WO2017130528A1 - 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法 - Google Patents

血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法 Download PDF

Info

Publication number
WO2017130528A1
WO2017130528A1 PCT/JP2016/083882 JP2016083882W WO2017130528A1 WO 2017130528 A1 WO2017130528 A1 WO 2017130528A1 JP 2016083882 W JP2016083882 W JP 2016083882W WO 2017130528 A1 WO2017130528 A1 WO 2017130528A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
thrombin generation
blood coagulation
coagulation system
analysis
Prior art date
Application number
PCT/JP2016/083882
Other languages
English (en)
French (fr)
Inventor
義人 林
マルクオレル ブルン
大森 真二
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to EP16888113.4A priority Critical patent/EP3388838B1/en
Priority to CN201680079236.6A priority patent/CN108474799B/zh
Priority to JP2017563709A priority patent/JP7009998B2/ja
Priority to US16/071,663 priority patent/US10794896B2/en
Publication of WO2017130528A1 publication Critical patent/WO2017130528A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/4905Determining clotting time of blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/86Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving blood coagulating time or factors, or their receptors

Definitions

  • the present invention relates to a blood coagulation system analysis apparatus, a blood coagulation system analysis system, a blood coagulation system analysis method, and a parameter determination method for a blood coagulation system analysis apparatus.
  • Thrombus formation (coagulation) and lysis (fibrinolysis) in vivo proceeds by a complex cascade reaction, which includes a number of molecular components including coagulation factors, fibrinogen, fibrin and the like, and vascular endothelial cells, platelets Both cellular components such as are involved.
  • various tests are performed in order to grasp the blood coagulation ability and fibrinolysis ability of the patient.
  • These coagulation and fibrinolysis tests include quantitative tests that measure the amount of specific molecules involved in the coagulation / fibrinolysis reaction system, such as various coagulation factors, fibrinogen, and D dimer, and the degree of work of the entire reaction system or part of it. It can be roughly divided into functional tests to be evaluated.
  • the coagulation reaction system is a mechanism that begins with the complex formation of tissue factor and activated coagulation factor VII (exogenous system), and a mechanism that starts with factor XII activation due to contact with foreign substances, etc. It is divided into (endogenous system), and both join at the stage of activation of factor X.
  • the clotting factor is indicated by prefixing the Roman numeral of the factor number with F, and if it is activated, a is added at the end.
  • factor XII and activated factor VII are expressed as FXII and FVIIa, respectively.
  • the generated FXa activates prothrombin (FII) and converts it to thrombin (FIIa), and fibrinogen is converted to fibrin by the action of thrombin.
  • the produced fibrin polymerizes with each other to form poorly soluble polymer fibers, and further forms a three-dimensional network structure called stabilized fibrin by the action of FXIIIa and platelets.
  • a structure in which red blood cells are mainly involved in this network structure is a thrombus. Once a thrombus is formed, the fibrinolysis reaction system begins to work to prevent excessive clotting, and the thrombus that has finished the role of hemostasis is eventually dissolved.
  • Prothrombin time (PT) and activated partial thromboplastin time (APTT) are widely used as functional tests for extrinsic and intrinsic coagulation, respectively.
  • substances that cause an extrinsic system and an intrinsic system coagulation reaction for example, tissue factor and ellagic acid, respectively
  • normal values for prothrombin time and activated partial thromboplastin time are approximately 10 seconds and 30-40 seconds, respectively. Therefore, these tests are suitable for assessing a significant decrease in coagulation ability, i.e. bleeding tendency, but conversely for assessing a marked increase in coagulation ability, i.e. thrombus tendency, or subtle changes in coagulation ability. Not suitable.
  • TEG registered trademark
  • ROTEM registered trademark delta
  • TEG 5000 a whole blood sample is injected into a cup, which is a measurement container, and an inducer is added according to the purpose of the test. Then, a rod-like pin hung from the top of the container is dipped into the cup. Provide a steady reciprocating angular motion (typically reciprocating 4.45 ° in 10 seconds). As the coagulation reaction proceeds, the viscoelasticity of the specimen increases, the relative movement of the cup and pin decreases, and therefore the rotational displacement of the pin increases.
  • ROTEM delta is basically based on the same principle, although there is a difference that reciprocal angular motion is given to the pin instead of the cup.
  • prothrombin time and activated partial thromboplastin time are methods for detecting the end point of coagulation
  • thromboelastography and thromboelastometry are a series of processes from the start of coagulation to thrombus formation and subsequent fibrinolysis. There is an advantage that it can be monitored over time with a single device.
  • Thromboelastography and thromboelastometry focus on fibrin formation, which is the final stage of the coagulation cascade reaction, and monitor the network formation (coagulation) and dissolution (fibrinolysis) processes through the viscoelasticity of the specimen, thereby generating fibrin. It can be said that the entire reaction system up to is comprehensively inspected.
  • TGT thrombin generation test
  • tissue factor for example, about 5 pM
  • prothrombin time is added to the specimen to induce the exogenous clotting reaction relatively gently, and the amount of thrombin generated is measured over time.
  • Thrombin is a serine protease (proteolytic enzyme having a serine residue), which recognizes a specific amino acid sequence and cleaves a peptide bond.
  • protease proteolytic enzyme having a serine residue
  • thrombin can be detected with a synthetic substrate in which a dye or fluorescent substance is bound to a peptide consisting of 3 to 4 amino acids.
  • Z-Gly-Gly-Arg-AMC the peptide bond between Arg-AMC is specifically cleaved and the released AMC emits fluorescence.
  • TGT Patent Document 1
  • CAT calibration automatic thrombogram
  • thrombin generation ability can be easily measured for whole blood samples that have not undergone pretreatment, it is necessary to have an accurate grasp of rapid and comprehensive coagulation pathology, such as in the perioperative period and emergency lifesaving settings. It can be said that it is extremely useful as a test in the situation.
  • thromboelastography and thromboelastometry mentioned above, a change in blood properties in a measurement container is measured as a change in viscoelasticity.
  • the same information as the calibration automatic thrombogram which directly detects the thrombin molecule itself generated by the inducer can be obtained from such a change in physical properties.
  • the inventors of the present application are effective in measuring changes in blood properties associated with coagulation and fibrinolysis as changes in physical properties for whole blood samples to which application of measurement methods using light is limited. As a result of diligent research, this technology was completed.
  • this technology analyzes the thrombin generation ability based on the electrical characteristics of blood measured at a specific frequency over a predetermined period of time after the anticoagulant action acting on blood has been resolved.
  • a blood coagulation system analyzing apparatus including a thrombin generating ability analyzing unit is provided.
  • the thrombin generation capacity analysis unit analyzes a correspondence relationship between the electrical characteristics of blood measured at a specific frequency in the predetermined period and the thrombin generation capacity, and generates thrombin based on the correspondence relation from the electrical characteristics of the target blood. Performance can be analyzed.
  • the thrombin generation capacity analyzing unit calculates the maximum gradient (G max ) of the waveform of the electrical characteristic of the specific frequency in the predetermined period by the maximum amplitude (A max ) of the waveform of the electrical characteristic of the specific frequency in the predetermined period. Based on the divided value G max / A max , the thrombin generation ability can be analyzed.
  • the present technology includes adding tissue factor to the blood so as to have a concentration of 0.5 pM or more and 1 pM or less. Further, the specific frequency may be 1 kHz or more and 50 MHz or less.
  • this technology A pair of electrodes; An application unit for applying an alternating voltage to the pair of electrodes at a predetermined time interval; A measuring unit for measuring electrical characteristics of blood disposed between the pair of electrodes; A thrombin generation capacity analysis unit for analyzing thrombin generation capacity based on the electrical characteristics of a specific frequency in a predetermined period measured at the time interval after the action of the anticoagulant acting on the blood is solved; A blood coagulation system analysis system is provided.
  • the blood coagulation system analysis system may further include an output unit that outputs analysis information on thrombin generation capability by the thrombin generation capability analysis unit.
  • the thrombin generation capability analysis unit may further include a warning unit that issues a warning when the analysis result of the thrombin generation capability deviates from a predetermined normal value.
  • This technology An alternating voltage is applied to the pair of electrodes at predetermined time intervals, Measuring the electrical properties of blood disposed between the pair of electrodes; Analysis of blood coagulation system, comprising analyzing thrombin generation ability based on electrical characteristics of a specific frequency in a predetermined period measured at the time interval after the action of the anticoagulant acting on the blood is solved Provide a method.
  • this technology An alternating voltage is applied to the pair of electrodes at predetermined time intervals, Measuring the electrical properties of blood disposed between the pair of electrodes; Data obtained from electrical characteristics of a specific frequency in a predetermined period measured at the time interval after the action of the anticoagulant acting on the blood is solved, and data obtained by an existing test on thrombin generation ability Are provided, and a parameter determination method for the blood coagulation system analysis device is provided for determining the parameter for analyzing the thrombin generation ability.
  • the present technology it is possible to quickly and easily measure the thrombin generation ability in a whole blood sample.
  • the effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
  • Blood coagulation system analyzer 1-1 Configuration of apparatus and system 1-2.
  • System operation 2.
  • Blood coagulation system analysis procedure 3.
  • Analysis procedure of thrombin generation ability 4.
  • Determination of parameters for thrombin generation ability Embodiment 5-1.
  • Blood coagulation system analyzer 1-1 Configuration of Apparatus and System
  • a blood coagulation system analysis apparatus includes a thrombin generation capacity analysis unit that performs analysis based on electrical characteristics.
  • a system including a pair of electrodes, a power source, an application unit that applies the pair of electrodes, and a measurement unit that measures the electrical characteristics of blood can be obtained.
  • an output part and a warning part can also be included.
  • the configuration of the blood coagulation system analysis system is shown in FIG.
  • blood is placed between a pair of electrodes 11 and 12.
  • the blood can be placed between the electrodes 11 and 12 by, for example, holding the sample cartridge in advance and attaching the sample cartridge to the electrode portion. Further, an anticoagulant releasing agent or the like may be added when blood is distributed.
  • the drug introduction can be performed by providing the sample cartridge with a drug introduction port.
