WO2017131205A1 - 黒鉛膜及び黒鉛テープ - Google Patents

黒鉛膜及び黒鉛テープ Download PDF

Info

Publication number
WO2017131205A1
WO2017131205A1 PCT/JP2017/003054 JP2017003054W WO2017131205A1 WO 2017131205 A1 WO2017131205 A1 WO 2017131205A1 JP 2017003054 W JP2017003054 W JP 2017003054W WO 2017131205 A1 WO2017131205 A1 WO 2017131205A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
graphite
graphite film
less
thickness
Prior art date
Application number
PCT/JP2017/003054
Other languages
English (en)
French (fr)
Inventor
正満 立花
篤 多々見
村上 睦明
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP17744435.3A priority Critical patent/EP3409644A4/en
Priority to US16/073,059 priority patent/US20190039908A1/en
Priority to JP2017563877A priority patent/JP6781171B2/ja
Priority to KR1020187023554A priority patent/KR20180109937A/ko
Priority to CN201780008867.3A priority patent/CN108602680A/zh
Publication of WO2017131205A1 publication Critical patent/WO2017131205A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/04Specific amount of layers or specific thickness
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a graphite product such as a graphite film and a graphite tape, and more particularly to a high quality graphite product having an electric conductivity of 400 S / cm or more.
  • High-quality graphite film is suitable for use as light emitters, filaments, high heat resistance conductors with high current capacity, electrical resistance heating elements, etc., taking advantage of extremely high heat resistance, electrical conductivity, and withstand current density. Is done. In these applications, the graphite film is often very hot, such as 900 ° C. or higher. If the support member is in contact with most of the graphite film, the support member cannot withstand heat. In such a case, the supporting member is protected from heat by fixing the graphite film to the supporting member only at a part of its end portion or outer peripheral portion and using it in a suspended state. The graphite film itself is required to show only high durability even if only a part is supported and the rest floats in the air.
  • Durability when a high quality graphite film is suspended in the air is that the graphite film is made of strong infrared, ultraviolet, X-ray, laser beam, ion beam, proton beam, negative hydrogen ion beam, neutron beam, electron
  • the graphite film is made of strong infrared, ultraviolet, X-ray, laser beam, ion beam, proton beam, negative hydrogen ion beam, neutron beam, electron
  • fine drilling or cutting using an electron beam, laser beam, or the like is performed on the graphite film supported by the support member, the result is that the support member is partially deformed, turned up, evaporated, decomposed, etc.
  • the quality of the graphite film is undesirable, such as damage to the graphite film or adhesion of impurities. Therefore, a part of the graphite film is supported and the remaining part is suspended in the air, and the part floating in the air may be processed. In such a case, excellent processing durability is also required.
  • fine drilling or cutting using an electron beam, laser beam, or the like is a processing method in which only a part is heated to a high temperature, and durability to such a method is required.
  • the graphite film with a part suspended in the air has heat resistance, durability against repeated heating and cooling (thermal cycle), only part of it is heated to a high temperature, and the other part is relatively Durability when used at low temperatures (partial heating, durability against repeated partial heating and cooling (partial thermal cycle)), durability against processing methods that heat only a part to high temperatures, etc. It is required to be. In particular, it is strongly demanded to realize such durability, a thin film, uniformity, large area, and high electrical conductivity at a high level in a balanced manner.
  • the basic structure of graphite crystal is a layered structure in which basal planes created by carbon atoms connected in a hexagonal network are regularly stacked (the stacking direction is called the c-axis, and carbon atoms connected in a hexagonal network are created)
  • the direction in which the basal plane spreads is referred to as the ab plane direction).
  • the carbon atoms in the basal plane are strongly bonded by a covalent bond, and the atomic interval is 1.4211.4.
  • the bonding between the stacked layers is due to weak van der Waals force, and the layer spacing is 3.354 mm.
  • Examples of conventional electrical conductivity in the ab plane direction of high-quality graphite include graphite regarded as a single crystal produced in nature, or graphite obtained from carbon dissolved in molten metal called quiche graphite. 25000 S / cm (Non-Patent Documents 1 and 2).
  • methods for directly heat-treating, carbonizing, and graphitizing special polymers such as polyimide, polyoxadiazole, and polyparaphenylene vinylene have been developed (Patent Documents 1 and 2), and have a high a- value of 20000 S / cm or more. It is possible to make a graphite film having electric conductivity in the b-plane direction.
  • Patent Document 3 Furthermore, by baking an extremely thin polyimide film prepared by vapor deposition polymerization without containing impurities such as a solvent and a curing agent, the film is extremely thin and uniform in thickness, and the electric conductivity in the ab plane direction is extremely high. It is known that a high graphite film can be produced (Patent Document 3).
  • the graphite film 1a obtained by the methods described in Patent Documents 1 to 3 and Non-Patent Documents 1 and 2 has a net thickness (d1) excluding wrinkles (surface irregularities) and waviness. , D2, and d3) are excellent in uniformity, but there are many non-uniform wrinkles over the entire surface of the film, and it is difficult to control the size of the wrinkles. Further, such conventional graphite films have room for improvement in terms of durability against high temperature heating, high temperature thermal cycling, partial high temperature heating, and partial high temperature thermal cycling.
  • the present invention has been made paying attention to the circumstances as described above, and its purpose is to provide heat resistance when used in a state where a part of the graphite film is suspended in the air, particularly durability against thermal cycling, An object of the present invention is to provide a graphite film having improved heat resistance during heating and durability against partial heat cycles. Another object of the present invention is to improve durability when a part of the graphite film is processed in a suspended state by a processing method of partial heating.
  • the size of these wrinkles should be controlled within a certain range with respect to the thickness of the graphite film.
  • strain concentrates on the high curvature part of the wrinkle and tends to be the starting point of fracture.
  • FIG. 1 (d) When wrinkles are remarkably suppressed as shown in FIG. 1 (d), the concentration of strain and the starting point of breakage can be reduced, and the durability is improved.
  • the wrinkles are increased to a certain extent as shown in FIG. 1B, even if the distortion concentrates on the high curvature portion of the wrinkles, the wrinkles themselves can be deformed to release the distortions, and the durability is improved.
  • wrinkles are too large as shown in FIG.
  • the present invention that has solved the above problems is as follows.
  • the area is 1 ⁇ 1 cm 2 or more, the thickness is 10 nm to 10 ⁇ m, the electric conductivity in the film surface direction is 400 S / cm or more, and the ratio of the arithmetic average roughness Ra of the surface to the thickness is 1.
  • a graphite film characterized by being 0 to 600 or 0.3 or less.
  • the value of each location when the arithmetic average roughness Ra of a plurality of locations is measured is within ⁇ 25% with respect to the average value of Ra obtained from the measurement results at all the locations.
  • Graphite film (3) The graphite film according to (1) or (2), wherein the density is 1.5 g / cm 3 or more.
  • (5) including a step of obtaining a graphite film by carbonizing and graphitizing the polymer film, If necessary, a re-graphitization step of treating the obtained graphite film again at the graphitization temperature is included,
  • the polymer film, the carbonized film, or the graphite is disposed between both surfaces of the polymer film, the carbonized film, or the graphite film to be treated by at least one treatment of the carbonization, graphitization, and re-graphitization, and the press plate.
  • Spacers having a thickness of 0.4 or less or 0.75 to 350 when the thickness of each film is set to 1 are disposed, and the polymer film, carbonized film, or graphite film is used from both sides by using a press plate.
  • a method for producing a membrane. (6) A graphite tape having a parallel part with a width of 40 mm or less and a length of 5 times or more of the width, and the material being the same as the graphite film according to any one of (1) to (4).
  • a method for producing a graphite tape wherein the graphite film according to any one of (1) to (4) is cut with a laser beam to cut out a parallel portion having a width of 40 mm or less and a length of 5 times or more of the width.
  • the temperature difference from the portion showing the lowest temperature of the graphite film or the graphite tape is 300 ° C. or higher.
  • Method. (10) The method according to (8) or (9), wherein the plurality of graphite tapes are arranged in parallel. (11) A part of the graphite film or graphite tape is fixed to a support member, and the remaining part is suspended in the air, and the part that floats in the air reaches the maximum temperature (8) to (10) How to use. (12) The use method according to any one of (8) to (11), wherein the atmosphere when the maximum temperature is reached is an inert gas having a pressure of 0.1 MPa or more or a vacuum having a pressure of 1000 Pa or less.
  • the graphite film (or the graphite tape that is a thinned body thereof) is used alone in a suspended state.
  • heat resistance, heat cycle durability, partial heating heat resistance, and partial heat cycle durability can be improved. It is also possible to improve durability when a part of the graphite film is processed in a state of being suspended in the air by the partial heating processing method.
  • FIG. 1 (a) is a schematic cross-sectional view for explaining a conventional graphite film
  • FIG. 1 (c) is a schematic cross-sectional view for explaining a graphite film outside the present invention
  • FIG. (D) is a schematic sectional drawing for demonstrating the graphite film of this invention.
  • FIG. 2 is an SEM photograph taken of the surface (upper surface) of the graphite film of the present invention.
  • FIG. 3 is an SEM photograph of a cross section of the graphite film of the present invention.
  • FIG. 4 is a cross-sectional TEM photograph of the graphite film of the present invention.
  • FIG. 5 is an enlarged cross-sectional SEM photograph of the graphite film of the present invention.
  • FIG. 6 is a schematic sectional view for explaining an example of the pressing method of the present invention.
  • FIG. 7 is a schematic cross-sectional view for explaining another example of the pressing method of the present invention.
  • FIG. 8 is a schematic sectional view for explaining still another example of the pressing method of the present invention.
  • FIG. 9 is a schematic plan view showing measurement points of the polyimide film of the present invention.
  • FIG. 10 is a schematic plan view for explaining measurement points of the graphite film of the present invention.
  • FIG. 11 is a schematic plan view for explaining sample locations of the graphite film of the present invention.
  • FIG. 12 is a conceptual diagram for explaining a thermal cycle durability test method for a graphite film of the present invention.
  • FIG. 13 is another conceptual diagram for explaining the thermal cycle durability test method of the graphite film of the present invention.
  • FIG. 14 is still another conceptual diagram for explaining the thermal cycle durability test method of the graphite film of the present invention.
  • FIG. 15 is a conceptual diagram for explaining a laser cut test method for a graphite film of the present invention.
  • Graphite film (1.1) Basic characteristics (area, thickness, electrical conductivity)
  • the present invention relates to a technique for improving a graphite film having a large area, a small thickness, and high quality (high electrical conductivity). This is because such a graphite film is expected to be used in various applications because of its excellent quality, but because of its large area and thin thickness, it is required to have improved durability and heat resistance against breakage and the like.
  • the area of the graphite film of the present invention is 1 ⁇ 1 cm 2 or more. Desirably 1.5 ⁇ 1.5 cm 2 or more, more preferably 2 ⁇ 2 cm 2 or more, still more preferably 3 ⁇ 3 cm 2 or more, still more preferably 4 ⁇ 4 cm 2 or more, or 5 ⁇ 5 cm. 2 or more. Further, it is most preferably 7 ⁇ 7 cm 2 or more, 10 ⁇ 10 cm 2 or more, 10 ⁇ 15 cm 2 or more, 10 ⁇ 20 cm 2 or more, 15 ⁇ 15 cm 2 or more, or 20 ⁇ 20 cm 2 or more.
  • the upper limit of the area is not particularly limited, and may be, for example, 50 ⁇ 50 cm 2 . Having such a large area is a necessary or advantageous requirement when a graphite film is used for each of the above-described and later-described applications.
  • the thickness of the graphite film of the present invention is 10 ⁇ m or less, preferably 8 ⁇ m or less, more preferably 5 ⁇ m or less, 3 ⁇ m or less, 2 ⁇ m or less, 1.8 ⁇ m or less, 1.5 ⁇ m or less, 1.0 ⁇ m. Or less or 0.5 ⁇ m or less is particularly preferable. Thinner graphite films can be used for applications that require smaller, thinner, lighter, etc.
  • the graphite film obtained by thinning the polymer film is thinner in the ab plane direction, that is, The electrical conductivity in the direction of the film surface is increased, contributing to higher electrical conductivity and higher quality of the graphite film.
  • the thickness of the graphite film is 10 nm or more, preferably 20 nm or more, more preferably 30 nm or more, and further preferably 50 nm or more, 80 nm or more, or 100 nm or more. It is still more preferable that it is 200 nm or more or 300 nm or more.
  • the thicker the graphite film the more difficult it is to break, and it is difficult for unexpected situations such as local opening of holes due to graphite sublimation during firing, and production, handling, and processing are easy.
  • the ratio of thickness error to film thickness is small, which is advantageous in terms of product quality assurance.
  • the thickness of the graphite film is preferably between 20 nm and 8 ⁇ m, more preferably between 30 nm and 5 ⁇ m, and even more preferably between 50 nm and 3 ⁇ m. Furthermore, it is most preferable that it is between 100 nm and 1.7 ⁇ m, between 200 nm and 1.5 ⁇ m, or between 300 nm and 1.0 ⁇ m.
  • the thickness of the graphite film can be measured using a known apparatus.
  • a contact-type measurement method such as a caliper or a stylus type
  • an optical measurement method such as a laser displacement meter or spectroscopic ellipsometry, SEM (Scanning ElectroncoMicroscope). It can be measured by a method of cross-sectional observation using TEM (TransmissionTrElectron Microscope) or the like.
  • TEM TransmissionTrElectron Microscope
  • the electric conductivity of the graphite film of the present invention is 400 S / cm or more. More preferably 500 S / cm or more, further preferably 600 S / cm or more, still more preferably 900 S / cm, still more preferably 1200 S / cm or more or 1500 S / cm or more, 2000 S / cm or more, 3000 S / cm or more, 4000 S / cm. More preferably, it is at least cm and at least 5000 S / cm. Furthermore, it is most preferable that they are 8000 S / cm or more, 10000 S / cm or more, 15000 S / cm or more, 17000 S / cm or more, 20000 S / cm or more.
  • the upper limit of the electrical conductivity is not particularly limited, but is, for example, 30000 S / cm or less, particularly 27000 S / cm or less.
  • High electrical conductivity means that graphite is excellent in crystallinity and has few cracks and defects, which means it is of high quality. And this also means that the thermal conductivity is high.
  • an electric resistance heating element, a sensor, or the like it is advantageous to have a high electric conductivity of a certain level or more. Even when used for electric wires, heat diffusing members, electronic circuit members, etc., graphite films having higher electrical conductivity are generally better.
  • the electrical conductivity can be calculated from the electrical resistance (sheet resistance) obtained by a known method such as the van der Pauw method or the general 4-terminal method, and the size and thickness of the graphite film.
  • FIG. 1A is a schematic cross-sectional view showing an embodiment of a conventional graphite film, in which a region without wrinkles, a region with fine wrinkles, and a region with large wrinkles are mixed and formed. Uneven wrinkles are conspicuous. In such a graphite film, local distortion due to high-temperature heating or cooling is likely to occur at the boundary between a relatively large and sharp uneven part and a relatively flat part, and holes may be formed by heating or thermal cycling.
  • the wrinkles are made uniform and an appropriate height is left, so that the influence of local distortion due to high-temperature heating or cooling at the boundary between the uneven portion and the flat portion, etc.
  • This local distortion can be buffered by the expansion and contraction and deformation of the wrinkles, and the breakage can be prevented.
  • the wrinkle unevenness is remarkably reduced with respect to the thickness as shown in FIG. 1D, the occurrence of local distortion itself can be prevented, and breakage can be prevented.
  • the state having moderate unevenness with respect to the thickness as shown in FIG. 1B is the arithmetic average roughness Ra (of the surface of the graphite film relative to the thickness (average value, ⁇ m) of the graphite film.
  • Average value, ⁇ m the average value of Ra / average value of thickness ( ⁇ m / ⁇ m) is 1.0 or more and 600 or less. Further, it is preferably 1.5 or more, more preferably 2.0 or more, still more preferably 2.5 or more, still more preferably 3.0 or more, and 4.0 or more. More preferably, it is more preferably 5.0 or more, 6.0 or more, 8.0 or more, or 10 or more.
  • FIG. 2 is an SEM photograph obtained by photographing the surface (upper surface) of the graphite film in the state of FIG. 1 (b), and
  • FIG. 3 is an SEM photograph obtained by photographing the cross section thereof. It shows that it is formed.
  • the state in which the wrinkle unevenness is remarkably small with respect to the thickness as shown in FIG. 1D is also the arithmetic average roughness Ra (average value) of the surface of the graphite film with respect to the thickness (average value, ⁇ m) of the graphite film. ⁇ m). That is, in the state of FIG. 1D, the average value of Ra / average value of thickness ( ⁇ m / ⁇ m) is 0.3 or less. It is more preferably 0.25 or less, still more preferably 0.20 or less, and further preferably 0.15 or less. Moreover, it is preferable that it is 0.1 or less, and it is further more preferable that it is 0.05 or less. Moreover, it may be 0.001 or more.
  • the arithmetic mean roughness (Ra) itself of the surface of the graphite film may be an appropriate range depending on the thickness of the graphite film so as to satisfy the above range, but is preferably a range depending on the wrinkle state of the graphite film. You may have.
  • the arithmetic mean roughness (Ra) of the surface is, for example, 0.5 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and 30 ⁇ m or more. It may be. For example, it is 200 micrometers or less, Preferably it is 100 micrometers or less, More preferably, it is 50 micrometers or less.
  • the arithmetic average roughness (Ra) of the surface is, for example, 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.25 ⁇ m or less. It is. For example, it is 0.05 ⁇ m or more, preferably 0.1 ⁇ m or more, and may be more than 0.2 ⁇ m.
  • the value at each location is, for example, within ⁇ 25%, preferably ⁇ , of the average value of Ra obtained from the measurement results at all the locations. It is desirable that it is within 20%, more preferably within ⁇ 15%.
  • the arithmetic average roughness Ra can be determined by an existing method, that is, an optical method such as a stylus type surface roughness meter or a laser microscope, or a method such as STM (Scanning / Tunneling / Microscope) or AFM (Atomic Force Microscope).
  • an optical method such as a stylus type surface roughness meter or a laser microscope
  • a method such as STM (Scanning / Tunneling / Microscope) or AFM (Atomic Force Microscope).
  • STM Scnning / Tunneling / Microscope
  • AFM Anamic Force Microscope
  • the graphite film is not particularly limited in density and voids in the film, but the density is preferably 1.5 g / cm 3 or more. Furthermore, 1.6 g / cm 3 or more, 1.7 g / cm 3 or more, 1.8 g / cm 3 or more, 1.9 g / cm 3 or more, 1.95 g / cm 3 or more, 2.0 g / cm 3 or more, 2 .05g / cm 3 or more, 2.1 g / cm 3 or more, and still more preferably 2.15 g / cm 3 or more. Note that the higher the density, the fewer voids that are the starting points for breakage and perforation, and the more difficult it is to heat up when heated. The upper limit of the density is, for example, 2.26 g / cm 3 or less, and may be 2.20 g / cm 3 or less.
  • FIG. 4 is an example of a cross-sectional TEM photograph (magnification 3,000,000) of the graphite film 4a of the present invention
  • FIG. 5 is an example of a cross-sectional SEM photograph (magnification 10,000) of the graphite film 5a of the present invention. is there.
  • the ultrathin graphite layers are laminated without gaps with respect to an area of 70% or more in the cross section perpendicular to the film surface of the graphite film.
  • the ratio of the area where the ultrathin graphite layers are laminated without gaps in this cross section is more preferably 75% or more, still more preferably 80% or more, 85% or more, 90% or more, or It is still more preferable that it is 95% or more.
  • the ultrathin graphite layer has a laminate structure in which a graphite film is laminated without gaps from one surface to the other surface.
  • the ultrathin graphite layer may be 100 layers or more, and usually 10 layers or more.
  • the domain size of the graphite crystal forming each ultrathin graphite layer may be small, for example, less than 100 ⁇ m (for example, 10 ⁇ m or more), particularly less than 10 ⁇ m (for example, 1 ⁇ m or more).
  • the graphite film can be produced by applying a press treatment using a spacer at an appropriate stage based on a method for producing a graphite film from a polymer film or a carbonized film.
  • a basic part for producing a graphite film from a polymer film through a carbonized film will be described in detail.
  • the raw material polymer used for the polymer film is not particularly limited as long as it has film-forming properties and becomes a high-quality graphite by firing.
  • This aromatic polymer includes polyimide, polyamide, polyparaphenylene vinylene, polyquinoxaline, polyoxadiazole, polybenzimidazole, polybenzoxazole, polybenzthiazole, polyquinazolinedione, polybenzoxazinone, polyquinazolone, benz It is preferably at least one selected from imidazobenzophenanthroline ladder polymers and derivatives thereof.
  • a film made of these polymer raw materials may be produced by a known production method.
  • a particularly preferable raw material polymer includes aromatic polyimide, polyparaphenylene vinylene and polyoxadiazole, and aromatic polyimide is particularly preferable.
  • Aromatic polyimide (2.1.1.1) Polyamide acid As the aromatic polyimide, acid dianhydrides (especially aromatic dianhydrides) and diamines (especially aromatics) described below. Aromatic polyimides prepared from polyamines from (diamines) are particularly preferred.
  • acid dianhydride examples include pyromellitic dianhydride (PMDA), 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid Dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) propane Dianhydride, 1,1-bis (2,3-dicarboxyphenyl) ethane dianhydride, 1,1-bis (3,4-dicarboxyphenyl) ethane dianhydride, bis (2
  • pyromellitic dianhydride (PMDA), 3, 3 ′, 4,4′-biphenyltetracarboxylic dianhydride is particularly preferred.
  • diamine examples include 4,4′-diaminodiphenyl ether (ODA), p-phenylenediamine (PDA), 4,4′-diaminodiphenylpropane, 4,4′-diaminodiphenylmethane, benzidine, and 3,3′-dichlorobenzidine.
  • Any known method can be used as a polymerization method for preparing polyamic acid from the acid dianhydride and diamine.
  • at least one acid dianhydride and at least one diamine are dissolved in an organic solvent.
  • a method of stirring the obtained polyamic acid organic solvent solution under controlled temperature conditions until the polymerization of the acid dianhydride and diamine is completed.
  • a particularly preferred polymerization method is as follows.
  • the concentration of the polyamic acid solution is usually 5 to 35% by weight, preferably 10 to 30% by weight. When the concentration is within this range, an appropriate molecular weight and solution viscosity can be obtained. If the concentration of the polyamic acid solution is too low, the molecular weight may not be sufficient, the strength of the resulting polyimide film may not be sufficient, and the viscosity may be too low to make it difficult to form the polyimide film. On the other hand, when the concentration of the polyamic acid solution is too high, the viscosity is very high, and it becomes difficult to form a polyimide film.
