WO2022213667A1 - 电解液添加剂和含有该添加剂的非水电解液及锂离子电池 - Google Patents

电解液添加剂和含有该添加剂的非水电解液及锂离子电池 Download PDF

Info

Publication number
WO2022213667A1
WO2022213667A1 PCT/CN2021/140295 CN2021140295W WO2022213667A1 WO 2022213667 A1 WO2022213667 A1 WO 2022213667A1 CN 2021140295 W CN2021140295 W CN 2021140295W WO 2022213667 A1 WO2022213667 A1 WO 2022213667A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrolyte
aqueous electrolyte
carbonate
compound
Prior art date
Application number
PCT/CN2021/140295
Other languages
English (en)
French (fr)
Inventor
欧霜辉
王霹霹
白晶
毛冲
黄秋洁
戴晓兵
Original Assignee
珠海市赛纬电子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海市赛纬电子材料股份有限公司 filed Critical 珠海市赛纬电子材料股份有限公司
Publication of WO2022213667A1 publication Critical patent/WO2022213667A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of secondary batteries, in particular to an electrolyte additive, a non-aqueous electrolyte containing the additive, and a lithium ion battery.
  • the purpose of this application is to provide an electrolyte additive, a non-aqueous electrolyte containing the additive, and a lithium ion battery, the electrolyte can improve the low-temperature discharge and cycle performance of the battery, and is especially suitable for lithium ion batteries under high voltage systems.
  • a first aspect of the present application provides an electrolyte additive, comprising a compound having structural formula 1,
  • R 1 and R 2 are each independently selected from C 1 to C 6 alkyl, C 1 to C 6 haloalkyl, phenyl or halophenyl
  • R 3 to R 8 are each independently selected from halogen, C 1 to C 12 alkyl, C 1 to C 12 haloalkyl, C 2 to C 12 alkenyl, C 2 to C 12 haloalkenyl, C 6 to C 26 aryl, C 6 to C 12 C 26 halogenated aryl, hydrocarbyloxy, cyanooxy or amino.
  • the present application adopts a heterocyclic compound containing a P-N structure, which can form a CEI film containing a P-N structure on the surface of the positive electrode. Higher lithium ion shuttle rate. Moreover, the oxidation potential and interface impedance on the surface of the positive electrode are low, which can reduce the surface activity of the positive electrode and inhibit the oxidative decomposition of the electrolyte. Therefore, by adding the compound having the structural formula 1 of the present application, the low-temperature discharge and cycle performance of the battery can be improved.
  • R 1 and R 2 are each independently selected from C 1 to C 6 alkyl groups
  • R 3 to R 8 are each independently selected from F, C 1 to C 6 alkyl groups, hydrocarbyloxy groups, and cyanooxy groups or amino.
  • the compound with structural formula 1 is selected from at least one of compound A to compound F,
  • a second aspect of the present application provides a non-aqueous electrolyte solution, comprising a lithium salt, a non-aqueous organic solvent and the aforementioned electrolyte solution additive, and the weight percent of the compound having the structural formula 1 in the non-aqueous electrolyte solution is 0.1-5 %.
  • the lithium salt is selected from lithium hexafluorophosphate (LiPF 6 ), lithium perchlorate (LiClO 4 ), lithium tetrafluoroborate (LiBF 4 ), lithium bis-oxalate borate (C 4 BLiO 8 ), lithium difluorooxalate borate ( C 2 BF 2 LiO 4 ), Lithium Difluorophosphate (LiPO 2 F 2 ), Lithium Difluorobisoxalate Phosphate (LiDFBP), Lithium Bisfluorosulfonimide (LiFSI), and Lithium Bistrifluoromethanesulfonimide At least one of (LiN(CF 3 SO 2 ) 2 ), and the concentration is 0.5 to 1.5M.
  • the non-aqueous organic solvent is selected from ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), propylene carbonate (PC), acetic acid At least one of butyl ester (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-Pp), ethyl propionate (EP) and ethyl butyrate (Eb).
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • acetic acid At least one of butyl ester (n-Ba), ⁇ -butyrolactone ( ⁇ -Bt), propyl propionate (n-Pp), ethyl propionate (EP) and ethyl butyrate (Eb).
