WO2017128989A1 - 电解液、正极和含有该电解液和/或正极的锂离子电池 - Google Patents

电解液、正极和含有该电解液和/或正极的锂离子电池 Download PDF

Info

Publication number
WO2017128989A1
WO2017128989A1 PCT/CN2017/071365 CN2017071365W WO2017128989A1 WO 2017128989 A1 WO2017128989 A1 WO 2017128989A1 CN 2017071365 W CN2017071365 W CN 2017071365W WO 2017128989 A1 WO2017128989 A1 WO 2017128989A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrolyte
poly
dithiodiphenylamine
additive
Prior art date
Application number
PCT/CN2017/071365
Other languages
English (en)
French (fr)
Inventor
乔飞燕
王圣
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020187024376A priority Critical patent/KR20180102666A/ko
Priority to JP2018539072A priority patent/JP2019503570A/ja
Priority to US16/073,237 priority patent/US10991972B2/en
Priority to EP17743604.5A priority patent/EP3407416A4/en
Publication of WO2017128989A1 publication Critical patent/WO2017128989A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the field of lithium ion batteries, and in particular relates to an electrolyte, a positive electrode and a lithium ion battery containing the same and/or a positive electrode.
  • a lithium ion battery of an electrolyte includes a housing and a battery core and an electrolyte contained in the housing, and the battery core includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • the battery core includes a positive electrode, a negative electrode, and a separator interposed between the positive electrode and the negative electrode.
  • lithium ions migrate from the positive electrode through the electrolyte to the negative electrode, and the flow direction is reversed during the discharge.
  • high-energy-density secondary lithium-ion batteries have become the object of attention. Therefore, some new active materials that can be used as a complete lithium-ion battery are also noted. For example, a new type of 5V high-voltage positive electrode is introduced in the prior art.
  • the improvement of the working voltage of the material directly improves the power consumption of the battery as a whole, and has great practical significance in application.
  • most of the lithium battery electrolyte system can only be used stably under the voltage of 4.5v and below.
  • the electrolyte system will oxidize and decompose and the battery will not work normally.
  • the application of high voltage cathode materials has created a major obstacle. At the same time, the cycle performance of the battery is reduced.
  • the electrolytes used in the field include the search for new electrolyte solvents and the application of positive film-forming protective additives.
  • the electrolyte solvent oxidizes at an active point on the positive electrode at a high potential, and the solvent is further oxidized and decomposed to cause excessive consumption of the electrolyte solvent.
  • an object of the present invention is to provide an electrolyte, a positive electrode, and a lithium ion battery containing the electrolyte and/or the positive electrode, thereby effectively solving the problem that the electrolyte solvent in the prior art is easily oxidized and decomposed at a high potential. technical problem.
  • the present invention provides an electrolyte comprising a lithium salt, an electrolyte solvent and an additive, the additive being an aniline compound of the formula (1) according to an embodiment of the present invention. Or a derivative thereof, the structure of which is as follows:
  • the present invention provides a positive electrode comprising a positive electrode current collector and a positive electrode material layer on a surface of the positive electrode current collector, the surface of the positive electrode material layer having a polymer film, the polymer film being The additive in the electrolytic solution of the above embodiment was polymerized.
  • the present invention also provides a lithium ion battery including a housing and a battery and an electrolyte housed in the housing, wherein the battery core includes a positive electrode, a negative electrode, and a positive electrode and a negative electrode.
  • the electrolyte is an electrolyte provided by an embodiment of the invention; and/or the cathode is a cathode provided by an embodiment of the invention.
  • the invention can effectively block the redox reaction of the electrolyte on the surface of the positive electrode by adding an aniline compound having the structure of the formula (1) or a derivative thereof as an additive to the electrolyte, thereby protecting the positive electrode from being damaged, and protecting the electrolyte at the same time.
  • the solvent is not oxidatively decomposed at a high potential, prolonging the life of the battery at high voltage.
  • the inventors have found through extensive experiments that the aniline compound of the formula (1) of the present invention and its derivative are used as specific additives of the present invention, and an electrolyte additive which forms a film at a potential of 3.5V-4.2V, such an additive is preferentially in the positive electrode.
  • the surface forms a protective film.
  • the film is a polymer film with certain flexibility, oxidation resistance, and stability. It can effectively inhibit the redox reaction of the electrolyte in the positive electrode, protect the electrolyte from excessive consumption, and protect the positive electrode. It is not damaged, and it also protects the electrolyte solvent from oxidative decomposition at high potential, thereby increasing the battery life at high voltage.
  • the use of the specific additive of the present invention can realize the application of a common electrolyte solvent in a 4.8V high voltage environment, which has a remarkable effect and makes an outstanding contribution to the field.
  • the electrolyte provided by the invention is used in a battery.
  • the additive in the electrolyte is polymerized at a potential of 3.5V-4.2V at the specific surface of the positive electrode, and the first reaction additive can be completely consumed. Therefore, it does not affect the function of the battery system.