  • the acid dianhydride and the diamine in the polyamic acid solution are preferably substantially equimolar, and the molar ratio (acid dianhydride: diamine) is, for example, 1.5: 1 to 1: 1.5. , Preferably 1.2: 1 to 1: 1.2, more preferably 1.1: 1 to 1: 1.1.
  • Preferred solvents for synthesizing the polyamic acid are amide solvents, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N, N-dimethylformamide, N N-dimethylacetamide is particularly preferably used.
  • Polyimide production methods are typified by a thermal cure method in which imidation of the above polyamic acid as a precursor is performed by heating, or an acid anhydride such as acetic anhydride in polyamic acid.
  • a chemical cure method in which imidization is carried out using a tertiary amine such as a dehydrating agent, picoline, quinoline, isoquinoline, pyridine or the like as an imidization accelerator. Any of these may be used in the present invention.
  • the chemical curing method is preferable from the viewpoint that the obtained polyimide film is not easily damaged even if it is pressed during firing, and that a high-quality graphite film such as high electrical conductivity is easily obtained.
  • the thermal curing method does not easily cause imidization unless the polyamic acid is heated, it can be used relatively easily when it is desired to form a polyimide film over time.
  • various polyimide film forming methods such as a spin coating method. There is an advantage that it is easy to apply to the manufacturing process and has a high degree of freedom in the manufacturing process.
  • a method for producing a polyimide film by chemical curing is as follows. First, a stoichiometric amount or more of a dehydrating agent and a catalytic amount of an imidization accelerator are added to the above organic solvent solution of polyamic acid, a support substrate such as an aluminum foil, a polymer film such as PET, a support such as a drum or an endless belt. A film having a self-supporting property is obtained by casting or coating on the film to form a film and drying the organic solvent by heating. Subsequently, this is further heated and dried to imidize to obtain a polyimide film. The heating temperature is preferably in the range of 150 ° C to 550 ° C. A polyimide film may be obtained by simply imidizing by heating without adding an imidization accelerator as described above (thermal curing method). The heating temperature in this case is also preferably in the range of 150 ° C to 550 ° C.
  • a step of fixing or stretching the film in order to prevent shrinkage or increase the orientation of the polymer chain in the film surface direction during the polyimide manufacturing process.
  • a bar coater or spin coater to form a polyamic acid film on the desired substrate. It may be formed and heated to imidize to obtain a polyimide film with a substrate. In this case, either a chemical curing method or a thermal curing method can be used.
  • the thickness of the raw material polymer film is preferably in the range of 35 ⁇ m to 20 nm. This is because the thickness of the finally obtained graphite film is generally about 60 to 30% of the thickness of the starting polymer film when the thickness of the starting polymer film is 1 ⁇ m or more, and 50% to 20% when the thickness is 1 ⁇ m or less. This is because there are many cases. Therefore, in order to finally obtain a graphite film having a thickness of 10 nm to 10 ⁇ m according to the present invention, the thickness of the raw material polymer film is in the range of 35 ⁇ m or less and 20 nm or more. 30 ⁇ m or less and 30 nm or more.
  • Carbonized film can be produced by heating the polymer film in an inert gas or in a vacuum.
  • the inert gas nitrogen, argon or a mixed gas of argon and nitrogen is preferably used.
  • Carbonization is usually performed at a temperature of about 800 ° C to 1800 ° C.
  • a method in which the temperature is raised at a rate of temperature increase of 10 ° C./min and heated to about 800 ° C. to 1800 ° C. and the temperature is maintained for about 10 minutes is preferably used.
  • a graphite film can be produced by heat-treating a carbonized film in a graphitization furnace. In order to create a high temperature of 2200 ° C. or higher necessary for graphitization, an electric current is usually passed through a graphite heater and heating is performed using the juule heat. Graphitization is performed in an inert gas. Argon is most suitable as the inert gas, and it is more preferable to add a small amount of helium to argon.
  • a polymer film having a thickness of 5 ⁇ m or less is easily converted to graphite even at a relatively low temperature, and is necessary for obtaining the graphite film of the present invention.
  • the heating temperature is relatively low and is 2200 ° C. or higher.
  • Such graphitization at a relatively low temperature is advantageous in that the graphitization furnace can be simplified and the cost can be reduced by power saving.
  • the higher the graphitization temperature the better. For this reason, in graphitization, it is preferable to heat at a temperature of 2400 ° C. or higher, more preferably 2600 ° C.
  • Graphitization can be performed at, for example, 3500 ° C. or less, particularly 3200 ° C. or less.
  • the height of the wrinkles is made uniform by press treatment using a spacer to form appropriate wrinkles.
  • an appropriately sized spacer is appropriately disposed (particularly dispersed) on both sides of the polymer film, carbonized film, or graphite film, and the polymer film, carbonized film, or graphite film is made smooth.
  • Appropriate wrinkles can be formed by processing at a carbonization temperature, a graphitization temperature, or a regraphitization temperature while sandwiching between press plates and pressing from both sides with an appropriate pressure.
  • Carbonization is a process performed on the polymer film
  • graphitization is a process performed on the carbonized film
  • re-graphitization is a process performed on the graphite film.
  • the press treatment may be performed in one of carbonization and graphitization, or both may be performed, preferably at least in the graphitization stage. The pressing process is performed.
  • the press plate used to sandwich a polymer film, carbonized film, or graphite film (hereinafter collectively referred to as a film to be treated) is a curved substrate. It may be a flat (flat) substrate. Alternatively, pressing may be performed with a film to be processed sandwiched between a curved substrate and a flat substrate.
  • FIG. 6 is a schematic cross-sectional view showing an example of a method for pressing a film to be processed with a curved substrate.
  • a dome-shaped curved substrate (curved press plate) 6b that exhibits flexibility by heating is used as a press plate, and the film 6a to be processed is sandwiched from above and below by the curved substrate 6b, and these are further subjected to a second press.
  • the curved substrate 6b is formed into a flat plate shape or a flat plate shape while being sandwiched between the plates 6c and heated to a high temperature (meaning carbonization temperature, graphitization temperature, or regraphitization temperature, hereinafter the same in the description of the press treatment). Press from top and bottom until deformed to a near shape.
  • the film 6a to be processed is initially pressed only at one point 6d (in the illustrated example, near the apex of the curved substrate 6b) that is a contact point between the curved substrates, but the curved substrate is deformed into a flat plate shape by pressing. Accordingly, the distances 6e and 6f between the curved substrates are narrowed and gradually spread around the contact point 6d.
  • a spacer between the dome-shaped curved substrate 6b a certain space is created between the dome-shaped curved substrate depending on its size and density, and an appropriate lubrication effect is given. Predetermined wrinkles can be formed.
  • the curved substrate is pressed so as to extend radially outward from the center of the graphite film along the film surface, but is not necessarily isotropic.
  • the deviation in this direction is not limited to the deviation in the film surface, but may be a direction away from the film surface.
  • the orientation of the film to be processed has anisotropy, it is effective to intentionally stretch the film in a direction deviating from the radial direction, not from the center. It is also effective when it is desired to have anisotropy in characteristics such as the structure and electrical conductivity of the graphite film.
  • the curved substrate may not be dome-shaped as long as it has an appropriate curved surface, and for example, a substrate having a curved surface that is bent only in one direction, such as a side surface of a cylinder, may be used. At least one curved substrate may be used. For example, a film to be processed may be sandwiched between a curved substrate and a flat substrate.
  • the inner radius of curvature is, for example, about 150 cm to 500 cm, preferably about 200 to 400 cm, more preferably about 250 to 350 cm.
  • the outer radius of curvature is, for example, about 130 to 450 cm, preferably about 180 to 400 cm, and more preferably about 230 to 320 cm.
  • FIG. 7 is a schematic cross-sectional view showing an example of a method of pressing a target film with a flat substrate as a press plate.
  • the processing target film 7a is simply pressed between two parallel flat substrates 7b. Even with such a method, appropriate wrinkles can be formed by appropriately selecting spacers and pressing conditions.
  • FIG. 8 is a schematic cross-sectional view showing another example of a method of pressing a film to be processed with a flat substrate (planar press plate).
  • a flat substrate planar press plate
  • FIG. 8 when two planar substrates are used, only a part of the film to be processed is pressed first, and the area that is gradually pressed is increased so as to widen the region from there. Even in the case of such a press method, it is possible to control the degree of wrinkle unevenness. More specifically, in the example shown in FIG.
  • the press when the film to be processed 8a is heated to a high temperature (carbonization temperature, graphitization temperature, or re-graphitization temperature), By sandwiching the film 8a to be processed in the gap between the non-parallel flat substrates 8b, and gradually pressing the two flat substrates 8b in parallel after the start of pressing, the press is performed so as to eliminate the gap 8e between the two flat substrates. Appropriate wrinkles within a certain range are formed by sequentially extending the film 8a to be processed from the end.
  • the material of the press plate (curved substrate, flat substrate) used for pressing the film to be processed is not particularly limited as long as it has durability against a high processing temperature, but generally a carbon material or a graphite-based material is preferable.
  • a CIP (Cold Isotropic Press) material made of isotropic graphite or a glassy carbon substrate can be used.
  • a sapphire substrate or the like can also be used.
  • the press plate has a flatness that can control unevenness with a spacer.
  • the surface roughness (arithmetic mean roughness Ra) of the press plate is, for example, 5 ⁇ m or less, preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less, 0.1 ⁇ m or less, for example, 0.01 ⁇ m or more. With such surface roughness, it is possible to control the surface roughness (arithmetic mean roughness Ra) of the graphite film with an accuracy of 0.1 ⁇ m unit, 1 ⁇ m unit, 10 ⁇ m unit, 50 ⁇ m unit, or 100 ⁇ m unit. is there.
  • the wrinkle is controlled by the shape of the press plate (curved substrate, flat substrate), the directionality of the press, the type of workpiece (polymer film, carbonized film, graphite film), spacer Since various factors such as type and particle size are complicatedly entangled, it is difficult to uniquely determine the press conditions, but it is set within the range of the following conditions while referring to specific combinations in the examples. do it. Or pressure of the press, for example, 0.3gf / cm 2 or more can be set as appropriate from 3000gf / cm 2 or less.
  • the pressing pressure is preferably 0.4 gf / cm 2 or more, 0.6 gf / cm 2 or more, 0.8 gf / cm 2 or more, 1.0 gf / cm 2 or more, or 1.5 gf / cm 2 or more.
  • the press pressure is too weak, wrinkles with an excessively large height are likely to occur contrary to the intention, and if the press pressure is too strong, the film may be broken, and holes and cracks may be caused.
  • problems such as the film sticking to the press plate used in the press and not peeling off occur.
  • a powerful pressing mechanism is required, the furnace pressing device itself becomes large.
  • the press pressure may be constant or may be changed. However, as described above, it is an example of a preferable embodiment that the film is gradually spread in the film surface direction over the entire surface. When a curved substrate is used for pressing while spreading, it is preferable that the curvature of the curved substrate is gradually flattened. Therefore, at this time, if the pressure of the press is changed, it is fundamental that the pressure is gradually increased.
  • the pressing time may be appropriately set in a range from a short time to a long time according to various conditions, and a plurality of pressings may be performed.
  • the dimension in the film surface direction of the graphite film extends until the maximum temperature is reached. Therefore, when pressing is completed at an early stage, there is a high possibility that non-uniform wrinkles are formed due to subsequent elongation.
  • the press timing at the time of graphitization is, for example, that the press is started when it reaches 2200 ° C. or higher, preferably 2400 ° C. or higher, more preferably 2600 ° C. or higher, and the press is continued until the maximum temperature is reached.
  • the press timing is a temperature of 2200 ° C. or higher at which graphitization starts to some extent. It may be preferable to carry out at.
  • pressing at high pressure e.g., pressed at the maximum pressure.
  • pressing may be performed near the maximum temperature by repeating pressing for a short time. Details such as press pressure, time, and timing may be optimized as appropriate.
  • the press means may be a press means (press mechanism) capable of controlling mechanical pressure, such as those using the weight of the press plate, or those obtained by placing a graphite or carbon weight on the press plate, etc.
  • Non-mechanical means such as Even with such non-mechanical means, it is possible to apply a constant load throughout carbonization and graphitization, and it may be possible to form wrinkles of an appropriate height on the graphite film. is there.
  • this non-mechanical means is a press with a light load that is difficult to control accurately with a press mechanism (for example, less than 10 gf / cm 2 , preferably 8 gf / cm 2 or less, more preferably 5 gf / cm 2 or less). This is effective when you want to press. Another advantage is that a simple electric furnace without a pressing mechanism can be used.
  • Spacer preferably has both durability against the processing temperature of the film to be processed and durability against the press pressure, and includes, for example, particulate matter and fibrous matter.
  • spacers having such characteristics include glassy carbon particles, graphite particles, graphite scales, fullerenes, carbon fibers, carbon-based particles such as carbon nanotubes, fibers or scales; silica, alumina, spherical alumina Inorganic particles or inorganic scales such as flaky boron nitride; particles that are carbonized or graphitized by heating, such as polyimide particles, polyparaphenylene vinylene particles, and polyoxadiazole particles, can be used as appropriate.
  • the spacer includes a material that cannot withstand high temperatures such as 2800 ° C., which is the final stage of graphitization, such as silica. Even if such a substance can function as a spacer up to a certain high temperature, the formed carbonized film or the wrinkles of the graphite film can also function as a spacer to some extent. Therefore, when the press load is relatively small such as 800 gf / cm 2 or less, it can be used without any problem.
  • the spacer is more preferably a particle having a lubricating effect.
  • a spacer may be used in combination with oil as a lubricant, polytetrafluoroethylene particles, boron nitride particles, or the like.
  • Oil as a lubricant
  • polytetrafluoroethylene particles polytetrafluoroethylene particles
  • boron nitride particles or the like.
  • Carbon-based and graphite-based spacers are easy to obtain, and even if they adhere to a graphite film or an electric furnace, they are advantageous because they are the same carbon-based substance and are not problematic.
  • boron nitride is different in color from polyimide, carbonized film, and graphite film, it is easy to judge the appearance (especially dispersed or adhered) on the film to be treated and graphite press plate, and contamination in the electric furnace There is an advantage that it is easy to judge by appearance. Furthermore, it has excellent lubricity.
  • the average particle size (d50) when the spacer is a particulate material, the fiber diameter when the spacer is a fibrous material, and the thickness when the spacer is a scale-like material (hereinafter referred to as the average particle size (d50) ),
  • the diameter of the fiber and the thickness of the scale may be collectively referred to as the spacer thickness) is, for example, 0.1 ⁇ m or more, preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, for example, 300 ⁇ m or less, preferably Is 200 ⁇ m or less, more preferably 150 ⁇ m or less.
  • the thickness of the spacer needs to be controlled in an appropriate range with respect to the thickness of the film (polymer film, carbonized film, graphitized film, etc.) on which the spacer is disposed.
  • the ratio of the arithmetic average roughness Ra of the surface to the thickness of the graphite film can be adjusted by the ratio between the thickness of the spacer and the film thickness.
  • the thickness of the spacer when the film thickness is 1 is, for example, 0.75 or more and 350 or less when moderate irregularities are formed. Further, it is preferably 1 or more, more preferably 1.5 or more, still more preferably 2 or more, still more preferably 2.5 or more, and even more preferably 3.0 or more.
  • 4.0 or more, 5.0 or more, 6.0 or more, or 7.5 or more is particularly desirable. Further, it is preferably 250 or less, more preferably 200 or less, further preferably 150 or less, and still 100 or less, 75 or less, 50 or less, 25 or less, 20 or less, or 10 or less. Even more preferred.
  • the thickness of the spacer when the film thickness is 1 is 0.4 or less. It is more preferably 0.3 or less, still more preferably 0.25 or less, and further preferably 0.15 or less. Moreover, it is preferable that it is 0.10 or less, and it is further more preferable that it is 0.05 or less. Moreover, 0.001 or more may be sufficient.
  • the amount of the spacer is appropriately set in accordance with the size of the spacer (particle diameter, fiber diameter, etc.) within a range where appropriate wrinkles can be formed.
  • the coverage of the surface of the film to be processed is, for example, 0. It can be used in the range of about 1 to 500%. If the coverage is too large, the space between the press plates is regulated not by the size of the spacer but mainly by the deposited thickness of the spacer, which makes it difficult to control and makes it difficult to form appropriate wrinkles. On the other hand, if the coverage is too small, it is difficult to secure a space and it is difficult to form appropriate wrinkles.
  • the coverage is preferably in the range of 0.5 to 100%, particularly 1 to 50%.
  • a method in which the spacer is manually applied to the film to be treated or a press plate for example, a method in which the spacer is manually applied to the film to be treated or a press plate.
  • Known methods such as a method of applying to a press plate, a method of applying a dispersion liquid in which a spacer is dispersed to a film to be processed or a press plate, and drying, a method of spreading a spacer on a film to be processed or a press plate using a sieve. What is necessary is just to use suitably.
  • the spacer When using a particulate or fibrous dry product as the spacer, apply the spacer once to the surface of the film to be processed or press plate (coverage of 100% or more), and then apply the film to be processed or press If the surface of a plate or the like is turned upside down, shaken, or rubbed with a brush to remove excess spacer particles, the coverage can be easily controlled.
  • the spacer is not necessarily in the form of single particles or fibers, but may be secondary particles formed by agglomeration of particles or fibers, and a sheet having uniformly distributed particulate protrusions (for example, It may be in the form of sandpaper), or it may be a non-woven fabric made by gathering fibrous materials. It is also possible to mix and use spacers of a plurality of types of substances, or to combine particulate, fibrous, or scale-like spacers with paste, oil, wax, etc. to adjust or form lubricity. It is preferably used from the viewpoint of further finely controlling the degree of wrinkles in the graphite film. Substances to be used for pastes, oils, waxes and the like may be appropriately selected.
  • oils mineral oils, synthetic hydrocarbon oils, ester oils, polyglycol oils, silicone oils, fluorine oils, canola oils and mixtures thereof may be used. It can be used suitably.
  • a modified oil may be used.
  • silicone oil epoxy-modified silicone oil, polyether-modified silicone oil, amino-modified silicone oil, and epoxy-modified silicone oil can be used.
  • mixing spherical alumina particles and boron nitride scaly as a spacer is preferably used as the method of the present invention.
  • the size of the surface unevenness of a sheet-like spacer such as a non-woven fabric or a graphite sheet on which graphite particles are formed, may be referred to as the thickness of the spacer.
  • unevenness may be provided on the surface of the press plate, and this unevenness may be used as a spacer.
  • Giving a certain shape and surface roughness to the surface of the press plate by sandpaper polishing, sandblasting, polishing with abrasives, embossing, etc. may have the same effect as using particulate spacers. is there.
  • CIP material or glassy carbon press plate having carbon particles, graphite particles, fullerene particles or the like formed on the surface by carbon vapor deposition, graphite vapor deposition, fullerene vapor deposition, or the like.
  • a press plate made of CIP material or glassy carbon in which carbon fiber is pressed at a high temperature and the carbon fiber is fixed to the surface.
  • a press plate having a function as a spacer may be used in combination with a particulate or fibrous spacer, or a sheet or nonwoven fabric having a function as a spacer.
  • the size of the surface unevenness of the press plate may be referred to as the thickness of the spacer.
  • the type of the spacer may be appropriately selected according to the desired degree of wrinkle height of the graphite film, handling property, and manufacturing process, and is not limited to the contents of the examples shown below.
  • Examples of press treatment at the time of carbonization and graphitization include, for example, 1) A dome-shaped glassy carbon plate having striations extending radially from the center on the surface is used as a press plate, and scaly boron nitride is brushed on the press plate. May be applied to form spacer particles and pressed in a press furnace with a press mechanism.
  • a press furnace with a press mechanism as a spacer by applying a mirror-polished CIP material flat plate as a press plate, and spraying a mixture of graphite powder and spherical alumina on both sides of the film to be treated (polyimide film, carbonized film, etc.) using a sieve. You may press with.
  • 3) Amino-modified silicone oil coated on both sides of the film to be treated (polyimide film, carbonized film, etc.) is sandwiched between graphite sheets deposited with carbon on the surface, and this is further pressed and pressed from above and below.
  • the sheet may be sandwiched between the CIP material flat plates that are also used, and pressed according to the weight of the CIP material flat plates.
  • a mirror-polished dome-shaped glassy carbon plate is used as a press plate, and a dispersion obtained by applying a dispersion liquid containing polyimide particles on both sides of the polyimide film is used as a spacer. It is also possible to press with heavy stones by placing a heavy plate of slabs.
  • a mirror-polished CIP material flat plate is used as a press plate, and film-scaled boron nitride is applied to both surfaces of the film to be treated (polyimide film, carbonized film, etc.) with a brush as a spacer, and pressed in a press furnace with a press mechanism. May be.
  • a film to be processed (polyimide film, carbonized film, etc.) is sandwiched between glassy carbon flat plates with streaks extending radially from the center and coated with ester oil with boron nitride dispersed on the surface. Then, this may be pressed in a press furnace with a press mechanism.
  • a press plate is obtained by including a spacer between the press plate having a certain level of flatness and the film to be processed (including the case where the unevenness formed on the surface of the press plate is used as a spacer). A uniform space with a constant interval is ensured between the film and the film to be processed, and a certain lubricity is imparted, and this is pressed with an appropriate load.
