WO2017125966A1 - 感光性樹脂組成物、ドライフィルム、及びプリント配線板 - Google Patents

感光性樹脂組成物、ドライフィルム、及びプリント配線板 Download PDF

Info

Publication number
WO2017125966A1
WO2017125966A1 PCT/JP2016/002474 JP2016002474W WO2017125966A1 WO 2017125966 A1 WO2017125966 A1 WO 2017125966A1 JP 2016002474 W JP2016002474 W JP 2016002474W WO 2017125966 A1 WO2017125966 A1 WO 2017125966A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
photosensitive resin
group
carboxyl group
acid
Prior art date
Application number
PCT/JP2016/002474
Other languages
English (en)
French (fr)
Inventor
倫也 樋口
橋本 壯一
貴 荒井
浩信 川里
真司 稲葉
Original Assignee
互応化学工業株式会社
新日鉄住金化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016008324A external-priority patent/JP2017129687A/ja
Priority claimed from JP2016044995A external-priority patent/JP6272372B2/ja
Priority claimed from JP2016044996A external-priority patent/JP6204519B2/ja
Priority claimed from JP2016044536A external-priority patent/JP6204518B2/ja
Application filed by 互応化学工業株式会社, 新日鉄住金化学株式会社 filed Critical 互応化学工業株式会社
Priority to CN201680079243.6A priority Critical patent/CN108475015B/zh
Priority to KR1020187020772A priority patent/KR101956661B1/ko
Publication of WO2017125966A1 publication Critical patent/WO2017125966A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/029Inorganic compounds; Onium compounds; Organic compounds having hetero atoms other than oxygen, nitrogen or sulfur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/028Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with photosensitivity-increasing substances, e.g. photoinitiators
    • G03F7/031Organic compounds not covered by group G03F7/029
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/06Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed chemically or electrolytically, e.g. by photo-etch process
    • H05K3/061Etching masks
    • H05K3/064Photoresists

Definitions

  • the present invention relates to a photosensitive resin composition, a dry film that is a dried product of the photosensitive resin composition, a printed wiring board including an interlayer insulating layer containing a cured product of the photosensitive resin composition, and the photosensitive resin composition.
  • the present invention relates to a printed wiring board including a solder resist layer containing a cured product.
  • an electrically insulating resin composition has been used to form electrically insulating layers such as a solder resist layer, a plating resist layer, an etching resist layer, and an interlayer insulating layer of a printed wiring board.
  • a resin composition is, for example, a photosensitive resin composition.
  • Patent Document 1 discloses a photosensitive resin composition containing an organic filler.
  • Patent Document 1 discloses using an organic filler whose surface is coated with silica in a resin composition containing a carboxyl group-containing resin, a photopolymerization initiator, and an organic filler.
  • the surface of the organic filler is coated with silica to improve the electrical characteristics of the layer obtained from the resin composition and increase the strength of the layer.
  • Patent Document 1 an organic filler whose surface is coated with silica must be used. It is not easy to obtain a photosensitive resin composition containing an organic filler and having excellent developability, thixotropy, plating resistance, insulation reliability, and adhesion.
  • An object of the present invention is to develop a photosensitive resin composition excellent in developability, thixotropy, plating resistance, insulation reliability, and adhesion, a dry film that is a dried product of the photosensitive resin composition, and the photosensitive resin. It is providing a printed wiring board provided with the interlayer insulation layer containing the hardened
  • a photosensitive resin composition includes a carboxyl group-containing resin (A), an unsaturated compound (B) having at least one ethylenically unsaturated bond in one molecule, a photopolymerization initiator ( C), an epoxy compound (D), an organic filler (E) containing an organic filler (E1) having a carboxyl group, at least one melamine compound (F) selected from the group of melamine and melamine derivatives, Containing.
  • the dry film according to one embodiment of the present invention is a dried product of the photosensitive resin composition.
