WO2021009997A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2021009997A1
WO2021009997A1 PCT/JP2020/018650 JP2020018650W WO2021009997A1 WO 2021009997 A1 WO2021009997 A1 WO 2021009997A1 JP 2020018650 W JP2020018650 W JP 2020018650W WO 2021009997 A1 WO2021009997 A1 WO 2021009997A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
waveform
light
semiconductor device
unit
Prior art date
Application number
PCT/JP2020/018650
Other languages
English (en)
French (fr)
Inventor
宗 宮本
秋山 義行
徹 秋下
玄良 樋渡
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社, ソニー株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to CN202080048871.4A priority Critical patent/CN114174858A/zh
Priority to JP2021532691A priority patent/JPWO2021009997A1/ja
Priority to DE112020003368.6T priority patent/DE112020003368T5/de
Priority to US17/625,015 priority patent/US20220291380A1/en
Publication of WO2021009997A1 publication Critical patent/WO2021009997A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J11/00Measuring the characteristics of individual optical pulses or of optical pulse trains
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection

Definitions

  • This technology relates to semiconductor devices that perform distance measurement.
  • This ranging device that can suppress the output of incorrect ranging information with a simple configuration (see, for example, Patent Document 1).
  • This ranging device superimposes a side channel signal using a hardware logic circuit that generates random numbers that are difficult to duplicate or imitate on a main channel signal for measuring a relative distance to an object.
  • the comparison verification unit collates the transmitting side channel data with the receiving side channel data, and verifies the similarity to confirm the validity of the received signal.
  • the semiconductor device includes an imaging unit including a photoelectric conversion element that receives reflected light reflected from a specific laser light source and performs photoelectric conversion, and the light received by the photoelectric conversion element is the above. It is provided with a control unit that executes a validity determination process for determining whether or not the light is emitted from a specific laser light source. For example, when distance measurement is performed using a specific laser light source, the control unit determines that the received light is a reflection of the light emitted from the specific laser light source.
  • the first photoelectric conversion element in the above-mentioned semiconductor device may be used not only for the validity determination process but also for distance measurement. As a result, the light receiving data received by the first photoelectric conversion element is effectively used.
  • determination may be performed based on the shape of the light receiving spot of the light emitted from the laser light source.
  • the shape of the light receiving spot is determined based on the spatial positional relationship between the laser light source, the subject, and the imaging unit.
  • the above-mentioned semiconductor device may include an illumination unit having the specific laser light source.
  • the illumination unit in the above-mentioned semiconductor device may be capable of irradiating a laser beam having a first waveform and a laser beam having a second waveform different from the first waveform. As a result, it is possible to execute the validity determination process using both the first waveform and the second waveform.
  • the light intensity at the time of irradiation may be different between the first waveform and the second waveform. This makes it possible to execute the validity determination process in consideration of the light intensity.
  • the illumination unit in the above-mentioned semiconductor device may irradiate the first waveform and the second waveform in a random order. As a result, it is possible to execute the validity determination process in consideration of the appearance order of the first waveform and the second waveform.
  • the first waveform and the second waveform may have different non-emission time lengths. As a result, it is possible to execute the validity determination process in consideration of the non-emission time lengths of the first waveform and the second waveform.
  • the image pickup device 1 is, for example, a device that captures a distance image by using a ToF (Time of Flight) method.
  • the distance image refers to an image composed of a distance pixel signal based on a distance obtained by detecting the distance of the subject in the depth direction from the image pickup device 1 for each pixel.
  • the image pickup device 1 includes an illumination unit 2, an image pickup unit 3, a control unit 4, a display unit 5, and a storage unit 6.
  • the irradiation code is composed of two values of 1 (High) and 0 (Low), and the illumination control unit 2a lights the laser light source 2b when the value of the irradiation code is 1, and the value of the irradiation code is 0.
  • the control is performed.
  • the laser light source 2b irradiates light using a laser resonator (optical resonator) based on the control of the illumination control unit 2a.
  • a laser resonator optical resonator
  • the laser resonator included in the laser light source 2b for example, a semiconductor laser (diode laser) is used, but a solid-state laser, a liquid laser, a gas laser, or the like may be used.
  • a semiconductor laser an edge emitting laser (EEF: Edge Emitting Laser), which has a structure in which a resonator is built in parallel with the semiconductor substrate and light is emitted from an open side surface, and a surface having a structure in which light is emitted perpendicularly to the semiconductor substrate.
  • EEF Edge Emitting Laser
  • the image pickup unit 3 includes a lens 3a, an image pickup element 3b, and a signal processing circuit 3c.
  • the lens 3a forms an image of the incident light on the image pickup surface of the image pickup device 3b.
  • the configuration of the lens 3a is arbitrary, and may be configured by, for example, a plurality of lens groups.
  • the image sensor 3b is composed of, for example, a CMOS (Complementary Metal Oxide Semiconductor) image sensor using the ToF method.
  • the image sensor 3b images the subject 100 and the subject 101 under the control of the control unit 4, and supplies the image signal obtained as a result to the signal processing circuit 3c.
  • CMOS Complementary Metal Oxide Semiconductor
  • the image sensor 3b correlates the reference signal supplied from the control unit 4 with the received light including the reflected light reflected by the subject 100, the subject 101, and the like as the irradiation light emitted from the laser light source 2b. Is generated and supplied to the signal processing circuit 3c.
  • the reference signal includes a reference code indicating a pattern used for detecting the correlation with the received light.
  • the signal processing circuit 3c processes the pixel signal supplied from the image pickup device 3b based on the control of the control unit 4. For example, the signal processing circuit 3c generates a distance image based on the pixel signal supplied from the image sensor 3b. The signal processing circuit 3c supplies the generated distance image to the control unit 4.
  • the control unit 4 is composed of, for example, a control circuit such as an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor), a processor, or the like.
  • the control unit 4 controls the illumination control unit 2a, the image sensor 3b, and the signal processing circuit 3c. Further, the control unit 4 supplies the distance image acquired from the image pickup unit 3 to the display unit 5 and displays the distance image on the display unit 5. Further, the control unit 4 stores the distance image acquired from the image pickup unit 3 in the storage unit 6. Further, the control unit 4 outputs the distance image acquired from the imaging unit 3 to the outside.
  • a control circuit such as an FPGA (Field Programmable Gate Array) or a DSP (Digital Signal Processor), a processor, or the like.
  • the control unit 4 controls the illumination control unit 2a, the image sensor 3b, and the signal processing circuit 3c. Further, the control unit 4 supplies the distance image acquired from the image pickup unit 3 to the display unit 5 and displays the distance image on the display unit 5. Further, the control
  • the display unit 5 includes a panel-type display device such as a liquid crystal display device or an organic EL (Electro Luminescence) display device.
  • a panel-type display device such as a liquid crystal display device or an organic EL (Electro Luminescence) display device.
  • the storage unit 6 can be configured by any storage device, storage medium, or the like, and stores a distance image or the like.
  • each part of the image pickup apparatus 1 is provided with each part for executing various processes.
  • the configuration of the image sensor 3b is shown in FIG.
  • the image sensor 3b includes a pixel array unit 7, a vertical drive unit 8, a column processing unit 9, a horizontal drive unit 10, a system control unit 11, a pixel drive line 12, a vertical signal line 13, a signal processing unit 14, and a data storage unit 15. It is configured to include.
  • the pixel array unit 7 is composed of pixels having a photoelectric conversion element that generates and stores electric charges according to the amount of reflected light incident from the subject.
  • the pixels constituting the pixel array unit 7 are arranged in a two-dimensional array in the row direction and the column direction shown in the figure.
  • a pixel drive line 12 is wired along the row direction for each pixel row composed of pixels arranged in the row direction, and a vertical signal line is provided for each pixel column composed of pixels arranged in the column direction. 13 are wired along the row direction.
  • the vertical drive unit 8 is configured to include a shift register, an address decoder, and the like, and supplies signals and the like to each pixel via a plurality of pixel drive lines 12. Each pixel of the pixel array unit 7 is simultaneously driven by all pixels or driven in units of rows based on the supplied signal.
  • the column processing unit 9 reads a signal from each pixel via the vertical signal line 13 for each pixel row of the pixel array unit 7, noise removal processing, correlation double sampling processing, and A / D (Analog to Digital) conversion. Performs processing and the like to generate a pixel signal.
  • the horizontal drive unit 10 is configured to include a shift register, an address decoder, and the like, and sequentially selects a unit circuit corresponding to the pixel sequence of the column processing unit 9. By the selective scanning by the horizontal drive unit 10, the pixel signals signal-processed for each unit circuit in the column processing unit 9 are sequentially output to the signal processing unit 14.
  • the system control unit 11 is composed of a timing generator or the like that generates various timing signals, and controls the drive of the vertical drive unit 8, the column processing unit 9, and the horizontal drive unit 10 based on the timing signals generated by the timing generator.
  • the signal processing unit 14 performs signal processing such as arithmetic processing on the pixel signal supplied from the column processing unit 9 while temporarily storing data in the data storage unit 15 as needed, and is composed of each pixel signal. Output an image signal.
  • FIG. 3 is an equivalent circuit of a unit pixel.
  • the unit pixels 16 constituting the pixel array unit 7 of the image pickup element 3b include photoelectric conversion elements 17, transfer transistors 18a and 18b, FD (floating diffusion capacitance: floating diffusion capacity) 20a and 20b, reset transistors 22 and 23, and selection transistors 24. It includes amplification transistors 25 and 26.
  • FIG. 3 shows an example in which the reset transistors 22 and 23, the selection transistors 24, and the amplification transistors 25 and 26 use N-channel MOS transistors.
  • the combination of the reset transistors 22 and 23, the selection transistors 24, and the amplification transistors 25 and 26 is not limited to this example.
  • the photoelectric conversion element 17 is made of, for example, an embedded photodiode. Specifically, it will be described with reference to FIG.
  • the photoelectric conversion element 17 is formed by forming a p-type layer 28 on the surface side of the p-type semiconductor substrate 27 and embedding the n-type embedded layer 29.
  • the transfer transistor 18a includes a gate electrode 19a.
  • the gate electrode 19a is formed so as to cover a region between the photoelectric conversion element 17 and the FD 20a via an insulating film 30 formed on the surface of the semiconductor substrate 27.
  • the transfer signal TXa is supplied from the vertical drive unit 8 to the gate electrode 19a via the pixel drive line 12.
  • the voltage of the transfer signal TXa is set to a predetermined High level and the transfer transistor 18a becomes conductive, the electric charge generated by the photoelectric conversion element 17 is transferred to the FD 20a via the transfer transistor 18a.
  • the transfer transistor 18b includes a gate electrode 19b.
  • the gate electrode 19b is formed so as to cover a region between the photoelectric conversion element 17 and the FD 20b via an insulating film 30 formed on the surface of the semiconductor substrate 27.
  • the transfer signal TXb is supplied from the vertical drive unit 8 to the gate electrode 19b via the pixel drive line 12.
  • the voltage of the transfer signal TXb is set to a predetermined High level and the transfer transistor 18b becomes conductive, the electric charge generated by the photoelectric conversion element 17 is transferred to the FD 20b via the transfer transistor 18b.
  • the transfer signal TXa is the same signal as the reference signal supplied from the control unit 4 to the system control unit 11, and the transfer signal TXb is a bit-inverted signal of the reference signal. Therefore, the electric charge generated by the photoelectric conversion element 17 is distributed to the FD 20a and the FD 20b.
  • the higher the correlation between the received light incident on the photoelectric conversion element 17 and the reference signal the larger the amount of charge transferred to and stored in the FD20a, and the smaller the amount of charge transferred and stored in the FD20b.
  • the lower the correlation between the received light incident on the photoelectric conversion element 17 and the reference signal the smaller the amount of charge transferred to and stored in the FD20a, and the larger the amount of charge transferred and stored in the FD20b. The difference between is small.
  • the insulating film 30 is formed so as to cover the entire surface of the semiconductor substrate 27 except for a part above the FD 20a and a part above the FD 20b.
  • a light-shielding curtain 31 is formed so as to cover the entire upper part of the semiconductor substrate 27 except for a part above the photoelectric conversion element 17, a part above the FD20a, and a part above the FD20b.
  • the FD 20a accumulates the electric charge transferred from the photoelectric conversion element 17 via the transfer transistor 18a, and converts the accumulated electric charge into a voltage.
  • the FD 20b accumulates the electric charge transferred from the photoelectric conversion element 17 via the transfer transistor 18b, and converts the accumulated electric charge into a voltage.
  • the drain electrode of the reset transistor 22 is connected to the pixel power supply Vdd, and the source electrode is connected to the gate electrode of the FD 20a and the amplification transistor 25.
  • a reset signal RSTa is supplied from the vertical drive unit 8 to the gate electrode of the reset transistor 22 via the pixel drive line 12. When the voltage of the reset signal RSTa is set to a predetermined High level and the reset transistor 22 is turned on, the FD 20a is reset and charges are discharged from the FD 20a.
  • the drain electrode of the reset transistor 23 is connected to the pixel power supply Vdd, and the source electrode is connected to the gate electrode of the FD 20b and the amplification transistor 26.
  • a reset signal RSTb is supplied from the vertical drive unit 8 to the gate electrode of the reset transistor 23 via the pixel drive line 12. When the voltage of the reset signal RSTb is set to a predetermined High level and the reset transistor 23 is turned on, the FD 20b is reset and charges are discharged from the FD 20b.
  • the drain electrode of the selection transistor 24 is connected to the pixel power supply Vdd, and the source electrode is connected to the drain electrode of the amplification transistor 25.
  • the source electrode of the amplification transistor 25 is connected to the vertical signal line 13. Let this vertical signal line be 13a.
  • the source electrode of the amplification transistor 26 is connected to the vertical signal line 13. Let this vertical signal line be 13b.
  • the selection signal SEL is supplied from the vertical drive unit 8 to the gate electrode of the selection transistor 24 via the pixel drive line 12.
  • the voltage of the selection signal SEL is set to a predetermined High level and the selection transistor 24 is turned on, the unit pixel 16 to be read out of the pixel signal is selected.
  • the amplification transistor 25 supplies the signal SPA indicating the voltage of the FD 20a to the column processing unit 9 via the vertical signal line 13a when the selection transistor 24 is in the ON state.
  • the amplification transistor 26 supplies a signal SPb indicating the voltage of the FD 20b to the column processing unit 9 via the vertical signal line 13b when the selection transistor 24 is in the ON state.
  • the signal processing unit 14 of the image pickup device 3b generates a difference signal between the signal Spa and the signal SPb supplied from each unit pixel 16 via the column processing unit 9. Further, the signal processing unit 14 supplies the difference signal as a pixel signal of each unit pixel 16 to the signal processing circuit 3c. Therefore, the pixel signal output from the image sensor 3b is a signal indicating the correlation between the reference signal and the received light of each unit pixel 16. That is, the higher the correlation between the reference signal and the received light, the larger the value of the pixel signal, and the lower the correlation between the reference signal and the received light, the smaller the value of the pixel signal.
  • the image pickup apparatus 1 generates a distance image by performing a plurality of times of photographing using different combinations of irradiation signals and reference signals.
  • FIG. 5 is a timing chart of the distance image generation method, and shows each timing of the irradiation signal, the first reference signal a, the second reference signal b, and the received light with the horizontal axis as the time axis t.
  • FIG. 6 schematically shows the relationship between the distance from the image pickup apparatus 1 to the subject and the pixel signal output from the unit pixel 16.
  • the horizontal axis shows the distance to the subject, and the vertical axis shows the value of the pixel signal.
  • a combination of the irradiation signal and the first reference signal a is used at the time of the first photographing.
  • the irradiation signal and the first reference signal a are signals including pulses having the same phase and the same pulse width T.
  • the irradiation light emitted from the laser light source 2b has substantially the same waveform as the irradiation signal, but has a rising waveform peculiar to the manufactured laser resonator.
  • a part of the irradiation light emitted from the laser light source 2b is reflected by the subject in the irradiation direction, and a part of the reflected light is incident on the photoelectric conversion element 17 of each unit pixel 16 of the image pickup element 3b.
  • the received light incident on the photoelectric conversion element 17 is incident on the photoelectric conversion element 17 with a delay time ⁇ t with respect to the irradiation signal (irradiation light) according to the distance between the image pickup device 1 and the subject. ..
  • the value of the pixel signal Sa output from the unit pixel 16 is proportional to the time when the first reference signal a and the received light overlap. That is, the value of the pixel signal Sa becomes maximum when the delay time ⁇ t is 0, with reference to the rise time of the pulse of the first reference signal a (assuming the rise time of the pulse of the first reference signal a is 0), and the time. It is proportional to T- ⁇ t. Then, when the delay time ⁇ t becomes equal to or greater than the pulse width T, the value of the pixel signal Sa becomes 0.
  • the second reference signal b has a waveform whose phase is delayed by the same time as the pulse width T as compared with the first reference signal a.
  • the value of the pixel signal Sb output from the unit pixel 16 is proportional to the time when the second reference signal b and the received light overlap. That is, the value of the pixel signal Sb is proportional to the delay time ⁇ t when the delay time ⁇ t is 0 to T, and is proportional to the time 2T ⁇ t when the delay time ⁇ t is T to 2T. When the delay time ⁇ t is 2T or more, the value of the pixel signal Sb becomes 0.
  • the received light includes the reflected light of the irradiation light irradiated in the same pattern as the irradiation signal (irradiation code), and the waveform of the received light is similar to the waveform in which the phase of the irradiation signal is shifted. Therefore, the waveform of the pixel signal Sa in FIG. 6 is similar to the waveform of the correlation function between the first reference signal a and the irradiation signal, and the waveform of the pixel signal Sb in FIG. 6 is the correlation function between the second reference signal b and the irradiation signal. Similar to the waveform of.
  • the waveform of the pixel signal Sa here refers to a waveform including a region where the distance indicated by the dotted line in the figure is a negative value.
  • the distance to the subject is proportional to the ratio of the pixel signal Sb to the sum of the pixel signal Sa and the pixel signal Sb, as shown in Equation 1 below.
  • the signal processing circuit 3c is a pixel signal Sb that occupies the sum of the pixel signal Sa and the pixel signal Sb.
  • a distance pixel signal based on the distance to the subject is generated for each pixel based on the ratio of, and a distance image composed of the distance pixel signal is generated. Then, based on the distance image, for example, it becomes possible to measure the distance to the subject for each pixel and recognize the difference in distance.
  • the distance measurement accuracy is constant regardless of the distance because the inclinations of the pixel signal Sa and the pixel signal Sb with respect to the distance are constant as shown in FIG.
  • the basic rectangular wave in which the rising waveform is omitted has been described above, it is desirable to actually consider the rising waveform in FIG. 6 and Equation 1.
  • a mathematical formula considering the rising waveform may be used for the distance calculation, or the result of the distance calculation may be calculated without considering the rising waveform and the calculation result may be corrected based on the rising waveform. ..
  • the range in which the distance can be measured is the range until the pixel signal Sa becomes 0, and specifically, it is the range from 0 to the time c (speed of light) ⁇ T / 2. ..
  • the image pickup apparatus 1 in the present embodiment has a configuration that reduces the possibility of performing such an erroneous measurement. Specifically, a validity determination process for determining whether or not the light received by the image sensor 3b is the light emitted from the laser light source 2b is performed.
  • a validity determination process for determining whether or not the light received by the image sensor 3b is the light emitted from the laser light source 2b is performed.
  • the laser resonator included in the laser light source 2b can be considered to be an LED (Light Emitting Diode) that satisfies the conditions for laser oscillation.
  • FIG. 7 shows the relationship between wavelength and light intensity.
  • the laser resonator has a single peak characteristic that maximizes the light intensity at a unique wavelength (center frequency).
  • the oscillation wavelength emitted from the laser resonator has a temperature dependence that it becomes longer as the temperature rises. Therefore, the relationship between time and light intensity depends on the temperature change in the laser resonator.
  • FIGS. 8 and 9 An example is shown in FIGS. 8 and 9. This example is an example when the operating current (operating power) of the laser resonator is small, and FIG. 8 shows the wavelength of light emitted when the temperature of the laser resonator rises from the temperature F0 to the temperature F1. It is a thing. FIG. 9 shows the time change of the light intensity.
  • the wavelength of the light emitted from the laser resonator is shorter than the wavelength at which the light intensity is maximized, so that the graph of the time change of the light intensity (that is, the rising waveform of the laser light). Slowly increases and reaches a constant value, after which the constant value is maintained.
  • FIGS. 10 and 11 show other examples. This example is an example when the operating current of the laser resonator is large, and FIG. 10 shows the wavelength of the light emitted when the temperature of the laser resonator rises from the temperature F0 to the temperature F2.
  • FIG. 11 shows the temporal change of the light intensity.
  • the wavelength of the light emitted from the laser resonator is larger than the wavelength at which the light intensity is maximized due to the large operating current, the rising waveform of the laser light rises sharply and then reaches its peak.
  • the shape is such that it descends to a constant value.
  • the light emitting mode of the laser resonator showing the rising waveform as shown in FIG. 9 is referred to as “first light emitting mode”
  • the light emitting mode of the laser resonator showing the rising waveform as shown in FIG. 11 is referred to as “first light emitting mode”.
  • the laser light according to the first light emission mode is referred to as “first laser light”
  • the laser light according to the second light emission mode is referred to as "second laser light”.
  • the single-peak characteristic of the laser cavity described above depends on the structure of the laser cavity, and in the case of a semiconductor laser, the center frequency depends on the constituent elements of the semiconductor. Also, the oscillation spectrum depends on the light output (that is, the spectral line width is inversely proportional to the light output). For these reasons, the relationship between wavelength and light intensity (Fig. 7) and the relationship between time and light intensity (Figs. 9 and 11) vary from individual to laser resonator, and it is difficult for anyone other than the manufacturer to duplicate them. Be done. Therefore, the validity can be determined by observing the rising waveform of the laser beam.
  • the control unit 4 executes the irradiation process in step S101.
  • the laser light first laser light or second laser light
  • the emitted laser light becomes reflected light depending on the subject, and a part of the emitted laser light is incident on the image sensor 3b.
  • the control unit 4 performs a light receiving process in step S102. As a result, the measurement data of the received light waveform is acquired.
  • the control unit 4 performs a branch process for determining whether or not the received light waveform is valid in step S103.
  • the validity is confirmed by determining whether or not the received light waveform (for example, see FIG. 14) matches (or features match) with the reference condition (for example, see FIG. 13) stored in advance. Specifically, it is confirmed whether the ratio of the maximum value of the light intensity of the received light waveform and the steady value, which is the light intensity at the time when it finally settles down, is about the same, or from the rise to the fall of the waveform. Judgment is made by comparing the required time lengths. Alternatively, the determination may be made by comparing the time lengths from the rise to the steady value.
  • the control unit 4 When it is determined that the received light waveform is valid, the control unit 4 performs normal time processing in step S104. In the normal time processing, a desired process using the distance image and a desired process for the distance image are performed. That is, since the received light waveform is valid, it can be determined that the acquired distance image is correct, so that various processes using the distance image can be normally performed.
  • step S105 if it is determined in step S103 that the received light waveform is not valid, the control unit 4 performs an abnormality processing in step S105.
  • the validity determination may be redone by executing each processing from step S101 to step S103 again. This is effective when the legitimacy cannot be confirmed due to accidental light noise from the outside.
  • a backup process for functional safety may be executed, or if there is a fail-safe function, a process that gives priority to that may be executed, and information due to self-luminous light and information due to other light emission are separated.
  • FIGS. 15, 16 and 17 An example of the received light waveform that is determined to be invalid in the determination process of step S103 is shown in FIGS. 15, 16 and 17.
  • FIG. 15 is determined to be invalid because the time length required from the rising edge to the falling edge of the received light waveform does not match the reference condition.
  • FIG. 16 is determined to be invalid because the peak shape of the rising waveform does not exist. Alternatively, it may be determined that it is not valid because the ratio of the maximum value of the light intensity to the steady value is different from the reference condition.
  • FIG. 17 is determined to be invalid because the peak value exists in a portion other than the rising portion.
  • the reference condition stored in the storage unit 6 it is desirable that the information using the laser light source 2b in the calibrated state is stored. Further, the reference condition stored may be updated based on the periodic calibration performed in consideration of the time-dependent change of the laser resonator.
  • the image pickup apparatus 1A includes a light reflecting unit 32.
  • a block diagram of the image pickup apparatus 1A in this example is shown in FIG.
  • the image pickup device 1A includes, in addition to the illumination unit 2, the image pickup unit 3, the control unit 4, the display unit 5, and the storage unit 6, a light reflection unit 32 that reflects at least a part of the light emitted from the illumination unit 2.
  • the light emitted from the illumination unit 2 and reflected by the light reflection unit 32 is incident on the image sensor 3b.
  • FIG. 12 A flowchart of a processing example of this example is shown in FIG.
  • the same processes as those shown in the flowchart of FIG. 12 are designated by the same reference numerals and the description thereof will be omitted as appropriate.
  • the control unit 4 executes the irradiation process in step S101. As a result, light is emitted from the illumination unit 2.
  • the light reflected from the illumination unit 2 via the light reflecting unit 32 (hereinafter referred to as “internally reflected light”) is the light reflected through the subject 100 or the subject 101 (hereinafter referred to as “externally reflected light”). ), It reaches the image pickup element 3b earlier. Therefore, first, the light receiving process for the internally reflected light is performed, and then the light receiving process for the external reflected light is performed.
  • control unit 4 acquires the reference condition by performing the first light receiving process, which is the light receiving process for the internally reflected light, in step S111.
  • the reference condition is stored in, for example, the storage unit 6.
  • the control unit 4 acquires measurement data by performing a second light receiving process, which is a light receiving process for the externally reflected light, in step S112.
  • step S103 the control unit 4 performs a branching process for determining whether or not the received light waveform is valid by comparing the reference condition with the measurement data. If it is determined that the received light waveform is valid, the control unit 4 performs normal time processing in step S104, and if it is determined that the received light waveform is not valid, the control unit 4 performs abnormal time processing in step S105.
  • the control unit 4 executes the first irradiation process in step S121, and executes the first light receiving process in step S111. As a result, the reference conditions are acquired and stored.
  • the control unit 4 executes the second irradiation process in step S122, and executes the second light receiving process in step S112. As a result, measurement data is acquired.
  • step S103 the control unit 4 performs a branching process for determining whether or not the received light waveform is valid by comparing the reference condition with the measurement data. If it is determined that the received light waveform is valid, the control unit 4 performs normal time processing in step S104, and if it is determined that the received light waveform is not valid, the control unit 4 performs abnormal time processing in step S105.
  • control unit 4 may execute the first irradiation process under the first irradiation condition in step S121, and execute the second irradiation process under the second irradiation condition at least partially different from the first irradiation condition in step S122. Good. By making the irradiation conditions of the first irradiation treatment and the second irradiation treatment different, it is more difficult to imitate the illumination unit 2.
  • the first irradiation condition and the second irradiation condition are, for example, conditions in which the light emission time length and the light intensity are different.
  • a light guide portion composed of a light guide path may be provided instead of the light reflection portion. The same effect can be obtained by using the light guide path.
  • the process may be executed by the imaging device 1 not provided with the light reflecting unit 32, or may be executed by the imaging device 1A provided with the light reflecting unit 32.
  • the illumination unit 2 may be provided with a plurality of laser light sources, and the laser light source irradiated by the first irradiation process and the laser light source irradiated by the second irradiation process may be different.
  • the validity is determined by irradiating laser beams having different optical waveforms.
  • the light output of the laser light source 2b gradually increases, but the LED light is emitted instead of the laser light until the oscillation start current value is exceeded.
  • the oscillation start current value at which the laser oscillation starts is exceeded, the optical output rapidly increases and the laser oscillation is started, and the change in the output with respect to the current becomes abrupt. That is, there is a lower limit between the light output (light intensity) and the operating current.
  • an upper limit of light output (light intensity) is set from the viewpoint of safety of laser products, etc. according to various standards and rules based on the operating environment.
  • the laser light source 2b emits light using two or more types of current values within the range between the lower limit value and the upper limit value (that is, in the case of the first light emission mode and the second light emission mode described above). Since the validity of the received light waveform can be confirmed based on the rising waveforms of different shapes, it is possible to further reduce the erroneous measurement by the interfering person and make it more difficult to duplicate the laser beam by a malicious attacker or the like. Can be done.
  • FIG. 21 shows an example of the irradiation waveform when the laser light source 2b is irradiated a plurality of times according to the first light emission mode.
  • the laser light source 2b is irradiated with a constant repetition period T0.
  • the length of time that the laser light source 2b is emitting light (emission period T1) is also constant.
  • FIG. 22 is an example of an irradiation waveform in which the first laser beam and the second laser beam are alternately and repeatedly irradiated. Irradiation by the first light emitting mode and irradiation by the second light emitting mode are repeated in the repetition cycle T0.
  • the light emitting period T1 is set in both the first light emitting mode and the second light emitting mode.
  • FIG. 23 is an irradiation waveform when the first laser beam and the second laser beam are irradiated in a random order. Irradiation according to any aspect has a constant repetition period T0 and a light emission period T1.
  • the light emitting period T1 and the non-light emitting period (T0-T1) may be modulated or may be a random period. Further, in addition to the first light emitting mode and the second light emitting mode, a third light emitting mode different from the first light emitting mode and the second light emitting mode may be used. In the third light emitting mode, a current different from the current given to the laser light source 2b in the first light emitting mode and the current given to the laser light source 2b in the second light emitting mode is given to the laser light source 2b.
  • the laser light source 2b is irradiated by setting the current applied to the laser light source 2b to a random value within the above range, instead of setting it to a predetermined value as in the first light emitting mode and the second light emitting mode. You may. Such various aspects can make the replication of laser light even more difficult.
  • the above-mentioned irradiation signal may include the first irradiation signal (first irradiation code) and the second irradiation signal (second irradiation code).
  • FIG. 24 shows an example of the first irradiation signal and the second irradiation signal, and the irradiation waveforms of the first laser beam and the second laser beam emitted accordingly.
  • the image pickup apparatus 1 may have a switching unit. Further, the switching unit may be provided in the lighting unit 2 or may be provided in the lighting control unit 2a.
  • the fourth example of the validity determination process is an example in which the unit pixel 16 of the image pickup device 3b includes four or more charge storage units (FD). Specifically, it will be described with reference to FIG. FIG. 25 is a diagram showing an excerpt of a part of each part included in the unit pixel 16.
  • the nth transfer transistor 18n are connected to each photoelectric conversion element 17 included in the unit pixel 16.
  • FD20 is connected to each transfer transistor 18. Specifically, the first FD20a is connected to the first transfer transistor 18a, and the second FD20b is connected to the second transfer transistor 18b. Similarly, the nth FD20n is connected to the nth transfer transistor 18n.
  • Each FD 20 accumulates the charge generated by the photoelectric conversion element 17 during the corresponding charge accumulation period.
  • the charge accumulation period corresponding to each FD 20 is not covered.
  • FIG. 26 is a diagram showing the amount of charge accumulated in each charge accumulation period when one unit pixel 16 includes eight FD20s in order to grasp the feature amount of the received light waveform. As shown in the figure, the repetition period T0 is divided into eight periods from the first charge accumulation period Ta to the eighth charge accumulation period Th. Each charge accumulation period is a period of equal length.
  • the first charge accumulation period Ta starts at the same time as the laser light source 2b emits light.
  • the first charge accumulation period Ta the light emitted from the laser light source 2b has not yet reached the image sensor 3b, and the received light intensity is set to 0.
  • the second charge accumulation period Tb to the fifth charge accumulation period Te are defined as a period during which the light emitted from the laser light source 2b is being received (light receiving period T2).
  • the feature amount of the rising waveform of the received light waveform can be grasped.
  • the light emission period T1 which is half the time length of the repetition cycle T0
  • the electric charge is divided into four periods of the repetition cycle T0. It should be a storage period. That is, it is preferable that four FD20s (first FD20a, second FD20b, third FD20c and fourth FD20d) are connected to the photoelectric conversion element 17.
  • each charge accumulation period was equal, it may be uneven.
  • FIG. 27 shows an example of the received light waveform and the amount of charge accumulated during each charge accumulation period.
  • the irradiation waveform of the laser light source 2b may include not only a rising shape and a falling shape, but also overshoot, undershoot, ringing, and the like. In such a case, the characteristics of the waveform can be grasped by connecting more FD 20s to the photoelectric conversion element 17 as shown in the figure.
  • FIG. 28 is a diagram showing the relationship between the irradiation signal, the reference signal, and the amount of charge in each charge accumulation period.
  • 16 FD20s are connected to the photoelectric conversion element 17.
  • the rising timing of the irradiation signal and the rising timing of the reference signal a1 match.
  • the rise of the reference signal a2 arrives at the same time as the fall of the reference signal a1.
  • the pulse from the reference signal a1 to the reference signal a8 is generated.
  • the charge storage unit corresponding to each reference signal the charge generated by the photoelectric conversion element 17 is stored during the pulse output period.
  • the rise of the reference signal b1 arrives at the same time as the fall of the reference signal a8. It is generated so that the pulse from the reference signal b2 to the reference signal b8 is not covered after the reference signal b1.
  • the period (first period) from the rise of the reference signal a1 to the fall of the reference signal a8 is substantially the same as the pulse width T. Further, the period length of the period (second period) from the rise of the reference signal b1 to the fall of the reference signal b8 is substantially the same as the period length of the pulse width T.
  • the light receiving operation in the image sensor 3b can be performed in both the first period and the second period.
  • the reflected light is received over the first period and the second period, it is possible to measure the distance to the subject.
  • the pixel signal Sa described above is proportional to the total Qa of the amount of electric charge accumulated in each FD 20 in the first period. Further, the pixel signal Sb is proportional to the total Qb of the amount of electric charges accumulated in each FD 20 in the second period. That is, the distance to the subject can be calculated using the value calculated by Qb / (Qa + Qb).
  • the distance may be calculated using the amount of charge obtained by performing the correction based on the amount of charge in the other periods of the two periods. By using such a calculation, it may be possible to correct the distance calculation error.
  • the irradiation signal includes three types of pulses having different pulse widths. Specifically, the irradiation signal includes the first pulse P1 having a pulse width of "large”, the second pulse P2 having a pulse width of "medium”, and the third pulse P3 having a pulse width of "small”. It has been.
  • the light emitting period based on the first pulse P1 is set to the light emitting period T3.
  • the light emitting period based on the second pulse P2 is set to the light emitting period T4.
  • the light emitting period based on the third pulse P3 is set to the light emitting period T5.
  • the first reference signal group A which is the sum of the first reference signals a corresponding to each pulse in the irradiation signal, is a signal substantially the same as the irradiation signal.
  • the second reference signal group B which is the sum of the second reference signals b corresponding to each pulse in the irradiation signal, is configured to include pulses that are temporally adjacent to each pulse in the first reference signal group A. ..
  • the time length between pulses in the irradiation signal, that is, the non-emission period is the same time length.
  • the irradiation interval of the laser light source 2b which is the time length from the rise of the pulse to the rise of the next pulse, is not constant.
  • the laser uses only the light emitting period without comparing the rising waveform of the irradiation waveform and the light receiving waveform. Since the validity of the light source 2b can be determined, the process can be simplified. By comparing both the rising waveform of the irradiation waveform and the light receiving waveform and the length of the light emitting period, it is possible to make it more difficult to imitate the laser beam.
  • the reference signal illustrated in FIG. 29 may be repeated a plurality of times to improve the imitation of the laser beam while suppressing an increase in the amount of information required to generate the reference signal.
  • the non-emission period which is the period from the fall of the irradiation pulse of the laser light source 2b to the rise of the next irradiation pulse, is randomly determined.
  • the pulse width of one pulse in the irradiation signal is the same.
  • each light emitting period has the same time length.
  • the periods between pulses are different.
  • the non-emission periods are not the same. Therefore, the irradiation interval is also not constant.
  • the non-emission period of the laser light source 2b different for each irradiation, the validity of the laser light source 2b can be determined using only the non-emission period without comparing the rising waveform of the irradiation waveform and the light receiving waveform. Therefore, it is possible to simplify the process. By comparing both the rising waveforms of the irradiation waveform and the light receiving waveform and the length of the non-emission period, it is possible to make it more difficult to imitate the laser beam.
  • the ratio of the light emitting period and the non-light emitting period shown in the irradiation interval is variable for each irradiation. Even in such an embodiment, it is possible to make it difficult to imitate the laser beam.
  • the unit pixel 16 of the image pickup device 3b includes the first unit pixel 16A and the second unit pixel 16B. This will be described in detail.
  • FIGS. 32 and 33 An arrangement example of the first photoelectric conversion element 17A and the second photoelectric conversion element 17B is shown in FIGS. 32 and 33.
  • the example shown in FIG. 32 is an example in which the first photoelectric conversion element 17A is arranged on the outer edge 33 of the image sensor 3b, and the second photoelectric conversion element 17B is arranged inside the first photoelectric conversion element 17A. That is, only the outermost peripheral portion is the first photoelectric conversion element 17A.
  • the number of the first photoelectric conversion elements 17A can be reduced, so that the number of FD 20s can be significantly reduced as compared with the case where the first photoelectric conversion elements 17A are arranged in all the photoelectric conversion elements 17.
  • the example shown in FIG. 33 is an example in which the first photoelectric conversion element 17A is arranged at the four corners of the image sensor 3b, and the second photoelectric conversion element 17B is arranged in the other portions.
  • the number of first photoelectric conversion elements 17A can be further reduced, so that the number of FD 20s can be further significantly reduced.
  • FIG. 48 shows an example of the processing executed by the control unit 4 in this example.
  • the same processing as the processing of each flowchart described above is designated by the same reference numerals and the description thereof will be omitted as appropriate.
  • the irradiation dot pattern is the same, but the light receiving dot pattern is mirror-symmetrical in FIGS. 53 and 56.
  • the position can be specified, and it becomes possible to deal with an erroneous measurement or an attack.
  • the shape of the spot light to be irradiated is asymmetrical, it is possible to grasp the irradiation position of the other light source 200 by the shape of the light receiving spot.
  • Information on the irradiation position of the other light source 200 can also be applied to game applications and various application applications.
  • the fifteenth example of the validity determination process is another example when the laser light source 2b is used as another light source 200.
  • the light receiving dot pattern shown in FIG. 59 is a pattern obtained by rotating the dot pattern shown in FIG. 53 clockwise by about 15 degrees.
  • the dot pattern shown in FIG. 59 When the light receiving dot pattern shown in FIG. 59 is detected, it can be determined that the dot pattern is not emitted from a legitimate laser light source 2b included in the image pickup apparatus 1B.
  • the illumination unit 2B and the image pickup unit 3B are fixed to the outside or the inside of the image pickup device 1B, the illumination unit 2B and the image pickup unit 3B are rotated according to the rotation of the image pickup device 1B.
  • the illumination unit (other light source 200) included in the other imaging device AC is also rotated in accordance with the rotation of the other imaging device AC. That is, the validity is determined by extracting the measurement data regarding the rotation angle of the irradiated light source based on the measurement data of the light receiving dot pattern acquired by the imaging unit 3B and comparing the measurement data with the reference conditions. It can be performed.
  • information on the rotation angle of the other light source 200 can also be applied to game applications and various application applications.
  • the 17th example of the validity determination process is an example of an image pickup apparatus 1C provided with an image pickup unit 3C having an image pickup element 3Cb using a SPAD (Single Photon Avalanche Diode) element.
  • SPAD Single Photon Avalanche Diode
  • the pixel array unit 7C is a light receiving surface that receives light collected by the lens 3a, and a plurality of SPAD pixels 46 are arranged in a two-dimensional array in the row direction and the column direction.
  • the SPAD pixel 46 includes a SPAD element 47, a p-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 48, and a CMOS inverter 49.
  • a SPAD element 47 As shown enlarged in FIG. 60, the SPAD pixel 46 includes a SPAD element 47, a p-type MOSFET (Metal Oxide Semiconductor Field Effect Transistor) 48, and a CMOS inverter 49.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the SPAD element 47 forms an avalanche multiplying region by applying a large negative voltage VBD to the cathode, and avalanche multiplys the electrons generated by the incident of one photon.
  • VBD negative voltage
  • the p-type MOSFET 48 emits the multiplied electrons in the SPAD element 47 to return to the initial voltage.
  • the bias voltage application unit 45 applies a bias voltage to each of the plurality of SPAD pixels 46 arranged in the pixel array unit 7C.
  • a configuration example of one SPAD pixel 46 and its peripheral portion will be described with reference to FIGS. 61 and 62.
  • FIG. 61 is a cross-sectional view of the SPAD pixel 46.
  • FIG. 62 is a plan view of the SPAD pixel 46.
  • the image sensor 3Cb has a laminated structure in which the sensor substrate 50, the sensor-side wiring layer 51, and the logic-side wiring layer 52 are laminated, and a logic circuit board (not shown) is laminated on the logic-side wiring layer 52.
  • a bias voltage application unit 45, a p-type MOSFET 48, a CMOS inverter 49, and the like are formed on the logic circuit board.
  • the image pickup element 3Cb forms the sensor side wiring layer 51 with respect to the sensor substrate 50, forms the logic side wiring layer 52 with respect to the logic circuit board, and then forms the sensor side wiring layer 51 and the logic side wiring layer 52. It can be manufactured by joining at a joining surface (the surface shown by a broken line in FIG. 61).
  • the sensor substrate 50 is, for example, a semiconductor substrate obtained by thinly slicing single crystal silicon, and the concentration of p-type or n-type impurities is controlled, and a SPAD element 47 is formed for each SPAD pixel 46.
  • the sensor-side wiring layer 51 and the logic-side wiring layer 52 include wiring for supplying a voltage applied to the SPAD element 47, wiring for extracting electric charges (electrons) generated by the SPAD element 47 from the sensor substrate 50, and the like. It is formed.
  • the P-type diffusion layer 54 is a dense P-type diffusion layer formed near the surface of the sensor substrate 50 and on the light receiving surface side with respect to the N-type diffusion layer 55, and is formed over substantially the front surface of the SPAD element 47. Will be done.
  • the N-type diffusion layer 55 is a dense N-type diffusion layer formed near the surface of the sensor substrate 50 and on the junction surface side with respect to the P-type diffusion layer 54, and is formed over substantially the front surface of the SPAD element 47. Will be done.
  • a part of the N-type diffusion layer 55 is formed up to the surface of the sensor substrate 50 in order to connect to the first contact electrode 63 (described later) for supplying a negative voltage for forming the avalanche multiplication region 59. It has a convex shape.
  • the avalanche multiplication region 59 is a high electric field region formed on the interface between the P-type diffusion layer 54 and the N-type diffusion layer 55 by a large negative charge applied to the N-type diffusion layer 55, and is 1 in the SPAD element 47. Multiplier the electrons generated by the incident of individual photons. Further, in the image sensor 3Cb, each SPAD element 47 is insulated and separated by a double-structured inter-pixel separation portion 62 formed by a metal film 60 and an insulating film 61 formed between adjacent SPAD elements 47. To.
  • the inter-pixel separation portion 62 is formed by embedding the surface of the metal film 60 in the sensor substrate 50 so as to be covered with the insulating film 61, and the adjacent SPAD element 47 is electrically and optically connected by the inter-pixel separation portion 62. Is separated into.
  • the sensor-side wiring layer 51 includes a first contact electrode 63, a second contact electrode 64, a third contact electrode 65, a first metal wiring 66, a second metal wiring 67, a third metal wiring 68, and a fourth contact electrode 69.
  • a fifth contact electrode 70, a sixth contact electrode 71, a first metal pad 72, a second metal pad 73, and a third metal pad 74 are formed.
  • the first contact electrode 63 connects the N-type diffusion layer 55 and the first metal wiring 66
  • the second contact electrode 64 connects the high-concentration P-type diffusion layer 58 and the second metal wiring 67.
  • the contact electrode 65 connects the metal film 60 and the third metal wiring 68.
  • the second metal wiring 67 is formed so as to cover the outer periphery of the first metal wiring 66 and overlap with the high-concentration P-type diffusion layer 58.
  • the third metal wiring 68 is formed so as to connect to the metal film 60 at the four corners of the SPAD pixel 46, for example.
  • the fourth contact electrode 69 connects the first metal wiring 66 and the first metal pad 72
  • the fifth contact electrode 70 connects the second metal wiring 67 and the second metal pad 73
  • the sixth contact electrode 71 connects the third metal wiring 68 and the third metal pad 74.
  • the first metal pad 72, the second metal pad 73, and the third metal pad 74 are the fourth metal pad 82, the fifth metal pad 83, and the sixth metal pad 84 (all of which will be described later) formed on the logic side wiring layer 52. ) And the metals (copper) that form each of them are used to electrically and mechanically join each other.
  • the first electrode pad 75, the second electrode pad 76, and the third electrode pad 77 are used for connection with the logic circuit board, respectively, and the insulating layer 78 is the first electrode pad 75, the second electrode pad 76, and the third electrode. It is a layer that insulates the pads 77 from each other.
  • the seventh contact electrode 79 connects the first electrode pad 75 and the fourth metal pad 82
  • the eighth contact electrode 80 connects the second electrode pad 76 and the fifth metal pad 83
  • the ninth contact electrode 81 is the third.
  • the electrode pad 77 and the sixth metal pad 84 are connected.
  • the fourth metal pad 82 is joined to the first metal pad 72, the fifth metal pad 83 is joined to the second metal pad 73, and the sixth metal pad 84 is joined to the third metal pad 74.
  • the first electrode pad 75 includes a seventh contact electrode 79, a fourth metal pad 82, a first metal pad 72, a fourth contact electrode 69, a first metal wiring 66, and a first contact electrode. It is connected to the N-type diffusion layer 55 via 63. Therefore, in the SPAD pixel 46, a large negative voltage applied to the N-type diffusion layer 55 can be supplied from the logic circuit board to the first electrode pad 75.
  • the second electrode pad 76 has a high concentration P via the eighth contact electrode 80, the fifth metal pad 83, the second metal pad 73, the fifth contact electrode 70, the second metal wiring 67, and the second contact electrode 64. It is connected to the mold diffusion layer 58. Therefore, in the SPAD pixel 46, the anode of the SPAD element 47, which is electrically connected to the hole storage layer 56, is connected to the second electrode pad 76, so that the hole storage layer 56 is connected to the hole storage layer 56 via the second electrode pad 76. Bias adjustment is possible.
  • the SPAD pixel 46 is formed wider than the avalanche multiplication region 59 so that the first metal wiring 66 covers at least the avalanche multiplication region 59, and the metal film 60 covers the sensor substrate 50. It is formed to penetrate. That is, the SPAD pixel 46 is formed so as to have a reflection structure in which the first metal wiring 66 and the metal film 60 surround all other than the light incident surface of the SPAD element 47. As a result, the SPAD pixel 46 can prevent the occurrence of optical crosstalk due to the effect of reflecting light by the first metal wiring 66 and the metal film 60, and can improve the sensitivity of the SPAD element 47. it can.
  • the SPAD pixel 46 can adjust the bias by surrounding the side surface and the bottom surface of the N well 53 with the hole storage layer 56 and electrically connecting the hole storage layer 56 to the anode of the SPAD element 47. ..
  • the SPAD pixel 46 can form an electric field that assists the carrier in the avalanche multiplication region 59 by applying a bias voltage to the metal film 60 of the inter-pixel separation portion 62.
  • the SPAD pixel 46 can prevent the occurrence of crosstalk and improve the sensitivity of the SPAD element 47 to improve the characteristics.
  • the sum Qa (pixel signal Sa) of the amount of charge obtained by using the first reference signal a and the second reference signal b were used.
  • ⁇ t the distance based on the total amount of charge Qb (pixel signal Sb)
  • At least one spot light is also distance-measured by irradiating (scanning) at least a part of the imageable range so that the laser beam draws a specific trajectory.
  • the laser beam is not irradiated over a wide range and at the same time, but is continuously irradiated at one point. Therefore, the ToF method and the triangle described above are satisfied while satisfying the safety standards and established rules of the laser product. It is possible to measure a distance farther than the distance measurement by the survey method.
  • the same configuration as the above-mentioned ToF method (a dot pattern laser beam or the like can be output by the illumination unit 2B) can be configured. Further, these two ToF methods can be combined and configured. That is, by irradiating at least a part of the imageable range with a plurality of laser beams so as to draw a specific trajectory, it is possible to measure the distance even with a plurality of spot lights.
  • the specific trajectories of the plurality of laser beams may be at least partially the same or substantially the same, or at least partially different.
  • FIG. 63 shows an example of a specific trajectory (scan trajectory) drawn by the laser beam emitted from the legitimate laser light source 2b.
  • the laser beam is irradiated clockwise from a substantially central portion of the irradiation range (the entire area of the irradiation range or a part of the irradiation range).
  • the laser beam may be irradiated counterclockwise from the substantially central portion of the irradiation range.
  • FIG. 64 shows an example of the trajectory drawn by the laser beam emitted from the other unjustified light source 200.
  • the laser beam is sequentially irradiated from the left to the right for each pixel row from the top to the bottom in the irradiation range.
  • the laser beam may be sequentially irradiated from the right to the left for each pixel row from the top to the bottom, or the laser light may be sequentially irradiated from the left to the right for each pixel row from the bottom to the top.
  • the laser beam may be sequentially irradiated from the right side to the left side for each pixel row from the lower side to the upper side, or may be irradiated to a trajectory as if these were rotated.
  • the invalidity of the other light source 200 can be determined by comparing it with the specific locus of the legitimate laser light source 2b. Further, it is possible to estimate the position, orientation, and the like of the other unjustified light source 200 based on the received laser beam trajectory.
  • the illumination unit 2, the illumination control unit 2a, or the imaging device 1C may be provided with a scanning unit that controls irradiation so as to draw a specific trajectory.
  • the scanning unit may be configured so that the laser beam draws a specific trajectory.
  • it may be realized by a mechanical moving part, or the orientation of the micromirror using MEMS (Micro Electro Mechanical Systems). It may be realized by changing the above, it may be realized by controlling the refraction characteristics of the liquid crystal material, and it may be realized by applying a phased array.
  • MEMS Micro Electro Mechanical Systems
  • FIGS. 65 and 66 Other examples of specific trajectories by the legitimate laser light source 2b are shown in FIGS. 65 and 66.
  • the specific locus shown in FIG. 65 is a locus that is irradiated in a zigzag manner from the upper left to the lower right of the irradiation range. Of course, it may be irradiated in a zigzag manner from the lower left to the upper right, or it may be irradiated in a trajectory as if they were rotated.
  • FIG. 65 is a locus that is irradiated in a zigzag manner from the upper left to the lower right of the irradiation range. Of course, it may be irradiated in a zigzag manner from the lower left to the upper right, or it may be irradiated in a trajectory as if they were rotated.
  • FIG. 65 is a locus that is irradiated in a zigzag manner from the upper left to the
  • the pixels located in the irradiation range are divided into a left pixel and a right pixel, only the left pixel is irradiated in a zigzag manner, and then only the right pixel is irradiated in a zigzag manner. That is, two or a plurality of types of trajectories having different irradiation sequences or irradiation range areas may be irradiated.
  • the locus shown in FIG. 64 may be a specific locus by the legitimate laser light source 2b.
  • the validity of the laser light source can be confirmed with high accuracy by configuring various modes of the specific trajectory so as to be selectable.
  • the imitation of the laser beam locus can be further enhanced by changing the ratio of the left pixel and the right pixel. Further, by making it possible to select each irradiation start pixel of the left pixel and the right pixel, it is possible to make it difficult to imitate the laser beam trajectory.
  • the semiconductor device receives the reflected light reflected by the subject 100 (101) from the light emitted from the specific laser light source 2b.
  • the light received by the imaging unit 3 (3B, 3C) provided with the photoelectric conversion element 17 (17A, 17B) that performs photoelectric conversion and the light received by the photoelectric conversion element 17 (17A, 17B) is the light emitted from the specific laser light source 2b.
  • the photoelectric conversion element 17 includes the first photoelectric conversion element 17A, and the first photoelectric conversion element 17A accumulates in the first photoelectric conversion element 17A in different periods. At least four charge storage units (FD20) to which the transferred charges are transferred may be connected. As a result, a light receiving waveform based on the waveform of the light emitted from the laser light source 2b can be obtained. Therefore, it is possible to determine whether or not the light received by the first photoelectric conversion element 17A is the light emitted from the specific laser light source 2b based on the waveform at the time of light emission peculiar to each laser light source 2b. Specifically, the determination can be made based on the rising waveform of the laser light source at the time of light emission, the shape of the overshoot, the shape of the undershoot, and the like.
  • the photoelectric conversion element 17 includes the second photoelectric conversion element 17B, and the number of charge storage units (FD20) connected to the second photoelectric conversion element 17B is the first.
  • the number may be less than the number of charge storage units (FD20) connected to the photoelectric conversion element 17A.
  • the second photoelectric conversion element 17B is used for distance measurement.
  • the charge storage unit (FD20) connected to the second photoelectric conversion element 17B used for distance measurement ) Can be reduced, so the number of parts can be reduced and the cost can be reduced.
  • the number of the second photoelectric conversion elements 17B may be larger than the number of the first photoelectric conversion elements 17A.
  • the number of charge storage units (FD20) connected to the photoelectric conversion elements 17 (17A, 17B) is further reduced. Therefore, the number of parts can be further reduced, which can contribute to cost reduction.
  • the first photoelectric conversion element 17A may be used not only for the legitimacy determination process but also for distance measurement. As a result, the light receiving data received by the first photoelectric conversion element 17A is effectively used. Therefore, the received light data used for distance measurement can be increased, and the accuracy of the distance measurement result can be improved.
  • the first photoelectric conversion element 17A may be used for the validity determination process
  • the second photoelectric conversion element 17B may be used for distance measurement. That is, some photoelectric conversion elements are used for the legitimacy determination process, which simplifies the legitimacy determination process.
  • the legitimacy determination process may perform a determination based on the shape of the light receiving spot of the light emitted from the laser light source 2b.
  • the shape of the light receiving spot is determined based on the spatial positional relationship between the laser light source 2b, the subject 100 (101), and the imaging unit 3 (3B, 3C).
  • the image pickup apparatus 1 (1A, 1B, 1C) may include an illumination unit 2 (2B) having a specific laser light source.
  • an illumination unit 2 (2B) having a specific laser light source.
  • the positional relationship between the specific laser light source 2b and the imaging unit 3 (3B, 3C) is always constant. This facilitates the validity determination of the light emitted from the specific laser light source 2b.
  • the illumination unit 2 (2B) can irradiate the laser beam of the first waveform and the laser beam of the second waveform different from the first waveform. Good.
  • the light intensity at the time of irradiation may be different between the first waveform and the second waveform. This makes it possible to execute the validity determination process in consideration of the light intensity. Therefore, the accuracy of the determination result of the validity determination process can be further improved.
  • the first waveform and the second waveform may have different rising shapes. This makes it possible to execute the validity determination process using both rising shapes of the second waveform of the first waveform. Therefore, the accuracy of the determination result of the validity determination process can be improved.
  • the illumination unit 2 (2B) may irradiate the first waveform and the second waveform in a random order. As a result, it is possible to execute the validity determination process in consideration of the appearance order of the first waveform and the second waveform. Therefore, the accuracy of the determination result of the validity determination process can be improved.
  • the first waveform and the second waveform may have different emission time lengths.
  • the first waveform and the second waveform may have different non-emission time lengths.
  • the illumination unit 2 (2B) is a spot-shaped laser whose irradiation range is one-fourth or less of the imaging range of the imaging unit 3 (3B, 3C). It may be possible to emit light. As a result, even if the spot shape of the light applied to the subject 100 (101) is deformed and the width is doubled, it can be contained in the imaging range. Therefore, the validity determination process can be appropriately performed.
  • the illumination unit 2 (2B) may be capable of emitting a spot-shaped laser beam that is mirror-symmetrical or point-symmetrical. This facilitates the mounting of spot-shaped laser light. Therefore, the cost can be reduced.
  • the illumination unit 2 (2B) may be capable of emitting a spot-shaped laser beam that is non-mirror-symmetrical and non-point-symmetrical. This makes it difficult to imitate the spot-shaped laser beam. Therefore, the accuracy of the determination result of the validity determination process can be improved.
  • the illumination unit 2 (2B) may be capable of emitting a dot pattern in which a plurality of spot-shaped laser beams are irregularly arranged.
  • a plurality of spot-shaped laser beams can be detected by one imaging by the imaging unit 3 (3B, 3C). Therefore, it is more difficult to imitate the laser beam, and the accuracy of the determination result of the validity determination process can be improved.
  • the irradiation time for the validity determination process can be shortened.
  • the illumination unit 2 (2B) may be capable of emitting a dot pattern in which a plurality of spot-shaped laser beams are regularly arranged. This facilitates the generation of dot patterns. Therefore, it is possible to ensure the ease of implementation while improving the accuracy of the determination result of the validity determination process. Moreover, the irradiation time for the validity determination process can be shortened.
  • a spot-shaped laser beam smaller than the imaging range of the imaging unit 3 (3B, 3C) has a specific locus within the imaging range.
  • the laser light source 2b may be irradiated so as to draw. This makes it possible to perform the validity determination process using a specific locus, that is, a scan locus. Therefore, it is possible to increase the difficulty of imitating the laser beam and improve the accuracy of the determination result of the validity determination process.
  • At least a part of the functions described as the functions, controls and processes of the signal processing unit 14 may be executed by the control unit 4 instead of the signal processing unit 14.
  • at least a part of the stored data of the storage unit 6 may be stored data of the data storage unit 15 instead of the storage unit 6, and may be configured to be read or written by the signal processing unit 14.
  • at least a part of the stored data of the data storage unit 15 may be stored data of the storage unit 6 instead of the data storage unit 15, and the control unit 4 may be configured to read or write the data.
  • This technology can be applied to cameras, mobile phones, smartphones, tablets, personal computers, game consoles, televisions, displays, electronic devices, mobile devices, automobiles, mobile objects, drones, flying objects, robots, movable objects, and the like.
  • each of the above examples may be partially omitted, partially or wholly changed, or partially or wholly changed.
  • a part may be replaced with another component, and another component may be added to a part or a whole.
  • a part or all of the components may be divided into a plurality of parts, a part or the whole may be separated into a plurality of parts, and at least a part of the divided or separated components may function.
  • the characteristics may be different.
  • at least a part of each component may be moved to form different embodiments.
  • different embodiments may be made by adding connecting elements and relay elements to at least a part combination of each component.
  • a switching function may be added to at least a part combination of each component to form different embodiments.
  • the present embodiment is not limited to the configuration shown in each of the above examples, and various modifications can be made without departing from the gist of the present technology.
  • the present technology can also adopt the following configurations.
  • the photoelectric conversion element includes a first photoelectric conversion element.
  • the semiconductor device according to (1) above, wherein at least four charge storage units to which the charges accumulated in the first photoelectric conversion element in different periods are transferred are connected to the first photoelectric conversion element.
  • the photoelectric conversion element includes a second photoelectric conversion element.
  • the semiconductor device according to (2) above wherein the number of the charge storage units connected to the second photoelectric conversion element is smaller than the number of the charge storage units connected to the first photoelectric conversion element.
  • the first waveform and the second waveform have different light intensities at the time of irradiation.
  • the first waveform and the second waveform have different rising shapes.
  • the lighting unit irradiates the first waveform and the second waveform in a random order.
  • the illumination unit can emit a dot pattern in which spot-shaped laser light, which is one-fourth or less of the number of the photoelectric conversion elements, is arranged.
  • the semiconductor device described in Crab. The illumination unit irradiates the specific laser light source so that a laser beam having a spot shape smaller than the imaging range of the imaging unit draws a specific trajectory within the imaging range (10) to (19).
  • the semiconductor device according to any one.

Abstract

レーザ光源に基づいた測距情報の誤測定を効果的に対策することを目的とする。そのために、本技術に係る半導体装置は、特定のレーザ光源から出射した光が被写体に反射した反射光を受光し光電変換を行う光電変換素子を備えた撮像部と、前記光電変換素子で受光した光が前記特定のレーザ光源から出射した光によるものであるか否かを判定する正当性判定処理を実行する制御部とを備えたものとした。

Description

半導体装置
 本技術は、測距を行う半導体装置に関する。
 誤った測距情報の出力を簡素な構成で抑止できる測距装置が存在する(例えば、特許文献1参照)。この測距装置は、対象物との相対距離を測定するためのメインチャネルの信号に、複製や模倣が困難となる乱数を生成するハードウェアロジック回路を用いたサイドチャネルの信号を重畳する。比較検証部、送信側サイドチャネルデータと受信側サイドチャネルデータを照合し、類似度を検証することで受信信号の正当性を確認する。
特開2018-194297号公報
 ところが、特許文献1に記載の発明は、測距に必要な光源としてLEDが用いられており、光源としてレーザ共振器を用いる場合は適切ではない。種々のノイズが存在する実環境においては、膨大な測定回数や信号処理が必要となるため、微弱なサイドチャネルの信号から高速且つ正確に類似度を検証することは困難である。
 そこで、レーザ光源に基づいた測距情報の誤測定を効果的に対策することを目的とする。
 本技術に係る半導体装置は、特定のレーザ光源から出射した光が被写体に反射した反射光を受光し光電変換を行う光電変換素子を備えた撮像部と、前記光電変換素子で受光した光が前記特定のレーザ光源から出射した光によるものであるか否かを判定する正当性判定処理を実行する制御部とを備えたものである。
 例えば、特定のレーザ光源を用いて測距を行う場合に、受光した光が特定のレーザ光源から出射した光を反射したものであることが制御部によって判定される。
 上記した半導体装置における前記光電変換素子は第1光電変換素子を含み、前記第1光電変換素子には該第1光電変換素子においてそれぞれ異なる期間に蓄積された電荷が転送される少なくとも四つの電荷蓄積部が接続されていてもよい。
 これにより、レーザ光源から出射した光の波形に基づく受光波形が得られる。
 上記した半導体装置における前記光電変換素子は第2光電変換素子を含み、前記第2光電変換素子に接続された前記電荷蓄積部の数は前記第1光電変換素子に接続された前記電荷蓄積部の数よりも少なくされていてもよい。
 例えば、第2光電変換素子は測距に用いられる。
 上記した半導体装置における前記第2光電変換素子の数は前記第1光電変換素子の数よりも多くされていてもよい。
 これにより、光電変換素子に接続される電荷蓄積部が更に少なくされる。
 上記した半導体装置における前記第1光電変換素子は一群の前記第2光電変換素子の外方側に配置されていてもよい。
 これにより、第2光電変換素子を密に配置することができる。
 上記した半導体装置における前記第1光電変換素子は前記正当性判定処理に用いられると共に測距にも用いられてもよい。
 これにより、第1光電変換素子が受光した受光データが有効利用される。
 上記した半導体装置における前記第1光電変換素子は前記正当性判定処理に用いられ、前記第2光電変換素子は測距に用いられてもよい。
 即ち、正当性判定処理に一部の光電変換素子が用いられる
 上記した半導体装置における前記正当性判定処理では前記レーザ光源の立ち上がり波形に基づいた判定を行ってもよい。
 レーザ光源から出射された光の立ち上がり波形はレーザ光を生成するレーザ共振器に基づく個体差が表れる。該立ち上がり波形は、レーザ光源の製造者以外には複製が困難である。
 上記した半導体装置における前記正当性判定処理では前記レーザ光源から出射される光の受光スポット形状に基づいた判定を行ってもよい。
 受光スポット形状はレーザ光源と被写体と撮像部の空間的な位置関係に基づいて決定される。
 上記した半導体装置においては、前記特定のレーザ光源を有する照明部を備えていてもよい。
 特定のレーザ光源と撮像部が一体とされることで、特定のレーザ光源と撮像部の位置関係が常に一定とされる。
 上記した半導体装置における前記照明部は第1波形のレーザ光と前記第1波形とは異なる第2波形のレーザ光とを照射可能とされていてもよい。
 これにより、第1波形と第2波形の双方を用いて正当性判定処理を実行することが可能とされる。
 上記した半導体装置においては、前記第1波形と前記第2波形は照射時の光強度が異なっていてもよい。
 これにより、光強度を加味した正当性判定処理を実行することが可能とされる。
 上記した半導体装置においては、前記第1波形と前記第2波形は立ち上がり形状が異なっていてもよい。
 これにより、第1波形の第2波形の双方の立ち上がり形状を用いた正当性判定処理を実行することが可能とされる。
 上記した半導体装置における前記照明部は、前記第1波形と前記第2波形とをランダムな順に照射してもよい。
 これにより、第1波形と第2波形の出現順を考慮した正当性判定処理を実行することが可能とされる。
 上記した半導体装置においては、前記第1波形と前記第2波形は発光時間長が異なっていてもよい。
 これにより、第1波形と第2波形の発光時間長を考慮した正当性判定処理を実行することが可能とされる。
 上記した半導体装置においては、前記第1波形と前記第2波形は非発光時間長が異なっていてもよい。
 これにより、第1波形と第2波形の非発光時間長を考慮した正当性判定処理を実行することが可能とされる。
 上記した半導体装置における前記照明部は、照射範囲が前記撮像部の撮像範囲の4分の1以下とされたスポット状のレーザ光を出射可能とされていてもよい。
 これにより、被写体に照射された光のスポット形状が変形し幅が2倍になったとしても撮像範囲に収めることができる。
 上記した半導体装置における前記照明部は、鏡面対称または点対称とされたスポット状のレーザ光を出射可能とされていてもよい。
 これにより、スポット状のレーザ光の実装が容易とされる。
 上記した半導体装置における前記照明部は、非鏡面対称且つ非点対称とされたスポット状のレーザ光を出射可能とされていてもよい。
 これにより、スポット状のレーザ光の模倣が困難とされる。
 上記した半導体装置における前記照明部は、複数のスポット状のレーザ光が不規則的に配置されたドットパターンを出射可能とされていてもよい。
 これにより、撮像部による一度の撮像で複数のスポット状のレーザ光を検出することができる。
 上記した半導体装置における前記照明部は、複数のスポット状のレーザ光が規則的に配置されたドットパターンを出射可能とされていてもよい。
 これにより、ドットパターンの生成が容易とされる。
 上記した半導体装置における前記照明部は、前記光電変換素子の数の4分の1以下の数とされたスポット状のレーザ光が配置されたドットパターンを出射可能とされていてもよい。
 これにより、ドットパターンを形成するそれぞれのスポット光による受光スポット形状を考慮した正当性判定処理が可能とされる。
 上記した半導体装置における前記照明部は、前記撮像部の撮像範囲よりも小さいスポット形状のレーザ光が前記撮像範囲内で特定の軌跡を描くように前記特定のレーザ光源を照射してもよい。
 これにより、特定の軌跡、即ちスキャン軌跡を用いた正当性判定処理を行うことが可能とされる。
本技術の実施の形態の撮像装置のシステム構成例を示す図である。 撮像素子の構成例を示す図である。 単位画素の構成例を等価回路で示す図である。 単位画素の構成例を示す模式図である。 距離画像生成についてのタイミングチャート例である。 画素信号の波形の例を模式的に示すグラフ図である。 レーザ共振器の波長と光強度の関係例を示すグラフ図である。 第1発光態様におけるレーザ共振器の波長と光強度の関係例を示すグラフ図である。 第1発光態様におけるレーザ共振器の光強度の時間変化例を示すグラフ図である。 第2発光態様におけるレーザ共振器の波長と光強度の関係例を示すグラフ図である。 第2発光態様におけるレーザ共振器の光強度の時間変化例を示すグラフ図である。 正当性判定処理の第1例についてのフローチャートである。 正当性判定処理の第1例における基準条件を示すグラフ図である。 正当性判定処理の第1例において正当であると判定される正常な受光波形の例を示すグラフ図である。 正当性判定処理の第1例において正当でないと判定される異常な受光波形の例を示すグラフ図である。 正当性判定処理の第1例において正当でないと判定される異常な受光波形の別の例を示すグラフ図である。 正当性判定処理の第1例において正当でないと判定される異常な受光波形の更に別の例を示すグラフ図である。 正当性判定処理の第2例における撮像装置のシステム構成を示す図である。 正当性判定処理の第2例についてのフローチャートである。 正当性判定処理の第2例の変形例についてのフローチャートである。 正当性判定処理の第3例において照射する光波形の例を示すグラフ図である。 正当性判定処理の第3例において照射する光波形の別の例を示すグラフ図である。 正当性判定処理の第3例において照射する光波形の更に別の例を示すグラフ図である。 正当性判定処理の第3例における照射信号と照射波形の例を示す図である。 正当性判定処理の第4例における概略ブロック図である。 正当性判定処理の第4例における照射波形と受光波形と蓄積された電荷量の関係を示す図である。 受光波形及び電荷蓄積量の一例を示す図である。 正当性判定処理の第4例における照射信号と参照信号と各電荷蓄積期間における電荷量の関係を示す図である。 正当性判定処理の第5例における照射信号と参照信号の関係を示す図である。 正当性判定処理の第6例における照射信号と参照信号の関係を示す図である。 正当性判定処理の第6例の変形例における照射信号と参照信号の関係を示す図である。 正当性判定処理の第7例における第1光電変換素子と第2光電変換素子の配置例を示す図である。 正当性判定処理の第7例における第1光電変換素子と第2光電変換素子の別の配置例を示す図である。 正当性判定処理の第8例の一つ目の例についてのフローチャートである。 正当性判定処理の第8例の二つ目の例についてのフローチャートである。 正当性判定処理の第8例の三つ目の例についてのフローチャートである。 正当性判定処理の第8例の四つ目の例についてのフローチャートである。 正当性判定処理の第9例における撮像装置のシステム構成を示す図である。 正当性判定処理の第9例における信号処理回路の構成例を示す図である。 正当性判定処理の第9例におけるレーザ光の照射パターンの例を示す図である。 正当性判定処理の第9例における他光源からの照射パターンの例を示す図である。 正当性判定処理の第9例におけるレーザ光のスポット形状の例を示す図である。 照明部から照射されるドットパターンの例を示す図である。 照明部から照射されるドットパターンの別の例を示す図である。 照明部から照射されるドットパターンの更に別の例を示す図である。 正当な光源からレーザ光が出射されたときの受光ドットパターンの例を示す図である。 非正当な光源からレーザ光が出射されたときの受光ドットパターンの例を示す図である。 正当性判定処理の第10例についてのフローチャートである。 正当性判定処理の第11例において正当でないと判定される受光ドットパターンの例である。 正当性判定処理の第11例において正当でないと判定される受光ドットパターンの他の例である。 正当性判定処理の第12例における正当な受光スポット光の形状を示す図である。 正当性判定処理の第12例における非正当な受光スポット光の形状を示す図である。 正当な受光ドットパターンの例を示す図である。 正当性判定処理の第13例における非正当な受光ドットパターンの例を示す図である。 正当性判定処理の第13例における非正当な受光ドットパターンの別の例を示す図である。 正当性判定処理の第14例における非正当な受光ドットパターンの別の例を示す図である。 正当性判定処理の第15例における非正当な受光ドットパターンの別の例を示す図である。 正当性判定処理の第15例における実施の形態の撮像装置と他の撮像装置の位置及び姿勢の例を示す図である。 正当性判定処理の第16例における非正当な受光ドットパターンの別の例を示す図である。 正当性判定処理の第17例におけるSPAD素子を用いた撮像素子の構成例を示す図である。 正当性判定処理の第17例におけるSPAD画素の断面図である。 正当性判定処理の第17例におけるSPAD画素の平面図である。 正当性判定処理の第17例における正当なレーザ光源の軌跡を示す図である。 正当性判定処理の第17例における非正当なレーザ光源の軌跡を示す図である。 正当性判定処理の第17例における正当なレーザ光源の軌跡の別の例を示す図である。 正当性判定処理の第17例における正当なレーザ光源の軌跡の更に別の例を示す図である。
 以下、実施の形態を次の順序で説明する。
<1.撮像装置の構成>
<1-1.全体の構成>
<1-2.撮像素子の構成>
<1-3.単位画素の構成>
<2.距離画像生成方法>
<3.正当性判定処理>
<3-1.レーザ光の立ち上がり波形>
<3-2.正当性判定処理の第1例>
<3-3.正当性判定処理の第2例>
<3-4.正当性判定処理の第3例>
<3-5.正当性判定処理の第4例>
<3-6.正当性判定処理の第5例>
<3-7.正当性判定処理の第6例>
<3-8.正当性判定処理の第7例>
<3-9.正当性判定処理の第8例>
<3-10.正当性判定処理の第9例>
<3-11.正当性判定処理の第10例>
<3-12.正当性判定処理の第11例>
<3-13.正当性判定処理の第12例>
<3-14.正当性判定処理の第13例>
<3-15.正当性判定処理の第14例>
<3-16.正当性判定処理の第15例>
<3-17.正当性判定処理の第16例>
<3-18.正当性判定処理の第17例>
<4.まとめ>
<5.本技術>
<1.撮像装置の構成>
<1-1.全体の構成>
 本実施の形態の撮像装置1のブロック図を図1に示す。撮像装置1は、例えば、ToF(Time of Flight)法を用いて距離画像の撮影を行う装置である。ここで、距離画像とは、被写体の撮像装置1からの奥行き方向の距離を画素ごとに検出し、検出した距離に基づく距離画素信号からなる画像を指す。
 撮像装置1は、照明部2、撮像部3、制御部4、表示部5、記憶部6を備えている。
 照明部2は、照明制御部2aとレーザ光源2bを備える。照明制御部2aは、制御部4の制御に基づいてレーザ光源2bが照射光(レーザ光)を照射するパターンを制御する。具体的には、照明制御部2aは制御部4から供給される照射信号に含まれる照射コードに従ってレーザ光源2bが照射光を照射するパターンを制御する。
 例えば、照射コードは、1(High)と0(Low)の2値から構成され、照明制御部2aは、照射コードの値が1のときレーザ光源2bを点灯させ、照射コードの値が0のときレーザ光源2bを消灯させる制御を行う。
 レーザ光源2bは、照明制御部2aの制御に基づいてレーザ共振器(光共振器)を用いた光の照射を行う。レーザ光源2bから出射されるレーザ光は、肉眼で見えない、或いは肉眼で見難く安価なシリコンで受光センサを製造可能な近赤外光を用いることが望ましいが、遠赤外光や可視光、紫外線光などを用いてもよい。
 レーザ光源2bが備えるレーザ共振器としては、例えば、半導体レーザ(ダイオードレーザ)が用いられるが、固体レーザ、液体レーザ、気体レーザなどを用いてもよい。
 半導体レーザとしては、共振器を半導体基板と平行に作り込み、へき開した側面から光が出射する構造である端面発光レーザ(EEF:Edge Emitting Laser)、光が半導体基板と垂直に出射する構造の面発光レーザ(SEL:Surface Emitting Laser)、共振器が半導体基板に対して垂直となるように作り込んだ面発光レーザである垂直共振器面発光レーザ(VCSEL:Vertical Cavity Surface Emitting Laser)、共振器を外部に持つ外部共振器型垂直面発光レーザ(VECSEL:Vertical External Cavity Surface Emitting Laser)などを用いてもよい。
 撮像部3はレンズ3a、撮像素子3b、信号処理回路3cを備える。
 レンズ3aは入射光を撮像素子3bの撮像面に結像させる。レンズ3aの構成は任意であり、例えば、複数のレンズ群により構成されていてもよい。
 撮像素子3bは、例えば、ToF法を用いたCMOS(Complementary Metal Oxide Semiconductor)イメージセンサから成る。撮像素子3bは、制御部4の制御に基づいて被写体100及び被写体101の撮像を行い、その結果得られた画像信号を信号処理回路3cに供給する。
 具体的には、撮像素子3bは、制御部4から供給される参照信号と、レーザ光源2bから照射された照射光が被写体100及び被写体101等により反射された反射光を含む受信光との相関を示す画素信号を生成し、信号処理回路3cに供給する。
 なお、参照信号は、受信光との相関の検出に用いるパターンを示す参照コードを含む。
 信号処理回路3cは、制御部4の制御に基づいて撮像素子3bから供給される画素信号の処理を行う。例えば、信号処理回路3cは、撮像素子3bから供給される画素信号に基づいて距離画像を生成する。
 信号処理回路3cは、生成した距離画像を制御部4に供給する。
 制御部4は、例えば、FPGA(Field Programmable Gate Array)、DSP(Digital Signal Processor)等の制御回路やプロセッサ等により構成される。制御部4は、照明制御部2a、撮像素子3b及び信号処理回路3cの制御を行う。
 また、制御部4は、撮像部3から取得した距離画像を表示部5に供給し表示部5に表示させる。
 更に、制御部4は、撮像部3から取得した距離画像を記憶部6に記憶させる。
 また、制御部4は、撮像部3から取得した距離画像を外部に出力する。
 表示部5は、例えば液晶表示装置や有機EL(Electro Luminescence)表示装置等のパネル型表示装置から成る。
 記憶部6は、任意の記憶装置や記憶媒体等により構成することができ、距離画像等を記憶する。
 他にも、撮像装置1が備える各部には各種の処理を実行するための各部が設けられている。
<1-2.撮像素子の構成>
 撮像素子3bの構成を図2に示す。
 撮像素子3bは、画素アレイ部7、垂直駆動部8、カラム処理部9、水平駆動部10、システム制御部11、画素駆動線12、垂直信号線13、信号処理部14、データ格納部15を含んで構成されている。
 画素アレイ部7は、被写体から入射された反射光の量に応じた電荷を生成して蓄積する光電変換素子を有する画素から成る。画素アレイ部7を構成する画素は、図中に示す行方向及び列方向に2次元アレイ状に配置されている。
 例えば、画素アレイ部7では、行方向に配列された画素から成る画素行ごとに画素駆動線12が行方向に沿って配線され、列方向に配列された画素から成る画素列ごとに垂直信号線13が列方向に沿って配線されている。
 垂直駆動部8は、シフトレジスタやアドレスデコーダなどを備えて構成され、複数の画素駆動線12を介して各画素に信号等を供給する。画素アレイ部7の各画素は、供給された信号に基づいて全画素同時駆動、或いは、行単位駆動される。
 カラム処理部9は、画素アレイ部7の画素列ごとに垂直信号線13を介して各画素から信号の読み出しを行い、ノイズ除去処理、相関二重サンプリング処理、A/D(Analog to Digital)変換処理などを行い、画素信号の生成を行う。
 水平駆動部10は、シフトレジスタやアドレスデコーダなどを備えて構成され、カラム処理部9の画素列に対応する単位回路を順次選択する。水平駆動部10による選択走査により、カラム処理部9において単位回路ごとに信号処理された画素信号が順に信号処理部14に出力される。
 システム制御部11は各種のタイミング信号を生成するタイミングジェネレータなどから成り、タイミングジェネレータで生成されたタイミング信号に基づいて、垂直駆動部8、カラム処理部9及び水平駆動部10の駆動制御を行う。信号処理部14は、必要に応じてデータ格納部15にデータを一時的に格納しながらカラム処理部9から供給された画素信号に対して演算処理等の信号処理を行い、各画素信号から成る画像信号を出力する。
<1-3.単位画素の構成>
 単位画素の構成例について図3を参照して説明する。なお、図3は、単位画素の等価回路である。
 撮像素子3bの画素アレイ部7を構成する単位画素16は、光電変換素子17、転送トランジスタ18a,18b、FD(浮遊拡散容量:Floating Diffusion)20a,20b、リセットトランジスタ22,23、選択トランジスタ24、増幅トランジスタ25,26を備えている。
 なお、図3においては、リセットトランジスタ22,23、選択トランジスタ24、及び増幅トランジスタ25,26はNチャネルのMOSトランジスタを用いた例を示している。しかし、リセットトランジスタ22,23、選択トランジスタ24、及び増幅トランジスタ25,26の導電型の組み合わせはこの例に限定されるものではない。
 光電変換素子17は例えば埋め込み型フォトダイオードから成る。具体的に図4を参照して説明する。
 光電変換素子17はp型の半導体基板27に対してp型層28が基板表面側に形成され、n型埋め込み層29を埋め込むことによって形成される。
 転送トランジスタ18aは、ゲート電極19aを備えている。ゲート電極19aは、半導体基板27の表面に形成されている絶縁膜30を介して、光電変換素子17とFD20aの間の領域を覆うように形成されている。
 ゲート電極19aには画素駆動線12を介して垂直駆動部8から転送信号TXaが供給される。転送信号TXaの電圧が所定のHighレベルに設定され転送トランジスタ18aが導通状態となると、光電変換素子17により生成された電荷が転送トランジスタ18aを介してFD20aへ転送される。
 転送トランジスタ18bはゲート電極19bを備えている。ゲート電極19bは半導体基板27の表面に形成されている絶縁膜30を介して、光電変換素子17とFD20bの間の領域を覆うように形成されている。
 ゲート電極19bには画素駆動線12を介して垂直駆動部8から転送信号TXbが供給される。転送信号TXbの電圧が所定のHighレベルに設定され転送トランジスタ18bが導通状態となると、光電変換素子17により生成された電荷が転送トランジスタ18bを介してFD20bへ転送される。
 なお、転送信号TXaは制御部4からシステム制御部11に供給される参照信号と同じ信号とされ、転送信号TXbは参照信号をビット反転した信号とされる。従って、光電変換素子17により生成された電荷は、FD20a及びFD20bに分配される。
 光電変換素子17に入射する受信光と参照信号との相関が高いほど、FD20aに転送され蓄積される電荷量が多くなり、FD20bに転送され蓄積される電荷量が少なくなり、両者の差が大きくなる。
 一方、光電変換素子17に入射する受信光と参照信号との相関が低いほど、FD20aに転送され蓄積される電荷量が少なくなり、FD20bに転送され蓄積される電荷量が大きくなることにより、両者の差が小さくなる。
 絶縁膜30はFD20aの上方の一部及びFD20bの上方の一部を除いて半導体基板27の表面全体を覆うように形成されている。
 光電変換素子17の上方、FD20aの上方の一部及びFD20bの上方の一部を除いて、半導体基板27の上方全体を覆うように遮光幕31が形成されている。
 FD20aは、転送トランジスタ18aを介して光電変換素子17から転送された電荷を蓄積すると共に、蓄積した電荷を電圧に変換する。
 FD20bは、転送トランジスタ18bを介して光電変換素子17から転送された電荷を蓄積すると共に、蓄積した電荷を電圧に変換する。
 リセットトランジスタ22のドレイン電極は画素電源Vddに接続されソース電極はFD20a及び増幅トランジスタ25のゲート電極に接続されている。
 リセットトランジスタ22のゲート電極には画素駆動線12を介して垂直駆動部8からリセット信号RSTaが供給される。リセット信号RSTaの電圧が所定のHighレベルに設定されリセットトランジスタ22がオン状態とされると、FD20aがリセットされFD20aから電荷が排出される。
 リセットトランジスタ23のドレイン電極は画素電源Vddに接続されソース電極はFD20b及び増幅トランジスタ26のゲート電極に接続されている。
 リセットトランジスタ23のゲート電極には画素駆動線12を介して垂直駆動部8からリセット信号RSTbが供給される。リセット信号RSTbの電圧が所定のHighレベルに設定されリセットトランジスタ23がオン状態とされると、FD20bがリセットされFD20bから電荷が排出される。
 選択トランジスタ24のドレイン電極は画素電源Vddに接続され、ソース電極は増幅トランジスタ25のドレイン電極に接続されている。
 増幅トランジスタ25のソース電極は垂直信号線13に接続されている。この垂直信号線を13aとする。
 増幅トランジスタ26のソース電極は垂直信号線13に接続されている。この垂直信号線を13bとする。
 選択トランジスタ24のゲート電極には画素駆動線12を介して垂直駆動部8から選択信号SELが供給される。選択信号SELの電圧が所定のHighレベルに設定され選択トランジスタ24がオン状態とされると、画素信号を読み出す対象となる単位画素16が選択される。
 即ち、増幅トランジスタ25は選択トランジスタ24がオン状態にあるときFD20aの電圧を示す信号SPaを垂直信号線13aを介してカラム処理部9に供給する。
 増幅トランジスタ26は選択トランジスタ24がオン状態にあるときFD20bの電圧を示す信号SPbを垂直信号線13bを介してカラム処理部9に供給する。
 撮像素子3bの信号処理部14はカラム処理部9を介して各単位画素16から供給される信号SPaと信号SPbの差分信号を生成する。また、信号処理部14はその差分信号を各単位画素16の画素信号として信号処理回路3cに供給する。
 従って、撮像素子3bから出力される画素信号は、参照信号と各単位画素16の受信光との相関を示す信号となる。即ち、参照信号と受信光の相関が高いほど画素信号の値は大きくなり、参照信号と受信光の相関が低いほど画素信号の値は小さくなる。
<2.距離画像生成方法>
 撮像装置1が実行する距離画像生成方法の一例について図5及び図6の各図を参照して説明する。
 撮像装置1は異なる組み合わせの照射信号及び参照信号を用いて複数回の撮影を行うことにより距離画像を生成する。
 図5は、距離画像生成方法のタイミングチャートであり、横軸を時間軸tとして照射信号、第1参照信号a、第2参照信号b、受信光の各タイミングを示している。
 図6は、撮像装置1から被写体までの距離と単位画素16から出力される画素信号の関係を模式的に示したものである。横軸は被写体までの距離を示し縦軸は画素信号の値を示している。
 図示する例では1回目の撮影時に照射信号及び第1参照信号aの組み合わせが用いられる。照射信号と第1参照信号aは同じ位相及び同じパルス幅Tのパルスを含む信号である。
 レーザ光源2bから発せられる照射光は、照射信号と略同じ波形となるが、製造されたレーザ共振器に固有の立ち上がり波形を備える。以下、距離画像生成方法の基本概念を分かりやすく説明するために、立ち上がり波形を省略した基本的な矩形波の場合について説明する。
 レーザ光源2bから発せられた照射光の一部は、照射方向にある被写体において反射され、反射光の一部が撮像素子3bの各単位画素16の光電変換素子17に入射する。
 ここで、光電変換素子17に入射する受信光は、撮像装置1と被写体との間の距離に応じて、照射信号(照射光)に対して遅延時間Δtだけ遅れて光電変換素子17に入射する。
 このとき、単位画素16から出力される画素信号Saの値は、第1参照信号aと受信光が重複する時間に比例する。すなわち、画素信号Saの値は、第1参照信号aのパルスの立ち上がりを基準にして(第1参照信号aのパルスの立ち上がりの時刻を0として)、遅延時間Δtが0のとき最大となり、時間T-Δtに比例する。そして、遅延時間Δtがパルス幅T以上になると画素信号Saの値は0になる。
 2回目の撮影時には、照射信号及び第2参照信号bの組み合わせが用いられる。第2参照信号bは、第1参照信号aと比較して、パルス幅Tと同じ時間だけ位相が遅れた波形を有する。
 このとき、単位画素16から出力される画素信号Sbの値は、第2参照信号bと受信光が重複する時間に比例する。すなわち、画素信号Sbの値は、遅延時間Δtが0からTの間は遅延時間Δtに比例し、遅延時間ΔtがTから2Tの間は時間2T-Δtに比例する。遅延時間Δtが2T以上になると、画素信号Sbの値は0になる。
 ここで、受信光は、照射信号(照射コード)と同じパターンで照射される照射光の反射光を含み、受信光の波形は、照射信号の位相をシフトした波形と類似する。従って、図6の画素信号Saの波形は、第1参照信号aと照射信号の相関関数の波形と類似し、図6の画素信号Sbの波形は、第2参照信号bと照射信号の相関関数の波形と類似する。
 なお、ここでの画素信号Saの波形は、図内の点線で示される距離が負の値の領域を含む波形を指している。
 被写体までの距離は、以下の式1に示されるように、画素信号Saと画素信号Sbの和に占める画素信号Sbの比率に比例する。
Figure JPOXMLDOC01-appb-M000001
 例えば、信号処理回路3cは画素信号Saと画素信号Sbの和に占める画素信号Sb
の比率に基づいて被写体までの距離に基づく距離画素信号を画素毎に生成し、距離画素
信号からなる距離画像を生成する。そして、距離画像に基づいて、例えば、画素毎に被写
体までの距離を測定したり距離の違いを認識したりすることが可能になる。
 ここで、距離の測定精度(測距精度)は、図6に示されるように、距離に対する画素信
号Saと画素信号Sbの傾きが一定なので、距離に関わらず一定となる。以上、立ち上がり波形を省略した基本的な矩形波について説明したが、図6及び式1について実際には立ち上がり波形を考慮することが望ましい。その場合には、立ち上がり波形を考慮した数式を距離計算に用いてもよいし、立ち上がり波形を考慮せずに距離計算の結果を算出し該算出結果に立ち上がり波形に基づいた補正を施してもよい。
 また、距離の測定が可能な範囲(測距範囲)は、画素信号Saが0になるまでの範囲とされ、具体的には、0から時刻c(光速)×T/2までの範囲となる。
<3.正当性判定処理>
<3-1.レーザ光の立ち上がり波形>
 本実施の形態では、撮像装置1が備えるレーザ光源2bから出射された光が被写体からの反射光として撮像素子3bに入射し、該入射光に基づいた測距を行うものである。従って、レーザ光源2bではない他の光源や自然光などの光が撮像素子3bへ入射することにより誤測定をしてしまう虞がある。
 本実施の形態における撮像装置1は、そのような誤測定を行ってしまう可能性を低減させる構成を備えている。具体的には撮像素子3bで受光した光がレーザ光源2bから出射された光であるか否かを判定する正当性判定処理を行う。以下、各図を参照して説明する。
 先ずレーザ光源2bの立ち上がり波形について図7から図11の各図を参照して説明する。
 レーザ光源2bが備えるレーザ共振器はレーザ発振の条件を満たしたLED(Light Emitting Diode)だと考えることができる。
 図7は波長と光強度の関係性を示したものである。レーザ共振器は固有の波長(中心周波数)において光強度が最大となる単峰特性を備えている。レーザ共振器から発せられる発振波長には温度が高くなるほど長くなるという温度依存性がある。そのため、時間と光強度との関係はレーザ共振器における温度変化に応じたものとなる。
 一例を図8及び図9に示す。本例は、レーザ共振器の動作電流(動作電力)が小さい場合の例であり、図8はレーザ共振器の温度が温度F0から温度F1へ上がった場合に出射される光の波長を示したものである。図9は、光強度の時間変化を示したものである。
 図示するように、動作電流が小さいことからレーザ共振器から発せられる光の波長は光強度が最大とされた波長よりも短くされるため、光強度の時間変化のグラフ(即ちレーザ光の立ち上がり波形)は緩やかに大きくなり一定値に達した後、該一定値が維持される。
 他の例を図10及び図11に示す。本例は、レーザ共振器の動作電流が大きい場合の例であり、図10はレーザ共振器の温度が温度F0から温度F2へ上がった場合に出射される光の波長を示したものである。図11は、光強度の時間的変化を示したものである。
 図示するように、動作電流が大きいことからレーザ共振器から発せられる光の波長は光強度が最大とされた波長よりも大きくされるため、レーザ光の立ち上がり波形は急峻に立ち上がりピークを迎えた後一定値へ下降する形状とされる。
 以降の説明においては、図9に示すような立ち上がり波形を示すレーザ共振器の発光態様を「第1発光態様」とし、図11に示すような立ち上がり波形を示すレーザ共振器の発光態様を「第2発光態様」とする。また、第1発光態様によるレーザ光を「第1レーザ光」とし、第2発光態様によるレーザ光を「第2レーザ光」とする。
 上述したレーザ共振器の単峰特性は、レーザ共振器の構造に依存し、半導体レーザの場合には中心周波数が半導体の構成元素に依存する。また、発振スペクトルは光出力に依存する(即ち、スペクトル線幅が光出力に反比例する)。これらの理由によって、波長と光強度の関係(図7)及び時間と光強度の関係(図9、図11)は、レーザ共振器によって個体差があり、製造者以外による複製が困難だと考えられる。従って、レーザ光の立ち上がり波形を観測することにより正当性の判定を行うことができる。
<3-2.正当性判定処理の第1例>
 正当性判定処理の第1例について図12から図17の各図を参照して説明する。
 第1例では、照射時の光強度の時間波形に相当する基準条件を予め記憶部6に記憶しておき、受光時の光強度の時間波形に相当する測定データと基準条件とを比較することで、受光波形の正当性を確認する。
 フローチャートを図12に示す。
 制御部4はステップS101において照射処理を実行する。これによりレーザ光源2bから第1発光態様若しくは第2発光態様によるレーザ光(第1レーザ光若しくは第2レーザ光)が出射される。出射されたレーザ光は、被写体によって反射光となり一部が撮像素子3bに入射される。
 制御部4はステップS102において受光処理を行う。これにより、受光波形の測定データが取得される。
 制御部4はステップS103において受光波形が正当であるか否かを判定する分岐処理を行う。正当性の確認は、予め記憶しておいた基準条件(例えば図13参照)に受光波形(例えば図14参照)が合致するか(或いは特徴が一致するか)否かを判定することにより行う。具体的には、受光波形の光強度の最大値と、最終的に落ち着いた時点の光強度である定常値の比率が同程度となっているかを確認したり、波形の立ち上がりから立ち下がりまでに要した時間長を比較したりすることによって判定を行う。或いは、立ち上がりから定常値となるまでの時間長を比較することによって判定を行ってもよい。
 受光波形が正当であると判定した場合、制御部4はステップS104において、通常時処理を行う。通常時処理では、距離画像を利用した所望の処理や距離画像に対する所望の処理を行う。即ち、受光波形が正当であることから、取得した距離画像は正しいと判定できるため、該距離画像を利用した各種の処理を正常に行うことができる。
 一方、ステップS103において受光波形が正当でないと判定した場合、制御部4はステップS105において、異常時処理を行う。異常時処理は、例えば、再度ステップS101からステップS103の各処理を実行することにより正当性の判定をやり直してもよい。偶然に外部からの光ノイズが入射したことによって正当性が確認できなかった場合などに有効である。また、機能安全のためのバックアップ処理を実行してもよいし、フェイルセーフ機能がある場合にはそちらを優先する処理を実行してもよいし、自発光による情報と他発光による情報とを分離する処理を実行してもよい。更には、撮像装置1の使用者へ対する異常通知処理や、正当でない光源の位置や回転角度を特定することにより混信者(干渉者も含む)或いは攻撃者(妨害者も含む)の位置や回転角度を特定してもよいし、別の測定方法や測距システムや測距装置を備える場合には補完処理を実行してもよい。但し、これらの混信者や攻撃者としては、人間だけでなく、他の装置や自然などのような非人間も含まれる。例えば、光源を備えた他の装置(カメラ、携帯電話、スマートフォン、タブレット、パーソナルコンピュータ、ゲーム機、テレビ、ディスプレイ、電子機器、モバイル機器、自動車、移動体、ドローン、飛行体、ロボット、可動体など)や太陽などから生じる他装置光や自然光などの他発光による、撮像装置1の自発光の誤測定(これに起因する誤判断や誤動作や測定不能も含む)を対策する処理を実行してもよい。
 なお、ステップS103の判定処理において正当でないと判定される受光波形の例を図15、図16及び図17に示す。
 図15は、受光波形の立ち上がりから立ち下がりまでに要した時間長が基準条件と一致しないため正当でないと判定される。
 図16は、立ち上がり波形のピーク形状が存在しないため正当でないと判定される。或いは、光強度の最大値と定常値の比率が基準条件と異なるため正当でないと判定してもよい。
 図17は、ピーク値が立ち上がり部分以外の部分にも存在するため正当でないと判定される。
 なお、記憶部6に記憶される基準条件は、キャリブレーションされた状態のレーザ光源2bを用いた情報が記憶されることが望ましい。また、レーザ共振器の経時変化等を考慮して定期的にキャリブレーションを行い、それに基づいて記憶される基準条件を更新してもよい。
<3-3.正当性判定処理の第2例>
 正当性判定処理の第2例においては、撮像装置1Aが光反射部32を備える。本例における撮像装置1Aのブロック図を図18に示す。
 撮像装置1Aは照明部2、撮像部3、制御部4、表示部5、記憶部6に加えて、照明部2から出射された光の少なくとも一部を反射する光反射部32を備える。照明部2から出射されて光反射部32で反射された光は撮像素子3bに入射される。
 本例の処理例についてフローチャートを図19に示す。なお、図12のフローチャートに示す処理と同様の処理については同一の符号を付し説明を適宜省略する。
 制御部4はステップS101において、照射処理を実行する。これにより、照明部2から光が照射される。
 照明部2から光反射部32を介して反射された光(以降、「内部反射光」と記載)は、被写体100や被写体101を介して反射された光(以降、「外部反射光」と記載)よりも早く撮像素子3bに到達する。
 そのため、先ず内部反射光についての受光処理を行い、続いて外部反射光についての受光処理を行う。
 即ち、制御部4はステップS111において内部反射光についての受光処理である第1受光処理を行うことにより基準条件の取得を行う。基準条件は例えば記憶部6に記憶される。
 続いて、制御部4はステップS112において外部反射光についての受光処理である第2受光処理を行うことにより測定データの取得を行う。
 制御部4はステップS103において基準条件と測定データを比較することにより受光波形が正当であるか否かを判定する分岐処理を行う。
 受光波形が正当であると判定した場合、制御部4はステップS104において通常時処理を行い、受光波形が正当でないと判定した場合、制御部4はステップS105において異常時処理を行う。
 正当性判定処理の第2例についての変形例について説明する。
 当該変形例においては、照射処理を2回行う。
 具体的に図20のフローチャートを参照して説明する。
 制御部4は、ステップS121において第1照射処理を実行し、ステップS111において第1受光処理を実行する。これにより基準条件の取得と記憶が行われる。
 制御部4は、ステップS122において第2照射処理を実行し、ステップS112において第2受光処理を実行する。これにより測定データの取得が行われる。
 制御部4はステップS103において基準条件と測定データを比較することにより受光波形が正当であるか否かを判定する分岐処理を行う。
 受光波形が正当であると判定した場合、制御部4はステップS104において通常時処理を行い、受光波形が正当でないと判定した場合、制御部4はステップS105において異常時処理を行う。
 照射処理を2回行うことにより、正当性判定処理の確度を向上させることができる。また、混信者による誤測定を低減させると共に、不正に正当性判定処理を通過しようとする悪意のある攻撃者に対するセキュリティの向上を図ることができる。
 なお、制御部4はステップS121では第1照射条件による第1照射処理を実行し、ステップS122では第1照射条件とは少なくとも一部が異なる第2照射条件による第2照射処理を実行してもよい。第1照射処理と第2照射処理の照射条件を異ならせることにより、照明部2の模倣を行うことがより困難とされる。
 第1照射条件と第2照射条件は、例えば、発光時間長や光強度などが異なる条件である。
 また、光反射部の代わりに導光路から成る導光部を備えていてもよい。導光路を用いても同様の作用効果を得ることができる。
 なお、変形例においては、光反射部32を備えていない撮像装置1が実行する処理であってもよいし、光反射部32を備えた撮像装置1Aが実行する処理であってもよい。
 また、照明部2が複数のレーザ光源を備え、第1照射処理によって照射されるレーザ光源と第2照射処理によって照射されるレーザ光源が異なるものとされていてもよい。
<3-4.正当性判定処理の第3例>
 正当性判定処理の第3例では、光波形の異なるレーザ光を照射することにより正当性の判定を行う。
 半導体レーザとしてのレーザ光源2bに流す電流を徐々に大きくすると、レーザ光源2bの光出力が少しずつ大きくなるが、発振開始電流値を超えるまではレーザ光ではなくLEDの光が出射される。レーザ発振が始まる発振開始電流値を超えると光出力が急増すると共にレーザ発振が開始され、電流に対する出力の変化が急激になる。即ち、光出力(光強度)と動作電流とには下限値がある。
 一方、各種規格や動作環境に基づく規則等によってレーザ製品の安全等の観点に基づく光出力(光強度)の上限値が設けられている。
 この下限値と上限値の間の範囲内の2種類以上の電流値を用いてレーザ光源2bが発光される場合(即ち、前述の第1発光態様と第2発光態様のような場合)には、異なる形状の立ち上がり波形に基づいて受光波形の正当性を確認することができるため、混信者による誤測定を更に低減させると共に、悪意のある攻撃者などによるレーザ光の複製を更に困難にすることができる。
 図21から図23の各図に例を示す。
 図21は、第1発光態様によって複数回のレーザ光源2bの照射を行った場合の照射波形の一例を示している。一定とされた繰り返し周期T0でレーザ光源2bの照射が行われる。レーザ光源2bが発光している時間長(発光期間T1)も一定とされる。
 図22は、第1レーザ光と第2レーザ光を交互に繰り返し照射した照射波形の一例である。
 繰り返し周期T0で第1発光態様による照射と第2発光態様による照射が繰り返される。第1発光態様及び第2発光態様何れにおいても発光期間T1とされる。
 図23は、第1レーザ光と第2レーザ光をランダムな順に照射した場合の照射波形である。
 何れの態様による照射であっても一定の繰り返し周期T0かつ発光期間T1とされる。
 なお、発光期間T1や非発光期間(T0-T1)を変調させてもよいしランダムな期間としてもよい。更には、第1発光態様及び第2発光態様に加えて、第1発光態様及び第2発光態様とは異なる第3発光態様を用いてもよい。第3発光態様では、第1発光態様においてレーザ光源2bに与える電流と第2発光態様においてレーザ光源2bに与える電流とは異なる電流をレーザ光源2bに与える。
 他にも、第1発光態様や第2発光態様のようにレーザ光源2bに与える電流を所定の値にするのではなく、上述の範囲内のランダム値とすることによってレーザ光源2bの照射を行ってもよい。
 このような各種の態様によってレーザ光の複製をより一層困難にすることができる。
 なお、第1レーザ光と第2レーザ光の切り換えについては前述の照射信号が第1照射信号(第1照射コード)と第2照射信号(第2照射コード)を備えていればよい。
 図24は第1照射信号と第2照射信号の例とそれに応じて出射される第1レーザ光と第2レーザ光の照射波形を示している。
 レーザ光源2bから出射される光を第1レーザ光と第2レーザ光で切り換える場合には、例えば、撮像装置1が切換部を備えていればよい。また、切換部は照明部2に設けられていてもよいし、照明制御部2aに設けられていてもよい。
<3-5.正当性判定処理の第4例>
 正当性判定処理の第4例は撮像素子3bの単位画素16が四つ以上の電荷蓄積部(FD)を備えている例である。具体的に図25を参照して説明する。
 図25は、単位画素16が備える各部のうちの一部を抜粋して示す図である。
 図示するように、単位画素16が備える各光電変換素子17には、第1転送トランジスタ18a、第2転送トランジスタ18b、・・・第n転送トランジスタ18nが接続されている。
 それぞれの転送トランジスタ18にはFD20が接続されている。具体的には、第1転送トランジスタ18aには第1FD20aが接続され、第2転送トランジスタ18bには第2FD20bが接続されている。同様に第n転送トランジスタ18nには第nFD20nが接続されている。
 それぞれのFD20は、それぞれ対応する電荷蓄積期間において光電変換素子17により生成された電荷が蓄積されるものである。各FD20が対応した電荷蓄積期間は被らないようにされている。
 図26は、受光波形の特徴量を把握するために一つの単位画素16が八つのFD20を備えている場合に各電荷蓄積期間において蓄積される電荷量を示した図である。
 図示するように、繰り返し周期T0は第1電荷蓄積期間Ta~第8電荷蓄積期間Thの8個の期間に分割される。各電荷蓄積期間は均等の長さの期間とされている。
 レーザ光源2bの発光と同時に第1電荷蓄積期間Taが開始される。図示した例では、第1電荷蓄積期間Taにおいてはレーザ光源2bから出射された光がまだ撮像素子3bに届いておらず受光した光強度が0とされる。また、第2電荷蓄積期間Tb~第5電荷蓄積期間Teはレーザ光源2bから出射された光を受光中の期間(受光期間T2)とされる。
 図25及び図26に示すように、光電変換素子17に複数のFD20が接続されている場合には、受光波形の立ち上がり波形の特徴量を把握することができる。
 なお、繰り返し周期T0の半分の時間長とされた発光期間T1において、前半部分と後半部分のそれぞれで受光した光の電荷量を計測するためには、繰り返し周期T0を4分割した期間をそれぞれ電荷蓄積期間とする必要がある。即ち、光電変換素子17に四つのFD20(第1FD20a、第2FD20b、第3FD20c及び第4FD20d)が接続されることが好ましい。
 なお、それぞれの電荷蓄積期間は均等としたが、不均等であってもよい。
 より多くのFD20を光電変換素子17に接続されることにより、受光波形の特徴量をより詳しく抽出することが可能である。
 受光波形及び各電荷蓄積期間において蓄積された電荷量の一例を図27に示す。
 レーザ光源2bの照射波形には、立ち上がり形状及び立ち下がり形状だけでなく、オーバーシュート、アンダーシュート、リンギングなどが含まれる場合がある。このような場合には、図示するようにより多くのFD20を光電変換素子17に接続することにより波形の特徴を把握することができる。
 本例の構成において距離画像を生成する方法について説明する。図28は、照射信号と参照信号と各電荷蓄積期間における電荷量の関係を示した図である。図28に示す例は、光電変換素子17に16個のFD20が接続された構成である。
 図示するように、照射信号の立ち上がりと参照信号a1の立ち上がりのタイミングは一致される。参照信号a1の立ち下がりと同時に参照信号a2の立ち上がりが到来する。このようにして参照信号a1から参照信号a8までのパルスが生成される。各参照信号に対応した電荷蓄積部が選択されることでパルスの出力期間に光電変換素子17で生成された電荷が蓄積される。
 参照信号a8の立ち下がりと同時に参照信号b1の立ち上がりが到来する。参照信号b1に続いて参照信号b2から参照信号b8までのパルスが被らないように生成される。
 参照信号a1の立ち上がりから参照信号a8の立ち下がりまでの期間(第1期間)はパルス幅Tと略同じ期間とされる。また、参照信号b1の立ち上がりから参照信号b8の立ち下がりまでの期間(第2期間)の期間長はパルス幅Tの期間長と略同じとされる。
 レーザ光源2bから出射された光は被写体からの反射光となって撮像素子3bに到達するため、照射信号の立ち上がりから受光が開始されるまで遅延時間Δtが生じる。従って、撮像素子3bにおける受光動作は第1期間及び第2期間の双方において成し得る。
 第1期間及び第2期間に跨がって反射光を受光する場合には、被写体までの距離を測定することが可能である。
 前述の画素信号Saは、第1期間においてそれぞれのFD20に蓄積された電荷量の総和Qaに比例する。また、画素信号Sbは、第2期間においてそれぞれのFD20に蓄積された電荷量の総和Qbに比例する。即ち、被写体までの距離は、Qb/(Qa+Qb)で算出される値を用いて計算可能である。
 なお、総和Qa及び総和Qbを用いなくても被写体までの距離を算出することが可能である。例えば、第1期間の少なくとも一部の期間の電荷量(例えば立ち上がり部分の電荷量)及び第2期間の少なくとも一部の期間の電荷量(例えば立ち下がり部分の電荷量)を第1期間及び第2期間の他の期間の電荷量に基づいて補正を行うことにより得られた電荷量を用いて距離の算出を行ってもよい。このような算出を用いることにより距離の計算誤差を補正することが可能となる場合もある。
<3-6.正当性判定処理の第5例>
 正当性判定処理の第5例では、レーザ光源2bの照射ごとの発光期間が異なる例である。
 具体例を図29に示す。
 本例においては、照射信号にパルス幅が異なる3種類のパルスが含まれている。具体的にはパルス幅が「大」とされた第1パルスP1、パルス幅が「中」とされた第2パルスP2、パルス幅が「小」とされた第3パルスP3が照射信号に含まれている。
 第1パルスP1に基づく発光期間は発光期間T3とされている。第2パルスP2に基づく発光期間は発光期間T4とされている。第3パルスP3に基づく発光期間は発光期間T5とされている。
 照射信号における各パルスに対応した第1参照信号aを足し合わせた第1参照信号群Aは、照射信号と略同一の信号とされる。
 また、照射信号における各パルスに対応した第2参照信号bを足し合わせた第2参照信号群Bは、第1参照信号群Aにおける各パルスに時間的に隣接したパルスを含んで構成されている。
 照射信号におけるパルス間の時間長、即ち非発光期間はそれぞれ同じ時間長とされる。これにより、パルスの立ち上がりから次のパルスの立ち上がりまでの時間長とされたレーザ光源2bの照射間隔は一定ではない。
 レーザ光源2bの発光期間を照射ごとに異ならせることにより、発光期間に応じた距離の算出が必要となるが、照射波形及び受光波形の立ち上がり波形を比較しなくても発光期間のみを用いてレーザ光源2bの正当性判定を行うことができるため、処理を簡略化することが可能となる。
 なお、照射波形及び受光波形の立ち上がり波形の比較と発光期間の長さの比較の双方を行うことにより、レーザ光の模倣をより難しくすることができる。
 なお、図29に例示した参照信号を複数回繰り返すことで参照信号の生成に必要な情報量の増加を抑えつつレーザ光の模倣の高度化を図ってもよい。
<3-7.正当性判定処理の第6例>
 正当性判定処理の第6例では、レーザ光源2bの照射パルスの立ち下がりから次の照射パルスの立ち上がりまでの期間とされた非発光期間がランダムに決定されるものである。
 具体的に図30を参照して説明する。
 照射信号における一つのパルスのパルス幅は同一とされる。これにより、各発光期間は同一の時間長とされる。
 また、パルス間の期間は異なっている。これにより、非発光期間は同一ではない。
 従って、照射間隔も一定ではない。
 発光期間が一定とされることにより、測距に用いられる計算式が同一とされるため、処理の簡易化を図ることができる。
 また、レーザ光源2bの非発光期間を照射ごとに異ならせることにより、照射波形及び受光波形の立ち上がり波形を比較しなくても非発光期間のみを用いてレーザ光源2bの正当性判定を行うことができるため、処理を簡略化することが可能となる。
 なお、照射波形及び受光波形の立ち上がり波形の比較と非発光期間の長さの比較の双方を行うことにより、レーザ光の模倣をより難しくすることができる。
 正当性判定処理の第6例の変形例として、照射間隔を一定としつつ発光期間及び非発光期間の双方を可変とする例を図31を参照して説明する。
 図示するように、本変形例では、照射間隔が一定のため、照射間隔に示す発光期間と非発光期間の占める割合が照射ごとに可変とされる。
 このような態様であってもレーザ光の模倣をし難くすることができる。
 なお、発光期間と非発光期間が時間的に占める割合を検出することにより、照射波形及び受光波形の立ち上がり波形を比較しなくてもレーザ光源2bの正当性判定を行うことができる。更に照射波形及び受光波形の立ち上がり波形を比較することにより、レーザ光の模倣をより難しくすることができる。
<3-8.正当性判定処理の第7例>
 正当性判定処理の第7例は、撮像素子3bの単位画素16が第1単位画素16Aと第2単位画素16Bとを備えるものである。具体的に説明する。
 第1単位画素16Aは、図25に示すように、一つの第1光電変換素子17Aと四つ以上のFD20を備える。
 第2単位画素16Bは、図3及び図4に示すように、一つの第2光電変換素子17Bと二つのFD20を備える。
 第1光電変換素子17Aを備えた第1単位画素16Aは第2光電変換素子17Bを備えた第2単位画素16Bよりも数が少なくされている。
 これにより、撮像素子3bが備えるFD20の数が抑えられコスト削減及び撮像素子3bの小型化に寄与することができる。
 第1光電変換素子17Aと第2光電変換素子17Bの配置例について図32及び図33に示す。
 図32に示す例は、撮像素子3bの外縁部33に第1光電変換素子17Aが配置され、その内側に第2光電変換素子17Bが配置された例である。即ち、最外周部のみ第1光電変換素子17Aとされている。
 これにより、第1光電変換素子17Aの数を少なくすることができるため、全ての光電変換素子17に第1光電変換素子17Aを配置するよりもFD20の数を大幅に減らすことができる。
 図33に示す例は、撮像素子3bの四隅に第1光電変換素子17Aが配置され、それ以外の部分は第2光電変換素子17Bが配置された例である。
 これにより、第1光電変換素子17Aを更に少なくすることができるため、FD20の数を更に大幅に削減することができる。
 なお、図32及び図33に示したのはあくまで一例であり、第1光電変換素子17Aは少なくとも一つが配置されていれば、上述した各種の正当性判定処理を行うことができる。
 それ以外の光電変換素子17については測距用の光電変換素子17とされるため、接続されたFD20が少ない第2光電変換素子17Bを配置すればよい。
 また、図32及び図33に示すように、第2光電変換素子17Bを第1光電変換素子17Aよりも多く配置することで、コスト削減に寄与することができる。
 更に、撮像素子3bの外縁部33に第1光電変換素子17Aを配置することにより、測距用の光電変換素子17である第2光電変換素子17Bを中央部に密に配置することができる。従って、撮像素子3bの大型化を来すこと無く測距機能及び正当性判定機能を実現することができる。なお、第2単位画素16Bが一つの第2光電変換素子17Bと二つのFD20を備える構成を用いて説明したが、第2単位画素16Bは一つの第2光電変換素子17Bと三つ以上(例えば四つや八つ)のFD20を備えるように構成されていてもよい。
<3-9.正当性判定処理の第8例>
 正当性判定処理の第10例では、正当性判定を行うと共に測距処理を行う。
 具体的に、添付図を参照して説明する。
 図34は、正当性判定処理の第8例の一つ目の例である。本例は、1回の受光処理に基づいて測距処理と正当性判定処理を実行するものである。なお、図12のフローチャートに示す処理と同様の処理については同一の符号を付し説明を適宜省略する。
 制御部4は、ステップS101で照射処理を実行する。これにより照明部2から光が照射される。
 制御部4は、ステップS131で受光処理を行う。受光処理では、第2光電変換素子17Bで変換された電荷量に基づいて測距用のデータが取得される。また、第1光電変換素子17Aで変換された電荷量に基づいて正当性判定に用いられるデータが取得される。
 制御部4は、ステップS132で測距処理を行い距離画像の生成を行う。即ち、画素信号Sa及び画素信号Sbを用いた測距が画素ごとに行われる。なお、前述したように、第1光電変換素子17Aを用いた測距を合わせて行ってもよい。即ち、第1期間において各FD20に蓄積された電荷量の総和Qaと第2期間において各FD20に蓄積された電荷量の総和Qbを用いて測距を行ってもよい。これにより、例えば図32のように光電変換素子17を配置した場合であっても、撮像素子3bの全画素において測距を行うことができる。
 制御部4はステップS103で受光波形が正当であるか否かを判定する。
 受光波形が正当であると判定した場合、制御部4はステップS104において通常時処理を行い、受光波形が正当でないと判定した場合、制御部4はステップS105において異常時処理を行う。
 図35は、正当性判定処理の第8例の二つ目の例である。本例は、照射処理及び受光処理を2回ずつ行うものである。なお、図12のフローチャートに示す処理と同様の処理については同一の符号を付し説明を適宜省略する。
 制御部4はステップS141で測距用の照射を行う測距用照射処理を実行し、ステップS142で測距用受光処理を行う。これにより、第2光電変換素子17Bで変換された電荷量に基づいて測距用のデータが取得される。
 制御部4はステップS132で測距処理を実行し距離画像の生成を行う。
 制御部4はステップS143で正当性判定処理に用いられる情報を取得するための判定用照射処理を行い、ステップS144で判定用受光処理を行う。これにより、正当性判定に用いられるデータが取得される。
 制御部4はステップS103で受光波形が正当であるか否かを判定する。
 受光波形が正当であると判定した場合、制御部4はステップS104において通常時処理を行い、受光波形が正当でないと判定した場合、制御部4はステップS105において異常時処理を行う。
 本例においても、第1光電変換素子17Aは、正当性判定に用いられるデータのみを生成するように構成されていてもよいし、正当性判定に用いられるデータと共に測距用のデータを生成するように構成されていてもよい。
 図36は、正当性判定処理の第8例の三つ目の例である。本例は、正当性の確認を行った後に測距を行う例である。
 制御部4はステップS101で照射処理を行い、ステップS131で受光処理を行う。これにより、第1光電変換素子17Aで変換された電荷量に基づいて正当性判定に用いられるデータが取得され、第2光電変換素子17Bで変換された電荷量に基づいて測距用のデータが取得される。
 制御部4はステップS103で受光波形が正当であるか否かを判定する。受光波形が正当であると判定した場合、制御部4はステップS132で測距処理を行うことにより距離画像の生成を行う。
 一方、受光波形が正当でないと判定した場合、制御部4は図36に示す一連の処理を終了する。
 なお、受光波形が正当であると判定した場合、制御部4はステップS132の測距処理を行うと共にステップS104の通常時処理を実行してもよい。また、受光波形が正当でないと判定した場合、制御部はステップS105の異常時処理を実行してもよい。
 本例によれば、正当性の判定を測距処理よりも先に行っているため、正当性が確認できなかった場合には測距処理が実行されないことにより、演算処理量を削減することが可能である。即ち、効率的な処理を行うことができるため、消費電力の削減に寄与することができる。
 図37は、正当性判定処理の第8例の四つ目の例である。本例は、正当性の確認を行った後に測距を行う例である。
 制御部4はステップS143で判定用照射処理を行い、ステップS144で判定用受光処理を行う。続いて、制御部4はステップS103で受光波形が正当であるか否かを判定する。
 受光波形が正当であると判定した場合、制御部4はステップS141で測距用の照射を行う測距用照射処理を実行し、ステップS142で測距用受光処理を行う。これにより、第2光電変換素子17Bで変換された電荷量に基づいて測距用のデータが取得される。
 続けて、制御部4はステップS132で測距処理を行うことにより距離画像の生成を行う。
 一方、受光波形が正当でないと判定した場合、制御部4は図37に示す一連の処理を終了する。
 本例は、三つ目の例と同様に正当性の判定を測距処理よりも先に行っているため、正当性が確認できなかった場合には測距処理が実行されないことにより、演算処理量を削減することが可能である。即ち、効率的な処理を行うことができるため、消費電力の削減に寄与することができる。
 上述した正当性判定処理の第8例の各例においては、一連の処理を一定時間ごとに繰り返し実行することにより定期的に正当性の判定を確認してもよいし、不定期に繰り返し実行してもよい。
 また、一連の処理を実行指示を受け付けるたびに実行してもよい。
 更に、測距処理と正当性の判定処理は同時に実行してもよいし、時分割的に実行してもよい。
 同時に実行する場合には、所定時間内に処理可能な一連の処理が増えるため、測距結果の確度や高速性を高めることができる。
 また、時分割的に実行する場合には、実行期間の一部が重なるように実行してもよいし、実行期間が重ならないように実行してもよい。実行期間が重ならないように実行することにより、演算処理量の集中を緩和することができるため、最大消費電力を減らすことができる。
<3-10.正当性判定処理の第9例>
 正当性判定処理の第9例は、パターン生成部を備えた撮像装置1Bにおける正当性判定処理の例である。
 撮像装置1Bの構成例について、図38に示す。撮像装置1Bは、例えば光3次元カメラとされる。撮像装置1Bは、照明部2B、撮像部3B、制御部4、表示部5、記憶部6、発振器34、分配器35を備えている。
 照明部2Bは、照明制御部2a及びレーザ光源2bに加えて、パターン生成部36を備えている。なお、照明部2Bには、それ以外にもレーザ光源2bから出射される光が通過するレンズ系を備えていてもよい。なお、上述した照明部2においてもパターン生成部36やレーザ光源2bから出射される光が通過するレンズ系が設けられていてもよい。
 撮像部3Bは、レンズ3a、撮像素子3b、信号処理回路3Bcに加えて、位相検波器37、合波器38を備えている。
 発振器34は、所定の変調信号(例えば正弦波信号、パルス波信号、矩形波信号、鋸歯状波信号、三角波信号など)を出力するものである。発振器34より出力された変調信号は分配器35に入力される。
 分配器35は入力された変調信号を二つに分配し、それぞれレーザ光源部2b及び位相検波器37に出力する。
 レーザ光源2bは、入力された変調信号に基づいて強度変調されたレーザ光を出射する。
 パターン生成部36は、例えば、レーザ光源2bから出射された光を拡散することにより、所定の照射強度パターンを生成する。
 生成された所定強度のパターンは所定の広がり角を有した照射光として被写体100及び被写体101に向けて照射される。ここでいう所定の広がり角とは、例えば、照射領域が撮像素子3bの瞬時視野に収まるような角度である。
 撮像素子3bは、制御部4の制御に基づき、レンズ3aを介して入射された入射光を受光し画素ごとの光電変換を行う。画素ごとの光電変換後の信号は受信信号とされ、位相検波器37に出力される。
 位相検波器37は行方向及び列方向に2次元アレイ状に素子が配置された構造を成しており、一つ一つの素子は撮像素子3bの各画素に対応している。即ち、撮像素子3bのある画素から出力された受信信号は位相検波器37の一つの素子に入力される。
 位相検波器37は、分配器35から入力された変調信号を用いた位相検波を行う。位相検波器37の各素子は、位相検波の結果としての信号(例えば複素振幅信号)を合波器38に出力する。
 合波器38は、位相検波の結果として各素子から受信した信号が順に配列された一つの出力となるように合波するものである。一つにまとめられた合波信号は信号処理回路3Bcに出力される。
 信号処理回路3Bcの構成例について図39に示す。
 信号処理回路3Bcは、強度検出部39、第1測距部40、第2測距部41、演算部42及び画像出力部43を備えて構成されている。
 信号処理回路3Bcは、合波器38からの合波信号を処理し、3次元形状を算出し出力するものである。
 強度検出部39は、合波器38から受信した合波信号から位相検波器37の各素子の信号強度を検出するものである。強度検出部39により検出された各素子の信号強度は、所定の変調信号に基づいて強度変調されたレーザ光源部2bからの出射光を多く受光した素子(画素)ほど強くなる。強度検出部39で取得した素子ごとの信号強度情報は、次段の第1測距部40及び第2測距部41に入力される。
 第1測距部40は、受信した信号強度情報を用いて三角測量方式による測距を行う。測距は、位相検波器37の素子ごと、延いては、撮像素子3bの画素ごとに行われる。具体的には、素子(或いは画素)ごとに受信強度の変化を計測することで、被写体までの距離情報を算出する。
 第1測距部40は、算出した距離情報に基づいて3次元形状の情報(3D情報)を演算部42に出力する。
 第2測距部41は、受信した信号強度情報を用いてToF法による測距を行う。測距は、位相検波器37の素子ごと、延いては、撮像素子3bの画素ごとに行われる。
 第2測距部41は、算出した距離情報に基づいて3次元形状の情報(3D情報)を演算部42に出力する。
 演算部42は、位相検波器37の素子ごと(即ち撮像素子3bの画素ごと)に、三角測量方式による3D情報とToF法による3D情報の何れかを選択する。選択された3D情報は、画像出力部43に出力される。
 画像出力部43は、受信した素子ごと(画素ごと)の3D情報に基づいて被写体の最終的な3次元形状を算出し、その結果を出力する。
 なお、図39に示す信号処理回路3Bcの構成では二つの測距部(第1測距部40と第2測距部41)を備えていたが、信号処理回路3BcがToF法による測距を行う第2測距部41を備えていなくてもよい。その場合には、演算部42は選択処理を実行しなくて済む。また、画像出力部43は、三角測量方式による測距結果に基づいた3次元形状を算出すればよい。
 撮像装置1Bが図38及び図39に示す構成を備えることにより、例えば小さなスポット状の光(スポット光)が所定のパターンに配置されたドットパターンのレーザ光などを照明部2Bが出力可能とされる。
 具体的に、照明部2Bから出射される複数のスポット光と、被写体に照射された複数のスポット光を撮像部3Bで撮像したときに撮像素子3bで受光されるスポット光の形状(受光スポット形状)の例について、図40に示す。
 図40は、照明部2Bから出射される5個のスポット光が被写体100に到達するまでの光路を示している。また、被写体100に投影されたそれぞれのスポット光を撮像部3Bで撮像したときにスポット光が撮像素子3b上に形成するスポット形状即ち受光スポット形状を示している。照明部2Bの略正面とされた位置に照射された受光スポット形状は真円形状とされている。また、照明部2Bの略正面から照射された位置が離れるほど受光スポット形状は真円形状から乖離して楕円形状となる。但し、これらの形状については、暈け(ボケ)やスペックルなどを考慮すべき場合もある。
 即ち、照明部2Bから出射したドットパターンの光は、撮像範囲の中心に近いほど受光スポット形状が真円形状に近くなる。これは、照明部2Bと撮像部3Bの空間上の位置が略同じとされることによるものである。
 図41は、照明部2B以外の他光源200から被写体100に照射されたドットパターンの光を撮像部3Bで撮像した場合の受光スポット形状を示したものである。
 図示するように、他光源から照射されたドットパターンの光は、受光スポット形状が全て楕円形状とされている。また、楕円の扁平率も図40に示した各受光スポット形状と比較して高く(1に近く)されている。
 これは、他光源200と撮像部3Bの空間上の位置が離れていることによるものである。即ち、撮像装置1Bから離れた位置の他光源200がドットパターンを被写体に照射したとしても、受光スポット形状を検出することにより、正当な光源ではないと判定することができる。
 照明部2Bの照射可能範囲と撮像部3Bの撮像可能範囲は一致または略一致させることが効率的である。
 即ち、照明部2Bの少なくとも一部(例えば、レーザ光源2b、パターン生成部36或いはその前方にあるレンズ等の光学系のうちの何れか)と撮像部3Bの少なくとも一部(例えば、撮像素子3b、レンズ3aのうちの何れか)は、被写体100に対して同一または略同一な角度で配置される。これにより、正常時は真円形状のような略対称形状の受光スポット形状が撮像部3Bで検出される。
 また、撮像可能範囲の中心に近いほど対称形状に近い受光スポット形状となるように構成することができる。
 一方、例えばなりすましを目的として他光源200による照射が行われた場合などの異常時には、撮像部3Bの少なくとも一部と他光源200とで被写体100に対する配置角度が異なることが多いため、楕円形状のような非対称形状の受光スポット形状が撮像部3Bで検出される。
 これにより、レーザ光の受光スポット形状に基づいた正当性判定処理を行うことができる。
 なお、図40に示した例においては、照明部2Bから出射されたスポット光が5個である例を説明したが、それ以上であってもよいし、例えば1個のように少なくてもよい。但し、スポット光が複数個である場合には、複数個の受光スポット形状の変化傾向に基づいた正当性判定処理を行うことができる。一方、スポット光が1個である場合には、撮像可能範囲の少なくとも一部の領域をレーザ光が特定の軌跡を描くように照射することによって、受光スポット形状の変化傾向に基づいた正当性判定処理を行うことができる。例えば、一部のスポット光が乱反射するような測定環境下では、受光スポット形状の変化傾向に基づいた正当性判定処理を行うことが望ましい。もちろん、何に基づいて正当性判定処理を行うかを選択可能または切り替え可能に構成することもできる。
 なお、本例では照明部2Bから出射されるスポット光の形状が真円形状とされていたが、それ以外の形状についても考え得る。図42は、スポット光の形状(スポット形状)の種々の例を表にしたものである。
 スポット形状Aは、上述した真円形状である。スポット形状Bは、ドーナッツ形状とされている。他にも、楕円形状(スポット形状C)や長円形状(スポット形状D)、複数の図形が重複した形状(スポット形状E)、複数の図形が重複せずに含まれた形状(スポット形状F)、三角形状(スポット形状G)、正方形状(スポット形状H)、長方形状(スポット形状I)、台形形状(スポット形状J)、菱形形状(スポット形状K)、五角形形状(スポット形状L)、六角形以上の多角形形状(スポット形状M)、星型形状(スポット形状N)など、種々の形状が考えられる。但し、これらの形状の少なくとも一部が丸まった形状や暈け(ボケ)た形状、スペックルを考慮した形状などであってもよい。
 レーザ光源2bやパターン生成部36の製造の容易性からは、鏡面対称または点対称とされた形状が望ましく、特に、真円形状(スポット形状A)やドーナッツ形状(スポット形状B)が更に望ましい。
 また、レーザ光の複製を困難にすることを考慮すると、真円形状以外のスポット形状にすることが望ましく、特に、非鏡面対称または非点対称な形状のスポット形状が望ましい。
 レーザ光のスポット形状の整形は、例えば、ビーム整形素子を用いることで実現可能である。
 なお、レーザ光の受光スポット形状に基づいてレーザ光源2bの正当性を確認するためには、例えばスポット形状の2倍以上の形状変化を検出することを考慮すると、照射範囲の面積が撮像可能範囲の面積の少なくとも25%以下であることが好ましい。
<3-11.正当性判定処理の第10例>
 正当性判定処理の第10例は、複数のスポット光を所定の位置に配置したドットパターンのレーザ光を照明部2Bが照射する例である。
 図43、図44、図45の各図にドットパターン例を示す。なお、各図に示すドットパターンは照明部2Bから照射されるドットパターン(照射ドットパターン)の一部である。
 図43は、三角測量方式の測距において用いるドットパターンを示している。具体的には、スポット光が不規則に配置されたドットパターンを示している。
 図44は、スポット光が規則的に配置されたドットパターンを示している。三角測量方式の測距においてこのようなドットパターンを使用してもよい。
 図45は、複数のスポット光から成る一群のスポット光群が周期的に繰り返されてドットパターンを形成する例を示している。
 例えば、撮像装置1Bの照明部2Bが回折光学素子を備えることにより、スポット光群の複製を実現できる。
 この場合には、多数のスポット光で構成されるドットパターンのレーザ光を簡易な構成で生成することができる。また、ドットパターンがスポット光群の繰り返しパターンであるため、測距の演算の一部を共通化することが可能とされ、演算に要する時間の短縮や処理部の負担軽減を図ることが可能となる。
 各図に示すドットパターンはToF法による測距にも適用可能である。
 図44に示すドットパターンを照明部2Bから被写体に照射し撮像部3Bが被写体の撮像を行ったときに、撮像素子3b上に形成されるドットパターン(受光ドットパターン)を図46に示す。
 図示する状態は、受光スポット形状が1画素分の領域に収まった状態を示している。
 また、非正当な他光源200からドットパターンの照射を行った場合の受光スポット形
状の例を図47に示す。
 図示するように、受光スポット形状が楕円形状とされているため、1画素分の領域に収まらず2画素分の領域に跨がって受光される。
 図46及び図47に示すように、「レーザ光のスポット光の総数×4≦撮像素子3bの画素の総数」の条件を満たす場合には、レーザ光の受光スポット形状に基づくレーザ光源の正当性の確認を行うことができる。
 本例において制御部4が実行する処理の一例を図48に示す。なお、上述した各フローチャートの処理と同様の処理については同一の符号を付し説明を適宜省略する。
 制御部4はステップS101において照射処理を実行し、ステップS102において受光処理を行う。これにより、例えば図46に示す受光ドットパターンに基づく信号が取得される。
 制御部4はステップS151において受光スポット形状が正当か否かを判定する分岐処理を行う。
 受光スポット形状が正当であると判定した場合制御部4はステップS104で通常時処理を行い、正当でないと判定した場合制御部4はステップS105で異常時処理を実行する。
<3-12.正当性判定処理の第11例>
 正当性判定処理の第11例は、受光スポット光の数に基づいて判定を行う例である。
 具体的には、照射ドットパターンに含まれるスポット光の数(照射スポット数)と受光ドットパターンに含まれる受光スポット光の数(受光スポット数)を比較することによりレーザ光源の正当性を確認する。
 例えば、図49は、正当性の判定結果が「正当でない」とされる受光ドットパターンの例を示している。
 図示するように、撮像素子3bにおいては正当なスポット光に加えて非正当なスポット光による受光がなされる。
 また、図50も同様に正当性の判定結果が「正当でない」とされる受光ドットパターンの例を示している。図示するように照射ドットパターンに含まれるスポット光の数よりも受光ドットパターンに含まれる受光スポット光の数が一つでも多ければ、正当性の判定結果が「正当でない」とされる。
 なお、照射スポット数よりも受光スポット数が少ない場合は、被写体からの反射光が微弱すぎる故に検出できない場合が考えられるため、正当性の判定結果を「正当である」としてもよい。なお、この場合には、受光スポット光どうしの距離や配置に基づいて正当であるか否かを判定してもよい。
<3-13.正当性判定処理の第12例>
 正当性判定処理の第12例は、撮像素子3bの単位画素16の大きさに対して受光スポット形状が大きい場合の例である。具体的に図51及び図52を参照して説明する。
 図51は、25個の単位画素16で構成される範囲に一つの受光スポット光が位置される例である。この例では、中央に位置する単位画素16は蓄積される電荷量が0とされるため、ドーナッツ形状のスポット形状を適切に判定することができる。
 また、図52は、25個の単位画素16で構成される範囲に一つの受光スポット光が位置される例であるが、当該受光スポット光は非正当とされた他光源200から出射された光に基づくものである。
 受光スポット光の外形は何れの図においても同形状とされているが、図52においては、中央に位置する単位画素16に蓄積される電荷量は0ではないため、正当なレーザ光源2bによる受光スポット光と異なることを把握することが可能である。
 なお、ドーナッツ形状のスポット形状を適切に判定するためには、ある単位画素16を包囲するように他の単位画素16が配置されていればよく、単位画素16の形状が三角形または略三角形であれば「レーザ光のスポット光の総数×4≦撮像素子3bの画素の総数」、単位画素16の形状が四角形または略四角形であれば「レーザ光のスポット光の総数×5≦撮像素子3bの画素の総数」、単位画素16の形状が五角形または略五角形であれば「レーザ光のスポット光の総数×6≦撮像素子3bの画素の総数」、単位画素16の形状が六角形または略六角形であれば「レーザ光のスポット光の総数×7≦撮像素子3bの画素の総数」の条件を撮像範囲内の少なくとも一部で満たせばよい。
 このように、照射スポット形状を複雑にすることでレーザ光の模倣を困難にし、正当性判定処理の確度を向上させることができる。
<3-14.正当性判定処理の第13例>
 正当性判定処理の第13例は、受光ドットパターンに基づいて正当性の判定を行う例である。
 先ず、図53は、正当なレーザ光源2bから出射されて被写体に照射された照射ドットパターンを撮像したときの受光ドットパターンを示している。
 次に、図54は、非正当な他光源200から出射された照射ドットパターンを撮像したときの受光ドットパターンを示している。非正当な他光源200から出射された光が被写体に反射した反射光を受光した場合であっても、他光源200から直接入射してきた光を受光した場合であってもよい。
 図53と図54の受光ドットパターンを比較することにより、レーザ光源の正当性を判定することが可能である。
 なお、このような正当性の判定は、スポット光がランダムに配置された照射ドットパターンである場合に該ランダムな配置を撮像部3Bが把握している場合に可能とされる。本例及び以下に示す他の例においては、撮像部3Bとレーザ光の照射を行う照明部2Bが同一の撮像装置1B内に設けられており、照明部2Bが照射したランダムな照射ドットパターンを撮像部3Bが把握可能とされるため、上述した正当性の判定を行うことが可能とされる。
 なお、図55に示すように、受光スポット光の配置が正しくても受光スポット形状が異なる場合には、正当でない光を受光したと判定される。
<3-15.正当性判定処理の第14例>
 正当性判定処理の第14例は、レーザ光源2bが他光源200として用いられた場合の例である。
 撮像装置1Bが備えるレーザ光源2bから出射された光がパターン生成部36を介して被写体に照射され、その反射光を撮像部3Bで撮像したときの受光ドットパターンを図53に示す。
 また、撮像装置1Bと略対向した位置に位置する他光源200としてのレーザ光源が、撮像装置1Bの備えるレーザ光源2bと同様に製造されたものである場合に、他光源200から出射された照射ドットパターンを撮像装置1Bの撮像部3Bが受光した場合の受光ドットパターンを図56に示す。
 図53及び図56の何れであっても、照射ドットパターンは同一とされるが、受光ドットパターンは図53と図56で鏡面対称とされる。
 このような場合には、図56に示す受光ドットパターンに基づいて他光源200が備えるレーザ光源が非正当なものと判定することができると共に、他光源200の位置をおおよそ把握することが可能となる。即ち、混信者や悪意を持った攻撃者が他光源200を用いている場合にその位置を特定することができ、誤測定や攻撃に対処することが可能となる。
 なお、先の正当性判定処理の第12例における図55に示す受光ドットパターンを取得した場合には、受光スポット光の配置が正しいことから、被写体に対して他光源200と撮像装置1Bが同方向にいることが分かると共に、受光スポット形状が上下方向に長い楕円とされていることから、撮像装置1Bと他光源200が上下方向にずれて位置されていることが推測可能である。
 また、照射するスポット光の形状が非対称とされた場合であっても、受光スポット形状によって他光源200の照射位置を把握することが可能とされる。なお、他光源200の照射位置に関する情報をゲーム用途や様々なアプリケーション用途へ適用することもできる。
<3-16.正当性判定処理の第15例>
 正当性判定処理の第15例はレーザ光源2bが他光源200として用いられた場合の別の例である。
 撮像装置1Bが備える正当なレーザ光源2bから出射された光がパターン生成部36を介して被写体に照射され、その反射光を撮像部3Bで撮像したときの受光ドットパターン、即ち正当と判定される受光ドットパターンが図53に示すものである。
 一方、図57は、他の撮像装置ACが備えるレーザ光源2bが他光源200として用いられ、該他のレーザ光源2bから出射された光が他の撮像装置ACが備えるパターン生成部36を介して被写体に照射され、その反射光を撮像装置1Bの撮像部3Bで受光した場合の受光ドットパターンである。
 図53と図57を比較すると、図57に示す受光ドットパターンは図53に示すドットパターンを180度回転させたパターンとされている。なお、180度回転させたパターンであるか否かの判定は照射ドットパターンが非対称であることにより可能とされる。
 図57に示す受光ドットパターンを検出した場合には非正当なレーザ光源であると判定すると共に、他光源200としてのレーザ光源2bを備えた他の撮像装置ACの位置及び姿勢を推定することが可能である。
 例えば、図58に示すように、撮像装置1Bは、上面部が上方(空)を向き下面部が下方(地面)を向く姿勢とされ、他の撮像装置ACは、上面部が下方(地面)を向き下面部が上方(空)を向く姿勢とされる。このように二つの撮像装置が相対的に180度回転しているような状態で双方の撮像装置が同じ照射ドットパターンの照射を行うと、図53及び図57のような受光ドットパターンの違いとなって表れる。
 即ち、図57に示すような受光ドットパターンを撮像した場合には、他の撮像装置ACによる非正当なレーザ光であることが判明すると共に、他の撮像装置ACが撮像装置1Bとは180度回転された姿勢であることが推測され、更に、他の撮像装置ACは被写体100に対して撮像装置1Bと同方向に位置することが推測可能である。
<3-17.正当性判定処理の第16例>
 正当性判定処理の第16例はレーザ光源2bが他光源200として用いられた場合の更に別の例である。
 撮像装置1Bが備える正当なレーザ光源2bから出射された光がパターン生成部36を介して被写体に照射され、その反射光を撮像部3Bで撮像したときの受光ドットパターン、即ち正当と判定される受光ドットパターンが図53に示すものである。
 図59は、他の撮像装置ACが備えるレーザ光源2bが他光源200として用いられ、該他のレーザ光源2bから出射された光が他の撮像装置ACが備えるパターン生成部36を介して被写体に照射され、その反射光を撮像装置1Bの撮像部3Bで受光した場合の受光ドットパターンである。
 図53と図59を比較すると、図59に示す受光ドットパターンは図53に示すドットパターンを時計回りに約15度回転させたパターンとされている。
 図59に示す受光ドットパターンを検出した場合には、撮像装置1Bが備える正当なレーザ光源2bから照射されたドットパターンではないと判定することができる。
 なお、照明部2B及び撮像部3Bは撮像装置1Bの外部または内部に固定されるため、撮像装置1Bの回転に応じて照明部2B及び撮像部3Bは回転される。同様に、他の撮像装置ACの回転に応じて他の撮像装置ACが備える照明部(他光源200)も回転される。
 即ち、撮像部3Bによって取得される受光ドットパターンの測定データに基づいて照射を行った光源の回転角度に関する測定データを抽出し、該測定データと基準条件を比較することにより、正当性の判定処理を行うことができる。また、該測定データと基準条件が一致または略一致した場合のみ正当性ありと判定することにより、混信者による誤測定を低減させると共に、悪意のある攻撃者による不正を防止することができる。一方、他光源200の回転角度に関する情報をゲーム用途や様々なアプリケーション用途などへ適用することもできる。
<3-18.正当性判定処理の第17例>
 正当性判定処理の第17例は、SPAD(Single Photon Avalanche Diode)素子を用いた撮像素子3Cbを有する撮像部3Cを備えた撮像装置1Cの例である。
 撮像素子3Cbの構成例について図60に示す。
 撮像素子3Cbは、画素アレイ部7C、バイアス電圧印加部45を有して構成されている。
 画素アレイ部7Cは、レンズ3aにより集光される光を受光する受光面とされ、複数のSPAD画素46が行方向及び列方向に2次元アレイ状に配置されている。
 図60に拡大して示すように、SPAD画素46はSPAD素子47、p型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)48、CMOSインバータ49を備えて構成されている。
 SPAD素子47は、カソードに大きな負電圧VBDを印加することによりアバランシェ増倍領域を形成し、フォトン一つの入射によって発生する電子をアバランシェ増倍させる。
 p型MOSFET48は、SPAD素子47でアバランシェ増倍された電子による電圧が負電圧VBDに達した場合に、SPAD素子47で増倍された電子を放出して初期電圧に戻すクエンチングを行う。
 CMOSインバータ49は、SPAD素子47で増倍された電子により発生する電圧を整形することで、フォトン1個の到来時刻を始点としたパルス波形が発生する受光信号(APD OUT)を出力する。
 バイアス電圧印加部45は、画素アレイ部7Cに配置される複数のSPAD画素46それぞれに対してバイアス電圧の印加を行う。
 このような構成の撮像素子3Cbにより、SPAD画素46ごとの受光信号が後段の信号処理回路3cに出力される。
 信号処理回路3cは、例えば、それぞれの受光信号においてフォトン1個の到来時刻を示すパルスが発生したタイミングに基づいて被写体までの距離を求める演算処理を行い、SPAD画素46ごとの測距データを取得する。信号処理回路3cは、それらの測距データに基づいて、複数のSPAD画素46により検出された被写体までの距離に基づく距離画像の生成を行う。
 図61及び図62を参照して一つのSPAD画素46及びその周辺部の構成例について説明する。
 図61は、SPAD画素46の断面図である。図62は、SPAD画素46の平面図である。
 撮像素子3Cbは、センサ基板50、センサ側配線層51、ロジック側配線層52が積層された積層構造とされ、ロジック側配線層52に対して図示しないロジック回路基板が積層されて成る。
 ロジック回路基板には、例えば、バイアス電圧印加部45、p型MOSFET48、CMOSインバータ49などが形成されている。
 例えば、撮像素子3Cbは、センサ基板50に対してセンサ側配線層51を形成し、ロジック回路基板に対してロジック側配線層52を形成した後、センサ側配線層51及びロジック側配線層52を接合面(図61に破線で示す面)で接合することにより製造可能である。
 センサ基板50は、例えば、単結晶のシリコンを薄くスライスした半導体基板とされ、p型またはn型の不純物濃度が制御されており、SPAD画素46ごとにSPAD素子47が形成される。
 また、図61においてセンサ基板50の接合面とは反対側の面が光を受光する受光面とされる。
 センサ側配線層51及びロジック側配線層52には、SPAD素子47に印加する電圧を供給するための配線や、SPAD素子47で発生した電荷(電子)をセンサ基板50から取り出すための配線などが形成されている。
 SPAD素子47は、センサ基板50に形成されるNウェル53、P型拡散層54、N型拡散層55、ホール蓄積層56、ピニング層57、高濃度P型拡散層58から成る。
 SPAD素子47では、P型拡散層54とN型拡散層55とが接続する領域に形成される空乏層によって、アバランシェ増倍領域59が形成される。
 Nウェル53は、センサ基板50の不純物濃度がn型に制御されることにより形成され、SPAD素子47における光電変換により発生する電子をアバランシェ増倍領域59へ転送する電界を形成する。
 なお、Nウェル53に替えてセンサ基板50の不純物濃度をp型に制御してPウェルを形成してもよい。
 P型拡散層54は、センサ基板50の表面近傍であってN型拡散層55に対して受光面側に形成される濃いP型の拡散層であり、SPAD素子47の略前面に亘って形成される。
 N型拡散層55は、センサ基板50の表面近傍であってP型拡散層54に対して接合面側に形成される濃いN型の拡散層であり、SPAD素子47の略前面に亘って形成される。
 N型拡散層55は、アバランシェ増倍領域59を形成するための負電圧を供給するための第1コンタクト電極63(後述)と接続するために、その一部がセンサ基板50の表面まで形成されるような凸形状とされている。
 ホール蓄積層56は、Nウェル53の側面及び底面を囲うように形成されるP型の拡散層であり、ホールを蓄積している。ホール蓄積層56は、SPAD素子47のアノードと電気的に接続されており、バイアス調整可能とされている。従って、ホール蓄積層56のホール濃度が強化され、ピニング層57を含むピニングが強固になることによって、例えば、暗電流の発生を抑制することができる。
 ピニング層57は、ホール蓄積層56よりも受光面側や隣接するSPAD素子47側の表面に形成される濃いP型の拡散層とされ、ホール蓄積層56と同様に、例えば、暗電流の発生を抑制する。
 高濃度P型拡散層58は、センサ基板50の表面近傍においてNウェル53の外周を囲うように形成される濃いP型の拡散層であり、ホール蓄積層56をSPAD素子47のアノードと電気的に接続するための第2コンタクト電極64(後述)との接続に用いられる。
 アバランシェ増倍領域59は、N型拡散層55に印加される大きな負電荷によってP型拡散層54及びN型拡散層55の境界面に形成される高電界領域であって、SPAD素子47に1個のフォトンが入射することで発生する電子を増倍する。また、撮像素子3Cbには、隣接するSPAD素子47同士の間に形成されるメタル膜60及び絶縁膜61による二重構造の画素間分離部62によって、それぞれのSPAD素子47が絶縁されて分離される。
 画素間分離部62は、例えば、センサ基板50の裏面から表面まで貫通するように形成される。
 メタル膜60は、光を反射するタングステンなどの金属により形成される膜であり、絶縁膜61はSiO2などの絶縁性を備えた膜である。
 例えば、メタル膜60の表面が絶縁膜61で覆われるようにセンサ基板50に埋め込まれることで画素間分離部62が形成され、画素間分離部62によって隣接するSPAD素子47が電気的及び光学的に分離される。
 センサ側配線層51には、第1コンタクト電極63、第2コンタクト電極64、第3コンタクト電極65、第1メタル配線66、第2メタル配線67、第3メタル配線68、第4コンタクト電極69、第5コンタクト電極70、第6コンタクト電極71、第1メタルパッド72、第2メタルパッド73、第3メタルパッド74が形成されている。
 第1コンタクト電極63は、N型拡散層55と第1メタル配線66とを接続し、第2コンタクト電極64は、高濃度P型拡散層58と第2メタル配線67とを接続し、第3コンタクト電極65は、メタル膜60と第3メタル配線68とを接続する。
 第1メタル配線66は、例えば、図62に示すように、少なくともアバランシェ増倍領域59を覆うようにアバランシェ増倍領域59よりも広く形成される。
 第1メタル配線66は、SPAD素子47を透過した光をSPAD素子47に反射する。
 第2メタル配線67は、例えば図62に示すように、第1メタル配線66の外周を覆うように、高濃度P型拡散層58と重なるように形成される。
 第3メタル配線68は、例えば、SPAD画素46の四隅でメタル膜60に接続するように形成される。
 第4コンタクト電極69は、第1メタル配線66と第1メタルパッド72とを接続し、第5コンタクト電極70は、第2メタル配線67と第2メタルパッド73とを接続し、第6コンタクト電極71は、第3メタル配線68と第3メタルパッド74とを接続する。
 第1メタルパッド72、第2メタルパッド73及び第3メタルパッド74は、ロジック側配線層52に形成されている第4メタルパッド82、第5メタルパッド83及び第6メタルパッド84(何れも後述)と、それぞれを形成する金属(銅)同士により電気的及び機械的に接合するために用いられる。
 ロジック側配線層52には、第1電極パッド75、第2電極パッド76、第3電極パッド77、絶縁層78、第7コンタクト電極79、第8コンタクト電極80、第9コンタクト電極81、第4メタルパッド82、第5メタルパッド83、第6メタルパッド84が形成されている。
 第1電極パッド75、第2電極パッド76及び第3電極パッド77は、それぞれロジック回路基板との接続に用いられ、絶縁層78は、第1電極パッド75、第2電極パッド76及び第3電極パッド77同士の絶縁を担う層とされる。
 第7コンタクト電極79は第1電極パッド75と第4メタルパッド82を接続し、第8コンタクト電極80は第2電極パッド76と第5メタルパッド83を接続し、第9コンタクト電極81は第3電極パッド77と第6メタルパッド84を接続する。
 第4メタルパッド82は第1メタルパッド72と接合され、第5メタルパッド83は第2メタルパッド73と接合され、第6メタルパッド84は第3メタルパッド74と接合されている。
 このような配線構造により、例えば、第1電極パッド75は、第7コンタクト電極79、第4メタルパッド82、第1メタルパッド72、第4コンタクト電極69、第1メタル配線66及び第1コンタクト電極63を介してN型拡散層55と接続されている。
 従って、SPAD画素46においては、N型拡散層55に印加される大きな負電圧をロジック回路基板から第1電極パッド75に対して供給することができる。
 また、第2電極パッド76は、第8コンタクト電極80、第5メタルパッド83、第2メタルパッド73、第5コンタクト電極70、第2メタル配線67及び第2コンタクト電極64を介して高濃度P型拡散層58と接続されている。
 従って、SPAD画素46においては、ホール蓄積層56と電気的に接続されるSPAD素子47のアノードが第2電極パッド76に接続されることで、第2電極パッド76を介してホール蓄積層56に対するバイアス調整が可能とされる。
 更に、第3電極パッド77は、第9コンタクト電極81、第6メタルパッド84、第3メタルパッド74、第6コンタクト電極71、第3メタル配線68及び第3コンタクト電極65を介してメタル膜60に接続されている。
 従って、SPAD画素46においては、ロジック回路基板から第3電極パッド77に供給されるバイアス電圧をメタル膜60に印加することができる。
 更に、SPAD画素46は、上述したように、第1メタル配線66が少なくともアバランシェ増倍領域59を覆うように、アバランシェ増倍領域59よりも広く形成されると共に、メタル膜60がセンサ基板50を貫通するように形成されている。
 即ち、SPAD画素46は、第1メタル配線66及びメタル膜60によりSPAD素子47の光入射面以外を全て取り囲んだ反射構造となるように形成されている。
 これにより、SPAD画素46は、第1メタル配線66及びメタル膜60により光を反射する効果によって、光学的なクロストークの発生を防止することができると共に、SPAD素子47の感度を向上させることができる。
 また、SPAD画素46は、Nウェル53の側面及び底面をホール蓄積層56で囲み、ホール蓄積層56をSPAD素子47のアノードと電気的に接続する構成によって、バイアス調整を可能とすることができる。
 更に、SPAD画素46は、画素間分離部62のメタル膜60にバイアス電圧を印加することによって、キャリアをアバランシェ増倍領域59にアシストする電界を形成することができる。
 以上に記載したように、SPAD画素46は、クロストークの発生が防止されると共にSPAD素子47の感度が向上され、特性の向上を図ることができる。
 上述した構造のSPAD画素46を用いたToF法による測距では、第1参照信号aを用いて得られた電荷量の総和Qa(画素信号Sa)及び第2参照信号bを用いて得られた電荷量の総和Qb(画素信号Sb)に基づいた測距ではなく、Δtを直接測定することで、「距離=c(光速)×Δt/2)の関係式を利用して測距することができる。
 また、このToF法でも前述したToF法と同様に、上述した各例の構成の少なくとも一部を用いることで、レーザ光源の正当性を確認することや、他の撮像装置ACの位置関係を認識することが可能である。
 SPAD画素46を用いたToF法による測距では、撮像可能範囲の少なくとも一部の領域をレーザ光が特定の軌跡を描くように照射する(スキャンする)ことによって、少なくとも一つのスポット光でも測距が可能である。
 この場合には、レーザ光を広範囲且つ同時に照射するのではなく、一点の照射を連続的に行うものであるため、レーザ製品の安全基準や定められた規則等を満たしつつ前述したToF方式や三角測量方式の測距よりも遠方まで測距することが可能である。但し、SPAD画素46を用いた測距において、前述したToF法と同様に構成(ドットパターンのレーザ光などを照明部2Bが出力可能に構成)することもできる。また、これら二つのToF法を組み合わせて構成することもできる。つまり、撮像可能範囲の少なくとも一部の領域を複数個のレーザ光が特定の軌跡を描くように照射することによって、複数個のスポット光でも測距が可能である。なお、複数個のレーザ光それぞれの特定の軌跡は、少なくとも一部で同一または略同一であってもよく、少なくとも一部で異なっていてもよい。
 正当なレーザ光源2bから照射されるレーザ光が描く特定の軌跡(スキャン軌跡)の一例を図63に示す。
 図示するように、照射範囲(照射可能範囲の全領域でもよいし、照射可能範囲の一部の領域でもよい)の略中央部から時計回りにレーザ光が照射される。もちろん、照射範囲の略中央部から反時計回りにレーザ光が照射されてもよい。
 また、非正当な他光源200から照射されるレーザ光が描く軌跡の一例を図64に示す。
 図示するように、照射範囲において上方から下方の画素行ごとに左方から右方に順次レーザ光が照射される。もちろん、上方から下方の画素行ごとに右方から左方に順次レーザ光が照射されてもよく、下方から上方の画素行ごとに左方から右方に順次レーザ光が照射されてもよく、照射範囲において下方から上方の画素行ごとに右方から左方に順次レーザ光が照射されてもよく、これらが回転したような軌跡に照射されてもよい。
 図64に示すようなレーザ光軌跡を検出した場合に、正当なレーザ光源2bによる特定の軌跡と比較することにより、他光源200の非正当性を判定することができる。
 更に、受光したレーザ光軌跡に基づいて、非正当な他光源200の位置や姿勢等を推定することが可能である。
 このような機能を実現するためには、照明部2、照明制御部2a或いは撮像装備1Cに特定の軌跡を描くように照射制御を行うスキャン部が設けられていればよい。
 スキャン部としてはレーザ光が特定の軌跡を描くように構成されていればよく、例えば、機械式の可動部によって実現してもよいし、MEMS(Micro Electro Mechanical Systems)を用いて微小ミラーの向きを変えることにより実現してもよく、液晶材料の屈折特性を制御することにより実現してもよく、更には、フェーズドアレイを応用することにより実現してもよい。
 正当なレーザ光源2bによる特定の軌跡の他の例について、図65及び図66に示す。
 図65に示す特定の軌跡は、照射範囲の左上から右下にかけてジグザグに照射される軌跡である。もちろん、左下から右上にかけてジグザグに照射されてもよく、これらが回転したような軌跡に照射されてもよい。
 図66に示す特定の軌跡は、照射範囲に位置する画素を左側画素と右側画素に分割し、左側画素のみをジグザグに照射した後、右側画素のみをジグザグに照射するものである。つまり、照射順序または照射範囲面積が互いに異なる二つまたは複数種類の軌跡を組み合わせた軌跡に照射されてもよい。
 なお、図64に示す軌跡が正当なレーザ光源2bによる特定の軌跡とされてもよい。
 特定の軌跡について各種の態様を選択可能に構成することにより、高い精度でレーザ光源の正当性を確認することができる。
 なお、図66に示す特定の軌跡については、左側画素と右側画素の比率を変化させることにより、レーザ光軌跡の模倣を更に高度化することができる。また、左側画素と右側画素のそれぞれの照射開始画素を選択可能とすることによっても、レーザ光軌跡の模倣を困難にすることができる。
<4.まとめ>
 上述した各例や変形例で説明したように、半導体装置(撮像装置1,1A,1B,1C)は、特定のレーザ光源2bから出射した光が被写体100(101)に反射した反射光を受光し光電変換を行う光電変換素子17(17A,17B)を備えた撮像部3(3B,3C)と、光電変換素子17(17A,17B)で受光した光が特定のレーザ光源2bから出射した光によるものであるか否かを判定する正当性判定処理を実行する制御部4とを備えたものである。
 例えば、特定のレーザ光源2bを用いて測距を行う場合に、受光した光が特定のレーザ光源2bから出射した光を反射したものであることが制御部4によって判定される。
 これにより、他のレーザ光源(他光源200)等の入射により誤測定してしまう可能性を低減することができる。
 正当性判定処理の第4例などで説明したように、光電変換素子17は第1光電変換素子17Aを含み、第1光電変換素子17Aには該第1光電変換素子17Aにおいてそれぞれ異なる期間に蓄積された電荷が転送される少なくとも四つの電荷蓄積部(FD20)が接続されていてもよい。
 これにより、レーザ光源2bから出射した光の波形に基づく受光波形が得られる。
 従って、レーザ光源2bごとに特有の発光時の波形に基づいて第1光電変換素子17Aで受光した光が特定のレーザ光源2bから出射した光であるか否かを判定することができる。具体的には、レーザ光源の発光時の立ち上がりの波形やオーバーシュートの形状、アンダーシュートの形状などに基づいた判定を行うことができる。
 正当性判定処理の第7例などで説明したように、光電変換素子17は第2光電変換素子17Bを含み、第2光電変換素子17Bに接続された電荷蓄積部(FD20)の数は第1光電変換素子17Aに接続された電荷蓄積部(FD20)の数よりも少なくされていてもよい。
 例えば、第2光電変換素子17Bは測距に用いられる。
 これにより、レーザ光源の正当性の確認、或いは、レーザ光源の認証に用いられる第1光電変換素子17Aとは異なり、測距に用いられる第2光電変換素子17Bに接続された電荷蓄積部(FD20)は少なくて済むため、部品点数を減らすことができコスト削減を図ることができる。
 正当性判定処理の第7例などで説明したように、第2光電変換素子17Bの数は第1光電変換素子17Aの数よりも多くされていてもよい。
 これにより、光電変換素子17(17A,17B)に接続される電荷蓄積部(FD20)が更に少なくされる。
 従って、部品点数を更に削減することができ、コスト削減に寄与することができる。
 正当性判定処理の第7例などで説明したように、第1光電変換素子17Aは一群の第2光電変換素子17Bの外方側に配置されていてもよい。
 これにより、第2光電変換素子17Bを密に配置することができる。
 従って、撮像素子3b(3Cb)を大型化することなくレーザ光源の正当性確認機能、或いは、レーザ光源の認証機能と測距機能の双方を備えることができる。また、認証機能を司る第1光電変換素子17Aが撮像素子3b(3Cb)の縁部に位置することで、撮像画像に与える影響を最小限に抑えることが可能となる。
 正当性判定処理の第8例などで説明したように、第1光電変換素子17Aは正当性判定処理に用いられると共に測距にも用いられてもよい。
 これにより、第1光電変換素子17Aが受光した受光データが有効利用される。
 従って、測距に用いられる受光データを増やすことができ、測距結果の確度を高めることができる。
 正当性判定処理の第8例などで説明したように、第1光電変換素子17Aは正当性判定処理に用いられ、第2光電変換素子17Bは測距に用いられてもよい。
 即ち、正当性判定処理に一部の光電変換素子が用いられる
 これにより、正当性判定処理の簡易化が図られる。
 正当性判定処理の第1例などで説明したように、正当性判定処理ではレーザ光源2bの立ち上がり波形に基づいた判定を行ってもよい。
 レーザ光源2bから出射された光の立ち上がり波形はレーザ光を生成するレーザ共振器に基づく個体差が表れる。該立ち上がり波形は、レーザ光源2bの製造者以外には複製が困難である。
 従って、レーザ共振器固有の立ち上がり波形と受信波形を比較することで確度の高いレーザ光源2bの正当性確認を行うことが可能となる。
 正当性判定処理の第9例などで説明したように、正当性判定処理ではレーザ光源2bから出射される光の受光スポット形状に基づいた判定を行ってもよい。
 受光スポット形状はレーザ光源2bと被写体100(101)と撮像部3(3B,3C)の空間的な位置関係に基づいて決定される。
 受光スポット形状に基づいた正当性判定処理を行うことで、レーザ光源2bとは異なる位置に位置する他光源200から出射される光を受光したものであるか否かを判定することができ、正当性判定処理の実現が可能である。
 上述した各例で説明したように、撮像装置1(1A,1B,1C)は特定のレーザ光源を有する照明部2(2B)を備えていてもよい。
 特定のレーザ光源2bと撮像部3(3B,3C)が一体とされることで、特定のレーザ光源2bと撮像部3(3B,3C)の位置関係が常に一定とされる。
 これにより、特定のレーザ光源2bから出射された光の正当性判定が容易になる。
 正当性判定処理の第3例などで説明したように、照明部2(2B)は第1波形のレーザ光と第1波形とは異なる第2波形のレーザ光とを照射可能とされていてもよい。
 これにより、第1波形と第2波形の双方を用いて正当性判定処理を実行することが可能とされる。
 従って、正当性判定処理の判定結果の確度を向上させることができる。また、他の光源(他光源200)からの光を受光することにより偶然に正当性ありと判定されてしまう可能性を低減させることができる。特に、照明部2(2B)による照射を模倣(複製)することにより正当性判定処理を不適切に通過させることが困難となる。
 正当性判定処理の第3例などで説明したように、第1波形と第2波形は照射時の光強度が異なるようにされてもよい。
 これにより、光強度を加味した正当性判定処理を実行することが可能とされる。
 従って、正当性判定処理の判定結果の確度を更に向上させることができる。
 正当性判定処理の第3例などで説明したように、第1波形と前記第2波形は立ち上がり形状が異なるようにされてもよい。
 これにより、第1波形の第2波形の双方の立ち上がり形状を用いた正当性判定処理を実行することが可能とされる。
 従って、正当性判定処理の判定結果の確度を向上させることができる。
 正当性判定処理の第3例などで説明したように、照明部2(2B)は、第1波形と第2波形とをランダムな順に照射してもよい。
 これにより、第1波形と第2波形の出現順を考慮した正当性判定処理を実行することが可能とされる。
 従って、正当性判定処理の判定結果の確度を向上させることができる。
 正当性判定処理の第5例などで説明したように、第1波形と第2波形は発光時間長が異なっていてもよい。
 これにより、第1波形と第2波形の発光時間長を考慮した正当性判定処理を実行することが可能とされる。
 従って、正当性判定処理の判定結果の確度を向上させることができる。
 正当性判定処理の第6例などで説明したように、第1波形と前記第2波形は非発光時間長が異なっていてもよい。
 これにより、第1波形と第2波形の非発光時間長を考慮した正当性判定処理を実行することが可能とされる。
 従って、正当性判定処理の判定結果の確度を向上させることができる。
 正当性判定処理の第9例などで説明したように、照明部2(2B)は、照射範囲が撮像部3(3B,3C)の撮像範囲の4分の1以下とされたスポット状のレーザ光を出射可能とされていてもよい。
 これにより、被写体100(101)に照射された光のスポット形状が変形し幅が2倍になったとしても撮像範囲に収めることができる。
 従って、正当性判定処理を適切に行うことが可能となる。
 正当性判定処理の第9例などで説明したように、照明部2(2B)は、鏡面対称または点対称とされたスポット状のレーザ光を出射可能とされていてもよい。
 これにより、スポット状のレーザ光の実装が容易とされる。
 従って、コストの削減を図ることができる。
 正当性判定処理の第14例などで説明したように、照明部2(2B)は、非鏡面対称且つ非点対称とされたスポット状のレーザ光を出射可能とされていてもよい。
 これにより、スポット状のレーザ光の模倣が困難とされる。
 従って、正当性判定処理の判定結果の確度を向上させることができる。
 正当性判定処理の第10例などで説明したように、照明部2(2B)は、複数のスポット状のレーザ光が不規則的に配置されたドットパターンを出射可能とされていてもよい。
 これにより、撮像部3(3B,3C)による一度の撮像で複数のスポット状のレーザ光を検出することができる。
 従って、レーザ光の模倣が更に困難とされ正当性判定処理の判定結果の確度を向上させることができる。また、正当性判定処理のための照射時間は短くて済む。
 正当性判定処理の第10例などで説明したように、照明部2(2B)は、複数のスポット状のレーザ光が規則的に配置されたドットパターンを出射可能とされていてもよい。
 これにより、ドットパターンの生成が容易とされる。
 従って、正当性判定処理の判定結果の確度を向上させつつも実装の容易性を確保することができる。また、正当性判定処理のための照射時間は短くて済む。
 正当性判定処理の第10例などで説明したように、照明部2(2B)は、光電変換素子17の数の4分の1以下の数とされたスポット状のレーザ光が配置されたドットパターンを出射可能とされていてもよい。
 これにより、ドットパターンを形成するそれぞれのスポット光による受光スポット形状を考慮した正当性判定処理が可能とされる。
 即ち、受光スポットの配置だけでなくスポット形状も加味した正当性判定処理が実行されるため、レーザ光の模倣の困難性を更に増すことができると共に、正当性判定処理の判定結果の確度を向上させることができる。また、正当性判定処理のための照射時間は短くて済む。
 正当性判定処理の第17例などで説明したように、照明部2(2B)は、撮像部3(3B,3C)の撮像範囲よりも小さいスポット形状のレーザ光が撮像範囲内で特定の軌跡を描くようにレーザ光源2bを照射してもよい。
 これにより、特定の軌跡、即ちスキャン軌跡を用いた正当性判定処理を行うことが可能とされる。
 従って、レーザ光の模倣の困難性を増加させることができると共に、正当性判定処理の判定結果の確度を向上させることができる。
 上述した各例ではフローチャートを用いた説明を行ったが、フローチャートに示す各処理の処理順は任意に変更可能である。例えば、正当性判定処理を実行した後に測距を行ってもよいし、その逆であってもよい。また、上述した各例ではシステム構成や素子構成や回路構成の図を用いた説明を行ったが、図中の矢印方向は一例であり、少なくとも一部の矢印を逆方向または双方向としてもよい。なお、制御部4の機能や制御や処理として記載した内容の少なくとも一部を、制御部4の代わりに信号処理部14で実行するように構成することもできる。また、信号処理部14の機能や制御や処理として記載した内容の少なくとも一部を、信号処理部14の代わりに制御部4で実行するように構成することもできる。また、記憶部6の格納データの少なくとも一部を、記憶部6の代わりにデータ格納部15の格納データとし、信号処理部14が読み出すまたは書き込むように構成することもできる。また、データ格納部15の格納データの少なくとも一部をデータ格納部15の代わりに記憶部6の格納データとし、制御部4が読み出すまたは書き込むように構成することもできる。なお、本技術は、カメラ、携帯電話、スマートフォン、タブレット、パーソナルコンピュータ、ゲーム機、テレビ、ディスプレイ、電子機器、モバイル機器、自動車、移動体、ドローン、飛行体、ロボット、可動体などへ適用できる。
 上述した各例で説明した実施の形態は、種々の変形例が存在する。即ち、上述した各例の構成要素は、一部が省略されてもよく、一部または全部が変化していてもよく、一部または全部が変更されていてもよい。また、一部が他の構成要素で置き換えられていてもよく、一部または全部に他の構成要素が追加されていてもよい。
 更には、構成要素の一部または全部が複数に分割されていてもよく、一部または全部が複数に分離されていてもよく、分割または分離された複数の構成要素の少なくとも一部で機能や特徴を異ならせていてもよい。
 更に、各構成要素の少なくとも一部を移動させて異なる実施の形態としてもよい。
 更にまた、各構成要素の少なくとも一部の組み合わせに結合要素や中継要素を加えて異なる実施の形態としてもよい。
 加えて、各構成要素の少なくとも一部の組み合わせに切り替え機能を加えて異なる実施の形態としてもよい。
 本実施の形態は、上述した各例で示した構成に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 なお、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。
<5.本技術>
 なお本技術は以下のような構成も採ることができる。
(1)
 特定のレーザ光源から出射した光が被写体に反射した反射光を受光し光電変換を行う光電変換素子を備えた撮像部と、
 前記光電変換素子で受光した光が前記特定のレーザ光源から出射した光によるものであるか否かを判定する正当性判定処理を実行する制御部とを備えた
 半導体装置。
(2)
 前記光電変換素子は第1光電変換素子を含み、
 前記第1光電変換素子には該第1光電変換素子においてそれぞれ異なる期間に蓄積された電荷が転送される少なくとも四つの電荷蓄積部が接続された
 上記(1)に記載の半導体装置。
(3)
 前記光電変換素子は第2光電変換素子を含み、
 前記第2光電変換素子に接続された前記電荷蓄積部の数は前記第1光電変換素子に接続された前記電荷蓄積部の数よりも少なくされた
 上記(2)に記載の半導体装置。
(4)
 前記第2光電変換素子の数は前記第1光電変換素子の数よりも多くされた
 上記(3)に記載の半導体装置。
(5)
 前記第1光電変換素子は一群の前記第2光電変換素子の外方側に配置された
 上記(3)から上記(4)の何れかに記載の半導体装置。
(6)
 前記第1光電変換素子は前記正当性判定処理に用いられると共に測距にも用いられる
 上記(2)から上記(5)の何れかに記載の半導体装置。
(7)
 前記第1光電変換素子は前記正当性判定処理に用いられ、
 前記第2光電変換素子は測距に用いられる
 上記(3)から上記(5)の何れかに記載の半導体装置。
(8)
 前記正当性判定処理では前記レーザ光源の立ち上がり波形に基づいた判定を行う
 上記(1)から上記(7)の何れかに記載の半導体装置。
(9)
 前記正当性判定処理では前記レーザ光源から出射される光の受光スポット形状に基づいた判定を行う
 上記(1)から上記(8)の何れかに記載の半導体装置。
(10)
 前記特定のレーザ光源を有する照明部を備えた
 上記(1)から上記(9)の何れかに記載の半導体装置。
(11)
 前記照明部は第1波形のレーザ光と前記第1波形とは異なる第2波形のレーザ光とを照射可能とされた
 上記(10)に記載の半導体装置。
(12)
 前記第1波形と前記第2波形は照射時の光強度が異なる
 上記(11)に記載の半導体装置。
(13)
 前記第1波形と前記第2波形は立ち上がり形状が異なる
 上記(11)から上記(12)の何れかに記載の半導体装置。
(14)
 前記照明部は、前記第1波形と前記第2波形とをランダムな順に照射する
 上記(11)から上記(13)の何れかに記載の半導体装置。
(15)
 前記第1波形と前記第2波形は発光時間長が異なる
 上記(11)から上記(14)の何れかに記載の半導体装置。
(16)
 前記第1波形と前記第2波形は非発光時間長が異なる
 上記(11)から上記(15)の何れかに記載の半導体装置。
(17)
 前記照明部は、照射範囲が前記撮像部の撮像範囲の4分の1以下とされたスポット状のレーザ光を出射可能とされた
 上記(10)から上記(16)の何れかに記載の半導体装置。
(18)
 前記照明部は、鏡面対称または点対称とされたスポット状のレーザ光を出射可能とされた
 上記(10)から上記(17)の何れかに記載の半導体装置。
(19)
 前記照明部は、非鏡面対称且つ非点対称とされたスポット状のレーザ光を出射可能とされた
 上記(10)から上記(17)の何れかに記載の半導体装置。
(20)
 前記照明部は、複数のスポット状のレーザ光が不規則的に配置されたドットパターンを出射可能とされた
 上記(10)から上記(19)の何れかに記載の半導体装置。
(21)
 前記照明部は、複数のスポット状のレーザ光が規則的に配置されたドットパターンを出射可能とされた
 上記(10)から上記(19)の何れかに記載の半導体装置。
(22)
 前記照明部は、前記光電変換素子の数の4分の1以下の数とされたスポット状のレーザ光が配置されたドットパターンを出射可能とされた
 上記(10)から上記(21)の何れかに記載の半導体装置。
(23)
 前記照明部は、前記撮像部の撮像範囲よりも小さいスポット形状のレーザ光が前記撮像範囲内で特定の軌跡を描くように前記特定のレーザ光源を照射する
 上記(10)から上記(19)の何れかに記載の半導体装置。
 1,1A,1B,1C…撮像装置、2…照明部、2B…照明部、2b…レーザ光源、4…制御部、17…光電変換素子、17A…第1光電変換素子、17B…第2光電変換素子、20,20a,20b,20c,20d…FD、100,101…被写体、T1,T3,T4,T5…発光期間

Claims (23)

  1.  特定のレーザ光源から出射した光が被写体に反射した反射光を受光し光電変換を行う光電変換素子を備えた撮像部と、
     前記光電変換素子で受光した光が前記特定のレーザ光源から出射した光によるものであるか否かを判定する正当性判定処理を実行する制御部とを備えた
     半導体装置。
  2.  前記光電変換素子は第1光電変換素子を含み、
     前記第1光電変換素子には該第1光電変換素子においてそれぞれ異なる期間に蓄積された電荷が転送される少なくとも四つの電荷蓄積部が接続された
     請求項1に記載の半導体装置。
  3.  前記光電変換素子は第2光電変換素子を含み、
     前記第2光電変換素子に接続された前記電荷蓄積部の数は前記第1光電変換素子に接続された前記電荷蓄積部の数よりも少なくされた
     請求項2に記載の半導体装置。
  4.  前記第2光電変換素子の数は前記第1光電変換素子の数よりも多くされた
     請求項3に記載の半導体装置。
  5.  前記第1光電変換素子は一群の前記第2光電変換素子の外方側に配置された
     請求項3に記載の半導体装置。
  6.  前記第1光電変換素子は前記正当性判定処理に用いられると共に測距にも用いられる
     請求項2に記載の半導体装置。
  7.  前記第1光電変換素子は前記正当性判定処理に用いられ、
     前記第2光電変換素子は測距に用いられる
     請求項3に記載の半導体装置。
  8.  前記正当性判定処理では前記レーザ光源の立ち上がり波形に基づいた判定を行う
     請求項1に記載の半導体装置。
  9.  前記正当性判定処理では前記レーザ光源から出射される光の受光スポット形状に基づいた判定を行う
     請求項1に記載の半導体装置。
  10.  前記特定のレーザ光源を有する照明部を備えた
     請求項1に記載の半導体装置。
  11.  前記照明部は第1波形のレーザ光と前記第1波形とは異なる第2波形のレーザ光とを照射可能とされた
     請求項10に記載の半導体装置。
  12.  前記第1波形と前記第2波形は照射時の光強度が異なる
     請求項11に記載の半導体装置。
  13.  前記第1波形と前記第2波形は立ち上がり形状が異なる
     請求項11に記載の半導体装置。
  14.  前記照明部は、前記第1波形と前記第2波形とをランダムな順に照射する
     請求項11に記載の半導体装置。
  15.  前記第1波形と前記第2波形は発光時間長が異なる
     請求項11に記載の半導体装置。
  16.  前記第1波形と前記第2波形は非発光時間長が異なる
     請求項11に記載の半導体装置。
  17.  前記照明部は、照射範囲が前記撮像部の撮像範囲の4分の1以下とされたスポット状のレーザ光を出射可能とされた
     請求項10に記載の半導体装置。
  18.  前記照明部は、鏡面対称または点対称とされたスポット状のレーザ光を出射可能とされた
     請求項10に記載の半導体装置。
  19.  前記照明部は、非鏡面対称且つ非点対称とされたスポット状のレーザ光を出射可能とされた
     請求項10に記載の半導体装置。
  20.  前記照明部は、複数のスポット状のレーザ光が不規則的に配置されたドットパターンを出射可能とされた
     請求項10に記載の半導体装置。
  21.  前記照明部は、複数のスポット状のレーザ光が規則的に配置されたドットパターンを出射可能とされた
     請求項10に記載の半導体装置。
  22.  前記照明部は、前記光電変換素子の数の4分の1以下の数とされたスポット状のレーザ光が配置されたドットパターンを出射可能とされた
     請求項10に記載の半導体装置。
  23.  前記照明部は、前記撮像部の撮像範囲よりも小さいスポット形状のレーザ光が前記撮像範囲内で特定の軌跡を描くように前記特定のレーザ光源を照射する
     請求項10に記載の半導体装置。
PCT/JP2020/018650 2019-07-12 2020-05-08 半導体装置 WO2021009997A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080048871.4A CN114174858A (zh) 2019-07-12 2020-05-08 半导体装置
JP2021532691A JPWO2021009997A1 (ja) 2019-07-12 2020-05-08
DE112020003368.6T DE112020003368T5 (de) 2019-07-12 2020-05-08 Halbleitervorrichtung
US17/625,015 US20220291380A1 (en) 2019-07-12 2020-05-08 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019130102 2019-07-12
JP2019-130102 2019-07-12

Publications (1)

Publication Number Publication Date
WO2021009997A1 true WO2021009997A1 (ja) 2021-01-21

Family

ID=74210411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018650 WO2021009997A1 (ja) 2019-07-12 2020-05-08 半導体装置

Country Status (5)

Country Link
US (1) US20220291380A1 (ja)
JP (1) JPWO2021009997A1 (ja)
CN (1) CN114174858A (ja)
DE (1) DE112020003368T5 (ja)
WO (1) WO2021009997A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149060A1 (ja) * 2022-02-01 2023-08-10 株式会社小糸製作所 測定装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281038A (ja) * 1992-03-30 1993-10-29 Hitachi Constr Mach Co Ltd パルスレーザ光の光強度分布測定装置
JP2001108886A (ja) * 1999-10-04 2001-04-20 Olympus Optical Co Ltd カメラ
JP2006322759A (ja) * 2005-05-17 2006-11-30 Nippon Signal Co Ltd:The 光センサ及びこれを用いた物体検出装置と光通信装置
JP2008076131A (ja) * 2006-09-20 2008-04-03 Hokuyo Automatic Co 測距装置
JP2011216843A (ja) * 2010-03-16 2011-10-27 Ricoh Co Ltd 半導体レーザ駆動装置、及びこれを含む画像形成装置
WO2016157600A1 (ja) * 2015-03-30 2016-10-06 富士フイルム株式会社 距離画像取得装置及び距離画像取得方法
WO2017130996A1 (ja) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 距離測定装置
JP2017531356A (ja) * 2014-08-08 2017-10-19 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 受け取られた光子の時間ビニングのための集積デバイス
US20170329011A1 (en) * 2016-05-10 2017-11-16 Texas Instruments Incorporated Methods and apparatus for lidar operation with narrowband intensity modulation
JP2019056567A (ja) * 2017-09-19 2019-04-11 株式会社東芝 距離計測装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018194297A (ja) 2017-05-12 2018-12-06 国立大学法人電気通信大学 測距装置及び侵入検出装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281038A (ja) * 1992-03-30 1993-10-29 Hitachi Constr Mach Co Ltd パルスレーザ光の光強度分布測定装置
JP2001108886A (ja) * 1999-10-04 2001-04-20 Olympus Optical Co Ltd カメラ
JP2006322759A (ja) * 2005-05-17 2006-11-30 Nippon Signal Co Ltd:The 光センサ及びこれを用いた物体検出装置と光通信装置
JP2008076131A (ja) * 2006-09-20 2008-04-03 Hokuyo Automatic Co 測距装置
JP2011216843A (ja) * 2010-03-16 2011-10-27 Ricoh Co Ltd 半導体レーザ駆動装置、及びこれを含む画像形成装置
JP2017531356A (ja) * 2014-08-08 2017-10-19 クアンタム−エスアイ インコーポレイテッドQuantum−Si Incorporated 受け取られた光子の時間ビニングのための集積デバイス
WO2016157600A1 (ja) * 2015-03-30 2016-10-06 富士フイルム株式会社 距離画像取得装置及び距離画像取得方法
WO2017130996A1 (ja) * 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 距離測定装置
US20170329011A1 (en) * 2016-05-10 2017-11-16 Texas Instruments Incorporated Methods and apparatus for lidar operation with narrowband intensity modulation
JP2019056567A (ja) * 2017-09-19 2019-04-11 株式会社東芝 距離計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023149060A1 (ja) * 2022-02-01 2023-08-10 株式会社小糸製作所 測定装置

Also Published As

Publication number Publication date
US20220291380A1 (en) 2022-09-15
CN114174858A (zh) 2022-03-11
JPWO2021009997A1 (ja) 2021-01-21
DE112020003368T5 (de) 2022-04-07

Similar Documents

Publication Publication Date Title
KR102604902B1 (ko) 펄스형 빔들의 희소 어레이를 사용하는 깊이 감지
US20210377473A1 (en) Solid-state imaging apparatus, imaging system, and distance measurement method
US11448757B2 (en) Distance measuring device
US11204415B2 (en) Three-dimensional (3D) image sensors including polarizer, and depth correction methods and 3D image generation methods based on 3D image sensors
CN109791207B (zh) 用于确定到对象的距离的系统和方法
CN108139482B (zh) 摄像装置、以及在其中使用的固体摄像元件
US8569700B2 (en) Image sensor for two-dimensional and three-dimensional image capture
US9006636B2 (en) Radiation sensor
US8537218B2 (en) Distance image sensor and method for generating image signal by time-of-flight method
US11029391B2 (en) System for determining a distance to an object
JP2020517924A (ja) ピクセル構造
CN110389351B (zh) Tof距离传感器、传感阵列及基于tof距离传感器的测距方法
US20120154535A1 (en) Capturing gated and ungated light in the same frame on the same photosurface
JP4757779B2 (ja) 距離画像センサ
JP2006046959A (ja) 画像処理装置
WO2021009997A1 (ja) 半導体装置
JP2017107132A (ja) 電子機器
US20180149752A1 (en) Imaging apparatus and imaging control method
JP2023001122A (ja) 撮像装置
WO2022259640A1 (ja) 測距センサ、測距装置及び測距方法
US10890839B1 (en) Structured light imaging device
US20230082977A1 (en) Apparatus and method for time-of-flight sensing of a scene
WO2022224580A1 (ja) 測距装置及び測距システム
JP2022124821A (ja) 測距センサ及び測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20840373

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021532691

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20840373

Country of ref document: EP

Kind code of ref document: A1