  • the press plate, spacer, lubricant, film to be processed (polyimide film, carbonized film, etc.), weighted state, and the like may be optimized.
  • the method for producing a graphite film is excellent in productivity because a large number of films to be treated can be stacked and fired at once. Further, the present invention is applicable even when the film to be processed is extremely thin, such as 200 nm or less, and is easily broken physically. Note that the substrate used for pressing and the graphite film may stick to each other, and the graphite film may be damaged when peeled off. Therefore, it may be necessary to carefully peel off.
  • a ratio of an average value of Ra and an average value of thickness is obtained in one graphite film, and this is averaged between a plurality of graphite films.
  • the Ra average value / thickness average value of each graphite film is within ⁇ 50%, preferably within ⁇ 40% of the average value between the films.
  • the Ra average value of each graphite film is, for example, within ⁇ 40% of the average value between the films, Preferably, it can be within ⁇ 30%.
  • the average value of the electrical conductivity of each graphite film is also, for example, ⁇ It can be within 35%, preferably within ⁇ 25%.
  • the average value of the thickness of one graphite film is obtained and averaged between a plurality of graphite films, the average value of the thickness of each graphite film is, for example, within ⁇ 25% of the average value between the films. It is also possible to make it within ⁇ 15%.
  • the average value of the density in one graphite film is obtained and averaged between a plurality of graphite films, the average value of the density of each graphite film is, for example, within ⁇ 10% with respect to the average value between the films, preferably Can be within ⁇ 5%.
  • Graphite film shape and processing There are no particular restrictions on the shape when using the graphite film, and there are many shapes such as square, rectangle (tape shape), circle, fan shape, donut shape, L shape, U shape, and punching metal. A shape with a hole is preferably used. However, the effect of high durability, which is a feature of the present invention, tends to appear remarkably in a form that requires high durability, for example, a thin and elongated shape, such as graphite tape.
  • the graphite tape has, for example, a width of 40 mm or less, preferably 20 mm or less, 10 mm or less, 8 mm or less, 5 mm or less, 3 mm or less, 2 mm or less, or 1 mm or less, and usually 0.2 mm or more.
  • the narrower the width the more advantageous the use of the graphite film of the present invention.
  • the length of the graphite tape is 5 times or more of the width, preferably 8 times or more, 10 times or more, 15 times or more, 20 times or more, 50 times or more, or 100 times or more, and usually 1000 times or less. .
  • the shape of the other part is not particularly limited.
  • a graphite film is stretched on the frame, the part floating in the air is cut to leave the parallel part, and both ends of the film are unprocessed and bonded to the frame. included.
  • the wrinkles of the graphite film are appropriately controlled with respect to the thickness, even when only a part of the graphite film is processed at a high temperature, it can be appropriately processed without breaking.
  • fine drilling or cutting using an electron beam, a laser beam or the like is possible, and the graphite film may be processed into the shape by such processing.
  • the superiority of this improved processing durability appears remarkably. This is a case where fine processing such as cutting into an elongated shape is performed, for example, when processing into a graphite tape.
  • the graphite film may be fixed to a substrate or the like and supported by a surface, may be suspended in the air, may be in tension, or may be in a moderately slack state.
  • the upper limit of the maximum temperature should just be the heat-resistant temperature of graphite film itself, for example, is 3400 degrees C or less.
  • the superiority (heat resistance, durability) of the graphite film of the present invention is lower than that when used in an inert gas atmosphere (eg, 900 ° C. or higher, preferably 1100 ° C or higher, 1300 ° C or higher, 1400 ° C or higher, 1500 ° C or higher, 1700 ° C or higher, 1900 ° C or higher, or 2100 ° C or higher).
  • an inert gas atmosphere eg, 900 ° C. or higher, preferably 1100 ° C or higher, 1300 ° C or higher, 1400 ° C or higher, 1500 ° C or higher, 1700 ° C or higher, 1900 ° C or higher, or 2100 ° C or higher.
  • the difference in temperature between the maximum temperature portion of the graphite film and the minimum temperature portion is, for example, 300 ° C. or higher, preferably 400 ° C. or higher, 500 ° C. or higher, 700 ° C. or higher, 900 ° C. or higher, 1100 ° C. or higher.
  • the temperature is as high as 1300 ° C. or higher, the superiority (heat resistance and good durability) of the graphite film of the present invention tends to appear remarkably.
  • the atmosphere in which the graphite film is used may be a vacuum or an inert gas atmosphere. By making the inert gas atmosphere, sublimation of the graphite film can be suppressed.
  • the inert gas nitrogen, argon or helium is preferably used, and argon or helium is particularly preferable.
  • the pressure of the inert gas may be increased, for example, 0.1 MPa or more, preferably 0.15 MPa or more, 0.20 MPa or more, 0.30 MPa or more, 0.40 MPa or more, 0. It is 50 MPa or more, 0.6 MPa or more, or 0.8 MPa or more.
  • the upper limit of the pressure is not particularly limited, and may be 1 MPa or less.
  • the atmosphere in which the graphite film is used is preferably a non-oxidizing atmosphere, and particularly preferably oxygen is not present. This is because in an oxidizing atmosphere, the graphite film oxidizes in a high temperature environment and is rapidly consumed.
  • the inert gas used as the atmospheric gas has a high purity.
  • the one where a vacuum degree is higher is preferable.
  • the vacuum degree when the graphite film of the present invention is used in vacuum is preferably 1000 Pa or less, more preferably 100 Pa or less, 10 Pa or less, 1 Pa or less, 1 ⁇ 10 ⁇ 1 Pa or less, 1 ⁇ 10 ⁇ 2 Pa or less, 1 ⁇ 10 ⁇ 3 Pa or less, 1 ⁇ 10 ⁇ 4 Pa or less, 1 ⁇ 10 ⁇ 5 Pa or less, 1 ⁇ 10 ⁇ 6 Pa or less, 1 ⁇ 10 ⁇ 8 Pa or less, 1 ⁇ 10 ⁇ 10 It is more preferable that it is Pa or less. It may be 1 ⁇ 10 ⁇ 12 Pa or more.
  • the graphite film of the present invention may be used by laminating with a substrate, but in a state having a floating part (for example, a part is fixed to a support member and the remaining part is suspended in the air). It is preferable to use it in a floating state.
  • the graphite film of the present invention is excellent in durability at a portion where the support of such a support is not received, and can be used stably even in a floating state. Conventionally, it has been impossible to provide such durability with a single graphite film having a high electric conductivity and a thin large area.
  • the graphite film of the present invention float in the air alone, for example, a method of hanging only from the top and hanging from above, a method of hanging from above using a string-like or bar-like member, a string-like shape at the four corners Attaching members, pulling in 4 directions, fixing both ends to a frame, etc., fixing an outer peripheral part to a frame, etc., inserting between a plurality of thread-like members stretched like a net
  • a known method such as a method, a method of floating by a magnetic force or air force, or a method of sandwiching and fixing only the central portion may be appropriately used.
  • the graphite film (including the graphite tape) may be strongly stretched depending on the application, or may be in a state of being moderately slackened. It may be preferable if the member supporting the graphite film has a cooling mechanism such as a heat sink, a cooling fan, cooling water, and a Peltier element.
  • the ratio of the area of the part of the graphite film that floats in the air is preferably 10% or more. More preferably, it is 20% or more, more preferably 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% or more, and may be 95% or less.
  • the graphite film often has a high temperature, and the larger the area of the floating part, the higher the temperature of the support member and the graphite film will be prevented, and the heat resistance of the support member may be exceeded during use. descend.
  • the portion of the graphite film fixed to another member is useless even if it is unnecessarily enlarged, and the useless portion can be reduced by increasing the area of the portion floating in the air.
  • the graphite film includes: luminous body of light-emitting device; filament; high-heat-resistance conductor with high current capacity; electric resistance-type heating element; strong infrared, ultraviolet, X-ray, laser beam, Protective film and reflecting member, support substrate, absorbing member, transmitting member, diffractive member, sensor in apparatus, analysis method, processing method irradiated with ion beam, proton beam, negative hydrogen ion beam, neutron beam, electron beam beam, etc. , Heat diffusion members, specimens, workpieces, and the like. In these applications, at least a part of the graphite film is very hot, such as 900 ° C. or higher.
  • the graphite film of the present invention is excellent in heat resistance and durability, and can extend the service life.
  • a particularly preferred application is an application in which a part of the graphite film is fixed to a support member and the remaining part is suspended in the air, and the part that is suspended in the air reaches the maximum temperature, more preferably energization, infrared irradiation, laser beam irradiation, ion
  • Such applications include, for example, devices that are irradiated with intense infrared rays, ultraviolet rays, X-rays, laser beams, ion beams, proton beams, negative-polarity hydrogen ion beams, neutron beams, electron beam beams, analysis members, absorption members, and transmission Members, diffractive members, sensors, charge conversion membrane members, target support membrane members, support membrane members for radioisotope manufacturing, ion beam attenuators (to reduce the energy of individual particles of ion beams and the number of particles, For example, a membrane member for (attenuator, energy degrader, absorber) can be mentioned.
  • This application claims the benefit of priority based on Japanese Patent Application No. 2016-015082, filed on January 29, 2016. The entire contents of the specification of Japanese Patent Application No. 2016-015082 filed on January 29, 2016 are incorporated herein by reference.
  • FIG. 9 is a schematic plan view showing a location where the thickness of the polyimide film is measured.
  • Locations 9b that are 20 mm from each side at the four corners of the square polyimide film 9a are thickness measurement locations (total of 4 locations), and five locations that are combined with the center (center of gravity) 9c are thickness measurement locations. did. The thickness was measured with a contact-type thickness meter for each location, and the average value was taken as the thickness of the polyimide film.
  • the thickness of 10 produced polyimide films was measured, 7 sheets were selected from those close to the average value, and the average value of the thicknesses of these 7 sheets was taken as the thickness of the polyimide film in the following example. .
  • the ratio (variation.%) Of the thickness of each of the seven selected polyimide films to the average value of the seven sheets was defined as inter-film variation.
  • the thicknesses of the seven manufactured graphite films were measured, and the average value was defined as the thickness of the graphite film in each example. Further, five sheets were selected from those close to the average value, and the ratio (variation.%) Of the thickness of each of the five selected graphite films to the average value of these five sheets was defined as inter-film variation.
  • the accurate electrical conductivity of the graphite film can be obtained.
  • four samples having a size of 5 mm ⁇ 5 mm were cut out from four locations 10b (indicated by ⁇ in the figure) at the four corners of the membrane shown in FIG.
  • Silver paste electrodes were attached to four corners (ridges) of each sample, and sheet resistance was measured using a specific resistance / DC & AC Hall measurement system, ResiTest 8300, manufactured by Toyo Technica Co., Ltd., and electric conductivity was obtained.
  • the average value at four locations was defined as the electrical conductivity of the graphite film.
  • the average value of the electrical conductivity for the five graphite films selected in the thickness measurement was calculated, and this value was used as the electrical conductivity of the graphite film in each example. Further, the ratio (variation.%) Of the electrical conductivity of each of the five selected graphite films to the average value of these five sheets was defined as inter-film variation.
  • FIG. 10 is a plan view of an approximately 18 cm square square graphite film, and the measurement location of the surface roughness Ra is the central portion ( ⁇ ) of the five line segments 10a in FIG.
  • is the midpoint of one side of the graphite film
  • is the midpoint of the line segment 10a
  • is the center of gravity of the graphite film.
  • the evaluation length is 125 mm and the reference length L (cut-off value) is 25 mm.
  • the evaluation length is 40 mm and the reference length L (cut-off value). ) 8 mm (The determination of the reference length in the case of other Ra follows JIS B 0633).
  • ⁇ m the arithmetic average roughness Ra.
  • the value of Ra was determined at each of the five locations of the graphite film (the central portion ⁇ of the five line segments 10a), and the average value of Ra at five locations was determined, which was used as the arithmetic average roughness Ra of the graphite film.
  • the average value of the thicknesses was further determined, and three sheets were selected from those close to the average value.
  • the arithmetic average roughness Ra was calculated
  • Thermal cycle durability test (5.1) Outline Regarding the thermal cycle durability of the graphite film, an electric heating method in which an electric current is passed through the graphite film to heat the graphite film itself, and infrared radiation is applied to the graphite film. The evaluation was made by two heating methods of the infrared heating method for heating. The electric heating test was performed both in an argon gas atmosphere (0.105 MPa to 0.11 MPa) and in a vacuum (10 Pa or less). The test of the infrared heating method was performed in a vacuum.
  • FIG. 11 is a conceptual diagram for illustrating a method for cutting out a test piece for a thermal cycle durability test from an approximately 18 cm square graphite film 11a obtained in the following example, and avoids the edge 11b portion of the graphite film by 1 cm. 24 rectangular test pieces 11c each having a size of 6 cm were cut out.
  • FIG. 12 is a conceptual diagram showing a method for fixing a test piece used in a thermal cycle durability test.
  • a 1 cm ⁇ 6 cm rectangular test piece 12a (11c) cut out from the graphite film was cut out, 1 cm from both ends was fixed to the graphite holder 12b, and the central 4 cm length portion was in a suspended state.
  • the graphite holder 12b can be cooled by a copper cooling water jacket 12c connected thereto. In the energization heating method, both the graphite holder 12b and the copper cooling water jacket 12c also serve as energization electrodes.
  • the temperature of the graphite holder 12b is measured by a thermocouple, and the value varies depending on the use conditions, but is at most 500 ° C., often 400 ° C. or less, 300 ° C. or less, and 200 ° C. or less. For this reason, the graphite film 13a when energized and heated to the maximum temperature causes a large temperature difference between the central portion 13b and both end portions.
  • the temperature at the center 13b of the graphite film was measured with a two-color thermometer (manufactured by Chino Corp., model number IR-CAQ53) and a radiation thermometer (manufactured by Hioki Electric Co., Ltd. model number FT3701).
  • the maximum temperature of the center 13b of the graphite film is 2700 ° C, 2500 ° C, 2300 ° C or 2100 ° C (in an argon gas atmosphere, 0.105 MPa to 0.11 MPa), and 2100 ° C, 1900 ° C, 1700 ° C, 1500 ° C,
  • the durability test was performed at 1300 ° C., 1100 ° C., or 900 ° C. (in vacuum, 10 Pa or less).
  • the graphite film 13a is energized while gradually increasing the current. After the center 13b of the graphite film reaches the maximum temperature, the graphite film 13a is kept at the maximum temperature for 10 seconds, and then the energization is stopped to cool the graphite film 13a. When the temperature of 13b became 300 degrees C or less, it restarted supplying electricity to the graphite film 13a. Thus, the number of repeated heating at each maximum temperature until the graphite film 13a broke (becomes completely cut) was recorded.
  • the test is terminated, and the number of times of heating is set as “> 100”, “> 200” or “> 300”. did. Whether or not the graphite film 13a was ruptured was determined by visual observation and whether or not the electrical resistance between both ends of the graphite film 13a was 1 M ⁇ or more (breakage) (no breakage).
  • the temperature at the center 14b of the graphite film was measured with a two-color thermometer (manufactured by Chino Corp., model number IR-CAQ53) and a radiation thermometer (manufactured by Hioki Electric Co., Ltd. model number FT3701).
  • the durability test was performed such that the maximum temperature of the center 14b of the graphite film was 1700 ° C., 1400 ° C., or 1100 ° C. (in vacuum, 10 Pa or less).
  • the infrared irradiation is stopped and cooled, and the temperature of the center 14b of the graphite film is reduced.
  • the temperature became 300 ° C. or less, the infrared irradiation to the graphite film was repeated.
  • the number of times of heating up to the maximum temperature until the graphite film 14a broke was recorded.
  • the upper limit of the number of repetitions was set to 100 times or 200 times, and the results of not breaking at the upper limit number of times were expressed as “> 100” and “> 200”.
  • FIG. 15 is a conceptual diagram for explaining the outline of the laser cut test.
  • two opposing sides of an approximately 18 cm square graphite film 15a were attached to a copper frame 15c with an adhesive, and the graphite film 15a was stretched horizontally in the air.
  • a notch 15b having a predetermined length (5 cm or 10 cm) is provided at a predetermined interval (the interval is 1.2 mm when the length is 5 cm, and the interval is 1.0 mm when the length is 10 cm).
  • the interval is 1.2 mm when the length is 5 cm, and the interval is 1.0 mm when the length is 10 cm.
  • the number of the cuts 15b was 101 (the number was omitted in the figure), and the number of ruptured ones of the 100 tape-like portions 15d sandwiched between them was counted.
  • the number counted is the number of tape-like portions 15d in a completely cut state including both ends, and the presence or absence of breakage is determined by visual inspection and a two-terminal tester after taking out the tape alone. It was determined by measuring the electrical resistance (whether it was 1 M ⁇ or more (breakage) or not (no breakage)).
  • MD-T1010 manufactured by Keyence Corporation was used for the laser cut, the laser power was 80%, the Q switch frequency was 100 kHz, and the scan speed was appropriately adjusted according to the thickness of the graphite film. For example, when the thickness of the graphite film is 0.9 ⁇ m, the scan speed is 1200 mm / s.
  • Example 1 Polyimide film formation> Pyromellitic dianhydride (PMDA) and 4,4′-diaminodiphenyl ether (ODA) synthesized in a molar ratio of 1/1 (ie, 4/4) were added anhydrous to 100 g of a 18% by weight DMF solution of polyamic acid.
  • An imidization accelerator composed of 20 g of acetic acid and 10 g of isoquinoline was mixed and stirred, and after defoaming by centrifugation, it was cast on an aluminum foil. The process from stirring to defoaming was performed while cooling to 0 ° C.
  • the aluminum foil was removed by etching to produce 10 20 cm ⁇ 20 cm square polyimide films, Seven sheets were selected based on the criteria described in the measurement of the thickness of the polyimide film. The average thickness of the selected seven sheets is 22.1 ⁇ m, and the variation between films is within ⁇ 15%.
  • a scaly boron nitride having an average particle diameter (d50) of 7.4 ⁇ m as a spacer was applied to both surfaces of each of the obtained seven carbonized films using a brush, and then the edges of the carbonized film The carbonized film was hung in the vertical direction with one side of this and lightly shaken to drop excess scaly boron nitride.
  • the dome-type GC plate has a diameter of 32 cm, a radius of curvature on one side (the inner surface of the dome) is 300 cm, and a radius of curvature on the other side (the outer surface of the dome) is 280 cm.
  • a laminate of 8 GCs and 7 carbonized films was sandwiched between second press plates 6c made of glassy carbon and graphitized in an electric furnace with a press function.
  • Graphitization was performed by raising the temperature to 2800 ° C. (maximum temperature) at a rate of 2 ° C./min in an argon gas atmosphere, keeping the temperature at 2800 ° C. (maximum temperature) for 20 minutes, and then naturally cooling.
  • the carbonized film (graphite film) was pressed stepwise through the press plate 6c.
  • pressing was started at a pressure of 8 gf / cm 2 , and then the press load was linearly increased to reach 2500 gf / cm 2 (maximum pressure) when reaching 2800 ° C. (maximum temperature). Further, for 20 minutes after reaching 2800 ° C. (maximum temperature), pressing was continued with a load of 2500 gf / cm 2 (maximum pressure), and then the pressing was terminated.
  • the press pressure was based on a circular area having a diameter of 32 cm.
  • the direction of pressing was perpendicular to the film surface of the carbonized film (graphite film). As a result, seven square graphite films having uniform wrinkles over the entire surface with one side of approximately 18 cm were obtained.
  • Examples 2 to 31 and Comparative Examples 1 to 7 Each condition was changed as shown in Tables 1 and 2 below. In the table, portions where the same contents are described indicate that the same operation was performed, and points not indicated in the table indicate that the same operation as in Example 1 was performed.
  • PMDA pyromellitic dianhydride
  • ODA 4,4′-diaminodiphenyl ether
  • CIP material flat substrate In the example in which “CIP material flat substrate” is described on the press plate as in Example 5, etc., carbonization is performed by using two CIP material flat substrates whose surfaces are mirror-polished as press plates, and spacer particles adhered between them. A membrane was inserted. Seven sets were prepared and each was graphitized under the same press conditions and graphitization conditions.
  • both carbonization and graphitization are specified as the press timing as in Example 10 and a CIP material flat substrate is specified as the press plate
  • spacers are provided on both sides of the selected seven polyimide films.
  • the particles were applied with a brush, then the polyimide film was hung vertically with one edge of the polyimide film, and shaken lightly to drop excess spacer particles.
  • 7 sets were prepared by sandwiching a polyimide film with spacer particles attached on both sides from above and below, and a CCM flat substrate of 24 cm square whose surface was mirror-polished, and these were arranged in a plane In the electric furnace for carbonization.
  • a weight of the CIP material was placed on each of the seven sets of upper CIP material planar substrates, and carbonization was performed while pressing with the weight of the CIP material. After carbonization, the obtained carbonized film is sandwiched between CIP material flat substrates and further pressed down by the weight of the CIP material from above, and placed in a plane in a graphitization electric furnace, Graphitization was performed while pressing with the weight of the CIP material in the same manner as in the conversion. The pressure of the press was obtained by dividing the total value of gravity applied to the weight of the CIP material plane substrate and the weight of the CIP material plane substrate on the upper side of the polyimide film (carbonized film) by the square area of 24 cm square of the CIP material plane substrate. The value is 1.0 gf / cm 2 in Example 10.
  • Tables 1 to 5 show implementation conditions and implementation results for all examples and comparative examples.
  • the graphite film of the example has an Ra / thickness ratio in an appropriate range, it has excellent thermal cycle durability and also has excellent durability in a laser cut test.
  • the graphite film of the comparative example has an inadequate Ra / thickness ratio, and therefore is inferior in thermal cycle durability and inferior in durability in a laser cut test.
  • Comparative Example 1 various measurements were not performed because the press pressure was too strong and many tears occurred in the graphite film.
  • the graphite film or graphite tape of the present invention is a phosphor of a light-emitting device; a filament; a high heat-resistant conductor with a high current capacity; an electric resistance heating element; a strong infrared ray, an ultraviolet ray, an X-ray, a laser beam, an ion beam, a proton beam, a negative electrode.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