  • a printed wiring board according to an aspect of the present invention includes an interlayer insulating layer containing a cured product of the photosensitive resin composition.
  • a printed wiring board according to an aspect of the present invention includes a solder resist layer containing a cured product of the photosensitive resin composition.
  • FIGS. 1A to 1E are cross-sectional views illustrating steps of manufacturing a multilayer printed wiring board according to an embodiment of the present invention.
  • (meth) acryl means at least one of “acryl” and “methacryl”.
  • (meth) acrylate means at least one of acrylate and methacrylate.
  • the photosensitive resin composition according to this embodiment includes a carboxyl group-containing resin (A), an unsaturated compound (B) having at least one ethylenically unsaturated bond in one molecule, and a photopolymerization initiator (C). And an epoxy compound (D), an organic filler (E) containing an organic filler (E1) having a carboxyl group, and at least one melamine compound (F) selected from the group of melamine and melamine derivatives. .
  • the carboxyl group-containing resin (A) preferably contains a carboxyl group-containing resin having an ethylenically unsaturated group. Since the carboxyl group-containing resin (A) has an ethylenically unsaturated group, it has photoreactivity. For this reason, the carboxyl group-containing resin (A) can impart photosensitivity, specifically, ultraviolet curability, to the photosensitive resin composition.
  • the carboxyl group-containing resin (A) preferably contains a carboxyl group-containing resin having an aromatic ring.
  • the carboxyl group-containing resin (A) contains an aromatic ring, high heat resistance and insulation reliability can be imparted to the cured product of the photosensitive resin composition containing the carboxyl group-containing resin (A).
  • the carboxyl group-containing resin (A) includes a carboxyl group-containing resin having any polycyclic aromatic ring among a biphenyl skeleton, a naphthalene skeleton, a fluorene skeleton, and an anthracene skeleton.
  • the photosensitive resin composition containing carboxyl group-containing resin (A) because carboxyl group-containing resin (A) contains any polycyclic aromatic ring among biphenyl skeleton, naphthalene skeleton, fluorene skeleton, and anthracene skeleton. Higher heat resistance and insulation reliability can be imparted to the cured product. More preferably, the carboxyl group-containing resin (A) includes a carboxyl group-containing resin having a bisphenolfluorene skeleton. When the carboxyl group-containing resin (A) includes a bisphenolfluorene skeleton, higher heat resistance and insulation reliability can be imparted to the cured product of the photosensitive resin composition containing the carboxyl group-containing resin (A).
  • the carboxyl group-containing resin (A) preferably contains a carboxyl group-containing resin (A1) having a bisphenol fluorene skeleton as described below.
  • the carboxyl group-containing resin (A1) includes, for example, an epoxy compound (a1) having a bisphenolfluorene skeleton represented by the following formula (1), a carboxylic acid (a2) containing an unsaturated group-containing carboxylic acid (a2-1), It is a reaction product of an intermediate that is a reaction product of (1) and an acid anhydride (a3).
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or halogen.
  • the carboxyl group-containing resin (A1) includes an epoxy compound (a1) having a bisphenolfluorene skeleton (S1) represented by the following formula (1) and a carboxylic acid (a2) containing an unsaturated group-containing carboxylic acid (a2-1) And the intermediate obtained thereby and the acid anhydride (a3) are reacted.
  • R 1 to R 8 are each independently hydrogen, an alkyl group having 1 to 5 carbon atoms, or halogen. That is, each of R 1 to R 8 in Formula (1) may be hydrogen, but may be an alkyl group having 1 to 5 carbon atoms or halogen. This is because even if hydrogen in the aromatic ring is substituted with a low molecular weight alkyl group or halogen, the physical properties of the carboxyl group-containing resin (A1) are not adversely affected, but rather the photosensitive resin composition containing the carboxyl group-containing resin (A1). This is because the heat resistance or flame retardancy of the cured product may be improved.
