WO2017131490A2 - 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법 - Google Patents

혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법 Download PDF

Info

Publication number
WO2017131490A2
WO2017131490A2 PCT/KR2017/000993 KR2017000993W WO2017131490A2 WO 2017131490 A2 WO2017131490 A2 WO 2017131490A2 KR 2017000993 W KR2017000993 W KR 2017000993W WO 2017131490 A2 WO2017131490 A2 WO 2017131490A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
supported catalyst
independently
formula
Prior art date
Application number
PCT/KR2017/000993
Other languages
English (en)
French (fr)
Other versions
WO2017131490A3 (ko
Inventor
권현지
권헌용
홍대식
김대환
이승민
신은영
박성호
유영석
이진영
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP17744611.9A priority Critical patent/EP3312201B1/en
Priority to US15/742,001 priority patent/US10669356B2/en
Priority to CN201780002569.3A priority patent/CN108602908B/zh
Publication of WO2017131490A2 publication Critical patent/WO2017131490A2/ko
Publication of WO2017131490A3 publication Critical patent/WO2017131490A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65927Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually bridged
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F12/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/045Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F36/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/04Cp or analog not bridged to a non-Cp X ancillary anionic donor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/06Cp analog where at least one of the carbon atoms of the non-coordinating part of the condensed ring is replaced by a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2420/00Metallocene catalysts
    • C08F2420/10Heteroatom-substituted bridge, i.e. Cp or analog where the bridge linking the two Cps or analogs is substituted by at least one group that contains a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins

Definitions

  • the present invention relates to a common supported catalyst and a method for producing an olefin polymer using the same.
  • Ziegler-Natta catalysts of titanium or vanadium compounds have been widely used in the commercial production process of conventional polyolefins.
  • the Ziegler-Natta catalysts have high activity, but because they are multi-active catalysts, the molecular weight distribution of the resulting polymers is wide and comonomers are used. There is a limit in securing the desired physical properties because the composition distribution is not uniform.
  • metallocene catalysts having a ligand including a transition metal such as titanium, zirconium, and hafnium and a cyclopentadiene functional group have been developed and widely used.
  • Metallocene compounds are generally used by activation with aluminoxane, borane, borate or other activators.
  • a metallocene compound having a ligand containing a cyclopentadienyl group and two sigma chloride ligands uses aluminoxane as an activator.
  • metallocene catalysts are known to have excellent mechanical properties.
  • metallocene catalysts have a single active site, resulting in polymers of narrow molecular weight distribution. Accordingly, olefin polymers prepared from metallocene catalysts are known to be poor in processability.
  • the present invention is to provide a method for producing an olefin polymer using the common supported catalyst.
  • the carrier A transition metal compound supported on the carrier and represented by the following Formula 1; And a common supported catalyst which is supported on the carrier and includes one or more transition metal compounds represented by the following Chemical Formula 2.
  • M 2 are the same as or different from each other, and are each independently Ti, Zr, or Hf,
  • Xi, 3 ⁇ 4, 3 ⁇ 4 and are the same as or different from each other, and are each independently halogen, nitro group, amido group, phosphine group, phosphide group, alkyl group having 1 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and 2 to 20 carbon atoms.
  • Alkoxyalkyl group of 1 carbon atom Any one of a silyl group of 20 to 20, an alkenyl group of 2 to 20 carbon atoms, an aryl group of 6 to 20 carbon atoms, a sulfonate group of 1 to 20 carbon atoms, and a sulfone group of 1 to 20 carbon atoms,
  • Tr & C Si, Ge, Sn or Pb
  • T 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 10 carbon atoms, and
  • T 3 is C, Si, Ge, Sn or Pb,
  • Qi,, Qs and Q 4 are the same as or different from each other, and are each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, heterocycloalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and having 2 to 20 carbon atoms.
  • Ri to 3 ⁇ 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, and a carbon group having 1 to 20 carbon atoms. Any one of a silylalkyl group, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms,
  • R 7 to Ri 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms. Any one of 20 silylalkyl groups, silyloxyalkyl groups having 1 to 20 carbon atoms, alkenyl groups having 2 to 20 carbon atoms and aryl groups having 6 to 20 carbon atoms, or one or more pairs of substituents adjacent to each other among R 7 to R 14 To form a substituted or unsubstituted aliphatic or aromatic ring,
  • Cpl and Cp2 are the same as or different from each other, and each independently represent -NR 15- , or an aromatic ring of a cyclopentadienyl group, indenyl group, tetrahydroindenyl group, fluorenyl group, and indenoindoli group, or the aromatic group
  • One or more hydrogens in the ring each independently represent an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, and having 1 to 20 carbon atoms
  • R 15 is any one of alkyl having 1 to 20 carbon atoms.
  • each independently may be hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms.
  • 3 ⁇ 4 and 3 ⁇ 4 in Formula 1 may be each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms.
  • R 7 to R 14 are each independently hydrogen, C 1 to C
  • Any one of 20 alkyl groups, alkoxy groups having 1 to 20 carbon atoms and alkenyl groups having 2 to 20 carbon atoms, or one or more pairs of substituents adjacent to each other in R 7 to R 14 may be connected to each other to form a substituted or unsubstituted aliphatic ring.
  • 3 ⁇ 4 and 3 ⁇ 4 in Formula 1 may each independently be any one of an alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms.
  • T 2 is any one of an ethylene group, ⁇ -propylene group, iso-propylene group, ethylidene group, 1-propylidene group, 2- propylidene group, and T 3 (3 ⁇ 4) (Q 4 ), T 3 is Si, and Q 3 and Q 4 are the same as or different from each other, and each independently may be any one of an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkoxyalkyl group having 2 to 20 carbon atoms.
  • Cpl and) 2 are the same as or different from each other, and each independently _N (tert-butyl)-, cyclopentadienyl group, tetramethylcyclopentadienyl group, tert-butoxynucleocyclopentadienyl group, indenyl group , Tetrahydroindenyl group, fluorenyl group, 5,10-dihydroindeno [1,2-b] indoli group and 5,8-dimethyl-5,10—dihydroindeno [1,2-b] indole It may be any one of the groups.
  • transition metal compound represented by Formula 1 may be any one of the compounds represented by Formulas 3 and 4.
  • R 16 and R 17 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, and having 1 to 20 carbon atoms 20 alkylsilyl groups, silylalkyl groups of 1 to 20 carbon atoms, alkoxysilyl groups of 1 to 20 carbon atoms, silyloxyalkyl groups of 1 to 20 carbon atoms, alkenyl groups of 2 to 20 carbon atoms, aryl groups of 6 to 20 carbon atoms, and 7 carbon atoms Any one of an alkylaryl group of 20 to 20 and an arylalkyl group of 7 to 20 carbon atoms,
  • 1 is an integer between 0 and 5.
  • the transition metal compound represented by Formula 2 may be dimethylsilylene (tetramethylcyclopentadienyl) (9H-fluorene-9-yl) zirconium dichloride.
  • the common supported catalyst may further include one or more cocatalysts selected from the group consisting of compounds represented by the following Formulas 5 to 7 to activate the transition metal compounds of Formulas 1 and 2.
  • R 19 and R 20 are each independently hydrogen, halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen,
  • n is an integer of 2 or more
  • D is aluminum or boron
  • R 21 is each independently a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen, [Formula 7]
  • L is a neutral or cationic Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element, and A is each independently a hydrocarbyl group having 1 to 20 carbon atoms; Hydrocarbyloxy group having 1 to 20 carbon atoms; And of these substituents
  • At least one hydrogen atom is any of substituents substituted with one or more substituents of halogen, a hydrocarbyloxy group having 1 to 20 carbon atoms, and a hydrocarbylsilyl group having 1 to 20 carbon atoms.
  • the carrier of the common supported catalyst may be silica, alumina, magnesia or a mixture thereof.
  • the transition metal compound represented by Formula 1 and at least one transition metal compound represented by Formula 2 may be included in a weight ratio of 10: 0.01 to 10:50.
  • a method for producing an olefin polymer comprising the step of polymerizing reaction of the olefin resin in the presence of the common supported catalyst.
  • Olefin monomers that can be applied to the production method is ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene , 1-dodecene, 1-tetradecene, 1-nuxadecene, 1-aitosen, norbornene, norbonadiene, Ethylidene novodene, phenyl novodene, vinyl novodene, dicyclopentadiene, 1, 4-butadiene, 1, 5-pentadiene, 1, 6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene and 3 It may include one or more selected from the group consisting of chloromethyl styrene.
  • the carrier A transition metal compound supported on the carrier and represented by the following Formula 1; And a supported catalyst supported on the carrier and comprising one or more transition metal compounds represented by the following general formula (2).
  • Mi and M 2 are the same as or different from each other, and are each independently Ti, Zr, or Hf, ⁇
  • Xi, 3 ⁇ 4, 3 ⁇ 4, and 3 ⁇ 4 are the same as or different from each other, and are each independently halogen, nitro group, amido group, phosphine group, phosphide group, alkyl group having 1 to 20 carbon atoms, and having 1 to 20 carbon atoms.
  • 1 is C, Si, Ge, Sn or Pb
  • T 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 10 carbon atoms, and
  • T 3 is C, Si, Ge, Sn or Pb,
  • Qi, Q 2 , Q 3 and 3 ⁇ 4 are the same as or different from each other, and are each independently hydrogen, halogen, alkyl group having 1 to 20 carbon atoms, heterocycloalkyl group having 2 to 20 carbon atoms, alkoxy group having 1 to 20 carbon atoms, and carbon atoms having 2 to 20 carbon atoms. Any one of 20 alkoxyalkyl groups, carboxylates of 1 to 20 carbon atoms, alkenyl groups of 2 to 20 carbon atoms, aryl groups of 6 to 20 carbon atoms, and heteroaryl groups of 5 to 20 carbon atoms,
  • Ri to 3 ⁇ 4 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, and a carbon group having 1 to 20 carbon atoms.
  • R 7 to R 14 are the same as or different from each other, and are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, a silyl group having 1 to 20 carbon atoms, or 1 to 20 carbon atoms.
  • Cpl and Cp2 are the same as or different from each other, and each independently represent -NR 15- , or an aromatic ring of a cyclopentadienyl group, indenyl group, tetrahydroindenyl group, fluorenyl group, and indenoindolyl group;
  • black has a carbon number of 1 to 20 alkyl group, a C 1 -C 20 alkoxy group, a C2 to an alkoxyalkyl group of 20 carbon atoms, 1 to 20 silyl group, having 2 to 20 carbon atoms of which one or more hydrogen on the aromatic
  • R 15 is any one of an alkyl group having 1 to 20 carbon atoms.
  • Halogen may be fluorine (F), chlorine (C1), bromine (Br) or iodine (I).
  • the alkyl group having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkyl group.
  • the alkyl group having 1 to 20 carbon atoms is a straight chain alkyl group having 1 to 20 carbon atoms; Straight chain alkyl groups having 1 to 10 carbon atoms; Linear alkyl groups having 1 to 5 carbon atoms; Branched or cyclic alkyl groups having 3 to 20 carbon atoms; Branched or cyclic alkyl groups having 3 to 15 carbon atoms; Or a branched or cyclic alkyl group having 3 to 10 carbon atoms.
  • the alkyl group having 1 to 20 carbon atoms is methyl group, ethyl group, n-propyl group, i so-propyl group n-butyl group, i so-butyl group, tert-butyl group, n_pentyl group, i so pen It may be a methyl group, ne apentyl group or a cyclonuclear group.
  • the alkylene group having 1 to 5 carbon atoms may be a straight chain or branched alkylene group. Specifically, the alkylene group having 1 to 5 carbon atoms is a straight chain alkylene group having 1 to 5 carbon atoms; It may be a branched alkylene group having 3 to 5 carbon atoms. More specifically, the alkylene group having 1 to 5 carbon atoms may be a methylene group, an ethylene group, an n-propylene group, a 1, 2-propylene group, an n-butylene group, a 1, 2-butylene group, an isobutylene group, or the like.
  • the alkylidene group having 2 to 10 carbon atoms may be a straight or branched chain alkylidene group. Specifically, an alkylidene group having 2 to 10 carbon atoms has a straight chain alkylidene group having 2 to 10 carbon atoms; Linear alkylidene groups having 2 to 5 carbon atoms; Branched alkylidene groups having 3 to 10 carbon atoms; It may be a branched alkylidene group having 3 to 5 carbon atoms. More specifically, an alkylidene group having 2 to 10 carbon atoms has an ethylidene group or a propylidene group And the like.
  • Heterocycloalkyl groups having 2 to 20 carbon atoms may be cyclic alkyl groups containing atoms other than one or more carbons exemplified by oxygen, nitrogen or sulfur.
  • the heterocycloalkyl group having 2 to 20 carbon atoms may be a heterocycloalkyl group having 2 to 15 carbon atoms, a heterocycloalkyl group having 2 to 10 carbon atoms, or a heterocycloalkyl group having 4 to 7 carbon atoms.
  • the heterocycloalkyl group having 2 to 20 carbon atoms is an epoxy group, a tetrahydrofuranyl group, a tetrahydropyranyl group, a tetrahydrothiophenyl group, or a tetrahydropyrrolyl group And the like.
  • the alkoxy group having 1 to 20 carbon atoms may be a straight chain, branched chain or cyclic alkoxy group.
  • the alkoxy group having 1 to 20 carbon atoms is a straight alkoxy group having 1 to 20 carbon atoms; Linear alkoxy groups having 1 to 10 carbon atoms; Linear alkoxy groups having 1 to 5 carbon atoms; Branched or cyclic alkoxy groups having 3 to 20 carbon atoms; Branched or cyclic alkoxy groups having 3 to 15 carbon atoms; Or a branched or cyclic alkoxy group having 3 to 10 carbon atoms.
  • the alkoxy group having 1 to 20 carbon atoms is a meso group, an especial group,.
  • n-propoxy group, i so-propoxy group, n-butoxy group, i so- subgroup, tert-hydroxy group, n-pen group, i so_pen group, neo—pen group or cyclonucleo group have.
  • an alkoxyalkyl group having 2 to 20 is -R a - may be substituted with a substituent as R 0 b-structure an alkyl group (-R a) one or more hydrogen alkoxy group (-0- R b) to the containing.
  • the alkoxyalkyl group having 2 to 20 carbon atoms has a methoxymethyl group, a mesoethyl ethyl group, an ethoxymethyl group, i so-propoxymethyl group, i so-propoxyethyl group, i so-propoxynucleotyl group, tert-butoxymethyl group , tert-butoxyethyl group or tert-subnuclear group.
  • the silyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of —Si3 ⁇ 4 is substituted with an alkyl group or an alkoxy group.
  • the silyl group having 1 to 20 carbon atoms is methylsilyl group, dimethylsilyl group, trimethylsilyl group, dimethylethylsilyl group, diethylmethylsilyl group, dimethylpropylsilyl group, methoxysilyl group, dimethoxy Silyl group, trimethoxysilyl group, dimethoxyethoxysilyl group, dieespecial methylsilyl group or Dimethic propylsilyl group, and the like.
  • the silylalkyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group is substituted with a silyl group.
  • the silylalkyl group having 1 to 20 carbon atoms may be a dimethoxypropylsilylmethyl group or the like.
  • the silyloxyalkyl group having 1 to 20 carbon atoms may be a substituent in which at least one hydrogen of the alkyl group is substituted with a silyloxy group.
  • the silyloxyalkyl group having 1 to 20 carbon atoms may be a dimethipropylpropylsilyloxymethyl group or the like.
  • Alkenyl groups having 2 to 20 carbon atoms may be linear, branched or cyclic alkenyl groups. Specifically, an alkenyl group having 2 to 20 carbon atoms has a straight chain alkenyl group having 2 to 20 carbon atoms, a straight chain alkenyl group having 2 to 10 carbon atoms, a straight chain alkenyl group having 2 to 5 carbon atoms, a branched alkenyl group having 3 to 20 carbon atoms, and 3 carbon atoms It may be a branched alkenyl group of 15 to 15, a branched alkenyl group of 3 to 10 carbon atoms, a cyclic alkenyl group of 5 to 20 carbon atoms or a cyclic alkenyl group of 5 to 10 carbon atoms. More specifically, the alkenyl group having 2 to 20 carbon atoms may be an ethenyl group, propenyl group, butenyl group, pentenyl group or cyclonucleeny
  • the carboxylate having 1 to 20 carbon atoms may be a hydrocarbyl group having 1 to 20 carbon atoms having a structure of-(: 001 ⁇ .
  • the hydrocarbyl group is a monovalent functional group in which a hydrogen atom is removed from hydrocarbon, and is an alkyl group. And an aryl group, etc.
  • the carboxylate having 1 to 20 carbon atoms may be pivalate or the like.
  • An aryl group having 6 to 20 carbon atoms may mean monocyclic, bicyclic or tricyclic aromatic hydrocarbons.
  • the aryl group may be used to include an aralkyl group in which at least one hydrogen of the alkyl group is substituted with an aryl group.
  • the aryl group having 6 to 20 carbon atoms may be a phenyl group, naphthyl group, anthracenyl group or benzyl group.
  • Heteroaryl groups having 5 to 20 carbon atoms may be cyclic aryl groups containing atoms other than one or more carbons exemplified by oxygen, nitrogen and thunder.
  • the heteroaryl group having 5 to 20 carbon atoms may be a heteroaryl group having 5 to 15 carbon atoms or a heteroaryl group having 5 to 10 carbon atoms.
  • the heteroaryl group having 5 to 20 carbon atoms is a furanyl group, It may be a pyranyl group, a thiophenyl group or a pyrrolyl group. .
  • the sulfonate group having 1 to 20 carbon atoms has a structure of —0-SO 2 —R d , and R d may be a hydrocarbyl group having 1 to 20 carbon atoms. Specifically, the sulfonate group having 1 to 20 carbon atoms may be a methanesulfonate group or a phenylsulfonate group.
  • the sulfone group having 1 to 20 carbon atoms has a structure of -R e ' -S0 2 -R e " , wherein R e' and R e ′′ are the same as or different from each other, and may each independently be a hydrocarbyl group having 1 to 20 carbon atoms.
  • the sulfone group having 1 to 20 carbon atoms may be a methylsulfonylmethyl group, methylsulfonylpropyl group, methylsulfonylbutyl group, or phenylsulfonylpropyl group.
  • that one or more pairs of substituents adjacent to each other are connected to each other to form a substituted or unsubstituted aliphatic or aromatic ring means that one or more pairs of substituents among two pairs of adjacent substituents are connected to each other to form an aliphatic or aromatic ring. To form, it means that the aliphatic or aromatic ring may be substituted by any substituent.
  • the substituents described above may optionally be a hydroxyl group, halogen, alkyl group, heterocycloalkyl group alkoxy group, alkenyl group, silyl group, phosphine group, phosphide group, sulfonate It may be substituted with one or more substituents selected from the group consisting of groups, sulfone groups, aryl groups and heteroaryl groups.
  • Cyclopentadienyl ligand in the structure of the transition metal compound represented by the formula (1) may affect the olepin polymerization activity.
  • 3 ⁇ 4 to each of the cyclopentadienyl ligands are each independently Hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms. More specifically, to R4 may be any one of methyl, ethyl, propyl and butyl group each independently. In this case, the common supported catalyst may exhibit very high activity in the olefin polymerization process.
  • the tetrahydroindenyl ligand in the structure of the transition metal compound represented by Formula 1 for example, to easily adjust the molecular weight of the olefin polymer prepared by adjusting the degree of steric hindrance effect according to the type of the substituted functional group. I can regulate it.
  • R 5 and R 6 in Formula 1 are each independently hydrogen, 1 to
  • any one of an alkyl group of 20, an alkoxy group of 1 to 20 carbon atoms and an alkenyl group of 2 to 20 carbon atoms, or R 7 to R 14 are each independently hydrogen, an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, and One or more of the alkenyl group having 2 to 20 carbon atoms, or black, one or more pairs of substituents adjacent to each other of R 7 to R 14 may be connected to each other to form a substituted or unsubstituted aliphatic ring.
  • 3 ⁇ 4 and R 6 in Formula 1 are each independently hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms and an alkenyl group having 2 to 4 carbon atoms, or R 7 to R 14 Are each independently hydrogen, an alkyl group of 1 to 4 carbon atoms, an alkoxy group of 1 to 4 carbon atoms and an alkenyl group of 2 to 4 carbon atoms, or black, one or more pairs of substituents adjacent to each other of R 7 to R 14 Can be joined to form a substituted or unsubstituted aliphatic ring.
  • the common supported catalyst can provide an olefin polymer having excellent processability.
  • the cyclopentadienyl ligand and tetrahydroindenyl ligand can be cross-linked by-to exhibit excellent stability and more improved catalytic activity.
  • a transition metal compound in which 3 ⁇ 4 and Q 2 are each independently an alkyl group having 1 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms can be used. More specifically, 3 ⁇ 4 and Q 2 are the same and any of methyl, ethyl, propyl, butyl, phenyl and benzyl groups One transition metal compound can be used. And, 1 may be (: Si, Ge, Sn or Pb; C or Si; or Si.
  • (3 ⁇ 4) (3 ⁇ 4) is present between the crosslinked cyclopentadienyl ligand and the tetrahydroindenyl ligand, and ⁇ () (3 ⁇ 4) may affect the storage stability of the metal complex.
  • a transition metal compound in which X and 3 ⁇ 4 each independently represent a halogen, an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms can be used. More specifically, it is possible to use a transition metal compound wherein 3 ⁇ 4 and 3 ⁇ 4 are each independently F, CI, Br or I. And ⁇ is Ti, Zr or Hf; Zr or Hf; Black may be Zr.
  • the transition metal compound capable of providing an olefin polymer having improved processability the compounds represented by the following Chemical Formulas 3 and 4 may be exemplified.
  • R 16 and R 17 are the same as or different from each other, and each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an alkoxyalkyl group having 2 to 20 carbon atoms, and having 1 to 20 carbon atoms 20 alkylsilyl groups, 1 carbon atom A silylalkyl group having 20 to 20 carbon atoms, an alkoxysilyl group having 1 to 20 carbon atoms, a silyloxyalkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 2 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, and carbon atoms Any one of 7 to 20 arylalkyl groups,
  • 1 is an integer between 0 and 5.
  • R 16 and R 17 which are substituents of the tetrahydroindenyl ligand in Chemical Formulas 3 and 4 are each independently hydrogen, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, to provide an olefin polymer having better processability. Any one of an alkenyl group having 2 to 20 carbon atoms and an aryl group having 6 to 20 carbon atoms; Or hydrogen, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, and an aryl group having 6 to 10 carbon atoms.
  • At least one transition metal compound represented by Formula 2 may be supported together with the transition metal compound of Formula 1 to provide an urepin polymer with improved processability.
  • Cpl and Cp2 of the formula (2) are each independently -N (tert-butyl)-, cyclopentadienyl group, tetramethylcyclopentadienyl group, tert-butoxynucleocyclopentadienyl group , Indenyl group, tetrahydroindenyl group, fluorenyl group, 5, 10-dihydroindeno [1,2-b] indoli group and 5,8-dimethyl-5, 10-dihydroindeno [1,2- b] transition metal compound which is any one of indole groups can be used.
  • T 2 crosslinking the Cpl and Cp 2 is an ethylene group, ⁇ -propylene group, i so-propylene group, ethylidene group, 1-propylidene group, 2- propylidene group and T 3 (Q 3 ) (Q Transition metal compound of any one of 4 ) can be used.
  • T 3 is Si, 3 ⁇ 4 and Q 4 are the same or different from each other, each independently may be any one of an alkyl group of 1 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms and an alkoxyalkyl group of 2 to 20 carbon atoms. .
  • M 2 (X 3) ( X 4) may affect the storage stability of the metal complex.
  • the transition metal compound which is either of an alkyl group of 20 to 20 and an alkoxy group of 1 to 20 carbon atoms can be used. More specifically, it is possible to use a transition metal compound wherein 3 ⁇ 4 and 3 ⁇ 4 are each independently F, CI, Br or I. And is Ti, Zr or Hf; It may be Ti or Zr.
  • transition metal compound represented by Formula 2 one type may be used or two or more types may be used. Among these, in order to economically provide the leulevine polymer of the desired physical property, the transition metal compound represented by Chemical Formula 2 may be one kind.
  • the common supported catalyst may include one transition metal compound represented by Chemical Formula 1 and one transition metal compound represented by Chemical Formula 2, and the transition metal compound represented by Chemical Formula 1 may be represented by R in Chemical Formula 3 16 and R 17 are hydrogen and 1 is 0, or a compound represented by the formula (2) wherein R 16 and R 17 is hydrogen, and the transition metal compound represented by the formula (2) is dimethylsilylene (tetramethylcyclopentadi Enyl) (9H—fluorene-9-yl) zirconium dichloride can be provided to provide an olefin polymer having better catalytic activity and having better processability.
  • transition metal compounds represented by Formulas 1 and 2 may be synthesized by using known reactions, and a detailed synthesis method may be referred to the preparation examples.
  • the common supported catalyst according to the embodiment may further include a promoter for activating the transition metal compounds of Formulas 1 and 2.
  • a promoter for activating the transition metal compounds of Formulas 1 and 2. As the cocatalyst, a conventional use in the art to which the present invention pertains may be applied without particular limitation.
  • the promoter may be at least one compound selected from the group consisting of compounds represented by the following Chemical Formulas 5 to 7.