  • auxiliary agent in the non-aqueous electrolyte, and the auxiliary agent is selected from vinylene carbonate (VC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate At least one of ester (FEC), vinyl sulfite (ES), 1,3 propane sultone (PS) and vinyl sulfate (DTD).
  • VC vinylene carbonate
  • VEC vinyl ethylene carbonate
  • FEC fluoroethylene carbonate
  • FEC vinyl sulfite
  • PS 1,3 propane sultone
  • DTD vinyl sulfate
  • a third aspect of the present application further provides a lithium ion battery, comprising a positive electrode material, a negative electrode material and an electrolyte, the electrolyte being the aforementioned non-aqueous electrolyte.
  • the positive electrode material includes nickel cobalt manganese oxide, and the chemical formula of the nickel cobalt manganese oxide is LiNi x Co y Mn (1-xy) M z O 2 , where 0.5 ⁇ x ⁇ 0.9, x+y ⁇ 1, 0 ⁇ z ⁇ 0.08, and M is at least one of Al, Mg, Zr, and Ti.
  • Examples 1 to 13 and Comparative Examples 1 to 5 were prepared with reference to the following lithium batteries Method A lithium-ion battery was prepared, and the low-temperature discharge performance, normal temperature cycle performance, and high-temperature cycle performance were tested respectively.
  • the test conditions were as follows, and the test results were shown in Table 2.
  • the nickel cobalt lithium manganate ternary material LiNi 0.6 Co 0.2 Mn 0.2 O 2 , the conductive agent SuperP, the binder PVDF and carbon nanotubes (CNT) are mixed uniformly in a mass ratio of 97.5:1.5:1:1 to make a certain viscosity.
  • the natural graphite, conductive agent SuperP, thickener CMC, and adhesive SBR styrene-butadiene rubber latex
  • the natural graphite, conductive agent SuperP, thickener CMC, and adhesive SBR styrene-butadiene rubber latex
  • the positive electrode sheet, the negative electrode sheet and the separator prepared according to the above process were made into a lithium ion battery with a thickness of 4.7 mm, a width of 55 mm and a length of 60 mm through a lamination process, and were vacuum baked at 75 ° C for 10 h.
  • Capacity retention rate (C1/C0)*100%.
  • High temperature cycle test Under the condition of excessive high temperature (45°C), the lithium-ion battery is charged and discharged once at 1.0C/1.0C (battery discharge capacity is C0), and the upper limit voltage is 4.4V. Then charge and discharge at 1.0C/1.0C for 500 cycles at normal temperature (battery discharge capacity is C1),
  • Capacity retention rate (C1/C0)*100%.
  • the low temperature discharge performance, normal temperature cycle performance and high temperature cycle performance of Examples 1 to 13 can all be at a better level.
  • the electrolyte additive of the present application adopts a heterocyclic compound containing a P-N structure, which can form a CEI film containing a P-N structure on the surface of the positive electrode, and the film has a high performance of transferring lithium ions, and the potential and The interface impedance is low, and the surface activity of the positive electrode can be reduced, and the oxidative decomposition of the electrolyte can be inhibited, so the low-temperature discharge and cycle performance are better.
  • Example 1 Compared Example 1 and Examples 10-13, it can be seen that the cycle performance and low-temperature discharge performance are better when some additives are added on the basis of the compound additive with structural formula 1.
  • Comparing Example 1 and Comparative Examples 4 to 5 it can be seen that, compared with fluorophosphazene, the applied electrolyte additive can form a CEI film containing a P-N structure on the surface of the positive electrode, and the film has a high performance of transferring lithium ions, and The potential and interface impedance are lower, so the low temperature discharge performance is better.
  • Comparative Examples 4 to 5 use fluorophosphazene, which is mainly used as a flame retardant additive to prevent overcharge. Although it can improve the high temperature cycle performance to a certain extent, its high impedance characteristics have great damage to the low temperature discharge performance. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

一种电解液添加剂和含有该添加剂的非水电解液及锂离子电池,其中,电解液添加剂包含具有结构式(1)的化合物,其中,R 1、R 2各自独立地选自C 1至C 6的烷基、C 1至C 6的卤代烷基、苯基或卤代苯基,R 3~R 8各自独立地选自卤素、C 1至C 12的烷基、C 1至C 12的卤代烷基、C 2至C 12的烯基、C 2至C 12的卤代烯基、C 6至C 26的芳基、C 6至C 26的卤代芳基、烃氧基、氰氧基或氨基。相对于现有技术,本申请采用一种含有P-N结构的杂环化合物,该化合物可在正极表面形成含P-N结构的CEI膜,该膜具有较高的传递锂离子的性能,且电位和界面阻抗较低,并可降低正极的表面活性,抑制电解液的氧化分解。故,通过加入本申请的具有结构式(1)的化合物,可提高电池的低温放电和循环性能。

Description

电解液添加剂和含有该添加剂的非水电解液及锂离子电池 技术领域
本申请涉及二次电池领域,具体涉及一种电解液添加剂和含有该添加剂的非水电解液及锂离子电池。
背景技术
随着社会的发展和人类生活水平的提高,人们对电子穿戴产品的需求变得越发膨胀。但在一些寒冷地区,电子设备面临工作时间变短,甚至无法正常工作的问题。同时,电子穿戴设备的使用寿命,大部分取决于电池的使用寿命。因此,必须开发一种既能改善低温放电性又能同时具有长循环寿命的锂离子电池电解液,进而实现锂离子电池的优良发挥。
申请内容
本申请的目的在于提供一种电解液添加剂和含有该添加剂的非水电解液及锂离子电池,此电解液可提高电池的低温放电和循环性能,尤其适用于高电压体系下的锂离子电池。
为实现上述目的,本申请第一方面提供了一种电解液添加剂,包含具有结构式1的化合物,
Figure PCTCN2021140295-appb-000001
其中,R 1、R 2各自独立地选自C 1至C 6的烷基、C 1至C 6的卤代烷基、苯基或卤代苯基,R 3~R 8各自独立地选自卤素、C 1至C 12的烷基、C 1至C 12的卤代烷 基、C 2至C 12的烯基、C 2至C 12的卤代烯基、C 6至C 26的芳基、C 6至C 26的卤代芳基、烃氧基、氰氧基或氨基。
相对于现有技术,本申请采用一种含有P-N结构的杂环化合物,该化合物可在正极表面形成含P-N结构的CEI膜,该膜具有较大的锂离子孔道,同时在低温下,具有相对较高的锂离子穿梭速率。且在正极表面的氧化电位和界面阻抗较低,可降低正极的表面活性,抑制电解液的氧化分解。故,通过加入本申请的具有结构式1的化合物,可提高电池的低温放电和循环性能。
进一步的,R 1、R 2各自独立地选自C 1至C 6的烷基,R 3~R 8各自独立地选自F、C 1至C 6的烷基、烃氧基、氰氧基或氨基。
更进一步的,具有结构式1的化合物选自化合物A至化合物F中的至少一种,
Figure PCTCN2021140295-appb-000002
本申请的第二方面提供了一种非水电解液,包括锂盐、非水有机溶剂和前述的电解液添加剂,所述具有结构式1的化合物于非水电解液中的重量百分比为0.1~5%。
进一步的,所述锂盐选自六氟磷酸锂(LiPF 6)、高氯酸锂(LiClO 4)、四氟硼酸锂(LiBF 4)、双草酸硼酸锂(C 4BLiO 8)、二氟草酸硼酸锂(C 2BF 2LiO 4)、 二氟磷酸锂(LiPO 2F 2)、二氟二草酸磷酸锂(LiDFBP)、双氟磺酰亚胺锂(LiFSI)和双三氟甲基磺酰亚胺锂(LiN(CF 3SO 2) 2)中的至少一种,且浓度为0.5~1.5M。
进一步的,所述非水有机溶剂选自碳酸乙烯酯(EC)、碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸丙烯酯(PC)、乙酸丁酯(n-Ba)、γ-丁内酯(γ-Bt)、丙酸丙酯(n-Pp)、丙酸乙酯(EP)和丁酸乙酯(Eb)中的至少一种。
进一步的,还包括占非水电解液中的重量百分比为0.1~5%的助剂,所述助剂选自碳酸亚乙烯酯(VC)、乙烯基碳酸乙烯酯(VEC)、氟代碳酸乙烯酯(FEC)、亚硫酸乙烯酯(ES)、1,3丙磺酸内酯(PS)和硫酸乙烯酯(DTD)中的至少一种。
本申请第三方面还提供了一种锂离子电池,包括正极材料、负极材料和电解液,所述电解液为前述的非水电解液。进一步的,所述正极材料包括镍钴锰氧化物,所述镍钴锰氧化物的化学式为LiNi xCo yMn (1-x-y)M zO 2,其中,0.5≤x<0.9,x+y<1,0≤z<0.08,M为Al、Mg、Zr和Ti中的至少一种。
具体实施方式
实施例1
在充满氮气的手套箱(O 2<2ppm,H 2O<3ppm)中,将重量比为1:2:2的碳酸二甲酯(DMC)、碳酸二乙酯(DEC)和碳酸甲乙酯(EMC)的混和物86.5g作为有机溶剂,加入1g化合物A得混合溶液,再向混合溶液中缓慢加入1M LiPF 612.5g,混合均匀后即制成电解液。
实施例2~13和对比例1~5的电解液配方如表1所示,配制电解液的步骤同
实施例1。
表1各实施例的电解液组分
Figure PCTCN2021140295-appb-000003
Figure PCTCN2021140295-appb-000004
Figure PCTCN2021140295-appb-000005
Figure PCTCN2021140295-appb-000006
以最高充电电压为4.4V的NCM622(LiNi 0.6Co 0.2Mn 0.2O 2)为正极材料,天然石墨为负极材料,以实施例1~13和对比例1~5的电解液参照下述锂电池制备方法制成锂离子电池,并分别进行低温放电性能、常温循环性能、高温循环性能测试,其测试条件如下,测试结果如表2所示。
锂电池制备方法:
1.正极片的制备
将镍钴锰酸锂三元材料LiNi 0.6Co 0.2Mn 0.2O 2、导电剂SuperP、粘接剂PVDF和碳纳米管(CNT)按质量比97.5:1.5:1:1混合均匀制成一定粘度的锂离子电池正极浆料,涂布在集流体用铝箔上,其涂布量为324g/m 2,在85℃下烘干后进行冷压;然后进行切边、裁片、分条,分条后在真空条件下85℃烘干4h,焊接极 耳,制成满足要求的锂离子电池正极片。
2.负极片的制备
将天然石墨与导电剂SuperP、增稠剂CMC、粘接剂SBR(丁苯橡胶乳液)按质量比95:1.4:1.4:2.2的比例制成浆料,涂布在集流体铜箔上并在85℃下烘干,涂布量为168g/m 2;进行切边、裁片、分条,分条后在真空条件下110℃烘干4h,焊接极耳,制成满足要求的锂离子电池负极片。
3.锂离子电池的制备
将根据上述工艺制备的正极片、负极片和隔膜经叠片工艺制作成厚度为4.7mm,宽度为55mm,长度为60mm的锂离子电池,在75℃下真空烘烤10h,注入实施例16和对比例1~5的非水电解液。静置24h后,用0.lC(180mA)的恒流充电至4.45V,然后以4.45V恒压充电至电流下降到0.05C(90mA);然后以0.2C(180mA)放电至3.0V,重复2次充放电,最后再以0.2C(180mA)将电池充电至3.8V,完成电池制作。
低温放电性能测试:在常温(25℃)条件下,对锂离子电池进行一次0.5C/0.5C充电和放电(放电容量记为C0),上限电压为4.4V,然后在0.5C恒流恒压条件下将电池充电至4.4V;将锂离子电池置于-20℃低温箱中搁置4h,,在-20℃下进行0.5C放电(放电容量记为C1);利用下面公式计算锂离子电池的低温放电率
低温放电率=C1/C0*100%。
常温循环测试:在常温(25℃)条件下,对锂离子电池进行一次1.0C/1.0C充电和放电(电池放电容量为C0),上限电压为4.4V,然后在常温条件下进行1.0C/1.0C充电和放电500周(电池放电容量为C1),
容量保持率=(C1/C0)*100%。
高温循环测试:在过高温(45℃)条件下,对锂离子电池进行一次1.0C/1.0C充电和放电(电池放电容量为C0),上限电压为4.4V。然后在常温条件下进行1.0C/1.0C充电和放电500周(电池放电容量为C1),
容量保持率=(C1/C0)*100%。
表2循环和高温存储性能测试结果
Figure PCTCN2021140295-appb-000007
从表2的结果可知,相对于对比例1~5,实施例1~13的低温放电性能、常温循环性能和高温循环性能皆能处于较佳的水平。这是由于本申请的电解液添加剂采用一种含有P-N结构的杂环化合物,该化合物可在正极表面形成了含P-N结构的CEI膜,该膜具有较高的传递锂离子的性能,且电位和界面阻抗较低,并可降低正极的表面活性,抑制电解液的氧化分解,故低温放电和循环性能较佳。
而且,对比实施例1和实施例10-13可知,于具有结构式1的化合物添加剂的基础上再增加一些助剂,其循环性能和低温放电性能更佳。
对比实施例1和对比例4~5可知,申请的电解液添加剂相对于氟代磷腈,可在正极表面形成了含P-N结构的CEI膜,该膜具有较高的传递锂离子的性能,且电位和界面阻抗较低,故低温放电性能较好。对比例4~5采用氟代磷腈,其 主要作为防过充的阻燃类添加剂使用,虽然可于一定程度上改善高温循环性能,但是其高阻抗的特点对低温放电性能有极大的损伤。
最后应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,而不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 一种电解液添加剂,其特征在于,包含具有结构式1的化合物,
    Figure PCTCN2021140295-appb-100001
    其中,R 1、R 2各自独立地选自C 1至C 6的烷基、C 1至C 6的卤代烷基、苯基或卤代苯基,R 3~R 8各自独立地选自卤素、C 1至C 12的烷基、C 1至C 12的卤代烷基、C 2至C 12的烯基、C 2至C 12的卤代烯基、C 6至C 26的芳基、C 6至C 26的卤代芳基、烃氧基、氰氧基或氨基。
  2. 如权利要求1所述的电解液添加剂,其特征在于,R 1、R 2各自独立地选自C 1至C 6的烷基,R 3~R 8各自独立地选自F、C 1至C 6的烷基、烃氧基、氰氧基或氨基。
  3. 如权利要求1所述的电解液添加剂,其特征在于,所述具有结构式1的化合物选自化合物A至化合物F中的至少一种,
    Figure PCTCN2021140295-appb-100002
  4. 一种非水电解液,包括锂盐、非水有机溶剂和如权利要求1~3任一所述的电解液添加剂。
  5. 如权利要求4所述的非水电解液,其特征在于,所述具有结构式1的化合物于非水电解液中的重量百分比为0.1~5%。
  6. 如权利要求4所述的非水电解液,其特征在于,所述锂盐选自六氟磷酸锂、高氯酸锂、四氟硼酸锂、双草酸硼酸锂、二氟草酸硼酸锂、二氟磷酸锂、二氟二草酸磷酸锂、双氟磺酰亚胺锂和双三氟甲基磺酰亚胺锂中的至少一种。
  7. 如权利要求4所述的非水电解液,其特征在于,所述非水有机溶剂选自碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丙烯酯、乙酸丁酯、γ-丁内酯、丙酸丙酯、丙酸乙酯和丁酸乙酯中的至少一种。
  8. 如权利要求4所述的非水电解液,其特征在于,还包括助剂,所述助剂选自碳酸亚乙烯酯、乙烯基碳酸乙烯酯、氟代碳酸乙烯酯、亚硫酸乙烯酯、1,3丙磺酸内酯和硫酸乙烯酯中的至少一种。
  9. 一种锂离子电池,包括正极材料、负极材料和电解液,其特征在于,所述电解液为权利要求4~8任一所述的非水电解液。
  10. 如权利要求9所述的锂离子电池,其特征在于,所述正极材料为镍钴锰氧化物,所述镍钴锰氧化物的化学式为LiNi xCo yMn (1-x-y)M zO 2,其中,0.5≤x<0.9,x+y<1,0≤z<0.08,M为Al、Mg、Zr和Ti中的至少一种。
PCT/CN2021/140295 2021-04-09 2021-12-22 电解液添加剂和含有该添加剂的非水电解液及锂离子电池 WO2022213667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110387227.6 2021-04-09
CN202110387227.6A CN113113669B (zh) 2021-04-09 2021-04-09 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Publications (1)

Publication Number Publication Date
WO2022213667A1 true WO2022213667A1 (zh) 2022-10-13

Family

ID=76715512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140295 WO2022213667A1 (zh) 2021-04-09 2021-12-22 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN113113669B (zh)
WO (1) WO2022213667A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113113669B (zh) * 2021-04-09 2022-05-17 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN114300745A (zh) * 2021-11-24 2022-04-08 惠州市豪鹏科技有限公司 一种非水电解液、二次电池及硫代磷酰胺作为电解液添加剂的应用
CN114552010B (zh) * 2022-02-23 2022-12-09 珠海市赛纬电子材料股份有限公司 锂金属电池用添加剂、电解液及其锂金属电池
CN114373993B (zh) * 2022-02-23 2022-12-13 珠海市赛纬电子材料股份有限公司 一种电解液添加剂、非水电解液及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287406A (en) * 1963-08-14 1966-11-22 Du Pont Fluorine-containing 1, 3, 2, 4-diazadi-phosphetadines
US3345340A (en) * 1964-10-01 1967-10-03 Du Pont Polymerizing lactam to polylactam with a substituted phosphorane cocatalyst
GB1185462A (en) * 1965-12-29 1970-03-25 Nat Res Dev Polymeric Compounds Containing Nitrogen and Phosphorus
CN106025359A (zh) * 2016-07-08 2016-10-12 珠海市赛纬电子材料股份有限公司 一种锂离子动力电池非水电解液
CN106229548A (zh) * 2016-08-30 2016-12-14 凯思普科技有限责任公司 锂电池电解液
CN113113669A (zh) * 2021-04-09 2021-07-13 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3187040A (en) * 1963-02-08 1965-06-01 Rohm & Haas Diazadiphosphetidinium salts
JP3475449B2 (ja) * 1993-08-24 2003-12-08 宇部興産株式会社 非水電池
WO1996010443A1 (en) * 1994-09-30 1996-04-11 The University Of New Mexico Phosphorus nitride agents to protect against fires and explosions
AU6004099A (en) * 1998-10-07 2000-04-26 Mitsubishi Chemical Corporation Mixtures of optical isomers of 1,2-disubstituted-2,3-epoxypropanes, process for producing the same, pesticides containing the same as the active ingredient and intermediates thereof
JP5401765B2 (ja) * 2007-04-20 2014-01-29 三菱化学株式会社 非水系電解液及びそれを用いた非水系電解液二次電池
JP5374854B2 (ja) * 2007-10-19 2013-12-25 三菱化学株式会社 非水系電解液およびそれを用いた非水系電解液二次電池
WO2009028567A1 (ja) * 2007-08-27 2009-03-05 Bridgestone Corporation 電池用非水電解液及びそれを備えた非水電解液電池
WO2012142060A2 (en) * 2011-04-11 2012-10-18 Novolyte Technologies Inc. Non-aqueous electrolytic solutions and electrochemical cells comprising the same
EP2702631A1 (en) * 2011-04-26 2014-03-05 Solvay SA Lithium air battery cell
CN108808066B (zh) * 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN112615054B (zh) * 2020-12-18 2022-05-27 广州天赐高新材料股份有限公司 电解液添加剂、电解液及锂离子二次电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287406A (en) * 1963-08-14 1966-11-22 Du Pont Fluorine-containing 1, 3, 2, 4-diazadi-phosphetadines
US3345340A (en) * 1964-10-01 1967-10-03 Du Pont Polymerizing lactam to polylactam with a substituted phosphorane cocatalyst
GB1185462A (en) * 1965-12-29 1970-03-25 Nat Res Dev Polymeric Compounds Containing Nitrogen and Phosphorus
CN106025359A (zh) * 2016-07-08 2016-10-12 珠海市赛纬电子材料股份有限公司 一种锂离子动力电池非水电解液
CN106229548A (zh) * 2016-08-30 2016-12-14 凯思普科技有限责任公司 锂电池电解液
CN113113669A (zh) * 2021-04-09 2021-07-13 珠海市赛纬电子材料股份有限公司 电解液添加剂和含有该添加剂的非水电解液及锂离子电池

Also Published As

Publication number Publication date
CN113113669A (zh) 2021-07-13
CN113113669B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN109728340B (zh) 锂离子电池
WO2022213667A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
CN112531212B (zh) 兼顾高温特性与低阻抗的非水电解液、其应用及锂离子电池
CN107871889B (zh) 电解液及二次电池
CN111477962B (zh) 一种锂离子电池非水电解液及含该非水电解液的锂离子电池
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
WO2022262231A1 (zh) 非水电解液及其二次电池
CN110970662B (zh) 非水电解液及锂离子电池
WO2023040119A1 (zh) 电解液添加剂和含有该添加剂的电解液及锂离子电池
WO2023050597A1 (zh) 添加剂和含有该添加剂的电解液及锂离子电池
KR101451804B1 (ko) 유기 전해액 및 이를 채용한 리튬 전지
WO2022213668A1 (zh) 电解液添加剂和含有该添加剂的非水电解液及锂离子电池
JP5093992B2 (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
CN112928328A (zh) 一种含有硅烷基磺酰胺化合物的锂离子电池电解液和锂离子二次电池
CN115548439A (zh) 二次电池电解液和二次电池
CN112531213A (zh) 兼顾高温特性与常温循环的非水电解液、其应用及锂离子电池
CN113851642B (zh) 非水电解液及其锂离子电池
CN110970663A (zh) 非水电解液及锂离子电池
WO2023123841A1 (zh) 电解液添加剂和含有该添加剂的电解液及锂离子电池
CN110649317B (zh) 硅基锂离子电池电解液和锂离子二次电池
CN107546413B (zh) 电解液及锂离子二次电池
CN114566708B (zh) 一种锂离子电池非水电解液及锂离子电池
CN103618110A (zh) 锂离子二次电池及其电解液
CN109309250A (zh) 电解液及二次锂电池
WO2020063886A1 (zh) 非水电解液、锂离子电池、电池模块、电池包及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21935883

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21935883

Country of ref document: EP

Kind code of ref document: A1