WO2017130996A1 - 距離測定装置 - Google Patents

距離測定装置 Download PDF

Info

Publication number
WO2017130996A1
WO2017130996A1 PCT/JP2017/002435 JP2017002435W WO2017130996A1 WO 2017130996 A1 WO2017130996 A1 WO 2017130996A1 JP 2017002435 W JP2017002435 W JP 2017002435W WO 2017130996 A1 WO2017130996 A1 WO 2017130996A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
measurement
light
time
pulsed light
Prior art date
Application number
PCT/JP2017/002435
Other languages
English (en)
French (fr)
Inventor
征人 竹本
信三 香山
基範 石井
繁 齋藤
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201780004957.5A priority Critical patent/CN108474843B/zh
Priority to EP17744226.6A priority patent/EP3410147A4/en
Priority to JP2017564287A priority patent/JPWO2017130996A1/ja
Publication of WO2017130996A1 publication Critical patent/WO2017130996A1/ja
Priority to US16/012,860 priority patent/US10983212B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals

Definitions

  • the present disclosure relates to a distance measuring device.
  • a distance measuring device that measures the distance from the transmission of an electromagnetic wave to the reception of the reflected object and measuring the distance to the object.
  • TOF Time Of Flight
  • TOF measures the distance to an object by irradiating light toward the object from the vicinity of the distance measuring device and measuring the time until the reflected light reflected from the object returns to the distance measuring device.
  • the distance to a distant object can be measured with high resolution by increasing the light from the light source.
  • the pulse wave radar device disclosed in Patent Document 1 generates a pseudo-random code for the electromagnetic wave irradiated to the object, converts it into a pulse train having a certain duty, and transmits it. Thereby, since the pattern of the electromagnetic wave in each pulse period becomes a pattern according to a pseudo-random code by each device, the pulse wave radar device can suppress interference between a plurality of devices (see, for example, Patent Document 1). ).
  • This disclosure mainly aims at obtaining a distance measuring device excellent in interference resistance in view of the above problems.
  • a distance measuring device includes a pulsed light emitting unit that emits pulsed light toward a measurement object, an optical sensor unit that receives reflected light of the pulsed light reflected by the measurement object, A control unit that controls the emission timing of the pulsed light emitted from the pulsed light emitting unit, and determines the distance from the light reception timing of the reflected light detected by the optical sensor unit to the measurement object;
  • the control unit sets the light emission timing within each period of N periods (N: a natural number less than K) randomly selected from continuous K periods (K: a natural number of 2 or more). Is set to a timing delayed by a random first time from the start of.
  • the emission timing of the pulsed light is set to a timing that is randomly delayed by a first time from the start of each cycle.
  • mutual interference can be reduced.
  • the light emission pattern of the pulsed light emitted from the pulsed light emitting unit may be configured with a pseudo-random code.
  • a code having randomness within a cycle while having a specific cycle can reduce mutual interference in an environment where a plurality of distance measuring devices are mixed within the measurement range of the distance measuring device, for example. .
  • control unit includes a random delay generation unit that sets the light emission timing to a timing obtained by delaying the first time from the start of each cycle with respect to the light emission pattern configured by the pseudo-random code. You may have.
  • the first time can be appropriately set by the random delay generation unit.
  • the control unit may include a code spreading unit that generates the pseudo-random code.
  • the code sequence of the pseudo-random code may change randomly for each measurement distance.
  • code sequence of the pseudo-random code may change randomly for each frame in which one measurement is completed.
  • the emission timing of the pulsed light in the first period is the start time of the second period following the first period after the end of the emission of the pulsed light in the first period. The timing at which at least the second time is secured may be sufficient.
  • the third time from the start of the first period to the start of the second period following the first period is a time obtained by dividing the second time by the K period.
  • the time may be equal to or shorter than the second time.
  • FIG. 1 is a block diagram of a distance measuring apparatus according to the first embodiment.
  • 2A and 2B are timing charts showing signal timings in the distance measuring apparatus according to the first embodiment.
  • FIG. 2A is an example of a pseudo random code timing chart of the present disclosure
  • FIG. 2B is a pulse train based on the pseudo random code.
  • C is an example of a timing chart of a pulse train to which a delay Tr is added.
  • 3A and 3B are timing charts showing signal timings in the distance measuring apparatus according to the second embodiment, in which FIG. 3A is an example of a pseudo random code timing chart of the present disclosure, and FIG. 3B is a pulse train based on the pseudo random code.
  • FIG. 5 is a timing chart for explaining a pulse wave generated by a pulse wave radar device according to the prior art, where (a) is an example of a timing chart of a pseudo-random code, and (b) is a timing of a pulse train based on the pseudo-random code. It is an example of a chart.
  • FIG. 6 is an example of the configuration of the distance measuring apparatus according to the present embodiment.
  • FIG. 7 is a diagram for explaining an example of a timing chart of the distance measuring apparatus according to the present embodiment.
  • FIG. 5 is a diagram for explaining a pulse wave generated by the pulse wave radar device disclosed in Patent Document 1.
  • a pseudo-random code shown in FIG. 5A is generated and converted into a pulse train having a certain duty as shown in FIG. 5B. Send.
  • the presence or absence of light emission in each pulse period becomes a pattern according to a pseudo-random code by each device, interference between devices can be suppressed.
  • the distance measuring device described below for example, in an environment where a plurality of distance measuring devices coexist within the measurement range of the distance measuring device, it is possible to reduce the mutual interference while suppressing the measurement time.
  • FIG. 1 is a block diagram of a distance measuring apparatus 1 according to the first embodiment.
  • FIG. 2 is a diagram for explaining a timing chart of a pseudo-random code and a pulse train according to the first embodiment.
  • A is an example of a timing chart of the pseudo-random code of the present disclosure, and (b) is based on a pseudo-random code.
  • An example of a timing chart of a pulse train, (c) is an example of a timing chart of a pulse train with a delay time Tr added.
  • the distance measuring device 1 is a device that measures the distance to the measuring object 10 with light.
  • the distance measuring device 1 divides a measurement distance range set by a user into two or more sections, and performs a distance measurement operation for each divided measurement distance. At this time, the pulsed light for the next measurement is emitted after the time for the emitted light to reciprocate for the measurement distance being measured elapses.
  • the distance measuring device 1 includes a pulsed light emitting unit 20, an optical sensor unit 30, a control unit 40, and a distance calculation unit 50.
  • the control unit 40 includes a measurement distance determination unit 41, a pulse number determination unit 42, a reference timing generation unit 43, a code spread unit 44, a random delay generation unit 45, a delay generation unit 46, a determination unit 47, And an adder 48.
  • the measurement object 10 is, for example, a person, an animal, an object, etc. existing outside the vehicle.
  • the pulsed light emitting unit 20 is, for example, a light source that emits near infrared light.
  • the pulsed light emitting unit 20 emits pulsed light toward the measurement object 10 at a predetermined timing based on a control signal from the random delay generating unit 45 of the control unit 40.
  • the optical sensor unit 30 is, for example, an imaging camera in which a plurality of light receiving elements capable of imaging and receiving near infrared light are arranged in a matrix. Based on the control signals from the random delay generation unit 45 and the delay generation unit 46 of the control unit 40, the optical sensor unit 30 reflects the reflected light emitted from the pulsed light emission unit 20 and reflected by the measurement object 10 at a predetermined timing. Receive light.
  • the measurement distance determination unit 41 divides the measurement distance range set by the user of the distance measurement device 1 into one or more sections, and performs a distance measurement operation for each divided measurement distance.
  • the number of divisions and the division width may be determined each time by the user, or may be set in advance.
  • the pulse number determination unit 42 for each of the divided measurement distances, requires a required number of pulses N corresponding to the measurement distance, that is, N periods (N: described later). Natural number less than K).
  • the reference timing generator 43 generates a reference timing (period) of pulsed light used for distance measurement.
  • This reference timing is (i) the maximum measurable distance of the distance measuring device 1, that is, the round trip time of light from light emission to light reception corresponding to the maximum measurable distance at which the reflected light reflected by the measurement object can be received. It is set to be equal to or greater than the sum (Tc + Tr_max) of Tc and (ii) time Tr_max described later. That is, the emission timing of the pulsed light in a certain period (first period) is from the end of the emission of the pulsed light within the certain period until the start of the next period (second period) following the certain period. The timing at which at least the time Tc is secured during the period. This is to prevent erroneous reception of pulsed light of the previous period.