面積が1×1cm2以上であり、厚みが10nm~10μmであり、膜面方向の電気伝導度が400S/cm以上であり、厚みに対する表面の算術平均粗さRaの比率が1.0~600または0.3以下である黒鉛膜。

Description

黒鉛膜及び黒鉛テープ
 本発明は黒鉛膜及び黒鉛テープなどの黒鉛製品に関し、特に電気伝導度が400S/cm以上の高品質の黒鉛製品に関するものである。
 高品質の黒鉛膜は極めて高い耐熱性、電気伝導度、耐電流密度等を活かして、発光デバイスの発光体、フィラメント、高電流容量の高耐熱導線、電気抵抗式の発熱体等として好適に使用される。これらの用途では黒鉛膜は900℃以上などの非常に高温になる場合が多く、支持部材が黒鉛膜の大部分と接触していると、支持部材が熱に耐えられなくなる。このような場合には、黒鉛膜をその端部や外周部などの一部分のみで支持部材に固定し、宙に浮いた状態で使用することで支持部材を熱から保護する。そして黒鉛膜自体は、一部分のみを支持し、残りが宙に浮いた状態にしても高い耐久性を示すことが求められる。高品質の黒鉛膜を宙に浮いた状態にしたときの耐久性は、該黒鉛膜を、強い赤外線や紫外線、X線、レーザー光線、イオンビーム、陽子ビーム、負極性水素イオンビーム、中性子ビーム、電子線などが照射される装置や分析方法、加工方法において、防護膜、反射部材、支持基板、吸収部材、透過部材、回折部材、センサ、熱拡散部材、被検体、被加工物等として使用する場合に特に要求される。さらには加熱や加熱・冷却の繰り返し(熱サイクル)に対する黒鉛膜の耐久性向上が強く求められている。
 また支持部材でサポートされた黒鉛膜に対して電子線、レーザー光線等を用いた微細な穴開けや切断加工を行うと、支持部材の部分的な変形、めくれ上がり、蒸発、分解等によって結果的に黒鉛膜に損傷が生じたり、不純物が付着したりする等、黒鉛膜の品質上望ましくない場合がある。そのため黒鉛膜の一部を支持して残りの部分を宙に浮かせ、この宙に浮いた部分に対して加工を施すこともあり、そのような場合には優れた加工耐久性も求められる。特に電子線、レーザー光線等を用いた微細な穴開けや切断加工は、一部のみが高温に加熱される加工方法であり、こうした方法に対する耐久性が求められる。
 以上のように、一部を宙に浮かせた状態の黒鉛膜は、その耐熱性、加熱・冷却の繰り返し(熱サイクル)に対する耐久性、一部のみが高温に加熱され、他の部分が比較的低温である使い方をされる場合の耐久性(部分加熱、あるいは部分加熱および冷却の繰り返し(部分的熱サイクル)に対する耐久性)、一部のみを高温に加熱する加工方法に対する耐久性などが優れていることが求められる。特にこうした耐久性と、膜の薄さ、均一性、大面積、高い電気伝導度をバランスよく高レベルで実現することが強く求められる。
 ところで黒鉛結晶の基本的な構造は、六角網目状に結ばれた炭素原子の作る基底面が規則正しく積み重なった層状構造(積み重なった方向をc軸と言い、六角網目状に結ばれた炭素原子の作る基底面の広がる方向をa-b面方向と言う)である。基底面内の炭素原子は共有結合で強く結ばれ、その原子間隔は1.421Åである。一方、積み重なった層間の結合は弱いvan der Waals力によっており、層間隔は3.354Åである。理想的な黒鉛結晶は層間の積み重なり方によって、六方晶系に属するものと菱面体晶系に属すものとがあるが、普通の構造は六方晶系である。黒鉛における電気伝導度はこのような異方性を反映してa-b面方向に大きく、この方向の電気伝導度は六角網目状に結ばれた炭素原子が作る層の構造の良否などの黒鉛の品質を判定する良い指標となる。電気伝導度が高いことは特に電線、発光体、発熱体、センサ等として使用される場合に必要とされることが多い。また電気伝導度が高いことは黒鉛の結晶性が高いことを意味するので、同時に熱伝導度が高いことも意味する。従って電気伝導度が高い高品質黒鉛は熱伝導材料としても優れている。
 従来知られた高品質の黒鉛のa-b面方向の電気伝導度の例としては、天然に産出する単結晶と見なされる黒鉛、あるいはキッシュグラファイトと呼ばれる溶融金属に溶解した炭素から得られる黒鉛の25000S/cmが挙げられる(非特許文献1、2)。またポリイミド、ポリオキサジアゾール、ポリパラフェニレンビニレンなどの特殊な高分子を直接熱処理、炭素化、黒鉛化する方法が開発されており(特許文献1、2)、20000S/cm以上の高いa-b面方向の電気伝導度を持つ黒鉛膜を作ることが可能である。さらに蒸着重合法を用いて溶媒やキュア剤等の不純物を含まずに作製した、極めて薄いポリイミド膜を焼成する事により、極めて薄く厚みが均一で、なおかつa-b面方向の電気伝導度が極めて高い黒鉛膜を作製できることが知られている(特許文献3)。
特開2004-299919号公報 特開2005-53719号公報 特開2013-212938号公報
L. Spain,A. R. Ubbelohde, and D. A. Young "Electronic properties of oriented graphite" PHILOSOPHICAL TRANSACTIONS OF THE ROYALSOCIETY T. C. Chieu, M. S. Dresselhaus and M. Endo, Phys. Rev. B26, 5867(1982)
 しかし、図1(a)に示す様に特許文献1~3、非特許文献1、2に記載の方法で得られる黒鉛膜1aは、シワ(表面凹凸)やうねりを除いた正味の厚み(d1,d2,d3)の均一性には優れるものの、膜全面にわたって不均一なシワが多く有り、またシワの凹凸の大きさの制御も困難であった。また、こうした従来の黒鉛膜は、高温加熱、高温熱サイクル、部分的な高温加熱、部分的高温熱サイクルに対する耐久性という点において改善の余地がある。特に黒鉛膜は薄いほど物理的強度が弱く、破れや穴あき、ひび割れが起こりやすく、また高温に加熱された際には昇華による肉やせのために、さらなる物理的強度の低下を招き、破断等をますます起こしやすくなるということがわかった。
 本発明は上記の様な事情に着目してなされたものであって、その目的は、黒鉛膜の一部を宙に浮かせた状態で使用したときの耐熱性、特に熱サイクルに対する耐久性、部分加熱時の耐熱性、部分熱サイクルに対する耐久性を高めた黒鉛膜を提供することである。また本発明の他の目的は、部分加熱する加工方法で黒鉛膜の一部を宙に浮かせた状態で加工したときの耐久性を高めることである。
 本発明者らは前記課題を解決するために鋭意研究を重ねた結果、厚さに対するシワの凹凸の高さを制御することが重要であることを突き止めた。すなわち図1(a)に示す様な部分的に大きな凹凸を有する不均一なシワを有する黒鉛膜はもちろん、こうした凹凸を抑制してシワの均一性を高めた図1(c)に示すような黒鉛膜でも、耐久性を高めるには至らなかった。これらに対して、図1(a)、(c)の中間に相当するやや大きめのシワ(図1(b))や、図1(c)よりも小さめのシワ(図1(d))に制御し、これらのシワの大きさを黒鉛膜の厚さに対して一定の範囲に制御すればよいことが判明した。黒鉛膜を宙に浮いた状態で加熱や冷却した場合、シワの高曲率部に歪みが集中して、破断の起点になりやすい。図1(d)のようにシワを著しく抑制すると、歪みの集中や破断の起点を少なくできるため、耐久性が向上する。また図1(b)のようにシワを一定程度大きくした場合には、たとえシワの高曲率部に歪みが集中しても、シワ自体が変形して歪みを解放でき、耐久性が向上する。図1(a)のようにシワが大きすぎる場合や図1(c)のようにシワが中途半端に残る場合には、こうした歪みの集中防止作用が不十分となって、耐久性が低下すると考えられる。
 また従来は厚さ10μm以下の黒鉛膜のシワの大きさを、図1(b)や図1(d)に示すような適度な範囲に制御する方法が知られておらず、特に大面積で、a-b面方向(すなわち膜面方向)の高い電気伝導度を有する黒鉛膜のシワを制御する方法が知られておらず、適度なシワによる耐久性の改善に至るには、そもそもシワの制御方法を開発する必要があった。特にポリイミドのような市場で入手しやすい高分子原料を用いて、10μm以下という広い厚み範囲で、1cm×1cm以上という大面積の全域に関して、膜厚に対して一定の割合の高さのシワを均一に形成して耐熱性・耐久性を向上させ、なおかつ400S/cm以上という高い電気伝導度である黒鉛膜を得る方法は開発されておらず、こうした黒鉛膜の開発自体が大きなチャレンジであった。そして本発明者らは、適切な大きさのスペーサーを高分子膜、炭素化膜、又は黒鉛膜の両面に適度に分布させ、これら高分子膜、炭素化膜、又は黒鉛膜を平滑な基板で挟んで両側から適切な圧力でプレスしつつ、炭素化温度、黒鉛化温度、又は再黒鉛化温度で処理すれば適度なシワを形成できることを見出し、その結果、上述した様に黒鉛膜の耐熱性・耐久性を向上できることを見出し、本発明を完成した。
 すなわち上記課題を解決し得た本発明は以下の通りである。
 (1)面積が1×1cm2以上であり、厚みが10nm~10μmであり、膜面方向の電気伝導度が400S/cm以上であり、厚みに対する表面の算術平均粗さRaの比率が1.0~600または0.3以下であることを特徴とする黒鉛膜。
 (2)複数箇所の算術平均粗さRaを測定したときの各箇所の値が、全複数箇所での測定結果から求まるRaの平均値に対して、±25%以内である(1)に記載の黒鉛膜。
 (3)密度が1.5g/cm3以上である(1)又は(2)に記載の黒鉛膜。
 (4)膜の表面と裏面の両方が視野に入る、膜面に対して垂直方向の断面SEM画像にて、黒鉛膜の断面積の70%以上の面積で、膜面に平行な層が積層した空隙のない層構造が観察される(1)~(3)のいずれか1つに記載の黒鉛膜。
 (5)高分子膜を炭素化及び黒鉛化することにより黒鉛膜を得る工程を含み、
 得られた黒鉛膜を、再度、黒鉛化温度で処理する再黒鉛化工程を必要により含み、
 前記炭素化、黒鉛化、及び再黒鉛化の少なくとも1つの処理で、処理される高分子膜、炭素化膜、又は黒鉛膜の両面とプレス板の間に、前記高分子膜、炭素化膜、又は黒鉛膜の厚さをそれぞれ1としたときに厚さが0.4以下又は0.75~350となるスペーサーを配置し、両側からプレス板を用いて前記高分子膜、炭素化膜、又は黒鉛膜を圧力0.3gf/cm2以上2500gf/cm2以下でプレスしつつ炭素化温度、黒鉛化温度、又は再黒鉛化温度で処理する(1)~(4)のいずれか1つに記載の黒鉛膜の製造方法。
 (6)幅が40mm以下、長さが幅の5倍以上である平行部を有し、材質が(1)~(4)のいずれか1つに記載の黒鉛膜と同じである黒鉛テープ。
 (7)(1)~(4)のいずれか1つに記載の黒鉛膜をレーザー光線で切断し、幅40mm以下、長さが幅の5倍以上である平行部を切り出す黒鉛テープの製造方法。
 (8)(1)~(4)のいずれか1つに記載の黒鉛膜又は(6)に記載の黒鉛テープを、その最高温度が部分的に900℃以上になる熱環境下に配置する黒鉛膜又は黒鉛テープの使用方法。
 (9)黒鉛膜又は黒鉛テープの一部が900℃以上の最高温度になるとき、黒鉛膜又は黒鉛テープの最低温を示す部分との温度差が300℃以上である(8)に記載の使用方法。
 (10)複数の前記黒鉛テープを平行に並べる(8)又は(9)に記載の使用方法。
 (11)前記黒鉛膜又は黒鉛テープの一部を支持部材に固定して残部を宙に浮かせ、この宙に浮いた部分が最高温度になる(8)~(10)のいずれか1つに記載の使用方法。
 (12)前記最高温度到達時の雰囲気が、圧力0.1MPa以上の不活性ガス又は圧力1000Pa以下の真空である(8)~(11)のいずれか1つに記載の使用方法。
 (13)黒鉛膜又は黒鉛テープが、通電、赤外線照射、レーザー光線照射、イオンビーム照射のいずれかによって加熱されて最高温度になる(8)~(12)のいずれか1つに記載の使用方法。
 本発明によれば、黒鉛膜のシワ(凹凸)が厚みに対して適切に制御されているため、黒鉛膜(又はその細線化体である黒鉛テープ)を単独で宙に浮かせた状態で使用したときの耐熱性、熱サイクル耐久性、部分加熱耐熱性、部分的熱サイクル耐久性を高めることができる。部分加熱加工方法で黒鉛膜の一部を宙に浮かせた状態で加工したときの耐久性を高めることもできる。
図1(a)は従来の黒鉛膜を説明するための概略断面図であり、図1(c)は本発明外の黒鉛膜を説明するための概略断面図であり、図1(b)、(d)は本発明の黒鉛膜を説明するための概略断面図である。 図2は本発明の黒鉛膜の表面(上面)を撮影したSEM写真である。 図3は本発明の黒鉛膜の断面を撮影したSEM写真である。 図4は本発明の黒鉛膜の断面TEM写真である。 図5は本発明の黒鉛膜の拡大された断面SEM写真である。 図6は本発明のプレス方法の一例を説明するための概略断面図である。 図7は本発明のプレス方法の他の例を説明するための概略断面図である。 図8は本発明のプレス方法のさらに他の例を説明するための概略断面図である。 図9は本発明のポリイミド膜の測定箇所を示す概略平面図である。 図10は本発明の黒鉛膜の測定箇所を説明するための概略平面図である。 図11は本発明の黒鉛膜のサンプル箇所を説明するための概略平面図である。 図12は本発明の黒鉛膜の熱サイクル耐久試験方法を説明するための概念図である。 図13は本発明の黒鉛膜の熱サイクル耐久試験方法を説明するための他の概念図である。 図14は本発明の黒鉛膜の熱サイクル耐久試験方法を説明するためのさらに他の概念図である。 図15は本発明の黒鉛膜のレーザーカット試験方法を説明するための概念図である。
 (1)黒鉛膜
 (1.1)基本特性(面積、厚み、電気伝導度)
 本発明は、面積が大きく、厚みが薄く、高品質(高電気伝導度)の黒鉛膜の改良技術に関する。こうした黒鉛膜は、その優れた品質のために種々の用途での利用が期待されつつも、面積が大きくて厚みが薄いために破れ等に対する耐久性や耐熱性の向上が求められるためである。
 本発明の黒鉛膜の面積は、1×1cm2以上である。1.5×1.5cm2以上であることが望ましく、より好ましくは2×2cm2以上であり、さらに好ましくは3×3cm2以上であり、なお一層好ましくは4×4cm2以上又は5×5cm2以上である。さらに7×7cm2以上や10×10cm2以上、10×15cm2以上、10×20cm2以上、15×15cm2以上又は20×20cm2以上であることは最も好ましい。面積の上限は特に限定されず、例えば、50×50cm2であってもよい。こうした大面積を有することは、上述及び後述する各用途に黒鉛膜を利用する場合に必要な又は有利な要件である。
 本発明の黒鉛膜の厚さは10μm以下であり、8μm以下であることが好ましく、5μm以下であることはさらに好ましく、3μm以下、2μm以下、1.8μm以下、1.5μm以下、1.0μm以下又は0.5μm以下であることは特に好ましい。薄い黒鉛膜ほど小型、薄型、軽量等が必要とされる用途に利用できる。また、高分子膜を焼成する後述の本発明の黒鉛の製造方法では、他の条件が同じであれば高分子膜を薄くして得られる黒鉛膜を薄くしたほうが、a-b面方向、すなわち膜面方向の電気伝導度が高くなり、黒鉛膜の高電気伝導度化・高品質化にも貢献する。
 なお前記黒鉛膜の厚さは、10nm以上であり、20nm以上であることが好ましく、30nm以上であることはより好ましく、50nm以上、80nm以上又は100nm以上であることはさらに好ましい。200nm以上又は300nm以上であることはなお一層好ましい。黒鉛膜は厚いほど破れにくく、焼成時に黒鉛の昇華により局所的に穴が開くなどの不測の事態が起こりにくく、生産、取り扱い、加工も容易である。また膜厚に対する厚み誤差の割合が小さく、製品の品質保証上も有利である。
 前記黒鉛膜の厚さは、20nm~8μmの間であることが好ましく、30nm~5μmの間であることはさらに好ましく、50nm~3μmの間であることはなお一層好ましい。さらに100nm~1.7μmの間、200nm~1.5μmの間又は300nm~1.0μmの間であることは最も好ましい。
 なお黒鉛膜の厚みは公知の装置を用いて測定でき、例えばノギスや触針式等の接触式の測定方法や、レーザー変位計、分光エリプソメトリー等の光学的測定方法、SEM(Scanning Electron Microscope)やTEM(Transmission Electron Microscope)を用いた断面観察による方法等により測定する事ができる。なお、本明細書では後述のように接触式の厚み計を用いて黒鉛膜の厚みを求めている。
 本発明の黒鉛膜の電気伝導度は400S/cm以上である。より好ましくは500S/cm以上、さらに好ましくは600S/cm以上、なお好ましくは900S/cm、一層好ましくは1200S/cm以上又は1500S/cm以上であり、2000S/cm以上や3000S/cm以上、4000S/cm以上、5000S/cm以上であることはより一層好ましい。さらに、8000S/cm以上や10000S/cm以上、15000S/cm以上、17000S/cm以上、20000S/cm以上であることは最も好ましい。電気伝導度の上限は特に限定されないが、例えば、30000S/cm以下、特に27000S/cm以下である。高電気伝導度であることは黒鉛が結晶性に優れ、ヒビ割れや欠陥が少ないことを意味し、高品質であることを表している。そしてこれは同時に熱伝導度が高いことも意味する。特に発光デバイスの発光体、電気抵抗式の発熱体、センサなどに使用する場合は、一定以上の高い電気伝導度を有することが有利である。また電線、熱拡散部材、電子回路用部材などに用いる場合であっても、一般的に高い電気伝導度の黒鉛膜ほど優れている。電気伝導度は、例えばvan der Pauw法や一般的な4端子法など既知の手法により求まる電気抵抗(シート抵抗)と、黒鉛膜の寸法、厚みから計算できる。
 (1.2)シワ
 本発明の黒鉛膜は、図1(a)又は(c)に示すような状態を避け、図1(b)又は(d)に示す様に、表面のシワが適切な範囲に制御されている。そのため面積が大きくて厚みが薄いにも拘わらず、耐熱性・耐久性に優れている。
 図1(a)は従来の黒鉛膜の一形態を示す概略断面図であり、シワの無い領域や細かいシワがある領域、大きなシワが集中している領域が混在しており、形成されているシワの不均一さが目立っている。このような黒鉛膜では、相対的に大きく鋭い凹凸部分と比較的平坦な部分の境界等において、高温加熱や冷却による局所的な歪みの影響が出やすく、加熱や、熱サイクルによって穴が開いたり、ヒビ割れが生じたり、破断したりしやすい。またシワが比較的均一に形成されていても、そのシワの凹凸高さが黒鉛膜の厚みに対して大きすぎる場合には、やはりシワの凹凸部分が高温加熱や冷却による局所的な歪みの影響で、穴が開いたり、ヒビ割れが生じたり、破断したりしやすい。さらにシワを均一にしても、図1(c)の様に、シワの凹凸の高さが適切でないと、高温加熱や冷却による局所的な歪みを、シワの伸縮や変形による緩衝効果によって緩和する能力が不足する。そのため加熱や冷却によって穴が開いたり、ヒビ割れが生じたり、破断したりしやすい。
 一方、本発明では図1(b)のようにして、シワを均一にしつつ適度な高さも残しているため、凹凸部分と平坦部の境界等で、高温加熱や冷却による局所的な歪みの影響が出そうになっても、この局所的な歪みを、シワの伸縮や変形によって緩衝でき、破断に至るのを防止できる。また図1(d)のように厚さに対してシワの凹凸を著しく小さくすると、局所的な歪みの発生自体を防止でき、破断に至るのを防止できる。
 図1(b)のような厚さに対して適度な凹凸を有する状態は、具体的には、黒鉛膜の厚さ(平均値、μm)に対する、黒鉛膜の表面の算術平均粗さRa(平均値、μm)の割合で表現できる。すなわち図1(b)の状態では、Raの平均値/厚さの平均値(μm/μm)の値が1.0以上、600以下である。さらに1.5以上であることは好ましく、2.0以上であることはさらに好ましく、2.5以上であることはなお好ましく、3.0以上であることは一層好ましく、4.0以上であることはより好ましく、さらに5.0以上、6.0以上、8.0以上又は10以上であることが特に望ましい。また、500以下であることは好ましく、400以下であることはより好ましく、300以下であることはさらに好ましく、200以下、150以下、100以下、50以下、30以下又は20以下であることはなお一層好ましい。なお図2は、図1(b)の状態の黒鉛膜の表面(上面)を撮影したSEM写真であり、図3はその断面を撮影したSEM写真であり、適度な高さの凹凸が均一に形成されていることを示している。
 図1(d)のような厚さに対してシワの凹凸が著しく小さい状態もまた、黒鉛膜の厚さ(平均値、μm)に対する、黒鉛膜の表面の算術平均粗さRa(平均値、μm)の割合で表現できる。すなわち図1(d)の状態では、Raの平均値/厚さの平均値(μm/μm)の値が0.3以下である。0.25以下であることはより好ましく、0.20以下であることはなお好ましく、0.15以下であることはさらに好ましい。また、0.1以下であることは好ましく、0.05以下であることはさらに好ましい。また、0.001以上であっても構わない。
 黒鉛膜の表面の算術平均粗さ(Ra)自体は、前記範囲を満足するように黒鉛膜の厚さに応じて適切な範囲をとればよいが、黒鉛膜のシワの状態に応じて好ましい範囲を有していてもよい。図1(b)のような適度な凹凸を有する黒鉛膜では、表面の算術平均粗さ(Ra)は、例えば、0.5μm以上、好ましくは5μm以上、より好ましくは10μm以上であり、30μm以上であってもよい。また例えば200μm以下であり、好ましくは100μm以下であり、より好ましくは50μm以下である。
 図1(d)のようなシワの凹凸が著しく小さい黒鉛膜では、表面の算術平均粗さ(Ra)は、例えば、0.5μm以下、好ましくは0.3μm以下、より好ましくは0.25μm以下である。また例えば、0.05μm以上であり、好ましくは0.1μm以上であり、0.2μm超であってもよい。