  • the invention provides an electrolyte comprising a lithium salt, an electrolyte solvent and an additive, the additive being an aniline compound of the formula (1) or a derivative thereof.
  • an aniline compound or a derivative thereof having the structure represented by the formula (1) is used as an additive of the electrolytic solution of the embodiment of the present invention.
  • the inventors have found that the additive can be polymerized at a potential of 3.5V-4.2V and a polymer film is formed on the surface of the positive electrode, thereby effectively blocking the redox reaction of the electrolyte on the surface of the positive electrode and protecting the positive electrode. It is damaged and also protects the electrolyte solvent from oxidative decomposition at high potential. Therefore, the additive has remarkable advantages as compared with the conventional additive.
  • the additive used is an aniline compound or a derivative thereof having the structure shown in Formula 1, and specifically, the structure shown in Formula 1 is as follows:
  • the specific additive of the present invention can
  • the inventors have unexpectedly discovered that when M 1 -M 5 contains at least one thioether group R 3 -SR 4 , the substance has the ability to oxidatively polymerize to form a polymer film at a certain potential.
  • the additive may be selected from the group consisting of 4-trifluoromethylthioaniline, 2-trifluoromethylthioaniline, 3-trifluoromethylthioaniline, 3-chloro- 2-trifluoromethylthioaniline, 3-chloro-4-trifluoromethylthioaniline, 3-fluoro-4-trifluoromethylthioaniline, 3-fluoro-2-trifluoromethylthio Aniline, 4,4'-dithiodiphenylamine, 2-chloro-4,4'-dithiodiphenylamine, 3-chloro-4,4'-dithiodiphenylamine, 2-fluoro-4,4 One or more of '-dithiodiphenylamine, 3-fluoro-4,4'-dithiodiphenylamine.
  • the specific structure is as follows:
  • the content of the additive is from 0.1 to 10% by weight, and more preferably from 0.1 to 3% by weight based on the total mass of the electrolyte.
  • the content is preferably from 0.1 to 3% by weight, and the additive can form a film layer having a sufficient thickness and sufficient coverage on the surface of the positive electrode without excessive additives affecting the system.
  • the concentration of the lithium salt in the electrolytic solution may be 0.3 to 2 mol/L.
  • the lithium salt may be selected from the group consisting of LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiSiF 6 , LiAlCl 4 , LiBOB, LiODFB, LiCl, LiBr, Lii, LiCF 3 SO 3 , Li(CF 3 SO 2 ) 3 , Li(CF 3 CO 2 ) 2 N, Li(CF 3 SO 2 ) 2 N, Li(SO 2 C 2 F 5 ) 2 N, Li(SO 3 CF 3 ) 2 N, LiB(C 2 O 4 ) 2 One or more kinds of mixed use.
  • the invention employs LiPF 6 as the primary lithium salt.
  • the electrolyte solvent may be selected from the group consisting of ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • MF methyl formate
  • MA methyl acetate
  • MP methyl propionate
  • EP ethyl acetate
  • 1,3-propane sultone (1,3-PS) vinyl sulphate
  • DTD propylene sulfate
  • vinyl sulfite ES
  • propylene sulfite PS
  • ADN adiponitrile
  • SN succinonitrile
  • DES diethyl sulfite
  • BL lactone
  • DMSO dimethyl sulfoxide
  • EC ethylene carbonate
  • PC propylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • EMC ethyl methyl carbonate
  • the electrolyte solvent can be applied to a high voltage environment of 4.8 V, which has a remarkable effect compared with the prior art, and at the same time, electrolysis Liquid system It is stable and widely used.
  • the dissociation degree of lithium salt is high, the solubility of additives is better, and the oxidation polymerization process of additives is not affected by the solvent of electrolyte.
  • the electrolyte further includes one or more of dimethyl sulfoxide, ⁇ -butyrolactone, adiponitrile, and vinyl sulfite, and the carbonate-based solvent and
  • the volume ratio of dimethyl sulfoxide is 23:2; the volume ratio of carbonate solvent to ⁇ -butyrolactone is 19:1; the volume ratio of carbonate solvent to adiponitrile is 9:1; carbonate system
  • the volume ratio of solvent to vinyl sulfite was 93:7.
  • the present invention provides a positive electrode including a positive electrode current collector, a positive electrode material layer on a surface of a positive electrode current collector layer, and a polymer film on the surface of the positive electrode material layer, the polymer film
  • the composition is the polymer formed from the additive in the electrolyte of the previous examples.
  • the polymer is poly 4-trifluoromethyl thioaniline, poly 2-trifluoromethyl thioaniline, poly 3-trifluoromethyl thioaniline, poly 3-chloro -2-trifluoromethylthioaniline, poly-3-chloro-4-trifluoromethylthioaniline, poly-3-fluoro-4-trifluoromethylthioaniline, poly-3-fluoro-2-trifluoro Methylthioaniline, poly 4,4'-dithiodiphenylamine, poly-2-chloro-4,4'-dithiodiphenylamine, poly-3-chloro-4,4'-dithiodiphenylamine, One or more of poly-2-fluoro-4,4'-dithiodiphenylamine and poly-3-fluoro-4,4'-dithiodiphenylamine.
  • the polymer film is a protective film formed on the surface of the positive electrode at an electric potential of 3.5 V to 4.2 V as an additive in the electrolyte of the above embodiment.
  • the preparation method of the lithium ion battery electrolyte provided by the invention is a common method of the person skilled in the art, that is, the components (including the lithium salt, the electrolyte solvent and the additive) are uniformly mixed, and the manner and the sequence of the mixing are the invention. There are no special restrictions.
  • the electrolyte additive of the present invention may further contain other substances such as other kinds of functional additives, and the invention is not limited.
  • a lithium ion battery comprising a housing and a battery core and an electrolyte contained in the housing, wherein the battery core comprises a positive electrode And a negative electrode and a separator interposed between the positive electrode and the negative electrode, wherein the electrolyte is the electrolyte of the embodiment of the invention; and/or the positive electrode is the positive electrode of the embodiment of the invention.