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton represented by the formula (1) derived from the epoxy compound (a1), high heat resistance and insulation reliability can be imparted to the cured product of the photosensitive resin composition. . Moreover, the developability excellent in the photosensitive resin composition can be provided because carboxyl group-containing resin (A1) has a carboxyl group derived from an acid anhydride (a3). Furthermore, thermosetting property can be provided to the photosensitive resin composition because the photosensitive resin composition contains an epoxy resin.
  • the carboxyl group-containing resin (A1) can be synthesized, for example, as described below.
  • An intermediate is synthesized by reacting with the acid (a2).
  • the synthesis of the intermediate is defined as the first reaction.
  • the intermediate has a structure (S3) represented by the following formula (3) generated by the ring-opening addition reaction between the epoxy group and the carboxylic acid (a2).
  • the intermediate has a secondary hydroxyl group generated by the ring-opening addition reaction between the epoxy group and the carboxylic acid (a2) in the structure (S3).
  • A is a carboxylic acid residue. This A contains an unsaturated group-containing carboxylic acid residue.
  • the reaction between the intermediate and the acid anhydride (a3) is defined as the second reaction.
  • the acid anhydride (a3) may include acid monoanhydride and acid dianhydride.
  • the acid monoanhydride is a compound having one acid anhydride group in which two carboxyl groups in one molecule are dehydrated and condensed.
  • An acid dianhydride is a compound having two acid anhydride groups obtained by dehydration condensation of four carboxyl groups in one molecule.
  • the acid anhydride (a3) may contain at least one of acid dianhydride (a3-2) and acid monoanhydride (a3-1).
  • acid anhydride (a3) contains acid monoanhydride (a3-1)
  • the carboxyl group-containing resin (A1) is represented by the bisphenolfluorene skeleton (S1) represented by the formula (1) and the following formula (4): Structure (S4).
  • the structure (S4) is generated by the reaction between the secondary hydroxyl group in the intermediate structure (S3) and the acid anhydride group in the acid monoanhydride (a3-1).
  • A is a carboxylic acid residue
  • B is an acid monoanhydride residue. This A contains an unsaturated group-containing carboxylic acid residue.
  • the carboxyl group-containing resin (A1) is represented by the bisphenolfluorene skeleton (S1) represented by the formula (1) and the following formula (5): Structure (S5).
  • the structure (S5) is generated by the reaction between two acid anhydride groups in the acid dianhydride (a3-2) and two secondary hydroxyl groups in the intermediate. That is, the structure (S5) is formed by crosslinking two secondary hydroxyl groups with the acid dianhydride (a3-2).
  • the case where two secondary hydroxyl groups present in one molecule of the intermediate are crosslinked and the case where two secondary hydroxyl groups present in each of the two molecules of the intermediate are crosslinked It is possible.
  • the two secondary hydroxyl groups present in the two molecules of the intermediate are cross-linked, the molecular weight increases.
  • A is a carboxylic acid residue and D is an acid dianhydride residue. This A contains an unsaturated group-containing carboxylic acid residue.
  • the carboxyl group-containing resin (A1) can be obtained by reacting the secondary hydroxyl group in the intermediate with the acid anhydride (a3).
  • the acid anhydride (a3) contains an acid dianhydride (a3-2) and an acid monoanhydride (a3-1)
  • a part of the secondary hydroxyl groups in the intermediate and the acid dianhydride ( a3-2) and another part of the secondary hydroxyl groups in the intermediate are reacted with acid monoanhydride (a3-1).
  • carboxyl group-containing resin (A1) can be synthesized.
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton (S1), a structure (S4), and a structure (S5).
  • the carboxyl group-containing resin (A1) may further have a structure (S6) represented by the following formula (6).
  • the structure (S6) occurs when only one of the two acid anhydride groups in the acid dianhydride (a3-2) reacts with the secondary hydroxyl group in the intermediate.
  • A is a carboxylic acid residue and D is an acid dianhydride residue. This A contains an unsaturated group-containing carboxylic acid residue.