 黒鉛膜内の複数箇所で算術平均粗さRaを測定したとき、各箇所の値が、全複数箇所での測定結果から求まるRaの平均値に対して、例えば、±25%以内、好ましくは±20%以内、より好ましくは±15%以内であることが望ましい。膜内でのRaのばらつきを抑制することで、シワの凹凸の均一性をさらに高めることができ、黒鉛膜の耐久性をさらに向上できる。
 算術平均粗さRaは既存の方法、すなわち触針式表面粗さ計や、レーザー顕微鏡等の光学的方法や、STM(Scanning Tunneling Microscope)、AFM(Atomic Force Microscope)等の方法により決定できる。これらに関する規定としては、例えばJIS B0601-2001を適用または準用できる。
 (1.3)他の特性
 前記黒鉛膜では、密度や膜内の空隙の制限は特にないが、密度は1.5g/cm3以上であることが好ましい。さらに1.6g/cm3以上、1.7g/cm3以上、1.8g/cm3以上、1.9g/cm3以上、1.95g/cm3以上、2.0g/cm3以上、2.05g/cm3以上、2.1g/cm3以上、2.15g/cm3以上であることは一層好ましい。なお密度が高いほど、破断や穴あきが発生する起点となる空隙部分が減り、また加熱された際に熱がこもりにくくなる。なお密度の上限は、例えば2.26g/cm3以下であり、2.20g/cm3以下であってもよい。
 図4は本発明の黒鉛膜4aの断面TEM写真(倍率3,000,000倍)の一例であり、図5は本発明の黒鉛膜5aの断面SEM写真(倍率10,000倍)の一例である。こうしたTEM断面写真やSEM断面写真に示される様に、黒鉛膜の膜面に垂直な方向の断面での70%以上の面積に関して、極薄黒鉛の層が隙間無く積層していることが好ましい。この断面で極薄黒鉛の層が隙間無く積層している部分の面積の割合は、75%以上であることがより好ましく、80%以上であることはなお好ましく、85%以上、90%以上又は95%以上であることはより一層好ましい。最も好ましくは、極薄の黒鉛層が、黒鉛膜の一方の表面から他方の表面まで隙間無く積層した積層体構造であることである。該極薄黒鉛の層は、黒鉛膜の厚みにもよるが100層以上であることもあり、また大抵10層以上である。前記TEM断面像及び/又はSEM断面像で平坦なグラフェンや極薄黒鉛の隙間が殆ど無い積層構造が観察されることが好ましく、より望ましくは、空隙が全く観察されないことである。
 個々の極薄黒鉛の層を形成している黒鉛結晶のドメインサイズは例えば100μm未満(例えば10μm以上)、特に10μm未満(例えば、1μm以上)などのように小さくても構わない。
 (1.4)表面処理
 本発明の適度な高さのシワのある(適度な大きさのRaを持つ)黒鉛膜であっても、見かけ上のシワの高さを変更する様な各種表面処理を施すことが可能である。例えば、表面にカーボンや金属等を蒸着したり、カーボン等のペーストを塗布したり、カーボンや金属等の粒子を塗布したり、型押しにより凹凸を与えたり、切り目を入れたり、折り目を付けたり、プレスによりシワを押しつぶして平坦にしたりすることが可能である。特に黒鉛膜の一部分に関しては、このような表面処理をすることは有効である場合がある。表面処理によって見かけ上のシワの高さを変更することで、例えば枠などの他の部材に固定するときに表面の滑りと摩擦を適度に調節でき、他の部材との接着性を向上できる。このような表面処理をして凹凸の程度を変更した黒鉛膜も、処理前の表面凹凸が本発明の範囲内である限り、その段階で本発明に含まれることとなる。
 (2)黒鉛膜の製造方法
 前記黒鉛膜は、高分子膜や炭素化膜から黒鉛膜を製造する方法を基本とし、その適切な段階でスペーサーを用いたプレス処理を施すことによって製造できる。まず始めに、高分子膜から炭素化膜を経て黒鉛膜を製造する基本部分について詳述する。
 (2.1)高分子膜
 高分子膜に使用される原料高分子は、成膜性を有し、焼成により良質の黒鉛になるものであれば特に限定はされないが、芳香族系高分子が好ましい。この芳香族系高分子としては、ポリイミド、ポリアミド、ポリパラフェニレンビニレン、ポリキノキサリン、ポリオキサジアゾール、ポリベンズイミダゾール、ポリベンズオキサゾール、ポリベンズチアゾール、ポリキナゾリンジオン、ポリベンゾオキサジノン、ポリキナゾロン、ベンズイミダゾベンゾフェナントロリンラダーポリマー、およびこれらの誘導体から選択される少なくとも一種であることが好ましい。これらの高分子原料からなる膜は公知の製造方法で製造すればよい。特に好ましい原料高分子として芳香族ポリイミド、ポリパラフェニレンビニレン、ポリオキサジアゾールを例示する事ができ、特に芳香族ポリイミドが好ましい。
 (2.1.1)芳香族ポリイミド
 (2.1.1.1)ポリアミド酸
 芳香族ポリイミドとしては、以下に記載する酸二無水物(特に芳香族酸二無水物)とジアミン(特に芳香族ジアミン)からポリアミド酸を経て作製される芳香族ポリイミドが特に好ましい。
 前記酸二無水物としては、ピロメリット酸二無水物(PMDA)、2,3,6,7-ナフタレンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)エタン二無水物、オキシジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、エチレンビス(トリメリット酸モノエステル酸無水物)、ビスフェノールAビス(トリメリット酸モノエステル酸無水物)、およびそれらの類似物を含み、それらを単独または任意の割合の混合物で用いることができる。 特に剛直な高分子構造を持つほどポリイミド膜の配向性が高くなり結晶性に優れた黒鉛が得られやすいことと、さらには入手性の観点から、ピロメリット酸二無水物(PMDA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が特に好ましい。
 前記ジアミンとしては、4,4’-ジアミノジフェニルエーテル(ODA)、p-フェニレンジアミン(PDA)、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルメタン、ベンジジン、3,3’-ジクロロベンジジン、4,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、1,5-ジアミノナフタレン、4,4’-ジアミノジフェニルジエチルシラン、4,4’-ジアミノジフェニルシラン、4,4’-ジアミノジフェニルエチルホスフィンオキシド、4,4’-ジアミノジフェニル-N-メチルアミン、4,4’-ジアミノジフェニル-N-フェニルアミン、1,4-ジアミノベンゼン(p-フェニレンジアミン)、1,3-ジアミノベンゼン、1,2-ジアミノベンゼンおよびそれらの類似物を含み、それらを単独で、または任意の割合の混合物で用いることができる。さらにポリイミド膜の配向性が高くなり結晶性に優れた黒鉛が得られやすいことと、入手性の観点から、4,4’-ジアミノジフェニルエーテル(ODA)、p-フェニレンジアミン(PDA)を用いることが好ましい。
 前記酸二無水物とジアミンからポリアミド酸を調製する重合方法としてはあらゆる公知の方法を用いることができ、例えば、酸二無水物の少なくとも1種とジアミンの少なくとも1種を有機溶媒中に溶解させ、得られたポリアミド酸の有機溶媒溶液を、制御された温度条件下で、上記の酸二無水物とジアミンの重合が完了するまで攪拌する方法が含まれる。芳香族テトラカルボン酸二無水物と芳香族ジアミンからポリアミド酸を調製する方法を例にとって特に好ましい重合方法を挙げると、次のような方法になる。すなわち、
 1)芳香族ジアミンを極性有機溶媒中に溶解し、これと実質的に等モルの芳香族テトラカルボン酸二無水物を反応させて重合する方法、
 2)芳香族テトラカルボン酸二無水物とこれに対し過小モル量の芳香族ジアミン化合物とを極性有機溶媒中で反応させ、両末端に酸無水物基を有するプレポリマーを得る。続いて、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法、
 3)芳香族テトラカルボン酸二無水物とこれに対し過剰モル量の芳香族ジアミン化合物とを極性有機溶媒中で反応させ、両末端にアミノ基を有するプレポリマーを得る。続いてここに芳香族ジアミン化合物を追加添加後、全工程において芳香族テトラカルボン酸二無水物と芳香族ジアミン化合物が実質的に等モルとなるように芳香族テトラカルボン酸二無水物を用いて重合する方法、
 4)芳香族テトラカルボン酸二無水物を極性有機溶媒中に溶解及び/または分散させた後、実質的に等モルとなるように芳香族ジアミン化合物を用いて重合させる方法、
 5)実質的に等モルの芳香族テトラカルボン酸二無水物と芳香族ジアミンの混合物を極性有機溶媒中で反応させて重合する方法、
などのような方法である。
 前記ポリアミド酸溶液の濃度は通常5~35重量%であり、好ましくは10~30重量%の濃度である。この範囲の濃度である場合に、適当な分子量と溶液粘度を得る事が出来る。ポリアミド酸溶液の濃度が低すぎると分子量が十分でなく、得られるポリイミド膜の強度が十分でない場合があり、粘度が低すぎてポリイミド膜の製膜が困難となる場合もある。一方、ポリアミド酸溶液の濃度が高すぎると粘度が非常に高く、ポリイミド膜の製膜が困難となる。
 前記ポリアミド酸溶液中の酸二無水物とジアミンは実質的に等モル量にすることが好ましく、モル比(酸二無水物:ジアミン)は、例えば、1.5:1~1:1.5、好ましくは1.2:1~1:1.2、より好ましくは1.1:1~1:1.1である。
 ポリアミド酸を合成するための好ましい溶媒はアミド系溶媒、すなわちN,N-ジメチルフォルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドンなどであり、N,N-ジメチルフォルムアミド、N,N-ジメチルアセトアミドが特に好ましく用いられる。
 (2.1.1.2)ポリイミド化
 ポリイミドの製造方法には、前駆体である上記ポリアミド酸のイミド化を加熱により行う熱キュア法や、ポリアミド酸に無水酢酸等の酸無水物に代表される脱水剤、ピコリン、キノリン、イソキノリン、ピリジン等の第3級アミン類をイミド化促進剤として用い、イミド化を行うケミカルキュア法がある。本発明ではいずれを用いても良い。得られるポリイミド膜が焼成中にプレスしても破損しにくく、また、高電気伝導度など品質の良い黒鉛膜を得やすいという観点からは、ケミカルキュア法が好ましい。一方で熱キュア法は、ポリアミド酸を加熱しなければイミド化が起こりにくいので、時間をかけてポリイミド製膜したい場合にも比較的容易に使用でき、例えばスピンコート法など様々なポリイミド製膜方法に適用しやすく、製造プロセス上の自由度が高いという利点がある。
 例えば、ケミカルキュアによるポリイミド膜の製造法は以下のようになる。まず上記ポリアミド酸の有機溶媒溶液に化学量論量以上の脱水剤と触媒量のイミド化促進剤を加え、アルミ箔等の支持基板やPET等の高分子膜、ドラム又はエンドレスベルト等の支持体上に流延又は塗布して膜状とし、加熱により有機溶媒を乾燥させることにより、自己支持性を有する膜を得る。次いで、これを更に加熱して乾燥させつつイミド化させ、ポリイミド膜を得る。加熱の際の温度は、150℃から550℃の範囲が好ましい。
 上記のようにイミド化促進剤を加えず、単純に加熱によりイミド化を行い、ポリイミド膜を得ても良い(熱キュア法)。この場合の加熱温度も150℃から550℃の範囲が好ましい。
 さらに、ポリイミドの製造工程中に、収縮を防止したり高分子鎖の膜面方向の配向性を高めるために、膜を固定したり、延伸したりする工程を含む事は好ましい。これは、膜面方向の配向性が高いポリイミド膜を用いる事で、黒鉛の結晶性が高くなりやすく、結果として高電気伝導度や高熱伝導度の黒鉛膜が得やすいためである。この理由は、黒鉛化の際には黒鉛前駆体中にて炭素原子が黒鉛結晶の構造に再配列する必要があるが、元々膜面方向の配向性に優れたポリイミドでは、その再配列が少なくて済むために、焼成によりスムーズに黒鉛への転化が進むためである。
 また、銅箔、アルミ箔、石英板、グラッシーカーボン(GC)板などの基板上で直接ポリイミド膜を得たい場合には、バーコーターやスピンコーターを用いて所望の基板上にポリアミド酸の膜を形成し、加熱してイミド化させ、基板付きポリイミド膜を得れば良い。この場合も、ケミカルキュア法、熱キュア法のいずれも用いることができる。
 (2.1.2)高分子膜の厚み
 本発明の厚み範囲の黒鉛膜を得るためには、原料高分子膜の厚さは35μm~20nmの範囲である事が好ましい。これは、最終的に得られる黒鉛膜の厚さは、一般に原料高分子膜の厚みが1μm以上では、原料高分子膜の厚さの60~30%程度となり、1μm以下では50%~20%程度となる場合が多いためである。従って、最終的に本発明の10nmから10μmの厚さの黒鉛膜を得るためには、原料高分子膜の厚さは35μm以下、20nm以上の範囲である事になるが、大抵の場合には30μm以下、30nm以上である。
 (2.2)炭素化膜
 前記高分子膜を不活性ガス中あるいは真空中で加熱することで炭素化膜を製造できる。不活性ガスは、窒素、アルゴンあるいはアルゴンと窒素の混合ガスが好ましく用いられる。炭素化は通常800℃~1800℃程度の温度で行う。例えば、10℃/分の昇温速度で昇温して800℃~1800℃程度に加熱し、そのまま10分間程度の温度保持を行う方法などが好ましく用いられる。昇温速度に特に制限は無いが、生産性向上の観点からは0.5℃/分以上が好ましく、また、十分な炭素化を行うためには100℃/分以下が好ましい。一般的には1℃/分~50℃/分の間が好ましい。炭素化の際の加熱方式としては特に制限はないが、黒鉛ヒーター等の抵抗加熱式のヒーターによる方式や、赤外線照射による方式を好ましく用いることができる。
 (2.3)黒鉛膜 炭素化膜を黒鉛化炉内で熱処理することで黒鉛膜を製造できる。黒鉛化に必要な2200℃以上の高温を作り出すために、通常黒鉛ヒーターに電流を流し、そのジュ-ル熱を利用して加熱を行う。黒鉛化は不活性ガス中で行うが、不活性ガスとしてはアルゴンが最も適当であり、アルゴンに少量のヘリウムを加えるとさらに好ましい。
 加熱温度は高ければ高いほど高電気伝導度の黒鉛膜を得やすいが、特に厚さ5μm以下の高分子膜は比較的低温でも黒鉛に転化しやすいため、本発明の黒鉛膜を得るために必要な加熱温度は比較的低めであり、2200℃以上である。このように比較的低い温度で黒鉛化が可能であることは、黒鉛化炉の簡略化や電力節減によるコストダウンが可能という点で有利である。無論、高電気伝導度を実現したい場合には黒鉛化時の温度は高温であるほど良い。このため黒鉛化では2400℃以上の温度で加熱することが好ましく、さらに2600℃以上、2700℃以上であることが好ましく、2800℃以上、2900℃以上、3000℃以上である事は最も好ましい。黒鉛化は、例えば、3500℃以下、特に3200℃以下でも可能である。
 (2.4)プレス処理
 以上のようにして高分子膜から黒鉛膜を製造するだけでは、適切なシワ(凹凸)を形成することは困難である。高分子膜として芳香族ポリイミドを用いて炭素化する場合、炭素化時に元の高分子膜の75~85%程度にまで炭素化膜が自然収縮することが多い。また、炭素化時及び黒鉛化時の膜の収縮・膨張を自然に任せた場合には、最終的に得られる黒鉛膜の膜面方向の寸法は、元の高分子膜の寸法の85~95%程度となることが多い。こうした自然の収縮・膨張のために、黒鉛膜には大きなシワが偏っている領域とシワがあまり無い領域が混在したりして、適切なシワになることがない。
 そこで本発明では、スペーサーを用いたプレス処理によってシワの高さを揃え、適切なシワを形成することとした。具体的には、適切な大きさのスペーサーを高分子膜、炭素化膜、又は黒鉛膜の両面に適度に配置(特に分散)し、これら高分子膜、炭素化膜、又は黒鉛膜を平滑なプレス板で挟んで両側から適切な圧力でプレスしつつ、炭素化温度、黒鉛化温度、又は再黒鉛化温度で処理することで、適切なシワの形成が可能となる。なお炭素化は高分子膜に対して実施する処理であり、黒鉛化は炭素化膜に対して実施する処理であり、再黒鉛化は、黒鉛膜に対して実施する処理である。高分子膜を炭素化した後、黒鉛化する場合、炭素化及び黒鉛化の片方で前記プレス処理を行ってもよく、両方で前記プレス処理を行ってもよく、好ましくは少なくとも黒鉛化の段階で前記プレス処理を行う。
 (2.4.1)曲面基板によるプレス
 高分子膜、炭素化膜、又は黒鉛膜(以下、これらをまとめて被処理膜と称する)を挟むのに用いる前記プレス板は、曲面基板であってもよく、平面(平坦)基板であってもよい。また曲面基板と平面基板とで被処理膜を挟んでプレスしてもよい。
 図6は曲面基板で被処理膜を挟んでプレスする方法の一例を示す概略断面図である。この図6の例では、加熱により可撓性を示すドーム状曲面基板(曲面プレス板)6bをプレス板とし、この曲面基板6bで上下から被処理膜6aを挟み込み、さらにこれらを第2のプレス板6cの間に挟んで、高温(炭素化温度、黒鉛化温度、又は再黒鉛化温度の意味。以下、プレス処理の説明において同様)に加熱しながら曲面基板6bが平板状、あるいは平板状に近い形状に変形するまで上下からプレスする。これにより例えば最初、被処理膜6aは曲面基板同士の接点である1点(図示例では、曲面基板6bの頂点付近)6dのみで押さえられるが、曲面基板がプレスにより平板状に変形していくに従い、曲面基板同士の間隔6e、6fが狭まっていき、徐々にその接点6dを中心として周囲に押し広げられるようになる。このドーム状曲面基板6bの間に、スペーサーを存在させることによって、その大きさやその存在密度に応じてドーム状曲面基板の間に一定のスペースが生まれ、また適度な潤滑効果も付与され、結果として所定のシワを形成できる。
 曲面基板では、基本的には膜面内に沿って、黒鉛膜の中心から放射状に外側に向かって押し伸ばすようにプレスするのがよいが、必ずしも等方的でなくてもよい。この方向のずれは、膜面内のずれだけでなく、膜面から外れる方向であってもよい。特に被処理膜の配向性に異方性がある場合には、中心から放射状ではなく、意図的に放射状からずれた方向に押し伸ばすことは有効である。また、意図的に黒鉛膜の構造や電気伝導度等の特性に異方性を持たせたい場合にも有効である。
 曲面基板は、適切な曲面を有している限り、ドーム状でなくてもよく、例えば、円柱の側面のように1方向にのみ曲がっている曲面を持つ基板を用いても良い。また曲面基板は、少なくとも1枚用いればよく、例えば、曲面基板と平面基板の間に被処理膜を挟みこんでもよい。
 曲面基板がドーム状である場合、内側の曲率半径は、例えば、150cm~500cm程度、好ましくは200~400cm程度、より好ましくは250~350cm程度である。また外側の曲率半径は、例えば、130~450cm程度、好ましくは180~400cm程度、より好ましくは230~320cm程度である。
 (2.4.2)平面基板によるプレス
 図7は、プレス板としての平面基板で被処理膜を挟んでプレスする方法の一例を示す概略断面図である。図7の例では、単純に2枚の平行な平面基板7bの間に挟んで被処理膜7aをプレスしている。このような方法であっても、スペーサーの選択やプレス条件を適切に選択することで、適切なシワを形成できる。
 図8は、平面基板(平面プレス板)で被処理膜を挟んでプレスする方法の他の例を示す概略断面図である。この図示例では、2枚の平面基板を用いる場合に、被処理膜の一部分のみが最初にプレスされ、そこから領域を広げるように徐々にプレスされる面積が増えるようにしている。この様なプレス方式にした場合も、シワの凹凸の程度を制御することが可能である。より具体的には、図8に示す例では、被処理膜8aを高温(炭化温度、黒鉛化温度、又は再黒鉛化温度)に加熱する際に、一部8dのみを接触させた2枚の平行でない平面基板8b同士の隙間に前記被処理膜8aを挟み、プレス開始後に徐々に2枚の平面基板8bを平行にしつつ2枚の平面基板同士の隙間8eを無くすようにプレスする事により、被処理膜8aを端から順に押し伸ばすようにして、一定の範囲内の適度なシワを形成している。
 被処理膜のプレスに用いる前記プレス板(曲面基板、平面基板)の材質は、高温の処理温度に対する耐久性を有する限り特に限定されないが、一般的にはカーボン材料や黒鉛系材料が好ましい。例えば、等方性黒鉛であるCIP(Cold Isotropic Press:冷間静水圧プレス)材製や、グラッシーカーボン製の基板を用いることができる。炭素化の場合にはサファイア基板等を用いることもできる。
 プレス板はスペーサーで凹凸を制御可能な程度の平坦性を有しているのが好ましい。プレス板の表面粗さ(算術平均粗さRa)は、例えば、5μm以下、好ましくは3μm以下、より好ましくは1μm以下、0.1μm以下であり、例えば、0.01μm以上である。このような表面粗さであれば、黒鉛膜の表面粗さ(算術平均粗さRa)を0.1μm単位、1μm単位、10μm単位、50μm単位、あるいは100μm単位の精度で制御することが可能である。
 (2.4.3)プレス条件
 シワの制御は、前記プレス板の形状(曲面基板、平面基板)、プレスの方向性、被処理物の種類(高分子膜、炭化膜、黒鉛膜)、スペーサーの種類、粒径などの様々な要因が複雑にからみあうため、プレス条件を一義的に決定することは困難であるが、実施例における具体的な組み合わせを参考にしつつ、下記条件の範囲内で設定すればよい。