  • R 18 , R 19 and o are each independently hydrogen, halogen, hydrocarbyl group having 1 to 20 carbon atoms and hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen. Which one,
  • n is an integer of 2 or more
  • D is aluminum or boron
  • R 21 is each independently a halogen, a hydrocarbyl group having 1 to 20 carbon atoms, and a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen, [Formula 7]
  • L is a neutral or divalent Lewis base
  • H is a hydrogen atom
  • Z is a Group 13 element, and A is each independently a hydrocarbyl group having 1 to 20 carbon atoms; Hydrocarbyloxy group having 1 to 20 carbon atoms; And substituents in which one or more hydrogen atoms of these substituents are substituted with one or more substituents of a hydrocarbyloxy group having 1 to 20 halogen carbon atoms and a hydrocarbylsilyl group having 1 to 20 carbon atoms.
  • Non-limiting examples of the compound represented by the formula (5) include methyl aluminoxane, ethyl aluminoxane ⁇ isobutyl aluminoxane or tert- butyl aluminoxane.
  • Non-limiting examples of the compound represented by the formula (6) include trimethylaluminum, triethylaluminum triisobutylaluminum, tripropylaluminum, tributylaluminum dimethylchloroaluminum, triisopropylaluminum, tri- sec -butylaluminum tricyclopentyl Aluminum, tripentyl aluminum, triisopentyl aluminum, trinuclear sil aluminum, trioctyl aluminum, ethyl dimethyl aluminum methyl diethyl aluminum, triphenyl aluminum, tri-P-allyl aluminum dimethyl aluminum methoxide or dimethyl aluminum hydroxide have.
  • non-limiting examples of the compound represented by the formula (7) include trimethylammonium tetrakis (pentafluorophenyl) borate, triethylammonium tetrakis (pentafluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium Tetrakis (pentafluorophenyl) borate , ⁇ , ⁇ -dimethylanilinium ⁇ -butyltris (pentafluorophenyl) borate , ⁇ , ⁇ -dimethylanilinium benzyltris (pentafluorophenyl) borate , ⁇ , ⁇ - Dimethylanilinium tetrakis (4- (t-butyldimethylsilyl) -2,3,5,6-tetrafluorophenyl) borate, ⁇ , ⁇ -dimethylanilinium tetrakis (4- (triisopropylsilyl)- 2, 3, 5,
  • a carrier of the common supported catalyst according to the embodiment can be used a carrier containing a hydroxyl group or a siloxane group on the surface.
  • the carrier may be a carrier containing a highly reactive hydroxyl group or siloxane group by drying at high temperature to remove moisture on the surface.
  • the carrier may be used silica, alumina, magnesia or a mixture thereof.
  • the carrier may be dried at high temperature, and they may typically include oxides, carbonates, sulfates, nitrates, such as Na 2 0, 2 C0 3) BaS0 4 and Mg (N0 3 ) 2 .
  • the common supported catalyst according to the embodiment may include, for example, supporting a promoter on a carrier; And it may be prepared by supporting the transition metal compound of Formula 1 and the transition metal compound of Formula 2 one by one or at the same time on the promoter supporting carrier in any order.
  • the carrier and the promoter dried at a high temperature are mixed, it can be stirred at a temperature of about 20 to 120 ° C to prepare a carrier supported carrier.
  • the step adding the transition metal compounds of the formulas (1) and (2) simultaneously to the promoter-supported carrier; Alternatively, any one of transition metal compounds of Formulas 1 and 2 may be added.
  • the resulting solution can then be stirred at a temperature of about 20-12 CTC. If only one transition metal compound is added before, the supported catalyst may be prepared by adding the remaining transition metal compound and stirring the solution obtained at a temperature of about 20 to 120 ° C.
  • the transition metal compound of Formula 1 and the transition metal compound of Formula 2 may be mixed in an appropriate ratio depending on the use of the olefin polymer to be provided.
  • the transition metal compound of Formula 1 and the transition metal compound of Formula 2 may have a weight ratio of 10: 0.01 to 10: 50, a weight ratio of 10: 0.1 to 10: 20, and a weight ratio of 10: 1 to 10: 15. Or in a weight ratio of 10: 1 to 10:12.
  • the two or more compounds may be used so that the total content satisfies the above range.
  • the content of the carrier, cocatalyst, promoter supported carrier, and the transition metal compound of Formulas 1 and 2 used to use the common supported catalyst may be appropriately adjusted according to the properties or effects of the desired supported catalyst.
  • reaction solvent in the preparation of the common supported catalyst for example, aliphatic hydrocarbon solvents such as pentane, nucleic acid, heptane, nonane, decane and isomers thereof; Aromatic hydrocarbon solvents such as toluene, xylene and benzene; Or a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene.
  • aliphatic hydrocarbon solvents such as pentane, nucleic acid, heptane, nonane, decane and isomers thereof
  • Aromatic hydrocarbon solvents such as toluene, xylene and benzene
  • a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane and chlorobenzene.
  • the common supported catalyst since the common supported catalyst reacts sensitively to moisture or oxygen, it may be prepared under an inert atmosphere such as nitrogen or argon.
  • a method for producing an olefin polymer including the step of polymerizing reaction of the olefin resin in the presence of the common supported catalyst.
  • the common supported catalyst may synthesize an olefin polymer having a significantly improved processability due to the specific structure of the transition metal compounds of Formulas 1 and 2.
  • olefin monomer examples include ethylene, alpha-olefin, cyclic olefin, and the like, and diene olefin resins or triene olefin monomers having two or more double bonds can also be polymerized.
  • the monomer examples include ethylene, propylene, 1-butene, 1-pentene, 4-methyl-1-pentene, 1-nuxene, 1-heptene, 1-octene, 1-decene, 1-undecene, 1-dode Sen, 1- tetradecene, 1-nuxadecene, 1-aitocene, norbornene, norbornadiene, ethylidene norbornene, phenylnorbornene, vinyl norbornene, dicyclopentadiene, 1, 4-butadiene, 1, 5-pentadiene, 1, 6-nuxadiene, styrene, alpha-methylstyrene, divinylbenzene, 3-chloromethyl styrene, etc., These monomers can be mixed and copolymerized 2 or more types.
  • the comonomer is at least one comonomer selected from the group consisting of propylene, 1-butene, 1-nuxene, 4-methyl-1-pentene and 1-octene Is preferably.
  • polymerization reaction of the olefin monomer various polymerization processes known as polymerization reaction of olefin monomers such as continuous solution polymerization process, bulk polymerization process, suspension polymerization process, slurry polymerization process or emulsion polymerization process may be employed.
  • This polymerization reaction can be carried out under a temperature of about 50 to licrc or about 60 to ioo ° c and a pressure of about ⁇ to 100 bar or about 10 to 80 bar.
  • the common supported catalyst in the polymerization reaction, may be used in a dissolved or diluted state in a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • a solvent such as pentane, nucleic acid, heptane, nonane, decane, toluene, benzene, dichloromethane, chlorobenzene and the like.
  • an olefin polymer having high processability can be prepared.
  • olefin polymers prepared via common supported catalysts may exhibit at least 9.1 MFR (10 / 2.16) (mel tf low rate rat io (10 / 2.16)).
  • the said MFRR is the value measured on condition described in the test example mentioned later.
  • These olefin polymers are olefins polymerized with conventional metallocene catalysts. It can exhibit significantly improved processability over conventional olefin polymers while maintaining the good mechanical strength of the polymer.
  • the operation and effects of the invention will be described in more detail with reference to specific examples. However, this is presented as an example of the invention, whereby the scope of the invention is not limited in any sense.
  • Tetramethylcyclopentadiene (TMCP, 6.0 mL, 40 ⁇ l) was dissolved in THF (60 mL) in a dried 250 mL schlenk flask, and the solution was cooled to -78 ° C. Subsequently, n-BuLi (2.5M, 17 mL, 42 Pa) was slowly added dropwise to the solution, and the resulting solution was stirred overnight at room temperature.
  • dichlorodimethylsilane (4.8 mL, 40 ⁇ l) was dissolved in n-hexane, and the solution was immersed at -78 ° C. Subsequently, the prepared TMCP-lithiation solution was slowly injected into the solution. The resulting solution was stirred overnight at room temperature.
  • the intermediate (1.7 g, 8.0 mmol) synthesized above in a separate 250 mL schlenk flask was dissolved in THF, and the solution was cooled to 78 ° C. Subsequently, the indene-lithiation solution prepared above was slowly injected into this solution. The resulting solution was stirred at room temperature overnight to give a purple solution. Subsequently, the reaction was completed by pouring water into the reaction vessel (quenching), and the organic layer was extracted with ether from the mixture. It was confirmed by 3 ⁇ 4 NMR that the organic layer contained dimethyl (indenyl) (tetramethylcyclopentadienyl) silane and other organic compounds. The organic layer was concentrated without purification and used as is for metallation.
  • reaction product was then filtered to give dimethylsilylene (tetramethylcyclopentadienyl) (indenyl) zirconium as a yellow solid.
  • the celite dried for about 2 hours in an oven at about 120 ° C. was placed on a schlenk filter, and the reaction product of the mini bombe was filtered under argon using this.
  • the celite removed the Pt0 2 catalyst from the reaction product.
  • the reaction product from which the catalyst was removed was depressurized to remove the solvent, and dimethylsilylene (tetramethylcyclopentadienyl) (tetrahydroindenyl) zirconium dichloride (hereinafter referred to as' metallocene catalyst precursor) as a light yellow solid A ') (0.601 g, 1.31 mm o 1).
  • Diphenyl (indenyl) (tetramethylcyclopentadienyl) silane (4.2 g, 100 mmol) synthesized above was dissolved in THF (15 mL) in a 100 mL schlenk flask. Then, the solution was stirred at -20 ° C or less, and then slowly added dropwise n-BuLi (2.5 M in hexane, 8.4 mL, 21 mmol) to the solution, and the resulting solution was stirred at room temperature for 6 hours.
  • ZrCl 4 (THF) 2 (3.8 g, 100 mmol) was dispersed in toluene (15 mL) in a separately prepared 250 mL schlenk flask, and the resulting mixture was stirred at ⁇ 20 ° C. Subsequently, the lithiated ligand solution prepared above was slowly injected into the mixture. The resulting mixture was then stirred for 48 hours at silver.
  • Diphenylsilylene (tetramethylcyclopentadienyl) (tetrahydroindenyl) zirconium dichloride (hereinafter referred to as 'metallocene catalyst precursor B') was obtained (0.65 g, 1.lmmol, 65% yield). ).
  • dichlorodimethylsi lane (1.2 mL, 10 ⁇ l, Fw 129.06, d 1.07 g / mL) was dissolved in 30 mL of hexane, and the solution was immersed at -78 ° C. This solution was then slowly injected with the previously prepared lithiated solution. And the resulting solution was stirred for 1 day at room temperature.
  • TMCP 10 ⁇ ol was dissolved in THF and the solution was cooled to 0 ° C. Subsequently, n-BuLi (2.5 M in hexane, 4.8 mL, 12 mmol) was slowly added dropwise to the solution, and the resulting solution was stirred at room temperature for one day. Thereafter, the stirred chloro (9H-fluorene-9-yl) dimethylsilane solution and lithiated-TMCP solution for one day are mixed with cannula. At this time, the transfer of either solution to the cannula did not affect the experimental results. The mixture of the two solutions was stirred for one day, and then 50 mL of water was added to the flask to terminate reaction and the organic layer was separated.
  • n-BuLi 2.5 M in hexane, 4.8 mL, 12 mmol
  • the reaction product thus obtained was filtered through a schlenk filter under argon to remove LiCl.
  • the solubility of the product was poor, resulting in dimethylsilylene (tetramethylcyclopentadienyl) (9H-fluorene-9-yl) in the form of a filtercake.
  • Zirconium dichloride hereinafter referred to as 'metallocene catalyst precursor D'
  • 'metallocene catalyst precursor D' was obtained (3.551 g, 6.024 mmol, 61.35% yield, 85.6 wt% purity based on NMR (the remaining content is LiCl), Mw 504.68 g / mol) .
  • 6-t-buthoxyhexane was identified through 1H-NM. It can be seen that the Gringanrd reaction proceeded well from the 6-t-butoxynucleic acid. Thus 6-t-butoxyhexyl magnesium chloride was synthesized.
  • Methyl (6-t-buthoxy hexyDdichlorosilane) (326 g ⁇ 350 mL) was added quickly to the reaction vessel. After stirring for 12 hours, the reaction mixture was again cooled to 0 ° C., and 2 equivalents of t-BuN3 ⁇ 4 was added. The reaction mixture was stirred for 12 hours while slowly quenching with phase silver. 4 L of nucleic acid was added to obtain a filter solution from which salts were removed through the labyrinth, and the filter solution was added to the reactor again, and the nucleic acid was removed at 70 ° C. to obtain a yellow solution.
  • the resulting reaction product was vacuum dried to obtain a brown color sticky oil.
  • the sticky oil was dissolved in toluene to obtain a slurry.
  • ZrCI 4 (THF) 2 was prepared, and 50 mL of toluene was added to prepare a slurry.
  • 50 mL of ZrCl 4 (THF) 2 luene slurry was transferred to the sticky oil in a dry ice / acetone bath.
  • the resulting reaction mixture changed to violet color with stirring at phase silver overnight.
  • the reaction solution was filtered to remove UC1.
  • the toluene of the filtrate was removed by vacuum drying, and the nucleic acid was added and sonicated for 1 hour.
  • 'metallocene catalyst precursor ⁇ ' a transition metal compound which is a dark violet solid (Mw 758.02, 7.92 mmol, yield of isomer was observed).
  • the solution was stirred at 0 ° C. and then 4.8 mL (12 ⁇ L) of 2.5 M n-BuLi nucleic acid solution was added dropwise, and the temperature was raised to room temperature, followed by stirring for one day.
  • the solution was added dropwise to an ether solution of 2- (6-tert-butoxynucleosil) -5- (propane-2-ylidene) cyclopenta-1,3-diene, prepared before, and stirred for one day. 50 mL of water was added thereto, quenched, the organic layer was separated, dried over MgS0 4 , and filtered to obtain a pure solution.
  • the solvent was evaporated under vacuum reduced pressure to give 5.0 g (9.36 Pa ol, 93.6%) of oil.
  • n-BuLi nucleic acid solution 2.1 equivalent of n-BuLi nucleic acid solution was added and lithiation was performed for 24 hours.
  • 2.1 equivalents of ZrCl 4 (THF) 2 was taken in a glove box, placed in a 250 mL Schlenk flask, and ether was added to prepare a suspension. Both flasks were cooled to ⁇ 78 ° C. and then lithiated ligand compounds were slowly added to the suspension of ZrCl 4 (THF) 2 . The mixture was slowly warmed to room temperature and stirred for one day, after which the ether in the mixture was removed by vacuum decompression to about 1/5 volume, and recrystallized by adding 5 times the volume of nucleic acid of the remaining solvent.
  • the nucleic acid slurry was filtered under argon, and the filtered solid and the filtrate were both evaporated under vacuum reduced pressure.
  • the remaining filter cake (filter c3 ⁇ 4ke) and filtrate were confirmed by NMR, respectively, and weighed in a glove box to confirm the yield and purity.
  • 4.4 g (6.3 mmol, 67.4%) of a brown solid (hereinafter referred to as' metallocene catalyst precursor ⁇ ) was obtained from 5.1 g (9.4 ⁇ L ol) of the ligand compound.
  • n-BuLi nucleic acid solution 2.1 equivalent n-BuLi nucleic acid solution was added thereto, lithiation was performed for 24 hours, and then all solvents were removed by vacuum reduction. This was obtained only Li- salt through a schlenk filter in a nucleic acid solvent (3.092 g, 6.987 ⁇ ol). This process is part of purification to obtain a purer metallocene catalyst precursor.
  • 2.1 equivalents of ZrCl 4 (THF) 2 was taken in a glove box, placed in a 250 mL Schlenk flask, and suluene was added to prepare a suspension.
  • 1 metallocene catalyst precursor J 1 1.321 g (2.806 mmol, 40.2%) of a yellow oil (hereinafter referred to as 1 metallocene catalyst precursor J 1 ) was obtained from 3.1 g (6.987 ⁇ L) of the ligand compound and stored as a toluene solution (0.3371 mmol / mg). .
  • reaction mixture obtained was stirred at normal temperature for 8 hours or more. Subsequently, the reaction mixture was cooled to -30 ° C., and then a solution of C 5 H 5 Na (55.9 g, 0.6 mol) / THF (4 L) was added, followed by stirring for 6 hours or more.
  • the supported catalyst was prepared in the same manner as in Preparation Example 9, except that Metallocene Catalyst Precursor D (0.20 g) prepared in Preparation Example 3 was used instead of Metallocene Catalyst Precursor C (0.22 g).
  • Preparation Example 11 Preparation of Supported Catalyst The supported catalyst was prepared in the same manner as in Preparation Example 9, except that the metallocene catalyst precursor F (0.10 g) prepared in Preparation Example 5 was used instead of the metallocene catalyst precursor C (0.22 g) in Preparation Example 9. .
  • Preparation Example 12 Preparation of Supported Catalyst
  • metallocene catalyst precursor A (0.50 g) and dichloro [rac-ethylenebis (indenyl)] zirconium (CAS Number: 100080-82-8, manufactured by Sigma-Aldrich, Inc.) prepared in Schlenk flasks were prepared in Preparation Example 1.
  • 'metallocene catalyst precursor G' (0.22 g)
  • toluene 30 mL toluene 30 mL
  • triisobutylaluminum 0.3 g were added, which was stirred for 15 minutes at phase silver. Then, the obtained mixture was added to the organic reactor and the temperature of the glass reactor was raised to 70 ° C. and stirred for 2 hours.
  • the supported catalyst was prepared in the same manner as in Preparation Example 12, except that Metallocene Catalyst Precursor C (0.20 g) was used instead of Metallocene Catalyst Precursor G (0.22 g) in Preparation Example 12.
  • Preparation Example 14 Preparation of Supported Catalyst
  • the supported catalyst was prepared in the same manner as in Preparation Example 12, except that Metallocene Catalyst Precursor D (0.25 g) prepared in Preparation Example 3 was used instead of Metallocene Catalyst Precursor G (0.22 g).
  • Preparation Example 15 Preparation of Supported Plum
  • a supported catalyst was prepared in the same manner as in Preparation Example 12, except that Metallocene Catalyst Precursor K (0. 18 g) prepared in Preparation Example 8 was used instead of Metallocene Catalyst Precursor G (0.22 g) in Preparation Example 12. It was.
  • Preparation Example 16 Preparation of Supported Catalyst
  • toluene 100 mL of toluene was added to a 300 mL glass reactor and 10 g of silica (SP2410, manufactured by Grace Davi son) was added, followed by stirring while raising the temperature of the reactor to 40 ° C. 30 mL of 3 ⁇ 4> methylaluminoxane (MAO) / luluene solution (Albemar le) was added thereto, and the temperature was raised to 70 ° C. and stirred at 200 rpm for 12 hours.
  • silica SP2410, manufactured by Grace Davi son
  • metallocene catalyst precursor B (0.40 g) prepared in Preparation Example 2
  • metallocene catalyst precursor D (0.31 g) prepared in Preparation Example 3
  • ' luluene 30 mL triiso 0.3 g of butylaluminum was added and stirred at room temperature for 15 minutes. Then, the obtained mixture was added to the organic reactor and the temperature of the glass reactor was raised to 7 (C and then stirred for 2 hours.
  • Metallocene catalyst precursor D prepared in Preparation Example 3 to Preparation Example 17
  • the supported catalyst was prepared in the same manner as in Preparation Example 17, except that the metallocene catalyst precursor E (0.23 g) prepared in Preparation Example 4 was used instead of (0.31 g).
  • Preparation Example 19 Preparation of Supported Catalyst
  • Metallocene catalyst precursor D prepared in Preparation Example 3 to Preparation Example 17
  • toluene 100 mL of toluene was added to a 300 mL glass reactor and 10 g of silica (SP2410, manufactured by Grace Davi son) was added, followed by stirring while raising the temperature of the reactor to 40 ° C. 30 mL of methylaluminoxane (MA0) / luene solution (Albemar le) in 30% by weight was added thereto, and the temperature was raised to 70 ° C. and stirred at 200 rpm for 12 hours.
  • silica SP2410, manufactured by Grace Davi son
  • metallocene catalyst precursor B (0.30 g) prepared in Preparation Example 2
  • metallocene catalyst precursor D (0.26 g) prepared in Preparation Example 3
  • 30 mL of toluene, triisobutyl 0.5 g of aluminum was added and stirred at room temperature for 15 minutes.
  • the obtained mixture was added to the organic reactor, the temperature of the glass reactor was raised to 70 ° C. and stirred for 2 hours.
  • reaction product was allowed to stand for 10 minutes by stopping the stirring after lowering the temperature of the reaction vessel to room temperature and then decant at i on.
  • 100 mL of nucleic acid was added to the reactor to obtain a slurry, which was then transferred to schlenk f lask to decant at ion.
  • the resulting reaction product was dried under reduced pressure at room temperature for 3 hours to obtain a supported catalyst.
  • toluene 100 mL of toluene was added to a 300 mL glass reactor, 10 g of silica (SP2410, manufactured by Grace Davi son, Inc.) was added thereto, followed by stirring while raising the temperature of the reaction vessel to 40 ° C. 30 mL of methylaluminoxane (MA0) / luene solution (Albemar le) in 30% by weight was added thereto, and the temperature was raised to 70 ° C. and stirred at 200 rpm for 12 hours.
  • silica SP2410, manufactured by Grace Davi son, Inc.
  • metallocene catalyst precursor B (0.30 g)
  • metallocene catalyst precursor C (0.17 g)
  • metallocene catalyst precursor J (0.15 g)
  • toluene 30 mL triiso 0.5 g of butylaluminum was added and stirred at room temperature for 15 minutes. Then, the obtained mixture is introduced into the organic reactor and the glass The temperature was lowered to 70 ° C and then stirred for 2 hours.
  • Example 23 metallocene catalyst precursor D (0.13 g) was used instead of metallocene catalyst precursor C (0.17 g), and metallocene was replaced with metallocene catalyst precursor J (0.15 g).
  • the supported catalyst was prepared in the same manner as in Preparation Example 23, except that the catalyst precursor K (0.1 g) was used.
  • Preparation Example 25 Preparation of Supported Catalyst
  • the supported catalyst was prepared in the same manner as in Preparation Example 25, except that Metallocene Catalyst Precursor K (0.18 g) was used instead of Metallocene Catalyst Precursor J (0.30 g) in Preparation Example 25.
  • Preparation Example 27 Preparation of Supported Catalyst
  • metallocene catalyst precursor J (0.40 g), metallocene catalyst precursor H (0.12 g), toluene 30 mL, and triisobutylaluminum 0.3 g were added to a schlenk flask, and the mixture was stirred at room temperature for 15 minutes. Then, the obtained mixture was added to the organic reaction vessel and the temperature of the glass reaction vessel was raised to 70 ° C. and stirred for 2 hours.
  • the metallocene catalyst precursor F prepared in Preparation Example 5 was used, and instead of the metallocene catalyst precursor C, dichloro [bis ((6-tert-butoxynucleosil) cyclopenta Dienyl)] zirconium (hereinafter referred to as 'metallocene catalyst precursor L') and the same as in Preparation Example 9
  • the supported catalyst was prepared by the method.
  • Example 1 instead of the supported catalyst of Example 1, the catalyst shown in Table 1 was used, except that the polymerization conditions were adjusted as shown in Table 1, the olefin polymer was prepared in the same manner as in Example 1.
  • Comparative Example 5 to prepare a LUCE ETM SP330 product of LG Chemicals, a commercial mLLDPE prepared by using a slurry loop process polymerization process
  • Comparative Example 6 a LUCENETM SP330 product of LG Chem, a commercial mLLDPE prepared by using a shiy loop process polymerization process, was prepared.
  • MFRR Melt Flow Rate Ratio
  • Tm Melting temperature of the olefin polymer was measured using a differential scanning calorimeter (DSC, device name: DSC 2920, manufacturer: TA instrument). Specifically, the olefin polymer was heated to 220 ° C., and then maintained at that temperature for 5 minutes, and then cooled to 20 ° C. and heated again to 22 C C to obtain a Tm. At this time, the rate of rise and fall of temperature was adjusted to 10 ° C / min, respectively.
  • DSC differential scanning calorimeter
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) of the olefin polymer are measured by gel permeation chromatography (GPC, gel permeation chromatography, Water Company), and the weight average molecular weight is determined as the number average molecular weight.
  • the molecular weight distribution (PDI, polydispersity index) was calculated by dividing. At this time, the analysis silver degree was 160 ° C, trichlorobenzene was used as the solvent, and the molecular weight was measured by standardizing with polystyrene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