  • the positive electrode includes a positive electrode current collector and a positive electrode material, and the positive electrode material includes a positive electrode active material, a conductive agent, and a positive electrode binder.
  • the conductive agent and the positive electrode binder may be a conductive agent and a positive electrode binder which are conventionally used in the art;
  • the anode current collector and the anode material are included.
  • the anode material includes a cathode active material and a cathode binder.
  • the anode material may also optionally include a conductive agent, which is a conventional conductive agent and may be used with a conductive agent in the positive electrode material layer.
  • the negative electrode binder may be the negative electrode binder conventionally used in the art, the same or different.
  • the positive electrode active material is a spinel-structured LiNi 0.5 Mn 1.5 O 4 or a layered LiNi 0.5 Mn 0.5 O 2 positive electrode material, and more preferably a spinel structure.
  • LiNi 0.5 Mn 1.5 O 4 which has a higher charge and discharge potential platform, and the additive assisting application of the structure described in the present application can reflect a wider electrochemical window of the electrolyte, and can highlight the electrolyte additive of the present invention to the electrolyte Increased high voltage performance.
  • the anode active material is lithium or a graphite anode, but is not limited thereto, and metal lithium is further preferable.
  • LiPF 6 lithium hexafluorophosphate
  • the electrolyte solvent included ethylene carbonate (EC) and diethyl carbonate in a volume ratio of 30:70.
  • DEC diethyl carbonate
  • C1 lithium ion battery electrolyte of the present embodiment
  • the positive electrode active material LiNi 0.5 Mn 1.5 O 4
  • acetylene black and polyvinylidene fluoride are uniformly mixed at a mass ratio of 90:5:5 and then pressed onto an aluminum foil to obtain a positive electrode sheet; the lithium metal sheet is used as a negative electrode sheet;
  • the /PP composite separator is an ion exchange membrane, and the electrolytic cell C1 of the present embodiment is used to form a button battery S1 by a conventional method in the art.
  • An electrolyte and a button cell were prepared in the same manner as in Example 1, except that in step (1), 0.5% by weight of 2-trifluoromethylthioaniline was used instead of 4-trifluoromethylthioaniline. 8% by weight of dimethyl sulfoxide was added to the electrolyte system to prepare a lithium ion battery electrolyte C2 and a button battery S2.
  • An electrolyte and a button cell were prepared in the same manner as in Example 1, except that in step (1), 1% by weight of 3-trifluoromethylthioaniline was used instead of 4-trifluoromethylthioaniline.
  • a lithium ion battery electrolyte C3 and a button battery S3 are prepared.
  • An electrolyte and a button cell were prepared in the same manner as in Example 1, except that in step (1), 3% by weight of 3-chloro-2-trifluoromethylthioaniline was used instead of 4-trifluoromethyl.
  • the thioaniline was prepared to obtain a lithium ion battery electrolyte C4 and a button battery S4.
  • the electrolyte and the button cell were prepared in the same manner as in Example 1, except that the step (1) was also added. 7 wt% of 3-chloro-2-trifluoromethylthioaniline in place of 4-trifluoromethylthioaniline, 5% by weight of ⁇ -butyrolactone in the electrolyte system, to prepare lithium ion battery electrolysis Liquid C5 and button battery S5.
  • An electrolyte and a button cell were prepared in the same manner as in Example 1, except that 10% by weight of 4,4'-dithiodiphenylamine was added in place of 4-trifluoromethylthio in step (1).
  • An aniline, 10% by weight of adiponitrile was added to the electrolyte system to prepare a lithium ion battery electrolyte C6 and a button battery S6.
  • the electrolyte and the button cell were prepared in the same manner as in Example 1, except that the 4-trifluoromethylthioaniline added in the step (1) was 12% by weight (not in the content range of the present application, More than, 7 wt% of ethylene sulfite (ES) was added to the electrolyte system to prepare a lithium ion battery electrolyte C7 and a button cell S7.
  • ES ethylene sulfite
  • the electrolytic solution and the button battery were prepared in the same manner as in Example 1, except that the ionic amine additive was not used in the step (1), and the lithium ion battery electrolyte DC1 and the button battery DS1 were prepared.
  • the electrolyte and the button cell were prepared in the same manner as in Example 1, except that: 2.5% by weight of a fluorotriphenylamine additive was added in the step (1), and 5% by weight of ⁇ -butane was added to the electrolyte system.
  • the ester is prepared to obtain a lithium ion battery electrolyte DC2 and a button battery DS2.
  • a three-electrode test method was used.
  • a platinum plate was used as a working electrode, and a lithium plate was used as a reference electrode and a counter electrode to characterize the electropolymerization potential of the additive and the oxidative decomposition potential of the electrolyte.
  • the test results are shown in Table 1.
  • Electrolyte Additive polymerization potential Electrolyte oxidation decomposition potential C1 4.1 5.8 C2 4.1 5.6 C3 4.2 5.7 C4 4.1 5.6 C5 4.2 5.3 C6 4.1 5.2 C7 4.1 5.4 DC1 ⁇ 4.9 DC2 ⁇ 5.0
  • the test results are shown in Table 3.
  • the polymerization potential of the additive of the present invention is at least 4.1 V and the highest is 4.3 V; the oxidative decomposition potential of the electrolyte prepared by using the specific additive of the present invention is at most 5.8 V, and the lowest is 5.3 V; Lithium-ion battery prepared by electrolyte has good performance in charge and discharge performance test and cycle test, and the battery can be used normally at a high voltage of 4.8V.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