 すなわちプレスの圧力は、例えば、0.3gf/cm2以上、3000gf/cm2以下の範囲から適宜設定できる。プレス圧力は、0.4gf/cm2以上、0.6gf/cm2以上、0.8gf/cm2以上、1.0gf/cm2以上、又は1.5gf/cm2以上とすることが好ましい。また2500gf/cm2以下、2000gf/cm2以下、1500gf/cm2以下、1000gf/cm2以下又は500gf/cm2以下とすることが好ましい。プレス圧力が弱すぎると意図に反して大きすぎる高さのシワが発生しやすく、プレス圧力が強すぎると膜の破れや、穴、ひび割れの原因となる。また、プレスに使用したプレス板に膜が密着して剥がれなくなる等の問題が生じる可能性が高くなる。さらには、強力なプレス機構が必要になると炉のプレス装置自体も大掛かりになる。
 プレスの圧力は一定でも良いし、変化させても良い。ただし、上記のように、徐々に膜が全体にわたって膜面方向に押し広げられるようにすることは好ましい形態の一例である。押し広げつつプレスするために曲面基板を用いる場合には、曲面基板の反りが徐々に平らになるようにするのがよい。従って、この際は、プレスの圧力を変化させるのであれば、徐々に強くすることが基本である。
 プレス時間も諸条件に応じて短時間から長時間の範囲で適宜設定され、複数回のプレスを行ってもよい。ただし、黒鉛化時のプレスでは、早い段階でプレスを終了するのでなく、最高温度に到達するまでプレスを継続することが望ましい。黒鉛化処理時には、最高温度になるまで黒鉛膜の膜面方向の寸法が伸びるので、早い段階でプレスを終えると、その後の伸びによって不均一なシワが形成されてしまう恐れが高くなる。また黒鉛化時のプレスでは、黒鉛膜の伸びが開始してからプレスを開始することが望ましい。黒鉛膜の伸び開始前などの早すぎる段階からプレスを開始すると、黒鉛膜の伸びを大きく抑制してしまい、かえって不均一なシワを発生させる恐れが高くなる。黒鉛化時のプレスのタイミングは、例えば、2200℃以上、好ましくは2400℃以上、より好ましくは2600℃以上になった段階でプレスを開始し、最高到達温度までプレスを継続することが望ましい。また炭素化膜は比較的脆く割れやすいので、黒鉛化プロセスにて1500gf/cm2以上などの強めの圧力でプレスを行う場合には、プレスのタイミングは、黒鉛化がある程度始まる2200℃以上の温度にて行うことが好ましい場合がある。特に高分子膜が芳香族ポリイミドの場合は、大きな圧力でのプレス(例えば、最高圧力でのプレス。好ましくは10gf/cm2以上、より好ましくは100gf/cm2以上、さらに好ましくは1000gf/cm2以上でのプレス)は2600℃以上の温度にて行うことが好ましいことがある。さらには本発明では、短時間のプレスを繰り返して最高温度付近でもプレスを行ってもよい。プレスの圧力、時間、タイミングなどの細部は、適宜、最適化すればよい。
 プレス手段は、機械的圧力制御が可能なプレス手段(プレス機構)であってもよく、プレス板の自重を利用したもの、又はプレス板の上に黒鉛製やカーボン製の重石を置いたものなどのように非機械的手段であってもよい。このような非機械的手段であっても、炭素化中、黒鉛化中に、終始一定の加重を加えることが可能であり、黒鉛膜に適度な高さのシワを形成する事ができる場合がある。またこの非機械的手段は、プレス機構による正確な加重制御が難しい、軽い加重でのプレス(例えば、10gf/cm2未満、好ましくは8gf/cm2以下、より好ましくは5gf/cm2以下でのプレス)をしたい場合に有効である。またプレス機構を有しない単純な電気炉を使用できる事も利点である。
 (2.4.4)スペーサー
 スペーサーとしては、被処理膜の処理温度に対する耐久性と、プレス圧に対する耐久性とを兼ね備えたものが望ましく、例えば、粒子状物や繊維状物が含まれる。このような特性を有するスペーサーとしては、例えば、グラッシーカーボン粒子、黒鉛粒子、黒鉛鱗片、フラーレン、炭素繊維、カーボンナノチューブのような炭素系・黒鉛系の粒子、繊維又は鱗片;シリカ、アルミナ、球状アルミナ、鱗片状窒化ホウ素のような無機粒子又は無機鱗片;ポリイミド粒子、ポリパラフェニレンビニレン粒子、ポリオキサジアゾール粒子のような加熱により炭素化又は黒鉛化する粒子等を適宜用いることができる。前記スペーサーには、シリカのように黒鉛化の最終段階である2800℃等の高温にまで耐えられない物質も含まれる。このような物質であっても、ある程度の高温までスペーサーとして働くことができれば、あとは形成された炭素化膜、あるいは黒鉛膜のシワ自体が、ある程度はスペーサーとしての機能も果たす。そのためプレス加重が800gf/cm2以下などのように比較的小さい場合には、問題なく使用可能である。
 前記スペーサーは、潤滑効果も持つ粒子がより好ましい。また潤滑性能を付与するために、スペーサーと、潤滑剤としてのオイルやポリテトラフルオロエチレン粒子、窒化ホウ素粒子等を併用しても構わない。炭素系・黒鉛系のスペーサーは、入手しやすく、黒鉛膜や電気炉内に付着しても、同じカーボン系の物質であるために問題になりにくく、一定の潤滑性もあるという利点がある。また窒化ホウ素はポリイミドや炭素化膜、黒鉛膜と色が異なるので、被処理膜や黒鉛製プレス板への配置(特に分散又は付着)状態が見た目で判断しやすく、また電気炉内の汚染も見た目で判断しやすいという利点がある。さらに潤滑性にも優れている。
 スペーサーが粒子状物である場合の平均粒径(d50)、スペーサーが繊維状物である場合の繊維径、及びスペーサーが鱗片状物である場合のその厚み(以下、粒子の平均粒径(d50)、繊維の直径及び鱗片の厚みを総称して、スペーサーの厚みという場合がある)は、例えば、0.1μm以上、好ましくは1μm以上、より好ましくは5μm以上であり、例えば、300μm以下、好ましくは200μm以下、より好ましくは150μm以下である。
 またスペーサーの厚みは、それを配置させる膜(高分子膜、炭素化膜、黒鉛化膜など)の厚みに対して、適切な範囲に制御されている必要がある。このスペーサーの厚みと膜厚の比によって、黒鉛膜の厚みに対する表面の算術平均粗さRaの比を調整できる。膜厚を1としたときのスペーサーの厚みは、適度な凹凸を形成する場合は、例えば、0.75以上、350以下である。さらに1以上であることは好ましく、1.5以上であることはさらに好ましく、2以上であることはなお好ましく、2.5以上であることは一層好ましく、3.0以上であることはより好ましく、さらに4.0以上、5.0以上、6.0以上又は7.5以上であることが特に望ましい。また、250以下であることは好ましく、200以下であることはより好ましく、150以下であることはさらに好ましく、100以下、75以下、50以下、25以下、20以下又は10以下であることはなお一層好ましい。
 また凹凸が著しく小さい黒鉛膜を製造する場合には、膜厚を1としたときのスペーサーの厚みは、0.4以下である。0.3以下であることはより好ましく、0.25以下であることはなお好ましく、0.15以下であることはさらに好ましい。また、0.10以下であることは好ましく、0.05以下であることはさらに好ましい。また、0.001以上であっても良い。
 スペーサーの量は、適切なシワを形成可能な範囲で、スペーサーの大きさ(粒径、繊維径など)に応じて適宜設定される。例えば粒子状のスペーサーの場合、被処理膜の表面の被覆率(粒子1粒1粒が、表面に隙間無く1層分だけ存在する場合を、被覆率100%とする)が、例えば、0.1~500%程度となる範囲で使用可能である。被覆率が大きすぎると、スペーサーの大きさではなく、主にスペーサーの堆積厚さによってプレス板の間隔が規制されるようになり、その制御が難しくなって適切なシワを形成し難くなる。一方、被覆率が小さすぎると、スペースの確保が難しくなって、適切なシワを形成し難くなる。精密にスペース(プレス板と被処理膜の間隔)を制御して凹凸をより高度に制御する場合には、被覆率は、0.5~100%、特に1~50%の範囲が好ましい。
 粒子状又は繊維状のスペーサーを被処理膜の表面に配置(特に分散又は付着)させる為には、例えば、手でスペーサーを被処理膜やプレス板にまぶす方法、刷毛でスペーサーを被処理膜やプレス板に塗布する方法、スペーサーを分散させた分散液を被処理膜やプレス板に塗布後、乾燥させる方法、ふるいを用いてスペーサーを被処理膜やプレス板に撒く方法など、既知の方法を適宜用いれば良い。スペーサーとして、粒子状又は繊維状の乾燥物を用いる場合、スペーサーを一度、被処理膜やプレス板の表面に一度厚め(被覆率100%以上)に塗布しておき、その後、被処理膜やプレス板等の表面を上下逆にしたり、揺らしたり、刷毛で擦るなどして、余分なスペーサー粒子を落とす様にすれば、被覆率の制御が容易になる。
 スペーサーとしては、必ずしも単独の粒子や繊維等の形態である必要は無く、粒子や繊維が凝集して出来た2次粒子であっても良く、均一に分布する粒子状突起を有するシート(例えば、サンドペーパーのような形態のもの)でも良く、また繊維状のものが集合して作られた不織布のようなものであっても良い。また複数種類の物質のスペーサーを混合して用いることや、粒子状、繊維状、または鱗片状のスペーサーとペースト、オイル、ワックス等とを複合化して用いることも、潤滑性の調節や、形成する黒鉛膜のシワの凹凸の程度をさらに細かく制御するという観点から好ましく用いられる。またペースト、オイル、ワックスなどに使用する物質は適宜選択すればよく、例えばオイルであれば鉱油、合成炭化水素油、エステル油、ポリグリコール油、シリコーン油、フッ素油、キャノーラ油やこれらの混合物を好適に用いることができる。あるいは変性オイルであってもよく、例えばシリコーンオイルであれば、エポキシ変性シリコーンオイル、ポリエーテル変性シリコーンオイル、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイルを用いることができる。具体的には、黒鉛粒子を含有するキャノーラ油を被処理膜やプレス板に塗布することや、黒鉛粒子を含むポリイミド膜を炭素化、黒鉛化して得た、表面に黒鉛粒子が露出した黒鉛シートをスペーサーとして用いることや、黒鉛シート上に黒鉛を蒸着して、黒鉛粒子を表面に形成した黒鉛シートをスペーサーとして用いることや、ポリアクリロニトリル製の繊維で作った薄い布や不織布をスペーサーとして用いることや、球状アルミナ粒子と窒化ホウ素鱗片を混合してスペーサーとして用いることは、いずれも本発明の手法として好ましく用いられる。以下、不織布や黒鉛粒子を表面に形成した黒鉛シートなどの、シート状スペーサーの表面凹凸の大きさのことをスペーサーの厚みという場合がある。
 またプレス板の表面に凹凸を設け、この凹凸をスペーサーとして利用してもよい。サンドペーパーによる研磨や、サンドブラスト、研磨材による研磨、型押しなどにより、プレス板表面に一定の形状や表面粗さを持たせることは、粒子状のスペーサーを用いる事と同じ効果を発揮する場合がある。例えば表面を一定の程度に均一に粗化したCIP材製やグラッシーカーボン製のプレス板を用いることは好ましい。またカーボン蒸着、黒鉛蒸着、フラーレン蒸着等により表面にカーボン粒子、黒鉛粒子、フラーレン粒子等を形成したCIP材製やグラッシーカーボン製のプレス板を用いることもまた好ましい一態様である。さらに炭素繊維を高温でプレスして、炭素繊維を表面に固着させたCIP材製やグラッシーカーボン製のプレス板を用いることも好ましい。このようにプレス板の表面を粗面化してスペーサーとしての機能を持たせる場合には、粒子状又は繊維状のスペーサー、あるいは上述のスペーサーとしての機能を有するシートや不織布を別途用いる必要はない。無論、スペーサーとしての機能を持つプレス板と、粒子状又は繊維状のスペーサー、又はスペーサーとしての機能を持つシートや不織布を併用してもよい。以下、プレス板の表面凹凸の大きさのことをスペーサーの厚みという場合がある。
 スペーサーの種類は、所望の黒鉛膜のシワの高さの程度や、ハンドリング性、製造プロセスに応じて適宜選択すればよく、下記に示す実施例の内容に制限されるものではない。炭素化、黒鉛化の際のプレス処理として、例えば、1)中心から放射状に伸びる筋状の凹凸を表面に形成したドーム形グラッシーカーボン板をプレス板とし、鱗片状窒化ホウ素を該プレス板に刷毛で塗布してスペーサー粒子とし、プレス機構付きプレス炉でプレスしてもよい。また2)鏡面研磨したCIP材平板をプレス板とし、黒鉛粉と球状アルミナの混合物を被処理膜(ポリイミド膜、炭素化膜等)の両面にふるいを用いてまぶしてスペーサーとしてプレス機構付きプレス炉でプレスしてもよい。或いは、3)被処理膜(ポリイミド膜、炭素化膜等)の両面にアミノ変性シリコーンオイルを塗布したものを、表面にカーボン蒸着した黒鉛シートで挟み込んで、さらにこれを上下からプレス板と重石を兼ねたCIP材平板で挟み込み、CIP材平板の重さによってプレスしてもよい。さらには、4)鏡面研磨したドーム形グラッシーカーボン板をプレス板とし、ポリイミド膜の両面に、ポリイミド粒子を含む分散液を塗布して乾燥させたものをスペーサーとして、さらに該プレス板の上にCIP材平板の重石を乗せて重石によるプレスしてもよい。5)鏡面研磨したCIP材平板をプレス板とし、被処理膜(ポリイミド膜、炭素化膜等)の両面に膜鱗片状の窒化ホウ素を刷毛で塗布してスペーサーとし、プレス機構付きプレス炉でプレスしてもよい。6)中心から放射状に伸びる筋状の凹凸を表面に形成し、さらに表面に窒化ホウ素を分散させたエステルオイルを塗布したグラッシーカーボン製平板に被処理膜(ポリイミド膜、炭素化膜等)を挟み込んで、これをプレス機構付きプレス炉でプレスしてもよい。以上のいずれの方法であっても、一定レベルの平坦性を持つプレス板と被処理膜の間にスペーサーを存在させる(プレス板表面に形成した凹凸をスペーサーとする場合も含む)ことによってプレス板と被処理膜との間に一定間隔の均一なスペースを確保しつつ、一定の潤滑性も持たせ、これを適切な加重にてプレスしている。このようにすることで、適切なシワを形成できる。このような機能を維持できる範囲で、適宜、プレス板、スペーサー、潤滑剤、被処理膜膜(ポリイミド膜、炭素化膜等)、加重の状態等を最適化すればよい。
 前記黒鉛膜の製造方法は、多数枚の被処理膜を重ねて一度に焼成できるため、生産性に優れる。また、被処理膜の厚さが200nm以下などの様に極めて薄く、物理的に破れやすい場合でも適用可能である。なおプレスに使用した基板と黒鉛膜が貼りつき、剥がす際に黒鉛膜が破損してしまう場合もあるので、慎重に剥離を行う必要がある場合もある。
 前記黒鉛膜の製造方法によれば、適切なシワを形成でき、算術平均表面粗さ(Ra)と厚さの比を適切な範囲に制御できるだけでなく、各種特性の黒鉛膜間のばらつきをも小さくでき、不良品率を下げることが可能である。例えば前記黒鉛膜の製造方法によれば、一つの黒鉛膜においてRaの平均値と厚さの平均値の比(Ra平均値/厚さ平均値)を求め、これを複数の黒鉛膜間で平均したとき、各黒鉛膜のRa平均値/厚さ平均値は、この膜間平均値に対して、例えば、±50%以内、好ましくは±40%以内に入っている。
 また一つの黒鉛膜においてRaの平均値を求め、これを複数の黒鉛膜間で平均したとき、各黒鉛膜のRa平均値を、この膜間平均値に対して、例えば、±40%以内、好ましくは±30%以内にすることが可能である。
 一つの黒鉛膜において電気伝導度の平均値を求め、これを複数の黒鉛膜間で平均したとき、各黒鉛膜の電気伝導度の平均値もまた、膜間平均値に対して、例えば、±35%以内、好ましくは±25%以内にすることが可能である。
 一つの黒鉛膜において厚さの平均値を求め、これを複数の黒鉛膜間で平均したとき、各黒鉛膜の厚さの平均値を、膜間平均値に対して、例えば、±25%以内、好ましくは±15%以内にすることもまた可能である。
 一つの黒鉛膜において密度の平均値を求め、これを複数の黒鉛膜間で平均したとき、各黒鉛膜の密度の平均値を、膜間平均値に対して、例えば、±10%以内、好ましくは±5%以内にすることもまた可能である。
 (3)黒鉛膜形態と加工
 黒鉛膜を使用する際の形状としては特に制限は無く、正方形、長方形(テープ状)、円形、扇形、ドーナツ型、L字形、U字形、パンチングメタルのように多数の穴を開けた形状等を好ましく用いることができる。ただ本発明の特徴である耐久性の高さの効果が顕著に現れやすいのは、高い耐久性が求められる形態、例えば、薄く細長い形状であり、例えば、黒鉛テープが挙げられる。この黒鉛テープは、例えば、幅が40mm以下、好ましくは20mm以下、10mm以下、8mm以下、5mm以下、3mm以下、2mm以下又は1mm以下であり、通常、0.2mm以上である。幅が狭いほど、本発明の黒鉛膜を利用するメリットが生じる。また黒鉛テープの長さは、前記幅の5倍以上、好ましくは8倍以上、10倍以上、15倍以上、20倍以上、50倍以上又は100倍以上であり、通常、1000倍以下である。黒鉛テープは、前記幅と長さの平行部を有する限り、他の部分(例えば平行部の両端部)の形状は特に限定されない。例えば、枠体に黒鉛膜を張り、宙に浮いた部分を切断加工して前記平行部を残し、その両端は未加工のまま枠体に接着された状態のものもまた本発明の黒鉛テープに含まれる。
 前記黒鉛膜は、シワが厚みに対して適切に制御されているため、一部のみが高温に加熱される方法で加工したときでも、破断等に至ることなく適切に加工できる。例えば、電子線、レーザー光線等(好ましくはレーザー光線)を用いた微細な穴開けや切断加工も可能であり、こうした加工によって、黒鉛膜を前記形状に加工してもよい。特にこの加工耐久性が向上したことによる優位性(特に、一部のみに熱をかけるような加工方法を適用する際の、穴あき、ひび割れ、破断などの破壊の起こりにくさ)が顕著に現れるのは、細長い形状に切断する等の微細な加工を行う場合であり、例えば、黒鉛テープに加工する場合である。また特に薄い黒鉛膜の場合には、この優位性が特に顕著に現れる。このような加工の際に黒鉛膜は、基板等に固定して面で支持した状態でもよく、宙に浮かせた状態でもよく、張力をかけた状態でもよく、適度にたるませた状態でもよい。
 (4)黒鉛膜(黒鉛テープなどの加工体を含む。以下、本欄において同様)の使用
 (4.1)温度、雰囲気
 本発明の黒鉛膜は、シワが厚みに対して適切に制御されているため、黒鉛膜を宙に浮かせた状態で使用したときの耐熱性、特に熱サイクル時の耐久性、部分加熱時の耐熱性、部分熱サイクルに対する耐久性に優れており、またこの黒鉛膜から得られるテープも同様の耐久性に優れる。こうした耐熱性、耐久性に優れているため、黒鉛膜(黒鉛テープを含む)は、例えば、最高温度となる部分の温度が900℃以上となる使い方をしたときに、その優れた性能が発揮される。最高温度が1100℃以上、又は1300℃以上の場合はさらに顕著に優れた効果が示され、1400℃以上、1500℃以上、1700℃以上、1900℃以上、2100℃以上、2300℃以上、2500℃、2700℃、2900℃以上、3100℃以上である場合には、より顕著である。最高温度の上限は、黒鉛膜自体の耐熱温度であればよく、例えば、3400℃以下である。
 真空中で黒鉛膜を使用する場合、アルゴンガス雰囲気中などの不活性ガス雰囲気中での場合に比べて黒鉛が昇華しやすく、一般的に黒鉛膜の穴あき、ひび割れ、破断等が比較的起きやすい。このため真空中で使用する場合には、不活性ガス雰囲気中で使用する場合に比べて、本発明の黒鉛膜の優位性(耐熱性、耐久性)が、より低温(例えば900℃以上、好ましくは1100℃以上、1300℃以上、1400℃以上、1500℃以上、1700℃以上、1900℃以上、又は2100℃以上)でも顕著に現れやすい。
 また黒鉛膜の最高温度となる部分と、最低温度を示す部分との温度の差が、例えば、300℃以上、好ましくは400℃以上、500℃以上、700℃以上、900℃以上、1100℃以上、又は1300℃以上のように大きな場合には、本発明の黒鉛膜の優位性(耐熱性、耐久性の良さ)が顕著に現れやすい。なお黒鉛テープを複数用いる場合には、全黒鉛テープ中での最高温度部と、全黒鉛テープ中での最低温度部の差が前記数値範囲になることが好ましい。
 黒鉛膜の使用雰囲気は、真空であってもよく、不活性ガス雰囲気でもよい。不活性ガス雰囲気にすることで黒鉛膜の昇華を抑制できる。不活性ガスとしては、窒素、アルゴンまたはヘリウムを用いるのがよく、特にアルゴン、ヘリウムが好ましい。黒鉛の昇華を防止するには不活性ガスの圧力を上げてもよく、例えば、0.1MPa以上、好ましくは0.15MPa以上、0.20MPa以上、0.30MPa以上、0.40MPa以上、0.50MPa以上、0.6MPa以上又は0.8MPa以上である。圧力の上限は特に限定されず、1MPa以下であってもよい。
 なお黒鉛膜の使用雰囲気は、非酸化性雰囲気であることが好ましく、特に酸素が存在しないことが好ましい。酸化性雰囲気になると、高温環境下で黒鉛膜が酸化して、急速に消耗するためである。このためには雰囲気ガスとして使用する不活性ガスは純度が高いものが望ましい。また真空中で使用するのであれば、真空度が高いほうが好ましい。本発明の黒鉛膜を真空中で使用する際の真空度は1000Pa以下であることが好ましく、100Pa以下であることはさらに好ましく、10Pa以下、1Pa以下、1×10-1Pa以下、1×10-2Pa以下、1×10-3Pa以下、1×10-4Pa以下、1×10-5Pa以下、1×10-6Pa以下、1×10-8Pa以下、1×10-10Pa以下であることはより好ましい。なお1×10-12Pa以上でもよい。
 (4.2)固定状態
 本発明の黒鉛膜は、基板と積層して使用してもよいが、宙に浮いた部分を有する状態で(例えば、一部を支持部材に固定し残部を宙に浮かせた状態で)使用するのが好ましい。本発明の黒鉛膜は、このような支持体のサポートを受けない部分での耐久性に優れており、宙に浮いた状態でも安定して使用できる。単独の高電気伝導度かつ薄く大面積の黒鉛膜でこのような耐久性を備えることは、従来、不可能であった。