  • the carboxyl group-containing resin (A1) has a structure (S2) represented by the formula (2), that is, an epoxy group It is possible. Further, when a part of the structure (S3) in the intermediate remains unreacted, the carboxyl group-containing resin (A1) may have the structure (S3).
  • the acid anhydride (a3) contains the acid dianhydride (a3-2)
  • the carboxyl group-containing resin (A1) contains the acid dianhydride (a3-2)
  • the number of structures (S2) and structures (S6) is reduced, or the structure (S2) and structure (S6) are almost eliminated from the carboxyl group-containing resin (A1).
  • the carboxyl group-containing resin (A1) has a bisphenolfluorene skeleton (S1), and when the acid anhydride (a3) contains acid monoanhydride (a3-1), the structure (S4) And the acid anhydride contains the acid dianhydride (a3-2), it can have the structure (S5). Further, when the acid anhydride (a3) contains acid monoanhydride (a3-1), the carboxyl group-containing resin (A1) may have at least one of the structure (S2) and the structure (S3). is there. When the acid anhydride (a3) contains the acid dianhydride (a3-2), the carboxyl group-containing resin (A1) has at least one of the structure (S2) and the structure (S6). There is.
  • the carboxyl group-containing resin (A1) has the structure (S2), There may be at least one of the structure (S3) and the structure (S6).
  • the carboxyl group-containing resin (A1) is an epoxy compound (a1).
  • the secondary secondary hydroxyl group and the acid anhydride (a3) may react with each other.
  • the structure of the above-mentioned carboxyl group-containing resin (A1) is reasonably inferred based on the common general technical knowledge, and the structure of the carboxyl group-containing resin (A1) cannot be specified by analysis.
  • the reason is as follows.
  • the epoxy compound (a1) itself has a secondary hydroxyl group (for example, when n is 1 or more in the formula (7))
  • the carboxyl group-containing resin depends on the number of secondary hydroxyl groups in the epoxy compound (a1).
  • the structure of (A1) changes greatly.
  • the carboxyl group-containing resin (A1) finally obtained contains a plurality of molecules having different structures, and even when the carboxyl group-containing resin (A1) is analyzed, the structure cannot be specified.
  • carboxyl group-containing resin (A1) Since the carboxyl group-containing resin (A1) has an ethylenically unsaturated group derived from the unsaturated group-containing carboxylic acid (a2-1), it has photoreactivity. For this reason, carboxyl group-containing resin (A1) can impart photosensitivity (specifically, ultraviolet curable) to the photosensitive resin composition. Moreover, since the carboxyl group-containing resin (A1) has a carboxyl group derived from the acid anhydride (a3), at least one of an alkali metal salt and an alkali metal hydroxide is added to the photosensitive resin composition. The developability by the alkaline aqueous solution to contain can be provided.
  • the molecular weight of the carboxyl group-containing resin (A1) depends on the number of crosslinks by the acid dianhydride (a3-2). . For this reason, the carboxyl group-containing resin (A1) in which the acid value and the molecular weight are appropriately adjusted is obtained.
  • the acid anhydride (a3) contains an acid dianhydride (a3-2) and an acid monoanhydride (a3-1), the acid dianhydride (a3-2) and the acid monoanhydride (a3-1) And the amount of acid monoanhydride (a3-1) relative to acid dianhydride (a3-2) can be easily obtained to obtain a carboxyl group-containing resin (A1) having a desired molecular weight and acid value. .
  • the weight average molecular weight of the carboxyl group-containing resin (A1) is preferably in the range of 700 to 10,000.
  • the weight average molecular weight is 700 or more, tackiness of a film formed from the photosensitive resin composition is further suppressed, and insulation reliability and plating resistance of the cured product are further improved.
  • the developability by the alkaline aqueous solution of the photosensitive resin composition improves especially that a weight average molecular weight is 10,000 or less.
  • the weight average molecular weight is more preferably in the range of 900 to 8000, and particularly preferably in the range of 1000 to 5000.
  • the solid content acid value of the carboxyl group-containing resin (A1) is preferably in the range of 60 to 140 mgKOH / g. In this case, the developability of the photosensitive resin composition is particularly improved.
  • the solid content acid value is more preferably in the range of 80 to 135 mgKOH / g, and still more preferably in the range of 90 to 130 mgKOH / g.
  • the polydispersity of the carboxyl group-containing resin (A1) is preferably in the range of 1.0 to 4.8. In this case, it was excellent in the photosensitive resin composition while ensuring good insulation reliability and plating resistance (for example, resistance to whitening during electroless nickel / gold plating) of the cured product formed from the photosensitive resin composition. Developability can be imparted.
  • the polydispersity of the carboxyl group-containing resin (A1) is more preferably in the range of 1.1 to 4.0, and still more preferably in the range of 1.2 to 2.8.
  • the polydispersity is a value (Mw / Mn) of the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) of the carboxyl group-containing resin (A1).
  • the weight average molecular weight (Mw) of the carboxyl group-containing resin (A1) is calculated from the molecular weight measurement result by gel permeation chromatography.
  • the molecular weight measurement by gel permeation chromatography can be performed, for example, under the following conditions.
  • GPC device SHODEX SYSTEM 11, manufactured by Showa Denko KK
  • the epoxy compound (a1) has a structure (S7) represented by the following formula (7), for example.
  • N in the formula (7) is a number in the range of 0 to 20, for example.
  • the average of n is particularly preferably in the range of 0-1. If the average of n is in the range of 0 to 1, particularly when the acid anhydride (a3) contains acid dianhydride (a3-2), an excess due to the addition of acid dianhydride (a3-2) will occur. Increase in molecular weight tends to be suppressed.
  • the carboxylic acid (a2) includes an unsaturated group-containing carboxylic acid (a2-1).
  • the carboxylic acid (a2) may contain only the unsaturated group-containing carboxylic acid (a2-1).
  • the carboxylic acid (a2) may contain a carboxylic acid other than the unsaturated group-containing carboxylic acid (a2-1) and the unsaturated group-containing carboxylic acid (a2-1).
  • the unsaturated group-containing carboxylic acid (a2-1) can contain, for example, a compound having only one ethylenically unsaturated group in one molecule. More specifically, the unsaturated group-containing carboxylic acid (a2-1) is, for example, acrylic acid, methacrylic acid, ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate, crotonic acid, cinnamic acid, 2-acryloyloxy Ethyl succinic acid, 2-methacryloyloxyethyl succinic acid, 2-acryloyloxyethyl phthalic acid, 2-methacryloyloxyethyl phthalic acid, 2-acryloyloxypropyl phthalic acid, 2-methacryloyloxypropyl phthalic acid, 2-acryloyloxyethyl malein Acid, 2-methacryloyloxyethyl maleic acid, ⁇ -carboxyethyl acrylate, 2-acryloyloxy
  • the carboxylic acid (a2) may contain a polybasic acid (a2-2).
  • the polybasic acid (a2-2) is an acid capable of substituting two or more hydrogen atoms with metal atoms in one molecule.
  • the polybasic acid (a2-2) preferably has two or more carboxyl groups.
  • the epoxy compound (a1) reacts with both the unsaturated group-containing carboxylic acid (a2-1) and the polybasic acid (a2-2).
  • the polybasic acid (a2-1) cross-links the epoxy groups present in the two molecules of the epoxy compound (a1), thereby increasing the molecular weight.
  • the tackiness of the film formed from the photosensitive resin composition can be further controlled, and the insulation reliability and plating resistance of the cured product can be further improved.
  • the polybasic acid (a2-2) preferably contains a dicarboxylic acid.
  • a dicarboxylic acid For example, 4-cyclohexene-1,2-dicarboxylic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, phthalic acid, isophthalic acid
  • One or more compounds selected from the group consisting of acid and terephthalic acid can be contained.
