412640A1 (en) 2018-12-12
CN105753460B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2017133080A1 (zh) 一种低收缩高强度大规格陶瓷板及其制备方法
CN101844910B (zh) 一种薄壁轻量化卫生陶瓷坯体及其制造方法
CN106431204B (zh) 废渣陶瓷砖以及所用粉料、砖坯体及其制备方法
CN101265073B (zh) 复合硅砖及其制备方法
CN105294086B (zh) 一种陶瓷砖坯料及制备方法
CN108892490B (zh) 一种增强瓷质砖铺贴粘结强度的坯体及其制备方法
CN107417071B (zh) 制造含孔隙的不透明石英玻璃的方法
CN111533530B (zh) 一种卫生陶瓷配方及制备方法
CN113400442A (zh) 采用实心粉料制作釉面砖的方法
CN109020476B (zh) 一种改性复合黏土及其制备方法
CN111393174A (zh) 利用粉煤灰制造m47耐火材料的方法
KR101262809B1 (ko) 주입성형이 가능한 분청소지 조성물 및 이를 이용한 분청도자기의 제조방법
CN108439801A (zh) 一次烧成发泡通体装饰板材及其制备方法
CN111454046B (zh) 一种注浆陶瓷泥浆制备方法、制备的泥浆及注浆陶瓷
WO1993019017A1 (en) Composition for high pressure casting slip, high pressure casting slip and method for preparing the composition and slip
CN109437869B (zh) 一种渗透陶瓷粉料及其制备方法和应用
RU2005702C1 (ru) Способ изготовления керамических изделий
CN106926342B (zh) 一种高强度瓷砖的干法造粒工艺
CN115536372B (zh) 一种陶瓷岩板、干法制粉陶瓷岩板坯体及其制备方法
KR100306843B1 (ko) 시멘트혼화재와그제조방법및그것을사용한조성물
Nassetti et al. Granulation of powders for whitebody ceramic tiles
KR102187447B1 (ko) 도자타일용 고유동성 과립분말의 제조방법
CN108529673A (zh) 利用二氧化锆烧结废料生产二氧化锆纳米粉的方法
CN108218395A (zh) 一种骨质瓷器的制造方法
JPH10273358A (ja) 窯業製品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888904

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018538744

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016888904

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016888904

Country of ref document: EP

Effective date: 20180903