  • coagulation reaction inducer used in the present technology is not particularly limited, and examples thereof include tissue factor.
  • tissue factor of about 5 pM is added to the specimen as described above, but in this technique, for example, a small amount such as a concentration of 0.5 pM to 1 pM is added.
  • the tissue factor may be added to the specimen. In this concentration range, it is estimated that the correlation between the amount of thrombin generation described later and the measurement result of the blood coagulation system analyzer is particularly good.
  • the power supply 3 applies a voltage starting from the time when a command to start measurement is received or when the power is turned on. Specifically, the power source 3 applies an alternating voltage having a predetermined frequency to the electrodes 11 and 12 arranged in the applying unit 2 at every set measurement interval.
  • the measurement unit 41 measures the current or impedance between the electrodes 11 and 12 at a predetermined period, and derives the dielectric constant of a specific frequency from the measured value.
  • the dielectric constant For deriving the dielectric constant, a known function or relational expression indicating the relationship between current or impedance and dielectric constant is used.
  • the dielectric constant can be measured using an impedance analyzer (4294A) manufactured by Agilent.
  • the specific frequency is preferably 1 kHz or more and 50 MHz or less, and more preferably 1 MHz or more and 10 MHz or less. Measurements of 1MHz and 10MHz frequencies are presumed to correlate well with the amount of thrombin generation (ETP) described later.
  • the measurement interval of the predetermined cycle can be measured, for example, every minute, and the temperature of the sample to be measured is 37 ° C.
  • the dielectric constant data is given from the measurement unit 41 to the analysis unit 42 at every measurement interval, and the analysis unit 42 receives the dielectric constant data given from the measurement unit 41 and starts determining blood coagulation ability.
  • the analysis unit 42 includes a thrombin generation capability analysis unit, which analyzes the correspondence relationship between the electrical characteristics of blood measured at a specific frequency and the thrombin generation capability in a predetermined period, The thrombin generation ability is analyzed from the electrical characteristics of the blood based on the correspondence.
  • the analysis unit 42 can notify the output unit 43 of one or both of analysis results such as determination of thrombin generation ability and dielectric constant data. Data and the like are represented in a graph such as a waveform, and various parameters can be derived from the waveform.
  • the output unit 43 receives the analysis result, dielectric constant data, and the like from the analysis unit 42 and displays them on a monitor or prints them on a predetermined medium.
  • the analysis unit 42 incorporates a normal value range such as thrombin generation capability in advance, and when the measurement result is out of the normal value range, the fact is notified to the output unit 43, A message indicating the value is transmitted from the output unit 43 to the warning unit 44.
  • the warning unit 44 can notify the system operator of the warning by means of a monitor display, a warning sound, a warning lamp, or the like.
  • the blood coagulation system analysis procedure performed in the present technology can be performed using, for example, the blood coagulation system analysis apparatus described in the specification of Japanese Patent No. 5691168 and the specification of Japanese Patent No. 5762842. .
  • the blood coagulation system analysis procedure using this apparatus is shown in FIG.
  • the measurement unit starts measuring the dielectric constant at every measurement interval of blood arranged on the electrode (S102). Subsequently, the process proceeds to the following subroutine (SRT, hereinafter also referred to as blood coagulation system analysis routine).
  • SRT blood coagulation system analysis routine
  • the analysis unit waits for dielectric constant data indicating a dielectric constant that is equal to or higher than a predetermined threshold (S103).
  • a predetermined threshold S103
  • the analysis unit proceeds to the next step, assuming that the anticoagulant action of blood has been solved.
  • the dielectric constant data less than the predetermined threshold value is received (NO)
  • the measurement is continued on the assumption that the anticoagulant action of blood has not been solved yet.
  • the analysis unit starts measuring the set analysis period and accumulates dielectric constant data given from the measurement unit until the analysis period elapses (S104).
  • the analysis unit detects, for example, a straight line that most closely approximates the dielectric constant indicated by the dielectric constant data accumulated during the analysis period, and uses the gradient of the straight line as a parameter to determine the degree of the function of the blood coagulation system. Is analyzed (S105).
  • the measurement and analysis items of the blood coagulation system to be the subject of the present technology are not limited.
  • blood coagulation coagulation
  • fibrin formation fibrin formation
  • fibrin clot formation clot formation
  • red blood cell formation examples include blood aggregation, red blood cell sedimentation (red sedimentation), blood clot contraction (retraction), hemolysis, and fibrinolysis.
  • red sedimentation red blood cell sedimentation
  • retraction blood clot contraction
  • hemolysis hemolysis
  • fibrinolysis fibrinolysis
  • Procedure for analyzing thrombin generation ability is as follows. First, specific data processing is performed on the characteristics of changes in electrical characteristics associated with blood coagulation and fibrinolysis. Then, a parameter is obtained in which the processed data and the thrombin generation amount obtained from the thrombin generation test (TGT) correlate well. Next, the electrical characteristics of the whole blood sample are measured, the measurement result is analyzed based on the parameters, and the thrombin generation ability of the whole blood sample is determined.
  • TGT thrombin generation test
  • Step 1 and Step 2 a preliminary preparation procedure (Step 1 and Step 2 described below) by clinical research is performed (FIG. 3), and a new additional analysis means is set.
  • the analysis unit determines at least one combination of the thrombin generation test and the output parameter of the blood coagulation system analyzer that are correlated by comparing the two (S1201).
  • an algorithm for calculating the determined parameters is implemented in the analysis software of the blood coagulation system analyzer (S1202).
  • Step2 The analysis unit creates a calibration curve for converting the parameters of the blood coagulation system analyzer into the parameters of the thrombin generation test (TGT) based on the clinical research data (S1203).
  • TGT thrombin generation test
  • S1204 the normal ranges of parameters for the blood coagulation system analyzer and the thrombin generation test are defined (S1204).
  • the calibration curve and data in the normal range are incorporated into the data analysis software system as a database that the analysis software of the blood coagulation system analyzer refers to in the course of processing.
  • Step3 shows an analysis procedure including analysis of thrombin generation ability (S3).
  • the sample is measured with the blood coagulation system analyzer, and the blood coagulation system analysis is performed in the analysis unit (S1205). This part is common to blood coagulation system measurement items.
  • the analysis unit calculates a parameter correlated with the thrombin generation test by the algorithm newly added through Step 1 (S1206). Further, the analysis unit refers to the database to convert the parameter into a parameter for the thrombin generation test, and determines whether the value is included in the normal range or an abnormal value. The determination result is output by being displayed on a monitor or printed on a medium by the output unit (S1207).
  • the series of steps 1, 2, and 3 is not limited to the analysis of thrombin generation ability according to the present technology.
  • parameters for analyzing thrombin generation capability are set in the analysis unit in advance.
  • the parameter is obtained, for example, by analyzing a correspondence relationship between blood dielectric constant measured at a specific frequency in a predetermined period and data on thrombin generation ability obtained by an existing test.
  • At least one of a thrombin generation test, a prothrombin time, an activated partial thromboplastin time, a thromboelastography, and a thromboelastometry is selected as the existing examination.
  • the dielectric constant data for checking the correspondence with the existing inspection data includes, for example: The maximum slope (G max ) of the waveform of the electrical characteristics of a particular frequency over a given period, Maximum slope time (T Gmax ) of the electrical characteristics waveform for a specific frequency over a given period, The maximum amplitude (A max ) of the waveform of the electrical characteristics of a specific frequency over a given period, Maximum amplitude time (T Amax ) of the waveform of the electrical characteristics of a specific frequency over a given period, The minimum slope (G min ) of the waveform of the electrical characteristics at a specific frequency over a given period, The minimum slope time (T Gmin ) of the waveform of the electrical characteristics of a specific frequency over a given period, The minimum amplitude (A min ) of the waveform of the electrical characteristics of a specific frequency over a given period, Minimum amplitude time (T Amin ) and waveform start time (CT) of a specific frequency electrical characteristic waveform for a given period
  • G max of
  • the maximum gradient (G max ) of the waveform of the electrical characteristic of the specific frequency in the predetermined period is the maximum amplitude (A max ) of the waveform of the electrical characteristic of the specific frequency in the predetermined period.
  • Embodiment of Blood Coagulation System Analysis Procedure The blood coagulation system analysis procedure according to an embodiment of the present technology is shown in the flowchart of FIG. First, blood is disposed on a pair of electrodes of the blood coagulation system analyzer, and application of an alternating voltage having a specific frequency is started on the pair of electrodes (S201). The measurement unit measures the dielectric constant of blood at predetermined intervals (S202).
  • the analysis unit starts analyzing the blood coagulation system from the measured dielectric constant (S203).
  • the analysis unit sets a predetermined threshold value for the dielectric constant, and when dielectric constant data equal to or higher than the threshold value is received (YES), the analysis unit proceeds to the next step, assuming that the blood coagulation action has been solved. .
  • the dielectric constant data less than the threshold value is received (NO)
  • the measurement of the dielectric constant is continued assuming that the blood coagulation action is not solved.
  • the analysis unit starts to elapse the set analysis period from the time when the blood coagulation action is solved, and accumulates dielectric constant data given from the measurement unit until the analysis period elapses (S204). .
  • the analysis unit detects a straight line that most closely approximates the dielectric constant indicated by the dielectric constant data accumulated during the analysis period, and analyzes the degree of the function of the blood coagulation system by using, for example, the gradient of the straight line as a parameter ( S205).
  • the analysis unit compares the obtained parameters such as the gradient with a previously obtained database of thrombin generation ability, and calculates a parameter that correlates well (S206).
  • the analysis unit creates a calibration curve for converting the calculated parameter into a parameter for thrombin generation ability (S207). Further, the normal range of thrombin generation ability is referred to by referring to the database of thrombin generation ability.