  • the polybasic acid (a2-2) contains 4-cyclohexene-1,2-dicarboxylic acid.
  • the reactive solution is obtained by adding the carboxylic acid (a2) to the solvent solution of the epoxy compound (a1), further adding a thermal polymerization inhibitor and a catalyst as necessary, and stirring and mixing.
  • An intermediate can be obtained by reacting this reactive solution at a temperature of preferably 60 to 150 ° C., particularly preferably 80 to 120 ° C., by a conventional method.
  • Solvents include, for example, ketones such as methyl ethyl ketone and cyclohexanone, and aromatic hydrocarbons such as toluene and xylene, and ethyl acetate, butyl acetate, cellosolve acetate, butyl cellosolve acetate, carbitol acetate, butyl carbitol acetate, propylene glycol monomethyl ether It can contain at least one component selected from the group consisting of acetates such as acetate and dialkyl glycol ethers.
  • the thermal polymerization inhibitor contains, for example, at least one of hydroquinone and hydroquinone monomethyl ether.
  • the catalyst is at least selected from the group consisting of tertiary amines such as benzyldimethylamine and triethylamine, quaternary ammonium salts such as trimethylbenzylammonium chloride and methyltriethylammonium chloride, triphenylphosphine, and triphenylstibine.
  • tertiary amines such as benzyldimethylamine and triethylamine
  • quaternary ammonium salts such as trimethylbenzylammonium chloride and methyltriethylammonium chloride
  • triphenylphosphine triphenylstibine.
  • a kind of component can be contained.
  • the catalyst contains triphenylphosphine. That is, it is preferable to react the epoxy compound (a1) and the carboxylic acid (a2) in the presence of triphenylphosphine. In this case, the ring-opening addition reaction between the epoxy group and the carboxylic acid (a2) in the epoxy compound (a1) is particularly accelerated, and a reaction rate (conversion rate) of 95% or more, 97% or more, or almost 100% is achieved. it can. For this reason, the intermediate body which has a structure (S3) is obtained with a high yield. Moreover, generation
  • the amount of the carboxylic acid (a2) relative to 1 mol of the epoxy group of the epoxy compound (a1) is in the range of 0.5 to 1.2 mol. Is preferred. In this case, a photosensitive resin composition having excellent photosensitivity and stability can be obtained. From the same viewpoint, the amount of the unsaturated group-containing carboxylic acid (a2-1) relative to 1 mol of the epoxy group of the epoxy compound (a1) is preferably in the range of 0.5 to 1.2 mol, 0.8 More preferably in the range of -1.2 mol.
  • the carboxylic acid (a2) contains a carboxylic acid other than the unsaturated group-containing carboxylic acid (a2-1), the unsaturated group-containing carboxylic acid (a2-) with respect to 1 mol of the epoxy group of the epoxy compound (a1).
  • the amount of 1) may be in the range of 0.5 to 0.95 mol.
  • the carboxylic acid (a2) contains a polybasic acid (a2-2)
  • the amount of the polybasic acid (a2-2) relative to 1 mol of the epoxy group of the epoxy compound (a1) is 0.025-0. It is preferably within the range of 25 mol. In this case, a photosensitive resin composition having excellent photosensitivity and stability can be obtained.
  • the intermediate thus obtained comprises a hydroxyl group produced by a reaction between the epoxy group of the epoxy compound (a1) and the carboxyl group of the carboxylic acid (a2).
  • Acid monoanhydride (s3-1) is a compound having one acid anhydride group.
  • the acid monoanhydride (a3-1) can contain an anhydride of a dicarboxylic acid.
  • Acid monoanhydride (a3-1) is, for example, phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic acid anhydride, hexahydrophthalic anhydride, Methyl hexahydrophthalic anhydride, succinic anhydride, methyl succinic anhydride, maleic anhydride, citraconic anhydride, glutaric anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride And at least one compound selected from the group consisting of itaconic anhydride.
  • the acid monoanhydride (a3-1) contains 1,2,3,6-tetrahydrophthalic anhydride. That is, the acid anhydride (a3) preferably contains 1,2,3,6-tetrahydrophthalic anhydride. That is, it is preferable that the carboxyl group-containing resin (A1) has the structure (S4), and B in the formula (4) includes a 1,2,3,6-tetrahydrophthalic anhydride residue.
  • S4 structure
  • B in the formula (4) includes a 1,2,3,6-tetrahydrophthalic anhydride residue.
  • the amount of 1,2,3,6-tetrahydrophthalic anhydride relative to the total amount of acid monoanhydride (a3-1) is preferably in the range of 20 to 100 mol%, and in the range of 40 to 100 mol%. Although it is more preferable, it is not limited to these ranges.
  • Acid dianhydride (a3-2) is a compound having two acid anhydride groups.
  • the acid dianhydride (a3-2) can contain an anhydride of tetracarboxylic acid.
  • Examples of the acid dianhydride (a3-2) include 1,2,4,5-benzenetetracarboxylic dianhydride, benzophenone tetracarboxylic dianhydride, methylcyclohexene tetracarboxylic dianhydride, and tetracarboxylic dianhydride.
  • the acid dianhydride (a3-2) preferably contains 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride. That is, it is preferable that D in Formula (5) and Formula (6) includes a 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride residue. In this case, while ensuring good developability of the photosensitive resin composition, it is possible to further suppress the tackiness of a film formed from the photosensitive resin composition and further improve the insulation reliability and plating resistance of the cured product. .
  • the amount of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride with respect to the total amount of acid dianhydride (a3-2) is preferably in the range of 20 to 100 mol%, preferably 40 to 100 mol%. Although it is more preferable to be within the range, it is not limited to these ranges.
  • a known method can be employed.
  • a reactive solution is obtained by adding an acid anhydride (a3) to a solvent solution of an intermediate, further adding a thermal polymerization inhibitor and a catalyst as necessary, and stirring and mixing.
  • a temperature of preferably 60 to 150 ° C., particularly preferably 80 to 120 ° C. a carboxyl group-containing resin (A1) can be obtained by a conventional method.
  • the solvent, catalyst and polymerization inhibitor appropriate ones can be used, and the solvent, catalyst and polymerization inhibitor used in the synthesis of the intermediate can also be used as they are.
  • the catalyst contains triphenylphosphine. That is, it is preferable to react the intermediate and the acid anhydride (a3) in the presence of triphenylphosphine. In this case, the reaction between the secondary hydroxyl group and the acid anhydride (a3) in the intermediate is particularly accelerated, and a reaction rate (conversion rate) of 90% or more, 95% or more, 97% or more, or almost 100% is achieved. it can. For this reason, the carboxyl group-containing resin (A1) having at least one of the structure (S4) and the structure (S5) is obtained in a high yield. Moreover, generation
  • the acid anhydride (a3) contains an acid dianhydride (a3-2) and an acid monoanhydride (a3-1), the acid dianhydride with respect to 1 mol of the epoxy group of the epoxy compound (a1)
  • the amount of (a3-2) is preferably in the range of 0.05 to 0.24 mol.
  • the amount of acid monoanhydride (a3-1) is preferably in the range of 0.3 to 0.7 mol with respect to 1 mol of the epoxy group of the epoxy compound (a1).
  • the carboxyl group-containing resin (A1) in which the acid value and the molecular weight are appropriately adjusted can be easily obtained.
  • the intermediate and the acid anhydride (a3) are also preferable to react the intermediate and the acid anhydride (a3) under air bubbling.
  • the developability by the alkaline aqueous solution of the photosensitive resin composition improves especially by suppressing the excessive molecular weight increase of the produced
  • the carboxyl group-containing resin (A) may contain only the carboxyl group-containing resin (A1) or only a carboxyl group-containing resin other than the carboxyl group-containing resin (A1), and the carboxyl group-containing resin (A1) and the carboxyl group-containing resin. You may contain carboxyl group-containing resin other than resin (A1).
