WO2017128471A1 - 真空蒸镀加热装置 - Google Patents

真空蒸镀加热装置 Download PDF

Info

Publication number
WO2017128471A1
WO2017128471A1 PCT/CN2016/074612 CN2016074612W WO2017128471A1 WO 2017128471 A1 WO2017128471 A1 WO 2017128471A1 CN 2016074612 W CN2016074612 W CN 2016074612W WO 2017128471 A1 WO2017128471 A1 WO 2017128471A1
Authority
WO
WIPO (PCT)
Prior art keywords
crucible
heating
heating coil
heating device
vacuum evaporation
Prior art date
Application number
PCT/CN2016/074612
Other languages
English (en)
French (fr)
Inventor
刘扬
刘亚伟
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US15/032,046 priority Critical patent/US20180044776A1/en
Publication of WO2017128471A1 publication Critical patent/WO2017128471A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/26Vacuum evaporation by resistance or inductive heating of the source
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a vacuum evaporation heating device.
  • OLED Organic Light-Emitting Diode
  • next-generation display technology with excellent display performance, especially self-illumination, simple structure, ultra-thin, fast response, wide viewing angle, low power consumption and Realize features such as flexible display.
  • OLED manufacturing technology for mass production is to prepare a film of OLED material by vacuum evaporation.
  • the material When evaporating in a vacuum evaporation chamber, the material is placed in a crucible, and the crucible is placed in a heating device. When heated to the evaporation temperature, the material vaporizes, and vaporized molecules fly out from the spout of the crucible to deposit onto the substrate to form a solid film. If the temperature is not properly controlled, the temperature of the lid is low, and the vaporized molecules of the material will deposit on the lid and grow up, causing the jaws to clog (block holes). Partial clogging of the nozzle will result in inaccurate film thickness, affecting the quality of the film and the final product performance. The blockage of the nozzle will result in the failure to form a film and the overheating of the remaining material inside the enamel.
  • the vertical axis the temperature of the upper part of the crucible should be higher than the temperature of the lower part of the crucible, that is to say there should be a temperature gradient from top to bottom.
  • the horizontal radial the temperature difference between the circumference and the center should be as small as possible. That is, the temperature in the horizontal direction should be as uniform as possible.
  • FIG. 1 is a schematic cross-sectional view of a conventional vacuum evaporation heating device, including a heating device outer wall 300, a crucible 100 disposed inside the heating device outer wall 300, and a crucible disposed on the crucible 100.
  • Cover 200 The spout cover 200 is provided with a spout 201 passing through the upper and lower surfaces of the flip cover 200.
  • the top of the crucible 200 and the outer wall 300 of the heating device are provided with a heating coil 110 corresponding to the outer periphery of the crucible 100 and the cover 200.
  • the distribution density of the heating coil 110 is greater than the distribution density of the lower heating coil 110 of the crucible 100, so that the upper portion of the crucible can obtain a temperature slightly higher than the lower portion.
  • the crucible 100 has a certain temperature gradient from the outside to the inside in the horizontal direction; that is, the temperature around the radial direction of the crucible 100 is higher than the center temperature.
  • the horizontal radial temperature difference also causes the temperature near the lid nozzle 201 to be lower than the temperature near the crucible wall 120, which is particularly influential for OLED organic materials having poor thermal conductivity.
  • the process in which the vaporized molecules of the material fly out of the clamshell spout 201 is itself a process of removing heat, which causes the rate of heat loss in the spout area to be greater than that of other parts.
  • the object of the present invention is to provide a vacuum evaporation heating device, which can effectively reduce the radial temperature difference of the crucible level, prevent the material from being blocked, and can design the diameter larger, increase the material placement amount, reduce the number of cavities, and improve the production efficiency. .
  • the present invention provides a vacuum evaporation heating device, comprising: an outer wall of the heating device, a crucible disposed inside the outer wall of the heating device, and a lid disposed on the crucible;
  • a first heating coil is disposed between the cymbal and the outer wall of the heating device corresponding to the outer side of the cymbal and the cymbal cover; the center of the cymbal cover is provided with a spout through the upper and lower surfaces of the sash cover, and the sluice cover corresponds to the vent
  • the second heating coil is disposed on the periphery of the second heating coil; the first heating coil and the second heating coil are respectively electrically connected to the power source and can be separately controlled for heating.
  • the second heating coil is spiral, comprising a tail end located at an end of the innermost ring and an electrode end located at an end of the outermost ring; the tail end is located on the cover; the electrode end is extended to the The outside of the lid is covered and extends vertically downwards.
  • An electrode interface is disposed under the electrode end corresponding to the electrode end of the heating device; the electrode end is inserted into the electrode interface; and the electrode interface is electrically connected to the heating circuit.
  • the coil distribution density of the first heating coil in the upper region of the crucible is greater than the coil distribution density in the lower region of the crucible.
  • the temperature of the lid is higher than the temperature of the crucible by separately controlling the energization of the first heating coil and the second heating coil.
  • a protective cover is disposed on the second heating coil.
  • the protective cover is made of metal.
  • the protective cover is welded to the second heating coil; or the protective cover is provided with a card slot, and the second heating coil is locked in the card slot.
  • thermocouple is disposed on the edge of the second heating coil for monitoring the temperature of the flip cover; and a second thermocouple is disposed near the bottom of the crucible for monitoring the crucible temperature.
  • the present invention also provides a vacuum evaporation heating device, comprising: an outer wall of the heating device, a crucible disposed inside the outer wall of the heating device, and a lid disposed on the crucible;
  • a first heating coil is disposed between the cymbal and the outer wall of the heating device corresponding to the outer side of the cymbal and the cymbal cover; the center of the cymbal cover is provided with a spout through the upper and lower surfaces of the sash cover, and the sluice cover corresponds to the vent a second heating coil is disposed on the periphery of the second heating coil; the first heating coil and the second heating coil are respectively electrically connected to the power source and can be separately controlled for heating;
  • the second heating coil is spiral, comprising a tail end located at an end of the innermost ring and an electrode end located at an end of the outermost ring; the tail end is located on the cover; the electrode end is extended To the outside of the lid and extending vertically downward;
  • the coil distribution density of the first heating coil in the upper region of the crucible is greater than the coil distribution density in the lower region of the crucible;
  • the temperature of the lid is higher than the temperature of the crucible by separately controlling the energization of the first heating coil and the second heating coil.
  • the invention has the beneficial effects that the vacuum evaporation heating device of the invention has a first heating coil around the crucible and the lid, and a second heating coil on the lid, and the first heating coil and the second heating coil can be independent
  • the temperature gradient of the crucible can be effectively reduced while ensuring the temperature gradient from top to bottom, preventing the material from being blocked, and the diameter can be designed to be larger, the material placement amount can be increased, and the number of cavities can be reduced.
  • Improve production efficiency simple structure and easy to manufacture.
  • FIG. 1 is a schematic cross-sectional structural view of a conventional vacuum evaporation heating device
  • FIG. 2 is a schematic cross-sectional structural view of a vacuum evaporation heating device of the present invention
  • FIG. 3 is a schematic plan view of a second heating coil of the vacuum evaporation heating device of the present invention.
  • FIG. 4 is a schematic plan view of a protective cover of a second heating coil of the vacuum evaporation heating device of the present invention.
  • the present invention provides a vacuum evaporation heating device, comprising a heating device outer wall 3, a crucible 1 disposed inside the outer wall 3 of the heating device, and a crucible cover 2 disposed on the crucible 1 .
  • a first heating coil 11 is disposed between the crucible 1 and the outer wall 3 of the heating device corresponding to the periphery of the crucible 1 and the lid 2 .
  • the center of the clamshell cover 2 is provided with a spout 20 extending through the upper and lower surfaces of the clamshell cover 2 for evaporating vaporized vapor deposition material molecules from the spout 20 onto the substrate to form a solid film during the evaporation process.
  • a second heating coil 21 is disposed on the outer cover 2 corresponding to the periphery of the spout 20 .
  • the first heating coil 11 and the second heating coil 21 are respectively electrically connected to the power source and can be separately controlled for heating, so that the temperature distribution in the vertical direction and the horizontal direction of the crucible 2 can be simultaneously controlled. In order to ensure that there is a temperature gradient from top to bottom, the temperature difference between the radial levels of the crucible is effectively reduced, and the material is prevented from plugging holes.
  • the second heating coil 21 is spiral, and includes a tail end 211 at an end of the innermost ring and an electrode end 212 at an end of the outermost ring; the tail end 211 is located on the flip cover 2; The electrode end 212 projects to the outside of the flip cover 2 and extends vertically downward.
  • an electrode interface 22 is disposed below the electrode end 212 between the crucible 1 and the outer wall 3 of the heating device; the electrode end 212 is inserted into the electrode interface 22, and the electrode interface 22 and the heating circuit 23 are
  • the electrode interface 22 can be designed as a socket type, which is convenient for plugging and unplugging, so that the second heating coil 21 can be conveniently removed during the evaporation process to perform the refueling operation and the like. After the cymbal is installed, the second heating coil 21 can be conveniently mounted.
  • a heating device base 24 is disposed below the crucible 1.
  • a coil distribution density of the first heating coil 11 in an upper region of the crucible 1 is greater than a coil distribution density in a lower region of the crucible 1, so that an upper portion of the crucible 2 can be slightly higher than a lower portion.
  • This can better solve the problem that the ⁇ 2 needs to have a certain temperature difference in the vertical axis, so that the ⁇ 2 has a temperature gradient from top to bottom, thereby preventing the hole from being blocked and obtaining a stable vapor deposition state.
  • the first heating coil 11 and the second heating coil 21 are respectively controlled to be energized, so that the temperature of the cover 2 is slightly higher than the temperature of the crucible 1, thereby effectively reducing ⁇ 2
  • the horizontal temperature difference in the radial direction further prevents the material from being blocked and makes the material vapor deposition state more stable.
  • a protective cover 30 may be disposed on the second heating coil 21 to The heating coil 21 is protected from deformation.
  • the shape and size of the protective cover 30 are adapted to the shape and size of the second heating coil 21 to cover and accommodate the second heating coil 21, and the center of the protective cover 30 has one and
  • the opening 31 of the spout 20 has a size greater than or equal to the size of the spout 20.
  • the protective cover 30 is made of a metal such as titanium, aluminum, stainless steel or the like.
  • the protective cover 30 may be soldered to the second heating coil 21; or the protective cover 30 is provided with a card slot, so that the second heating coil 21 is locked in the card slot. .
  • thermocouple 25 is disposed on the edge of the second heating coil 21 at the edge of the second heating coil 21 for monitoring the temperature of the flip cover 2; and a second thermocouple 26 is disposed near the bottom of the crucible 1 For monitoring the temperature of the crucible 1, ensuring that the temperature of the crucible 2 is slightly higher than the temperature of the crucible 1 and lower than the material cracking temperature.
  • the vacuum evaporation heating device of the present invention has a first heating coil around the crucible and the lid, and a second heating coil on the lid, and the first heating coil and the second heating coil can be independently controlled. Heating can ensure the temperature gradient of the crucible from top to bottom while effectively reducing the radial temperature difference of the crucible level, preventing the material from plugging holes, and designing the diameter larger, increasing the material placement and reducing the number of cavities. Improve production efficiency; simple structure and easy to manufacture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种真空蒸镀加热装置,包括加热装置外壁(3)、设于加热装置外壁(3)内部的坩埚(1)、及设于坩埚(1)上的坩埚盖(2);坩埚(1)与加热装置外壁(3)之间对应坩埚(1)与坩埚盖(2)的外围设有第一加热线圈(11);坩埚盖(2)的中心设有贯通坩埚盖(2)上下表面的喷口(20),坩埚盖(2)上对应喷口(20)的外围设有第二加热线圈(21);第一加热线圈(11)、第二加热线圈(21)分别与电源电性连接并可单独控制进行加热。

Description

真空蒸镀加热装置 技术领域
本发明涉及显示技术领域,尤其涉及一种真空蒸镀加热装置。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)被誉为下一代显示技术,具有十分优异的显示性能,特别是自发光、结构简单、超轻薄、响应速度快、宽视角、低功耗及可实现柔性显示等特性。目前实现量产的OLED制造技术均是采用真空蒸镀的方法制备OLED材料薄膜。
在真空蒸镀腔中蒸镀时,材料放置于坩埚中,坩埚放置于加热装置中,加热到蒸镀温度时,材料汽化,汽化分子从坩埚盖的喷口飞出沉积到基板上形成固态薄膜。如果温度控制不当导致坩埚盖的温度较低,材料的汽化分子会在坩埚盖上沉积并不断长大,导致坩埚喷口堵塞(堵孔)。喷口部分堵塞会导致膜厚不准,影响薄膜质量和最终的产品性能,喷口全部堵塞会导致无法成膜以及坩埚内部剩余材料过热,对于OLED有机材料来说,过热会导致材料裂解无法使用。此外,堵孔还会带来材料更换和机台保养等方面的不便,影响生产进度。因此,蒸镀过程中防止堵孔是最基本的要求,也是获得高质量薄膜的前提条件。
为防止堵孔,获得稳定的蒸镀状态,应考察坩埚在竖直轴向和水平径向两个方向上的温度分布状况。分别要达到如下两个要求:
一、竖直轴向:坩埚上部的温度应高于坩埚下部的温度,也就是说应该存在由上到下的温度梯度。
二、水平径向:坩埚四周与中心的温度差应当尽量小。即坩埚在水平方向上的温度要尽量均一。
请参阅图1,为一种现有的真空蒸镀加热装置的剖面结构示意图,包括加热装置外壁300、设于所述加热装置外壁300内部的坩埚100、及设于所述坩埚100上的坩埚盖200。所述坩埚盖200中心设有贯通坩埚盖200上下表面的喷口201,所述坩埚100与加热装置外壁300之间对应所述坩埚100与坩埚盖200的外围设有加热线圈110,其中坩埚100上部加热线圈110的分布密度大于坩埚100下部加热线圈110的分布密度,使得坩埚上部可以获得稍高于下部的温度。这样可以较好地解决坩埚在竖直轴向上需要存在一定温差的问题。但是,因为加热线圈110都分布在坩埚100周围的缘故, 坩埚100在水平径向存在一定的由外向内的温度梯度;即坩埚100径向四周温度高于中心温度。水平径向的温度差也会导致坩埚盖喷口201附近温度低于坩埚壁120附近的温度,对于导热性能很差的OLED有机材料来说影响尤其大。此外,材料汽化分子从坩埚盖喷口201飞出的过程本身即是带走热量的过程,会导致喷口区域热量散失的速率要大于坩埚其他部位。目前并没有专门的技术解决坩埚水平径向温度差这一问题,也同样是由于水平径向温度差的限制,使得坩埚的直径无法做的较大,因为坩埚直径越大,径向温差越大,越容易堵孔。这就限制了坩埚中放置材料的量,不利于降低开腔换料以及其他机台保养事项的频率,进而不利于生产效率的提高。
发明内容
本发明的目的在于提供一种真空蒸镀加热装置,能够有效降低坩埚水平径向的温差,防止材料堵孔,同时可将直径设计得更大,增加材料放置量,减少开腔次数,提高生产效率。
为实现上述目的,本发明提供一种真空蒸镀加热装置,包括加热装置外壁、设于所述加热装置外壁内部的坩埚、及设于所述坩埚上的坩埚盖;
所述坩埚与加热装置外壁之间对应所述坩埚与坩埚盖的外围设有第一加热线圈;所述坩埚盖的中心设有贯通坩埚盖上下表面的喷口,所述坩埚盖上对应所述喷口的外围设有第二加热线圈;所述第一加热线圈、第二加热线圈分别与电源电性连接并可单独控制进行加热。
所述第二加热线圈呈螺旋状,包括位于最内圈端部的尾端与位于最外圈端部的电极端;所述尾端位于所述坩埚盖上;所述电极端伸出至所述坩埚盖的外部并竖直向下延伸。
所述坩埚与加热装置外壁之间对应所述电极端的下方设有电极接口;所述电极端插入所述电极接口中;所述电极接口与加热电路电性连接。
所述第一加热线圈中位于所述坩埚的上部区域的线圈分布密度大于位于所述坩埚的下部区域的线圈分布密度。
在进行蒸镀制程时,通过分别控制所述第一加热线圈与第二加热线圈通电,使所述坩埚盖的温度高于所述坩埚的温度。
所述第二加热线圈上设有保护盖。
所述保护盖的材质为金属。
所述保护盖与所述第二加热线圈焊接在一起;或者所述保护盖上设有卡槽,所述第二加热线圈卡设于所述卡槽中。
所述坩埚盖上于所述第二加热线圈的边缘处设有第一热电偶,用于监测所述坩埚盖的温度;所述坩埚底部附近设有第二热电偶,用于监测所述坩埚的温度。
本发明还提供一种真空蒸镀加热装置,包括加热装置外壁、设于所述加热装置外壁内部的坩埚、及设于所述坩埚上的坩埚盖;
所述坩埚与加热装置外壁之间对应所述坩埚与坩埚盖的外围设有第一加热线圈;所述坩埚盖的中心设有贯通坩埚盖上下表面的喷口,所述坩埚盖上对应所述喷口的外围设有第二加热线圈;所述第一加热线圈、第二加热线圈分别与电源电性连接并可单独控制进行加热;
其中,所述第二加热线圈呈螺旋状,包括位于最内圈端部的尾端与位于最外圈端部的电极端;所述尾端位于所述坩埚盖上;所述电极端伸出至所述坩埚盖的外部并竖直向下延伸;
其中,所述第一加热线圈中位于所述坩埚的上部区域的线圈分布密度大于位于所述坩埚的下部区域的线圈分布密度;
其中,在进行蒸镀制程时,通过分别控制所述第一加热线圈与第二加热线圈通电,使所述坩埚盖的温度高于所述坩埚的温度。
本发明的有益效果:本发明的真空蒸镀加热装置,坩埚与坩埚盖周围设有第一加热线圈,坩埚盖上设有第二加热线圈,且第一加热线圈与第二加热线圈可分别独立控制进行加热,能够在保证坩埚存在由上到下的温度梯度的同时,有效降低坩埚水平径向的温差,防止材料堵孔,同时可将直径设计得更大,增加材料放置量,减少开腔次数,提高生产效率;结构简单,易于制作。
附图说明
为了能更进一步了解本发明的特征以及技术内容,请参阅以下有关本发明的详细说明与附图,然而附图仅提供参考与说明用,并非用来对本发明加以限制。
附图中,
图1为一种现有的真空蒸镀加热装置的剖面结构示意图;
图2为本发明的真空蒸镀加热装置的剖面结构示意图;
图3为本发明的真空蒸镀加热装置的第二加热线圈的俯视示意图;
图4为本发明的真空蒸镀加热装置的第二加热线圈的保护盖的俯视示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合本发明的优选实施例及其附图进行详细描述。
请参阅图2至图4,本发明提供一种真空蒸镀加热装置,包括加热装置外壁3、设于所述加热装置外壁3内部的坩埚1、及设于所述坩埚1上的坩埚盖2。
具体地,所述坩埚1与加热装置外壁3之间对应所述坩埚1与坩埚盖2的外围设有第一加热线圈11。所述坩埚盖2的中心设有贯通坩埚盖2上下表面的喷口20,用于在蒸镀制程中使汽化后的蒸镀材料分子从所述喷口20飞出沉积到基板上形成固态薄膜。所述坩埚盖2上对应所述喷口20的外围设有第二加热线圈21。所述第一加热线圈11、第二加热线圈21分别与电源电性连接并可单独控制进行加热,从而可同时对坩埚2的竖直轴向和水平径向两个方向上的温度分布进行控制,以保证坩埚存在由上到下的温度梯度的同时,有效降低坩埚水平径向的温差,防止材料堵孔。
具体地,所述第二加热线圈21呈螺旋状,包括位于最内圈端部的尾端211与位于最外圈端部的电极端212;所述尾端211位于所述坩埚盖2上;所述电极端212伸出至所述坩埚盖2的外部并竖直向下延伸。
具体地,所述坩埚1与加热装置外壁3之间对应所述电极端212的下方设有电极接口22;所述电极端212插入所述电极接口22中,所述电极接口22与加热电路23电性连接,所述电极接口22可以设计为插座式,方便进行插拔,从而在蒸镀制程的过程中可方便将所述第二加热线圈21取下,以进行坩埚换料等动作,待坩埚安装好后又可方便将所述第二加热线圈21安装上。
具体地,所述坩埚1下方设有加热装置底座24。
具体地,所述第一加热线圈11中位于所述坩埚1的上部区域的线圈分布密度大于位于所述坩埚1的下部区域的线圈分布密度,可使得坩埚2上部可以获得稍高于下部的温度,这样可以较好地解决坩埚2在竖直轴向上需要存在一定温差的问题,使坩埚2存在由上到下的温度梯度,从而防止堵孔,获得稳定的蒸镀状态。
具体地,在进行蒸镀制程时,可通过分别控制所述第一加热线圈11与第二加热线圈21通电,使所述坩埚盖2的温度稍高于所述坩埚1的温度,从而有效降低坩埚2水平径向上的温度差,进一步防止材料堵孔,使材料蒸镀状态更稳定。
如图4所示,所述第二加热线圈21上可以设置保护盖30,以对所述第 二加热线圈21进行保护,防止其变形。所述保护盖30的形状和尺寸与所述第二加热线圈21的形状和尺寸相适应,以包覆和容纳所述第二加热线圈21,并且所述保护盖30的中央具有一与所述喷口20相对应的开口31,所述开口31的尺寸大于或等于所述喷口20的尺寸。
具体地,所述保护盖30的材质为金属,如钛、铝、不锈钢等。
具体地,所述保护盖30可以与所述第二加热线圈21焊接在一起;或者在所述保护盖30上设置有卡槽,使所述第二加热线圈21卡设于所述卡槽中。
具体地,所述坩埚盖2上于所述第二加热线圈21的边缘处设有第一热电偶25,用于监测坩埚盖2的温度;所述坩埚1底部附近设有第二热电偶26,用于监测所述坩埚1的温度,保证坩埚盖2的温度稍高于坩埚1的温度的同时,又低于材料裂解温度。
综上所述,本发明的真空蒸镀加热装置,坩埚与坩埚盖周围设有第一加热线圈,坩埚盖上设有第二加热线圈,且第一加热线圈与第二加热线圈可分别独立控制进行加热,能够在保证坩埚存在由上到下的温度梯度的同时,有效降低坩埚水平径向的温差,防止材料堵孔,同时可将直径设计得更大,增加材料放置量,减少开腔次数,提高生产效率;结构简单,易于制作。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (15)

  1. 一种真空蒸镀加热装置,包括加热装置外壁、设于所述加热装置外壁内部的坩埚、及设于所述坩埚上的坩埚盖;
    所述坩埚与加热装置外壁之间对应所述坩埚与坩埚盖的外围设有第一加热线圈;所述坩埚盖的中心设有贯通坩埚盖上下表面的喷口,所述坩埚盖上对应所述喷口的外围设有第二加热线圈;所述第一加热线圈、第二加热线圈分别与电源电性连接并可单独控制进行加热。
  2. 如权利要求1所述的真空蒸镀加热装置,其中,所述第二加热线圈呈螺旋状,包括位于最内圈端部的尾端与位于最外圈端部的电极端;所述尾端位于所述坩埚盖上;所述电极端伸出至所述坩埚盖的外部并竖直向下延伸。
  3. 如权利要求2所述的真空蒸镀加热装置,其中,所述坩埚与加热装置外壁之间对应所述电极端的下方设有电极接口;所述电极端插入所述电极接口中;所述电极接口与加热电路电性连接。
  4. 如权利要求1所述的真空蒸镀加热装置,其中,所述第一加热线圈中位于所述坩埚的上部区域的线圈分布密度大于位于所述坩埚的下部区域的线圈分布密度。
  5. 如权利要求1所述的真空蒸镀加热装置,其中,在进行蒸镀制程时,通过分别控制所述第一加热线圈与第二加热线圈通电,使所述坩埚盖的温度高于所述坩埚的温度。
  6. 如权利要求1所述的真空蒸镀加热装置,其中,所述第二加热线圈上设有保护盖。
  7. 如权利要求6所述的真空蒸镀加热装置,其中,所述保护盖的材质为金属。
  8. 如权利要求7所述的真空蒸镀加热装置,其中,所述保护盖与所述第二加热线圈焊接在一起;或者所述保护盖上设有卡槽,所述第二加热线圈卡设于所述卡槽中。
  9. 如权利要求1所述的真空蒸镀加热装置,其中,所述坩埚盖上于所述第二加热线圈的边缘处设有第一热电偶,用于监测所述坩埚盖的温度;所述坩埚底部附近设有第二热电偶,用于监测所述坩埚的温度。
  10. 一种真空蒸镀加热装置,包括加热装置外壁、设于所述加热装置外壁内部的坩埚、及设于所述坩埚上的坩埚盖;
    所述坩埚与加热装置外壁之间对应所述坩埚与坩埚盖的外围设有第一加热线圈;所述坩埚盖的中心设有贯通坩埚盖上下表面的喷口,所述坩埚盖上对应所述喷口的外围设有第二加热线圈;所述第一加热线圈、第二加热线圈分别与电源电性连接并可单独控制进行加热;
    其中,所述第二加热线圈呈螺旋状,包括位于最内圈端部的尾端与位于最外圈端部的电极端;所述尾端位于所述坩埚盖上;所述电极端伸出至所述坩埚盖的外部并竖直向下延伸;
    其中,所述第一加热线圈中位于所述坩埚的上部区域的线圈分布密度大于位于所述坩埚的下部区域的线圈分布密度;
    其中,在进行蒸镀制程时,通过分别控制所述第一加热线圈与第二加热线圈通电,使所述坩埚盖的温度高于所述坩埚的温度。
  11. 如权利要求10所述的真空蒸镀加热装置,其中,所述坩埚与加热装置外壁之间对应所述电极端的下方设有电极接口;所述电极端插入所述电极接口中;所述电极接口与加热电路电性连接。
  12. 如权利要求10所述的真空蒸镀加热装置,其中,所述第二加热线圈上设有保护盖。
  13. 如权利要求12所述的真空蒸镀加热装置,其中,所述保护盖的材质为金属。
  14. 如权利要求13所述的真空蒸镀加热装置,其中,所述保护盖与所述第二加热线圈焊接在一起;或者所述保护盖上设有卡槽,所述第二加热线圈卡设于所述卡槽中。
  15. 如权利要求10所述的真空蒸镀加热装置,其中,所述坩埚盖上于所述第二加热线圈的边缘处设有第一热电偶,用于监测所述坩埚盖的温度;所述坩埚底部附近设有第二热电偶,用于监测所述坩埚的温度。
PCT/CN2016/074612 2016-01-29 2016-02-26 真空蒸镀加热装置 WO2017128471A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/032,046 US20180044776A1 (en) 2016-01-29 2016-02-26 Vacuum deposition heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610064564.0A CN105603365B (zh) 2016-01-29 2016-01-29 真空蒸镀加热装置
CN201610064564.0 2016-01-29

Publications (1)

Publication Number Publication Date
WO2017128471A1 true WO2017128471A1 (zh) 2017-08-03

Family

ID=55983699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074612 WO2017128471A1 (zh) 2016-01-29 2016-02-26 真空蒸镀加热装置

Country Status (3)

Country Link
US (1) US20180044776A1 (zh)
CN (1) CN105603365B (zh)
WO (1) WO2017128471A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145014A1 (en) * 2018-01-23 2019-08-01 Applied Materials, Inc. Evaporator for evaporating a source material, material deposition source, deposition apparatus and methods therefor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107236930A (zh) * 2017-05-22 2017-10-10 茆胜 防堵塞坩埚
CN107190237A (zh) * 2017-06-26 2017-09-22 深圳市华星光电技术有限公司 蒸发源加热系统
CN107400859B (zh) * 2017-08-17 2019-08-13 武汉华星光电半导体显示技术有限公司 一种蒸发源
CN109722633B (zh) * 2017-10-31 2021-07-06 上海和辉光电股份有限公司 一种坩埚及蒸镀装置
US11111574B2 (en) 2018-05-28 2021-09-07 Shenzhen China Star Optoelectronics Technology Co., Ltd. Vapor deposition apparatus and vapor deposition method
CN108728801B (zh) * 2018-05-28 2019-11-12 深圳市华星光电技术有限公司 蒸镀装置及蒸镀方法
CN111020491B (zh) * 2019-12-30 2021-11-05 厦门天马微电子有限公司 蒸镀装置和蒸镀设备
CN111442859B (zh) * 2020-05-22 2024-05-17 核工业理化工程研究院 电磁感应加热装置的测温装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495284A (zh) * 2002-09-03 2004-05-12 三星日本电气移动显示株式会社 有机薄膜形成设备用加热坩埚
JP2006059640A (ja) * 2004-08-19 2006-03-02 Tdk Corp 蒸着装置及び蒸着方法
CN103643206A (zh) * 2012-11-29 2014-03-19 光驰科技(上海)有限公司 真空蒸镀源及使用该真空蒸镀源的真空蒸镀方法
CN104078626A (zh) * 2014-07-22 2014-10-01 深圳市华星光电技术有限公司 用于oled材料蒸镀的加热装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102268642A (zh) * 2011-07-22 2011-12-07 上海奕瑞光电子科技有限公司 电阻加热式蒸发源
CN103757590B (zh) * 2013-12-31 2016-04-20 深圳市华星光电技术有限公司 一种镀膜机坩埚设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1495284A (zh) * 2002-09-03 2004-05-12 三星日本电气移动显示株式会社 有机薄膜形成设备用加热坩埚
JP2006059640A (ja) * 2004-08-19 2006-03-02 Tdk Corp 蒸着装置及び蒸着方法
CN103643206A (zh) * 2012-11-29 2014-03-19 光驰科技(上海)有限公司 真空蒸镀源及使用该真空蒸镀源的真空蒸镀方法
CN104078626A (zh) * 2014-07-22 2014-10-01 深圳市华星光电技术有限公司 用于oled材料蒸镀的加热装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145014A1 (en) * 2018-01-23 2019-08-01 Applied Materials, Inc. Evaporator for evaporating a source material, material deposition source, deposition apparatus and methods therefor

Also Published As

Publication number Publication date
CN105603365A (zh) 2016-05-25
CN105603365B (zh) 2018-07-10
US20180044776A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
WO2017128471A1 (zh) 真空蒸镀加热装置
CN101041891B (zh) 汽相淀积源和汽相淀积装置
KR101465615B1 (ko) 증발 증착 장치
CN102268642A (zh) 电阻加热式蒸发源
KR101084333B1 (ko) 유기전계발광 디스플레이 패널 제조용 증발원 및 이를 포함하는 증착장치
JP2013211138A (ja) 蒸発源、及びそれを用いた真空蒸着装置
JP2016534973A5 (zh)
WO2016101397A1 (zh) 防止蒸镀材料喷溅及塞孔的坩埚
CN109666897A (zh) 一种坩埚及点型蒸发源
WO2016065767A1 (zh) 用于升华型oled材料蒸镀的坩埚
WO2018120381A1 (zh) 高频感应蒸发源装置
JP4090039B2 (ja) 蒸着装置における蒸発源
CN202465943U (zh) 一种用于硅铸锭炉内的坩埚保护装置
KR101370326B1 (ko) 증발 증착 장치
KR102295876B1 (ko) 금속 증착용 도가니
JP2006200040A (ja) 加熱容器支持台及びそれを備えた蒸着装置
KR101777777B1 (ko) 고속 코팅용 진공 증착 장치
CN105762102A (zh) 支承装置和包含它的衬底处理设备
KR101846692B1 (ko) 스피팅 방지 구조체를 구비한 증착장치용 증발원
JP6291696B2 (ja) 蒸着装置および蒸発源
CN201437549U (zh) 蒸镀装置
JP6982695B2 (ja) 蒸着源及び真空処理装置
WO2020113676A1 (zh) 蒸镀坩埚
CN111455322B (zh) 坩埚装置、蒸镀装置
KR101160437B1 (ko) 하향식 금속박막 증착용 고온 증발원

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15032046

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16887355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16887355

Country of ref document: EP

Kind code of ref document: A1