提供了电解液、正极和含有该电解液和/或正极的锂离子电池,其中电解液包括锂盐、电解液溶剂和添加剂,所述添加剂为式1所示结构的苯胺类化合物或其衍生物,其中,R1和R2分别独立地选自-H、-(CH2)n1CH3、-(CH2)n2CF3中的至少一种,其中0≤n1≤3,0≤n2≤3;M1-M5分别独立地选自-H、-F、-Cl、-Br、-(CH2)n3CH3、R3-S-R4中的至少一种,其中0≤n3≤3,并且M1-M5中的至少一个选自硫醚R3-S-R4基团,其中R3选自-(CH2)n4-,其中0≤n4≤1,R4选自苯胺基团、-(CH2)n5CF3中的一种或两种,其中0≤n5≤3。通过采用式1所示结构的苯胺类化合物或其衍生物作为本发明特定的添加剂,可以保护正极不被损坏,同时也保护电解液溶剂在高电位下不被氧化分解,进而延长电池在高电压下的寿命。

Description

电解液、正极和含有该电解液和/或正极的锂离子电池
优先权信息
本申请请求2016年01月29日向中国国家知识产权局提交的、专利申请号为201610067193.1的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本发明属于锂离子电池领域,尤其涉及电解液、正极和含有该电解液和/或正极的锂离子电池。
背景技术
自20世纪90年代至今,锂离子二次电池从诞生达到了迅速的发展。一般来说,电解液的锂离子电池包括壳体和容纳于壳体内的电芯、电解液,电芯包括正极、负极和介于正极与负极之间的隔膜。在充电过程中,锂离子从正极通过电解液迁移至负极,而在放电过程中其流向相反。近年来,高能量密度的二次锂离子电池成为人们关注的对象,因此,人们也注意到一些可以作为二次锂电池整机使用的新型活性材料,如现有技术中介绍了新型5V高压正极材料,其工作电压的提高,直接整体提高了电池的使用功率,在应用方面具有很大的现实意义。而现阶段,绝大多数的锂电池电解液体系只能在4.5v及以下的电压下稳定使用,当工作电压达到4.5v以上时,电解液体系会发生氧化分解进而使电池无法正常工作,对高压正极材料的应用形成了极大的障碍。同时,电池的循环性能降低。
本领域应用的电解液包括寻找新的电解液溶剂和应用正极成膜保护添加剂两大类。新型电解液的研究众多,多以新型溶剂替换现有体系,但存在如电导率低,或有粘度大等缺点。而目前现有技术存在电解液溶剂在高电位下与正极上的活性点发生氧化反应,溶剂进一步被氧化分解导致电解液溶剂过度消耗的技术问题。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出了电解液、正极和含有该电解液和/或正极的锂离子电池,由此可以有效解决现有技术中电解液溶剂在高电位下易被氧化分解的技术问题。
根据本发明的一个方面,本发明提出了一种电解液,根据本发明的实施例,电解液包括锂盐、电解液溶剂和添加剂,所述添加剂为式(1)所示结构的苯胺类化合物或其衍生物,其结构如下:
Figure PCTCN2017071365-appb-000001
其中,R1和R2分别独立地选自-H、-(CH2)n1CH3、-(CH2)n2CF3中的至少一种,其中0≤n1≤3,0≤n2≤3;M1-M5分别独立地选自-H、-F、-Cl、-Br、-(CH2)n3CH3、R3-S-R4中的至少一种,其中0≤n3≤3,并且M1-M5中的至少一个选自硫醚R3-S-R4基团,其中R3选自-(CH2)n4-,其中0≤n4≤1,R4选自苯胺基团、-(CH2)n5CF3中的一种或两种,0≤n5≤3。
根据本发明的另一方面,本发明提出了一种正极,包括正极集流体和位于正极集流体表面的正极材料层,所述正极材料层的表面具有聚合物膜,所述聚合物膜为由本发明上述实施例的电解液中的添加剂聚合而成。
根据本发明的再一方面,本发明还提出了一种锂离子电池,包括壳体和容纳于壳体内的电芯和电解液,其中,电芯包括正极、负极和介于正极与负极之间的隔膜,所述电解液为本发明实施例的提供的电解液;和/或所述正极为本发明实施例提供的正极。
本发明通过在电解液中添加具有式(1)结构的苯胺类化合物或其衍生物作为添加剂,能够有效阻断电解液在正极表面发生氧化还原反应,可以保护正极不被损坏,同时保护电解液溶剂在高电位下不被氧化分解,延长电池在高电压下的寿命。
发明人经过大量实验发现,采用本发明式(1)结构的苯胺化合物及其衍生物作为本发明特定的添加剂,在3.5V-4.2V电位下成膜的电解液添加剂,此类添加剂优先在正极表面形成一层保护膜,这层膜为聚合物膜,具有一定柔性,耐氧化性,以及稳定性,可有效阻碍电解液在正极发生氧化还原反应,保护电解液不被过度消耗,可保护正极不被损坏,同时也保护电解液溶剂在高电位下不被氧化分解,以此提高电池在高电压下的寿命。与现有技术的添加剂相比较,通过采用本发明特定的添加剂可实现将普通的电解液溶剂应用在4.8V高电压环境中,具有显著的效果,对本领域做出突出的贡献。
将本发明提供的电解液用于电池中,在电池的充放电过程中,电解液中的添加剂在3.5V-4.2V电位下,在正极比表面发生聚合反应,首次反应添加剂可全部消耗完全,因此不影响电池体系的功能。
具体实施方式
为了使本发明所解决的技术问题、技术方案及有益效果更加清楚明白,以下对本发明进行进一步详细说明。
根据本发明的一个方面,本发明提出了一种电解液,该电解液包括锂盐、电解液溶剂和添加剂,所述添加剂为式(1)所示结构的苯胺类化合物或其衍生物。
本发明提供的电解液中,通过采用式(1)所示结构的的苯胺化合物或其衍生物作为本发明实施例电解液的添加剂。发明人发现,该添加剂在3.5V-4.2V电位下,可以发生聚合反应并且在正极表面生成一层聚合物膜,进而可以有效地阻断电解液在正极表面发生的氧化还原反应,保护正极不被损坏,同时也保护电解液溶剂在高电位下不被氧化分解。因此该添加剂与普通添加剂相比较,具有显著的优越性。
本发明中,所采用的添加剂为式1所示结构的苯胺类化合物或其衍生物,具体地,式1所示结构如下:
Figure PCTCN2017071365-appb-000002
其中,R1、R2相同或不同,R1和R2分别独立地选自-H、-(CH2)n1CH3、-(CH2)n2CF3中的至少一种,其中0≤n1≤3,0≤n2≤3;M1-M5分别独立地选自-H、-F、-Cl、-Br、-(CH2)n3CH3、R3-S-R4中的至少一种,其中0≤n3≤3,并且M1-M5中的至少一个选自硫醚R3-S-R4基团,其中R3选自-(CH2)n4-,其中0≤n4≤1,R4选自苯胺基团、-(CH2)n5CF3中的一种或两种,其中0≤n5≤3。本发明特定的添加剂可实现将普通的电解液应用在4.8V高电压环境中。