  • the analysis unit calculates a parameter of thrombin generation ability from the prepared calibration curve (S208). Data of dielectric constant in the blood to be analyzed is processed with the parameters to determine the thrombin generation ability.
  • the output unit displays the determination result on a print or a display (S209).
  • the analysis unit determines whether the determination result is within a predetermined normal value range of thrombin generation ability (S210). If it is within the normal value range (YES), the measurement and determination of the blood to be analyzed is terminated, and if it is outside the normal value range (NO), the warning unit notifies this.
  • ALC TOP Instrumentation Laboratory
  • FII, FV, FVIII Coagulation test items such as FIX, FX, FXI, FXII, FXIII, and fibrinogen were measured. Measurements were also made with an automatic calibration thrombogram (CAT) device (Thrombinoscope).
  • CAT automatic calibration thrombogram
  • PPP-Reagent is composed of calcium to release the anticoagulant action of citric acid contained in the blood collection tube, tissue factor that induces an extrinsic coagulation reaction, and phospholipid, which is not disclosed by the manufacturer.
  • the tissue factor concentration of -Reagent is estimated to be approximately 5 pM (HC Hemker et al., Current Opinion in Hematology 11 (3), 170-175 (2004)).
  • the time-dependent curve of thrombin generation obtained from a calibration automatic thrombogram is called a thrombogram.
  • the thrombogram is mainly characterized by six parameters ( Figure 6). Each parameter of the thrombogram is illustrated by Table 1 below.
  • PPP platelet-poor plasma
  • PI test an assay that adds a reagent that suppresses platelet function to the reagent of the EX test (referred to as the “PI test”) ) was also measured at the same time.
  • Cytochalasin D was used as a platelet function inhibitory reagent, but abciximab (trade name ReoPro (registered trademark), Eli Lilly and Co.) can also be used.
  • both the EX test and the PI test have tissue factor concentrations of approximately 5 pM or less. It was found that it is possible to find blood coagulation system parameters that correlate with endogenous thrombin production (ETP), peak height, or velocity index in the calibration automated thrombogram (CAT) . The correlation was estimated to be maximized, especially in tissue factor concentrations ranging from approximately 0.5 pM to 1 pM. When compared with the same parameter combinations, the PI test tended to have a slightly higher correlation coefficient than the EX test.
  • the calibrated automated thrombogram which is the comparison target, is measured on platelet-poor plasma, but this does not necessarily mean that the EX test cannot be used.
  • CAT calibration automatic thrombogram
  • PPP platelet-poor plasma
  • PRP platelet-rich plasma
  • Thrombin generation ability including platelet contribution can be measured by EX test and thrombin generation ability suppressing platelet contribution can be measured by PI test for whole blood samples.
  • FIG. 7 shows a typical waveform (solid line (61)) and first-order differential waveform (dotted line (62)) at 10 MHz of the blood coagulation system analyzer according to the present technology.
  • the time when the fibrin network starts to be formed is defined as the coagulation start time CT (64).
  • CT the waveform begins to increase and reaches the maximum amplitude (time T Amax (63)) via the point where the slope is maximum (time T Gmax (65)).
  • the maximum gradient time T Gmax (65) is determined as the point at which the first-order differential waveform is maximized.
  • FIG. 8 shows a typical waveform (solid line (71)) and a first-order differential waveform (dotted line (72)) at 1 MHz of the blood coagulation system analyzer according to the present technology.
  • the waveform continues to increase from time zero, starts to decrease after the maximum amplitude (time T Amax (74)), decreases gradually after the point where the slope is minimum (time T Gmin (75)), and then stabilizes. To do.
  • the maximum gradient time T Gmin (75) is determined as the point at which the first derivative waveform is minimized.
  • a value G max / A max obtained by dividing the maximum gradient G max of the 10 MHz waveform by the maximum amplitude A max is defined as a normalized gradient. If the blood sampling timings are A, B, C, and D at the time of induction of anesthesia in the perioperative period, immediately after the end of cardiopulmonary bypass, ICU entry, and 1 week after surgery, the change in the normalized gradient from A to D is It was found to correlate very well with changes in the endogenous thrombin generation ability of the same patient (FIGS. 9 and 10).
  • FIG. 9 shows the intrinsic thrombin generation ability (ETP, ⁇ ) of the calibration automatic thrombogram (CAT) and the normalized gradient (G max / A) of the blood coagulation system according to the present technology in the perioperative period for cardiac surgery patients.
  • ETP, ⁇ intrinsic thrombin generation ability
  • CAT calibration automatic thrombogram
  • G max / A normalized gradient
  • FIG. 10 also shows the intrinsic thrombin generation ability (ETP, ⁇ ) of the calibration automatic thrombogram (CAT) and the normalized gradient (G max / A) of the blood coagulation system analyzer according to the present technology in the perioperative period for cardiac surgery patients.
  • ETP, ⁇ intrinsic thrombin generation ability
  • G max / A normalized gradient
  • the average slope A max / ⁇ T of the 10 MHz waveform, the reciprocal of the maximum slope time of the 10 MHz waveform 1 / T Gmax It was found that the reciprocal 1 / T Gmin of the minimum gradient time of the 1 MHz waveform and the reciprocal 1 / T Amax of the maximum amplitude time of the 1 MHz waveform correlate with the peak height of the calibration automatic thrombogram, respectively (FIG. 11, FIG. 12).
  • FIG. 11 shows the correlation between the peak height (horizontal axis) of the calibration automatic thrombogram (CAT) parameter and the reciprocal of the maximum gradient time of the 10 MHz waveform of the blood coagulation system analyzer according to the present technology.
  • the data at the four measurement points A to D in the perioperative period are represented by different symbols ( ⁇ , ⁇ , ⁇ , +), and a straight line obtained by fitting all the data by the least square method is also displayed.
  • FIG. 12 shows the correlation between the peak height (horizontal axis) of the calibration automatic thrombogram (CAT) parameter and the reciprocal of the maximum amplitude time of the 1 MHz waveform of the blood coagulation system analyzer according to the present technology.
  • the data at the four measurement points A to D in the perioperative period are represented by different symbols ( ⁇ , ⁇ , ⁇ , +), and a straight line obtained by fitting all the data by the least square method is also displayed.
  • the simplest method for creating a calibration curve is the least square method for the scatter chart of the parameters of the calibration automatic thrombogram (CAT) and the blood coagulation system analyzer according to the present technology. This is a method for obtaining an approximate straight line.
  • the data can be fitted relatively well by a straight line, but if the relationship between the two is more complicated, the fitting may be performed using an appropriate function corresponding thereto.
  • fitting may be performed by an appropriate method for each range.
  • the normal range of the calibration automatic thrombogram parameters it can be used. If there is no data that can be referred to, or if you want to use your own data, set up a control group consisting of healthy individuals separately from the patient group in clinical studies, obtain a statistically sufficient number of data, and use that data as normal. Determine the range. When using relative values without converting to calibration automatic thrombogram parameters, use the calibration curve to set the normal range of calibration automatic thrombogram parameters to the normal range of parameters of the blood coagulation system analyzer according to the present technology. Convert. If unique data is used, the normal range of parameters of the blood coagulation system analyzer according to the present technology can be directly determined.
  • the calibration curve and normal range determined as described above can be used as a data analysis software as a database so that it can be referred to in the analysis procedure newly added by the present invention in the blood coagulation system analysis procedure in Step 3 described above. Referenced from the system.
  • thrombin generation ability can be obtained easily and quickly from a whole blood sample.
  • thrombostatic treatment such as blood transfusion and anticoagulant administration is performed based on evidence, and the prognosis of treatment is improved.
  • the amount of blood transfusion can be reduced, and complications associated with blood transfusion can be reduced or medical costs can be reduced.
  • this technique can also take the following structures.
  • Thrombin generation for analyzing thrombin generation ability based on the electrical characteristics of blood measured at a specific frequency at a predetermined time interval after the action of anticoagulant acting on blood is released
  • a blood coagulation system analyzer including a performance analysis unit.
  • the thrombin generation capacity analysis unit analyzes a correspondence relationship between the electrical characteristics of blood measured at a specific frequency and the thrombin generation capacity in the predetermined period, and based on the correspondence relation from the electrical characteristics of the target blood.
  • the blood coagulation system analyzing apparatus according to claim 1, wherein thrombin generation ability is analyzed.
  • the thrombin generation capacity analyzing unit obtains the maximum gradient (G max ) of the waveform of the electrical characteristic of the specific frequency in the predetermined period as the maximum amplitude (A max ) of the waveform of the electrical characteristic of the specific frequency in the predetermined period. in based on dividing the value G max / a max, analyzes the thrombin potential, blood coagulation system analyzer according to the above [1] or [2].
  • the blood coagulation system analysis apparatus according to any one of [1] to [3], wherein the tissue factor is added to the blood so as to have a concentration of 0.5 pM to 1 pM.
  • the blood coagulation system analyzer according to any one of [1] to [4], wherein the specific frequency is 1 kHz to 50 MHz.
  • [6] a pair of electrodes; An application unit for applying an alternating voltage to the pair of electrodes at a predetermined time interval; A measuring unit for measuring electrical characteristics of blood disposed between the pair of electrodes; A thrombin generation capacity analysis unit for analyzing thrombin generation capacity based on the electrical characteristics of a specific frequency in a predetermined period measured at the time interval after the action of the anticoagulant acting on the blood is solved; Blood coagulation system analysis system.
  • the blood coagulation system analysis system according to [6], further including an output unit that outputs analysis information of thrombin generation ability by the thrombin generation ability analysis unit.
  • An alternating voltage is applied to the pair of electrodes at predetermined time intervals, Measuring the electrical properties of blood disposed between the pair of electrodes; Analyzing thrombin generation ability based on an electrical characteristic of a specific frequency in a predetermined period measured at the time interval after the anticoagulant action acting on the blood is released. Blood coagulation system analysis method.
  • An alternating voltage is applied to the pair of electrodes at predetermined time intervals, Measuring the electrical properties of blood disposed between the pair of electrodes; Data obtained from electrical characteristics of a specific frequency in a predetermined period measured at the time interval after the action of the anticoagulant acting on the blood is solved, and data obtained by an existing test on thrombin generation ability
  • a method for determining parameters for a blood coagulation system analyzer To determine the parameters for the analysis of the thrombin generation ability, A method for determining parameters for a blood coagulation system analyzer.