본 발명은 혼성 담지 촉매 및 이를 이용한 올레핀 중합체의 제조 방법에 관한 것이다. 상기 혼성 담지 촉매를 이용하면 기존의 메탈로센 촉매로 중합된 올레핀 중합체의 우수한 기계적 강도는 유지하면서 기존의 올레핀 중합체 대비 현저하게 향상된 가공성을 나타내는 올레핀 중합체를 제공할 수 있다.

Description

【명세서】
【발명의 명칭】
흔성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
【기술분야】
관련 출원 (들)과의 상호 인용
본 출원은 2016년 1월 27일자 한국 특허 출원 제 10-2016-0010098 호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 흔성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법에 관한 것이다.
【배경기술】
기존의 폴리올레핀의 상업적 제조 과정에는 티타늄 또는 바나듐 화합물의 지글러 -나타 촉매가 널리 사용되어 왔는데, 상기 지글러 -나타 촉매는 높은 활성을 갖지만, 다활성점 촉매이기 때문에 생성 고분자의 분자량 분포가 넓으며 공단량체의 조성 분포가 균일하지 않아 원하는 물성 확보에 한계가 있었다.
이에 따라, 최근에는 티타늄, 지르코늄, 하프늄 등의 전이 금속과 사이클로펜타디엔 작용기를 포함하는 리간드가 결합된 메탈로센 촉매가 개발되어 널리 사용되고 있다. 메탈로센 화합물은 일반적으로 알루미녹산, 보레인, 보레이트 또는 다른 활성화제를 이용하여 활성화시켜 사용한다 . 예를 들어, 사이클로펜타다이에닐기를 포함한 리간드와 두 개의 시그마 클로라이드 리간드를 갖는 메탈로센 화합물은 알루미녹산을 활성화제로 사용한다.
이러한 메탈로센 촉매로부터 제조된 중합체는 기계적 물성이 우수하다고 알려져 있다. 하지만, 메탈로센 촉매는 단일 활성점을 가지고 있어 분자량 분포가 좁은 중합체를 생성하게 된다. 이에 따라 메탈로센 촉매로부터 제조된 올레핀 중합체는 가공성이 좋지 않다고 알려져 있다.
이러한 문제를 해결하기 위해, 메탈로센 촉매로부터 생성된 중합체를 저밀도 폴리에틸렌과 배합하여 사용하는 시도가 있었다. 하지만, 이러한 방법은 메탈로센 촉매로부터 생성된 중합체의 기계적 강도를 저하시켜 메탈로센 촉매 사용의 이점을 퇴색시키는 문제를 초래하였다. 【발명의 내용】
【해결하려는 과제】
본 발명은 고가공성의 올레핀 중합체를 제공할 수 있는 흔성 담지 촉매를 제공하기 위한 것이다.
또한, 본 발명은 상기 흔성 담지 촉매를 이용하여 을레핀 중합체를 제조하는 방법을 제공하기 위한 것이다.
【과제의 해결 수단】
발명의 일 구현예에 따르면, 담체; 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 전이 금속 화합물; 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 1종 이상의 전이 금속 화합물을 포함하는 흔성 담지 촉매가
Figure imgf000003_0001
상기 화학식 1 및 2에서, 및 M2는 서로 동일하거나 상이하며 각각 독립적으로 Ti , Zr 또는 Hf이고,
Xi , ¾, ¾ 및 는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
Tr& C , Si , Ge , Sn또는 Pb이며,
T2는 탄소수 1 내지 5의 알킬렌기, 탄소수 2 내지 10의 알킬리덴기 및
T3(Q3) (Q4) 중 어느 하나이며,
상기 T3은 C , Si , Ge , Sn 또는 Pb이고,
Qi , , Qs 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 ¾는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내직 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 Ri4는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
Cpl 및 Cp2는 서로 동일하거나 상이하며, 각각 독립적으로 -NR15- , 혹은 사이클로펜타디에닐기, 인데닐기, 테트라하이드로인데닐기, 플루오레닐기 및 인데노인돌리기 중 어느 하나의 방향족 고리이거나, 혹은 상기 방향족 고리의 하나 이상의 수소가 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 실릴알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나의 치환기로 치환된 방향족 고리이고,
R15는 탄소수 1 내지 20의 알킬 중 어느 하나이다.
구체적으로, 상기 화학식 1에서 내지 는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 수 있다.
상기 화학식 1에서 ¾ 및 ¾는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 수 있다.
상기 화학식 1에서 R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 상기 화학식 1에서 ¾ 및 ¾는 각각 독립적으로 탄소수 1 내지 20의 알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나일 수 있다.
상기 화학식 1 및 2에서 내지 는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나일 수 있다. 상기 화학식 2에서 T2는 에틸렌기, η-프로필렌기, iso-프로필렌기, 에틸리덴기, 1-프로필리덴기, 2-프로필리덴기 및 T3(¾)(Q4) 중 어느 하나이며, T3은 Si이고, Q3 및 Q4는 서로 동일하거나 상이하며, 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알콕시알킬기 중 어느 하나일 수 있다.
상기 화학식 2에서 Cpl 및 )2는 서로 동일하거나 상이하며, 각각 독립적으로 _N(tert-부틸) -, 사이클로펜타디에닐기, 테트라메틸사이클로펜타디에닐기, tert-부록시핵실사이클로펜타디에닐기, 인데닐기, 테트라하이드로인데닐기, 플루오레닐기, 5,10-디히드로인데노[1,2- b]인돌리기 및 5,8-디메틸 -5,10—디히드로인데노 [1 , 2-b]인돌리기 중 어느 하나일 수 있다.
보다 구체적으로, 상기 화학식 1로 표시되는 전이 금속 화합물은 하기 화학식 3 및 4로 표시되는 화합물 중 어느 하나일 수 있다.
Figure imgf000006_0001
상기 화학식 3 및 4에서, R16 및 R17은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5 사이의 정수이다.
상기 화학식 2로 표시되는 전이 금속 화합물은 디메틸실릴렌 (테트라메틸사이클로펜타다이에닐) (9H-플루오렌 -9-일)지르코늄 다이클로라이드일 수 있다.
상기 흔성 담지 촉매는 상기 화학식 1 및 2의 전이 금속 화합물을 활성화시키기 위해, 하기 화학식 5 내지 7로 표시되는 화합물로 이루어진 군에서 선택된 1 종 이상의 조촉매를 추가로 포함할 수 있다.
[화학식 5]
R19-[Al (R18)-0]n-R2o
상기 화학식 5에서, Ri8 , R19 및 R20은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 중 어느 하나이고,
n은 2 이상의 정수이며,
[화학식 6]
D(R21)3
상기 화학식 6에서,
D는 알루미늄 또는 보론이고,
R21는 각각 독립적으로 할로겐, 탄소수 1 내지 20 의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며, [화학식 7]
[L-H] + [Z(A)4]—또는 [L] + [Z(A)4]一
상기 화학식 7에서,
L은 중성 또는 양이온성 루이스 염기이고, H는 수소 원자이며,
Z는 13 족 원소이며, A는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의
1 이상의 수소 원자가 할로겐, 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20 의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
상기 흔성 담지 촉매의 담체는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물일 수 있다.
상기 화학식 1로 표시되는 전이 금속 화합물과 상기 화학식 2로 표시되는 1 종 이상의 전이 금속 화합물은 10 : 0.01 내지 10 : 50의 중량비로 포함될 수 있다.
한편, 발명의 다른 구현예에 따르면, 상기 흔성 담지 촉매 존재 하에, 을레핀 단량체를 중합 반웅시키는 단계를 포함하는 올레핀 중합체의 제조 방법이 제공된다.
상기 제조 방법에 적용될 수 있는 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1 , 4-부타디엔, 1 , 5-펜타디엔, 1 , 6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3- 클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함할 수 있다.
【발명의 효과】
본 발명의 일 구현예에 따른 흔성 담지 촉매를 이용하면 기존의 메탈로센 촉매로 중합된 올레핀 중합체의 우수한 기계적 강도는 유지하면서 기존의 을레핀 중합체 대비 현저하게 향상된 가공성을 나타내는 올레핀 중합체를 제공할 수 있다.
【발명을 실시하기 위한 구체적인 내용】
이하 발명의 구체적인 구현예에 따른 흔성 담지 촉매 및 이를 이용하여 을레핀 중합체를 제조하는 방법 등에 대해 설명하기로 한다.
발명의 일 구현예에 따르면, 담체; 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 전이 금속 화합물; 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 1종 이상의 전이 금속 화합물을 포함하는 흔성 담지 촉매가 제공된다.
Figure imgf000008_0001
상기 화학식 1 및 2에서, Mi 및 M2는 서로 동일하거나 상이하며 각각 독립적으로 Ti , Zr 또는 Hf이고, ᅳ
Xi , ¾, ¾ 및 ¾는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인 (phosphine)기, 포스파이드 (phosphide)기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
1은 C, Si , Ge , Sn또는 Pb이며
T2는 탄소수 1 내지 5의 알킬렌기, 탄소수 2 내지 10의 알킬리덴기 및
T3(Q3) (Q4) 중 어느 하나이며,
상기 T3은 C, Si , Ge , Sn 또는 Pb이고,
Qi , Q2 , Q3 및 ¾는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
Ri 내지 ¾는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며, Cpl 및 Cp2는 서로 동일하거나 상이하며ᅳ 각각 독립적으로 -NR15- , 혹은 사이클로펜타디에닐기, 인데닐기, 테트라하이드로인데닐기, 플루오테닐기 및 인데노인돌리기 ( indenoindolyl group) 중 어느 하나의 방향족 고리이거나, 흑은 상기 방향족 고리의 하나 이상의 수소가 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기 탄소수 '1 내지 20의 실릴기 , 탄소수 2 내지 20의 실릴알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나의 치환기로 치환된 방향족 고리이고,
R15는 탄소수 1 내지 20의 알킬 중 어느 하나이다.
본 명세서에서 특별한 제한이 없는 한 다음 용어는 하기와 같이 정의될 수 있다.
할로겐 (halogen)은 불소 (F) , 염소 (C1 ) , 브름 (Br ) 또는 요오드 ( I )일 수 있다.
탄소수 1 내지 20의 알킬기는 직쇄, 분지쇄 또는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 1 내지 20의 알킬기는 탄소수 1 내지 20의 직쇄 알킬기; 탄소수 1 내지 10의 직쇄 알킬기; 탄소수 1 내지 5의 직쇄 알킬기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알킬기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알킬기; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알킬기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알킬기는 메틸기, 에틸기, n- 프로필기, i so-프로필기 n-부틸기, i so-부틸기, tert-부틸기, n_펜틸기, i so— 펜틸기, ne으펜틸기 또는 사이클로핵실기 등일 수 있다.
탄소수 1 내지 5의 알킬렌기는 직쇄 또는 분지쇄 알킬렌기일 수 있다. 구체적으로, 탄소수 1 내지 5의 알킬렌기는 탄소수 1 내지 5의 직쇄 알킬렌기; 탄소수 3 내지 5의 분지쇄 알킬렌기일 수 있다. 보다 구체적으로, 탄소수 1 내지 5의 알킬렌기는 메틸렌기, 에틸렌기, n-프로필렌기, 1 , 2-프로필렌기, n- 부틸렌기, 1 , 2-부틸렌기 또는 이소부틸렌기 등일 수 있다.
탄소수 2 내지 10의 알킬리덴기는 직쇄 또는 분지쇄 알킬리덴기일 수 있다. 구체적으로ᅳ 탄소수 2 내지 10의 알킬리덴기는 탄소수 2 내지 10의 직쇄 알킬리덴기 ; 탄소수 2 내지 5의 직쇄 알킬리덴기 ; 탄소수 3 내지 10의 분지쇄 알킬리덴기 ; 탄소수 3 내지 5의 분지쇄 알킬리덴기일 수 있다. 보다 구체적으로, 탄소수 2 내지 10의 알킬리덴기는 에틸리덴기 또는 프로필리덴기 등일 수 있다.
탄소수 2 내지 20의 헤테로사이클로알킬기는 산소, 질소 또는 황 등으로 예시되는 하나 이상의 탄소 이외의 원자를 포함하는 고리형 알킬기일 수 있다. 구체적으로, 탄소수 2 내지 20의 헤테로사이클로알킬기는 탄소수 2 내지 15의 헤테로사이클로알킬기, 탄소수 2 내지 10의 헤테로사이클로알킬기 또는 탄소수 4 내지 7의 헤테로사이클로알킬기일 수 있다. 보다 구체적으로, 탄소수 2 내지 20의 헤테로사이클로알킬기는 에폭시기, 테트라하이드로퓨라닐기, 테트라하이드로파이라닐 (tetrahydropyranyl )기, 테트라하이드로싸이오페닐 (tetrahydrothi ophenyl )기 또는 테트라하이드로피를릴 (tetrahydropyrrolyl )기 등일 수 있다.
탄소수 1 내지 20의 알콕시기는 직쇄, 분지쇄 또는 고리형 알콕시기일 수 있다. 구체적으로, 탄소수 1 내지 20의 알콕시기는 탄소수 1 내지 20의 직쇄 알콕시기; 탄소수 1 내지 10의 직쇄 알콕시기; 탄소수 1 내지 5의 직쇄 알콕시기; 탄소수 3 내지 20의 분지쇄 또는 고리형 알콕시기; 탄소수 3 내지 15의 분지쇄 또는 고리형 알콕시기; 또는 탄소수 3 내지 10의 분지쇄 또는 고리형 알콕시기일 수 있다. 보다 구체적으로, 탄소수 1 내지 20의 알콕시기는 메특시기, 에특시기, . n-프로폭시기, i so-프로폭시기, n-부록시기, i so- 부특시기, tert-부록시기, n-펜특시기, i so_펜특시기, neo—펜특시기 또는 사이클로핵록시기 등일 수 있다.
탄소수 2 내지 20의 알콕시알킬기는 -Ra— 0-Rb를 포함하는 구조로 알킬기 (-Ra)의 하나 이상의 수소가 알콕시기 (-0— Rb)로 치환된 치환기일 수 있다. 구체적으로, 탄소수 2 내지 20의 알콕시알킬기는 메톡시메틸기, 메특시에틸기, 에특시메틸기, i so-프로폭시메틸기, i so-프로폭시에틸기, i so- 프로폭시핵틸기, tert-부톡시메틸기, tert-부톡시에틸기 또는 tert- 부특시핵실기 등일 수 있다.
탄소수 1 내지 20의 실릴기는 -Si¾의 하나 이상의 수소가 알킬기 또는 알콕시기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴기는 메틸실릴기, 다이메틸실릴기, 트라이메틸실릴기, 다이메틸에틸실릴기, 다이에틸메틸실릴기, 다이메틸프로필실릴기, 메록시실릴기, 다이메록시실릴기, 트라이메록시실릴기, 다이메록시에록시실릴기, 다이에특시메틸실릴기 또는 다이메특시프로필실릴기 등일 수 있다.
탄소수 1 내지 20의 실릴알킬기는 알킬기의 하나 이상의 수소가 실릴기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴알킬기는 다이메톡시프로필실릴메틸기 등일 수 있다.
탄소수 1 내지 20의 실릴옥시알킬기는 알킬기의 하나 이상의 수소가 실릴옥시기로 치환된 치환기일 수 있다. 구체적으로, 탄소수 1 내지 20의 실릴옥시알킬기는 다이메특시프로필실릴옥시메틸기 등일 수 있다.
탄소수 2 내지 20의 알케닐기는 직쇄, 분지쇄 또는 고리형 알케닐기일 수 있다. 구체적으로, 탄소수 2 내지 20의 알케닐기는 탄소수 2 내지 20의 직쇄 알케닐기, 탄소수 2 내지 10의 직쇄 알케닐기, 탄소수 2 내지 5의 직쇄 알케닐기, 탄소수 3 내지 20의 분지쇄 알케닐기, 탄소수 3 내지 15의 분지쇄 알케닐기, 탄소수 3 내지 10의 분지쇄 알케닐기, 탄소수 5 내지 20의 고리형 알케닐기 또는 탄소수 5 내지 10의 고리형 알케닐기일 수 있다. 보다 구체적으로, 탄소수 2 내지 20의 알케닐기는 에테닐기, 프로페닐기, 부테닐기, 펜테닐기 또는 사이클로핵세닐기 등일 수 있다.
탄소수 1 내지 20의 카복실레이트는 -(:001^의 구조로 ^는 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 상기 하이드로카빌기는 하이드로카본으로부터 수소 원자를 제거한 형태의 1가 작용기로서, 알킬기 및 아릴기 등을 포함할 수 있다. 구체적으로, 탄소수 1 내지 20의 카복실레이트는 피발레이트 (pivalate) 등일 수 있다.
탄소수 6 내지 20의 아릴기는 모노사이클릭, 바이사이클릭 또는 트라이사이클릭 방향족 탄화수소를 의미할 수 있다. 또한, 상기 아릴기는 알킬기의 하나 이상의 수소가 아릴기로 치환된 아르알킬기 (aralkyl group)을 포함하는 의미로 사용될 수 있다. 구체적으로, 탄소수 6 내지 20의 아릴기는 페닐기, 나프틸기, 안트라세닐기 또는 벤질기 등일 수 있다.
탄소수 5 내지 20의 헤테로아릴기는 산소, 질소 및 황 둥으로 예시되는 하나 이상의 탄소 이외의 원자를 포함하는 고리형 아릴기일 수 있다. 구체적으로, 탄소수 5 내지 20의 헤테로아릴기는 탄소수 5 내지 15의 헤테로아릴기 또는 탄소수 5 내지 10의 헤테로아릴기일 수 있다. 보다 구체적으로, 탄소수 5 내지 20의 헤테로아릴기는 퓨라닐 ( furanyl )기, 파이라닐 (pyranyl )기, 싸이오페닐 (thiophenyl )기 또는 피를릴 (pyrrolyl )기 등일 수 있다. .
탄소수 1 내지 20의 술포네이트기는 -0-S02-Rd의 구조로 Rd는 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 술포네이트기는 메탄설포네이트기 또는 페닐설포네이트기 등일 수 있다.
탄소수 1 내지 20의 술폰기는 -Re '-S02-Re"의 구조로 여기서 Re ' 및 Re"는 서로 동일하거나 상이하며 각각 독립적으로 탄소수 1 내지 20의 하이드로카빌기일 수 있다. 구체적으로, 탄소수 1 내지 20의 술폰기는 메틸설포닐메틸기, 메틸설포닐프로필기, 메틸설포닐부틸기 또는 페닐설포닐프로필기 등일 수 있다.
또한, 본 명세서에서 서로 인접하는 한 쌍 이상의 치환기가 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성한다는 것은 서로 인접하는 2개의 치환기의 쌍 중에서 한 쌍 이상의 치환기가 서로 연결되어 지방족 또는 방향족 고리를 형성하며, 상기 지방족 또는 방향족 고리는 임의의 치환기에 의하여 치환될 수 있음을 의미하는 것이다.
상술한 치환기들은 목적하는 효과와 동일 내지 유사한 효과를 발휘하는 범위 내에서 임의적으로 하이드록시기, 할로겐, 알킬기, 헤테로사이클로알킬기 알콕시기, 알케닐기, 실릴기, 포스파인기, 포스파이드기, 술포네이트기, 술폰기, 아릴기 및 헤테로아릴기로 이루어진 군에서 선택된 1 이상의 치환기로 치환될 수 있다.
상기 화학식 1로 표시되는 전이 금속 화합물과 화학식 2로 표시되는 1종 이상의 전이 금속 화합물이 흔성 담지된 촉매를 이용하면, 기존 메탈로센 촉매로부터 제조된 올레핀 중합체의 우수한 기계적 물성을 유지하면서 현저하게 개선된 가공성을 나타내는 올레핀 중합체를 제조할 수 있다.
이하, 상기 화학식 1 및 2의 전이 금속 화합물의 구조에 대해 상세히 설명한다.
상기 화학식 1로 표시되는 전이 금속 화합물의 구조 내에서 사이클로펜타다이에닐 리간드는, 예를 들면, 을레핀 중합 활성에 영향을 미칠 수 있다.
상기 사이클로펜타다이에닐 리간드의 ¾ 내지 는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나일 수 있다. 보다 구체적으로, 내지 R4는 각각 독립적으로 메틸기 , 에틸기, 프로필기 및 부틸기 증 어느 하나일 수 있다. 이 경우, 상기 흔성 담지 촉매는 올레핀 중합 공정에서 매우 높은 활성을 나타낼 수 있다.
또한, 상기 화학식 1로 표시되는 전이 금속 화합물의 구조 내에서 테트라하이드로인데닐 리간드는, 예를 들면, 치환된 작용기의 종류에 따라 입체 장애 효과의 정도를 조절하여 제조되는 올레핀 중합체의 분자량을 용이하게 조절할 수 있다.
상기 화학식 1에서 R5 및 R6는 각각 독립적으로 수소, 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나, R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 흑은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 보다 구체적으로, 상기 화학식 1에서 ¾ 및 R6는 각각 독립적으로 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기 및 탄소수 2 내지 4의 알케닐기 중 어느 하나이거나, R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기 및 탄소수 2 내지 4의 알케닐기 중 어느 하나이거나 흑은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성할 수 있다. 이러한 경우 상기 흔성 담지 촉매는 우수한 가공성을 가지는 올레핀 중합체를 제공할 수 있다.
상기 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드는 - 에 의하여 가교되어 우수한 안정성 및 보다 개선된 촉매 활성을 나타낼 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 위하여 ¾ 및 Q2가 각각 독립적으로 탄소수 1 내지 20의 알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 보다 구체적으로, ¾ 및 Q2가 서로 동일하며 메틸기, 에틸기, 프로필기, 부틸기, 페닐기 및 밴질기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 그리고, 1은 (:, Si , Ge , Sn 또는 Pb이거나; C 또는 Si이거나; 혹은 Si일 수 있다.
한편, 가교된 사이클로펜타다이에닐 리간드와 테트라하이드로인데닐 리간드 사이에는 (¾) (¾)이 존재하는데, ^( ) (¾)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다.
이러한 효과를 더욱 효과적으로 담보하기 위하여 X 및 ¾가 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 보다 구체적으로, ¾ 및 ¾가 각각 독립적으로 F , CI , Br 또는 I인 전이 금속 화합물을 사용할 수 있다. 그리고, ^은 Ti , Zr 또는 Hf이거나; Zr 또는 Hf이거나; 흑은 Zr일 수 있다.
하나의 예시로 보다 향상된 가공성을 가지는 올레핀 중합체를 제공할 수 있는 전이 금속 화합물로는 하기 화학식 3 및 4로 표시되는 화합물을 예시할 수 있다.
Figure imgf000015_0001