根据本发明的实施例,发明人意外的发现,式中M1-M5含有至少一个硫醚基团R3-S-R4时,该物质在一定电位下具有氧化聚合形成聚合物膜的能力。
根据本发明的实施例,优选地,所述添加剂可以选自4-三氟甲基硫代苯胺、2-三氟甲基硫代苯胺、3-三氟甲基硫代苯胺、3-氯-2-三氟甲基硫代苯胺、3-氯-4-三氟甲基硫代苯胺、3-氟-4-三氟甲基硫代苯胺、3-氟-2-三氟甲基硫代苯胺、4,4’-二硫代二苯胺、2-氯-4,4’-二硫代二苯胺、3-氯-4,4’-二硫代二苯胺、2-氟-4,4’-二硫代二苯胺、3-氟-4,4’-二硫代二苯胺中的一种或几种。具体结构如下:
4-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000003
2-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000004
3-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000005
3-氯-2-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000006
4,4’-二硫代二苯胺:
Figure PCTCN2017071365-appb-000007
3-氯-4-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000008
3-氟-4-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000009
3-氟-2-三氟甲基硫代苯胺:
Figure PCTCN2017071365-appb-000010
2-氯-4,4’-二硫代二苯胺:
Figure PCTCN2017071365-appb-000011
3-氯-4,4’-二硫代二苯胺:
Figure PCTCN2017071365-appb-000012
2-氟-4,4’-二硫代二苯胺:
Figure PCTCN2017071365-appb-000013
3-氟-4,4’-二硫代二苯胺:
Figure PCTCN2017071365-appb-000014
根据本发明的实施例,优选地,以电解液总质量为基准,所述添加剂的含量为0.1~10wt%,进一步优选为0.1~3wt%。含量优选为0.1~3wt%,添加剂既能够在正极表面形成足够厚度与足够覆盖度的膜层,同时也不会有多余的添加剂对体系造成影响。
根据本发明的实施例,优选地,电解液中锂盐的浓度可以为0.3~2mol/L。锂盐可以选自LiPF6、LiClO4、LiBF4、LiAsF6、LiSiF6、LiAlCl4、LiBOB、LiODFB、LiCl、LiBr、Lii、LiCF3SO3、Li(CF3SO2)3、Li(CF3CO2)2N、Li(CF3SO2)2N、Li(SO2C2F5)2N、Li(SO3CF3)2N、LiB(C2O4)2中的一种或多种混合使用。进一步优选的方案,本发明采用LiPF6作为主要锂盐。
根据本发明的实施例,电解液溶剂可以选自碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、甲酸甲酯(MF)、乙酸甲酯(MA)、丙酸甲酯(MP)、乙酸乙酯(EP)、1,3-丙烷磺酸内酯(1,3-PS)、硫酸乙烯酯(DTD)、硫酸丙烯酯、亚硫酸乙烯酯(ES)、亚硫酸丙烯酯(PS)、己二腈(ADN)、丁二腈(SN)、亚硫酸二乙酯(DES)、γ-丁内酯(BL)、二甲基亚砜(DMSO)中的一种或几种。根据本发明的实施例,优选碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)中的一种或几种。
发明人在研究中发现,在高电压环境下,碳酸酯系电解液溶剂在正极发生氧化还原反应,因此导致电解液溶剂在高电位下被氧化分解、正极被损坏、降低电池在高电压下的寿命。而通过在碳酸酯系电解液溶剂中添加本发明实施例式1所示结构的添加剂后,可使电解液溶剂应用在4.8V高电压环境中,与现有技术相比较存在显著效果,同时电解液体系更 稳定,应用广泛,锂盐解离度高,添加剂溶解度更好,添加剂氧化聚合过程不会受到电解液溶剂的影响等优点。
根据本发明的实施例,优选地,电解液中还包括二甲基亚砜、γ-丁内酯、己二腈和亚硫酸乙烯酯中的一种或几种,所述碳酸酯系溶剂与二甲基亚砜的体积比为23:2;碳酸酯系溶剂与γ-丁内酯的体积比为19:1;碳酸酯系溶剂与己二腈的体积比为9:1;碳酸酯系溶剂与亚硫酸乙烯酯的体积比为93:7。
根据本发明的第二方面,本发明提出了一种正极,所述正极包括正极集流体、位于正极集流体表面的正极材料层,所述正极材料层表面具有聚合物膜,所述聚合物膜的组成为前面实施例电解液中的添加剂生成的聚合物。
根据本发明的实施例,优选地,聚合物为聚4-三氟甲基硫代苯胺、聚2-三氟甲基硫代苯胺、聚3-三氟甲基硫代苯胺、聚3-氯-2-三氟甲基硫代苯胺、聚3-氯-4-三氟甲基硫代苯胺、聚3-氟-4-三氟甲基硫代苯胺、聚3-氟-2-三氟甲基硫代苯胺、聚4,4’-二硫代二苯胺、聚2-氯-4,4’-二硫代二苯胺、聚3-氯-4,4’-二硫代二苯胺、聚2-氟-4,4’-二硫代二苯胺、聚3-氟-4,4’-二硫代二苯胺中的一种或几种。
所述聚合物膜为上述实施例电解液中的添加剂在3.5V-4.2V电位下,在正极表面形成的一层保护膜。
本发明提供的锂离子电池电解液的制备方法,为本领域技术人员的常用方法,即将各组分(包括锂盐、电解液溶剂和添加剂)混合均匀即可,对混合的方式和顺序本发明均没有特殊限定。
本发明的电解液添加剂还可以含有其他物质,例如其他种类的功能添加剂,本发明没有限制。