  • the delay time Tr corresponds to the first time in the present disclosure.
  • the code spreading unit 44 determines a K cycle (K: a natural number equal to or greater than 2), which is a period required for the distance measuring operation of the divided measurement distance.
  • K a natural number equal to or greater than 2
  • n the smallest integer that satisfies N ⁇ 2 (n ⁇ 1)
  • 2 n ⁇ 1 can be K.
  • the code spreading unit 44 generates a pseudo random code having a code length of K period as a light emission pattern of the pulsed light output from the pulsed light emitting unit 20.
  • the pseudo-random code means a code that has a specific period and can be reproduced, but has randomness within the period.
  • a pseudo-random code is a code used for processing for spreading a band in a spread spectrum communication system.
  • the pseudo-random code for example, an arbitrary code such as an M series code or a Gold series code may be used.
  • the pseudo-random code is desirably assigned to a unique code for each distance measuring device 1, but may be randomly assigned for each frame or for each measurement distance. Note that a frame refers to a period during which one distance measurement is completed. That is, it means a period in which measurement of all divided measurement distances is completed. Further, the pseudo-random code may change the code length according to the number of pulses required for each distance of the pulsed light.
  • a pulse is not emitted at 0, and a pulse is emitted at 1, It can be expressed by a light emission pattern of pulsed light. Note that a pattern in which a pulse is emitted at 0 and a pulse is not emitted at 1 may be used.
  • the random delay generation unit 45 generates a random delay for each pulsed light at each reference timing with respect to the pseudo-random code emission pattern at each reference timing. With respect to the pseudo random code light emission pattern shown in FIG. 2B, a random delay time Tr is generated for each reference timing interval, and the final pulse light emission timing is determined. The delay time Tr occurs within a range not exceeding a preset maximum value Tr_max (Tr ⁇ Tr_max).
  • the emission timing of the pulsed light from the pulsed light emitting unit 20 is the random delay time Tr from the start of each cycle within each of N cycles randomly selected from the continuous K cycles. Set to the delayed timing.
  • the delay time Tr corresponds to the first time in the present disclosure.
  • the pulsed light emitting unit 20 emits pulsed light based on the pulsed light emission timing set in the above process.
  • the delay generation unit 46 obtains the time for which light travels back and forth for each of the divided measurement distances, and sets the delay time corresponding to the round-trip time to the pulsed light emission timing determined by the random delay generation unit 45. In addition, pulse light reception timing is generated.
  • the determination unit 47 determines whether the measurement object 10 exists in the measurement range being measured from the number of signals obtained by the optical sensor unit 30 and the measurement range notified from the measurement distance determination unit 41. Specifically, the determination unit 47 determines whether the number of signals obtained by the optical sensor unit 30 exceeds a separately determined threshold value, and when the number of signals obtained by the optical sensor unit 30 exceeds the threshold value. Then, the distance calculation unit 50 is notified of the result that the measurement object 10 is present in the currently measured distance range notified from the measurement distance determination unit 41. If the number of signals obtained by the optical sensor unit 30 does not exceed the threshold value, the determination unit 47 continues to determine whether the number of signals obtained by the optical sensor unit 30 exceeds the threshold value.
  • the determination unit 47 may include a storage unit that accumulates results.
  • the adder 48 adds the signals generated by the random delay generation unit 45 and the delay generation unit 46 and outputs the result to the optical sensor unit 30.
  • the timing of the signal output to the optical sensor unit 30 is referred to as pulsed light reception timing.
  • the distance calculation unit 50 calculates the distance of the measurement object 10 based on the result notified from the determination unit 47 that the measurement object 10 exists in the distance range being measured.
  • the distance calculation unit 50 may be, for example, a computer or the like, and may output a measurement result as a control signal for controlling, for example, a vehicle brake, speed, steering, and the like. Moreover, you may output to a display as distance data. Further, an image may be formed from the distance data and displayed.
  • the distance calculation unit 50 may be integrated with the control unit 40, or the determination unit 47 may also serve as the distance calculation unit 50.
  • the optical sensor unit 30 When the optical sensor unit 30 performs a reception operation based on the pulsed light reception timing, the optical sensor unit 30 can receive the reflected light from the measurement object 10 existing at the measurement distance.
  • the optical sensor unit 30 reflects the light emission timing of the pulsed light in the period during the measurement with respect to the reflected light from the object existing at a distance other than the measurement distance during the measurement. Since at least the time Tc is ensured between the end of the light emission and the start of the period during the measurement, no reception is performed.
  • the pulsed light emission timing is based on the timing based on different pseudo-random codes and the random timing in which the pulsed light timing is delayed by the delay time Tr in one cycle. Since it is comprised, the probability that the optical sensor unit 30 receives can be reduced. Therefore, by limiting the number of receptions at the reception timing with a separately defined threshold, it is possible to suppress mutual interference that occurs between the plurality of distance measuring devices 1.
  • a period in which a pulse having an arbitrary L period (L: integer of 0 or more) is not emitted may be added before and after the K-period pulse pattern of the pseudo-random code.
  • the K cycle may be repeated a plurality of times in the measurement period of a certain divided section.
  • An arbitrary blank period may be provided between the repetitions.
  • the distance measuring apparatus 1 it is possible to reduce mutual interference in an environment where a plurality of distance measuring apparatuses are mixed within the measurement range of the distance measuring apparatus.
  • the distance measuring apparatus 1 according to Embodiment 2 is different from the distance measurement device 1 according to the first embodiment in that the next measurement can be performed without waiting for the round trip time of light from light emission to light reception corresponding to the maximum measurable distance. This is a point that can emit pulsed light for the period.
  • FIG. 3 is a diagram illustrating an example of a timing chart for explaining a timing chart of a pseudo-random code and a pulse train according to the second embodiment.
  • FIG. 3A is an example of a timing chart of the pseudo-random code according to the present disclosure.
  • b) is an example of a timing chart of a pulse train based on a pseudo-random code
  • (c) is an example of a timing chart of a pulse train to which a delay Tr is added.
  • the measurement distance determination unit 41 divides the measurement distance range set by the user of the distance measurement device 1 into one or more sections, like the distance measurement device 1 shown in the first embodiment. A distance measurement operation is performed for each divided measurement distance. The number of divisions and the division width may be determined each time by the user, or may be set in advance.
  • the pulse number determination unit 42 for each of the divided measurement distances, requires a required pulse number N corresponding to the measurement distance, that is, N periods (N: less than K described later). Natural number).
  • the reference timing generator 43 generates a reference timing (period) of pulsed light used for distance measurement.
  • the period of the reference timing (time Tc ′) corresponds to the maximum measurable distance of the distance measuring device 1, that is, the maximum measurable distance at which the reflected light reflected by the measurement object can be received from the light emission to the light reception.
  • the round-trip time Tc of light is set to be equal to or longer than the time divided by K (Tc ′ ⁇ Tc / K) described later. This is to prevent erroneous reception of pulse light of the previous K cycle, as will be described later.
  • the time Tc corresponds to the second time in the present disclosure.
  • the code spreading unit 44 determines a K cycle (K: a natural number equal to or greater than 2), which is a period required for the distance measuring operation of the divided measurement distance.
  • K a natural number equal to or greater than 2
  • n the smallest integer that satisfies N ⁇ 2 (n ⁇ 1)
  • 2 n ⁇ 1 can be K.
  • the code spreading unit 44 generates a pseudo random code having a code length of K cycles.
  • the pseudo random code for example, an arbitrary code such as an M series code or a Gold series code may be used.
  • the pseudo-random code is desirably assigned to a unique code for each distance measuring device 1, but may be randomly assigned for each frame or for each divided measurement distance.
  • the pseudo-random code may change the code length according to the number of pulses required for each distance of the pulsed light. For example, if the generated bit string composed of 0 and 1 of the PN code is assigned to the presence / absence of a pulse at each reference timing, a pulse is not emitted at 0 but a pulse is emitted at 1, and a pseudo-random code is pulsed It can be expressed by the light emission pattern. Note that a pattern in which a pulse is emitted at 0 and a pulse is not emitted at 1 may be used.
  • the random delay generation unit 45 generates a random delay for each pulsed light at each reference timing with respect to the pseudo random code light emission pattern at each reference timing. With respect to the pseudo random code light emission pattern of FIG. 3B, a random delay time Tr is generated for each reference timing interval, and the final pulse light emission timing is determined. The delay time Tr occurs within a range not exceeding a preset maximum value Tr_max (Tr ⁇ Tr_max).
  • the emission timing of the pulsed light from the pulsed light emitting unit 20 is the random delay time Tr from the start of each cycle within each of N cycles randomly selected from the continuous K cycles. Set to the delayed timing.
  • the pulsed light emitting unit 20 emits pulsed light based on the pulsed light emission timing determined by the above process.
  • the delay generation unit 46 obtains the time for which light travels back and forth for each of the divided measurement distances, and sets the delay time corresponding to the round-trip time to the pulsed light emission timing determined by the random delay generation unit 45. In addition, pulse light reception timing is generated.
  • the determination unit 47, the adder 48, and the distance calculation unit 50 perform the same operation as the distance measurement device 1 described in the first embodiment, detailed description thereof is omitted.
  • the optical sensor unit 30 can receive the reflected light from the measurement object existing at the measurement distance when receiving the pulse light.
  • the delay time given according to the distance is random, so the optical sensor unit 30 receives the same timing as the reflected light. Probability can be reduced. Therefore, the signal due to the reflected light from the object existing at a distance other than the measurement distance being measured is sufficiently smaller than the signal obtained for the distance being measured. Therefore, since the probability that the optical sensor unit 30 receives an object existing at a distance other than the measurement distance during measurement can be reduced, mutual interference that occurs between the plurality of distance measuring devices 1 can be suppressed.
  • (a) is light emission
  • (b) is reflected light
  • (c) is reflected light shifted by one period
  • (d) is reflected light shifted by K period
  • (E) is the exposure at the measurement distance
  • (f) is the result of exposing the reflected light at the measurement distance
  • (g) is the result of exposing the reflected light shifted by one period at the measurement distance
  • (h) is shifted by K periods. The result of exposing the reflected light at the measurement distance is shown.
  • reflected light reflected light from an object existing at a distance farther than the measurement distance during measurement
  • one signal is received per K period.
  • a signal with a period shift of less than K periods has a smaller number of signals than the original signal, and the probability of erroneous distance determination can be reduced.
  • the time of the K cycle is set to a time longer than the time Tc, that is, the time Tc ′ of one cycle, so as not to receive reflected light shifted by K cycles or more.
  • Tc is equal to or longer than the time obtained by dividing K (Tc ′ ⁇ Tc / K).
  • One cycle time Tc ' is set to a time equal to or less than the time Tc.
  • the maximum delay time Tr_max is Tr_max ⁇ Tc′ ⁇ w and the delay time Tr is Tr ⁇ Tr_max, where w is the emission time of the pulsed light.
  • the distance measuring device 1 can emit pulsed light for the next cycle without waiting for the round trip time of light from light emission to light reception corresponding to the maximum measurable distance. It can be shortened.
  • the pulsed light emitted from other distance measuring devices is composed of a timing based on a pseudo-random code having a different pulsed light emission timing and a random timing in which the pulsed light timing is delayed by a delay time Tr in one cycle. Therefore, the probability that the optical sensor unit 30 receives can be reduced. Therefore, by limiting the number of receptions at the reception timing with a separately defined threshold, it is possible to suppress mutual interference that occurs between the plurality of distance measuring devices 1.
  • a period in which a pulse having an arbitrary L period (L: integer of 0 or more) is not emitted may be added before and after the K-period pulse pattern of the pseudo-random code.
  • the K cycle may be repeated a plurality of times in the measurement period of a certain divided section. Moreover, you may provide arbitrary blank periods between repetitions.
  • the distance measuring apparatus 1 it is possible to reduce mutual interference in an environment where a plurality of distance measuring apparatuses are mixed within the measurement range of the distance measuring apparatus, for example. Further, since the pulsed light for the next period can be emitted without waiting for the round trip time of the light emitted in a certain period during the measurement, the measurement time can be shortened.
  • the distance measuring apparatus 100 according to Embodiment 3 is different from the distance measurement device 1 according to the first and second embodiments in that the presence / absence of an object is determined after performing distance measurement a plurality of times within one measurement distance range. It is. Thereby, even when interference etc. arise, it can determine with the detection by interference etc. being a misdetection, and can improve reliability further.
  • FIG. 6 is an example of the configuration of the distance measuring apparatus 100 according to the present embodiment.
  • the distance measuring device 100 includes a pulsed light emitting unit 20, a first optical sensor unit 130, a second optical sensor unit 131, a control unit 40, and a distance calculation unit 50.
  • the control unit 40 includes a measurement distance determination unit 41, a pulse number determination unit 42, a reference timing generation unit 43, a code spread unit 44, a random delay generation unit 45, a delay generation unit 46, a determination unit 47, And an adder 48.
  • the first optical sensor unit 130 has the same configuration as the optical sensor unit 30 shown in FIG.
  • the second optical sensor unit 131 Based on the control signals from the random delay generation unit 45 and the delay generation unit 46 of the control unit 40, the second optical sensor unit 131 outputs the reflected light that is emitted from the pulsed light emission unit 20 and reflected by the measurement object 10. Light is received at a predetermined timing different from that of the first optical sensor unit 130. Other configurations are the same as those of the first optical sensor unit 130.
  • the configuration other than the first optical sensor unit 130 and the second optical sensor unit 131 is the same as the configuration of the distance measuring device 1 shown in FIG.
  • the configuration includes a plurality of optical sensor units (the first optical sensor unit 130 and the second optical sensor unit 131). It is good also as composition which performs.
  • FIG. 7 is a diagram for explaining an example of a timing chart of the distance measuring apparatus 100 according to the present embodiment.
  • 7A shows light emission
  • FIG. 7B shows exposure in the first photosensor
  • FIG. 7C shows exposure in the second photosensor.
  • a measurement period A is a measurement period of distance d1 and distance dm
  • a measurement period B is a measurement period of distance d2 and distance dm-1
  • a measurement period C is a measurement period of distance dm and distance d1.
  • the measurement distance determination unit 41 divides the measurement distance range into d1 to dm, and performs a distance measurement operation for each of the divided measurement distances.
  • the first optical sensor unit 130 and the second optical sensor unit 131 control the reception operation corresponding to the measurement distance range, that is, the exposure timing to be different.
  • the first optical sensor unit 130 detects an object in an arbitrary distance measurement range dx.
  • the determination unit 47 determines that the measurement object 10 exists. .
  • the determination unit 47 determines that it is a false detection. The measurement result is not notified to the distance calculation unit 50.
  • the distance measuring apparatus 100 includes a plurality of optical sensor units, thereby suppressing erroneous detection and improving reliability.
  • the distance measurement device has been described based on the embodiment, but the present disclosure is not limited to this embodiment. Unless it deviates from the gist of the present disclosure, various modifications conceived by those skilled in the art have been made in this embodiment, and forms constructed by combining components in different embodiments are also within the scope of one or more aspects. May be included.
  • the M-sequence code and the Gold sequence code are exemplified as the pseudo-random code, but other codes may be used without being limited thereto.
  • the distance measuring device includes the pulse light emitting unit, the optical sensor unit, the control unit, and the distance calculating unit as the distance measuring device.
  • the distance measuring device includes at least the control unit.
  • the pulse light emitting unit, the optical sensor unit, and the distance calculating unit may be externally attached to the distance measuring device.
  • the control unit may be configured as an integrated circuit.
  • the distance measuring device including one pulse light emitting unit is exemplified as the distance measuring device, but a plurality of distance measuring devices may be provided.
  • the distance measuring device can be applied to a distance measuring device for preventing collision or automatic driving, an automobile device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

距離測定装置(1)は、測定対象物(10)に向けてパルス光を発光するパルス光発光部(20)と、測定対象物(10)で反射したパルス光の反射光を受光する光センサ部(30)と、パルス光発光部(20)から発光するパルス光の発光タイミングを制御しかつ光センサ部(30)で検知した反射光の受光タイミングから測定対象物(10)までの距離を判定する制御部(40)とを備え、制御部(40)は、発光タイミングを、連続するK周期(K:2以上の自然数)のうちランダムに選択されたN個の周期(N:K未満の自然数)の各周期内において、各周期の開始時からランダムな第1の時間遅延させたタイミングに設定する。

Description

距離測定装置
 本開示は、距離測定装置に関する。
 従来、電磁波を送信してから測定対象物に反射して受信するまでの時間を測定することで対象物との距離を測定する距離測定装置が知られている。一例として、光を距離測定装置付近から物体に向けて照射し、物体において反射した反射光が距離測定装置に帰還するまでの時間を測定することで物体までの距離を計測するTOF(Time Of Flight)法がある。TOF法では、光源からの光を強くすることで、遠方の物体までの距離を高分解能で測定することができる。
 例えば、距離測定装置が混在する環境では、他の装置が発する電磁波、または他の装置から発せられた電磁波が測定対象物において反射した反射波が、自装置の送信する電磁波の測定に干渉し、測定対象物の距離を正しく測定できないという問題があった。この問題に対して、特許文献1に開示されたパルス波レーダー装置では、対象物に照射する電磁波について擬似ランダム符号を生成し、これをあるdutyを持ったパルス列に変換して送信している。これにより各パルス周期における電磁波のパターンは各装置により擬似ランダム符号に従ったパターンとなるため、当該パルス波レーダー装置は、複数の装置間の干渉を抑制することができる(例えば、特許文献1参照)。
特開2005-106603号公報
 しかしながら、特許文献1のような擬似ランダム符号を用いるだけでは、干渉の抑制効果が不十分である。擬似ランダム符号を用いることにより耐干渉性を上げるには、過度に長大な符号ビット数が必要になる。そうすると、発光パルス数が膨大になり、測定に時間がかかるという課題が生じる。
 本開示は、上記の課題に鑑み、耐干渉性に優れた距離測定装置を得ることを主な目的とする。
 本開示の一態様に係る距離測定装置は、測定対象物に向けてパルス光を発光するパルス光発光部と、前記測定対象物で反射した前記パルス光の反射光を受光する光センサ部と、前記パルス光発光部から発光する前記パルス光の発光タイミングを制御し、かつ、前記光センサ部で検知した前記反射光の受光タイミングから前記測定対象物までの距離を判定する制御部とを備え、前記制御部は、前記発光タイミングを、連続するK周期(K:2以上の自然数)のうちランダムに選択されたN個の周期(N:K未満の自然数)の各周期内において、前記各周期の開始時からランダムな第1の時間遅延させたタイミングに設定する。
 これにより、パルス光の発光タイミングを、各周期の開始時からランダムな第1の時間遅延させたタイミングに設定するので、例えば、距離測定装置の測定範囲内に複数の距離測定装置が混在する環境において、相互干渉を低減することができる。
 また、前記パルス光発光部から発光する前記パルス光の発光パターンは、擬似ランダム符号で構成されていてもよい。
 これにより、特定の周期を持ちつつ、周期内においてはランダム性をもつ符号により、例えば、距離測定装置の測定範囲内に複数の距離測定装置が混在する環境において、相互干渉を低減することができる。
 また、前記制御部は、前記擬似ランダム符号で構成される発光パターンに対して、前記発光タイミングを、前記各周期の開始時から前記第1の時間遅延させたタイミングに設定するランダム遅延発生部を有してもよい。
 これにより、ランダム遅延発生部により、第1の時間を適切に設定することができる。
 また、前記制御部は、前記擬似ランダム符号を生成する符号拡散部を有してもよい。
 これにより、符号拡散部により適切な擬似ランダム符号を生成することができる。
 また、前記擬似ランダム符号の符号系列は、測定距離ごとにランダムに変化してもよい。
 これにより、測定距離ごとに異なる擬似ランダム符号を用いることができる。
 また、前記擬似ランダム符号の符号系列は、1回の測定が完了する期間であるフレームごとにランダムに変化してもよい。
 これにより、フレームごとに異なる擬似ランダム符号を用いることができる。
 また、前記パルス光発光部から前記パルス光を発光して前記測定対象物で反射した反射光を前記光センサ部で受光することができる最大測定可能距離に対する、前記パルス光の発光から受光までの時間を第2の時間とすると、第1の周期における前記パルス光の発光タイミングは、当該第1の周期において、前記パルス光の発光終了後前記第1の周期に続く第2の周期の開始時までの間に少なくとも前記第2の時間が確保されるタイミングであってもよい。
 これにより、第1の周期におけるパルス光を、第1の周期に続く第2の周期において誤って受信するのを抑制することができる。
 また、前記パルス光発光部から前記パルス光を発光して前記測定対象物で反射した反射光を前記光センサ部で受光することができる最大測定可能距離に対する、前記パルス光の発光から受光までの時間を第2の時間とすると、第1の周期の開始から前記第1の周期に続く第2の周期の開始までの第3の時間は、前記第2の時間を前記K周期で除算した時間以上前記第2の時間以下であってもよい。
 これにより、測定中の第1の周期において発光した光の往復時間を待つことなく、第2の周期のためのパルス光を発光することができるので、測定時間を短縮することができる。
 本明細書において開示される発明によって得られる効果を簡単に説明すれば、以下のとおりである。すなわち、本開示によれば、耐干渉性に優れた距離測定装置を実現することができる。
図1は、実施の形態1に係る距離測定装置のブロック図である。 図2は、実施の形態1に係る距離測定装置における信号タイミングを示すタイミングチャートであり、(a)は本開示の擬似ランダム符号のタイミングチャートの一例、(b)は擬似ランダム符号に基づいたパルス列のタイミングチャートの一例、(c)は遅延Trが付加されたパルス列のタイミングチャートの一例である。 図3は、実施の形態2に係る距離測定装置における信号タイミングを示すタイミングチャートであり、(a)は本開示の擬似ランダム符号のタイミングチャートの一例、(b)は擬似ランダム符号に基づいたパルス列のタイミングチャートの一例、(c)は遅延時間Trが付加されたパルス列のタイミングチャートの一例である。 図4は、K=7、N=4とした場合の、反射光のタイミングと露光タイミングとの相対的なタイミングによって得られる信号数の違いを説明する図である。 図5は、従来技術に係るパルス波レーダー装置の発するパルス波を説明するタイミングチャートであり、(a)は擬似ランダム符号のタイミングチャートの一例、(b)は擬似ランダム符号に基づいたパルス列のタイミングチャートの一例である。 図6は、本実施の形態に係る距離測定装置の構成の一例である。 図7は、本実施の形態に係る距離測定装置のタイミングチャートの一例を説明する図である。
 (本開示の基礎となった知見)
 はじめに、本開示の基礎となった知見について説明する。
 上述したように、複数の距離測定装置が混在する環境、例えば距離測定装置が複数の自動車にそれぞれ搭載されている場合、他の装置が発する電磁波、または他の装置から発せられた電磁波が測定対象物で反射した反射波が、自装置の送信する電磁波の測定に干渉し、測定対象物の距離を正しく測定できないという問題があった。
 図5は、特許文献1に開示されたパルス波レーダー装置の発するパルス波を説明する図である。特許文献1に記載のパルス波レーダー装置では、図5の(a)に示す擬似ランダム符号を生成し、これを同図の(b)に示すように、あるdutyを持ったパルス列に変換して送信する。これにより、各パルス周期における発光有無が各装置により擬似ランダム符号に従ったパターンとなるため、装置間の干渉を抑制することができる。
 しかしながら、上述したような擬似ランダム符号を用いるだけでは、干渉の抑制効果が不十分である。したがって、耐干渉性を上げるには、過度に長大な符号ビット数が必要になる。すると、発光パルス数が膨大になり、測定に時間がかかるという課題がある。
 以下に説明する距離測定装置によると、例えば、距離測定装置の測定範囲内に複数の距離測定装置が混在する環境において、測定時間を抑制しつつ、相互干渉を低減することができる。
 以下、本開示に係る実施の形態について、図面を参照しながら具体的に説明する。実質的に同一の構成に対して同一の符号を付し、説明を省略する場合がある。なお、以下で説明する実施の形態は、いずれも一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 図1は、実施の形態1に係る距離測定装置1のブロック図である。図2は、実施の形態1における擬似ランダム符号及びパルス列のタイミングチャートを説明する図であり、(a)は本開示の擬似ランダム符号のタイミングチャートの一例、(b)は擬似ランダム符号に基づいたパルス列のタイミングチャートの一例、(c)は遅延時間Trが付加されたパルス列のタイミングチャートの一例である。
 距離測定装置1は、測定対象物10までの距離を光により測定する装置である。距離測定装置1は、ユーザーにより設定された測定距離範囲を2つ以上の区間に分割し、分割した測定距離ごとに測距動作を行う。このとき、測定中の測定距離について発光した光が往復する時間を経過してから、次の測定のためのパルス光を発光する。
 図1に示すように、距離測定装置1は、パルス光発光部20と、光センサ部30と、制御部40と距離算出部50とを備えている。制御部40は、測定距離決定部41と、パルス数決定部42と、基準タイミング発生部43と、符号拡散部44と、ランダム遅延発生部45と、遅延発生部46と、判定部47と、加算器48とを有している。
 測定対象物10は、例えば、車外に存在する人、動物、物体等である。
 パルス光発光部20は、例えば、近赤外光を発光する光源である。パルス光発光部20は、制御部40のランダム遅延発生部45からの制御信号に基づいて、測定対象物10へ向けて所定のタイミングでパルス光を発光する。
 光センサ部30は、例えば、近赤外光を撮像受光できる複数の受光素子が行列状に配置された撮像カメラである。光センサ部30は、制御部40のランダム遅延発生部45及び遅延発生部46からの制御信号に基づいて、パルス光発光部20から発光し測定対象物10で反射した反射光を所定のタイミングで受光する。
 制御部40において、測定距離決定部41は、距離測定装置1のユーザーにより設定された測定距離範囲を1つ以上の区間に分割し、分割した測定距離ごとに測距動作を行う。分割数及び分割幅は、ユーザーにより都度決定されてもよいし、事前に設定しておいてもよい。
 また、図2の(a)に示すように、パルス数決定部42は、前記分割した測定距離ごとに、その測定距離に応じた必要なパルス数N、すなわちN個の周期分(N:後述するK未満の自然数)を決定する。
 基準タイミング発生部43は、測距に用いるパルス光の基準タイミング(周期)を生成する。この基準タイミングは、(i)距離測定装置1の最大測定可能距離、すなわちパルス光が測定対象物に反射した反射光を受光できる最大測定可能距離に対応する、発光から受光までの光の往復時間Tcと、(ii)後述する時間Tr_maxとの和(Tc+Tr_max)以上とする。つまり、ある周期(第1の周期)におけるパルス光の発光タイミングは、当該ある周期内においてパルス光の発光が終了した後、当該ある周期に続く次の周期(第2の周期)の開始時までの間に少なくとも時間Tcが確保されるタイミングとする。前の周期のパルス光を誤って受信しないようにするためである。なお、遅延時間Trは、本開示における第1の時間に相当する。時間Tcは、本開示における第2の時間に相当する。一例として、Tc=2μsecである。
 符号拡散部44は、分割した測定距離の測距動作にかかる期間であるK周期(K:2以上の自然数)を決定する。一例として、nを、N≦2(n-1)を満たす最小の整数として、2-1をKとすることができる。
 符号拡散部44は、パルス光発光部20から出力されるパルス光の発光パターンとして、K周期の符号長を有する擬似ランダム符号を生成する。擬似ランダム符号とは、特定の周期を持ち再現可能であるが周期内においてはランダム性をもつ符号のことをいう。例えば、擬似ランダム符号は、スペクトル拡散通信方式において帯域を拡散する処理等に用いられる符号である。
 擬似ランダム符号は、例えばM系列符号、ゴールド系列符号など任意の符号を用いてもよい。擬似ランダム符号は、距離測定装置1ごとに固有の符号を割り当てることが望ましいが、フレームごと、あるいは測定距離ごとにランダムに割り当ててもよい。なお、フレームとは、1回の距離測定が完了する期間をいう。すなわち、分割した全ての測定距離の測定が完了する期間をいう。また、擬似ランダム符号は、パルス光の、距離ごとに必要なパルス数に合わせて、符号長を変化させてもよい。例えば、生成したPN符号の0及び1で構成されるビット列を、基準タイミングごとのパルス光の有無に割り当て、0ではパルスを発光せず、1ではパルスを発光する構成とすると、擬似ランダム符号をパルス光の発光パターンによって表現することができる。なお、0でパルスを発光し、1でパルスを発光しないパターンによって表現してもよい。
 ランダム遅延発生部45は、基準タイミングごとの擬似ランダム符号発光パターンについて、基準タイミングごとのパルス光それぞれに対してランダムな遅延を発生させる。図2の(b)に示す擬似ランダム符号発光パターンについて、基準タイミング区間ごとにランダムな遅延時間Trを発生させ、最終的なパルス光発光タイミングを決定する。遅延時間Trは、あらかじめ設定した最大値Tr_maxを超えない範囲(Tr≦Tr_max)で発生する。
 以上により、パルス光発光部20からのパルス光の発光タイミングは、連続するK周期のうちランダムに選択されたN個の周期の各周期内において、各周期の開始時からランダムな遅延時間Trだけ遅延させたタイミングに設定される。なお、遅延時間Trは、本開示における第1の時間に相当する。
 パルス光発光部20は、上記のプロセスで設定されたパルス光発光タイミングに基づいて、パルス光の発光を行う。
 さらに、遅延発生部46は、分割した測定距離ごとに、その測定距離を光が往復する時間を取得し、その往復時間分の遅延時間を、ランダム遅延発生部45で決定したパルス光発光タイミングに対して加えることで、パルス光受信タイミングを生成する。
 判定部47は、光センサ部30が得た信号数と測定距離決定部41から通知された測定範囲とから、測定中の測定範囲に測定対象物10が存在しているか否かを判定する。具体的には、判定部47は、光センサ部30が得た信号数が、別途定めた閾値を超えているかを判定し、光センサ部30が得た信号数が閾値を超えていた場合は、測定距離決定部41から通知された現在測定中の距離範囲に、測定対象物10が存在していたという結果を、距離算出部50に通知する。光センサ部30が得た信号数が閾値を超えていない場合には、判定部47は、光センサ部30が得た信号数が閾値を超えているか判定を続ける。なお、判定部47は、結果を蓄積する記憶部を備えていてもよい。
 加算器48は、ランダム遅延発生部45及び遅延発生部46で生成された信号を加算し、光センサ部30に出力する。光センサ部30に出力されある信号のタイミングを、パルス光受信タイミングという。
 距離算出部50は、判定部47から通知された、測定中の距離範囲に測定対象物10が存在していたという結果から、測定対象物10の距離を算出する。距離算出部50は、例えば、コンピュータ等であってもよく、計測結果を例えば、自動車のブレーキ、速度、ステアリングなどを制御する制御信号として出力してもよい。また、ディスプレイに距離データとして出力してもよい。また、距離データから画像を形成して表示してもよい。
 なお、距離算出部50は制御部40と一体としてもよいし、判定部47が距離算出部50を兼ねてもよい。
 光センサ部30は、パルス光受信タイミングに基づいて受信動作を行うと、測定距離に存在する測定対象物10からの反射光を受信することができる。一方、光センサ部30は、測定中の測定距離以外の距離に存在する物体からの反射光については、上述したように、測定中の周期におけるパルス光の発光タイミングを、前の周期においてパルス光の発光が終了した後、当該測定中の周期の開始時までの間に少なくとも時間Tcが確保されるタイミングとしているため、受信しない。さらに、他の距離測定装置1から発光されたパルス光については、パルス光発光タイミングが、異なる擬似ランダム符号に基づくタイミングと1周期においてパルス光のタイミングが遅延時間Trだけ遅れたランダムなタイミングとにより構成されているため、光センサ部30が受信する確率を低減できる。したがって、受信タイミングでの受信回数を別途定めた閾値で制限することで、複数の距離測定装置1の間で生じる相互干渉を抑制することができる。
 なお、擬似ランダム符号のK周期のパルスパターンの前後に、任意のL周期(L:0以上の整数)のパルスを発光しない周期を加えてもよい。
 また、ある分割区間の測定期間において、K周期を複数回繰り返してもよい。繰り返しの間に任意の空白期間を設けてもよい。
 以上、本実施の形態に係る距離測定装置1によると、距離測定装置の測定範囲内に複数の距離測定装置が混在する環境において、相互干渉を低減することができる。
 (実施の形態2)
 次に、実施の形態2に係る距離測定装置1について説明する。本実施の形態に係る距離測定装置1が実施の形態1に係る距離測定装置1と異なる点は、最大測定可能距離に対応する、発光から受光までの光の往復時間を待つことなく、次の周期のためのパルス光を発光することができる点である。
 実施の形態2に係る距離測定装置1の構成は、図1に示した距離測定装置1の構成と同様であるため、詳細な説明は省略する。図3は、実施の形態2に係る擬似ランダム符号及びパルス列のタイミングチャートを説明するためのタイミングチャートの一例を示す図であり、(a)は本開示の擬似ランダム符号のタイミングチャートの一例、(b)は擬似ランダム符号に基づいたパルス列のタイミングチャートの一例、(c)は遅延Trが付加されたパルス列のタイミングチャートの一例である。
 制御部40において、測定距離決定部41は、実施の形態1に示した距離測定装置1と同様、距離測定装置1のユーザーにより設定された測定距離範囲を、1つ以上の区間に分割し、分割した測定距離ごとに測距動作を行う。分割数及び分割幅は、ユーザーにより都度決定されてもよいし、事前に設定しておいてもよい。
 図3の(a)に示すように、パルス数決定部42は、分割した測定距離ごとに、その測定距離に応じた必要なパルス数N、すなわちN個の周期分(N:後述するK未満の自然数)を決定する。
 基準タイミング発生部43は、測距に用いるパルス光の基準タイミング(周期)を生成する。この基準タイミングの周期(時間Tc’)は、距離測定装置1の最大測定可能距離、すなわちパルス光が測定対象物に反射した反射光を受光できる最大測定可能距離に対応する、発光から受光までの光の往復時間Tcを、後述するKで除算した時間以上(Tc’≧Tc/K)とする。後述するように、前のK周期のパルス光を誤って受信しないようにするためである。なお、時間Tcは、本開示における第2の時間に相当する。時間Tc’は、本開示における第3の時間に相当する。一例として、K=30のとき、時間Tc’=60nsec程度である。
 符号拡散部44は、分割した測定距離の測距動作にかかる期間であるK周期(K:2以上の自然数)を決定する。一例として、nを、N≦2(n-1)を満たす最小の整数として、2-1をKとすることができる。符号拡散部44は、K周期の符号長を有する擬似ランダム符号を生成する。擬似ランダム符号は、例えばM系列符号、ゴールド系列符号など任意の符号を用いてもよい。擬似ランダム符号は、距離測定装置1ごとに固有の符号を割り当てることが望ましいが、フレームごと、あるいは分割した測定距離ごとにランダムに割り当ててもよい。また、擬似ランダム符号は、パルス光の、距離ごとに必要なパルス数に合わせて、符号長を変化させてもよい。例えば、生成したPN符号の0及び1で構成されるビット列を、基準タイミングごとのパルスの有無に割り当て、0ではパルスを発光せず、1ではパルスを発光する構成とすると、擬似ランダム符号をパルスの発光パターンによって表現することができる。なお、0でパルスを発光し、1でパルスを発光しないパターンによって表現してもよい。
 ランダム遅延発生部45は、基準タイミングごとの擬似ランダム符号発光パターンに対して、基準タイミングごとのパルス光それぞれに対して、ランダムな遅延を発生させる。図3の(b)の擬似ランダム符号発光パターンに対して、基準タイミング区間ごとにランダムな遅延時間Trを発生させ、最終的なパルス光発光タイミングを決定する。遅延時間Trは、あらかじめ設定した最大値Tr_maxを超えない範囲(Tr≦Tr_max)で発生する。
 以上により、パルス光発光部20からのパルス光の発光タイミングは、連続するK周期のうちランダムに選択されたN個の周期の各周期内において、各周期の開始時からランダムな遅延時間Trだけ遅延させたタイミングに設定される。
 パルス光発光部20は、上記のプロセスで決定したパルス光発光タイミングに基づいて、パルス光の発光を行う。
 さらに、遅延発生部46は、分割した測定距離ごとに、その測定距離を光が往復する時間を取得し、その往復時間分の遅延時間を、ランダム遅延発生部45で決定したパルス光発光タイミングに対して加えることで、パルス光受信タイミングを生成する。
 判定部47、加算器48及び距離算出部50は、上述した実施の形態1に示した距離測定装置1と同様の動作を行うため、詳細な説明は省略する。
 光センサ部30は、このパルス光受信にて受信動作を行うと、測定距離に存在する測定対象物からの反射光を受信することができる。
 一方、測定中の測定距離以外の距離に存在する物体からの反射光については、距離に応じて付与した遅延時間がランダムであるため、光センサ部30は、反射光と同一のタイミングで受信する確率を低減することができる。したがって、測定中の測定距離以外の距離に存在する物体からの反射光による信号は、測定中の距離に対して得られる信号と比べて十分に少ない信号となる。よって、測定中の測定距離以外の距離に存在する物体を光センサ部30が受信する確率を低減できるので、複数の距離測定装置1の間で生じる相互干渉を抑制することができる。
 この動作について図4にて説明する。図4は、K=7、N=4とした場合の反射光のタイミングと露光タイミングとの相対的なタイミングによって得られる信号数の違いを説明する図である。図4では、擬似ランダム符号に基づいたパルス列のタイミングについて、(a)は発光、(b)は反射光、(c)は1周期ずれた反射光、(d)はK周期ずれた反射光、(e)は測定距離での露光、(f)は反射光を測定距離において露光した結果、(g)は1周期ずれた反射光を測定距離において露光した結果、(h)はK周期ずれた反射光を測定距離で露光した結果を示している。
 図4の(a)の発光パルスに対する反射光(図4の(b))を、反射光と同じタイミング(図4の(e))によって露光した場合には、K周期あたり4信号を得る。
 一方、同じ露光タイミングに対して、図4の(c)に示す1周期ずれた反射光(測定中の測定距離より遠い距離に存在する物体からの反射光)は、図4の(g)で表されるように、K周期あたり1信号の受信となる。
 上記説明したように、擬似ランダム符号を用いることで、K周期未満の周期ずれの信号は、本来の信号に対して信号数が少なくなり、距離の誤判定をする確率を下げることができる。
 また、K周期の周期ずれに対しては、図4の(h)で表されるように、K周期あたり4信号と、本来の信号と同数の信号を受信してしまい、図4の(b)の反射光と図4の(d)のK周期ずれた反射光との区別がつかなくなってしまう。このため、本開示に係る距離測定装置1においては、K周期以上ずれた反射光を受信することのないように、K周期の時間を時間Tc以上の時間、すなわち、1周期の時間Tc’を、TcをKで除算した時間以上の時間(Tc’≧Tc/K)とする。また、1周期の時間Tc’を、時間Tc以下の時間とする。なお、最大遅延時間Tr_maxは、パルス光の発光時間をwとすると、Tr_max≦Tc’-w、遅延時間Trは、Tr≦Tr_maxである。
 これにより、距離測定装置1は、最大測定可能距離に対応する、発光から受光までの光の往復時間を待つことなく、次の周期のためのパルス光を発光することができるので、測定時間を短縮することができる。
 また、他の距離測定装置から発光されたパルス光については、パルス光発光タイミングが異なる擬似ランダム符号に基づくタイミングと1周期においてパルス光のタイミングが遅延時間Trだけ遅れたランダムなタイミングにより構成されているため、光センサ部30が受信する確率を低減できる。したがって、受信タイミングでの受信回数を別途定めた閾値で制限することで、複数の距離測定装置1の間で生じる相互干渉を抑制することができる。
 なお、擬似ランダム符号のK周期のパルスパターンの前後に、任意のL周期(L:0以上の整数)のパルスを発光しない周期を加えてもよい。
 また、ある分割区間の測定期間において、K周期を複数回繰り返してもよい。また、繰り返しの間に任意の空白期間を設けてもよい。
 以上、本実施の形態に係る距離測定装置1によると、例えば、距離測定装置の測定範囲内に複数の距離測定装置が混在する環境において、相互干渉を低減することができる。また、測定中のある周期において発光した光の往復時間を待つことなく、次の周期のためのパルス光を発光することができるので、測定時間を短縮することができる。
 (実施の形態3)
 次に、実施の形態3に係る距離測定装置100について説明する。本実施の形態にかかる距離測定装置100が実施の形態1、2にかかる距離測定装置1と異なる点は、一の測定距離範囲について複数回測距を行った上で物体の有無を判定する点である。これにより、干渉などが生じた場合でも、干渉などによる検知を誤検知であると判定し、さらに信頼性を向上させることができる。
 図6は、本実施の形態に係る距離測定装置100の構成の一例である。
 図6に示すように、距離測定装置100は、パルス光発光部20と、第1の光センサ部130と、第2の光センサ部131と、制御部40と、距離算出部50とを備えている。制御部40は、測定距離決定部41と、パルス数決定部42と、基準タイミング発生部43と、符号拡散部44と、ランダム遅延発生部45と、遅延発生部46と、判定部47と、加算器48とを有している。
 第1の光センサ部130は、図1で示した光センサ部30構成と同様である。
 第2の光センサ部131は、制御部40のランダム遅延発生部45及び遅延発生部46からの制御信号に基づいて、パルス光発光部20から発光し測定対象物10で反射した反射光を第1の光センサ部130と異なる所定のタイミングで受光する。その他の構成は、第1の光センサ部130と同様である。
 第1の光センサ部130および第2の光センサ部131以外の構成は、図1で示した距離測定装置1の構成と同様であるため、詳細な説明は省略する。
 なお、図6では複数の光センサ部(第1の光センサ部130および第2の光センサ部131)を備える構成としているが、この限りでなく、一つの光センサ部において、複数回測距を行う構成としてもよい。
 図7は、本実施の形態にかかる距離測定装置100のタイミングチャートの一例を説明する図である。図7において、(a)は発光、(b)は第1の光センサにおける露光、(c)は第2の光センサにおける露光を示している。また、図7において、測定期間Aは距離d1および距離dmの測定期間、測定期間Bは距離d2および距離dm-1の測定期間、測定期間Cは距離dmおよび距離d1の測定期間である。
 図7に示すように、制御部40において、測定距離決定部41は、測定距離範囲をd1~dmに分割し、分割した測定距離ごとに測距動作を行う。
 測距動作において、第1の光センサ部130と第2の光センサ部131で、測定距離範囲に対応する受信動作、すなわち露光のタイミングを異ならせる制御をする。
 ここで、例えば、任意の距離測定範囲dxにおいて第1の光センサ部130が物体を検知したとする。第2の光センサ部131が、異なる露光タイミングで、同じ距離測定範囲dxについて、測距動作を行った際に、物体を検知した場合、判定部47は、測定対象物10が存在すると判定する。
 一方、第2の光センサ部が、異なる露光タイミングで、同じ距離測定範囲dxにおいて測距動作を行った際に、物体を検知しなかった場合、判定部47は、誤検知であると判断し、距離算出部50への測定結果の通知を行わない。
 このように、距離測定装置100は、光センサ部を複数備えることで、誤検知を抑制し、信頼性を向上させることができる。
 以上、一つまたは複数の態様に係る距離測定装置について、実施の形態に基づいて説明したが、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 例えば、上述した実施の形態では、擬似ランダム符号としてM系列符号、ゴールド系列符号を例示したが、これらに限らず他の符号を用いてもよい。
 また、上述した実施の形態では、距離測定装置として、パルス光発光部、光センサ部、制御部および距離算出部を備えた距離測定装置を例示したが、距離測定装置は少なくとも制御部を備えていればよく、パルス光発光部、光センサ部および距離算出部は、距離測定装置に外付けとする構成としてもよい。また、制御部は、集積回路化した構成であってもよい。
 また、上述した実施の形態では、距離測定装置として、パルス光発光部を一つ備えた距離測定装置を例示したが、複数備えても良い。
 本開示に係る距離測定装置は、衝突防止または自動運転のための距離測定装置、自動車用機器などに応用することができる。
 1、100 距離測定装置
 10 測定対象物
 20 パルス光発光部
 30、130、131 光センサ部
 40 制御部
 41 測定距離決定部
 42 パルス数決定部
 43 基準タイミング発生部
 44 符号拡散部
 45 ランダム遅延発生部
 46 遅延発生部
 47 判定部
 48 加算器
 50 距離算出部

Claims (8)

  1.  測定対象物に向けてパルス光を発光するパルス光発光部と、
     前記測定対象物で反射した前記パルス光の反射光を受光する光センサ部と、
     前記パルス光発光部から発光する前記パルス光の発光タイミングを制御し、かつ、前記光センサ部で検知した前記反射光の受光タイミングから前記測定対象物までの距離を判定する制御部とを備え、
     前記制御部は、前記発光タイミングを、連続するK周期(K:2以上の自然数)のうちランダムに選択されたN個の周期(N:K未満の自然数)の各周期内において、前記各周期の開始時からランダムな第1の時間遅延させたタイミングに設定する
     距離測定装置。
  2.  前記パルス光発光部から発光する前記パルス光の発光パターンは、擬似ランダム符号で構成されている
     請求項1に記載の距離測定装置。
  3.  前記制御部は、前記擬似ランダム符号で構成される発光パターンに対して、前記発光タイミングを、前記各周期の開始時から前記第1の時間遅延させたタイミングに設定するランダム遅延発生部を有する
     請求項2に記載の距離測定装置。
  4.  前記制御部は、前記擬似ランダム符号を生成する符号拡散部を有する
     請求項2または3に記載の距離測定装置。
  5.  前記擬似ランダム符号の符号系列は、測定距離ごとにランダムに変化する
     請求項2~4のいずれか1項に記載の距離測定装置。
  6.  前記擬似ランダム符号の符号系列は、1回の測定が完了する期間であるフレームごとにランダムに変化する
     請求項2~4のいずれか1項に記載の距離測定装置。
  7.  前記パルス光発光部から前記パルス光を発光して前記測定対象物で反射した反射光を前記光センサ部で受光することができる最大測定可能距離に対する、前記パルス光の発光から受光までの時間を第2の時間とすると、
     第1の周期における前記パルス光の発光タイミングは、当該第1の周期において、前記パルス光の発光終了後前記第1の周期に続く第2の周期の開始時までの間に少なくとも前記第2の時間が確保されるタイミングである
     請求項1~6のいずれか1項に記載の距離測定装置。
  8.  前記パルス光発光部から前記パルス光を発光して前記測定対象物で反射した反射光を前記光センサ部で受光することができる最大測定可能距離に対する、前記パルス光の発光から受光までの時間を第2の時間とすると、
     第1の周期の開始から前記第1の周期に続く第2の周期の開始までの第3の時間は、前記第2の時間を前記K周期で除算した時間以上前記第2の時間以下である
     請求項1~6のいずれか1項に記載の距離測定装置。
PCT/JP2017/002435 2016-01-29 2017-01-25 距離測定装置 WO2017130996A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780004957.5A CN108474843B (zh) 2016-01-29 2017-01-25 距离测量装置
EP17744226.6A EP3410147A4 (en) 2016-01-29 2017-01-25 Distance measurement device
JP2017564287A JPWO2017130996A1 (ja) 2016-01-29 2017-01-25 距離測定装置
US16/012,860 US10983212B2 (en) 2016-01-29 2018-06-20 Distance measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016016691 2016-01-29
JP2016-016691 2016-01-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/012,860 Continuation US10983212B2 (en) 2016-01-29 2018-06-20 Distance measurement device

Publications (1)

Publication Number Publication Date
WO2017130996A1 true WO2017130996A1 (ja) 2017-08-03

Family

ID=59398044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002435 WO2017130996A1 (ja) 2016-01-29 2017-01-25 距離測定装置

Country Status (5)

Country Link
US (1) US10983212B2 (ja)
EP (1) EP3410147A4 (ja)
JP (1) JPWO2017130996A1 (ja)
CN (1) CN108474843B (ja)
WO (1) WO2017130996A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629548A (zh) * 2017-03-15 2018-10-09 腾讯科技(深圳)有限公司 一种日程处理方法及装置
JP2020034438A (ja) * 2018-08-30 2020-03-05 株式会社トプコン 光波距離計及び光波距離計測方法
CN111902733A (zh) * 2018-03-26 2020-11-06 松下知识产权经营株式会社 距离测量装置、距离测量系统、距离测量方法和程序
WO2021009997A1 (ja) * 2019-07-12 2021-01-21 ソニーセミコンダクタソリューションズ株式会社 半導体装置
JP2021505893A (ja) * 2017-12-08 2021-02-18 ベロダイン ライダー, インク. 光測距及び検出システムにおける戻り信号の検出を改善するためのシステム及び方法
CN112585500A (zh) * 2018-06-21 2021-03-30 Pmd技术股份公司 具有可调节光功率输出的飞行时间摄像机系统
JP2021526219A (ja) * 2018-04-16 2021-09-30 ▲寧▼波▲飛▼芯▲電▼子科技有限公司Ningbo Abax Sensing Co., Ltd. 測距方法、装置、センサー及びセンサーアレイ
JP2022501583A (ja) * 2018-09-19 2022-01-06 ウェイモ エルエルシー アクティブセンサパルス放出をディザリングするための方法およびシステム
JP7490653B2 (ja) 2019-07-16 2024-05-27 ソニーセミコンダクタソリューションズ株式会社 測定装置および測定方法、並びにプログラム

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10557965B2 (en) 2016-12-02 2020-02-11 Stmicroelectronics (Grenoble 2) Sas Device, system, and method for detecting human presence
US10365351B2 (en) 2017-03-17 2019-07-30 Waymo Llc Variable beam spacing, timing, and power for vehicle sensors
DE102017215614A1 (de) * 2017-09-05 2019-03-07 Osram Gmbh Stochastisch getaktete Bilderzeugung eines Lidar-System
JP7154924B2 (ja) * 2018-10-03 2022-10-18 株式会社日立エルジーデータストレージ 測距撮像装置
EP3640668A1 (en) * 2018-10-16 2020-04-22 IDT Inc. Sensor and actuator system and method for operating a sensor and actuator system
WO2020149243A1 (ja) * 2019-01-15 2020-07-23 国立大学法人静岡大学 距離画像測定装置、距離画像測定システム、及び距離画像測定方法
JP7149505B2 (ja) * 2019-03-27 2022-10-07 パナソニックIpマネジメント株式会社 測距方法、測距装置、及び、プログラム
KR20200117460A (ko) * 2019-04-04 2020-10-14 삼성전자주식회사 전자 장치 및 그의 발열 제어 방법
CA3146414A1 (en) 2019-07-15 2021-03-25 Blackmore Sensors & Analytics, Llc Method and system for sidelobe suppression in phase encoded doppler lidar
CN113325374A (zh) * 2020-02-28 2021-08-31 加特兰微电子科技(上海)有限公司 抗干扰方法、装置、雷达系统及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743468A (ja) * 1993-07-28 1995-02-14 Hamamatsu Photonics Kk 高精度時間間隔測定装置
JPH07325152A (ja) * 1994-05-31 1995-12-12 Nikon Corp 距離測定装置
JPH09264949A (ja) * 1996-03-28 1997-10-07 Nissan Motor Co Ltd ランダム変調レーダ装置
JP2002368720A (ja) * 2001-06-11 2002-12-20 Denso Corp 距離測定装置
JP2005106603A (ja) * 2003-09-30 2005-04-21 Tdk Corp パルス波レーダー装置
US7345743B1 (en) * 2005-03-21 2008-03-18 Advanced Optical Systems Wide angle laser range and bearing finder

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL203812A (ja) * 1957-01-24
NL282421A (ja) * 1961-08-24
NL295515A (ja) * 1962-07-19
JP2638329B2 (ja) * 1991-04-17 1997-08-06 三菱電機株式会社 レーザレーダにおける測距方法
JP2771933B2 (ja) * 1993-02-12 1998-07-02 三菱電機株式会社 距離測定装置
US6057909A (en) * 1995-06-22 2000-05-02 3Dv Systems Ltd. Optical ranging camera
JP2000111639A (ja) * 1998-10-08 2000-04-21 Mitsubishi Electric Corp レーダ装置
DE10156043B4 (de) * 2001-11-15 2006-03-02 Otis Elevator Co., Farmington Positionsermittlungsvorrichtung
JP3779633B2 (ja) * 2002-03-18 2006-05-31 株式会社ニコン・トリンブル パルス信号生成回路および距離測定装置
JP2005295442A (ja) * 2004-04-05 2005-10-20 Hitachi Kokusai Electric Inc 撮像装置及び撮像方法
JP2006078284A (ja) * 2004-09-08 2006-03-23 Fujitsu Ltd パルスレーダ装置
JP2007121116A (ja) * 2005-10-28 2007-05-17 Sharp Corp 光学式測距装置
JP4657956B2 (ja) * 2006-03-14 2011-03-23 三菱電機株式会社 差分吸収ライダ装置
CN101271154B (zh) * 2008-03-28 2011-04-27 天津大学 用于消除机器人超声测距系统串扰的超声激励方法
IL200332A0 (en) * 2008-08-19 2010-04-29 Rosemount Aerospace Inc Lidar system using a pseudo-random pulse sequence
JP5422564B2 (ja) * 2008-10-09 2014-02-19 パナソニック株式会社 基地局装置及び測距方法
CN101487896B (zh) * 2009-02-23 2011-05-18 哈尔滨工业大学 指数增益调制距离成像器
US9091754B2 (en) * 2009-09-02 2015-07-28 Trimble A.B. Distance measurement methods and apparatus
CN201622345U (zh) * 2010-03-24 2010-11-03 北京握奇数据系统有限公司 一种激光测距装置
CN102298149B (zh) * 2010-06-25 2016-04-27 原相科技股份有限公司 提高精确度、移动侦测效率、省电的时差测距系统及方法
DE102010030603A1 (de) * 2010-06-28 2011-12-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen eines Signals zur Entfernungsmessung und Verfahren und System zur Entfernungsmessung zwischen einem Sender und einem Empfänger
US8736818B2 (en) * 2010-08-16 2014-05-27 Ball Aerospace & Technologies Corp. Electronically steered flash LIDAR
CN102384737B (zh) * 2010-09-01 2014-06-18 原相科技股份有限公司 可提高信噪比的测距装置及其方法
CN102073051A (zh) * 2010-11-19 2011-05-25 厦门大学 激光多脉冲扩时测距装置
DE102011075484A1 (de) * 2011-05-09 2012-11-15 Robert Bosch Gmbh Ultraschall-Messsystem mit verringerter minimaler Reichweite und Verfahren zum Detektieren eines Hindernisses
WO2013127973A1 (en) * 2012-03-01 2013-09-06 Iee International Electronics & Engineering S.A. Intersystem interference avoidance
CN102608602B (zh) * 2012-03-13 2013-08-14 北京航空航天大学 一种基于完全互补序列的超低旁瓣合成孔径雷达成像方法
CN102679948A (zh) * 2012-03-28 2012-09-19 中国科学院上海技术物理研究所 一种消除高重频激光测距脉冲混叠的方法
CN102636780A (zh) * 2012-04-26 2012-08-15 天津大学 一种超声波测距方法
CN102831009B (zh) * 2012-08-24 2014-12-03 电子科技大学 相控阵雷达任务调度方法
EP2730947A1 (de) * 2012-11-12 2014-05-14 Technische Universität Hamburg-Harburg Lidar-Messsystem und Lidar-Messverfahren
CN103064065B (zh) * 2012-12-17 2014-10-08 西安电子工程研究所 双周期夹断式伪随机码的波形设计和对回波的信号处理方法
CN103064070B (zh) * 2013-01-07 2014-09-24 中国工程物理研究院电子工程研究所 一种单脉冲雷达系统自检与状态参数的监测结构和方法
JP6296401B2 (ja) * 2013-06-27 2018-03-20 パナソニックIpマネジメント株式会社 距離測定装置および固体撮像素子
DK2866051T3 (en) * 2013-10-23 2019-01-14 Ladar Ltd LASER DETECTION AND DISTANCE MEASURING DEVICE FOR DETECTING AN OBJECT UNDER A WATER SURFACE
EP3112901A4 (en) * 2014-02-28 2017-03-01 Panasonic Intellectual Property Management Co., Ltd. Distance measuring apparatus and distance measuring method
CN103954937B (zh) * 2014-04-10 2016-05-04 西安空间无线电技术研究所 一种宽范围高精度微波测距雷达系统设计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743468A (ja) * 1993-07-28 1995-02-14 Hamamatsu Photonics Kk 高精度時間間隔測定装置
JPH07325152A (ja) * 1994-05-31 1995-12-12 Nikon Corp 距離測定装置
JPH09264949A (ja) * 1996-03-28 1997-10-07 Nissan Motor Co Ltd ランダム変調レーダ装置
JP2002368720A (ja) * 2001-06-11 2002-12-20 Denso Corp 距離測定装置
JP2005106603A (ja) * 2003-09-30 2005-04-21 Tdk Corp パルス波レーダー装置
US7345743B1 (en) * 2005-03-21 2008-03-18 Advanced Optical Systems Wide angle laser range and bearing finder

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3410147A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108629548A (zh) * 2017-03-15 2018-10-09 腾讯科技(深圳)有限公司 一种日程处理方法及装置
CN108629548B (zh) * 2017-03-15 2021-08-10 腾讯科技(深圳)有限公司 一种日程处理方法及装置
JP2021505893A (ja) * 2017-12-08 2021-02-18 ベロダイン ライダー, インク. 光測距及び検出システムにおける戻り信号の検出を改善するためのシステム及び方法
CN111902733B (zh) * 2018-03-26 2024-04-16 松下知识产权经营株式会社 距离测量装置、距离测量系统、距离测量方法和程序
CN111902733A (zh) * 2018-03-26 2020-11-06 松下知识产权经营株式会社 距离测量装置、距离测量系统、距离测量方法和程序
JP2021526219A (ja) * 2018-04-16 2021-09-30 ▲寧▼波▲飛▼芯▲電▼子科技有限公司Ningbo Abax Sensing Co., Ltd. 測距方法、装置、センサー及びセンサーアレイ
JP7251742B2 (ja) 2018-04-16 2023-04-04 ▲寧▼波▲飛▼芯▲電▼子科技有限公司 測距方法、装置、センサー及びセンサーアレイ
CN112585500A (zh) * 2018-06-21 2021-03-30 Pmd技术股份公司 具有可调节光功率输出的飞行时间摄像机系统
JP7303616B2 (ja) 2018-08-30 2023-07-05 株式会社トプコン 光波距離計及び光波距離計測方法
JP2020034438A (ja) * 2018-08-30 2020-03-05 株式会社トプコン 光波距離計及び光波距離計測方法
JP2022501583A (ja) * 2018-09-19 2022-01-06 ウェイモ エルエルシー アクティブセンサパルス放出をディザリングするための方法およびシステム
US11567180B2 (en) 2018-09-19 2023-01-31 Waymo Llc Methods and systems for dithering active sensor pulse emissions
US11867841B2 (en) 2018-09-19 2024-01-09 Waymo Llc Methods and systems for dithering active sensor pulse emissions
JPWO2021009997A1 (ja) * 2019-07-12 2021-01-21
WO2021009997A1 (ja) * 2019-07-12 2021-01-21 ソニーセミコンダクタソリューションズ株式会社 半導体装置
JP7553447B2 (ja) 2019-07-12 2024-09-18 ソニーセミコンダクタソリューションズ株式会社 半導体装置
JP7490653B2 (ja) 2019-07-16 2024-05-27 ソニーセミコンダクタソリューションズ株式会社 測定装置および測定方法、並びにプログラム

Also Published As

Publication number Publication date
CN108474843B (zh) 2022-06-28
EP3410147A4 (en) 2019-01-02
CN108474843A (zh) 2018-08-31
US10983212B2 (en) 2021-04-20
EP3410147A1 (en) 2018-12-05
JPWO2017130996A1 (ja) 2018-06-28
US20180299553A1 (en) 2018-10-18

Similar Documents

Publication Publication Date Title
WO2017130996A1 (ja) 距離測定装置
CN110208814B (zh) 激光雷达及其抗干扰方法
US11320514B2 (en) Method and device for measuring a distance to a target in a multi-user environment by means of at least one detector
CN108535703B (zh) 用于频率调制连续波雷达高度计的信号干扰防止系统
JP6698655B2 (ja) 測距装置
JP2000121726A (ja) 距離測定装置
TWI723413B (zh) 測量一成像感測器與一物體間之一距離的系統及方法
US9435880B2 (en) Pulse transponder countermeasure
WO2019181518A1 (ja) 距離測定装置、距離測定システム、距離測定方法、及びプログラム
KR102612267B1 (ko) LiDAR 시스템을 위한 작동 방법 및 제어 유닛, LiDAR 시스템 그리고 작업 장치
JP2020056698A (ja) 測距撮像装置
JP2005181193A (ja) パルス波レーダー装置
CN111398976A (zh) 探测装置及方法
GB2275841A (en) Optoelectric distance measuring equipment
JPWO2017134707A1 (ja) 測距装置、測距方法、信号処理装置および投光装置
US20210325514A1 (en) Time of flight apparatus and method
US6628374B2 (en) Distance measurement apparatus
JP2009192526A (ja) レーザ距離測定装置及びその遮蔽物検出方法
JPH09264949A (ja) ランダム変調レーダ装置
WO2019050024A1 (ja) 距離測定方法および距離測定装置
JP2005106603A (ja) パルス波レーダー装置
JP2019027937A (ja) 測距制御装置および測距システム
JP5351492B2 (ja) 車載レーダ装置
CN113534180A (zh) 一种飞行时间tof测量方法及装置
WO2021107036A1 (ja) 測距撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017744226

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017744226

Country of ref document: EP

Effective date: 20180829