상기 화학식 3 및 4에서, R16 및 R17은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 2Q의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5 사이의 정수이다.
상기 화학식 3 및 4에서 테트라하이드로인데닐 리간드의 치환기인 R16 및 R17은 보다 우수한 가공성을 가지는 올레핀 중합체 제공을 위해 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나; 혹은 수소, 탄소수 1 내지 4의 알킬기, 탄소수 1 내지 4의 알콕시기, 탄소수 2 내지 4의 알케닐기 및 탄소수 6 내지 10의 아릴기 중 어느 하나일 수 있다.
한편, 상기 화학식 2로 표시되는 1종 이상의 전이 금속 화합물은 상기 화학식 1의 전이 금속 화합물과 함께 담지되어 가공성이 개선된 을레핀 중합체를 제공할 수 있다.
이러한 효과를 보다 효과적으로 담보하기 위해, 상기 화학식 2의 Cpl 및 Cp2가 각각 독립적으로 -N(tert-부틸) -, 사이클로펜타디에닐기, 테트라메틸사이클로펜타디에닐기, tert-부록시핵실사이클로펜타디에닐기, 인데닐기, 테트라하이드로인데닐기, 플루오레닐기, 5, 10-디히드로인데노 [1 ,2- b]인돌리기 및 5,8-디메틸 -5, 10-디히드로인데노 [1 , 2-b]인돌리기 중 어느 하나인 전이 금속 화합물이 사용될 수 있다.
그리고, 상기 Cpl 및 Cp2를 가교하는 T2가 에틸렌기, η-프로필렌기, i so-프로필렌기, 에틸리덴기, 1-프로필리덴기, 2-프로필리덴기 및 T3(Q3) (Q4) 중 어느 하나인 전이 금속 화합물이 사용될 수 있다. 이때, T3은 Si이고, ¾ 및 Q4는 서로 동일하거나 상이하며, 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알콕시알킬기 중 어느 하나일 수 있다.
상기 2개의 리간드 사이에는 M2(¾) (X4)이 존재하는데, M2(X3) (X4)는 금속 착물의 보관 안정성에 영향을 미칠 수 있다. 이러한 효과를 더욱 효과적으로 담보하기 위하여 ¾ 및 가 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나인 전이 금속 화합물을 사용할 수 있다. 보다 구체적으로, ¾ 및 ¾가 각각 독립적으로 F , CI , Br 또는 I인 전이 금속 화합물을 사용할 수 있다. 그리고, 는 Ti , Zr 또는 Hf이거나; Ti 또는 Zr일 수 있다.
상기 화학식 2로 표시되는 전이 금속 화합물로는 1종이 사용되거나 2종 이상이 사용될 수 있다. 이 중, 원하는 물성의 을레핀 중합체를 경제적으로 제공하기 위해, 상기 화학식 2로 표시되는 전이 금속 화합물로는 1종이나
2종을 사용할 수 있다.
일 예로, 상기 흔성 담지 촉매는 상기 화학식 1로 표시되는 전이 금속 화합물 1 종과 상기 화학식 2로 표시되는 전이 금속 화합물 1 종을 포함하되, 상기 화학식 1로 표시되는 전이 금속 화합물로 상기 화학식 3에서 R16 및 R17이 수소이고 1이 0인 화합물이나 혹은 상기 화학식 4에서 R16 및 R17이 수소인 화합물을 포함하고, 상기 화학식 2로 표시되는 전이 금속 화합물로 디메틸실릴렌 (테트라메틸사이클로펜타다이에닐) (9H—플루오렌 -9-일)지르코늄 다이클로라이드를 포함하여 보다 우수한 촉매 활성을 나타내며, 보다 우수한 가공성을 가지는 올레핀 중합체를 제공할 수 있다.
상기 화학식 1 및 2로 표시되는 전이 금속 화합물은 공지의 반웅들을 웅용하여 합성될 수 있으며, 보다 상세한 합성 방법은 제조예를 참고할 수 있다.
상기 일 구현예에 따른 흔성 담지 촉매는 상기 화학식 1 및 2의 전이 금속 화합물을 활성화시키기 위하여 조촉매를 추가로 포함할 수 있다. 상기 조촉매로는 본 발명이 속하는 기술분야에서 통상적으로 사용하는 것이 특별한 제한 없이 적용될 수 있다. 비제한적인 예로, 상기 조촉매는 하기 화학식 5 내지 7으로 표시되는 화합물로 이루어진 군에서 선택된 1종 이상의 화합물일 수 있다.
[화학식 5]
R19-[Al (R18)-0]n-R20
상기 화학식 5에서,
R18 , R19 및 o은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 증 어느 하나이고,
n은 2 이상의 정수이며,
[화학식 6]
D(R21)3
상기 화학식 6에서,
D는 알루미늄 또는 보론이고,
R21는 각각 독립적으로 할로겐, 탄소수 1 내지 20 의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며, [화학식 7]
[L-H] + [Z(A)4r 또는 [L] + [Z(A)4]
상기 화학식 7에서,
L은 중성 또는 양이은성 루이스 염기이고, H는 수소 원자이며,
Z는 13 족 원소이며, A는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20 의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
상기에서 화학식 5로 표시되는 화합물의 비제한적인 예로는 메틸알루미녹산, 에틸알루미녹산ᅳ 이소부틸알루미녹산 또는 tert- 부틸알루미녹산 등을 들 수 있다. 그리고, 화학식 6으로 표시되는 화합물의 비제한적인 예로는 트리메틸알루미늄, 트리에틸알루미늄 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리 -sec-부틸알루미늄 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄 트리핵실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄 메틸디에틸알루미늄, 트리페닐알루미늄, 트리 -P-를릴알루미늄 디메틸알루미늄메록시드 또는 디메틸알루미늄에록시드 등을 들 수 있다. 마지막으로, 화학식 7로 표시되는 화합물의 비제한적인 예로는 트리메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, 트리에틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, Ν ,Ν-디메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 η- 부틸트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 벤질트리스 (펜타플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트라키스 (4-(t- 부틸디메틸실릴) -2,3,5,6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 테트라키스 (4- (트리이소프로필실릴) -2 , 3, 5 , 6-테트라플루오로페닐)보레이트, Ν,Ν-디메틸아닐리늄 펜타플루오로페녹시트리스 (펜타플루오로페닐)보레이트, Ν ,Ν-디메틸 -2 , 4 , 6-트리메틸아닐리늄 테트라키스 (펜타플루오로페닐)보레이트, 트리메틸암모늄 테트라키스 (2,3,4,6-테트라플루오로페닐)보레이트 Ν, Ν- 디메틸아닐리늄 테트라키스 (2, 3, 4, 6-테트라플루오로페닐)보레이트, 핵사데실디메틸암모늄 테트라키스 (펜타플루오로페닐)보레이트, Ν-메틸 -Ν- 도데실아닐리늄 테트라키스 (펜타플루오로페닐)보레이트 또는 메틸디 (도데실)암모늄 테트라키스 (펜타플루오로페닐)보레이트 등을 들 수 있다. 상기 조촉매는 상기 화학식 1 및 2의 전이 금속 화합물의 활성화가 층분히 진행될 수 있도록 적절한 함량으로 사용될 수 있다.
한편, 상기 일 구현예에 따른 흔성 담지 촉매의 담체로는 표면에 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 구체적으로, 상기 담체로는 고온에서 건조하여 표면에 수분을 제거함으로써 반응성이 큰 하이드록시기 또는 실록산기를 함유하는 담체를 사용할 수 있다. 보다 구체적으로, 상기 담체로는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물 등을 사용할 수 있다. 상기 담체는 고온에서 건조된 것일 수 있고, 이들은 통상적으로 Na20 , 2C03 ) BaS04 및 Mg(N03)2 등의 산화물, 탄산염, 황산염, 질산염 성분을 포함할 수 있다.
상기 일 구현예에 따른 흔성 담지 촉매는, 예를 들면, 담체에 조촉매를 담지시키는 단계; 및 조촉매 담지 담체에 상기 화학식 1의 전이금속 화합물 및 화학식 2의 전이 금속 화합물을 순서에 상관 없이 하나씩 담지시키거나 혹은 동시에 담지시키는 단계를 통해 제조될 수 있다.
구체적으로, 담체에 조촉매를 담지시키는 단계에서는, 고온에서 건조된 담체 및 조촉매를 흔합하고, 이를 약 20 내지 120°C의 온도에서 교반하여 조촉매 담지 담체를 제조할 수 있다.
그리고, 조촉매 담지 담체에 전이 금속 화합물을 담지시키는 단계에서는 조촉매 담지 담체에 화학식 1 및 2의 전이 금속 화합물을 동시에 첨가하거나; 혹은 화학식 1 및 2의 전이 금속 화합물 중 어느 하나를 첨가할 수 있다. 그리고, 얻어지는 용액을 약 20 내지 12CTC의 온도에서 교반할 수 있다. 만일 앞서 1 종의 전이 금속 화합물만 첨가하였다면 나머지 1 종의 전이 금속 화합물을 첨가하고 다시 얻어지는 용액을 약 20 내지 120 °C의 온도에서 교반하여 담지 촉매를 제조할 수 있다.
상기 화학식 1의 전이 금속 화합물과 상기 화학식 2의 전이 금속 화합물은, 제공하고자 하는 올레핀 중합체의 용도에 따라 적절한 비율로 흔합될 수 있다. 일 예로, 상기 화학식 1의 전이 금속 화합물과 상기 화학식 2의 전이 금속 화합물은 10 : 0.01 내지 10 : 50의 중량비, 10 : 0. 1 내지 10 : 20의 중량비 , 10 : 1 내지 10 : 15의 중량비 혹은 10 : 1 내지 10 : 12의 중량비로 사용될 수 있다. 상기 화학식 2의 전이 금속 화합물로 2종 이상의 화합물이 사용된 경우 2종 이상의 화합물은 총 함량이 상기 범위를 만족하도록 사용될 수 있다. 상기 흔성 담지 촉매를 사용하기 위하여 사용되는 담체, 조촉매, 조촉매 담지 담체, 화학식 1 및 2의 전이 금속 화합물의 함량은 목적하는 담지 촉매의 물성 또는 효과에 따라 적절하게 조절될 수 있다.
상기 흔성 담지 촉매 제조 시에 반웅 용매로는, 예를 들어, 펜탄, 핵산, 헵탄, 노난, 데칸 및 이들의 이성질체와 같은 지방족 탄화수소 용매; 를루엔, 자일렌 및 벤젠과 같은 방향족 탄화수소 용매; 또는 디클로로메탄 및 클로로벤젠과 같은 염소 원자로 치환된 탄화수소 용매 등을 사용할 수 있다. 그리고, 상기 흔성 담지 촉매는 수분이나 산소에 민감하게 반응하기 때문에, 질소 또는 아르곤과 같은 불활성 분위기 하에서 제조될 수 있다.
상기 흔성 담지 촉매의 구체적인 제조 방법은 후술하는 제조예 등을 참고할 수 있다. 그러나, 흔성 담지 촉매의 제조 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고, 상기 제조 방법의 단계 (들)는 통상적으로 변경 가능한 단계 (들)에 의하여 변경될 수 있다.
한편 발명의 다른 구현예에 따르면, 상기 흔성 담지 촉매 존재 하에, 을레핀 단량체를 중합 반웅시키는 단계를 포함하는 을레핀 중합체의 제조 방법이 제공된다.
Figure imgf000021_0001
상술한 바와 같이, 상기 흔성 담지 촉매는 상기 화학식 1 및 2의 전이 금속 화합물의 특정 구조로 인해, 가공성이 현저하게 향상된 올레핀 중합체를 합성할 수 있다.
상기 흔성 담지 촉매로 중합 가능한 올레핀 단량체의 예로는 에틸렌, 알파—올레핀, 사이클릭 올레핀 등이 있으며, 이중 결합을 2개 이상 가지고 있는 다이엔 을레핀계 단량체 또는 트라이엔 올레핀계 단량체 등도 중합 가능하다. 상기 단량체의 구체적인 예로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1- 테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보넨, 페닐노보넨, 비닐노보넨, 디사이클로펜타디엔, 1 , 4-부타디엔, 1,5-펜타디엔, 1,6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠, 3-클로로메틸스티렌 등이 있으며, 이들 단량체를 2 종 이상 흔합하여 공중합할 수도 있다. 상기 을레핀 중합체가 에틸렌과 다른 공단량체의 공중합체인 경우에, 상기 공단량체는 프로필렌, 1-부텐, 1-핵센, 4-메틸 -1-펜텐 및 1-옥텐으로 이루어진 군에서 선택된 하나 이상의 공단량체인 것이 바람직하다.
상기 올레핀 단량체의 중합 반웅을 위하여, 연속식 용액 중합 공정, 벌크 중합 공정, 현탁 중합 공정 , 슬러리 중합 공정 또는 유화 중합 공정 등 올레핀 단량체의 중합 반웅으로 알려진 다양한 중합 공정이 채용될 수 있다. 이러한 중합 반웅은 약 50 내지 licrc 또는 약 60 내지 ioo°c의 온도와 약 ι 내지 100 bar 또는 약 10 내지 80 bar의 압력 하에서 수행될 수 있다.
또한, 상기 중합 반웅에서, 상기 흔성 담지 촉매는 펜탄, 핵산, 헵탄, 노난, 데칸, 틀루엔, 벤젠, 디클로로메탄, 클로로벤젠 등과 같은 용매에 용해 또는 희석된 상태로 이용될 수 있다. 이때, 상기 용매를 소량의 알킬알루미늄 등으로 처리함으로써, 촉매에 악영향을 줄 수 있는 소량의 물 또는 공기 등을 미리 제거할 수 있다.
일 예로, 상기 흔성 담지 촉매를 이용하면 고가공성을 가지는 올레핀 중합체를 제조할 수 있다. 예를 들어, 흔성 담지 촉매를 통해 제조된 올레핀 중합체는 9. 1 이상의 MFR ( 10/2. 16) (mel t f low rate rat io ( 10/2. 16) )을 나타낼 수 있다. 상기 MFRR은 후술하는 시험예에 기재된 조건 하에서 측정된 값이다. 이러한 올레핀 중합체는 기존의 메탈로센 촉매로 중합된 올레핀 중합체의 우수한 기계적 강도는 유지하면서 기존의 올레핀 중합체 대비 현저하게 향상된 가공성을 나타낼 수 있다. 이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다. 제조예 1: 전이 금속 화합물 (메탈로센 촉매 전구체 A)의 제조
건조된 250mL schlenk flask에서 테트라메틸사이클로펜타다이엔 (TMCP, 6.0mL, 40匪 ol)을 THF (60 mL)에 녹인 후, 이 용액을 -78°C로 냉각하였다. 이어서, 상기 용액에 n-BuLi (2.5M, 17mL, 42圆 ol)을 천천히 적가한 후 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
한편, 별도의 250mL schlenk flask에서 dichlorodimethylsilane (4.8mL, 40醒 ol)을 n— hexane에 녹인 후, 이 용액을 -78°C로 넁각하였다. 이어서, 이 용액에 앞서 제조한 TMCP-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다.
이후, 얻어지는 용액을 감압하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 를루엔에 용해시키고, 여과하여 남아있는 LiCl를 제거하여 중간체를 얻었다 (yellow liquid, 7.0g, 33 mmol, 83% yield).
¾ 證 (500 MHz, CDC13): 0.24 (6H, s), 1.82 (6H, s), 1,98 (6H, s),
3.08 (1H, s). 건조된 250mL schlenk flask에서 indene (0.93mL, 8.0mmol)을 THF (30mL)에 녹인 후, 이 용액을 -78°C로 넁각하였다. 이어서, 상기 용액에 n_ BuLi (2.5M, 3.4mL, 8.4mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 약 5 시간 동안 교반하였다.
한편, 별도의 250mL schlenk flask에서 앞서 합성한 중간체 (1.7g, 8.0mmol)를 THF에 녹이고, 이 용액을 78°C로 냉각하였다. 이어서, 이 용액에 앞서 제조한 indene-lithiation 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하룻밤 동안 교반하여 자주색 용액을 얻었다. 이후, 반웅기에 물을 부어 반웅을 종료하고 (quenching), 상기 흔합물로부터 ether로 유기층을 추출하였다. 상기 유기층에는 다이메틸 (인데닐) (테트라메틸사이클로펜타다이에닐)실란과 다른 종의 유기 화합물이 포함되어 있음을 ¾ NMR을 통하여 확인하였다. 상기 유기층은 정제 없이 농축되어 metallation에 그대로 이용되었다.
250mL schlenk flask에서 앞서 합성한 다이메틸 (인데닐) (테트라메틸사이클로펜타다이에닐)실란 (1.7g, 5.7誦01)을 를루엔 (30mL) 및 MTBE (3.0mL)에 녹였다. 그리고, 이 용액을 _78°C로 넁각한 다음, 상기 용액에 n-BuLi (2.5M, 4.8mL, 12mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 하룻밤 동안 교반하였다. 그러나, 상기 용액 내에 노란색 고체가 생성되어 균일하게 교반되지 않아 MTBE (50mL) 및 THF (38mL)를 추가로 투입하였다.
한편, 별도로 준비된 250mL schlenk flask에서 ZrCl4(THF)2를 를루엔에 분산시킨 후, 얻어지는 흔합물을 -78°C로 냉각하였다. 이어서, 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물을 하룻밤 동안 교반하였다.
이후, 반웅 생성물을 여과하여 노란색 고체 형상의 다이메틸실릴렌 (테트라메틸사이클로펜타다이에닐) (인데닐)지르코늄
다이클로라이드 (1.3g, LiCl (0.48g) 포함, 1.8mmol)를 얻었고, 여액에서 용매를 제거한 후, n-hexane으로 세척하여 노란색 고체 (320mg, 0.70匪 ol)를 추가로 얻었다 (total 44% yield).
¾ NMR (500 MHz, CDC13): 0.96 (3H, s), 1.16 (3H, s), 1.91 (3H, s), 1.93 (3H, s), 1.96 (3H, s), 1.97 (3H, s), 5.98 (1H, d), 7.07 (1H, t), 7.23 (1H, d), 7.35 (1H, t), 7.49 (1H, d) , 7.70 (1H, d) . 앞서 합성한 다이메틸실릴렌 (테트라메틸사이클로펜타다이에닐) (인데닐)지르코늄
다이클로라이드 (1.049g, 2.3mmol)를 글러브 박스에서 mini bombe에 담았다. 그리고, 상기 mini bombe에 platinum oxide (52.4mg, 0.231mmol )을 추가로 담고, mini bombe를 조립한 후, mini bombed anhydrous THF (30mL)를 canuula를 이용하여 넣고, 약 30 bar의 압력까지 수소를 채웠다. 이어서 ; mini bombe에 담긴 흔합물을 약 60°C에서 약 1 일간 교반한 후, mini bombe의 온도를 상온으로 넁각시키고, mini bombe의 압력을 서서히 낮추면서 수소를 아르곤으로 치환하였다.
한편, 약 120°C의 오븐에서 약 2 시간 정도 건조한 celite를 schlenk filter에 깔고, 이를 이용하여 상기 mini bombe의 반웅 생성물을 아르곤 하에서 여과하였다. 상기 celite에 의하여 반웅 생성물로부터 Pt02 촉매가 제거되었다. 이어서, 촉매를 제거한 반응 생성물을 감압하여 용매를 제거하고, 연노란색 고체인 다이메틸실릴렌 (테트라메틸사이클로펜타다이에닐 ) (테트라하이드로인데닐)지르 코늄 다이클로라이드 (이하 '메탈로센 촉매 전구체 A'라 함)을 얻었다 (0.601g, 1.31mm o 1 ) .
Figure imgf000024_0001
¾ NMR (500 MHz, CDC13): 0.82 (3H, s), 0.88 (3H, s), 1.92 (6H, s)
1.99 (3H, s), 2.05 (3H, s), 2.34 (2H, m), 2.54 (2H, m), 2.68 (2H, m) 3.03 (2H, m), 5.45 (1H, s), 6.67 (1H, s). 제조예 2: 전이 금속 화합물 (메탈로센 촉매 전구체 B)의 제조
건조된 250mL schlenk flask에 TMCP-Li (1.3g, 10 隱 ol), CuCN (45mg,
5mol ), THF (lOmL)를 투입하였다. 이어서, 상기 플라스크의 온도를 -20°C 이하로 냉각한 다음 dichlorodiphenylsilane (2.5g, 10画 ol)을 적가하고, 얻어지는 흔합물을 상온에서 16 시간 교반하였다.
그리고, 상기 플라스크의 온도를 -20 °C 이하로 넁각한 다음 인덴- lithiation 용액 (1.2g, lOmmol in THF 10 mL)을 적가하고 얻어지는 흔합물을 상온에서 24 시간 교반하였다. 이후, 얻어지는 용액을 감압 건조하여 상기 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 핵산에 용해시켜 여과하여 남아 있는
LiCl을 제거하고 여액 (filtrate) 감압 건조하여 여액에서 핵산을 제거함으로써 다이페닐 (인데닐) (테트라메틸사이클로펜타다이에닐)실란을 얻었다. lOOmL schlenk flask에서 앞서 합성한 다이페닐 (인데닐) (테트라메틸사이클로펜타다이에닐)실란 (4.2g, lOmmol)을 THF (15mL)에 녹였다. 그리고, 이 용액을 -20°C 이하로 넁각한 다음, 상기 용액에 n-BuLi (2.5M in hexane, 8.4mL, 21mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 6 시간 교반하였다.
한편, 별도로 준비된 250mL schlenk flask에서 ZrCl4(THF)2 (3.8g, lOmmol)를 를루엔 (15mL)에 분산시킨 후, 얻어지는 흔합물을 -20°C에서 교반하였다. 이어서, 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물을 상은에서 48 시간 동안 교반하였다.
이후, 얻어지는 용액을 감압 건조하여 용액으로부터 용매를 제거하였다. 그리고, 얻어지는 고체를 다이클로로메탄 (DCM)에 용해시켜 여과하여 남아 있는
LiCl을 제거하고 여액 (filtrate)을 감압 건조하여 DCM을 제거하였다. 이어서, 얻어지는 고체를 를루엔 30mL에 넣어 16 시간 동안 교반한 후 여과하여 레몬색 고체 형상의 다이페닐실릴렌 (테트라메틸사이클로펜타다이에닐) (인데닐)지르코늄
다이클로라이드 (2. lg, 3.6誦01)를 얻었다 (36% yield).
¾ NMR (500 MHz, CDC13): 8.08-8.12 (2H, m) , 7.98-8.05 (2H, m), 7.77
(1H, d), 7.47-7.53 (3H, m), 7.42-7.46 (3H, m), 7.37-7.41 (2H, m), 6.94 (1H, t), 6.23 (1H, d), 1.98 (3H, s), 1.95 (3H, s), 1.68 (3H, s), 1.52 (3H, s). 앞서 합성한 다이페닐실릴렌 (테트라메틸사이클로펜타다이에닐) (인데닐)지르코늄
다이클로라이드 (l.Og, 1.7麵 ol), Pd/C (10mol%), DCM (40mL)를 lOOmL의 고압 반웅기에 주입하고, 약 60 bar의 압력까지 수소를 채웠다. 이어서, 상기 고압 반웅기에 담긴 흔합물을 약 80°C에서 약 24 시갚 동안 교반하였다. 반웅이 종료되면, 반응 생성물을 celite pad에 통과시켜 반웅 생성물로부터 고체를 제거하고
다이페닐실릴렌 (테트라메틸사이클로펜타다이에닐 ) (테트라하이드로인데닐)지르 코늄 다이클로라이드 (이하, '메탈로센 촉매 전구체 B'라 함)를 얻었다 (0.65g, 1. lmmol , 65% yield) .
Figure imgf000026_0001
Έ NMR (500 MHz, CDC13): 7.90-8.00 (4H, m) , 7.38-7.45 (6H, m), 6.80 (1H, s), 5.71 (1H, s), 3.15-3.50 (1H, m) , 2.75-2.85 (1H, m), 2.50—2.60 (1H, m), 2.12 (3H, s), 2.03 (3H, s), 1.97-2.07 (1H, m) , 1.76 (3H, s), 1.53-1.70 (4H, m), 1.48 (3H, s). 제조예 3: 전이 금속 화합물 (메탈로센 촉매 전구체 D)의 제조