根据本发明的第三方面,本发明还提出了一种锂离子电池,根据本发明的实施例,锂离子电池包括壳体和容纳于壳体内的电芯和电解液,其中,电芯包括正极、负极和介于正极与负极之间的隔膜,其中,所述电解液为本发明实施例的电解液;和/或所述的正极为本发明实施例的正极。其中正极包括正极集流体及正极材料,正极材料包括正极活性物质、导电剂、正极粘结剂,所述导电剂、正极粘结剂可以为本领域常规使用的导电剂、正极粘结剂;负极包括负极集流体以及负极材料,负极材料包括负极活性物质、负极粘结剂,所述负极材料还可以选择性的包括导电剂,该导电剂为常规导电剂,可以与正极材料层中的导电剂相同或不同,所述负极粘结剂可以为本领域常规使用的负极粘结剂。
由于负极片、正极片、隔膜的制备工艺为本领域所公知的技术,且电池的组装也为本领域所公知的技术,在此就不再赘述。
根据本发明提出的锂离子电池,优选,所述正极活性物质为尖晶石结构的LiNi0.5Mn1.5O4 或者层状结构的LiNi0.5Mn0.5O2正极材料,进一步优选为尖晶石结构的LiNi0.5Mn1.5O4,其具有更高的充放电电位平台,与本申请所述结构的添加剂协助应用,可以体现电解液更宽的电化学窗口,更能够突出本发明电解液添加剂对电解液高电压性能的提升。
根据本发明的实施例,优选地,所述负极活性物质为锂或者石墨负极,但不局限于此,进一步优选为金属锂。
以下结合具体实施例对本发明的电解液及含有该电解液的锂离子电池作进一步说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。实施例及对比例中所采用原料均通过商购得到。
实施例1
(1)电解液的制备:
在氩气手套箱中将12重量%的六氟磷酸锂(LiPF6)溶解于100重量%的电解液溶剂中,其中电解液溶剂包括体积比为30:70的碳酸乙烯酯(EC)和碳酸二乙酯(DEC),然后加入0.1重量%的4-三氟甲基硫代苯胺(本申请式(1)所示结构的苯胺,其中R1、R2均为-H,M1,M2,M3,M4均为-H,M3为-S-CF3),得到本实施例的锂离子电池电解液,记为C1;
(2)锂离子电池的制备:
将正极活性物质(LiNi0.5Mn1.5O4)、乙炔黑、聚偏氟乙烯按质量比90:5:5混合均匀后压制于铝箔上,得到正极片;将金属锂片作为负极片;以PE/PP复合隔膜为离子交换膜,采用本实施例的电解液C1,采用本领域常规方法做成扣式电池S1。
实施例2
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中用0.5重量%的2-三氟甲基硫代苯胺代替4-三氟甲基硫代苯胺,电解液体系中增加8重量%的二甲基亚砜,制备得到锂离子电池电解液C2以及扣式电池S2。
实施例3
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中用1重量%的3-三氟甲基硫代苯胺代替4-三氟甲基硫代苯胺,制备得到锂离子电池电解液C3以及扣式电池S3。
实施例4
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中用3重量%的3-氯-2-三氟甲基硫代苯胺代替4-三氟甲基硫代苯胺,制备得到锂离子电池电解液C4以及扣式电池S4。
实施例5
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中还加入 了7重量%的3-氯-2-三氟甲基硫代苯胺代替4-三氟甲基硫代苯胺,电解液体系中增加5重量%的γ-丁内酯,制备得到锂离子电池电解液C5以及扣式电池S5。
实施例6
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中加入10重量%的4,4’-二硫代二苯胺代替4-三氟甲基硫代苯胺,电解液体系中增加10重量%的己二腈,制备得到锂离子电池电解液C6以及扣式电池S6。
实施例7
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中加入的4-三氟甲基硫代苯胺为12重量%(非本申请的含量范围,偏多),电解液体系中增加7重量%的亚硫酸乙烯酯(ES),制备得到锂离子电池电解液C7以及扣式电池S7。
对比例1
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中不采用苯胺类添加剂,制备得到锂离子电池电解液DC1以及扣式电池DS1。
对比例2
采用与实施例1相同的步骤制备电解液和扣式电池,不同之处在于:步骤(1)中加入2.5重量%的氟代三苯胺添加剂,电解液体系中增加5重量%的γ-丁内酯,制备得到锂离子电池电解液DC2以及扣式电池DS2。
性能测试
电解液氧化分解电位测试
应用三电极测试方法,铂片作为工作电极,锂片做参比电极和对电极进行测试,表征添加剂电聚合电位以及电解液氧化分解电位。测试结果如表1所示。
表1
电解液 添加剂聚合电位 电解液氧化分解电位
C1 4.1 5.8
C2 4.1 5.6
C3 4.2 5.7
C4 4.1 5.6
C5 4.2 5.3
C6 4.1 5.2
C7 4.1 5.4
DC1 \ 4.9
DC2 \ 5.0
(2)电池充放电性能测试
将各实验扣式电池S1-S5、DS1-DS3在常温下以0.1mA的电流恒流放电至0.005V,然后以0.1mA恒流充电至1.5V,记录电池的放电容量和充电容量,计算充放电效率(%)=充电容量/放电容量×100%。测试结果如表2所示。
表2
Figure PCTCN2017071365-appb-000015
(3)电池循环测试
将上述电池在常温下以200mA恒流恒压充至4.85V,充电截止电流为20mA,然后以200mA恒流放电至3.0V,记录首次充电容量和放电容量,并计算放电效率(%);如此反复充放电循环20、40、80、100次后,记录第20、40、80、100次循环的放电容量,计算循环后容量保持率(%)=循环100次的放电容量/首次放电容量×100%;截止电压为4.8V)。测试结果如表3所示。
表3
Figure PCTCN2017071365-appb-000016
Figure PCTCN2017071365-appb-000017
由表1-3结果可以看出,本发明添加剂聚合电位最低为4.1V,最高为4.3V;采用本发明特定添加剂制备得到的电解液氧化分解电位最高为5.8V,最低为5.3V;采用上述电解液制备的锂离子电池充放电性能测试和循环测试表现良好,电池可在4.8V的高电压下的正常应用。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种电解液,所述电解液包括锂盐、电解液溶剂和添加剂,其特征在于,所述添加剂为式1所示结构的苯胺类化合物或其衍生物:
    Figure PCTCN2017071365-appb-100001
    其中,R1和R2分别独立地选自-H、-(CH2)n1CH3、-(CH2)n2CF3中的至少一种,其中0≤n1≤3,0≤n2≤3;M1-M5分别独立地选自-H、-F、-Cl、-Br、-(CH2)n3CH3、R3-S-R4中的至少一种,其中0≤n3≤3,并且M1-M5中的至少一个选自硫醚R3-S-R4基团,其中R3选自-(CH2)n4-,其中0≤n4≤1,R4选自苯胺基团、-(CH2)n5CF3中的一种或两种,其中0≤n5≤3。
  2. 根据权利要求1所述的电解液,其特征在于,所述添加剂选自4-三氟甲基硫代苯胺、2-三氟甲基硫代苯胺、3-三氟甲基硫代苯胺、3-氯-2-三氟甲基硫代苯胺、3-氯-4-三氟甲基硫代苯胺、3-氟-4-三氟甲基硫代苯胺、3-氟-2-三氟甲基硫代苯胺、4,4’-二硫代二苯胺、2-氯-4,4’-二硫代二苯胺、3-氯-4,4’-二硫代二苯胺、2-氟-4,4’-二硫代二苯胺、3-氟-4,4’-二硫代二苯胺中的至少一种。
  3. 根据权利要求1或2所述的电解液,其特征在于,基于所述电解液的总质量,所述添加剂的含量为0.1~10wt%。
  4. 根据权利要求3所述的电解液,其特征在于,基于所述电解液的总质量,所述添加剂的含量为0.1~3wt%。
  5. 根据权利要求1-4任一项所述的电解液,其特征在于,所述锂盐为选自LiPF6、LiClO4、LiBF4、LiAsF6、LiSiF6、LiAlCl4、LiBOB、LiODFB、LiCl、LiBr、Lii、LiCF3SO3、Li(CF3SO2)3、Li(CF3CO2)2N、Li(CF3SO2)2N、Li(SO2C2F5)2N、Li(SO3CF3)2N和LiB(C2O4)2中的至少一种。
  6. 根据权利要求1-5任一项所述的电解液,其特征在于,所述电解液溶剂为碳酸酯系溶剂,所述碳酸酯系溶剂包括选自碳酸乙烯酯、碳酸丙烯酯、碳酸二甲酯、碳酸二乙酯和碳酸甲乙酯中的至少一种。
  7. 根据权利要求1-6任一项所述的电解液,其特征在于,所述电解液还包括选自二甲 基亚砜、γ-丁内酯、己二腈、亚硫酸乙烯酯中的至少一种,所述碳酸酯系溶剂与所述二甲基亚砜的体积比为23:2;碳酸酯系溶剂与所述γ-丁内酯的体积比为19:1;碳酸酯系溶剂与所述己二腈的体积比为9:1;碳酸酯系溶剂与所述亚硫酸乙烯酯的体积比为93:7。
  8. 一种正极,其特征在于,所述正极包括正极集流体和位于正极集流体表面的正极材料层,所述正极材料层的表面具有聚合物膜,所述聚合物膜的组成为权利要求2所述添加剂生成的聚合物。
  9. 根据权利要求8所述的正极,其特征在于,所述聚合物为选自聚4-三氟甲基硫代苯胺、聚2-三氟甲基硫代苯胺、聚3-三氟甲基硫代苯胺、聚3-氯-2-三氟甲基硫代苯胺、聚3-氯-4-三氟甲基硫代苯胺、聚3-氟-4-三氟甲基硫代苯胺、聚3-氟-2-三氟甲基硫代苯胺、聚4,4’-二硫代二苯胺、聚2-氯-4,4’-二硫代二苯胺、聚3-氯-4,4’-二硫代二苯胺、聚2-氟-4,4’-二硫代二苯胺、聚3-氟-4,4’-二硫代二苯胺中的至少一种。
  10. 根据权利要求8或9所述的正极,其特征在于,所述聚合物膜为所述添加剂在3.5V-4.2V电位下,在正极表面形成的保护膜。
  11. 一种锂离子电池,所述锂离子电池包括壳体和容纳于壳体内的电芯和电解液,其中,电芯包括正极、负极和介于正极与负极之间的隔膜,其特征在于,所述电解液为权利要求1-7任一项所述的电解液;和/或所述正极为权利要求8-10所述的正极。
  12. 根据权利要求11所述的锂离子电池,其特征在于,所述正极包括正极集流体及正极材料层,所述正极材料层包括正极活性物质、导电剂和正极粘结剂,所述正极活性物质为尖晶石结构的LiNi0.5Mn1.5O4或层状结构的LiNi0.5Mn0.5O2
  13. 根据权利要求12所述的锂离子电池,其特征在于,所述正极活性物质为尖晶石结构的LiNi0.5Mn1.5O4
PCT/CN2017/071365 2016-01-29 2017-01-17 电解液、正极和含有该电解液和/或正极的锂离子电池 WO2017128989A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020187024376A KR20180102666A (ko) 2016-01-29 2017-01-17 전해질 용액, 양극, 및 상기 전해질 용액 및/또는 상기 양극을 포함하는 리튬-이온 배터리
JP2018539072A JP2019503570A (ja) 2016-01-29 2017-01-17 電解質溶液、正極、およびその電解質溶液ならびに/もしくは正極を備えるリチウムイオン電池
US16/073,237 US10991972B2 (en) 2016-01-29 2017-01-17 Electrolyte solution, positive electrode, and lithium-ion battery comprising the electrolyte solution and/or the positive electrode
EP17743604.5A EP3407416A4 (en) 2016-01-29 2017-01-17 ELECTROLYTIC SOLUTION, POSITIVE ELECTRODE AND LITHIUM-ION BATTERY CONTAINING THE ELECTROLYTIC SOLUTION AND / OR THE POSITIVE ELECTRODE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610067193.1A CN107026284B (zh) 2016-01-29 2016-01-29 一种电解液及含有该电解液和/或正极的锂离子电池
CN201610067193.1 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017128989A1 true WO2017128989A1 (zh) 2017-08-03