Abstract

全血試料でトロンビン生成能を簡便に測定できる血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法を提供する。 血液に働いている抗凝固剤作用が解かれた以後から所定の時間間隔で、所定期間における特定の周波数で測定された血液の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部を含む、血液凝固系解析装置。

Description

血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法
 本発明は、血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法に関する。
 生体内での血栓形成(凝固)及び溶解(線溶)は、複雑なカスケード反応により進行し、その反応には、凝固因子、フィブリノーゲン、フィブリン等を含む多数の分子成分、及び血管内皮細胞、血小板等の細胞成分の両方が関与する。凝固及び線溶が係る疾患や傷害の治療又は予防においては、患者の血液凝固能及び線溶能を把握するために様々な検査が行われる。それら凝固及び線溶検査は、各種凝固因子、フィブリノーゲン、Dダイマー等の凝固・線溶反応系に関与する特定分子の量を測定する定量検査と、反応系全体又はその一部の働きの程度を評価する機能検査とに大別することができる。
 凝固反応系は、組織因子と活性化凝固第VII因子の複合体形成を端緒とする機序(外因系)と、異物との接触等の原因による第XII因子の活性化を端緒とする機序(内因系)に分かれており、両者は第X因子の活性化の段階で合流する。
 なお、以下では血栓止血分野の慣習に従い、凝固因子を因子番号のローマ数字の先頭にFを付けて表記し、それが活性化されている場合は末尾にaを付すことにする。例えば、第XII因子、活性化第VII因子はそれぞれFXII、FVIIaと表記する。
 生成したFXaはプロトロンビン(FII)を活性化してトロンビン(FIIa)へと転換し、トロンビンの作用でフィブリノーゲンはフィブリンに転換される。生成したフィブリンはお互いに重合して難溶性の高分子線維となり、更にFXIIIaや血小板の作用により安定化フィブリンと呼ばれる3次元ネットワーク構造を形成する。このネットワーク構造に主として赤血球が巻き込まれた構造体が血栓である。ひとたび血栓が形成されると、凝固が亢進し過ぎるのを抑制するために線溶反応系が働き始め、止血の役割を果たし終えた血栓はやがて溶解される。
 外因系凝固能と内因系凝固能の機能検査として、それぞれプロトロンビン時間(PT)と活性化部分トロンボプラスチン時間(APTT)が広く普及している。これらの検査では、それぞれ外因系と内因系凝固反応を惹起する物質(例えば、それぞれ組織因子とエラグ酸)を大過剰に添加し、短時間で検査結果が得られるようにしている。プロトロンビン時間と活性化部分トロンボプラスチン時間の正常値は、それぞれおおよそ10秒と30~40秒である。したがって、これらの検査は著しい凝固能の低下、すなわち出血傾向を評価するのに好適であるが、逆に著しい凝固能の亢進、すなわち血栓傾向、あるいは凝固能の微妙な変化を評価するのには適していない。
 別の機能検査として、トロンボエラストグラフィー及びトロンボエラストメトリーがあり、それぞれTEG(登録商標)5000(ヘモネティスク社)及びROTEM(登録商標)delta(ティムイノベーションズ社)として実用化されている。TEG 5000では、測定容器であるカップに全血検体を注入し、検査目的に応じた惹起物質を添加したうえで、容器の上部よりワイヤーで吊るされた棒状のピンを浸漬し、容器に対して定常的な往復角運動(典型的には10秒間で4.45°の範囲を往復する運動)を与える。凝固反応の進行に伴い検体の粘弾性が増加し、カップとピンの相対運動は小さくなり、したがってピンの回転変位は増加する。この回転変位を装置内の光学系を用いて経時的に記録することで、トロンボエラストグラムと呼ばれる波形が得られる。カップではなくピンに対して往復角運動が与えられるという違いはあるものの、ROTEM deltaも基本的に同一の原理に基づいている。上記のプロトロンビン時間や活性化部分トロンボプラスチン時間が凝固の終点検出法であるのに対して、トロンボエラストグラフィーやトロンボエラストメトリーは、凝固開始から血栓形成、更にはその後の線溶までの一連のプロセスをひとつの装置で経時的にモニタリングできるという利点がある。
 トロンボエラストグラフィーやトロンボエラストメトリーは、凝固カスケード反応の最終段階であるフィブリン生成に注目し、そのネットワーク形成(凝固)と溶解(線溶)のプロセスを検体の粘弾性を通じてモニタリングすることで、フィブリン生成に至るまでの反応系全体の働きを包括的に検査しているということができる。
 一方、フィブリン生成のひとつ前の段階であるトロンビン生成に注目して、そこに至るまでの反応系全体の働きを包括的に検査することを意図したトロンビン生成試験(TGT)も存在する。トロンビン生成試験では、プロトロンビン時間よりもはるかに少量の組織因子(例えば5 pM程度)を検体に加えて、相対的に穏やかに外因系凝固反応を惹起し、生成するトロンビン量を経時的に測定する。
 トロンビンはセリンプロテアーゼ(セリン残基を持つタンパク質分解酵素)であり、特定のアミノ酸配列を認識してペプチド結合を切断する。この性質を利用して、3~4個のアミノ酸からなるペプチドに色素や蛍光物質を結合させた合成基質によりトロンビンを検出することができる。例えば、Z-Gly-Gly-Arg-AMCという合成基質にトロンビンが作用すると、Arg-AMC間のペプチド結合が特異的に切断され、遊離したAMCが蛍光を発することが知られている。ここで、Zはベンジルオキシカルボニル基、Argはアルギニン、Glyはグリシン、そしてAMCは7-アミノ-4-メチルクマリンを表す。合成基質法に基づくTGT(特許文献1)は、蛍光信号の補正に係る改良を加えられ(特許文献2)、校正自動トロンボグラム(CAT)装置(トロンビノスコープ社)として実用化されている。校正自動トロンボグラムはトロンビン生成試験のひとつの実施形態である。
 上記2件の特許文献では、検査対象として血漿だけでなく全血も含まれているが、合成基質の分解に伴う発色を光学的に検出するという原理から考えて、現実的には血漿検体に限定されてしまうことは容易に推測できる。赤血球の沈降(血沈)や可視光透過率の低さという全血検体特有の課題の解決法は提案されているものの(特許文献3)、臨床現場で定常的に使用可能な全血TGT装置が実用化されるには未だ至っていない。上記市販の校正自動トロンボグラム装置も少血小板血漿(PPP)もしくは多血小板血漿(PRP)を試料とする。
 従って、現在のところトロンビン生成試験を行うためには、患者から採取した血液から遠心分離法により血漿成分のみを抽出しなくてはならない。この前処理は一般的に数十分以上の時間を要する。このことは、迅速性が求められる状況での検査として用いようとする際に大きな障害となる。そのような状況の例としては、人工心肺を用いた冠動脈バイパス術のように大出血を伴い得る手術の周術期において、予期せぬ持続的な出血の原因を究明し、適切な輸血判断を行おうとする場面が挙げられる。
 また、血栓止血分野の基礎研究の成果から、凝固及び線溶カスケード反応においては、血漿中の凝固因子を始めとした様々な分子成分のみならず、血小板や赤血球のような細胞成分が大きな役割を果たしていることが明らかになっている。このような凝固及び線溶反応の描像は細胞基盤型モデル(cell-based model)と呼ばれることがある。従って、細胞成分を除去した血漿検体のトロンビン生成能は必ずしも患者の包括的な凝固病態を反映しているとはいえない。
米国特許第5,192,689号明細書 米国特許第8,551,722号明細書 米国特許第8,916,356号明細書
 以上の議論から、前処理を経ない全血試料に対してトロンビン生成能が簡便に測定できれば、周術期や救急救命現場のように、迅速性及び包括的凝固病態の的確な把握が求められる状況における検査としてきわめて有用であるといえる。
 また、先に挙げたトロンボエラストグラフィーやトロンボエラストメトリーでは、測定容器中での血液性状の変化を粘弾性の変化として測定している。しかし、惹起物質により生成するトロンビン分子そのものを直接的に検出している校正自動トロンボグラムと同様の情報が、このような物理的性質の変化から得られるか否かは全く自明ではない。
 そこで、本願発明者らは、光を用いた計測法の適用が限られる全血試料に対しては、凝固や線溶に伴う血液性状の変化を物理的性質の変化として測定することが有効である、と想到し、鋭意研究の結果、本技術を完成させた。
 すなわち、本技術は、血液に働いている抗凝固剤作用が解かれた以後から所定の時間間隔で、所定期間における特定の周波数で測定された血液の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部を含む、血液凝固系解析装置を提供する。
 前記トロンビン生成能解析部は、前記所定期間における特定の周波数で測定された血液の電気特性とトロンビン生成能との対応関係を分析し、対象の血液の電気特性から前記対応関係に基づいてトロンビン生成能を解析することができる。
 また、前記トロンビン生成能解析部は、前記所定期間における特定の周波数の電気特性の波形の最大勾配(Gmax)を前記所定期間における特定の周波数の電気特性の波形の最大振幅(Amax)で除算した値Gmax/Amaxに基づいて、トロンビン生成能を解析することができる。
 本技術においては、前記血液に、組織因子を0.5pM以上1pM以下の濃度になるように添加することが含まれる。
 更に、前記特定の周波数は、1kHz以上50MHz以下でよい。
 また、本技術は、
 一対の電極と、
 前記一対の電極に対して交番電圧を所定の時間間隔で印加する印加部と、
 前記一対の電極間に配される血液の電気特性を測定する測定部と、
 前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部と、
を含む血液凝固系解析システムを提供する。
 本技術に係る血液凝固系解析システムは、前記トロンビン生成能解析部によるトロンビン生成能の解析情報を出力する出力部を更に含むことができる。
 また、前記トロンビン生成能解析部によるトロンビン生成能の解析結果が、予め定められた正常値を外れたときに警告を発する警告部を更に含むことができる。
 また、本技術は、
 一対の電極に対して交番電圧を所定の時間間隔で印加し、
 前記一対の電極間に配される血液の電気特性を測定し、
 前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性に基づいて、トロンビン生成能を解析することを含む、血液凝固系解析方法を提供する。
 更に、本技術は、
 一対の電極に対して交番電圧を所定の時間間隔で印加し、
 前記一対の電極間に配される血液の電気特性を測定し、
 前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性から得られるデータとトロンビン生成能に関する既存の検査で取得されたデータとを比較して、前記トロンビン生成能の解析のためのパラメーターを決定する、血液凝固系解析装置用パラメーターの決定方法を提供する。
 本技術によれば、全血試料でトロンビン生成能を迅速に簡便に測定することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術に係る血液凝固系解析システムの構成を示す模式図である。 本技術に係る血液凝固系解析手順を示すフローチャートである。 本技術に係るトロンビン生成能を解析するための事前準備手順のフローチャートである。 本技術に係るトロンビン生成能解析を含む解析手順のフローチャートである。 本技術に係る血液凝固系解析装置によりトロンビン生成能を解析する手順のフローチャートである。 校正自動トロンボグラムから得られるトロンビン生成曲線を示すグラフである。 本技術に係る血液凝固系解析装置による血液の誘電率測定結果を示すグラフである。 本技術に係る血液凝固系解析装置による血液の誘電率測定結果を示すグラフである。 本技術に係る血液凝固系解析装によるデータと校正自動トロンボグラムによるデータとの比較を示すグラフである。 本技術に係る血液凝固系解析装によるデータと校正自動トロンボグラムによるデータとの比較を示すグラフである。 本技術に係る血液凝固系解析装置によるパラメーターと校正自動トロンボグラムによるパラメーターとの相関を示すグラフである。 本技術に係る血液凝固系解析装置によるパラメーターと校正自動トロンボグラムによるパラメーターとの相関を示すグラフである。
 以下、本技術を実施するための好適な形態について説明する。なお、以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、これにより本技術の範囲が狭く解釈されることはない。説明は以下の順序で行う。
1.血液凝固系解析装置
 1-1.装置及びシステムの構成
 1-2.システムの動作
2.血液凝固系解析手順
3.トロンビン生成能の解析手順
4.トロンビン生成能のパラメーターの決定
5.実施態様
 5-1.血液凝固系解析手順の実施態様
 5-2.トロンビン生成能と相関するパラメーターの決定
 5-3.検量線と正常範囲の決定
 5-4.まとめ
1.血液凝固系解析装置
 1-1.装置及びシステムの構成
 本技術に係る血液凝固系解析装置は、電気特性に基づいて解析するトロンビン生成能解析部を含む。また、これに、一対の電極と、電源と、一対の電極を印加する印加部と、血液の電気特性を測定する測定部とを備え、システムとすることができる。更に出力部と警告部とを含めることもできる。該血液凝固系解析システムの構成を図1に示す。
 1-2.システムの動作
 まず、血液が一対の電極11及び12の間に配される。血液は、例えばサンプルカートリッジに予め保持し、サンプルカートリッジを電極部分に装着することにより、電極11及び12の間に配することができる。また、血液を配するときに、抗凝固処理解除剤等を添加してもよい。その薬剤導入は、前記サンプルカートリッジに薬剤導入口を備えて行うことができる。
 血液は、クエン酸等を抗凝固剤として用いて静脈から採血されたものを用いるのが一般的である。本技術では、電気特性の測定開始直前に塩化カルシウム水溶液等の抗凝固処理解除剤を用いて抗凝固作用を解除し、血液凝固反応が進行している状態で測定を行う。
 本技術で用いる凝固反応惹起剤は、特に限定されないが、例えば組織因子が挙げられる。
 ここで、従来行われているトロンビン生成試験(TGT)では、前述のように、例えば5pM程度の組織因子を検体に加えるが、本技術においては、例えば濃度が0.5pM~1pMになる程度の少量の組織因子を検体に加えればよい。この濃度の範囲において、後述するトロンビン生成量と血液凝固系解析装置の測定結果との相関が特に良好であると推測される。
 電源3は、測定を開始すべき命令を受けた時点又は電源が投入された時点を開始時点として電圧を印加する。具体的には、電源3は、設定される測定間隔ごとに、印加部2に配される電極11、12に対して、所定の周波数の交番電圧を印加する。
 次に、測定部41は、電極11、12間における電流又はインピーダンスを所定周期で測定し、測定値から、特定の周波数の誘電率を導出する。誘電率の導出には、電流又はインピーダンスと誘電率との関係を示す既知の関数や関係式が用いられる。
 前記誘電率は、アジレント社製のインピーダンスアナライザー(4294A)等を用いて測定することができる。前記特定の周波数は、好ましくは1kHz以上50MHz以下であり、更に好ましくは1MHz以上10MHz以下である。1MHzや10MHzの周波数の測定は、後述のトロンビン生成量(ETP)とよく相関すると推測される。
 前記所定周期の測定間隔は、例えば、1分毎、測定対象の検体の温度は37℃の条件下で測定することができる。
 誘電率のデータは、測定間隔ごとに測定部41から解析部42に与えられ、解析部42は、測定部41から与えられる誘電率データを受けて血液の凝固能判定等を開始する。解析部42は、トロンビン生成能解析部を含んでおり、該トロンビン生成能解析部は、所定期間における特定の周波数で測定された血液の電気特性とトロンビン生成能との対応関係を分析し、対象の血液の電気特性から前記対応関係に基づいてトロンビン生成能を解析する。解析部42は、トロンビン生成能の判定等の解析結果及び誘電率のデータの一方又は双方を出力部43に通知することができる。データ等は波形等のグラフに表し、波形から種々のパラメーターを導き出すことができる。
 出力部43は、解析部42から解析結果、誘電率のデータ等を受け、これらをモニターに表示あるいは所定の媒体に印刷する。
 また、解析部42には、トロンビン生成能等の正常値の範囲が予め組み込まれており、測定結果が正常値範囲外であったときに、その旨が出力部43に通知され、更に、異常値を示した旨が出力部43から警告部44に伝達される。
 警告部44は、モニター表示、警告音、警告ランプ等の手段で警告をシステム操作者に知らせることができる。
2.血液凝固系解析手順
 本技術で行う血液凝固系解析手順は、例えば、特許第5691168号の明細書、特許第5768422号の明細書に記載された血液凝固系解析装置を用いて実施することができる。
 該装置を用いた血液凝固系解析手順を図2に示す。
 前記明細書に記載された血液凝固系解析装置は、測定部が測定を開始すべき命令を受けるか、又は電源が投入されると、電極に、特定の周波数の交番電圧を所定の時間間隔で印加する(S101)。
 次に、測定部は、電極に配された血液の測定間隔ごとの誘電率の測定を開始する(S102)。続いて、以下のサブルーチン(SRT、以下、血液凝固系解析ルーチンともいう)に進む。
 血液凝固系解析ルーチン(SRT)では、まず、解析部が、所定の閾値以上となる誘電率を示す誘電率データを待ち受ける(S103)。所定の閾値以上の誘電率データを受けた場合(YES)、解析部は、血液の抗凝固作用が解かれた時点であるとして、次のステップに進む。所定の閾値未満の誘電率データを受けた場合(NO)、未だ血液の抗凝固作用が解かれていないとして測定を継続する。
 また、解析部は、設定される解析期間の計時を開始するとともに、該解析期間が経過するまでに前記測定部から与えられる誘電率データを蓄積する(S104)。
 次に、解析部は、例えば前記解析期間内に蓄積した誘電率データが示す誘電率に最も近似する直線を検出し、その直線の勾配をパラメーターとするなどして、血液凝固系の働きの程度を解析する(S105)。
 なお、本技術の対象となる血液凝固系の測定・解析項目は限定されるものではなく、例えば、血液の凝固(凝血)、フィブリン形成、フィブリン塊形成、血餅形成、赤血球の連銭形成、血液の凝集、赤血球の沈降(赤沈)、血餅収縮(退縮)、溶血、線溶等が挙げられる。
 以下、測定項目がトロンビン生成能である場合について説明する。
3.トロンビン生成能の解析手順
 本技術に係るトロンビン生成能の解析手順の概略は以下のとおりである。
 まず、血液の凝固及び線溶反応に伴う電気特性変化の特徴に対して、特定のデータ処理を施す。そして、該処理されたデータとトロンビン生成試験(TGT)から得られるトロンビン生成量とが良好に相関するパラメーターを得る。次に、全血試料の電気特性を測定し、該測定結果を前記パラメーターに基づいて解析し、該全血試料のトロンビン生成能を決定する。
 更に詳細には、まず、トロンビン生成能の解析手順に先立ち、臨床研究による事前準備手順(以下に説明するStep1及びStep2)を行って(図3)、新たな追加の解析手段を設定する。
Step 1(S1):
 臨床研究において、多くの検体に対してトロンビン生成試験と血液凝固系解析装置の両方のデータを収集する。解析部は、両者を比較検討することにより、相関性のあるトロンビン生成試験と血液凝固系解析装置の出力パラメーターの組み合わせを少なくとも1組決定する(S1201)。また、決定したパラメーターを算出するためのアルゴリズムを血液凝固系解析装置の解析ソフトウェアに実装する(S1202)。
Step2(S2):
 解析部は、臨床研究のデータに基づいて、血液凝固系解析装置のパラメーターをトロンビン生成試験(TGT)のパラメーターに変換するための検量線を作成する(S1203)。また、血液凝固系解析装置とトロンビン生成試験のパラメーターの正常範囲を定義する(S1204)。検量線と正常範囲のデータは、血液凝固系解析装置の解析ソフトウェアが処理の過程で参照するデータベースとしてデータ解析ソフトウェアシステムに組み込む。
 以上のStep1とStep2を経ることにより、新たな追加の解析手順を設定し、以下の血液凝固系解析手順(S3)の前に組み込むことができる。
Step3(S3):
 図4に、トロンビン生成能解析を含む解析手順を示す(S3)。
Step3では、血液凝固系解析装置で検体を測定し、解析部において血液凝固系解析を行う(S1205)。この部分は、血液凝固系測定項目で共通である。
 これに加えて、解析部は、Step1を経て新たに付加したアルゴリズムによりトロンビン生成試験と相関するパラメーターを算出する(S1206)。また、解析部は、データベースを参照することで、そのパラメーターをトロンビン生成試験のパラメーターに変換し、その値が正常範囲に含まれているか、それとも異常値であるかを判定する。判定結果は、出力部によりモニターに表示、媒体に印刷される等により出力される(S1207)。
 以上に述べたように、臨床研究による事前準備手順(S1及びS2)に基づいてトロンビン生成能の解析手順を確立できれば(S1206)、事前準備手順(S1及びS2)を繰り返す必要はなく、血液凝固系解析手順(S3)により、ルーチン的に検査を行うことができる。
 なお、上記Step1、Step2及びStep3の一連のフローは、本技術に係るトロンビン生成能の解析に限定されない。
4.トロンビン生成能のパラメーターの決定
 本技術では、トロンビン生成能を解析するためのパラメーターを予め解析部に設定する。
 パラメーターは、例えば、所定期間における特定の周波数で測定された血液の誘電率と既存の検査で取得されたトロンビン生成能のデータとの対応関係を分析することにより得る。
 前記既存の検査は、例えば、トロンビン生成試験、プロトロンビン時間、活性化部分トロンボプラスチン時間、トロンボエラストグラフィー及びトロンボエラストメトリーの少なくとも1つが選択される。
 一方、前記既存の検査データとの対応関係をみるための前記誘電率のデータには、例えば、以下:
所定期間における特定の周波数の電気特性の波形の最大勾配(Gmax)、
所定期間における特定の周波数の電気特性の波形の最大勾配の時間(TGmax)、
所定期間における特定の周波数の電気特性の波形の最大振幅(Amax)、
所定期間における特定の周波数の電気特性の波形の最大振幅の時間(TAmax)、
所定期間における特定の周波数の電気特性の波形の最小勾配(Gmin)、
所定期間における特定の周波数の電気特性の波形の最小勾配の時間(TGmin)、
所定期間における特定の周波数の電気特性の波形の最小振幅(Amin)、
所定期間における特定の周波数の電気特性の波形の最小振幅の時間(TAmin)、及び
凝固開始時間(CT)
が挙げられ、これらのデータから1つを選択してもよく、複数を選択して演算を行ってもよい。
 演算して得られるパラメーターの一例としては、前記所定期間における特定の周波数の電気特性の波形の最大勾配(Gmax)を前記所定期間における特定の周波数の電気特性の波形の最大振幅(Amax)で除算した値Gmax/Amaxが挙げられる。
5.実施態様
 以下、実施態様の一例を説明するが、本技術はこれに限定されるものではない。
 5-1.血液凝固系解析手順の実施態様
 本技術の実施態様に係る血液凝固系解析手順は図5のフローチャートに示される。
 まず、血液凝固系解析装置の一対の電極に血液を配し、該一対の電極に、特定周波数の交番電圧の印加を開始する(S201)。測定部は、所定の間隔ごとの血液の誘電率を測定する(S202)。
 解析部は、測定された誘電率から血液凝固系の解析を開始する(S203)。解析部は、誘電率について予め定められた閾値を設定しており、閾値以上の誘電率データを受けた場合(YES)、血液の凝固作用が解かれた時点であるとして、次のステップに進む。閾値未満の誘電率データを受けた場合(NO)は、血液の凝固作用が解かれていないとして、誘電率の測定を継続する。
 血液の凝固作用が解かれた時点から、解析部は、設定される解析期間の経時を開始するとともに、該解析期間が経過するまでに前記測定部から与えられる誘電率データを蓄積する(S204)。
 解析部は、解析期間内に蓄積した誘電率データが示す誘電率に最も近似する直線を検出し、その直線の勾配等をパラメーターとするなどして、血液凝固系の働きの程度を解析する(S205)。
 次に、解析部は、得られた勾配等のパラメーターと予め取得しておいたトロンビン生成能のデータベースとを比較し、良好に相関するパラメーターを算出する(S206)。
 また、解析部は、算出されたパラメーターから、トロンビン生成能のパラメーターに変換するための検量線を作成する(S207)。また、トロンビン生成能のデータベースを参照して、トロンビン生成能の正常範囲を参照する。
 更に、解析部は、作成した検量線からトロンビン生成能のパラメーターを算出する(S208)。該パラメーターで解析対象の血液における誘電率のデータを処理し、トロンビン生成能を判定する。出力部は、判定結果を印字やディスプレイ等で表示する(S209)。
 また、解析部は、判定結果が予め定められたトロンビン生成能の正常値の範囲内にあるかが判断される(S210)。正常値の範囲内であれば(YES)、解析対象の血液の測定及び判定は終了し、正常値の範囲外であれば(NO)、警告部がこれを知らせる。
 5-2.トロンビン生成能と相関するパラメーターの決定
 心臓血管外科手術を施行される患者のうち、臨床研究への参加にあたり十分な説明を受けた後、十分な理解の上、患者本人の自由意志による文書同意が得られた20歳以上の患者を対象とした臨床研究を実施した。体重が20 kg未満の患者、治療を要する血液学的異常のある患者、お及び血行動態の不安定さ等の理由によって少量の採血も患者に不利益をもたらすと考えられる患者は除外した。
 麻酔導入時、人工心肺終了直後、集中治療室(ICU)入室時、術後1週間後、術後1か月後、術後3か月後、及び術後6か月後の時期においてそれぞれ、患者から血液約12 mLを採取した。手術侵襲、人工心肺、抗凝固剤、抗血小板剤の投与、輸血治療等による全血凝固能の変化や血小板機能の変化について、参考のため従来の検査方法でデータを取得しておいた。余剰の血液は遠心分離法により血漿成分と細胞成分に分離し、前者は-80℃の冷凍庫で保存した。
 冷凍保存した血漿検体がある程度の数量貯まった時点で、それらを解凍し、多項目血液凝固分析装置であるALC TOP(インストゥルメンテーション ラボラトリー社)を用いて、PT、APTT、FII、FV、FVIII、FIX、FX、FXI、FXII、FXIII、フィブリノーゲン等の凝固検査項目を測定した。また、校正自動トロンボグラム(CAT)装置(トロンビノスコープ社)での測定も行った。
 校正自動トロンボグラム測定では、全血の遠心分離により得られた少血小板血漿(PPP)を検体とした。製造元から提供される取扱説明書にしたがって蛍光強度に係る校正を行った後、製造元から提供されるPPP-Reagentを用いて検体の測定を行った。PPP-Reagent は、採血管に含まれるクエン酸による抗凝固作用を解除するためのカルシウム、外因系凝固反応を惹起する組織因子及びリン脂質から構成されており、製造元から公開されていないが、PPP-Reagentの組織因子濃度はおおよそ5pMであると推測される(H. C. Hemker et al., Current Opinion in Hematology 11(3), 170-175 (2004).)。校正自動トロンボグラムから得られるトロンビン生成の時間依存曲線はトロンボグラムと呼ばれる。トロンボグラムは主に6個のパラメーターによって特徴づけられる(図6)。
 トロンボグラムの各パラメーターは、以下の表1により説明される。
Figure JPOXMLDOC01-appb-T000001
 本技術に係る血液凝固系解析装置を用いた測定では、校正自動トロンボグラムのパラメーターと相関するパラメーターを探索するために、100 Hzから40 MHzまでの広い範囲内で57個の周波数点における複素誘電率を、測定開始直後から60分後まで1分間隔で測定した。校正自動トロンボグラムと同様に血液凝固系解析装置でも組織因子を惹起物質とし、濃度ゼロ(組織因子の添加なし)も含めた様々な濃度で検討を行った。PPP-Reagentと同様にカルシウム、組織因子、及びリン脂質を含む、本技術に係る血液凝固解析装置でのアッセイを「EXテスト」と呼ぶ。校正自動トロンボグラム測定が血小板の寄与が極めて小さい少血小板血漿(PPP)に対して行われたことから、EXテストの試薬にさらに血小板機能を抑制する試薬を加えたアッセイ(「PIテスト」と呼ぶ)も同時に測定した。血小板機能抑制試薬としてサイトカラシンDを用いたが、アブシキマブ(商品名ReoPro(登録商標)、イーライリリー社)等を用いることもできる。
 臨床研究における多くの検体に対して、本技術に係る血液凝固系解析装置と校正自動トロンボグラムのデータを詳細に比較検討したところ、EXテストとPIテストの両方とも、組織因子濃度がおおよそ5pM以下の範囲内において、校正自動トロンボグラム(CAT)の内因性トロンビン生成量(ETP)、ピーク高さ、あるいは速度指数と相関する血液凝固系解析装置のパラメーターを見出すことが可能であることがわかった。その相関は特に組織因子濃度がおおよそ0.5pMから1pMの範囲で最大になると推定された。同じパラメーターの組み合わせで比べた場合、PIテストの方がEXテストよりもやや相関係数が大きい傾向があった。これは比較対象である校正自動トロンボグラムが少血小板血漿に対して測定されていることによるものと考えられるが、必ずしもEXテストが使えないということではない。校正自動トロンボグラム(CAT)では、予め試料として少血小板血漿(PPP)か多血小板血漿(PRP)のどちらかを選択する必要があるのに対して、本技術に係る血液凝固系解析装置では、全血試料に対して、血小板の寄与を含んだトロンビン生成能をEXテストで、また血小板の寄与を抑制したトロンビン生成能をPIテストで測定することができる。
 校正自動トロンボグラムのパラメーターと相関する血液凝固系解析装置のパラメーターとしては多くの可能性が考えられ、本技術では、特定のパラメーターの選択に限定されない。血液凝固系解析装置の原理研究から、1MHz及び10MHzにおける誘電率実部の時間変化波形を用いることにより、凝固及び線溶反応のプロセスを有効にモニタリングできることが示されている(Y. Hayashi et al., Analytical Chemistry 87(19), 10072-10079 (2015))。そこで特に1MHz及び10MHzの波形に着目して校正自動トロンボグラムと相関するパラメーターを探索した(図7、図8)。
 図7は、本技術に係る血液凝固系解析装置の10MHzおける典型的な波形(実線(61))と1次微分波形(点線(62))を示す。フィブリンネットワークが形成され始める時間を凝固開始時間CT(64)とする。CTの後で波形は増加し始め、勾配が最大になる点(時間TGmax(65))を経て振幅が最大になる(時間TAmax(63))。最大勾配時間TGmax(65)は1次微分波形が極大になる点として決定される。
 図8は、本技術に係る血液凝固系解析装置の1MHzにおける典型的な波形(実線(71))と1次微分波形(点線(72))を示す。波形は時間ゼロから増加を続け、最大振幅(時間TAmax(74))を経て減少に転じ、勾配が最少になる点(時間TGmin(75))を経て減少速度が緩やかになり、やがて安定する。最大勾配時間TGmin(75)は1次微分波形が極小になる点として決定される。
 ここで、例えば、10MHz波形の最大勾配Gmaxを最大振幅Amaxで割った値Gmax/Amaxを規格化勾配と定義する。周術期における麻酔導入時、人工心肺終了直後、ICU入室時、および術後1週間後の採血タイミングをそれぞれA、B、C、及びDとすると、AからDまでの規格化勾配の変化は、同じ患者の内因性トロンビン生成能の変化ときわめてよく相関することが分かった(図9、図10)。
 図9は、心臓手術患者に対する周術期における、校正自動トロンボグラム(CAT)の内因性トロンビン生成能(ETP、●)及び本技術に係る血液凝固系解析装置の規格化勾配(Gmax/Amax、■)の変化の代表例を示す。B点(人工心肺終了直後)とC点(ICU入室時)に包括凝固能が低下する例(上)、およびC点のみで低下する例(下)が他にも見られた。いずれの例でも内因性トロンビン生成能と規格化勾配は類似した変化を示した。
 図10も、心臓手術患者に対する周術期における、校正自動トロンボグラム(CAT)の内因性トロンビン生成能(ETP、●)及び本技術に係る血液凝固系解析装置の規格化勾配(Gmax/Amax、■)の変化の代表例を示す。周術期の4測定点A~Dにわたり包括凝固能が比較的健全に維持されていると考えられる例(上)、およびD点で低下する例(下)が他にも見られた。いずれの例でも内因性トロンビン生成能ETPと規格化勾配は類似した変化を示した。
 また、10MHz波形の規格化勾配(Gmax/Amax)と内因性トロンビン生成能の組み合わせ以外にも、10MHz波形の平均勾配Amax/ΔT、10 MHz波形の最大勾配時間の逆数1/TGmax、1 MHz波形の最小勾配時間の逆数 1/TGmin、及び1MHz波形の最大振幅時間の逆数 1/TAmaxが、それぞれ校正自動トロンボグラムのピーク高さと相関することが分かった(図11、図12)。
 図11は、校正自動トロンボグラム(CAT)パラメーターのピーク高さ(横軸)と本技術に係る血液凝固系解析装置の10MHz波形の最大勾配時間の逆数との相関を示す。周術期の4測定点A~Dのデータは異なる記号(○、×、△、+)で表し、全データを最小二乗法でフィッティングした直線も表示した。
 図12は、校正自動トロンボグラム(CAT)パラメーターのピーク高さ(横軸)と本技術に係る血液凝固系解析装置の1MHz波形の最大振幅時間の逆数との相関を示す。周術期の4測定点A~Dのデータは異なる記号(○、×、△、+)で表し、全データを最小二乗法でフィッティングした直線も表示した。
 5-3.検量線と正常範囲の決定
 検量線の必要性は、本技術に係る血液凝固系解析装置を用いるユーザーのニーズによる。校正自動トロンボグラムの内因性トロンビン生成能やピーク高さと同じ形で値を得たいのであれば、血液凝固系解析装置のパラメーターをそれらに換算するための検量線が必要である。一方、例えば周術期において、患者のトロンビン生成能と相関して変動する相対的なパラメーターが得られれば十分であれば、検量線を作成する必要はない。
 検量線の最も単純な作成方法は、前記図11及び図12に示すように、校正自動トロンボグラム(CAT)と本技術に係る血液凝固系解析装置のパラメーターの散乱図に対して最小二乗法により近似直線を得る方法である。これらの例では直線により比較的良好にデータをフィッティングできているが、両者の関係がより複雑であれば、それに応じた適切な関数を用いてフィッティングすればよい。また、校正自動トロンボグラムのパラメーターの範囲によって異なる関係性が見られる場合は、その範囲ごとに適切な方法でフィッティングを行えばよい。
 また、校正自動トロンボグラムのパラメーターの正常範囲として参照することができる先行文献などがある場合は、それを利用することができる。参照できるデータが無い場合、あるいは独自のデータを用いたい場合、臨床研究において患者群とは別に健常者から成るコントロール群を設定し、統計的に十分な数のデータを取得し、そのデータから正常範囲を決定する。校正自動トロンボグラムのパラメーターに換算せず相対値を用いる場合は、検量線を用いて、校正自動トロンボグラムのパラメーターの正常範囲を対応する本技術に係る血液凝固系解析装置のパラメーターの正常範囲に変換する。もし独自のデータを用いるのであれば、本技術に係る血液凝固系解析装置のパラメーターの正常範囲を直接決定することもできる。
 上記のようにして決定された検量線と正常範囲は、前述のStep 3の血液凝固系解析手順において、本発明により新たに追加される解析手順の中で参照できるように、データベースとしてデータ解析ソフトウェアシステムから参照される。
 5-4.まとめ
 本技術は、臨床研究により得られた新たな知見に基づき、例えばトロンビン生成能を取り上げ、そのパラメーターを明示的に出力するための新たな解析手順を加えるものである。解析期間の計時を開始するとともに、測定値を蓄積するところまで、種々の血液凝固系測定項目の解析手順と共通にすることができる。そして、測定値が蓄積されると、前述のStep 1で特定した新たなパラメーターを算出し、前述のStep 2で作成された検量線および正常範囲のデータベースを参照し、トロンビン生成能に係るパラメーターを算出し、その値が正常範囲に収まっているか、あるいは異常値であるかを判定することができる。
 本技術に係るトロンビン生成の解析手順を用いれば、全血検体から、簡便かつ迅速にトロンビン生成能に関する知見を得ることができる。これにより、例えば周術期や救急救命といった迅速性を要求される臨床現場においても、患者の包括的凝固病態をトロンビン生成能として把握することができる。その結果、例えば輸血や抗凝固剤投与といった血栓止血治療がエビデンスに基づいて行われるようになり、治療の予後が向上する。また、輸血量が削減され、輸血に伴う合併症の減少、あるいは医療コストの低減が実現される。
 また、血液凝固系解析装置の本体やアッセイを変更することなく、データ解析ソフトウェアシステムの一部を変更するだけで、従来の解析手順によって得られる血液凝固系の働きの程度に関する情報に加えて、トロンビン生成能に関する情報を得られるようになる。新たに校正自動トロンボグラム装置等のトロンビン生成試験装置を導入する必要がないので、臨床検査装置導入コストの低減、装置設置スペースの節約、あるいは臨床現場での労力低減などが実現される。
 なお、本技術は、以下のような構成も採ることができる。
〔1〕 血液に働いている抗凝固剤作用が解かれた以後から所定の時間間隔で、所定期間における特定の周波数で測定された血液の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部を含む、血液凝固系解析装置。
〔2〕 前記トロンビン生成能解析部は、前記所定期間における特定の周波数で測定された血液の電気特性とトロンビン生成能との対応関係を分析し、対象の血液の電気特性から前記対応関係に基づいてトロンビン生成能を解析する、請求項1に記載の血液凝固系解析装置。
〔3〕 前記トロンビン生成能解析部は、前記所定期間における特定の周波数の電気特性の波形の最大勾配(Gmax)を前記所定期間における特定の周波数の電気特性の波形の最大振幅(Amax)で除算した値Gmax/Amaxに基づいて、トロンビン生成能を解析する、前記〔1〕又は〔2〕に記載の血液凝固系解析装置。
〔4〕 前記血液に、組織因子を0.5pM以上1pM以下の濃度になるように添加することが含まれる、前記〔1〕~〔3〕のいずれかに記載の血液凝固系解析装置。
〔5〕 前記特定の周波数は、1kHz以上50MHz以下である、前記〔1〕~〔4〕のいずれかに記載の血液凝固系解析装置。
〔6〕 一対の電極と、
 前記一対の電極に対して交番電圧を所定の時間間隔で印加する印加部と、
 前記一対の電極間に配される血液の電気特性を測定する測定部と、
 前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部と、
を含む血液凝固系解析システム。
〔7〕 前記トロンビン生成能解析部によるトロンビン生成能の解析情報を出力する出力部を更に含む、前記〔6〕に記載の血液凝固系解析システム。
〔8〕 前記トロンビン生成能解析部によるトロンビン生成能の解析結果が、予め定められた正常値を外れたときに警告を発する警告部を更に含む、前記〔7〕又は〔8〕に記載の血液凝固系解析システム。
〔9〕 一対の電極に対して交番電圧を所定の時間間隔で印加し、
 前記一対の電極間に配される血液の電気特性を測定し、
 前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性に基づいて、トロンビン生成能を解析することを含む、
血液凝固系解析方法。
〔10〕 一対の電極に対して交番電圧を所定の時間間隔で印加し、
 前記一対の電極間に配される血液の電気特性を測定し、
 前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性から得られるデータとトロンビン生成能に関する既存の検査で取得されたデータとを比較して、前記トロンビン生成能の解析のためのパラメーターを決定する、
血液凝固系解析装置用パラメーターの決定方法。
 2      印加部
 3      電源
 11、12  電極
 41     測定部
 42     解析部
 43     出力部
 44     警告部
 51     遅延時間
 52     ピーク時間
 53     終了時間
 54     ピーク高さ
 55     内因性トロンビン生成能
 56     速度指数

Claims (10)

  1.  血液に働いている抗凝固剤作用が解かれた以後から所定の時間間隔で、所定期間における特定の周波数で測定された血液の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部を含む、血液凝固系解析装置。
  2.  前記トロンビン生成能解析部は、前記所定期間における特定の周波数で測定された血液の電気特性とトロンビン生成能との対応関係を分析し、対象の血液の電気特性から前記対応関係に基づいてトロンビン生成能を解析する、請求項1に記載の血液凝固系解析装置。
  3.  前記トロンビン生成能解析部は、前記所定期間における特定の周波数の電気特性の波形の最大勾配(Gmax)を前記所定期間における特定の周波数の電気特性の波形の最大振幅(Amax)で除算した値Gmax/Amaxに基づいて、トロンビン生成能を解析する、請求項1に記載の血液凝固系解析装置。
  4.  前記血液に、組織因子を0.5pM以上1pM以下の濃度になるように添加することが含まれる、請求項1に記載の血液凝固系解析装置。
  5.  前記特定の周波数は、1kHz以上50MHz以下である、請求項1に記載の血液凝固系解析装置。
  6.  一対の電極と、
     前記一対の電極に対して交番電圧を所定の時間間隔で印加する印加部と、
     前記一対の電極間に配される血液の電気特性を測定する測定部と、
     前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性に基づいて、トロンビン生成能を解析するトロンビン生成能解析部と、
    を含む血液凝固系解析システム。
  7.  前記トロンビン生成能解析部によるトロンビン生成能の解析情報を出力する出力部を更に含む、請求項6に記載の血液凝固系解析システム。
  8.  前記トロンビン生成能解析部によるトロンビン生成能の解析結果が、予め定められた正常値を外れたときに警告を発する警告部を更に含む、請求項6に記載の血液凝固系解析システム。
  9.  一対の電極に対して交番電圧を所定の時間間隔で印加し、
     前記一対の電極間に配される血液の電気特性を測定し、
     前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性に基づいて、トロンビン生成能を解析することを含む、
    血液凝固系解析方法。
  10.  一対の電極に対して交番電圧を所定の時間間隔で印加し、
     前記一対の電極間に配される血液の電気特性を測定し、
     前記血液に働いている抗凝固剤作用が解かれた以後から前記時間間隔で測定される所定期間における特定の周波数の電気特性から得られるデータとトロンビン生成能に関する既存の検査で取得されたデータとを比較して、前記トロンビン生成能の解析のためのパラメーターを決定する、
    血液凝固系解析装置用パラメーターの決定方法 。
     
PCT/JP2016/083882 2016-01-29 2016-11-16 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法 WO2017130528A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16888113.4A EP3388838B1 (en) 2016-01-29 2016-11-16 Blood coagulation analysis
CN201680079236.6A CN108474799B (zh) 2016-01-29 2016-11-16 凝血系统解析装置、凝血系统解析系统、凝血系统解析方法
JP2017563709A JP7009998B2 (ja) 2016-01-29 2016-11-16 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法
US16/071,663 US10794896B2 (en) 2016-01-29 2016-11-16 Blood coagulation system examination module, blood coagulation system examination system, blood coagulation system examination method, and determination method of parameter for blood coagulation system examination module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-015444 2016-01-29
JP2016015444 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017130528A1 true WO2017130528A1 (ja) 2017-08-03

Family

ID=59397647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/083882 WO2017130528A1 (ja) 2016-01-29 2016-11-16 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法

Country Status (5)

Country Link
US (1) US10794896B2 (ja)
EP (1) EP3388838B1 (ja)
JP (1) JP7009998B2 (ja)
CN (1) CN108474799B (ja)
WO (1) WO2017130528A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851857A4 (en) * 2018-09-11 2021-09-29 Shenzhen Mindray Bio-Medical Electronics Co., Ltd BLOOD COAGULATION ANALYZER, ASSOCIATED SAMPLE DETECTION METHOD AND STORAGE MEDIA

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7135620B2 (ja) * 2018-09-07 2022-09-13 ソニーグループ株式会社 血液凝固系解析装置、血液凝固系解析方法及び血液凝固系解析プログラム
CN110619938B (zh) * 2019-10-22 2023-05-30 常熟常江生物技术有限公司 基于血栓弹力图的血小板抑制率计算方法
CN112162102B (zh) * 2020-07-22 2023-09-08 三诺生物传感股份有限公司 一种用于凝血四项测试的校正方法
CN113962252B (zh) * 2021-09-16 2023-07-18 深圳市国赛生物技术有限公司 凝血时间计算方法、装置、系统与可读存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192689A (en) 1989-09-27 1993-03-09 Hemker Hendrik C Method for determining the endogenous thrombin potential of plasma and blood
JP2010181400A (ja) * 2009-01-08 2010-08-19 Sony Corp 血液凝固系解析装置、血液凝固系解析方法及びプログラム
US8551722B2 (en) 2008-02-07 2013-10-08 Synapse B.V. Time-course measurement of enzymatic activity corrected for impacts of disturbances relating to the reaction of the enzyme with a substrate
JP2014169920A (ja) * 2013-03-04 2014-09-18 Ngk Insulators Ltd 血液凝固検出装置及び血液凝固検出方法
US8916356B2 (en) 2005-04-29 2014-12-23 Synapse B.V. Measuring thrombin activity in whole blood
JP2015501137A (ja) * 2011-09-30 2015-01-15 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia 止血を調節するための組成物および方法
JP5768422B2 (ja) 2011-03-17 2015-08-26 ソニー株式会社 血液凝固系解析方法および血液凝固系解析装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5197017A (en) * 1990-09-27 1993-03-23 Carroll Wallace E Potentiophotometric fibrinogen determination
AT501650A1 (de) * 2005-02-22 2006-10-15 Technoclone Ges M B H Verfahren zur bestimmung der gerinnungsaktivierung sowie gerät zur durchführung des verfahrens
BRPI0617460B8 (pt) * 2005-10-18 2021-07-27 Fujimori Kogyo Co aparelho que monitora a formação de trombo pelo escoamento de sangue anticoagulado através de um canal que simula um vaso sanguíneo enquanto libera um tratamento de anticoagulação ou que promove a coagulação sanguínea, e, método in vitro para monitorar a formação de trombo
EP1918718A1 (de) * 2006-10-31 2008-05-07 Roche Diagnostics GmbH Verfahren und Vorrichtungen zur elektrochemischen Bestimmung von Faktor Xa-Inhibitoren in Blutproben
CA2668356A1 (en) * 2006-11-02 2008-05-08 Thrombinoscope B.V. Method for measuring the concentration of transient proteolytic activity in composite biological media containing cells
CA2878568A1 (en) * 2011-12-31 2013-04-07 The University Of Vermont And State Agriculture College Methods for dynamic visualization of clinical parameters over time
JP5982976B2 (ja) * 2012-04-13 2016-08-31 ソニー株式会社 血液凝固系解析装置、血液凝固系解析方法及びそのプログラム
US9551699B2 (en) * 2012-07-16 2017-01-24 Micropoint Bioscience, Inc. Testing of blood coagulation characteristics
CN105209497B (zh) * 2013-03-15 2021-09-07 诺和诺德股份有限公司 能够特异性结合组织因子途径抑制物上的两个表位的抗体
WO2014141844A1 (ja) * 2013-03-15 2014-09-18 ソニー株式会社 血液状態解析装置、血液状態解析システム、血液状態解析方法、および該方法をコンピューターに実現させるための血液状態解析プログラム
WO2014156371A1 (ja) * 2013-03-29 2014-10-02 ソニー株式会社 血液状態解析装置、血液状態解析システム、血液状態解析方法及びプログラム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5192689A (en) 1989-09-27 1993-03-09 Hemker Hendrik C Method for determining the endogenous thrombin potential of plasma and blood
US8916356B2 (en) 2005-04-29 2014-12-23 Synapse B.V. Measuring thrombin activity in whole blood
US8551722B2 (en) 2008-02-07 2013-10-08 Synapse B.V. Time-course measurement of enzymatic activity corrected for impacts of disturbances relating to the reaction of the enzyme with a substrate
JP2010181400A (ja) * 2009-01-08 2010-08-19 Sony Corp 血液凝固系解析装置、血液凝固系解析方法及びプログラム
JP5691168B2 (ja) 2009-01-08 2015-04-01 ソニー株式会社 血液凝固系解析装置、血液凝固系解析方法及びプログラム
JP5768422B2 (ja) 2011-03-17 2015-08-26 ソニー株式会社 血液凝固系解析方法および血液凝固系解析装置
JP2015501137A (ja) * 2011-09-30 2015-01-15 ザ・チルドレンズ・ホスピタル・オブ・フィラデルフィアThe Children’S Hospital Of Philadelphia 止血を調節するための組成物および方法
JP2014169920A (ja) * 2013-03-04 2014-09-18 Ngk Insulators Ltd 血液凝固検出装置及び血液凝固検出方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.C. HEMKER ET AL., CURRENT OPINION IN HEMATOLOGY, vol. 11, no. 3, 2004, pages 170 - 175
Y. HAYASHI ET AL., ANALYTICAL CHEMISTRY, vol. 87, no. 19, 2015, pages 10072 - 10079

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3851857A4 (en) * 2018-09-11 2021-09-29 Shenzhen Mindray Bio-Medical Electronics Co., Ltd BLOOD COAGULATION ANALYZER, ASSOCIATED SAMPLE DETECTION METHOD AND STORAGE MEDIA

Also Published As

Publication number Publication date
EP3388838A1 (en) 2018-10-17
CN108474799B (zh) 2021-07-23
US20190017995A1 (en) 2019-01-17
JP7009998B2 (ja) 2022-01-26
EP3388838A4 (en) 2019-01-16
JPWO2017130528A1 (ja) 2018-11-15
US10794896B2 (en) 2020-10-06
EP3388838B1 (en) 2022-02-16
CN108474799A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2017130528A1 (ja) 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法及び血液凝固系解析装置用パラメーターの決定方法
Karon Why is everyone so excited about thromboelastrography (TEG)?
CN101578521A (zh) 诊断组合物及其在测试液体的凝结特征测定中的用途
JP7192944B2 (ja) 血液凝固系解析装置、血液凝固系解析システム、血液凝固系解析方法、及び血液凝固系解析用プログラム、並びに、出血量予測装置、出血量予測システム、出血量予測方法、及び出血量予測用プログラム
JP5461175B2 (ja) 生体媒質中で酵素活性を決定する方法
WO2015159623A1 (ja) 血液状態解析装置、血液状態解析システム、血液状態解析方法及びプログラム
JP6461125B2 (ja) 抗第Xa因子試験のユニバーサル較正のための手段および方法
JP6579100B2 (ja) 血液状態解析装置、血液状態解析システム、血液状態解析方法、及び該方法をコンピューターに実現させるための血液状態解析プログラム
CN108603888B (zh) 血小板聚集活性分析设备、分析系统、分析程序和分析方法
JP2015206609A (ja) 血液状態解析装置、血液状態解析システム、血液状態解析方法、および該方法をコンピューターに実現させるための血液状態解析プログラム
JP4928119B2 (ja) 内因性トロンビン活性を自動的に測定するための方法
US11802825B2 (en) Platelet aggregation analysis method, platelet aggregation analysis device, program for analyzing platelet aggregation, and platelet aggregation analysis system
US10962495B2 (en) Blood coagulation system analysis system, blood coagulation system analysis method, and blood coagulation system analysis program
JP6973585B2 (ja) 血小板凝集能解析方法、血小板凝集能解析装置、血小板凝集能解析用プログラム及び血小板凝集能解析システム
Ruberto et al. Performance and Interpretation of Clot Waveform Analysis
Efremov et al. Rapid Whole Blood Clot Retraction Assay on Quartz Crystal Microbalance
Berkovsky et al. A modified method of prothrombin time/International Normalised Ratio determination in capillary blood and monitoring oral anticoagulant therapy
Wang et al. Overall haemostatic potential assay for prediction of outcomes in venous and arterial thrombosis and thrombo-inflammatory diseases
Dias et al. New-Generation Thromboelastography.
WO2020084893A1 (ja) 血小板凝集能解析装置、血小板凝集能解析方法及び血小板凝集能解析システム
KR101383333B1 (ko) 트롬빈 생성 측정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16888113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017563709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE