WO2017128836A1 - 一种氧化物半导体薄膜晶体管的制备方法 - Google Patents

一种氧化物半导体薄膜晶体管的制备方法 Download PDF

Info

Publication number
WO2017128836A1
WO2017128836A1 PCT/CN2016/107509 CN2016107509W WO2017128836A1 WO 2017128836 A1 WO2017128836 A1 WO 2017128836A1 CN 2016107509 W CN2016107509 W CN 2016107509W WO 2017128836 A1 WO2017128836 A1 WO 2017128836A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
oxide semiconductor
film transistor
semiconductor thin
preparation
Prior art date
Application number
PCT/CN2016/107509
Other languages
English (en)
French (fr)
Inventor
黄荣翠
Original Assignee
苏州翠南电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州翠南电子科技有限公司 filed Critical 苏州翠南电子科技有限公司
Publication of WO2017128836A1 publication Critical patent/WO2017128836A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to the technical field of transistors, and in particular, to a method for fabricating an oxide semiconductor thin film transistor.
  • liquid crystal display devices using silicon materials have been rapidly developed due to their small size, light weight and high quality, and have become mainstream information display terminals.
  • amorphous silicon has the disadvantages of low field effect mobility, strong photosensitivity, and opaque materials.
  • the large-area fabrication process of polysilicon TFTs is complicated and low-temperature processes are difficult to achieve.
  • polycrystalline silicon is not suitable for substrates that are not resistant to high temperatures because it cannot be prepared at low temperatures. Therefore, metal oxide semiconductors are used as active layer materials for thin film transistors, and their high mobility, low deposition temperature, and transparent optical characteristics are regarded as next-generation display backplane technologies.
  • An object of the present invention is to provide a method for preparing an oxide semiconductor thin film transistor having a simple preparation process, high mobility, and good transparency.
  • a method of fabricating an oxide semiconductor thin film transistor comprising: a substrate, a gate dielectric layer, a channel layer, a source electrode, and a drain electrode, the preparation method comprising the steps of:
  • Substrate cleaning The substrate is immersed in 18 ⁇ 25% aqueous hydrogen fluoride solution for 1 ⁇ 2min, then rinsed with deionized water. After washing, add mixed solution of water, hydrogen peroxide and ammonia water, cook for 10 ⁇ 15min, temperature control Rinse with deionized water at 75 ° C ⁇ 85 ° C, add to a mixed solution of water, hydrogen peroxide and hydrochloric acid, cook for 10 ⁇ 15min, the temperature is controlled at 75 ° C ⁇ 85 ° C, rinse with water and then with nitrogen dry;
  • a zinc oxide film is prepared on a gate dielectric layer by radio frequency magnetron sputtering
  • a source electrode and a drain electrode are formed on both sides of the channel layer prepared in the step (3) by a vacuum film, and the vacuum degree during the vacuum filming process is less than 5 ⁇ 10 -3 Pa.
  • the substrate is a silicon substrate.
  • the gate dielectric layer is silicon nitride.
  • the source electrode and the drain electrode are metal aluminum thin films.
  • the ion water washing process is several times, straight
  • the pH of the ionized water after rinsing is 7-8, and the rinsing process is ended.
  • the channel layer is further doped with gallium, tin, silicon, aluminum, magnesium, lanthanum, cerium, lanthanum, nickel, zirconium, tin, phosphorus, vanadium, arsenic, titanium, lead, potassium or lanthanide rare earth. Any one of the elements or any combination of two or more.
  • the invention has the beneficial effects that the process of the invention is reasonable, simple and reasonable, and the prepared oxide semiconductor thin film transistor has good suppression ability for carriers, improves the reliability of the device and the circuit, and simplifies the design of the threshold voltage compensation circuit. Moreover, it is advantageous to form an amorphous film at a low temperature, which is advantageous for ensuring uniformity of device preparation and improving stability of a device manufactured by a low temperature process.
  • a method of fabricating an oxide semiconductor thin film transistor comprising: a substrate, a gate dielectric layer, a channel layer, a source electrode, and a drain electrode, the preparation method comprising the steps of:
  • Substrate cleaning The silicon substrate is immersed in an 18% aqueous solution of hydrogen fluoride for 1 min, then rinsed with deionized water. After washing, a mixed solution of water, hydrogen peroxide and ammonia is added, and the mixture is cooked for 10 minutes, and the temperature is controlled at 75 ° C. After ionic water washing, add to a mixed solution of water, hydrogen peroxide and hydrochloric acid, cook for 10 minutes, control the temperature at 75 ° C, rinse with water and then dry with nitrogen;
  • a zinc oxide film is prepared on a gate dielectric layer by radio frequency magnetron sputtering
  • a source electrode and a drain electrode were formed on both sides of the channel layer prepared in the step (3) by a vacuum film, and the degree of vacuum during the vacuum filming process was 5 ⁇ 10 -3 Pa.
  • a method of fabricating an oxide semiconductor thin film transistor comprising: a substrate, a gate dielectric layer, a channel layer, a source electrode, and a drain electrode, the preparation method comprising the steps of:
  • Substrate cleaning The silicon substrate is immersed in a 20% aqueous solution of hydrogen fluoride for 1.5 min, then rinsed with deionized water. After washing, a mixed solution of water, hydrogen peroxide and ammonia is added, and the mixture is cooked for 12 minutes, and the temperature is controlled at 80 ° C. Rinse with deionized water, add to a mixed solution of water, hydrogen peroxide and hydrochloric acid, cook for 12 minutes, control the temperature at 80 ° C, rinse with water and then dry with nitrogen;
  • a zinc oxide film is prepared on a gate dielectric layer by radio frequency magnetron sputtering
  • a source electrode and a drain electrode were formed on both sides of the channel layer prepared in the step (3) by a vacuum film, and the degree of vacuum during the vacuum filming process was 5 ⁇ 10 -3 Pa.
  • a method of fabricating an oxide semiconductor thin film transistor comprising: a substrate, a gate dielectric layer, a channel layer, a source electrode, and a drain electrode, the preparation method comprising the steps of:
  • Substrate cleaning The silicon substrate is immersed in a 25% aqueous solution of hydrogen fluoride for 2 minutes, then rinsed with deionized water. After washing, it is added to a mixed solution of water, hydrogen peroxide and ammonia water, and cooked for 15 minutes. The temperature is controlled at 85 ° C. After ionic water washing, add to a mixed solution of water, hydrogen peroxide and hydrochloric acid, cook for 15 minutes, control the temperature at 85 ° C, rinse with water and then dry with nitrogen;
  • a zinc oxide film is prepared on a gate dielectric layer by radio frequency magnetron sputtering
  • a source electrode and a drain electrode were formed on both sides of the channel layer prepared in the step (3) by a vacuum film, and the degree of vacuum during the vacuum filming process was 5 ⁇ 10 -3 Pa.
  • the process of the invention is reasonable, simple and reasonable, and the prepared oxide semiconductor thin film crystal
  • the body tube has good suppression ability for carriers, improves the reliability of the device and the circuit, and simplifies the complexity of the design of the threshold voltage compensation circuit, and is favorable for forming an amorphous film at a low temperature, which is advantageous for ensuring device preparation. Consistency, improving the stability of devices fabricated by low temperature processes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种氧化物半导体薄膜晶体管的制备方法,所述氧化物半导体薄膜晶体管包括基板、栅介质层、沟道层、源电极和漏电极,其制备方法包括以下步骤:⑴基板清洗;⑵栅介质层制备;⑶沟道层的制备;⑷源电极和漏电极的制备。本发明工艺合理,简单合理,同时制备的氧化物半导体薄膜晶体管对载流子具有良好抑制能力,提高器件和电路的可靠性,并简化了阈值电压补偿电路设计的复杂性,而且,有利于在低温下形成非晶态的薄膜,有利于保证器件制备的一致性、改善通过低温工艺制造的器件的稳定性。

Description

一种氧化物半导体薄膜晶体管的制备方法 技术领域
本发明涉及晶体管的技术领域,具体涉及一种氧化物半导体薄膜晶体管的制备方法。
背景技术
随着信息时代的到来,显示器件正加速向平板化、节能化的方向发展,其中以薄膜晶体管为开关元件的有源阵列驱动显示器件成为众多平板显示技术中的佼佼者。而在过去很长的时间里,一直采用的都是和CMOS工艺兼容的硅系材料。
在近十几年时间,以硅材料(非晶硅和多晶硅)TFT为驱动单元的液晶显示器件以其体积小、重量轻、品质高等优点获得了迅速发展,并成为主流的信息显示终端。然而,非晶硅存在场效应迁移率低、光敏性强以及材料不透明等缺点,而多晶硅TFT大面积制作工艺复杂、低温工艺难以实现。而且多晶硅由于不能低温制备而不适用于不耐高温的衬底。因此以金属氧化物半导体作为薄膜晶体管的有源层材料,由于其高迁移率,低沉积温度以及透明的光学特性被视为下一代的显示背板技术。
发明内容
本发明的目的是提供一种制备工艺简单、高迁移率、透明性好的氧化物半导体薄膜晶体管的制备方法。
本发明是通过以下技术方案来实现的:
一种氧化物半导体薄膜晶体管的制备方法,所述氧化物半导体薄膜晶体管包括基板、栅介质层、沟道层、源电极和漏电极,其制备方法包括以下步骤:
⑴基板清洗:将基板用18~25%的氟化氢水溶液浸泡1~2min,然后用去离子水冲洗,冲洗完后加入过水、氧化氢和氨水的混合溶液中,蒸煮10~15min,温度控制在75℃~85℃,用去离子水冲洗后加入到水、过氧化氢和盐酸的混合溶液中,蒸煮10~15min,温度控制在75℃~85℃,用去离水冲洗后再用氮气吹干;
⑵栅介质层制备:将氮化炉温度上升至1300℃~1400℃,然后通氮气排杂,排杂的时间为15~20min,再通入纯氮气,然后将步骤⑴所得基板推入氮化炉中,氮化3~4h,冷却后将氮化后的所得物取出,用20~25%的氟化氢溶液清洗,再用去离子水冲洗后烘干,备用;
⑶沟道层的制备:利用射频磁控溅射法在栅介质层上制备氧化锌薄膜;
⑷源电极和漏电极的制备:通过真空渡膜的方法在步骤⑶制备的沟道层两侧形成源电极和漏电极,所述真空渡膜过程中真空度小于5×10-3Pa。
进一步地,所述基板为硅基板。
进一步地,所述栅介质层为氮化硅。
进一步地,所述源电极和漏电极为金属铝薄膜。
进一步地,所述步骤⑴和⑵中,离子水冲洗过程为若干次,直 至冲洗后的离子水PH值为7~8,结束冲洗过程。
进一步地,所述沟道层中还掺杂有镓、锡、硅、铝、镁、钽、铪、镱、镍、锆、锡、磷、钒、砷、钛、铅、钾或镧系稀土元素中的任意一种或两种以上的任意组合。
本发明的有益效果是:本发明工艺合理,简单合理,同时制备的氧化物半导体薄膜晶体管对载流子具有良好抑制能力,提高器件和电路的可靠性,并简化了阈值电压补偿电路设计的复杂性,而且,有利于在低温下形成非晶态的薄膜,有利于保证器件制备的一致性、改善通过低温工艺制造的器件的稳定性。
具体实施方式
下面结合实施例对本发明做进一步地说明。
实施例1
一种氧化物半导体薄膜晶体管的制备方法,所述氧化物半导体薄膜晶体管包括基板、栅介质层、沟道层、源电极和漏电极,其制备方法包括以下步骤:
⑴基板清洗:将硅基板用18%的氟化氢水溶液浸泡1min,然后用去离子水冲洗,冲洗完后加入过水、氧化氢和氨水的混合溶液中,蒸煮10min,温度控制在75℃,用去离子水冲洗后加入到水、过氧化氢和盐酸的混合溶液中,蒸煮10min,温度控制在75℃,用去离水冲洗后再用氮气吹干;
⑵栅介质层制备:将氮化炉温度上升至1300℃,然后通氮气排杂,排杂的时间为15min,再通入纯氮气,然后将步骤⑴所得基板 推入氮化炉中,氮化3h,冷却后将氮化后的所得物取出,用20%的氟化氢溶液清洗,再用去离子水冲洗后烘干,备用;
⑶沟道层的制备:利用射频磁控溅射法在栅介质层上制备氧化锌薄膜;
⑷源电极和漏电极的制备:通过真空渡膜的方法在步骤⑶制备的沟道层两侧形成源电极和漏电极,所述真空渡膜过程中真空度为5×10-3Pa。
实施例2
一种氧化物半导体薄膜晶体管的制备方法,所述氧化物半导体薄膜晶体管包括基板、栅介质层、沟道层、源电极和漏电极,其制备方法包括以下步骤:
⑴基板清洗:将硅基板用20%的氟化氢水溶液浸泡1.5min,然后用去离子水冲洗,冲洗完后加入过水、氧化氢和氨水的混合溶液中,蒸煮12min,温度控制在80℃,用去离子水冲洗后加入到水、过氧化氢和盐酸的混合溶液中,蒸煮12min,温度控制在80℃,用去离水冲洗后再用氮气吹干;
⑵栅介质层制备:将氮化炉温度上升至1350℃,然后通氮气排杂,排杂的时间为18min,再通入纯氮气,然后将步骤⑴所得基板推入氮化炉中,氮化3.5h,冷却后将氮化后的所得物取出,用22%的氟化氢溶液清洗,再用去离子水冲洗后烘干,备用;
⑶沟道层的制备:利用射频磁控溅射法在栅介质层上制备氧化锌薄膜;
⑷源电极和漏电极的制备:通过真空渡膜的方法在步骤⑶制备的沟道层两侧形成源电极和漏电极,所述真空渡膜过程中真空度为5×10-3Pa。
实施例3
一种氧化物半导体薄膜晶体管的制备方法,所述氧化物半导体薄膜晶体管包括基板、栅介质层、沟道层、源电极和漏电极,其制备方法包括以下步骤:
⑴基板清洗:将硅基板用25%的氟化氢水溶液浸泡2min,然后用去离子水冲洗,冲洗完后加入过水、氧化氢和氨水的混合溶液中,蒸煮15min,温度控制在85℃,用去离子水冲洗后加入到水、过氧化氢和盐酸的混合溶液中,蒸煮15min,温度控制在85℃,用去离水冲洗后再用氮气吹干;
⑵栅介质层制备:将氮化炉温度上升至1400℃,然后通氮气排杂,排杂的时间为20min,再通入纯氮气,然后将步骤⑴所得基板推入氮化炉中,氮化4h,冷却后将氮化后的所得物取出,用25%的氟化氢溶液清洗,再用去离子水冲洗后烘干,备用;
⑶沟道层的制备:利用射频磁控溅射法在栅介质层上制备氧化锌薄膜;
⑷源电极和漏电极的制备:通过真空渡膜的方法在步骤⑶制备的沟道层两侧形成源电极和漏电极,所述真空渡膜过程中真空度为5×10-3Pa。
本发明工艺合理,简单合理,同时制备的氧化物半导体薄膜晶 体管对载流子具有良好抑制能力,提高器件和电路的可靠性,并简化了阈值电压补偿电路设计的复杂性,而且,有利于在低温下形成非晶态的薄膜,有利于保证器件制备的一致性、改善通过低温工艺制造的器件的稳定性。

Claims (6)

  1. 一种氧化物半导体薄膜晶体管的制备方法,其特征在于:所述氧化物半导体薄膜晶体管包括基板、栅介质层、沟道层、源电极和漏电极,其制备方法包括以下步骤:
    ⑴基板清洗:将基板用18~25%的氟化氢水溶液浸泡1~2min,然后用去离子水冲洗,冲洗完后加入过水、氧化氢和氨水的混合溶液中,蒸煮10~15min,温度控制在75℃~85℃,用去离子水冲洗后加入到水、过氧化氢和盐酸的混合溶液中,蒸煮10~15min,温度控制在75℃~85℃,用去离水冲洗后再用氮气吹干;
    ⑵栅介质层制备:将氮化炉温度上升至1300℃~1400℃,然后通氮气排杂,排杂的时间为15~20min,再通入纯氮气,然后将步骤⑴所得基板推入氮化炉中,氮化3~4h,冷却后将氮化后的所得物取出,用20~25%的氟化氢溶液清洗,再用去离子水冲洗后烘干,备用;
    ⑶沟道层的制备:利用射频磁控溅射法在栅介质层上制备氧化锌薄膜;
    ⑷源电极和漏电极的制备:通过真空渡膜的方法在步骤⑶制备的沟道层两侧形成源电极和漏电极,所述真空渡膜过程中真空度小于5×10-3Pa。
  2. 根据权利要求1所述一种氧化物半导体薄膜晶体管的制备方法,其特征在于:所述基板为硅基板。
  3. 根据权利要求1所述一种氧化物半导体薄膜晶体管的制备方法,其特征在于:所述栅介质层为氮化硅。
  4. 根据权利要求1所述一种氧化物半导体薄膜晶体管的制备方法,其特征在于:所述源电极和漏电极为金属铝薄膜。
  5. 根据权利要求1所述一种氧化物半导体薄膜晶体管的制备方法,其特征在于:所述步骤⑴和⑵中,离子水冲洗过程为若干次,直至冲洗后的离子水PH值为7~8,结束冲洗过程。
  6. 根据权利要求1所述一种氧化物半导体薄膜晶体管的制备方法,其特征在于:所述沟道层中还掺杂有镓、锡、硅、铝、镁、钽、铪、镱、镍、锆、锡、磷、钒、砷、钛、铅、钾或镧系稀土元素中的任意一种或两种以上的任意组合。
PCT/CN2016/107509 2016-01-27 2016-11-28 一种氧化物半导体薄膜晶体管的制备方法 WO2017128836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610055456.7A CN105742189B (zh) 2016-01-27 2016-01-27 一种氧化物半导体薄膜晶体管的制备方法
CN201610055456.7 2016-01-27

Publications (1)

Publication Number Publication Date
WO2017128836A1 true WO2017128836A1 (zh) 2017-08-03

Family

ID=56247680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107509 WO2017128836A1 (zh) 2016-01-27 2016-11-28 一种氧化物半导体薄膜晶体管的制备方法

Country Status (2)

Country Link
CN (1) CN105742189B (zh)
WO (1) WO2017128836A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883195A (zh) * 2022-04-03 2022-08-09 叶宇 一种检测目标dna的二维材料半导体器件制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742189B (zh) * 2016-01-27 2019-07-23 青岛中微创芯电子有限公司 一种氧化物半导体薄膜晶体管的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085517A (zh) * 2009-12-03 2011-06-08 无锡华润上华半导体有限公司 栅氧控片清洗方法及装置
CN102275925A (zh) * 2011-06-09 2011-12-14 东北大学 一种晶体硅切割废料氮化反应烧结碳化硅的方法
CN104022160A (zh) * 2014-06-20 2014-09-03 华北水利水电大学 高价态过渡金属掺杂的氧化锌基半导体材料及薄膜晶体管
CN105742189A (zh) * 2016-01-27 2016-07-06 苏州翠南电子科技有限公司 一种氧化物半导体薄膜晶体管的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102068956B1 (ko) * 2012-02-15 2020-01-23 엘지디스플레이 주식회사 박막트랜지스터, 박막트랜지스터 어레이 기판 및 이의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102085517A (zh) * 2009-12-03 2011-06-08 无锡华润上华半导体有限公司 栅氧控片清洗方法及装置
CN102275925A (zh) * 2011-06-09 2011-12-14 东北大学 一种晶体硅切割废料氮化反应烧结碳化硅的方法
CN104022160A (zh) * 2014-06-20 2014-09-03 华北水利水电大学 高价态过渡金属掺杂的氧化锌基半导体材料及薄膜晶体管
CN105742189A (zh) * 2016-01-27 2016-07-06 苏州翠南电子科技有限公司 一种氧化物半导体薄膜晶体管的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883195A (zh) * 2022-04-03 2022-08-09 叶宇 一种检测目标dna的二维材料半导体器件制备方法

Also Published As

Publication number Publication date
CN105742189A (zh) 2016-07-06
CN105742189B (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
KR101873583B1 (ko) 액정표시장치용 어레이 기판의 제조방법
CN103545318A (zh) 半导体装置及其制造方法
CN110867458B (zh) 金属氧化物半导体薄膜晶体管阵列基板及制作方法
TW200908333A (en) Field-effect transistor and process for producing field-effect transistor
TW200845399A (en) Non-crystalline oxide semiconductor thin film, process for producing the same, process for producing thin-film transistor, field-effect transistor, light emitting device, display device, and sputtering target
JP2022518521A (ja) ドーピングされた金属酸化物半導体および薄膜トランジスタとその応用
CN102157564A (zh) 顶栅金属氧化物薄膜晶体管的制备方法
WO2022105174A1 (zh) 一种金属氧化物半导体及薄膜晶体管与应用
US20170338113A1 (en) Fabrication Method of Oxide Semiconductor Thin Film and Fabrication Method of Thin Film Transistor
TWI611483B (zh) 薄膜電晶體製造方法及薄膜電晶體
Luo et al. Effects of etching residue on positive shift of threshold voltage in amorphous indium–zinc-oxide thin-film transistors based on back-channel-etch structure
Li et al. Facile patterning of amorphous indium oxide thin films based on a gel-like aqueous precursor for low-temperature, high performance thin-film transistors
WO2017128836A1 (zh) 一种氧化物半导体薄膜晶体管的制备方法
JP5615442B2 (ja) 薄膜電極および薄膜スタックを堆積させる方法
TWI501404B (zh) 製造igzo層和tft的方法
CN108777250B (zh) 一种大尺寸单晶氧化亚锡及其制备方法
WO2016165224A1 (zh) 金属氧化物薄膜晶体管及制备方法、显示基板和显示装置
CN117558831A (zh) 一种硅基异质结太阳能电池的透明导电钝化接触结构及其制备方法
KR102238749B1 (ko) 인듐아연 산화물 박막 트랜지스터 및 그 제조 방법
WO2014173146A1 (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
CN103367409A (zh) 基于锗衬底的La基高介电常数栅介质材料的制备方法
CN111129160A (zh) 基于氧化锆和氧化镧的透明薄膜晶体管器件及其制备方法
CN102201551B (zh) 一种倒置结构有机发光装置的制作方法
US10204940B2 (en) Array substrate, its manufacturing method thereof and a liquid crystal display panel
JP5568580B2 (ja) 光電変換装置の作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887707

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28.11.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16887707

Country of ref document: EP

Kind code of ref document: A1