Family

ID=59397367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/071365 WO2017128989A1 (zh) 2016-01-29 2017-01-17 电解液、正极和含有该电解液和/或正极的锂离子电池

Country Status (6)

Country Link
US (1) US10991972B2 (zh)
EP (1) EP3407416A4 (zh)
JP (1) JP2019503570A (zh)
KR (1) KR20180102666A (zh)
CN (1) CN107026284B (zh)
WO (1) WO2017128989A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198530A1 (ja) * 2018-04-09 2019-10-17 日産化学株式会社 リチウムイオン二次電池

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107706420A (zh) * 2017-11-13 2018-02-16 山东大学 一种锂电池正极材料及其制备方法
CN109962285B (zh) * 2017-12-26 2021-03-19 张家港市国泰华荣化工新材料有限公司 一种锂电池电解液及其应用
CN109524714B (zh) * 2018-11-07 2022-01-21 惠州市豪鹏科技有限公司 一种锂离子电池电解液及锂离子电池
JPWO2020218475A1 (zh) * 2019-04-26 2020-10-29
CN110176631A (zh) * 2019-06-12 2019-08-27 广州天赐高新材料股份有限公司 一种降低电池内阻的锂二次电池电解液及锂二次电池
CN112687950B (zh) * 2019-10-19 2022-01-04 中国石油化工股份有限公司 二苯胺在锂离子电池电解液中的应用和锂离子电池电解液及锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114717A (zh) * 2006-07-24 2008-01-30 株式会社普利司通 电池用非水电解液以及具备其的非水电解液电池
CN103035945A (zh) * 2012-12-17 2013-04-10 中国科学院大连化学物理研究所 一种锂二次电池用功能化离子液体电解质
CN103794815A (zh) * 2014-02-18 2014-05-14 上海交通大学 一种用于可充镁电池的电解液及应用方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239523A (ja) * 1991-01-24 1992-08-27 Fuji Photo Film Co Ltd 導電性高分子の製造方法
EP1304752B1 (en) * 2001-10-18 2010-04-14 Nec Corporation Positive electrode active material, positive electrode and non-aqueous electrolyte secondary battery using thereof
US7585590B2 (en) 2006-02-17 2009-09-08 3M Innovative Properties Company Rechargeable lithium-ion cell with triphenylamine redox shuttle
CN101145622A (zh) * 2007-09-04 2008-03-19 武汉大学 锂离子电池可逆过充保护电解液添加剂及其制备方法
CN102237551B (zh) * 2010-04-30 2014-04-02 比亚迪股份有限公司 一种非水电解液及其制备方法和采用该电解液的电池
US9178249B2 (en) 2010-05-27 2015-11-03 Uchicago Argonne, Llc Electrode stabilizing materials
US8852813B2 (en) 2011-07-22 2014-10-07 Chemtura Corporation Electrolytes comprising polycyclic aromatic amine derivatives
CN102709589B (zh) 2012-02-17 2016-04-13 深圳新宙邦科技股份有限公司 锂离子电池及其电解液
JP6191602B2 (ja) * 2012-06-08 2017-09-06 日本電気株式会社 リチウムイオン二次電池
US20170025707A1 (en) 2014-04-04 2017-01-26 Basf Corporation Lithium-ion Batteries and Preparation Method Thereof
JP2016001567A (ja) * 2014-06-12 2016-01-07 日本電気株式会社 電解液およびそれを用いた二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101114717A (zh) * 2006-07-24 2008-01-30 株式会社普利司通 电池用非水电解液以及具备其的非水电解液电池
CN103035945A (zh) * 2012-12-17 2013-04-10 中国科学院大连化学物理研究所 一种锂二次电池用功能化离子液体电解质
CN103794815A (zh) * 2014-02-18 2014-05-14 上海交通大学 一种用于可充镁电池的电解液及应用方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3407416A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019198530A1 (ja) * 2018-04-09 2019-10-17 日産化学株式会社 リチウムイオン二次電池
CN112020788A (zh) * 2018-04-09 2020-12-01 日产化学株式会社 锂离子二次电池
JPWO2019198530A1 (ja) * 2018-04-09 2021-04-15 日産化学株式会社 リチウムイオン二次電池
JP7318639B2 (ja) 2018-04-09 2023-08-01 日産化学株式会社 リチウムイオン二次電池
US11961968B2 (en) 2018-04-09 2024-04-16 Nissan Chemical Corporation Lithium ion secondary battery

Also Published As

Publication number Publication date
EP3407416A4 (en) 2019-04-24
JP2019503570A (ja) 2019-02-07
CN107026284B (zh) 2019-10-11
CN107026284A (zh) 2017-08-08
US10991972B2 (en) 2021-04-27
KR20180102666A (ko) 2018-09-17
US20190036156A1 (en) 2019-01-31
EP3407416A1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
WO2017128989A1 (zh) 电解液、正极和含有该电解液和/或正极的锂离子电池
EP2528153B1 (en) Non-aqueous liquid electrolyte and non-aqueous liquid electrolyte secondary battery using the same
EP2833468B1 (en) Non-aqueous electrolyte solution for secondary batteries, and lithium-ion secondary battery
CN106356561B (zh) 防过充电解液及锂离子电池
EP3349290A1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution, and electricity storage device
CN108736065B (zh) 一种电解液及含有该电解液和/或正极的锂离子电池
EP4071877A1 (en) High-temperature lithium secondary battery electrolyte and battery cell
JP4527690B2 (ja) 有機電解液及びそれを採用したリチウム電池
EP2860812A1 (en) Electrolyte solution for nonaqueous electrolyte batteries, and nonaqueous electrolyte battery using same
JP2004327445A (ja) リチウム電池用電解質およびこれを含むリチウム電池
EP3675267A1 (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP2010507896A (ja) 非水電解液及びこれを含む電気化学素子
WO2017185997A1 (zh) 电解液、正极及其制备方法和锂离子电池
CN105990605B (zh) 一种非水电解液及含有该非水电解液的锂离子电池
JP2001313071A (ja) 非水電解液及びそれを用いたリチウム二次電池
CN106486696A (zh) 一种锂离子电池非水电解液和锂离子电池
WO2022213667A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
EP3373379B1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
CN112928328B (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
JP2015064990A (ja) 二次電池用非水電解液およびリチウムイオン二次電池
JP2015069705A (ja) 二次電池用非水電解液およびリチウムイオン二次電池
CN107240716B (zh) 一种电解液、正极及其制备方法和一种锂离子电池
CN101599556A (zh) 一种电解液添加剂及含该添加剂的电解液及锂离子电池
JP2018125219A (ja) リチウムイオン二次電池用の電解液
CN105514495B (zh) 锂离子电池及其电解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17743604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018539072

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017743604

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20187024376

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187024376

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2017743604

Country of ref document: EP

Effective date: 20180822