건조된 250mL schlenk flask에서 fluorene 1.622 g (10 mmol)을 넣고, 아르곤 하에서 200 mL의 THF를 주입하였다. 그리고, 얻어지는 용액을 0°C로 냉각한 후, n-BuLi (2.5 M in hexane, 4.8 mL, 12 mmol)을 천천히 적가하였다. 이어서, 반응 흔합물의 온도를 천천히 상온으로 올린 후 반웅 흔합물을 상온에서 하룻밤 동안 교반하였다.
한편, 별도의 250mL schlenk flask에서 dichlorodimethylsi lane (1.2 mL, 10 睡 ol, Fw 129.06, d 1.07 g/mL)을 hexane 30 mL에 녹인 후, 이 용액을 -78°C로 넁각하였다. 이어서, 이 용액에 앞서 제조한 lithiated 용액을 천천히 주입하였다. 그리고 얻어지는 용액을 상온에서 하루 동안 교반하였다.
한편ᅳ TMCP 10 隱 ol을 THF에 녹인 후 이 용액을 0°C로 냉각하였다. 이어서, 상기 용액에 n-BuLi (2.5 M in hexane, 4.8 mL, 12 mmol)을 천천히 적가한 후, 얻어지는 용액을 상온에서 하루 동안 교반하였다. 이후, 하루 동안 교반된 클로로 (9H-플루오렌 -9-일)디메틸실란 용액과 lithiated-TMCP 용액을 cannula로 흔합하 ¾다. 이때, cannula로 상기 두 용액 중 어느 용액을 옮기더라도 실험 결과에 영향을 미치지 않았다. 상기 두 용액의 흔합물을 하루 동안 교반한 다음 플라스크에 50 mL의 물을 넣어 반웅을 종료하고 유기층을 분리하였다. 상기 유기층에 MgS04를 첨가하여 수분을 제거한 후 감압 건조하여 노란색 파우더 형태의 (9H-플루오렌 -9-일) (2,3,4,5- 테트라메틸사이클로펜타-2,4-디엔-l-일)실란을 얻었다 (3.53 g, 10.25 mmol, 100% yield, NMR 기준 순도 10(», Mw 344.56 g/mol).
¾ NMR (500 MHz, CDC13): -0.36 (6H, s), 1.80 (6H, s), 1.94 (6H, s), 3.20 (1H, s), 4.09 (1H, s), 7.28-7.33 (4H, m), 7.52 (2H, d) , 7.83 (2H, d). 오본에서 건조한 250mL schlenk flask에서 앞서 제조한 중간체를 넣고 디에틸에테르에 녹인 다음 2.1 당량의 n-BuLi (8.6 mL, 21.5匪 ol)을 적가하여 하룻밤 동안 교반하였다.
이후, 얻어지는 생성물을 진공 하에서 건조시킨 후 얻어지는 슬러리를 schlenk filter로 여과하여 노란색 고체를 얻었다. 상기 노란색 고체는 새로운 250 mL의 schlenk flask에 넣고, 를루엔 50 mL를 투입하여 suspension을 준비하였다.
한편, glove box 내에서 별도로 준비된 250mL schlenk flask에 1 당량의 ZrCl4(THF)2를 넣고, 를루엔을 투입하여 분산시켰다. 그리고, Zr 용액과 앞서 제조한 lithiation된 리간드 용액을 -78°C로 냉각하였다. 이어서, 상기 흔합물에 앞서 제조한 lithiation된 리간드 용액을 천천히 주입하였다. 그리고, 얻어지는 흔합물의 온도를 천천히 상온까지 을린 후, 상기 흔합물을 하루 동안 교반하였다.
이렇게 얻어진 반웅 생성물을 아르곤 하에서 schlenk filter로 여과하여 LiCl을 제거하고자 하였으나, 생성물의 용해도가 좋지 않아 filtercake의 형태로 디메틸실릴렌 (테트라메틸사이클로펜타다이에닐) (9H- 플루오렌 -9-일)지르코늄 다이클로라이드 (이하, '메탈로센 촉매 전구체 D'라 함)를 얻었다 (3.551 g, 6.024 mmol, 61.35% yield, NMR 기준 순도 85.6 중량 % (나머지 함량은 LiCl임), Mw 504.68 g/mol).
Figure imgf000028_0001
Ή 匿 (500 MHz, CDCI3): 1.30 (6H, s), 1.86 (6H, s), 1.95 (6H, s), 7.21 (2H, m), 7.53 (2H, m), 7.65 (2H, m), 8.06 (2H, m). 제조예 4: 전이 금속 화합물 (메탈로센 촉매 전구체 E)의 제조
상온에서 50 g의 Mg(s)를 10 L 반응기에 가한 후, THF 300 mL을 가하였다. 0.5 g 정도를 가한 후, 반웅기 온도를 50°C로 유지하였다. 반응기 온도가 안정화된 후 250 g의 6-t-부톡시핵실 클로라이드 (6-t- buthoxyhexyl chloride)를 피딩펌프 (feeding pump)를 이용하여 5 mL/min의 속도로 반응기에 가하였다. 6-t-부특시핵실 클로라이드를 가함에 따라 반웅기 온도가 4 내지 5°C정도 상승하는 것을 관찰하였다. 계속적으로 6-t-부록시핵실 클로라이드을 가하면서 12 시간 교반하였다. 반웅 12시간 후 검은색의 반웅용액을 얻었다. 생성된 검은색의 용액 2 mL 취한 뒤 물을 가하여 유기층을 얻어 1H-NM을 통해 6-t-부특시핵산 (6-t-buthoxyhexane)을 확인하였다. 상기 6-t-부록시핵산으로부터 그리냐드 (Gringanrd) 반응이 잘 진행되었음을 알 수 있었다. 그리하여 6-t-부톡시핵실 마그네슘 클로라이드 (6-t-buthoxyhexyl magnesium chloride)를 합성하였다.
MeSiCl3 500 g과 1 L와 THF를 반옹기에 가한 후 반웅기 온도를 - 20°C까지 넁각하였다. 합성한 6-t-부록시핵실 마그네슘 클로라이드 중 560 g을 피딩펌프를 이용하여 5 mL/min의 속도로 반웅기에 가하였다. 그리냐드 시약 (Grignard reagent)의 피딩 (feeding)이 끝난 후 반응기 온도를 천천히 상온으로 올리면서 12시간 교반하였다. 반응 12시간 후 흰색의 MgCl2염이 생성되는 것을 확인하였다. 핵산 4 L을 가하여 랩도리 (labdori)을 통해 염을 제거하여 필터용액을 얻었다. 얻은 필터용액을 반웅기에 가한 후 70°C에서 핵산을 제거하여 엷은 노란색의 액체를 얻었다. 얻은 액체를 1H-NMR을 통해 원하는 메틸 (6-t-부록시 핵실)디클로로실란 {Methyl (6-t-buthoxy hexyDdichlorosilane} 화합물임을 확인하였다.
1H-NMR (CDC13): 3.3 (t, 2H) , 1.5 (m, 3H) , 1.3 (m, 5H), 1.2 (s, 9H), 1.1 Cm, 2H), 0.7 (s, 3H) 테트라메틸사이클로펜타디엔 (tetramethylcyclopentadiene) 1.2 mol (150 g)와 2.4 L의 THF를 반웅기에 가한 후 반웅기 온도를 -20°C로 냉각하였다. n-BuLi 480 mL 피딩펌프를 이용하여 5 mL/min의 속도로 반응기에 가하였다. n- BuLi을 가한 후 반응기 온도를 천천히 상온으로 올리면서 12 시간 교반하였다. 반웅 12 시간 후, 메틸 (6-t-부톡시 핵실)디클로로실란 (Methyl (6-t-buthoxy hexyDdichlorosilane) (326 gᅳ 350 mL)을 빠르게 반웅기에 가하였다. 반웅기 은도를 천천히 상온으로 올리면서 12시간 교반한 후 다시 반웅기 온도를 0°C로 넁각시킨 후 2 당량의 t-BuN¾을 가하였다. 반웅기 온도를 천천히 상은으로 을리면서 12시간 교반하였다. 반응 12시간 후 THF을 제거하고 4 L의 핵산을 가하여 랩도리를 통해 염을 제거한 필터용액을 얻었다. 필터용액을 다시 반응기에 가한 후, 핵산을 70°C에서 제거하여 노란색의 용액을 얻었다. 얻을 노란색의 용액을 1H-NMR을 통해 메틸 (6-t - 부특시핵실) (테트라메틸사이클로펜타디에닐) t-부틸아미노실란임을 확인하였다. 상기 메틸 (6-t-부록시핵실) (테트라메틸사이클로펜타디에닐 - 부틸아미노실란에 -78°C에서 2 당량의 n-BuLi을 가하여 디리튬염 용액을 제≥하였다. 상기 디리튬염 용액에 -78°C에서 TiCl3(THF)3 (10 mmol)을 빠르게 가하였다. 그리고, 얻어지는 반웅용액의 온도를 천천히 상온으로 올리면서 12 시간 교반하였다. 12 시간 교반 후, 상기 반응용액에 상은에서 PbCl2 (lOmmol)를 가한 후 12시간 교반하였다. 12시간 교반 후, 푸른색을 띠는 짙은 검은색의 용액을 얻었다. 생성된 반웅용액에서 THF를 제거한 후 핵산을 가하여 생성물을 여과하였다. 그리고, 여액에서 핵산을 제거하여 [methyl(6-t- buthoxyhexyl )si lyl (tetramethylcyclopentadienyl )(t-Butylamido)]TiCl2 (이하, '메탈로센 촉매 전구체 E'라 함)를 제조하였다.
Figure imgf000030_0001
Ή-NMR (CDCI3): 3.3 (s, 4H), 2.2 (s, 6H), 2.1 (s, 6H) , 1.8-0.8 (m), 1.4 (s, 9H), 1.2 (s, 9H), 0.7 (s, 3H). 제조예 5: 전이 금속 화합물 (메탈로센 촉매 전구체 F)의 제조
fluorene 2 g을 MTBE 5 mL, hexane 100 mL에 녹여 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. (6-(tert-butoxy)hexyl )dichloro(methyl )si lane 3.6 g을 핵산 (hexane) 50 mL에 녹여 dry ice/acetone bath하에서 fluorene—Li 슬러리에 30분 동안 transfer하여 상온에서 밤새 교반하였다. 이와 동시에 5,8- d i me t hy 1 -5 , 10-d i hydr 0 i ndeno [ 1 , 2-b ] i ndo 1 e (12 瞧 ol, 2.8 g) 또한 THF 60 mL에 녹인 후, 여기에 2.5 M n-BuLi hexane solution 5.5 mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. fluorene과 (6- (tert-butoxy)hexyl)dichIoro(methyI)siIane과의 반웅 용액을 샘플링하여 NMR로 반응 완료를 확인한 후 5,8— dimethyl-5, 10-dihydroindeno[l, 2-b] indole- Li solution을 dry ice/acetone bath하에서 transfer하였다. 그리고, 얻어지는 반웅 흔합물을 상은에서 밤새 교반하였다. 반응 후 ether/water로 추출 (extract ion)하여' 유기층의 잔류수분을 MgS04로 제거 후 리간드 화합물 (Mw 597.90, 12 瞧 ol)을 얻었으며 이성질체 (isomer) 두 개가 생성되었음을 NMR에서 확인할 수 있었다.
¾ NMR (500 MHz, d6-benzene): -0.30 ~ -0.18 (3H, d), 0.40 (2H, m) , 0.65 ~ 1.45 (8H, m) , 1.12 (9H, d), 2.36 - 2.40 (3H, d), 3.17 (2H, m), 3.41 ~ 3.43 (3H, d), 4.17 - 4.21 (1H, d), 4.34 ~ 4.38 (1H, d), 6.90 - 7.80 (15H, m) 상기에서 합성한 리간드 화합물 7.2 g (12 mmol)을 diethylether 50 mL에 녹인 후, 여기에 2.5 M n-BuLi hexane solut ion 11.5— mL를 dry ice/acetone bath에서 적가하여 상온에서 밤새 교반하였다. 그리고, 얻어지는 반웅 생성물을 진공 건조하여 갈색 (brown color)의 sticky oil을 얻었다. 상기 sticky oil을 틀루엔에 녹여 슬러리를 얻었다. ZrCI4(THF)2를 준비하고 를루엔 50 mL를 넣어 슬러리로 준비하였다. 상기 sticky oil에 ZrCl4(THF)2의 50 mL 를루엔 슬러리를 dry ice/acetone bath에서 transfer하였다. 얻어지는 반응 흔합물은 상은에서 밤새 교반함에 따라 보라색 (violet color)으로 변화하였다. 반응 용액을 필터하여 UC1을 제거하였다. 여과액 (filtrate)의 를루엔을 진공 건조하여 제거한 후 핵산을 넣고 1시간 동안 sonication하였다. 그리고, 얻어지는 슬러리를 여과하여 짙은 보라색 (dark violet)의 고체인 전이 금속 화합물 (이하 '메탈로센 촉매 전구체 Γ라 함)을 얻었다 (Mw 758.02, 7.92 mmol, yield 의 isomer가 관찰되었다.
Figure imgf000031_0001
Ή NMR (500 MHz, CDC13): 1.19 (9H, d), 1.71 (3H, d) , 1.50 ~ 1.70(4Η m), 1.79C2H, m), 1.98 ~ 2.19(4Η, m) , 2.58(3Η, s), 3.38 (2Η, m) , 3.91 (3Η, d), 6.66 ~ 7.88 (15H, m) 제조예 6: 전이 금속 화합물 (메탈로센 촉매 전구체 I)의 제조
건조된 250 mL Sc lenk flask에 2-(6-터트-부톡시핵실)사이클로펜타- 1,3-디엔 (2-(6-tert-butoxyhexyl)cyclopenta—l,3-diene) 5.25 g(23.6 匪 ol)을 넣고 메탄올 50 mL와 아세톤 4 mL을 넣은 후 0°C까지 넁각시켰다. 여기에 피롤리딘 2.95 mL(1.5 당량)을 적가한 다음, 천천히 상온으로 승온시키고 7시간 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시켰다. 그 결과, 2-(6-터트-부록시핵실) -5— (프로판 -2- 일리덴)사이클로펜타 - 1, 3-디엔 ( 2- ( 6- er t -but oxyhexy 1 ) -5- ( pr opaan-2- y 1 i dene ) eye 1 opent a- 1 , 3-d i ene ) 5.0 g(19.07 誦 ol, 80·7¾)가 생성되었음을 NMR로 확인하였고, 이를 에테르에 녹였다. 다른 건조된 250 mL Schlenk flask에 2,7-디-터트-부틸-911- 플루오렌 (2,7-di-tert-butyl-9H-fluorene) 2.784 g(10 mmol)을 넣고 아르곤 상태로 만들어 준 다음, 감압 하에 에테르 50 mL를 넣어 녹였다. 상기 용액을 0°C로 넁각한 다음 2.5 M n-BuLi 핵산 용액 4.8 mL(12 圆 ol)을 적가하고, 상온으로 승온시킨 후 하루 동안 교반하였다. 상기 용액을 앞서 제조한 2-(6- 터트-부톡시핵실) -5- (프로판 -2-일리덴)사이클로펜타 -1,3-디엔의 에테르 용액에 적가한 다음, 하루 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시킨 후 여과하여 순수한 용액을 얻었다. 상기 용액을 진공 감압 하에 용매를 모두 증발시켜 5.0 g(9.36 腿 ol, 93.6%)의 오일을 얻었다.
NM 기준 purity (wt )=100%, Mw=540.86
¾ NMR (500 丽 z, CDCls): 0.87 (1H, m) , 0.99 (6H, m), 1.19 (9H, s), 1.30 (11H, s), 1.41 (11, s), 1.51-1.67 (5H, m) , 3.00, 3.13 (1H, s), 3.35 (2H, m), 3.87, 4.05, 4.09, 4.11 (1H, s), 5.72, 5.97, 6.14, 6.61 (3H, s), 7.28 (1H, m), 7.35 (1H, m), 7.42 (1H, m) , 7.58 (2H, m) , 7.69 (2H, d) 오븐에 건조한 250 mL Schlenk flask에 상기에서 합성한 리간드 화합물을 넣고 MTBE 4 당량과 를루엔에 녹인 다음, 2.1 당량의 n-BuLi 핵산 용액을 가하고 24시간 동안 lithiation시켰다. Glove box 내에서 2.1 당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 에테르를 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 -78°C까지 냉각시킨 다음, lithiation된 리간드 화합물을 천천히 ZrCl4(THF)2의 서스펜션에 가하였다. 상기 혼합물을 천천히 상온으로 승온시키고 하루 동안 교반한 다음, 흔합물 내의 에테르를 진공 감압을 통해 약 1/5 부피까지 제거하고, 남아있는 용매의 5배 부피의 핵산을 가해 재결정시켰다. 제조된 핵산 슬러리를 아르곤 하에 여과하고, 여과된 고체와 여과액을 모두 진공 감압 하에 용매를 증발시켰다. 위에 남은 필터 케이크 (filter c¾ke)와 filtrate를 각각 NMR을 통하여 확인하고, glove box 내에서 계량하여 수율 및 순도를 확인하였다. 5.1 g(9.4 讓 ol)의 리간드 화합물로부터 4.4 g(6.3 mmol , 67.4%)의 갈색 고체 (이하 '메탈로센 촉매 전구체 Γ라 함)가 얻어졌다.
100%, Mw: 700.98
Figure imgf000033_0001
H NMR (500 MHz, CDC13): 1.17 (9H, s), 1.23-1.26 (6H, m), 1.27 (12H, s), 1.38 (6H, s), 1.40-1.44 (4H, m), 2.33 (3H, s), 2.36 (3H, s), 3.33 (2H, t), 5.31 (1H, m), 5.54 (1H, m) , 5.95 (1H, m), 7.39 (1H, m) , 7.58 (2H, m) , 7.62 (1H, m), 7.70 (1H, s), 8.00 (1H, t) 제조예 7: 전이 금속 화합물 (메탈로센 촉매 전구체 J)의 제조
건조된 250 mL Schlenk flask에 인덴 (indene) 2.323 g(20 mmol)을 넣고 아르곤 기체 하에서 MTBE 40 mL를 주입하였다. 상기 용액을 0°C까지 냉각한 다음, 2.5 M n-BuLi 핵산 용액 9.6 mL(20 mmol)를 적가하였다. 상기 혼합물을 천천히 상온으로 승온시키고 24시간 동안 교반하였다.
다른 250 mL Schlenk flask에 (6-터트— 부톡시핵실)디클로로 (메틸)실란 ((6-tert-butoxyhexyl)dichloro(methyl)silane) 2.713 g(10腿 ol)과 핵산 30 mL를 넣고 -78°C까지 넁각한 다음, 여기에 위에서 준비된 흔합물을 적가하였다. 상기 흔합물을 천천히 상온으로 승온시키고
24시간 동안 교반하였다. 여기에 물 50 mL을 넣어 quenching하고 유기층을 분리하여 MgS04로 건조시켰다. 그 결과, 3.882 g(9.013 mmol, 90.1%)의 생성물을 얻었다. 證 기준 purity (wt )=100%, Mw=430.70
¾ NMR (500 MHz, CDC13): -0.45, -0.22, -0.07, 0.54 (total 3H, s), 0.87 (1H, m), 1.13 (9H, m), 1.16-1.46 (10H, m), 3.25 (2H, m), 3.57 (1H, m), 6.75, 6.85, 6.90, 7.11, 7.12, 7.19 (total 4H, m), 7.22-7.45 (4H, m), 7.48-7.51 (4H, m) 오븐에 건조한 250 mL Schlenk flask에 상기에서ᅳ 합성한 리간드 화합물을 넣고 4 당량의 MTBE와 를루엔 60 mL에 녹였다. 여기에 2.1 당량의 n- BuLi 핵산 용액을 가하고 24시간 동안 lithiation시킨 다음, 용매를 모두 진공 감압하여 제거하였다. 이를 핵산 용매 하에 schlenk filter를 통하여 Li- salt만 얻었다 (3.092 g, 6.987 瞧 ol). 이러한 과정은 보다 순수한 메탈로센 촉매 전구체를 얻기 위하여 purification의 일환이다. Glove box 내에서 2.1 당량의 ZrCl4(THF)2을 취해 250 mL Schlenk flask에 담고 를루엔을 넣어 서스펜션 (suspension)을 준비하였다. 상기 두 개의 플라스크 모두 -78°C까지 넁각시킨 다음, lithiation된 리간드 화합물올 천천히 ZrCl4(THF)2의 를루엔 서스펜션에 가하였다. 상기 흔합물을 천천히 상온으로 승온시키고 하루 동안 교반한 다음, 흔합물 내의 를루엔을 진공 감압을 통해 제거하고 이전 용매 정도 부피의 핵산을 가해 재결정시켰다. 제조된 핵산 슬러리를 아르곤 하에 여과하고, 여과된 고체와 여과액을 모두 진공 감압 하에 용매를 증발시켰다. 위에 남은 필터 케이크 (filter cake)와 filtrate를 각각 NMR을 통하여 확인하고, glove box 내에서 계량하여 수율 및 순도를 확인하였다.
3.1 g(6.987 画 ol)의 리간드 화합물로부터 1.321 g(2.806 mmol , 40.2%)의 노란색 오일 (이하 1메탈로센 촉매 전구체 J1라 함)을 얻어 를루엔 용액으로 보관하였다 (0.3371 mmol/mg).
賺 기준 purity (wt )=100 , Mw: 605.85
Figure imgf000035_0001
¾ NMR (500 MHz , CDC13) : 0.88 (3H, m) , 1.15 (9H, m) , 1.17-1.47 (10H, m) , 1.53 (4H, d) , 1.63 (3H, m), 1.81 (1H, m) , 6.12 (2H, m) , 7.15 (2H, m) , 7.22-7.59 (8H, m) 제조예 8 : 전이 금속 화합물 (메탈로센 촉매 전구체 K)의 제조
THF 용매 하에서 tert-Bu-0-(C¾)6Cl 화합물과 Mg(0) 간의 반응으로부터 그리냐드 (Grignard) 시약인 tert-Bu-0-(CH2)6MgCl 용액 1.0 m 을 얻었다. 상기 제조된 그리냐드 시약을 -30°C의 MeSiCl3 (176.1 mL, 1.5 mol )와 THF (2.0 mL)가 담겨 있는 플라스크에 투입하고, 얻어지는 반웅 흔합물을 상온에서 8 시간 이상 교반시켰다. 이후, 얻어진 반웅 생성물을 여과하고 여액을 진공 건조하여 tert-Bu-0-(CH2)6SiMeCl2를 얻었다 (수율 92%) .
-30°C에서 반응기에 플루오렌 (100 g, 0.60 mol ) , 핵산 (4.5 L) 및 MTBE (methyl tert-butyl ether , 35.7 mL , 0.3 mol )를 넣고, 1 당량의 n-BuLi (2.5 M in Hexane)을 천천히 가한 후, 상온에서 6 시간 교반하고 40°C에서 3 시간 이상 교반하였다. 이후, 반웅기 온도를 -30°C로 넁각시키고, -30°C에서 핵산 (3 L)에 녹아있는 tert-Bu-0-(CH2)6SiMeCl2 (162.8 g, 0.6 mol )에 상기에서 제조한 플루오레닐 리튬 용액을 1 시간에 걸쳐 천천히 가하였다. 그리고, 얻어지는 반웅 흔합물을 상온에서 8 시간 이상 교반하였다. 이어서, 반웅 흔합물의 온도를 -30°C로 넁각시킨 후, C5H5Na (55.9 g, 0.6 mol ) /THF (4 L) 용액을 가하고 얻어지는 반웅 흔합물올 6 시간 이상 교반하였다.
이후, 반웅 생성물의 모든 휘발성 물질들을 진공 건조하고 핵산으로 추출하여 최종 리간드인 노란색 오일 형태의 (tert-Bu-0— (C¾)6)MeSi (C5H5) (9- C13H9)를 얻었다 (수율 99¾>, 리간드 overall yield 91%).. 리간드의 구조는 - NMR을 통해 확인되었다.
¾ NMR( 400MHz, CDC13) : -0.13, 0.06 (MeSi , 3Η, s), 0.27, 0.35 (Si- CH2, 2H, m), 1.19 (tert-BuO, 9H, s), 1.15-1.40 (CH2> 4H, m) , 1.41-1.55 (CH2> 4H, m), 2.70, 3.10 (methylene CpH, 2H, brs), 3.31 (tert-BuO-CH2, 2H t), 4.01 (methylene Flu-H, 1H, s), 6.00-6.30, 6.40-6.70 (CpH, 4Hᅳ m), 7.26-7.50 (Flu-H, 3H, m), 7.51 (Flu-H, 1H, d), 7.58 (Flu-H, 1H, d), 7.80 (Flu-H, 1H, d), 7.90 (Flu-H, 2H, d). -30°C에서 (tert-Bu-0-(CH2)6)MeSi(C5H5)(9-C13H9) (310.1 g, 0.72 mol)/를루엔 (3.0 L) 용액에 2 당량의 n-BuLi (2.5 M in Hexane)을 천천히 가하고 상온으로 올리면서 8 시간 이상 교반하였다. 이어서, 얻어지는 반웅 흔합물의 온도를 -30°C로 넁각시킨 후, 여기에 ZrCl4(THF)2 (271.7 g, 0.72 mol)/를루엔 (2.5 L)의 슬러리 용액을 천천히 가하고 얻어지는 반웅 흔합물을 상온에서 8 시간 동안 교반하였다. 이후, 얻어지는 반웅 생성물에서 모든 휘발성 물질을 진공 건조하고, 얻어진 오일성 액체 물질에 디클로로메탄 용매를 가하여 걸러내었다. 걸러낸 용액을 진공 건조한 후, 핵산을 가해 침전을 유도하였다. 얻어진 침전물을 여러 번 핵산으로 씻어내어 붉은색 고체 형태의 racemic-(tert-Bu-0-(CH2)6)MeSKC5H4)(9-C13¾)ZrCl2 (이하, '메탈로센 촉매 전 율 70%).
Figure imgf000036_0001
Ή匿 (400腿 z, C6D6) : 0.66 (MeSi , 3H, s) , 1.16 (tert-BuO, 9H, s), 1.35 (Si-CH2( 2H, m) , 1.40-1.75 (CH2> 8H, m) , 2.70, 3.30 (tert-BuO-CH2> 2H t), 5.46 (CpH, 2H, br d) , 6.46 (CpH, 2H, br s), 7.05-7.20 (Flu-H, 2H, m) , 7.34 (Flu-H, 1H, d), 7.39 (Flu-H, 1H, d) , 7.46 (Flu-H, 2H, t), 7.89 (Flu- H, 2H, d) 제조예 9: 담지 촉매의 제조
300 mL 유리 반응기에 를루엔 100 mL를 넣고 실리카 (Grace Davison사 제조 SP2410) 10g을 투입한 후, 반웅기의 온도를 4( C로 을리면서 교반하였다. 여기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사) 30 mL를 투입하고 은도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다. 이후, 반웅기의 온도를 40°C로 넁각한 후 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다. 다시 상기 반웅기에 를루엔 100 mL를 투입하고 10 분간 교반한 후, 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다.
이어서, 상기 반웅기에 를루엔 50 mL를 투입하고, 상기 제조예 1에서 제조한 메탈로센 촉매 전구체 A (0.50 g)와 를루엔 30 mL를 투입하고 200 rpm으로 90 분간 교반하였다. 이후, 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다.
이어서, 상기 반웅기에 를루엔 30 mL를 투입하고, 다이메틸실릴렌비스 (인데닐)지르코늄 다이클로라이드 (CAS Number: 121009-93-6 Strem 사 제조, 이하 '메탈로센 촉매 전구체 C'라 함) (0.22 g) 및 를루엔 20 mL를 투입하고 200 rpm으로 90 분간 교반하였다. 이후, 반웅기의 온도를 상온으로 낮추고 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decantation하였다. 그리고, 반웅기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 250 mL schlenk flask로 이송하여 decant at ion하였다. 얻어지는 반웅 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 10: 담지 촉매의 제조
상기 제조예 9에서 메탈로센 촉매 전구체 C (0.22 g) 대신 제조예 3에서 제조한 메탈로센 촉매 전구체 D (0.20 g)를 사용한 것을 제외하고 제조예 9와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 11: 담지 촉매의 제조 상기 제조예 9에서 메탈로센 촉매 전구체 C (0.22 g) 대신 제조예 5에서 제조한 메탈로센 촉매 전구체 F (0.10 g)를 사용한 것을 제외하고 - 제조예 9와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 12: 담지 촉매의 제조
300 mL 유리 반웅기에 를루엔 100 mL를 넣고 실리카 (Grace Davison사 제조 SP2410) 10g을 투입한 후, 반응기의 은도를 40°C로 을리면서 교반하였다. 여기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사) 30 mL를 투입하고 온도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다.
한편, schlenk flask에 상기 제조예 1에서 제조한 메탈로센 촉매 전구체 A (0.50 g), 디클로로 [rac-에틸렌비스 (인데닐)]지르코늄 (CAS Number: 100080-82-8, Sigma-Aldrich 사 제조, 이하 '메탈로센 촉매 전구체 G'라 함) (0.22 g), 를루엔 30 mL, 트리이소부틸알루미늄 0.3 g을 투입하고, 이를 상은에서 15 분간 교반하였다. 그리고, 얻어지는 흔합물을 상기 유기 반웅기에 투입하고 유리 반응기의 온도를 70°C로 올린 다음 2 시간 동안 교반하였다.
이후, 반응기의 온도를 상은으로 낮춘 후 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant ati on하였다. 그리고, 반웅기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 schlenk flask로 이송하여 decant at ion하였다. 얻어지는 반응 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 13: 담지 촉매의 제조
상기 제조예 12에서 메탈로센 촉매 전구체 G (0.22 g) 대신 메탈로센 촉매 전구체 C (0.20 g)를 사용한 것을 제외하고 제조예 12와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 14: 담지 촉매의 제조
상기 제조예 12에서 메탈로센 촉매 전구체 G (0.22 g) 대신 제조예 3에서 제조한 메탈로센 촉매 전구체 D (0.25 g)를 사용한 것을 제외하고 제조예 12와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 15 : 담지 매의 제조
상기 제조예 12에서 메탈로센 촉매 전구체 G (0.22 g) 대신 제조예 8에서 제조한 메탈로센 촉매 전구체 K (0. 18 g)를 사용한 것을 제외하고 제조예 12와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 16 : 담지 촉매의 제조
300 mL 유리 반웅기에 를루엔 100 mL를 넣고 실리카 (Grace Davi son사 제조 SP2410) 10g을 투입한 후, 반응기의 온도를 40°C로 을리면서 교반하였다. 여기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemar le 사) 30 mL를 투입하고 온도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다. 이후, 반웅기의 온도를 40°C로 넁각한 후 교반을 중지하여 반옹 생성물을 10 분간 정치시킨 후 decant at ion하였다. 다시 상기 반웅기에 를루엔 100 mL를 투입하고 10 분간 교반한 후, 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다.
이어서, 상기 반웅기에 를루엔 50 mL를 투입하고, 상기 제조예 2에서 제조한 메탈로센 촉매 전구체 B (0.40 g)와 를루엔 30 mL를 투입하고 200 rpm으로 90 분간 교반하였다. 이후ᅳ 교반을 중지하여 반옹 생성물을 10 분간 정치시킨 후 decant at ion하였다.
이어서, 상기 반웅기에 를루엔 30 mL를 투입하고, 상기 제조예 4에서 제조한 메탈로센 촉매 전구체 E (0.23 g)와 를루엔 20 mL를 투입하고 200 rpm으로 90 분간 교반하였다. 이후, 반웅기의 은도를 상온으로 낮추고 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다. 그리고, 반웅기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 250 mL schlenk f lask로 이송하여 decant at i on하였다. 얻어지는 반웅 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 17 : 담지 촉매의 제조
300 mL 유리 반웅기에 를루엔 100 mL를 넣고 실리카 (Grace Davi son사 제조 SP2410) 10g을 투입한 후, 반웅기의 온도를 40°C로 올리면서 교반하였다. 여기에 30 중량 ¾>의 메틸알루미녹산 (MAO)/를루엔 용액 (Albemar le 사) 30 mL를 투입하고 온도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다.
한편, schl enk f l ask에 상기 제조예 2에서 제조한 메탈로센 촉매 전구체 B (0.40 g) , 제조예 3에서 제조한 메탈로센 촉매 전구체 D (0.31 g), ' 를루엔 30 mL , 트리이소부틸알루미늄 0.3 g을 투입하고, 이를 상온에서 15 분간 교반하였다. 그리고, 얻어지는 흔합물을 상기 유기 반웅기에 투입하고 유리 반응기의 온도를 7( C로 올린 다음 2 시간 동안 교반하였다.
이후, 반웅기의 온도를 상온으로 낮춘 후 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다. 그리고, 반응기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 schlenk f l ask로 이송하여 decant at ion하였다. 얻어지는 반웅 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 18 : 담지 촉매의 제조
상기 제조예 17에서 제조예 3에서 제조한 메탈로센 촉매 전구체 D
(0.31 g) 대신 제조예 4에서 제조한 메탈로센 촉매 전구체 E (0.23 g)를 사용한 것을 제외하고 제조예 17과 동일한 방법으로 담지 촉매를 제조하였다. 제조예 19 : 담지 촉매의 제조
상기 제조예 17에서 제조예 3에서 제조한 메탈로센 촉매 전구체 D
(0.31 g) 대신 디클로로 [rac-에틸렌비스 (4,5,6,7-테트라하이드로 -1- 인데닐) ]지르코늄 (CAS Number: 100163-29-9 , Sigma-Aldri ch 사 제조, 이하 '메탈로센 촉매 전구체 H 1라 함) (0.27 g)를 사용한 것을 제외하고 제조예 17과 동일한 방법으로 담지 촉매를 제조하였다. 제조예 20 : 담지 촉매의 제조
상기 제조예 17에서 제조예 3에서 제조한 메탈로센 촉매 전구체 D (0.31 g) 대신 제조예 6에서 제조한 메탈로센 촉매 전구체 I (0.30 g)를 사용한 것을 제외하고 제조예 17과 동일한 방법으로 담지 촉매를 제조하였다. 제조예 21 : 담지 촉매의 제조
300 mL 유리 반웅기에 를루엔 100 mL를 넣고 실리카 (Grace Davi son사 제조 SP2410) 10g을 투입한 후, 반응기의 온도를 40°C로 올리면서 교반하였다. 여기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemar le 사) 30 mL를 투입하고 온도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다.
한편, schl enk f l ask에 상기 제조예 2에서 제조한 메탈로센 촉매 전구체 B (0.30 g) , 제조예 3에서 제조한 메탈로센 촉매 전구체 D (0.26 g), 를루엔 30 mL , 트리이소부틸알루미늄 0.5 g을 투입하고, 이를 상온에서 15 분간 교반하였다. 그리고, 얻어지는 흔합물을 상기 유기 반웅기에 투입하고 유리 반응기의 온도를 70°C로 올린 다음 2 시간 동안 교반하였다.
이후, 반웅기의 온도를 상온으로 낮춘 후 교반을 중지하여 반응 생성물을 10 분간 정치시킨 후 decant at i on하였다. 그리고, 반응기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 schlenk f lask로 이송하여 decant at ion하였다. 얻어지는 반웅 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 22 : 담지 촉매의 제조
상기 제조예 21에서 제조예 3에서 제조한 메탈로센 촉매 전구체 D (0.26 g) 대신 제조예 7에서 제조한 메탈로센 촉매 전구체 J (0.22 g)를 사용한 것을 제외하고 제조예 21과 동일한 방법으로 담지 촉매를 제조하였다. 제조예 23 : 담지 촉매의 제조
300 mL 유리 반응기에 를루엔 100 mL를 넣고 실리카 (Grace Davi son사 제조 SP2410) 10g을 투입한 후, 반웅기의 온도를 40°C로 올리면서 교반하였다. 여기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemar le 사) 30 mL를 투입하고 온도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다.
한편, schlenk f l ask에 메탈로센 촉매 전구체 B (0.30 g), 메탈로센 촉매 전구체 C (0. 17 g) , 메탈로센 촉매 전구체 J (0. 15 g) , 를루엔 30 mL , 트리이소부틸알루미늄 0.5 g을 투입하고, 이를 상온에서 15 분간 교반하였다. 그리고, 얻어지는 흔합물을 상기 유기 반응기에 투입하고 유리 반옹기의 온도를 70°C로 을린 다음 2 시간 동안 교반하였다.
이후, 반웅기의 온도를 상은으로 낮춘 후 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at i on하였다. 그리고, 반응기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 schlenk f l ask로 이송하여 decant at ion하였다. 얻어지는 반웅 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 24 : 담지 촉매의 제조
상기 제조예 23에서 메탈로센 촉매 전구체 C (0. 17 g) 대신 메탈로센 촉매 전구체 D (0. 13 g)을 사용하고, 메탈로센 촉매 전구체 J (0. 15 g) 대신 메탈로센 촉매 전구체 K (0. 10 g)를 사용한 것을 제외하고 제조예 23과 동일한 방법으로 담지 촉매를 제조하였다. 제조예 25 : 담지 촉매의 제조
300 mL 유리 반웅기에 를루엔 100 mL를 넣고 실리카 (Grace Davi son사 제조 SP2410) 10g을 투입한 후, 반웅기의 은도를 40 °C로 올리면서 교반하였다. 여기에 30 중량 )의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemar le 사) 30 mL를 투입하고 온도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다. 이후, 반웅기의 온도를 40°C로 냉각한 후 교반을 중지하여 반응 생성물을 10 분간 정치시킨 후 decant at ion하였다. 다시 상기 반웅기에 를루엔 100 mL를 투입하고 10 분간 교반한 후, 교반을 중지하여 반응 생성물을 10 분간 정치시킨 후 decant at i on하였다.
이어서, 상기 반웅기에 를루엔 50 mL를 투입하고, 메탈로센 촉매 전구체 J (0.30 g)와 를루엔 30 mL를 투입하고 200 rpm으로 90 분간 교반하였다. 이후, 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at i MI하였다 .
이어서, 상기 반웅기에 를루엔 30 mL를 투입하고, 메탈로센 촉매 전구체 I (0.33 g)과 를루엔 20 mL를 투입하고 200 rpm으로 90 분간 교반하였다. 이후, 반웅기의 온도를 상온으로 낮추고 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at i on하였다. 그리고, 반웅기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 250 mL schlenk flask로 이송하여 decant at ion하였다. 얻어지는 반응 생성물을 상은에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 26: 담지 촉매의 제조
상기 제조예 25에서 메탈로센 촉매 전구체 J (0.30 g) 대신 메탈로센 촉매 전구체 K (0.18 g)를 사용한 것을 제외하고 제조예 25와 동일한 방법으로 담지 촉매를 제조하였다. 제조예 27: 담지 촉매의 제조
300 mL 유리 반응기에 를루엔 100 mL를 넣고 실리카 (Grace Davison사 제조 SP2410) 10g을 투입한 후, 반웅기의 온도를 40°C로 을리면서 교반하였다. 여기에 30 중량 %의 메틸알루미녹산 (MA0)/를루엔 용액 (Albemarle 사) 30 mL를 투입하고 은도를 70°C로 올려 200 rpm으로 12 시간 동안 교반하였다.
한편, schlenk flask에 메탈로센 촉매 전구체 J (0.40 g), 메탈로센 촉매 전구체 H (0.12 g), 를루엔 30 mL, 트리이소부틸알루미늄 0.3 g을 투입하고, 이를 상온에서 15 분간 교반하였다. 그리고, 얻어지는 흔합물을 상기 유기 반웅기에 투입하고 유리 반웅기의 온도를 70°C로 올린 다음 2 시간 동안 교반하였다.
이후, 반웅기의 온도를 상온으로 낮춘 후 교반을 중지하여 반웅 생성물을 10 분간 정치시킨 후 decant at ion하였다. 그리고, 반웅기에 핵산 100 mL를 투입하여 슬러리를 얻은 후 schlenk flask로 이송하여 decantat ion하였다. 얻어지는 반웅 생성물을 상온에서 3 시간 동안 감압 건조하여 담지 촉매를 얻었다. 제조예 28: 담지 촉매의 제조
상기 제조예 9에서 메탈로센 촉매 전구체 A 대신 제조예 5에서 제조한 메탈로센 촉매 전구체 F를 사용하고, 메탈로센 촉매 전구체 C 대신 디클로로 [비스 ((6-tert-부록시핵실)사이클로펜타디에닐)]지르코늄 (이하 '메탈로센 촉매 전구체 L'이라 함)을 사용한 것을 제외하고 제조예 9와 동일한 방법으로 담지 촉매를 제조하였다. 실시예 1 : 을레핀 중합체의 제조
고압에서 견딜 수 있는 2 L의 반웅기 (autoc lave)에 트리에틸알루미늄 (1 M in hexane) 2 mL , 1-hexene 80 g , hexane 0.6 kg을 투입한 후 500 rpm으로 교반하면서 반응기의 온도를 8( C로 올렸다. 그리고 상기 반웅기에 제조예 9에서 제조한 담지 촉매와 hexane을 vi al에 담아 투입하고 추가적으로 hexane 0.2 kg을 투입하였다. 반웅기 내부 온도가 8C C에 도달하면 상기 반웅기에 에틸렌 가스를 30 bar의 압력으로 계속적으로 가하고 상기 반응 흔합물을 500 rpm으로 교반하여 1 시간 동안 중합하였다. 이후, 교반을 멈추고 민반움 _에틸렌ᅵ_ Zt스를ᅳ배기ᅳ시켰다- L리—고ᅳ- 반응 생성물을 여—과하여—용매를 제거한 다음 80°C의 진공 오본에서 3 시간 동안 건조하여 에틸렌 -1-핵센 공중합체를 얻었다. 실시예 2 내지 16 및 비교예 1 내지 4: 올레핀 중합체의 제조
상기 실시예 1의 담지 촉매 대신 하기 표 1에 기재된 촉매를 사용하고, 중합 조건을 하기 표 1과 같이 조절한 것을 제외하고 실시예 1과 동일한 방법으로 을레핀 중합체를 제조하였다.
【표 11
Figure imgf000044_0001
실시예 8 제조예 16 B/E 10/5.75 60 0.12 [32.3]
실시예 9 제조예 17 B/D 10/7.75 60 0.14
[18.8]
실시예 10 제조예 18 B/E 10/5.75 60 0.13
[26.2]
실시예 11 제조예 19 B/H 10/6.75 45 0.13
[30.7]
실시예 12 제조예 20 B/I 10/7.50 60 0.12
[28.6]
실시예 13 제조예 21 B/D 10/8.67 43 0.15
[16.6]
실시예 14 제조예 22 B/J 10/7.33 60 0.10
[20.9]
실시예 15 제조예 23 B/C/J 10/5.67/5.00 60 0.10
[32.6]
실시예 16 제조예 24 B/D/ 10/4.33/3.33 60 0.13
[35.5]
비교예 1 제조예 25 I/J 10/9.09 50 0.10
[45.7]
비교예 2 제조예 26 I/K 10/5.45 60 0.10
[50.0]
비교예 3 제조예 27 J/H 10/3.00 60 0.13
[38.2]
비교예 4 제조예 28 F/L 10/4.40 60 0.10
[30.5]
비교예 5 및 6: 올레핀 중합체 제품
상기 실시예 및 비교예에서 제조한 을레핀 중합체의 물성을 시관 제품의 물성과 비교하기 위해, 비교예 5로 slurry loop process 중합 공정을 이용하여 제조된 상업용 mLLDPE인 LG 화학사의 LUCE ETM SP330 제품을 준비하였고, 비교예 6으로 shi y loop process 중합 공정을 이용하여 제조된 상업용 mLLDPE인 LG 화학사의 LUCENETM SP330 제품을 준비하였다. 시험예: 담지 촉매의 활성 및 올레핀 중합체의 물성 평가
상기 실시예 1 내지 16 및 비교예 1 내지 4에서 사용한 촉매의 활성 및 상기 촉매를 이용하여 제조한 올레핀 중합체의 물성과 비교예 5 및 비교예 6의 올레핀 중합체 제품의 물성을 표 2에 나타내었다.
구체적으로, 중합 반웅에 이용된 촉매의 질량과 상기 반응으로부터 산출된 고분자의 질량을 측정하여 각 실시예 및 비교예들에서 사용한 촉매의 활성 (activity)를 산출하고 그 결과를 하기 표 2에 나타내었다.
Melt Flow Rate Ratio (MFRR (10/2.16))는 MFR10을 MFR2.i6으로 나누어 계산하였으며 , 11 10은 ISO 1133에 따라 23CTC의 온도 및 10 kg의 하중 하에서 측정하고, ^¾.16은 ISO 1133에 따라 230 °C의 온도 및 2.16 kg의 하중 하에서 측정하였다.
상기 올레핀 중합체의 융해 온도 (melting temperature: Tm)는 시차주사열량계 (Differential Scanning Calorimeter, DSC, 장치명: DSC 2920, 제조사: TA instrument)를 이용하여 측정하였다. 구체적으로, 올레핀 중합체를 220°C까지 가열한 후 5 분 동안 그 온도를 유지하고, 20°C까지 넁각한 후 다시 22C C까지 가열하여 Tm을 구하였다,. 이때, 온도의 상승 속도와 하강 속도는 각각 10°C/min으로 조절하였다.
마지막으로, 겔 투과 크로마토그래피 (GPC, gel permeation chromatography, Water사 제조)를 이용하여 상기 올레핀 중합체의 중량평균분자량 (Mw)과 수평균 분자량 (Mn)을 측정하고, 중량평균분자량을 수평균분자량으로 나누어 분자량 분포 (PDI, polydispersity index)를 계산하였다. 이때, 분석 은도는 160°C로 하였고, 용매는 트리클로로벤젠을 사용하였으며, 폴리스티렌으로 표준화하여 분자량을 측정하였다.
【표 2】 촉매 활성 [kgPol/gCat] MFRR (10/2.16) Tm [°C] Mw [X 104 g/mol] PDI 실시예 1 1.5 10.2 121.2 10.0 3.5 실시예 2 3.1 12.1 125.2 12.2 3.6 실시예 3 1.9 10.2 120.2 9.0 4.2 실시예 4 2.8 12.3 120.4 10.5 3.6 실시예 5 1.9 11.7 121.3 9.9 3.7 실시예 6 3.8 13.0 125.7 10.2 3.7 실시예 7 2.0 9.9 123.2 10.5 3.1 실시예 8 2.1 12.2 122.1 12.5 3.1 실시예 9 3.1 13.0 125.0 11.1 3.6 실시예 10 2.7 12.5 121.1 11.9 3.2 실시예 11 2.5 11.0 121.5 12.0 3.0 실시예 12 2.5 9.8 122.0 10.4 3.0 실시예 13 4.0 14.2 125.9 10.9 3.8 실시예 14 3.5 11.1 122.1 12.0 3.2 실시예 15 2.2 10.2 122.0 11.5 4.2 실시예 16 2.8 12.7 124.9 12.2 4.5 비교예 1 2.1 8.5 122.1 11.0 3.0 비교예 2 1.8 8.8 123.0 11.5 2.9 비교예 3 2.5 9.0 121.0 10.2 3.3 비교예 4 3.0 8.2 121.8 10.0 3.0 비교예 5 - 7.7 123.0 13.0 2.8 비교예 6 7.2 117.0 11. 1 2.8 상기 표 2를 참조하면, 본 발명의 일 구현예에 따른 담지 촉매를 이용하면 기존의 mLLDPE 제품 대비 가공성이 개선된 올레핀 중합체를 제공할 수 있음이 확인된다.

Claims

【청구범위】
【청구항 1】
담체; 상기 담체에 담지되어 있으며 하기 화학식 1로 표시되는 전이 금속 화합물; 및 상기 담체에 담지되어 있으며 하기 화학식 2로 표시되는 1종 이상의 전이 금속 화합물을 포함하는 흔성 담지 촉매:
Figure imgf000048_0001
상기 화학식 1 및 2에서, Mi 및 M2는 서로 동일하거나 상이하며 각각 독립적으로 Ti , Zr 또는 Hf이고,
Xi , ¾, ¾ 및 는 서로 동일하거나 상이하며 각각 독립적으로 할로겐, 니트로기, 아미도기, 포스파인기, 포스파이드기, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 알케닐기 , 탄소수 6 내지 20의 아릴기, 탄소수 1 내지 20의 술포네이트기 및 탄소수 1 내지 20의 술폰기 중 어느 하나이고,
1은 C , Si , Ge , Sn또는 Pb이며,
T2는 탄소수 1 내지 5의 알킬렌기, 탄소수 2 내지 10의 알킬리덴기 및 T3(Q3) (Q4) 중 어느 하나이며, 상기 T3은 (:, Si , Ge , Sn또는 Pb이고,
C , Q2 , Qs 및 Q4는 서로 동일하거나 상이하고, 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 헤테로사이클로알킬기 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 카복실레이트, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기 및 탄소수 5 내지 20의 헤테로아릴기 중 어느 하나이고,
내지 ¾는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이고,
R7 내지 R14는 서로 동일하거나 상이하며 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기는 서로 연결되어 치환 또는 비치환된 지방족 또는 방향족 고리를 형성하는 것이며,
Cpl 및 Cp2는 서로 동일하거나 상이하며, 각각 독립적으로 -服15-, 혹은 사이클로펜타디에닐기, 인데닐기, 테트라하이드로인데닐기, 플루오레닐기 및 인데노인돌리기 중 어느 하나의 방향족 고리이거나, 혹은 상기 방향족 고리의 하나 이상의 수소가 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 실릴기, 탄소수 2 내지 20의 실릴알킬기 및 탄소수 6 내지 20의 아릴기 중 어느 하나의 치환기로 치환된 방향족 고리이고,
5는 탄소수 1 내지 20의 알킬 중 어느 하나이다.
【청구항 2]
제 1 항에 있어서, Ri 내지 R4는 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나인 흔성 담지 촉매.
【청구항 3】
제 1 항에 있어서, 및 ¾는 각각 독립적으로 수소, 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나인 흔성 담지 촉매.
【청구항 4]
제 1 항에 있어서, R7 내지 R14는 각각 독립적으로 수소, 탄소수 1 내지
20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알케닐기 중 어느 하나이거나 혹은, R7 내지 R14 중 서로 인접하는 한 쌍 이상의 치환기들은 서로 연결되어 치환 또는 비치환된 지방족 고리를 형성하는 흔성 담지 촉매 .
【청구항 5】
제 1 항에 있어서, 및 ¾는 각각 독립적으로 탄소수 1 내지 20의. 알킬기 및 탄소수 6 내지 20의 아릴기 증 어느 하나인 흔성 담지 촉매.
【청구항 6】
제 1 항에 있어서, ¾ 내지 는 각각 독립적으로 할로겐, 탄소수 1 내지 20의 알킬기 및 탄소수 1 내지 20의 알콕시기 중 어느 하나인 흔성 담지 촉매. '
【청구항 7】
거 1 1 항에 있어서, Τ2는 에틸렌기, η-프로필렌기, i so-프로필렌기, 에틸리덴기, 1-프로필리덴기, 2-프로필리덴기 및 T3(Q3) (Q4) 중 어느 하나이며, T3은 Si이고, ¾ 및 Q4는 서로 동일하거나 상이하며, 각각 독립적으로 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기 및 탄소수 2 내지 20의 알콕시알킬기 중 어느 하나인 흔성 담지 촉매.
【청구항 8】
제 1 항에 있어서, Cpl 및 Cp2는 서로 동일하거나 상이하며, 각각 독립적으로 -N(tert-부틸) -, 사이클로펜타디에닐기, 테트라메틸사이클로펜타디에닐기, tert-부특시핵실사이클로펜타디에닐기, 인데닐기, 테트라하이드로인데닐기, 플루오레닐기, 5,10-디히드로인데노 [1,2- b]인돌리기 및 5,8-디메틸 -5,10-디히드로인데노 [1 , 2-b]인돌리기 중 어느 하나인 흔성 담지 촉매 .
【청구항 9】
제 1 항에 있어서, 상기 화학식 1로 표시되는 전이 금속 화합물은 하기 화학식 3 및 4로 표시되는 화합물 중 어느 하나인 흔성 담지 촉매:
Figure imgf000051_0001
상기 화학식 3 및 4에서, R16 및 R17은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 1 내지 20의 알콕시기, 탄소수 2 내지 20의 알콕시알킬기, 탄소수 1 내지 20의 알킬실릴기, 탄소수 1 내지 20의 실릴알킬기, 탄소수 1 내지 20의 알콕시실릴기, 탄소수 1 내지 20의 실릴옥시알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기 중 어느 하나이고,
1은 0 내지 5 사이의 정수이다.
【청구항 10]
제 1 항에 있어서, 상기 화학식 2로 표시되는 전이 금속 화합물은 디메틸실릴렌 (테트라메틸사이클로펜타다이에닐) (9H-플루오렌 -9-일)지르코늄 다이클로라이드인 흔성 담지 촉매.
【청구항 11】
제 1 항에 있어서, 하기 화학식 5 내지 7로 표시되는 화합물로 이루어진 군에서 선택된 1 종 이상의 조촉매를 추가로 포함하는 흔성 담지 촉매:
[화학식 5]
Figure imgf000052_0001
상기 화학식 5에서,
Ri8 , Ri9 및 0은 각각 독립적으로 수소, 할로겐, 탄소수 1 내지 20 의 하이드로카빌기 및 할로겐으로 치환된 탄소수 1 내지 20 의 하이드로카빌기 중 어느 하나이고,
n은 2 이상의 정수이며,
[화학식 6]
D(R21)3
상기 화학식 6에서,
D는 알루미늄 또는 보론이고,
R21는 각각 독립적으로 할로겐, 탄소수 1 내지 20 의 하이드로카빌기, 및 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카빌기 중 어느 하나이며, [화학식 7]
[L-H] + [Z(A)4]— 또는 [L] + [Z(A)4]一
상기 화학식 7에서,
L은 중성 또는 양이은성 루이스 염기이고, H는 수소 원자이며, Z는 13 족 원소이며, A는 각각 독립적으로 탄소수 1 내지 20 의 하이드로카빌기; 탄소수 1 내지 20 의 하이드로카빌옥시기; 및 이들 치환기의 1 이상의 수소 원자가 할로겐 탄소수 1 내지 20 의 하이드로카빌옥시기 및 탄소수 1 내지 20 의 하이드로카빌실릴기 중 1 이상의 치환기로 치환된 치환기들 중 어느 하나이다.
【청구항 12]
제 1 항에 있어서, 상기 담체는 실리카, 알루미나, 마그네시아 또는 이들의 흔합물인 흔성 담지 촉매.
【청구항 13]
제 1 항에 있어서, 상기 화학식 1로 표시되는 전이 금속 화합물과 상기 화학식 2로 표시되는 1 종 이상의 전이 금속 화합물은 10 : 0.01 내지 10: 50의 중량비로 포함되는 흔성 담지 촉매 .
【청구항 14]
제 1 항의 흔성 담지 촉매 존재 하에, 올레핀 단량체를 중합 반웅시키는 단계를 포함하는 올레핀 중합체의 제조 방법 .
【청구항 15]
제 14 항에 있어서, 상기 올레핀 단량체는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 4-메틸 -1-펜텐, 1-핵센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센 1-테트라데센, 1-핵사데센, 1-아이토센, 노보넨, 노보나디엔, 에틸리덴노보덴, 페닐노보덴, 비닐노보덴, 디사이클로펜타디엔, 1 ,4-부타디엔, 1 , 5-펜타디엔, 1 , 6-핵사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3- 클로로메틸스티렌으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 올레핀 중합체의 제조 방법 .
PCT/KR2017/000993 2016-01-27 2017-01-26 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법 WO2017131490A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17744611.9A EP3312201B1 (en) 2016-01-27 2017-01-26 Supported hybrid catalyst and method for preparing olefin polymer using the same
US15/742,001 US10669356B2 (en) 2016-01-27 2017-01-26 Supported hybrid catalyst and method for preparing olefin polymer using the same
CN201780002569.3A CN108602908B (zh) 2016-01-27 2017-01-26 负载型复合催化剂及使用其制备烯烃聚合物的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0010098 2016-01-27
KR20160010098 2016-01-27

Publications (2)

Publication Number Publication Date
WO2017131490A2 true WO2017131490A2 (ko) 2017-08-03
WO2017131490A3 WO2017131490A3 (ko) 2018-08-02

Family

ID=59398598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/000993 WO2017131490A2 (ko) 2016-01-27 2017-01-26 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법

Country Status (5)

Country Link
US (1) US10669356B2 (ko)
EP (1) EP3312201B1 (ko)
KR (1) KR101927460B1 (ko)
CN (1) CN108602908B (ko)
WO (1) WO2017131490A2 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101950462B1 (ko) 2016-02-24 2019-02-20 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR102140260B1 (ko) * 2016-12-22 2020-07-31 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법
KR20200056800A (ko) * 2018-11-15 2020-05-25 롯데케미칼 주식회사 프로필렌 중합용 담지촉매 및 이를 이용하는 폴리프로필렌 수지의 제조방법
KR102602239B1 (ko) * 2019-01-28 2023-11-13 주식회사 엘지화학 폴리올레핀
KR102530448B1 (ko) * 2019-03-13 2023-05-08 주식회사 엘지화학 전이 금속 화합물 및 이를 포함하는 촉매 조성물
KR102475975B1 (ko) * 2019-10-17 2022-12-08 한화솔루션 주식회사 혼성 촉매 조성물, 이를 포함하는 촉매 및 이들의 제조방법

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3517471B2 (ja) 1994-12-28 2004-04-12 三井化学株式会社 環状オレフィン共重合体の製造方法
US6225426B1 (en) * 1996-04-10 2001-05-01 Uniroyal Chemical Company, Inc. Process for producing polyolefin elastomer employing a metallocene catalyst
CZ38199A3 (cs) 1996-08-09 1999-05-12 The Dow Chemical Company Kovové komplexy obsahující nasycené tricyklické ligandy a způsob polymerace olefinů
DE19644039A1 (de) * 1996-10-31 1998-05-07 Hoechst Ag Metallocene
DE19652340A1 (de) 1996-12-17 1998-06-18 Hoechst Ag Verfahren zur Herstellung von Cycloolefincopolymers
US6180736B1 (en) 1996-12-20 2001-01-30 Exxon Chemical Patents Inc High activity metallocene polymerization process
EP0942006B1 (en) * 1998-03-09 2003-06-04 Tosoh Corporation Catalyst for olefin polymer production and process for olefin polymer production employing the catalyst
ES2189516T3 (es) 1998-11-18 2003-07-01 Basell Polyolefine Gmbh Bis(tetrahidro-indenil) metallocenes como catalizadores de polimerizacion de las olefinas.
JP2001122886A (ja) * 1999-10-26 2001-05-08 Repsol Quimica Sa 単一の炭素架橋したビスシクロペンタジエニル化合物及びこれのメタロセン錯体
US7041617B2 (en) * 2004-01-09 2006-05-09 Chevron Phillips Chemical Company, L.P. Catalyst compositions and polyolefins for extrusion coating applications
EP1300423A1 (en) 2001-09-27 2003-04-09 Atofina Research S.A. Catalyst system comprising a mixture of catalyst components for producing a polyolefin blend
US7439312B2 (en) 2002-10-24 2008-10-21 Exxonmobil Chemical Patents Inc. Branched crystalline polypropylene
US6911508B2 (en) 2003-06-05 2005-06-28 Univation Technologies, Llc Class of metallocenes and method of producing polyethylene
EP1762577A1 (en) 2005-09-02 2007-03-14 Total Petrochemicals Research Feluy Impact copolymer of propylene prepared in single reactor
EP1963347B1 (en) * 2005-12-14 2011-10-19 ExxonMobil Chemical Patents Inc. Halogen substituted metallocene compounds for olefin polymerization
WO2007086112A1 (ja) * 2006-01-25 2007-08-02 Osg Corporation 焼きばめ式工具ユニット及びその焼きばめ式工具ユニットに使用される工具ホルダ並びに回転工具
US7619047B2 (en) 2006-02-22 2009-11-17 Chevron Phillips Chemical Company, Lp Dual metallocene catalysts for polymerization of bimodal polymers
EP2003166A1 (en) 2007-06-12 2008-12-17 Repsol Ypf S.A. Polyethylene compositions and their use in the manufacture of pipes
KR101137007B1 (ko) * 2009-06-02 2012-04-19 공주대학교 산학협력단 후전이금속 담지촉매, 그의 제조방법 및 상기 담지촉매를 사용하는 올레핀 중합방법
US8067652B2 (en) * 2009-08-13 2011-11-29 Chemtura Corporation Processes for controlling the viscosity of polyalphaolefins
US20120322961A1 (en) 2011-06-16 2012-12-20 Fina Technology, Inc. Multi-component metallocene catalyst systems for the production of reactor blends of polypropylene
KR101827523B1 (ko) * 2012-03-06 2018-03-22 에스케이이노베이션 주식회사 혼성 담지 메탈로센 촉매, 이의 제조방법 및 이를 이용한 폴리올레핀의 제조방법
KR101365884B1 (ko) * 2012-06-29 2014-02-24 롯데케미칼 주식회사 알파-올레핀 합성용 전이금속 화합물을 포함하는 탠덤 촉매 시스템, 및 이를 이용한 폴리에틸렌의 제조 방법
KR101492571B1 (ko) 2012-11-26 2015-02-11 주식회사 엘지화학 혼성 담지 메탈로센 촉매와 그 제조방법
KR101650092B1 (ko) 2013-08-01 2016-08-22 주식회사 엘지화학 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
KR101631700B1 (ko) 2013-10-18 2016-06-17 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR101606825B1 (ko) 2013-11-28 2016-03-28 주식회사 엘지화학 혼성 담지 메탈로센 촉매의 제조방법
KR101658172B1 (ko) 2013-12-02 2016-09-20 주식회사 엘지화학 혼성 담지 메탈로센 촉매 및 이를 이용하는 올레핀계 중합체의 제조방법
US9556289B2 (en) 2014-09-05 2017-01-31 Lg Chem, Ltd. Supported hybrid catalyst and method for preparing olefin-based polymer using the same
KR102028063B1 (ko) 2014-12-22 2019-10-02 주식회사 엘지화학 전이 금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀 중합체의 제조 방법
KR101950462B1 (ko) 2016-02-24 2019-02-20 주식회사 엘지화학 올레핀 중합체 및 이의 제조 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Also Published As

Publication number Publication date
WO2017131490A3 (ko) 2018-08-02
CN108602908A (zh) 2018-09-28
US10669356B2 (en) 2020-06-02
KR20170089786A (ko) 2017-08-04
EP3312201A2 (en) 2018-04-25
EP3312201B1 (en) 2019-12-25
KR101927460B1 (ko) 2018-12-10
US20180194873A1 (en) 2018-07-12
EP3312201A4 (en) 2018-12-26
CN108602908B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
KR101637026B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조방법
JP6711906B2 (ja) 混成担持メタロセン触媒およびこれを利用したポリオレフィンの製造方法
WO2017131490A2 (ko) 혼성 담지 촉매 및 이를 이용하는 올레핀 중합체의 제조 방법
KR101768193B1 (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
US11767377B2 (en) Metallocene-supported catalyst and method of preparing polyolefin using the same
KR20150066484A (ko) 메탈로센 화합물
US10544247B2 (en) Supported hybrid metallocene catalyst, and method for preparing polyolefin using the same
KR20150057964A (ko) 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용하는 올레핀계 중합체의 제조방법
JP6511061B2 (ja) メタロセン化合物、これを含む触媒組成物およびこれを用いるオレフィン系重合体の製造方法
KR102228533B1 (ko) 가공성이 우수한 에틸렌/알파-올레핀 공중합체
JP7206196B6 (ja) オレフィン重合触媒用遷移金属化合物、これを含むオレフィン重合触媒およびこれを用いて重合されたポリオレフィン
KR20160143552A (ko) 메탈로센 담지 촉매 및 이를 이용하는 폴리올레핀의 제조 방법
KR102174389B1 (ko) 내환경 응력 균열성이 우수한 에틸렌/알파-올레핀 공중합체
KR101953768B1 (ko) 혼성 담지 메탈로센 촉매의 제조방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
KR101785705B1 (ko) 촉매 조성물 및 이를 이용한 폴리올레핀의 제조방법
KR20180055558A (ko) 기계적 물성 및 가공성이 우수한 에틸렌/알파-올레핀 공중합체
KR101949456B1 (ko) 혼성 담지 메탈로센 촉매의 제조 방법 및 이를 이용하여 제조된 혼성 담지 메탈로센 촉매
WO2018117403A1 (ko) 혼성 담지 메탈로센 촉매 및 이를 이용한 폴리올레핀의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744611

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE