JP7303616B2 - 光波距離計及び光波距離計測方法 - Google Patents

光波距離計及び光波距離計測方法 Download PDF

Info

Publication number
JP7303616B2
JP7303616B2 JP2018161773A JP2018161773A JP7303616B2 JP 7303616 B2 JP7303616 B2 JP 7303616B2 JP 2018161773 A JP2018161773 A JP 2018161773A JP 2018161773 A JP2018161773 A JP 2018161773A JP 7303616 B2 JP7303616 B2 JP 7303616B2
Authority
JP
Japan
Prior art keywords
light
signal
pulse
modulated
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018161773A
Other languages
English (en)
Other versions
JP2020034438A (ja
Inventor
直樹 東海林
昌絵 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2018161773A priority Critical patent/JP7303616B2/ja
Priority to US16/544,846 priority patent/US11269074B2/en
Priority to EP19193339.9A priority patent/EP3617743A1/en
Publication of JP2020034438A publication Critical patent/JP2020034438A/ja
Application granted granted Critical
Publication of JP7303616B2 publication Critical patent/JP7303616B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/495Counter-measures or counter-counter-measures using electronic or electro-optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光波距離計及び光波距離計測方法に関する。
従来、複数の近接周波数をパルス化した断続変調測距信号を近接周波数毎に切り替えて発光素子を発光させ、測定対象物からの反射測距信号を受光素子で受光する光波距離計が知られている(例えば、特許文献1参照)。
特許文献1に開示される光波距離計は、複数の近接周波数に対応する断続受光信号の位相を求めて精密距離値を演算し、各断続受光信号の位相差から粗測定距離値を演算し、粗測定距離値と精密測定距離値とを合わせることにより距離を測定する。
特開2016-161411号公報
しかしながら、特許文献1に開示された光波距離計は、隣接する位置に他の光波距離計を配置した場合、隣接する他の光波距離計が発光する測距光を受光してしまう可能性がある。特に、測定対象物がプリズム等の再帰反射体ではない場合、他の光波距離計が発光する測距光が測定対象物で乱反射して自装置で受光してしまう可能性が高い。他の光波距離計が発光する測距光から距離を測定してしまうと、自装置から測定対象物までの距離とは異なる値が測定されて測定不良となる可能性がある。
本発明は、前記課題を解決するためになされたものであり、測定対象物で反射された反射光を受光して測定対象物までの距離を測定する際に、自装置が発光した測距光に対応する反射光であるのかを適切に判別して測定不良を防止することが可能な光波距離計及び光波距離計測方法を提供することを目的とする。
前記課題は、本発明によれば、測距光を発光する発光素子と、第1周波数で変調された第1変調信号と前記第1周波数に近接する第2周波数で変調された第2変調信号とを生成する信号発生器と、前記第1変調信号をパルス化した第1パルス変調信号及び前記第2変調信号をパルス化した第2パルス変調信号に基づいて前記発光素子を駆動し、前記第1周波数で変調された第1測距光及び前記第2周波数で変調された第2測距光を切り替えて出力する駆動部と、測定対象物で反射された前記第1測距光に対応する第1反射測距光と前記測定対象物で反射された前記第2測距光に対応する第2反射測距光とを受光する受光素子と、前記受光素子が受光した前記第1反射測距光を周波数変換して第1差周波信号を生成し、前記受光素子が受光した前記第2反射測距光を周波数変換して前記第1差周波信号に対して前記測定対象物への距離に応じた位相差を有する第2差周波信号を生成する周波数変換部と、前記第1差周波信号と前記第2差周波信号との位相差に基づいて前記測定対象物までの距離値を求める演算処理を実行する演算部と、前記受光素子が受光する前記第1測距光及び前記第2測距光を含む受光信号に自装置を示す識別情報が含まれているかどうかを判別する判別部と、を備え、前記駆動部は、前記発光素子が発光する発光信号に前記識別情報が含まれるように前記発光素子を駆動し、前記受光信号に前記識別情報が含まれていると前記判別部が判別した場合に、前記演算部は前記距離値を求める演算処理を実行する光波距離計により解決される。
本構成の光波距離計によれば、第1周波数で変調された第1測距光及び第2周波数で変調された第2測距光が発光素子から切り替えて出力され、測定対象物で反射された第1測距光に対応する第1反射測距光と測定対象物で反射された第2測距光に対応する第2反射測距光とが受光素子で受光される。第1反射測距光を周波数変換した第1差周波信号および第2反射測距光を周波数変換した第2差周波信号は、測定対象物への距離に応じた位相差を有するため、第1差周波信号と第2差周波信号とに基づいて測定対象物までの距離値を求めることができる。
本構成の光波距離計によれば、駆動部が、発光素子が発光する発光信号に自装置を示す識別情報が含まれるように発光素子を駆動し、判別部が、受光素子が受光する第1測距光及び第2測距光を含む受光信号に識別情報が含まれているかどうかを判別する。本構成の光波距離計は、識別情報が含まれていると判別部が判別した場合に、演算部が距離値を求める演算処理を実行する。自装置を示す識別情報が受光信号に含まれる場合に距離値が演算されるため、隣接する他の光波距離計が発光する測距光を受光してもその測距光から距離値を演算することがない。よって、隣接する位置に他の光波距離計を配置した場合であっても、他の光波距離計が発光する測距光から距離を測定することによる測定不良を防止することができる。
このように、本構成の光距離計によれば、測定対象物で反射された反射光を受光して測定対象物までの距離を測定する際に、自装置が発光した測距光に対応する反射光であるのかを適切に判別して測定不良を防止することができる。
本発明の光波距離計において、好ましくは、前記駆動部は、前記第1測距光及び前記第2測距光を所定時間間隔で交互に出力し、複数の前記第1測距光のパルス幅及び複数の前記第2測距光のパルス幅の組み合わせからなる前記識別情報を含む発光パターンを出力することを特徴とする。
本構成の光距離計によれば、第1測距光と第2測距光を交互に出力する所定時間間隔を変更することなく、複数の第1測距光のパルス幅及び複数の第2測距光のパルス幅の組み合わせからなる識別情報を含む発光パターンを出力することができる。そのため、測距性能を落とさずに隣接する位置に他の光波距離計を配置した場合の測定不良を防止することができる。
本発明の光波距離計において、好ましくは、前記駆動部は、前記第1測距光と前記第2測距光の発光間隔の組み合わせからなる前記識別情報を含む発光パターンを出力することを特徴とする。
本構成の光距離計によれば、第1測距光及び第2測距光のパルス幅を変更することなく、第1測距光と第2測距光の発光間隔の組み合わせからなる識別情報を含む発光パターンを出力することができる。そのため、第1測距光及び第2測距光のパルス幅を維持したまま、隣接する位置に他の光波距離計を配置した場合の測定不良を防止することができる。
本発明の光波距離計において、好ましくは、前記駆動部は、前記第1測距光及び前記第2測距光を所定時間間隔で交互に出力し、前記第1測距光の出力が終了してから前記第2測距光の出力を開始するまでの期間において前記識別情報を含む発光信号を出力することを特徴とする。
本構成の光波距離計によれば、第1測距光と第2測距光を交互に出力する所定時間間隔を変更することなく、第1測距光の出力が終了してから第2測距光の出力を開始するまでの期間を利用して、識別情報を含む発光信号を出力することができる。そのため、測距性能を落とさずに隣接する位置に他の光波距離計を配置した場合の測定不良を防止することができる。
前記課題は、本発明によれば、第1周波数で変調された第1変調信号と前記第1周波数に近接する第2周波数で変調された第2変調信号とを生成する信号発生工程と、前記第1変調信号をパルス化した第1パルス変調信号及び前記第2変調信号をパルス化した第2パルス変調信号に基づいて発光素子を駆動し、前記第1周波数で変調された第1測距光及び前記第2周波数で変調された第2測距光を切り替えて出力する発光工程と、測定対象物で反射された前記第1測距光に対応する第1反射測距光と前記測定対象物で反射された前記第2測距光に対応する第2反射測距光とを受光素子で受光する受光工程と、前記受光工程で受光した前記第1反射測距光を周波数変換して第1差周波信号を生成し、前記受光工程で受光した前記第2反射測距光を周波数変換して前記第1差周波信号に対して前記測定対象物への距離に応じた位相差を有する第2差周波信号を生成する周波数変換工程と、前記第1差周波信号と前記第2差周波信号とに基づいて前記測定対象物までの距離値を求める演算処理を実行する演算工程と、前記受光素子が受光する前記第1測距光及び前記第2測距光を含む受光信号に自装置を示す識別情報が含まれているかどうかを判別する判別工程と、を備え、前記発光工程は、前記発光素子が発光する発光信号に前記識別情報が含まれるように前記発光素子を駆動し、前記受光信号に前記識別情報が含まれていると前記判別工程が判別した場合に、前記演算工程は前記距離値を求める演算処理を実行することを特徴とする光波距離計測方法により解決される。
本構成の光波距離計測方法によれば、測定対象物で反射された反射光を受光して測定対象物までの距離を測定する際に、自装置が発光した測距光に対応する反射光であるのかを適切に判別して測定不良を防止することができる。
本発明によれば、測定対象物で反射された反射光を受光して測定対象物までの距離を測定する際に、自装置が発光した測距光に対応する反射光であるのかを適切に判別して測定不良を防止することが可能な光波距離計及び光波距離計測方法を提供することができる。
本発明の一実施形態に係る光波距離計の測距光学系を示す概略図である。 本発明の一実施形態に係る光波距離計の演算処理部を示す概略図である。 図2に示す演算制御部の構成を示す概略図である。 図2に示す発光素子が発光する発光信号と受光素子が受光する受光信号を示すタイミングチャートである。 光波距離計の演算処理部が実行する処理を示すフローチャートである。 他の光波距離計の発光素子が発光する発光信号と自装置の受光素子が受光する受光信号を示すタイミングチャートである。 第2実施形態の光波距離計の発光素子が発光する発光信号と受光素子が受光する受光信号を示すタイミングチャートである。 第3実施形態の光波距離計の発光素子が発光する発光信号と受光素子が受光する受光信号を示すタイミングチャートである。 第4実施形態の光波距離計の発光素子が発光する発光信号と受光素子が受光する受光信号を示すタイミングチャートである。
〔第1実施形態〕
以下、本発明の第1実施形態に係る光波距離計について、図面を参照して説明する。
始めに、本実施形態に係る光波距離計の測距光学系1について説明する。図1は、本実施形態に係る光波距離計の測距光学系1を示す概略図である。図1に示すように、測距光学系1は、射出光学系2と、受光光学系3と、視準光学系4と、を備える。図1において、測定対象物5は、再帰反射体であるプリズムを示している。
測距光学系1は測定対象物5に向けられる測距光軸6を有し、射出光学系2は射出光軸7を有し、受光光学系3は受光光軸8を有し、視準光学系4は視準光軸9を有する。
射出光軸7上には、発光素子11と、集光レンズ12と、ハーフミラー13と、光量調整器14と、偏向ミラー15,16が設けられる。射出光軸7を通過する測距光は、測距光軸6と合致する様に偏向ミラー15,16によって偏向される。発光素子11は、例えばレーザダイオードであり、不可視光の測距光を発光する。
測距光軸6上には、対物レンズ17とダイクロイックミラー18が設けられる。ダイクロイックミラー18は、可視光を透過し、測距光を反射する様になっている。測距光軸6がダイクロイックミラー18を透過した部分は視準光軸9となっており、視準光軸9上には接眼レンズ19が設けられている。
対物レンズ17、ダイクロイックミラー18、接眼レンズ19等は、視準光学系4を構成する。
集光レンズ12、ハーフミラー13、光量調整器14、偏向ミラー15,16、対物レンズ17等は、射出光学系2を構成する。
測距光軸6がダイクロイックミラー18によって反射された部分は、受光光軸8となっており、受光光軸8上には受光素子21が設けられている。対物レンズ17、ダイクロイックミラー18等は、受光光学系3を構成する。
ハーフミラー13の反射光軸は、内部参照光軸23として反射鏡22を経て受光素子21に導かれている。ハーフミラー13、反射鏡22は、内部参照光学系24を構成している。発光素子11、受光素子21は、それぞれ演算処理部27に電気的に接続されている。
射出光軸7及び内部参照光軸23には、光路切替器25が設けられている。光路切替器25は、射出光軸7と内部参照光軸23とを択一的に遮断又は開放するものである。光路切替器25は、ハーフミラー13を透過した測距光が測定対象物5に向けて射出されるか、或はハーフミラー13で反射された測距光の一部が内部参照光学系24に向けて射出されるかを切り替える。
次に、測距光学系1の作用について説明する。
発光素子11から発せられて集光レンズ12で平行光束とされた測距光28は、光量調整器14で光量調整された後に、対物レンズ17の中心部を透過して測定対象物5に射出される。
測定対象物5で反射された測距光は、反射測距光28′として対物レンズ17に入射し、対物レンズ17で集光され、ダイクロイックミラー18で反射され、受光素子21に入射する。受光素子21は、受光した反射測距光28′に応じた断続受光信号29を発する。
発光素子11で射出された測距光28の一部(内部参照光28′′)は、ハーフミラー13で反射される。光路切替器25の光路切替えにより、内部参照光軸23が開放されると、内部参照光28′′が受光素子21に入射する。受光素子21は、受光した内部参照光28′′に応じた受光信号を発する。
対物レンズ17を経て入射する可視光は、ダイクロイックミラー18を透過し、接眼レンズ19で集光される。測量者は、接眼レンズ19を介して入射する可視光により、測定対象物5を視準することができる。
次に、本実施形態に係る光波距離計の演算処理部27について説明する。図2は、本実施形態に係る光波距離計の演算処理部27を示す概略図である。
基準信号発生器31は、所定の基準周波数fcの基準周波数信号s1を発する。尚、以下に示される数値は、測定距離、測定精度に応じて適宜変更が可能である。例えば、以下の説明では240MHzを基準周波数fcとしている。
基準信号発生器31から発せられた基準周波数信号s1は、分周器32によって基準周波数fcが1/nに分周され、周波数fの分周波信号s2が生成される。分周波信号s2は、第1信号発生器33及び第2信号発生器34に入力される。周波数fはfc/nであり、分周器32が240MHzの基準周波数fcを1/32に分周する分周器である場合、周波数fは7.5MHzとなる。
第1信号発生器33は、分周波信号s2と基準周波数信号s1によりfc+f[Hz]で変調された第1変調信号s3を生成し、第1断続パルス発生器35に出力する。第2信号発生器34は、分周波信号s2と基準周波数信号s1によりfc-f[Hz]で変調された第2変調信号s4を生成し、第2断続パルス発生器36に出力する。第1信号発生器33と、第2信号発生器34によって、周波数の近接した2つの変調信号、fc+f[Hz]及びfc-f[Hz]が生成される。
第1断続パルス発生器35では、連続信号である第1変調信号s3をパルス化し、所定時間間隔毎に発せられる断続信号である第1パルス変調信号s5に変換する。アンド回路37には、第1断続パルス発生器35から第1パルス変調信号s5が入力される。従って、第1パルス変調信号s5のパルスには、fc+f(240MHz+7.5MHz)の周波が含まれている。
第2断続パルス発生器36では、連続信号である第2変調信号s4をパルス化し、所定時間間隔毎に発せられる断続信号である第2パルス変調信号s6に変換する。アンド回路37には、第2断続パルス発生器36から第2パルス変調信号s6が入力される。従って、第2パルス変調信号s6のパルスには、fc-f(240MHz-7.5MHz)の周波が含まれている。
タイミング信号発生器39は、基準信号発生器31が生成する基準周波数信号s1を基準とし、第1パルス変調信号s5及び第1パルス変調信号s5の発光状態と非発光状態を切り替えるタイミング信号を生成する。タイミング信号発生器39は、タイミング信号を第1断続パルス発生器35及び第2断続パルス発生器36に発し、第1断続パルス発生器35からの第1パルス変調信号s5と第2断続パルス発生器36からの第2パルス変調信号s6が交互に且つ時間間隔(バースト周期)tbで出力される様に制御する。
タイミング信号発生器39からのタイミング信号は、切替えゲート40に入力される。切替えゲート40からは切替え信号がアンド回路37に入力される。アンド回路37は、切替えゲート40からの切替え信号に対応して第1パルス変調信号s5、第2パルス変調信号s6を交互にドライバ38に出力する。
ドライバ38は、第1パルス変調信号s5及び第2パルス変調信号s6に基づいて発光素子11を駆動し、fc+f(240MHz+7.5MHz)で変調された測距光(第1測距光)及びfc-f(240MHz-7.5MHz)で変調された測距光(第2測距光)を所定の時間間隔tbで切り替えて出力する。
図4は、図2に示す発光素子11が発光する発光信号と受光素子21が受光する受光信号を示すタイミングチャートである。図4の上段に示すタイミングチャートは、発光信号の発光タイミングを示すタイミングチャートであり、ハイレベルの信号となっている期間が発光期間であり、ローレベルの信号となっている期間が非発光期間である。図4に示すように、発光素子11は、第1パルス変調信号s5に基づいた測距光と第2パルス変調信号s6に基づいた測距光を時間間隔tbで切り替えて交互に出力する。
測距光28が断続的に発光、即ちパルス発光されることで、発光素子11の発光負荷率が低下する。発光負荷率が低下した分ピーク値を増大させ得るので、眼に対する安全性を損うことなく、測距光の光強度を増大させ、遠距離測定が可能となる。尚、所定時間幅及び所定時間間隔は、測定状況に応じて適宜選択される。
受光素子21は、発光素子11から測定対象物5に向けて射出され、測定対象物5で反射され、受光光学系3を経た測距光28を受光する。受光素子21は受光した測距光28に応じた断続受光信号29を発生する。受光素子21としては、例えば、フォトダイオードやアバランシフォトダイオード(APD)が用いられる。
測定対象物5で反射された測距光28の一部は、光路切替器25により光路が切替えられた場合、内部参照光28′′として内部参照光学系24を経て受光素子21で受光される。反射測距光28′を受光した際の受光信号の処理と、内部参照光28′′を受光した際の受光信号の処理は同様であるので、以下では反射測距光28′の受光信号の処理について説明する。
図4に示すように、受光素子21は、反射測距光28′として、fc+f(240MHz+7.5MHz)の第1パルス変調信号s5に基づいたパルス変調光(第1反射測距光)と、fc-f(240MHz-7.5MHz)の第2パルス変調信号s6に基づいたパルス変調光(第2反射測距光)を交互に受光する。従って、受光素子21の受光信号は、パルス出力となると共にパルス内部はfc+f[Hz]、fc-f[Hz]の周波数を有する断続受光信号29となる。図4に示すように、受光信号では、発光信号との間で、光波距離計と測定対象物5との直線距離に応じた遅延時間tdが生じている。
受光信号は増幅器42で増幅され、増幅された信号はミキシング回路43に入力される。ミキシング回路43には、基準信号発生器31からアンド回路48を介して基準周波数fc(240MHz)の基準周波数信号s1が入力される。基準周波数信号s1が入力されるタイミングは、fc+f(240MHz+7.5MHz)のパルス変調光の受光信号(断続信号)と、fc-f(240MHz-7.5MHz)のパルス変調光の受光信号(断続信号)とにそれぞれミキシングされる様に、タイミング信号発生器39からのタイミング信号によって制御される。
240MHz+7.5MHzのパルス変調光の受光信号と、240MHz-7.5MHzのパルス変調光の受光信号は、基準周波数信号s1とのミキシングによって周波数変換され、それぞれ±7.5MHzの周波数及び加算された周波数240MHz+240MHz+7.5MHz、周波数240MHz+240MHz-7.5MHzが得られる。更に、ローパスフィルタ44を通り、高周波成分は除去され、±7.5MHzの差周波が残る。ローパスフィルタ44の帯域は、差周波7.5MHzに十分な10MHz程度に設定される。
ミキシング回路43及びローパスフィルタ44は、受光素子21が受光した240MHz+7.5MHzのパルス変調光を周波数変換して+7.5MHzの差周波信号(第1差周波信号)を生成し、受光素子21が受光した240MHz-7.5MHzのパルス変調光を周波数変換して-7.5MHzの差周波信号(第2差周波信号)を生成する。-7.5MHzの差周波信号は、+7.5MHzの差周波信号に対して測定対象物5への距離に応じた位相差を有する信号である。
2つの差周波信号において、一方は時間的に位相が進行する7.5MHzの差周波信号であり、他方は時間的に位相が後退する7.5MHzの差周波信号である。両差周波間では、距離(時間)に対応した位相ずれ(位相差)が生じている。基準信号発生器31、タイミング信号発生器39、アンド回路48、ミキシング回路43、ローパスフィルタ44等は、周波数変換部として機能する。
ADコンバータ45は、ローパスフィルタ44から出力されるアナログ信号である差周波信号をデジタル信号に変換し、記憶手段としてのメモリ46にサンプリングデータとして記憶させる。
演算制御部47は、メモリ46に記憶されたサンプリングデータに基づいて各種の演算処理を実行するものである。図3に示すように、演算制御部47は、演算部47aと判別部47bとを有する。演算部47aは、メモリ46に保存されたサンプリングデータに基づいて、光波距離計から測定対象物5までの距離値d3を求める演算処理を実行する。判別部47bは、メモリ46に保存されたサンプリングデータに基づいて、受光素子21が受光する受光信号に自装置を示す識別情報が含まれているかどうかを判別する。自装置を示す識別情報については、後述する。
演算部47aは、メモリ46に保存されたサンプリングデータから、7.5MHzの差周波信号と-7.5MHzの差周波信号を演算し、2つの差周波信号の位相差から粗測定距離値d1(第1距離値)を演算する。2つの差周波信号の位相差は、断続変調周波数の差(15MHz)で測定した場合と等価であり、それぞれの位相をφ1,φ2とすると、周波数差15MHzの場合の波長は10mであるから、求める粗測定距離値d1(m)は下記の式(1)で表される。
d1=10×(φ1-φ2)/2π (1)
演算部47aは、メモリ46に保存されたサンプリングデータから、7.5MHzの差周波信号と-7.5MHzの差周波信号を演算し、さらに双方の差周波信号からそれぞれ位相を求め、位相と光速から双方の差周波信号に対応する精密測定距離値d2(第2距離値)を演算する。演算制御部47は、粗測定距離値d1に精密測定距離値d2を加算して、光波距離計から測定対象物5までの距離値d3(第3距離値)を求める演算処理を実行する。
粗測定距離値d1を演算する際には、反射測距光28′の受光信号から演算した粗測定距離値から、内部参照光28′′の受光信号から演算した粗測定距離値を減算する。同様に、精密測定距離値d2を演算する際には、反射測距光28′の受光信号から演算した精密測定距離値から、内部参照光28′′の受光信号から演算した精密測定距離値を減算する。
反射測距光28′から演算した測定距離値と内部参照光28′′から演算した測定距離値との差を求めることで電気回路である演算処理部27の温度ドリフト等による影響を除去することができる。内部参照光28′′の受光信号から演算した粗測定距離値及び精密測定距離値は、あらかじめ演算をしてメモリ46に記憶させておくようにしてもよい。
次に、発光素子11が発光する発光信号に自装置を示す識別情報が含まれるように発光素子11を駆動し、受光素子21が受光する受光信号に自装置を示す識別情報が含まれているかどうかを判別する方法について説明する。本実施形態では、受光信号に自装置を示す識別情報が含まれている場合に距離値d3を求める演算処理を実行することで、他の光波距離計が発光する測距光を受光して距離を測定することによる測定不良を防止している。
図4に示すように、本実施形態のタイミング信号発生器39は、時刻T1から発光状態となる第1パルス変調信号s5のパルス幅をp0に設定し、時刻T3から発光状態となる第1パルス変調信号のパルス幅をp0よりも幅広のp1に設定している。また、本実施形態のタイミング信号発生器39は、時刻T4から発光状態となる第2パルス変調信号s6のパルス幅をp0に設定し、時刻T2から発光状態となる第2パルス変調信号のパルス幅をp0よりも幅広のp1に設定している。
図4に示すように第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅をp0またはp1のいずれかに設定しているのは、第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅を、自装置を示す識別情報として利用するためである。本実施形態では、時刻T1から時間間隔tbで連続する4つの信号のパルス幅を、自装置を示す識別情報としている。具体的には、パルス幅p0を「0」とし、パルス幅p1を「1」とし、4つの信号のパルス幅から「0」と「1」を組み合わせた4桁の識別情報としている。図4に示す発光信号に含められた識別信号は、「0110」となる。
第1パルス変調信号s5が240MHz+7.5MHzで変調されており、第2パルス変調信号s6が240MHz-7.5MHzで変調されている場合、例えば、時間間隔tbは10μsであり、p0は933nsのパルス幅であり、p1は1μsのパルス幅である。
タイミング信号発生器39が生成するタイミング信号は、切替えゲート40を介してアンド回路37に入力され、第1パルス変調信号s5及び第2パルス変調信号s6の発光状態と非発光状態を切り替えるタイミングを決定するために用いられる。タイミング信号発生器39が生成するタイミング信号に自装置を示す識別情報が含まれているため、ドライバ38はアンド回路37から入力される発光信号に自装置を示す識別情報が含まれるように発光素子11を駆動する。
次に、自装置を示す識別情報が含まれる受光信号を受光した光波距離計の演算処理部27が実行する処理について説明する。図5は、光波距離計の演算処理部27が実行する処理を示すフローチャートである。
ステップS501で、演算処理部27は、光波距離計による測距を開始するか否かを判断し、YESであればステップS502へ処理を進める。
ステップS502で、演算処理部27は、ドライバ38を第1パルス変調信号s5及び第2パルス変調信号s6により駆動して発光素子11を発光させる。
ステップS503で、演算処理部27は、受光素子21が測距光28である受光信号を受光したかどうかを判断し、YESであればステップS504へ処理を進める。
ステップS504で、演算処理部27の判別部47bは、受光信号に自装置を示す識別情報が含まれているかどうかを判別し、YESであればステップS505へ処理を進める。
本実施形態では、測距を開始する時刻T1から時間間隔tbで連続する4つの信号のパルス幅を、自装置を示す識別情報としている。具体的には、パルス幅p0を「0」とし、パルス幅p1を「1」とし、4つの信号のパルス幅から「0」と「1」を組み合わせた4桁の識別情報としている。図4に示す例では、発光信号に含められた識別信号は、「0110」である。
判別部47bは、メモリ46に記憶された4つパルス分の受光信号のパルス幅がp1であるかp2であるかを判別し、「0」と「1」を組み合わせた識別情報を生成する。判別部47bは、生成した識別情報が「0110」である場合に、受光信号に自装置を示す識別情報が含まれていると判別する。
判別部47bは、受光信号から生成した識別情報が「0110」でない場合には、受光信号に自装置を示す識別情報が含まれていないと判断する。図6は、他の光波距離計の発光素子が発光する発光信号と自装置の受光素子が受光する受光信号を示すタイミングチャートである。判別部47bは、自装置の受光素子21が図6に示す受光信号を受光した場合、メモリ46に記憶された4つパルス分の受光信号のパルス幅がp0であるかp1であるかを判別し、「0」と「1」を組み合わせた識別情報を生成する。判別部47bは、生成した識別情報が「1100」であるため、受光信号に自装置を示す識別情報が含まれていないと判断する。
判別部47bが受光信号に自装置を示す識別情報が含まれていないと判断した場合、タイミング信号発生器39は、自装置が発光した発光信号を受光素子21が受光するタイミングと、他の光波距離計が発光した発光信号を受光素子21が受光するタイミングとが重ならないように、自装置が発光信号を発光するタイミングを調整してもよい。
例えば、タイミング信号発生器39は、他の光波距離計が発光した発光信号を受光素子21が受光するタイミングで第1パルス変調信号s5を発光するようにタイミング信号を生成する。このようにすることで、受光素子21が他の光波距離計の発光信号と自装置の発光信号を同時に受光してしまう不具合を回避することができる。
ステップS505で、演算処理部27の演算部47aは、受光信号に自装置を示す識別情報が含まれていることから、メモリ46に保存されたサンプリングデータに基づいて光波距離計から測定対象物5までの距離値d3を求める演算処理を実行する。演算部47aは、演算処理により求めた距離値d3をメモリ46に記憶させる。
ステップS506で、演算処理部27は、測距を継続するかどうかを判断し、YESであればステップS503を再び実行し、NOであればステップS507へ処理を進める。
ステップS507で、演算処理部27は、ドライバ38を制御して発光素子11の発光を停止させる。
以上説明した本実施形態の光波距離計が奏する作用および効果について説明する。
本実施形態の光波距離計によれば、fc+fで変調された第1測距光及びfc-fで変調された第2測距光が発光素子11から切り替えて出力され、測定対象物5で反射された第1測距光に対応する第1反射測距光と測定対象物5で反射された第2測距光に対応する第2反射測距光とが受光素子21で受光される。
第1反射測距光を周波数変換した第1差周波信号と第2反射測距光を周波数変換した第2差周波信号とは、測定対象物5への距離に応じた位相差を有するため、この位相差に基づいて粗測定距離値d1が演算される。この粗測定距離値d1に、第1差周波信号の位相及び第2差周波信号の位相に基づいた精密測定距離値d2を加算することにより、測定対象物5までの距離値d3を求めることができる。
本実施形態の光波距離計によれば、ドライバ38が、発光素子11が発光する発光信号に自装置を示す識別情報が含まれるように発光素子11を駆動し、判別部47bが、受光素子21が受光する第1測距光及び第2測距光を含む受光信号に識別情報が含まれているかどうかを判別する。本実施形態の光波距離計は、識別情報が含まれていると判別部47bが判別した場合に、演算部47aが距離値d3を求める演算処理を実行する。自装置を示す識別情報が受光信号に含まれる場合に距離値d3が演算されるため、隣接する他の光波距離計が発光する測距光を受光してもその測距光から距離値d3を演算することがない。よって、隣接する位置に他の光波距離計を配置した場合であっても、他の光波距離計が発光する測距光から距離を測定することによる測定不良を防止することができる。
本実施形態の光波距離計によれば、第1パルス変調信号s5(第1測距光)と第2パルス変調信号s6(第2測距光)を交互に出力する時間間隔tbを変更することなく、複数の第1パルス変調信号s5のパルス幅及び複数の第2パルス変調信号s6のパルス幅の組み合わせからなる識別情報を含む発光パターンを出力することができる。そのため、測距性能を落とさずに隣接する位置に他の光波距離計を配置した場合の測定不良を防止することができる。
〔第2実施形態〕
次に、本発明の第2実施形態に係る光波距離計について説明する。
本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様あるものとし、以下での説明を省略する。
第1実施形態の光波距離計は、第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅を、パルス幅p0またはパルス幅p1のいずれかに設定し、2つのパルス幅の組み合わせを、自装置を示す識別情報として利用するものであった。
それに対して、本実施形態の光波距離計は、第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅を3種類以上の複数に設定するものである。
図7は、第2実施形態の光波距離計の発光素子11が発光する発光信号と受光素子21が受光する受光信号を示すタイミングチャートである。図7に示すように、本実施形態のタイミング信号発生器39は、時刻T1から発光状態となる第1パルス変調信号s5のパルス幅をp0に設定し、時刻T3から発光状態となる第1パルス変調信号のパルス幅をp1に設定している。また、本実施形態のタイミング信号発生器39は、時刻T2から発光状態となる第2パルス変調信号s6のパルス幅をp3に設定し、時刻T4から発光状態となる第2パルス変調信号のパルス幅をp2設定している。
第1パルス変調信号s5が240MHz+7.5MHzで変調されており、第2パルス変調信号s6が240MHz-7.5MHzで変調されている場合、例えば、時間間隔tbは10μsであり、p0は933nsのパルス幅であり、p1は1μsのパルス幅であり、p2は1.2μsのパルス幅であり、p3は1.3μsのパルス幅である。ここでは、パルス幅をp0,p1,p2,p3の4種類としたが、3種類以上の任意の種類を設定してもよい。
図7に示すように第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅を3種類以上のいずれかの長さに設定しているのは、第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅を、自装置を示す識別情報として利用するためである。本実施形態では、時刻T1から時間間隔tbで連続する4つの信号のパルス幅を、自装置を示す識別情報としている。具体的には、パルス幅p0を「0」とし、パルス幅p1を「1」とし、パルス幅p2を「2」とし、パルス幅p3を「3」とし、4つの信号のパルス幅を組み合わせた4桁の識別情報としている。図7に示す発光信号に含められた識別信号は、「0312」となる。
本実施形態では、時刻T1から時間間隔tbで連続する4つの信号のパルス幅を、自装置を示す識別情報として利用するものであったが、他の態様であってもよい。例えば、連続する5つの信号あるいは6つの信号等、任意の数の信号のパルス幅の組み合わせを、自装置を示す識別情報として利用してもよい。
次に、図7に示す受光信号を受光素子21が受光した場合に、判別部47bが実行する処理について説明する。
図5のステップS504で、演算処理部27の判別部47bは、受光信号に自装置を示す識別情報が含まれているかどうかを判別する。
判別部47bは、メモリ46に記憶された4つパルス分の受光信号のパルス幅がp1~p3のいずれであるかを判別し、「0」~「3」を組み合わせた識別情報を生成する。判別部47bは、生成した識別情報が「0312」である場合に、受光信号に自装置を示す識別情報が含まれていると判別する。
〔第3実施形態〕
次に、本発明の第3実施形態に係る光波距離計について説明する。
本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様あるものとし、以下での説明を省略する。
本実施形態の光波距離計は、第1パルス変調信号s5と第2パルス変調信号s6の発光間隔の組み合わせからなる識別情報を利用するものである。
図8は、第3実施形態の光波距離計の発光素子11が発光する発光信号と受光素子21が受光する受光信号を示すタイミングチャートである。図8に示すように、本実施形態のタイミング信号発生器39は、時刻T1で発光する第1パルス変調信号s5から次に発光する第2パルス変調信号s6までの時間間隔(発光間隔)をtb1に設定し、時刻T2で発光する第2パルス変調信号s6から次に発光する第1パルス変調信号s5までの時間間隔をtb1よりも長いtb2に設定している。また、時刻41で発光する第1パルス変調信号s5から次に発光する第2パルス変調信号s6までの時間間隔(発光間隔)をtb1に設定し、時刻T5で発光する第2パルス変調信号s6から次に発光する第1パルス変調信号s5までの時間間隔をtb1に設定している。
第1パルス変調信号s5が240MHz+7.5MHzで変調されており、第2パルス変調信号s6が240MHz-7.5MHzで変調されている場合、例えば、時間間隔tb1は10μsであり、時間間隔tb2は20μsであり、p0は933nsのパルス幅である。
図8に示すように第1パルス変調信号s5と第2パルス変調信号s6の発光間隔をtb1またはtb2に設定しているのは、第1パルス変調信号s5と第2パルス変調信号s6の発光間隔を、自装置を示す識別情報として利用するためである。本実施形態では、時刻T1から連続する4つの信号の時間間隔(発光間隔)を、自装置を示す識別情報としている。具体的には、時間間隔tb1を「0」とし、時間間隔tb2を「1」とし、4つの信号の時間間隔を組み合わせた4桁の識別情報としている。図8に示す発光信号に含められた識別信号は、「0100」となる。
本実施形態では、時刻T1から連続する4つの信号の時間間隔を、自装置を示す識別情報として利用するものであったが、他の態様であってもよい。例えば、連続する5つの信号あるいは6つの信号等、任意の数の信号の時間間隔の組み合わせを、自装置を示す識別情報として利用してもよい。また、時間間隔をtb1,tb2の2種類だけでなく、3種類以上の任意の種類を設定してもよい。
次に、図8に示す受光信号を受光素子21が受光した場合に、判別部47bが実行する処理について説明する。
図5のステップS504で、演算処理部27の判別部47bは、受光信号に自装置を示す識別情報が含まれているかどうかを判別する。
判別部47bは、メモリ46に記憶された4つパルス分の受光信号の時間間隔がtb1またはtb2のいずれであるかを判別し、「0」,「1」を組み合わせた識別情報を生成する。判別部47bは、生成した識別情報が「0100」である場合に、受光信号に自装置を示す識別情報が含まれていると判別する。
本実施形態の光波距離計によれば、第1パルス変調信号s5(第1測距光)及び第2パルス変調信号s6(第2測距光)のパルス幅を変更することなく、これらの発光間隔の組み合わせからなる識別情報を含む発光信号を出力することができる。そのため、第1パルス変調信号s5及び第2パルス変調信号s6のパルス幅を維持したまま、隣接する位置に他の光波距離計を配置した場合の測定不良を防止することができる。
〔第4実施形態〕
次に、本発明の第4実施形態に係る光波距離計について説明する。
本実施形態は、第1実施形態の変形例であり、以下で特に説明する場合を除き、第1実施形態と同様あるものとし、以下での説明を省略する。
本実施形態の光波距離計は、第1パルス変調信号s5の出力が終了してから第2パルス変調信号s6の出力を開始するまでの期間において識別情報を含む発光信号を出力するものである。
図9は、第4実施形態の光波距離計の発光素子11が発光する発光信号と受光素子21が受光する受光信号を示すタイミングチャートである。図9に示すように、本実施形態のタイミング信号発生器39は、時刻T1で発光する第1パルス変調信号s5の出力が終了してから第2パルス変調信号s6の出力を開始するまでの期間において、時刻T1から時間間隔tb3が経過した後から時間間隔tb4が経過するまでの期間に、第1パルス変調信号s5を出力する。
図9に示すように、時刻T1から時間間隔tb3が経過した後から時間間隔tb4が経過するまでの期間に、第1パルス変調信号s5を出力しているのは、この第1パルス変調信号s5を、自装置を示す識別情報として利用するためである。本実施形態では、時刻T1から時間間隔tb3が経過した後から時間間隔tb4が経過するまでの期間を識別エリアとして設定し、識別エリアに含まれる第1パルス変調信号s5を識別情報として利用する。具体的には、識別エリアに含まれる第1パルス変調信号s5の位置及びパルス幅piを識別情報として利用する。
本実施形態では、識別エリアに含まれる第1パルス変調信号s5の位置及びパルス幅piを識別情報として利用するが、他の態様であってもよい。例えば、第1パルス変調信号s5の位置のみ、あるいはパルス幅piのみを識別情報として利用しても良い。また、例えば、発光状態と非発光状態を切り替える第1パルス変調信号s5を識別エリアの複数箇所で出力し、複数の第1パルス変調信号s5の位置及びパルス幅の組み合わせを識別情報として利用してもよい。識別情報を生成するにあたっては、測距を行うたびに第1パルス変調信号s5の位置、パルス幅pi、数をランダムに発生させてもよい。
次に、図9に示す受光信号を受光素子21が受光した場合に、判別部47bが実行する処理について説明する。
図5のステップS504で、演算処理部27の判別部47bは、受光信号に自装置を示す識別情報が含まれているかどうかを判別する。
判別部47bは、時刻T1から遅延時間tdと時間間隔tbが経過してから時間間隔tb4までの期間が識別エリアであると認識し、識別エリアに受光信号をメモリ46から読み出す。判別部47bは、識別エリアに含まれる第1パルス変調信号s5の位置及びパルス幅piが自装置を示す識別情報と一致するかどうかを判別し、自装置を示す識別情報と一致する場合に、受光信号に自装置を示す識別情報が含まれていると判別する。
本実施形態の光波距離計によれば、第1パルス変調信号s5(第1測距光)及び第2パルス変調信号s6(第2測距光)のパルス幅を変更することなく、第1パルス変調信号s5の出力が終了してから第2パルス変調信号s6の出力を開始するまでの期間を利用して、識別情報を含む発光信号を出力することができる。そのため、測距性能を落とさずに隣接する位置に他の光波距離計を配置した場合の測定不良を防止することができる。
以上、本発明の実施形態について説明した。しかし、本発明は、上記実施形態に限定されず、特許請求の範囲を逸脱しない範囲で種々の変更を行うことができる。上記実施形態の構成は、その一部を省略したり、上記とは異なるように任意に組み合わせたりすることができる。
1・・・測距光学系、 2・・・射出光学系、 3・・・受光光学系、 4・・・視準光学系、 5・・・測定対象物、 11・・・発光素子、 21・・・受光素子、 27・・・演算処理部、 33・・・第1信号発生器、 34・・・第2信号発生器、 38・・・ドライバ、 43・・・ミキシング回路、 44・・・ローパスフィルタ、 47・・・演算制御部、 47a・・・演算部、 47b・・・判別部

Claims (5)

  1. 測距光を発光する発光素子と、
    第1周波数で変調された第1変調信号と前記第1周波数に近接する第2周波数で変調された第2変調信号とを生成する信号発生器と、
    前記第1変調信号をパルス化した第1パルス変調信号及び前記第2変調信号をパルス化した第2パルス変調信号の発光状態と非発光状態とを切り替えるタイミング信号を生成するタイミング信号発生器と、
    前記第1パルス変調信号及び前記第2パルス変調信号に基づいて前記発光素子を駆動し、前記第1周波数で変調された第1測距光及び前記第2周波数で変調された第2測距光を切り替えて前記発光素子に出力させる駆動部と、
    測定対象物で反射された前記第1測距光に対応する第1反射測距光と前記測定対象物で反射された前記第2測距光に対応する第2反射測距光とを受光する受光素子と、
    前記受光素子が受光した前記第1反射測距光を周波数変換して第1差周波信号を生成し、前記受光素子が受光した前記第2反射測距光を周波数変換して前記第1差周波信号に対して前記測定対象物への距離に応じた位相差を有する第2差周波信号を生成する周波数変換部と、
    前記第1差周波信号と前記第2差周波信号とに基づいて前記測定対象物までの距離値を求める演算処理を実行する演算部と、
    前記受光素子が受光する前記第1測距光及び前記第2測距光を含む受光信号に自装置を示す識別情報が含まれているかどうかを判別する判別部と、を備え、
    前記駆動部は、前記発光素子が発光する発光信号に前記識別情報が含まれるように前記発光素子を駆動し、
    前記受光信号に前記識別情報が含まれていると前記判別部が判別した場合に、前記演算部は前記距離値を求める演算処理を実行し、
    前記受光信号に前記識別情報が含まれていないと前記判別部が判別した場合に、前記タイミング信号発生器は、前記自装置が発光した前記発光信号を前記受光素子が受光するタイミングと、他の装置が発光した発光信号を前記受光素子が受光するタイミングと、が重ならないように、前記他の装置が発光した前記発光信号を前記受光素子が受光するタイミングで前記第1パルス変調信号を出力するように前記タイミング信号を生成することにより前記自装置が前記発光信号を発光するタイミングを調整することを特徴とする光波距離計。
  2. 前記駆動部は、前記第1測距光及び前記第2測距光を所定時間間隔で交互に出力し、複数の前記第1測距光のパルス幅及び複数の前記第2測距光のパルス幅の組み合わせからなる前記識別情報を含む発光パターンを出力することを特徴とする請求項1に記載の光波距離計。
  3. 前記駆動部は、前記第1測距光と前記第2測距光の発光間隔の組み合わせからなる前記識別情報を含む発光パターンを出力することを特徴とする請求項1に記載の光波距離計。
  4. 前記駆動部は、前記第1測距光及び前記第2測距光を所定時間間隔で交互に出力し、前記第1測距光の出力が終了してから前記第2測距光の出力を開始するまでの期間において前記識別情報を含む発光信号を出力することを特徴とする請求項1に記載の光波距離計。
  5. 第1周波数で変調された第1変調信号と前記第1周波数に近接する第2周波数で変調された第2変調信号とを生成する信号発生工程と、
    前記第1変調信号をパルス化した第1パルス変調信号及び前記第2変調信号をパルス化した第2パルス変調信号の発光状態と非発光状態とを切り替えるタイミング信号を生成するタイミング信号発生工程と、
    前記第1パルス変調信号及び前記第2パルス変調信号に基づいて発光素子を駆動し、前記第1周波数で変調された第1測距光及び前記第2周波数で変調された第2測距光を切り替えて前記発光素子に出力させる発光工程と、
    測定対象物で反射された前記第1測距光に対応する第1反射測距光と前記測定対象物で反射された前記第2測距光に対応する第2反射測距光とを受光素子で受光する受光工程と、
    前記受光工程で受光した前記第1反射測距光を周波数変換して第1差周波信号を生成し、前記受光工程で受光した前記第2反射測距光を周波数変換して前記第1差周波信号に対して前記測定対象物への距離に応じた位相差を有する第2差周波信号を生成する周波数変換工程と、
    前記第1差周波信号と前記第2差周波信号との位相差に基づいて前記測定対象物までの距離値を求める演算処理を実行する演算工程と、
    前記受光素子が受光する前記第1測距光及び前記第2測距光を含む受光信号に自装置を示す識別情報が含まれているかどうかを判別する判別工程と、を備え、
    前記発光工程は、前記発光素子が発光する発光信号に前記識別情報が含まれるように前記発光素子を駆動し、
    前記受光信号に前記識別情報が含まれていると前記判別工程が判別した場合に、前記演算工程は前記距離値を求める演算処理を実行し、
    前記受光信号に前記識別情報が含まれていないと前記判別工程が判別した場合に、前記タイミング信号発生工程は、前記自装置が発光した前記発光信号を前記受光素子が受光するタイミングと、他の装置が発光した発光信号を前記受光素子が受光するタイミングと、が重ならないように、前記他の装置が発光した前記発光信号を前記受光素子が受光するタイミングで前記第1パルス変調信号を出力するように前記タイミング信号を生成することにより前記自装置が前記発光信号を発光するタイミングを調整することを特徴とする光波距離計測方法。

JP2018161773A 2018-08-30 2018-08-30 光波距離計及び光波距離計測方法 Active JP7303616B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018161773A JP7303616B2 (ja) 2018-08-30 2018-08-30 光波距離計及び光波距離計測方法
US16/544,846 US11269074B2 (en) 2018-08-30 2019-08-19 Electro-optical distance meter and electro-optical distance measurement method
EP19193339.9A EP3617743A1 (en) 2018-08-30 2019-08-23 Electro-optical distance meter and electro-optical distance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018161773A JP7303616B2 (ja) 2018-08-30 2018-08-30 光波距離計及び光波距離計測方法

Publications (2)

Publication Number Publication Date
JP2020034438A JP2020034438A (ja) 2020-03-05
JP7303616B2 true JP7303616B2 (ja) 2023-07-05

Family

ID=67742248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018161773A Active JP7303616B2 (ja) 2018-08-30 2018-08-30 光波距離計及び光波距離計測方法

Country Status (3)

Country Link
US (1) US11269074B2 (ja)
EP (1) EP3617743A1 (ja)
JP (1) JP7303616B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11681025B2 (en) * 2019-03-21 2023-06-20 Infineon Technologies Ag Simultaneous data transmission and depth image recording with time-of-flight cameras
WO2022153394A1 (ja) 2021-01-13 2022-07-21 三菱電機株式会社 秘匿検索システムおよび秘匿検索方法
CN113620119B (zh) * 2021-08-31 2023-03-24 上海兰宝传感科技股份有限公司 一种纱管数量检测系统及其方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324812A (ja) 2006-05-31 2007-12-13 Toshiba Lighting & Technology Corp 物体反射型センサ装置およびこれを具備した照明装置
JP2010286448A (ja) 2009-06-15 2010-12-24 Nippon Signal Co Ltd:The 光測距装置
JP2016161411A (ja) 2015-03-02 2016-09-05 株式会社トプコン 光波距離計
WO2017130996A1 (ja) 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 距離測定装置
US20180081043A1 (en) 2016-09-16 2018-03-22 Analog Devices, Inc. Interference handling in time-of-flight depth sensing
JP2018059826A (ja) 2016-10-06 2018-04-12 京セラ株式会社 測距装置、車両及び測距方法
US20180238998A1 (en) 2017-02-17 2018-08-23 Aeye, Inc. Ladar Pulse Deconfliction Apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6717129B1 (en) * 2002-03-14 2004-04-06 Omron Corporation Photoelectric sensor using radiation pulses
US11105925B2 (en) * 2017-03-01 2021-08-31 Ouster, Inc. Accurate photo detector measurements for LIDAR
US10845474B1 (en) * 2017-05-04 2020-11-24 Rockwell Collins, Inc. Pulse identification in a light detection and ranging, sonar, or radar system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324812A (ja) 2006-05-31 2007-12-13 Toshiba Lighting & Technology Corp 物体反射型センサ装置およびこれを具備した照明装置
JP2010286448A (ja) 2009-06-15 2010-12-24 Nippon Signal Co Ltd:The 光測距装置
JP2016161411A (ja) 2015-03-02 2016-09-05 株式会社トプコン 光波距離計
WO2017130996A1 (ja) 2016-01-29 2017-08-03 パナソニックIpマネジメント株式会社 距離測定装置
US20180081043A1 (en) 2016-09-16 2018-03-22 Analog Devices, Inc. Interference handling in time-of-flight depth sensing
JP2018059826A (ja) 2016-10-06 2018-04-12 京セラ株式会社 測距装置、車両及び測距方法
US20180238998A1 (en) 2017-02-17 2018-08-23 Aeye, Inc. Ladar Pulse Deconfliction Apparatus

Also Published As

Publication number Publication date
JP2020034438A (ja) 2020-03-05
US11269074B2 (en) 2022-03-08
EP3617743A1 (en) 2020-03-04
US20200072977A1 (en) 2020-03-05

Similar Documents

Publication Publication Date Title
JP6410258B2 (ja) 光波距離計
JP4104991B2 (ja) 光波距離計
JP6514920B2 (ja) 光波距離計
JP7303616B2 (ja) 光波距離計及び光波距離計測方法
US9864060B2 (en) Chirped coherent laser radar system and method
US8891566B2 (en) System and method for providing chirped electromagnetic radiation
US5742379A (en) Device and method for electronically measuring distances
US7649631B2 (en) Distance/speed meter and distance/speed measuring method
JPH0552957A (ja) 距離測定装置
JP3089332B2 (ja) 光波距離計
JP7330728B2 (ja) 光波距離計
JP6609360B2 (ja) 光波距離計
JP7252783B2 (ja) 距離測定装置
US20230015894A1 (en) Light wave distance meter
JPH05323028A (ja) 光波距離計による測距方法
JPH04118579A (ja) 距離測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230623

R150 Certificate of patent or registration of utility model

Ref document number: 7303616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150