 本発明の黒鉛膜を単独で宙に浮いた状態にするには、例えば上部だけを固定して上から吊るす方法、紐状や棒状の部材を用いて上から吊るす方法、4隅に紐状の部材を取り付け、4方向に引張る方法、両端を枠などに固定して張る方法、外周部を枠などに固定して張る方法、複数の糸状の部材を張って網のようにした間に挿入する方法、磁力や空気の力で浮かせる方法、中心部分のみを挟み込んで固定する方法等、既知の方法を適宜用いれば良い。また黒鉛テープを宙に浮かせて使用する場合には、複数の黒鉛テープを平行に並べることが好ましく、各テープの両端が共通の支持部材に固定されていることが好ましい。黒鉛膜(黒鉛テープを含む)は用途に応じて強く張っても良いし、適度にたるませた状態にしても良い。黒鉛膜を支持する部材には、ヒートシンク、冷却ファン、冷却水、ペルチェ素子等による冷却機構を持たせれば好ましい場合がある。
 黒鉛膜の一部を宙に浮いた状態で使用する場合、黒鉛膜の全面積のうち、宙に浮いた部分の面積の割合は、10%以上であることが好ましい。より好ましくは20%以上であり、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上又は90%以上であることはさらに好ましく、95%以下でもよい。黒鉛膜はその一部が高温になることが多く、宙に浮いた部分の面積が大きくなるほど、支持部材が黒鉛膜ごと高温になることが防止され、使用時に支持部材の耐熱性を超える恐れが低下する。黒鉛膜のうち他の部材に固定される部分は、不必要に大きくしても無駄であり、宙に浮いた部分の面積を大きくすることで無駄な部分を小さくできる。
 (4.3)用途
 前記黒鉛膜の具体的な用途としては、発光デバイスの発光体;フィラメント;高電流容量の高耐熱導線;電気抵抗式の発熱体;強い赤外線や紫外線、X線、レーザー光線、イオンビーム、陽子ビーム、負極性水素イオンビーム、中性子ビーム、電子線ビームなどが照射される装置や分析方法、加工方法における防護膜や反射部材、支持基板、吸収部材、透過部材、回折部材、センサ、熱拡散部材、被検体、被加工物などが挙げられる。これらの用途では、黒鉛膜の少なくとも一部が900℃以上などの非常に高温になる。また多くの用途では1枚の黒鉛膜内で非常に高温の部分と、そうでない部分が同時に存在することになる。さらに多くの用途では加熱・冷却が繰り返される。このような用途に使用される場合でも、本発明の黒鉛膜であれば、耐熱性、耐久性に優れ、使用寿命を延ばすことができる。
 特に好ましい用途は、黒鉛膜の一部を支持部材に固定して残部を宙に浮かせ、この宙に浮いた部分が最高温度になる用途であり、より好ましくは通電、赤外線照射、レーザー光線照射、イオンビーム照射のいずれかによって加熱されて黒鉛膜が最高温度になる用途である。こうした用途としては、例えば、強い赤外線や紫外線、X線、レーザー光線、イオンビーム、陽子ビーム、負極性水素イオンビーム、中性子ビーム、電子線ビームなどが照射される装置や分析方法での吸収部材、透過部材、回折部材、センサ、荷電変換膜部材、ターゲット支持膜部材、ラジオアイソトープ製造用支持膜部材、イオンビームの減衰器(イオンビームの個々の粒子のエネルギーや、粒子数を低減させるものであり、例えば(アッテネータ、エネルギーデグレーダ、アブソーバ))用膜部材が挙げられる。
 本願は、平成28年1月29日に出願された日本国特許出願第2016-015082号に基づく優先権の利益を主張するものである。平成28年1月29日に出願された日本国特許出願第2016-015082号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。
 なお下記例における物性の測定法について、まとめて以下に示す。
 (1)ポリイミド膜の厚さとその膜間ばらつき
 図9はポリイミド膜の厚さ測定箇所を示す概略平面図である。正方形状のポリイミド膜9aの4隅において各辺から20mmずつになる箇所9bを厚さ測定箇所(合計4箇所)とし、これと中央(重心)9cとを合わせた5箇所を厚さ測定箇所とした。各箇所に対して接触式厚み計により厚み測定し、平均値をポリイミド膜の厚さとした。
 下記例では、製造された10枚のポリイミド膜の厚みを測定し、その平均値に近いものから7枚を選び、この7枚での厚みの平均値を下記例でのポリイミド膜の厚みとした。また選ばれた7枚のポリイミド膜それぞれの厚みの、7枚での平均値に対する割合(ばらつき。%)を膜間ばらつきとした。
 (2)黒鉛膜の厚み測定
 図10に示す膜の4隅の4箇所10b(図中、□で示す)から5mm×5mmの大きさの4つのサンプルを切り出し、それぞれの厚みを接触式厚み計にて測定し、4箇所での平均値を黒鉛膜の厚さとした。
 下記例では、製造された7枚の黒鉛膜の厚みを測定し、その平均値を各例での黒鉛膜の厚みとした。またその平均値に近いものから5枚を選び、選ばれた5枚の黒鉛膜それぞれの厚みの、この5枚での平均値に対する割合(ばらつき。%)を膜間ばらつきとした。
 (3)黒鉛膜の電気伝導度
 黒鉛膜の電気伝導度(シート抵抗)の測定はvan der Pauw法によって行った。この方法は薄膜状の試料のシート抵抗を測定するのに最も適した方法である。この測定法の詳細は(第四版)実験化学講座9 電気・磁気(社団法人日本化学会編、丸善株式会社発行(平成3年6月5日発行))(P170)に記載されている。この手法の特徴は、任意の形状の薄膜試料端部の任意の4点に電極を取り付け、測定を行うことが出来る事であり、試料の厚さが均一であれば正確なシート抵抗の測定が行える。これと黒鉛膜の厚みの測定値から、黒鉛膜の正確な電気伝導度を得ることができる。本発明においては図10に示す膜の4隅の4箇所10b(図中、□で示す)から5mm×5mmの大きさの4つのサンプルを切り出した。それぞれのサンプルで4つの角(稜)に銀ペースト電極を取り付け、(株)東洋テクニカ製、比抵抗/DC&ACホール測定システム、ResiTest 8300を用いてシート抵抗を測定し、電気伝導度を求めた。4箇所の平均値を黒鉛膜の電気伝導度とした。
 下記例では、前記厚み測定で選ばれた5枚の黒鉛膜についての電気伝導度の平均値を算出し、この値を各例での黒鉛膜の電気伝導度とした。また選ばれた5枚の黒鉛膜それぞれの電気伝導度の、この5枚での平均値に対する割合(ばらつき。%)を膜間ばらつきとした。
 (4)黒鉛膜の算術平均粗さRaとRa/厚み比
 (4.1)算術平均粗さRa
 黒鉛膜の表面粗さ(算術平均粗さ)Raについては、JIS B 0601に基づき、表面粗さ測定機Surfcom DX((株)東京精密製)を使用し、室温雰囲気下での値を測定した。図10は約18cm角の正方形の黒鉛膜の平面図であり、表面粗さRaの測定箇所は、図10の5本の線分10aの中央部分(β)である。図中、αは黒鉛膜の一つの辺の中点であり、βは線分10aの中点であり、γはの黒鉛膜の重心である。例えばRaが80μmより大きい場合は、評価長さ125mm、基準長さL(カットオフ値)25mmとし、Raが10μmより大きく80μm以下の場合は、評価長さ40mm、基準長さL(カットオフ値)8mmとした(他のRaの場合の基準長さの決定は、JIS B 0633に従う)。送り速度0.05mm/秒で描いたチャートから基準長さLの部分を切り取り、その切り取り部分の中心線をX軸、縦方向をY軸として、粗さ曲線Y=f(X)で表したとき、次の式(1)で得られる値をμmで表したものが算術平均粗さRaである。黒鉛膜の5箇所(5つの線分10aの中央部分β)にてそれぞれRaの値を求め、さらに5箇所のRaの平均値を求め、これを黒鉛膜の算術平均粗さRaとした。
Figure JPOXMLDOC01-appb-M000001
 下記例では、前記厚み測定で選ばれた5枚の黒鉛膜について、さらに厚みの平均値をもとめ、この平均値に近いものから3枚を選択した。この3枚の黒鉛膜について算術平均粗さRaを求め、その平均値を下記例での算術平均粗さRaとした。またこの3枚それぞれのRaの、該3枚の平均値に対する割合(ばらつき。%)を膜間ばらつきとした。
 (4.2)Ra/厚み比
 算術平均粗さRa(黒鉛膜1枚につき5箇所測定)決定時に選択された3枚の黒鉛膜に対して、それぞれ上述の様にして厚み(黒鉛膜1枚につき4箇所測定)を求めた。該黒鉛膜ごとに、算術平均粗さRa(μm)/厚み(μm)の比を求め、その平均値を下記例のRa(μm)/厚み(μm)比とした。また各黒鉛膜でのRa(μm)/厚み(μm)の比の、3枚の平均値に対する割合(ばらつき。%)を膜間ばらつきとした。
 (4.3)Ra膜内ばらつき
 前記厚み測定で選ばれた5枚の黒鉛膜について厚みの平均値をもとめ、この平均値に最も近いもの1枚を選択した。この1枚の黒鉛膜について、各測定箇所(5箇所)の算術平均粗さRaを求め、各箇所の測定結果の、5箇所平均に対する割合(ばらつき。%)を膜内ばらつきとした。
 (4.4)黒鉛膜の密度測定
 黒鉛膜の密度は乾式自動密度計アキュピックII 1340(株式会社 島津製作所製)を用いて測定した。前記厚み測定で選ばれた5枚の黒鉛膜について、1枚ずつ密度を測定した。5枚の黒鉛膜それぞれの密度の、この5枚での平均値に対する割合(ばらつき。%)を膜間ばらつきとした。
 (5)熱サイクル耐久性試験
 (5.1)概要
 黒鉛膜の熱サイクル耐久性については、黒鉛膜に電流を流して黒鉛膜自体を発熱させる通電加熱方式と、黒鉛膜に赤外線を照射して加熱する赤外線加熱方式の2通りの加熱方式で評価した。通電加熱方式の試験は、アルゴンガス雰囲気中(0.105MPa~0.11MPa)、および真空中(10Pa以下)の両方で行った。また赤外線加熱方式の試験は、真空中で行った。
 図11は下記の例で得られた約18cm角の黒鉛膜11aから熱サイクル耐久性試験用の試験片を切り出す方法を示す為の概念図であり、黒鉛膜の縁11bの部分を避けて1cm×6cmの長方形の試験片11cを24枚切り出した。図12は、熱サイクル耐久性試験で用いる試験片の固定方法を示す概念図である。黒鉛膜から切り出された1cm×6cmの長方形の試験片12a(11c)を切り出し、両端から1cmまでをそれぞれ黒鉛製ホルダー12bに固定し、中央の長さ4cmの部分は宙に浮いた状態とした。なお黒鉛製ホルダー12bには、それぞれに接続する銅製冷却水ジャケット12cによって冷却可能になっている。また通電加熱方式では、前記黒鉛製ホルダー12b及び銅製冷却水ジャケット12cは、いずれも通電用電極を兼ねる。
 (5.2)通電加熱時の耐久性
 図12に示す様に固定された試験片の長辺方向に電流を流した。この通電により、黒鉛膜の宙に浮いた部分13a(1cm×4cm)が加熱され、特に中央の短辺方向約1cm、長辺方向約3mmの部分13bが選択的に非常に高温になる(図13参照。黒鉛膜の宙に浮いた部分13aの両端部分は、銅製冷却水ジャケット12cによる冷却の影響で、あまり高温にはならない)。黒鉛製ホルダー12bの温度は熱電対により測定され、その値は使用条件で異なるが、高くても500℃以下であり、400℃以下、300℃以下、200℃以下である場合が多い。このため最高温度まで通電加熱された際の黒鉛膜13aは、中央付近13bと両端部分とで大きな温度差を生じることになる。
 黒鉛膜の中央13bの温度は2色温度計((株)チノー製。型番IR-CAQ53)および放射温度計(日置電機(株)製。型番FT3701)によって測定した。黒鉛膜の中央13bの最高温度が、それぞれ2700℃、2500℃、2300℃又は2100℃(アルゴンガス雰囲気中、0.105MPa~0.11MPa)、および2100℃、1900℃、1700℃、1500℃、1300℃、1100℃又は900℃(真空中、10Pa以下)となるようにして耐久性試験を行った。具体的には、黒鉛膜13aに徐々に電流を大きくしながら通電し、黒鉛膜の中央13bが最高温度に到達後、最高温度で10秒間キープした後、通電をやめて冷却し、黒鉛膜の中央13bの温度が300℃以下になった時点で黒鉛膜13aへの通電を再開することを繰り返した。これにより黒鉛膜13aが破断する(完全に切断された状態になる)までの各最高温度での繰り返し加熱回数を記録した。なお十分多い加熱回数(100回、200回又は300回)でも黒鉛膜13aが破断しない場合には試験を終了し、それぞれの加熱回数を「>100」、「>200」又は「>300」とした。黒鉛膜13aが破断したか否かは、目視および、黒鉛膜13aの両端間の電気抵抗が1MΩ以上(破断)か否か(破断せず)により判定した。
 (5.3)赤外線加熱時の耐久性
 図12に示す様に固定された試験片に赤外線を照射し、黒鉛膜の宙に浮いた部分14a(1cm×4cm)の中央の短辺方向約1cm、長辺方向約1cmの部分14bを選択的に非常に高温に加熱した(図14参照)。黒鉛製ホルダー12bの温度は熱電対により測定され、その値は使用条件で異なるが、高くても500℃以下であり、400℃以下、300℃以下、200℃以下である場合が多い。このため最高温度まで赤外線加熱された黒鉛膜14aは、中央付近14bと両端部分とで大きな温度差を生じることになる。
 黒鉛膜の中央14bの温度は2色温度計((株)チノー製。型番IR-CAQ53)および放射温度計(日置電機(株)製。型番FT3701)によって測定した。黒鉛膜の中央14bの最高温度が、それぞれ1700℃、1400℃又は1100℃(真空中、10Pa以下)となるようにして耐久性試験を行った。具体的には、黒鉛膜14aに赤外線を照射して、黒鉛膜の中央14bが最高温度に到達後、最高温度で10秒間キープした後、赤外線照射をやめて冷却し、黒鉛膜の中央14bの温度が300℃以下になった時点で黒鉛膜への赤外線照射を再開することを繰り返した。これにより黒鉛膜14aが破断する(完全に切断された状態になる)までの、最高温度までの加熱回数を記録した。なお通電加熱時と同様に、繰り返し数の上限を100回又は200回とし、上限回数で破断しなかった結果については、「>100」、「>200」と表記した。
 (6)レーザーカット試験
 図15は、レーザーカット試験の概要を説明するための概念図である。図15に示すように、約18cm角の黒鉛膜15aの対向する2つの辺を銅製の枠15cに接着剤で貼り付けて、黒鉛膜15aを宙に水平に張った。この張られた黒鉛膜の中央付近に、所定長さ(5cm又は10cm)の切り込み15bを所定間隔(長さ5cmのときは、間隔1.2mm。長さ10cmのときは、間隔1.0mm)でレーザー照射によって形成した。切り込み15bの本数は101本(図には本数を省略して示した)とし、間に挟まれた100本のテープ状部分15dのうち破断したものの本数を数えた。なお計数するのは、両端を含めて、完全に切断された状態になったテープ状部分15dの本数であり、破断の有無は、目視およびテープを単独で取り出した上での2端子のテスターによる電気抵抗測定(1MΩ以上(破断)か否か(破断せず))にて決定した。
 なお上記レーザーカットには株式会社キーエンス製MD-T1010を用い、レーザーパワー80%、Qスイッチ周波数100kHzとし、スキャンスピードは黒鉛膜の厚みに合わせて適宜調整した。例えば黒鉛膜の厚み0.9μmの場合には、スキャンスピードは1200mm/sとした。
 (実施例1)
 <ポリイミドの製膜>
 ピロメリット酸二無水物(PMDA)及び4,4’-ジアミノジフェニルエーテル(ODA)をモル比で1/1(すなわち4/4)の割合で合成したポリアミド酸の18重量%のDMF溶液100gに無水酢酸20gとイソキノリン10gからなるイミド化促進剤を混合、攪拌し、遠心分離による脱泡の後、アルミ箔上に流延塗布した。攪拌から脱泡までは0℃に冷却しながら行った。このアルミ箔とポリアミド酸溶液の積層体を100℃、250℃、450℃で各60秒間加熱した後、アルミ箔をエッチングにより除去し、20cm×20cmの正方形のポリイミド膜を10枚作製し、前記ポリイミド膜の厚さの測定に記載した基準に基づき、7枚を選択した。選ばれた7枚の平均厚みは22.1μmであり、膜間ばらつき±15%以内である。
 <炭素化>
 選ばれた7枚のポリイミド膜をそれぞれ黒鉛製ガスケットに挟み込み、電気炉を用いて窒素ガス雰囲気中、2℃/分の速度で950℃まで昇温し、950℃で10分間保ったのち自然冷却させることで炭素化膜を得た。
 <黒鉛化>
 得られた7枚の炭素化膜のそれぞれの両面に、スペーサーとしての平均粒径(d50)が7.4μmの鱗片状の窒化ホウ素を、刷毛を用いて塗布し、次に炭素化膜の縁の1辺を持って炭素化膜を鉛直方向に垂らし、軽く揺らして余分な鱗片状窒化ホウ素を落とした。
 表面が鏡面であって、向きをそろえたドーム型グラッシーカーボン(GC)板8枚の間に、鱗片状の窒化ホウ素を両面に付着させた前記炭素化膜7枚を、GCと炭素化膜とが交互になる様に挟み込んだ(図6)。なお前記ドーム型GC板は、直径が32cmであり、片面(ドームの内面)の曲率半径が300cmで、もう片方の面(ドームの外面)の曲率半径が280cmである。
 8枚のGCと7枚の炭素化膜の積層体をグラッシーカーボン製の第2のプレス板6cの間に挟み、プレス機能付き電気炉で黒鉛化した。黒鉛化は、アルゴンガス雰囲気中で2℃/分の速度で2800℃(最高温度)まで昇温し、2800℃(最高温度)で20分間保ったのち自然冷却することにより行った。この黒鉛化の間に、プレス板6cを通じて炭素化膜(黒鉛膜)を段階的にプレスした。すなわち、2200℃到達後に8gf/cmの圧力でプレスを開始し、その後2800℃(最高温度)到達時に2500gf/cm(最高圧力)となるように直線的にプレス加重を増加させた。また2800℃(最高温度)到達後から20分間は、2500gf/cm(最高圧力)の加重でプレスを続け、その後プレスを終了した。プレス圧力は、直径32cmの円形を面積の基準とした。またプレスの方向は、炭素化膜(黒鉛膜)の膜面に対して垂直方向とした。その結果1辺がほぼ18cmの全面にわたって均一なシワがある正方形の黒鉛膜が7枚得られた。
 (実施例2~31及び比較例1~7)
 各条件を下記表1~2に示す様に変更した。表中、同じ内容が記載されている部分は、同じ作業を実施したことを示し、表に示されていない点については実施例1と同様に実施したことを示す。
 なお実施例3の様に組成(PMDA/ODA/PDA)が4/3/1と記載されている例では、ピロメリット酸二無水物(PMDA)、4,4’-ジアミノジフェニルエーテル(ODA)、p-フェニレンジアミン(PDA)をモル比で4/3/1の割合で合成したポリアミド酸の18重量%のDMF溶液を用いる以外は実施例1と同様にして、ポリイミド膜を作製した。
 実施例26などの様に組成(PMDA/ODA/PDA)が4/2/2と記載されている例では、ピロメリット酸二無水物(PMDA)、4,4’-ジアミノジフェニルエーテル(ODA)、p-フェニレンジアミン(PDA)をモル比で4/2/2の割合で合成したポリアミド酸の18重量%のDMF溶液を用いる以外は実施例1と同様にして、ポリイミド膜を作製した。
 実施例5などの様にプレス板に「CIP材平面基板」と記載されている例では、表面を鏡面研磨したCIP材平面基板2枚をプレス板とし、この間にスペーサー粒子を付着させた炭素化膜を挿入した。このセットを7つ用意し、それぞれを同じプレス条件・黒鉛化条件で黒鉛化した。
 実施例10などの様にプレスタイミングに炭化時と黒鉛化時の両方が指定され、かつプレス板としてCIP材平面基板が指定されている例では、選ばれた7枚のポリイミド膜の両面にスペーサー粒子を、刷毛を用いて塗布し、次にポリイミド膜の縁の1辺を持ってポリイミド膜を鉛直方向に垂らし、軽く揺らして余分なスペーサー粒子を落とした。このようにして両面にスペーサー粒子を付着したポリイミド膜を上下から、表面を鏡面研磨した24cm角のCIP材平面基板の間に挟みこんだものを7セット準備し、これらを平面状に並べた状態で炭素化用の電気炉内に入れた。それぞれの7セットの上側のCIP材平面基板の上にCIP材の重りを置いて、CIP材の重さによるプレスを行いながら炭素化した。炭素化後は、得られた炭素化膜がCIP材平面基板に挟み込まれ、さらに上からCIP材の重りにより押さえつけられたままの状態で、黒鉛化用の電気炉内に平面状に並べて、炭素化時と同様にCIP材の重さによるプレスを行いながら黒鉛化した。プレスの圧力はポリイミド膜(炭素化膜)の上側のCIP材平面基板およびCIP材の重りにかかる重力の合計値を、CIP材平面基板の24cm角の正方形の面積で除した(割算した)値であり、実施例10では1.0gf/cmである。
 実施例27などの様にスペーサー粒子の欄の下段にオイル成分が記載されている例では、スペーサー粒子を当該オイル成分に分散させたものをポリイミド膜(プレスタイミングが炭化時と黒鉛化時の両方の場合)又は炭素化膜(プレスタイミングが黒鉛化時のみの場合)に塗布したことを意味する。
 全実施例及び比較例の実施条件と実施結果を表1~5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 実施例の黒鉛膜は、Ra/厚み比が適切な範囲になっているため、熱サイクル耐久性に優れており、またレーザーカット試験での耐久性にも優れる。一方、比較例の黒鉛膜は、Ra/厚み比が不適切な範囲になっているため、熱サイクル耐久性に劣り、またレーザーカット試験での耐久性にも劣る。なお比較例1では、プレスの圧力が強すぎて黒鉛膜に多くの破れが発生した為、各種測定は行わなかった。
 本発明の黒鉛膜や黒鉛テープは、発光デバイスの発光体;フィラメント;高電流容量の高耐熱導線;電気抵抗式の発熱体;強い赤外線や紫外線、X線、レーザー光線、イオンビーム、陽子ビーム、負極性水素イオンビーム、中性子ビーム、電子線ビームなどが照射される装置や分析方法、加工方法における防護膜や反射部材、支持基板、吸収部材、透過部材、回折部材、センサ、熱拡散部材、被検体、被加工物などとして極めて有用である。
 1a、1b、1c、1d、4a、5a、11a、12a、13a、14a、15a 黒鉛膜
6a、7a、8a 被処理膜(高分子膜、炭素化膜、黒鉛膜)
6b、6c、7b、8b プレス板

Claims (13)

  1.  面積が1×1cm2以上であり、厚みが10nm~10μmであり、膜面方向の電気伝導度が400S/cm以上であり、厚みに対する表面の算術平均粗さRaの比率が1.0~600または0.3以下であることを特徴とする黒鉛膜。
  2.  複数箇所の算術平均粗さRaを測定したときの各箇所の値が、全複数箇所での測定結果から求まるRaの平均値に対して、±25%以内である請求項1に記載の黒鉛膜。
  3.  密度が1.5g/cm3以上である請求項1又は2に記載の黒鉛膜。
  4.  膜の表面と裏面の両方が視野に入る、膜面に対して垂直方向の断面SEM画像にて、前記黒鉛膜の断面積の70%以上の面積で、膜面に平行な層が積層した空隙のない層構造が観察される請求項1~3のいずれか1項に記載の黒鉛膜。
  5.  高分子膜を炭素化及び黒鉛化することにより黒鉛膜を得る工程を含み、
     得られた黒鉛膜を、再度、黒鉛化温度で処理する再黒鉛化工程を必要により含み、
     前記炭素化、黒鉛化、及び再黒鉛化の少なくとも1つの処理で、処理される高分子膜、炭素化膜、又は黒鉛膜の両面とプレス板の間に、前記高分子膜、炭素化膜、又は黒鉛膜の厚さをそれぞれ1としたときに厚さが0.4以下又は0.75~350となるスペーサーを配置し、両側からプレス板を用いて前記高分子膜、炭素化膜、又は黒鉛膜を圧力0.3gf/cm2以上2500gf/cm2以下でプレスしつつ炭素化温度、黒鉛化温度、又は再黒鉛化温度で処理する請求項1~4のいずれか1項に記載の黒鉛膜の製造方法。
  6.  幅が40mm以下、長さが幅の5倍以上である平行部を有し、材質が請求項1~4のいずれか1項に記載の黒鉛膜と同じである黒鉛テープ。
  7.  請求項1~4のいずれか1項に記載の黒鉛膜をレーザー光線で切断し、幅40mm以下、長さが幅の5倍以上である平行部を切り出す黒鉛テープの製造方法。
  8.  請求項1~4のいずれか1項に記載の黒鉛膜又は請求項6に記載の黒鉛テープを、その最高温度が部分的に900℃以上になる熱環境下に配置する黒鉛膜又は黒鉛テープの使用方法。
  9.  黒鉛膜又は黒鉛テープの一部が900℃以上の最高温度になるとき、黒鉛膜又は黒鉛テープの最低温度を示す部分との温度差が300℃以上である請求項8に記載の使用方法。
  10.  複数の前記黒鉛テープを平行に並べる請求項8又は9に記載の使用方法。
  11.  前記黒鉛膜又は黒鉛テープの一部を支持部材に固定して残部を宙に浮かせ、この宙に浮いた部分が最高温度になる請求項8~10のいずれか1項に記載の使用方法。
  12.  前記最高温度到達時の雰囲気が、圧力0.1MPa以上の不活性ガス又は圧力1000Pa以下の真空である請求項8~11のいずれか1項に記載の使用方法。
  13.  黒鉛膜又は黒鉛テープが、通電、赤外線照射、レーザー光線照射、イオンビーム照射のいずれかによって加熱されて最高温度になる請求項8~12のいずれか1項に記載の使用方法。
PCT/JP2017/003054 2016-01-29 2017-01-27 黒鉛膜及び黒鉛テープ WO2017131205A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17744435.3A EP3409644A4 (en) 2016-01-29 2017-01-27 GRAPHITE FILM AND GRAPHITE STRIP
US16/073,059 US20190039908A1 (en) 2016-01-29 2017-01-27 Graphite film and graphite tape
JP2017563877A JP6781171B2 (ja) 2016-01-29 2017-01-27 黒鉛膜及び黒鉛テープ
KR1020187023554A KR20180109937A (ko) 2016-01-29 2017-01-27 흑연막 및 흑연 테이프
CN201780008867.3A CN108602680A (zh) 2016-01-29 2017-01-27 石墨膜以及石墨带

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-015082 2016-01-29
JP2016015082 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017131205A1 true WO2017131205A1 (ja) 2017-08-03

Family

ID=59398129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003054 WO2017131205A1 (ja) 2016-01-29 2017-01-27 黒鉛膜及び黒鉛テープ

Country Status (6)

Country Link
US (1) US20190039908A1 (ja)
EP (1) EP3409644A4 (ja)
JP (1) JP6781171B2 (ja)
KR (1) KR20180109937A (ja)
CN (1) CN108602680A (ja)
WO (1) WO2017131205A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109311676B (zh) * 2016-06-07 2022-03-25 株式会社钟化 石墨片加工物及石墨片加工物的制造方法
US11670566B2 (en) * 2017-02-02 2023-06-06 Kaneka Corporation Thermal interface material, method for thermally coupling with thermal interface material, and method for preparing thermal interface material
KR102094925B1 (ko) * 2018-05-03 2020-03-30 에스케이씨 주식회사 전자파 차폐능 및 열전도도가 우수한 다층 그라파이트 시트 및 이의 제조방법
CN109316972A (zh) * 2018-10-15 2019-02-12 盐城师范学院 一种低褶皱密度石墨烯过滤膜的制备方法
CN112897522B (zh) * 2021-03-26 2023-05-23 浙江华熔科技有限公司 一种超薄导热石墨膜的制备方法
CN114853001B (zh) * 2021-11-22 2023-07-11 广东一纳科技有限公司 散热膜的制备方法
CN114296571B (zh) * 2021-12-14 2024-04-09 重庆石墨烯研究院有限公司 一种显示屏石墨烯触控膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001191A (ja) * 2008-06-20 2010-01-07 Kaneka Corp グラファイト複合フィルム
JP2010064949A (ja) * 2008-08-12 2010-03-25 Kaneka Corp グラファイトフィルムの製造方法
JP2013216552A (ja) * 2012-04-11 2013-10-24 National Institute Of Advanced Industrial Science & Technology 炭素原子から構成されるフィルムおよびその製造方法
WO2016129442A1 (ja) * 2015-02-12 2016-08-18 株式会社カネカ 平滑表面黒鉛膜およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4959960B2 (ja) * 2005-07-28 2012-06-27 株式会社カネカ グラファイトフィルムおよびグラファイトフィルムの製造方法
TWI478868B (zh) * 2012-09-19 2015-04-01 鐘化股份有限公司 碳質膜之製造方法及石墨膜之製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010001191A (ja) * 2008-06-20 2010-01-07 Kaneka Corp グラファイト複合フィルム
JP2010064949A (ja) * 2008-08-12 2010-03-25 Kaneka Corp グラファイトフィルムの製造方法
JP2013216552A (ja) * 2012-04-11 2013-10-24 National Institute Of Advanced Industrial Science & Technology 炭素原子から構成されるフィルムおよびその製造方法
WO2016129442A1 (ja) * 2015-02-12 2016-08-18 株式会社カネカ 平滑表面黒鉛膜およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3409644A4 *

Also Published As

Publication number Publication date
JPWO2017131205A1 (ja) 2018-11-22
EP3409644A1 (en) 2018-12-05
EP3409644A4 (en) 2019-07-24
US20190039908A1 (en) 2019-02-07
JP6781171B2 (ja) 2020-11-04
KR20180109937A (ko) 2018-10-08
CN108602680A (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
WO2017131205A1 (ja) 黒鉛膜及び黒鉛テープ
US20170355603A1 (en) Smooth-surfaced graphite membrane and method for producing same
US9807878B2 (en) Graphite sheet, method for producing same, laminated board for wiring, graphite wiring material, and process for producing wiring board
JP6517146B2 (ja) グラファイト積層体
JP5295631B2 (ja) 多層グラファイトフィルムおよびその製造方法、電子機器、ディスプレイならびにバックライト
JP4659827B2 (ja) グラファイトフィルムの製造方法
EP3285264B1 (en) Use of a film as charge conversion film for ion beam
JP2009280433A (ja) グラファイト複合フィルム
JP4959960B2 (ja) グラファイトフィルムおよびグラファイトフィルムの製造方法
TW201918453A (zh) 高性能石墨片材與其製備方法與電子裝置
TWI690487B (zh) 石墨片之製造方法及石墨片用之聚醯亞胺膜
JP2006327907A (ja) グラファイトフィルムの製造方法、およびその方法で製造されたグラファイトフィルム
JP5905766B2 (ja) 黒鉛薄膜およびその製造方法
WO2023008033A1 (ja) グラファイトシート用のポリイミドフィルム、グラファイトシートおよびそれらの製造方法
CN109311676B (zh) 石墨片加工物及石墨片加工物的制造方法
JP2004299919A (ja) グラファイト及びその製造方法
JP7022706B2 (ja) 層間熱接合部材、層間熱接合方法、層間熱接合部材の製造方法
JP6552935B2 (ja) 層間熱接合材料およびパワー半導体用冷却システム
JP2009210731A (ja) 高い放熱能力を有した複合反射フィルム
JP6781537B2 (ja) グラファイトシート梱包体
WO2023080047A1 (ja) グラファイトフィルムおよびグラファイトフィルムの製造方法
US11670566B2 (en) Thermal interface material, method for thermally coupling with thermal interface material, and method for preparing thermal interface material
WO2021192893A1 (ja) グラファイト薄膜の製造方法
JP2024011672A (ja) フィルム状グラファイト
JP2018125456A (ja) 層間熱接合方法、冷却システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744435

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563877

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187023554

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017744435

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744435

Country of ref document: EP

Effective date: 20180829