  • the carboxyl group-containing resin other than the carboxyl group-containing resin (A1) includes a carboxyl group-containing resin having no bisphenolfluorene skeleton (hereinafter also referred to as a carboxyl group-containing resin (A2)).
  • the carboxyl group-containing resin (A2) can contain, for example, a compound having a carboxyl group and not having photopolymerizability (hereinafter referred to as component (A2-1)).
  • component (A2-1) contains, for example, a polymer of an ethylenically unsaturated monomer including an ethylenically unsaturated compound having a carboxyl group.
  • the ethylenically unsaturated compound having a carboxyl group can contain compounds such as acrylic acid, methacrylic acid, and ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate.
  • the ethylenically unsaturated compound having a carboxyl group can also contain a reaction product of pentaerythritol triacrylate, pentaerythritol trimethacrylate and the like with a dibasic acid anhydride.
  • Ethylenically unsaturated monomers include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, linear or branched aliphatic or alicyclic (provided that It may further contain an ethylenically unsaturated compound having no carboxyl group, such as (meth) acrylic acid ester (which may partially have an unsaturated bond in the ring).
  • the carboxyl group-containing resin (A2) may contain a compound having a carboxyl group and an ethylenically unsaturated group (hereinafter referred to as “component (A2-2)”).
  • the carboxyl group-containing resin (A2) may contain only the component (A2-2).
  • the component (A2-2) includes, for example, an intermediate that is a reaction product of an epoxy compound (x1) having two or more epoxy groups in one molecule and an ethylenically unsaturated compound (x2), a polyvalent carboxylic acid, and It contains a resin (referred to as first resin (x)) that is a reaction product with at least one compound (x3) selected from the group of anhydrides.
  • the compound (x3) is added to an intermediate obtained by reacting the epoxy group in the epoxy compound (x1) with the carboxyl group in the ethylenically unsaturated compound (x2).
  • the epoxy compound (x1) can contain an appropriate epoxy compound such as a cresol novolac epoxy compound, a phenol novolac epoxy compound, or a biphenyl novolac epoxy compound.
  • the epoxy compound (x1) preferably contains at least one compound selected from the group of biphenyl novolac type epoxy compounds and cresol novolac type epoxy compounds.
  • the epoxy compound (x1) may contain only a biphenyl novolac type epoxy compound or may contain only a cresol novolac type epoxy compound.
  • the epoxy compound (x1) may contain a polymer of the ethylenically unsaturated compound (z).
  • the ethylenically unsaturated compound (z) contains, for example, a compound (z1) having an epoxy group such as glycidyl (meth) acrylate, or further has no epoxy group such as 2- (meth) acryloyloxyethyl phthalate. Contains compound (z2).
  • the ethylenically unsaturated compound (x2) preferably contains at least one of acrylic acid and methacrylic acid.
  • Compound (x3) contains, for example, one or more compounds selected from the group consisting of polyvalent carboxylic acids such as phthalic acid, tetrahydrophthalic acid, and methyltetrahydrophthalic acid, and anhydrides of these polyvalent carboxylic acids.
  • the compound (x3) preferably contains at least one polycarboxylic acid selected from the group of phthalic acid, tetrahydrophthalic acid, and methyltetrahydrophthalic acid.
  • the component (A2-2) is a resin (second resin) which is a reaction product of a polymer of an ethylenically unsaturated monomer containing an ethylenically unsaturated compound having a carboxyl group and an ethylenically unsaturated compound having an epoxy group.
  • the ethylenically unsaturated monomer may further contain an ethylenically unsaturated compound having no carboxyl group.
  • the second resin (y) is obtained by reacting an ethylenically unsaturated compound having an epoxy group with a part of the carboxyl group in the polymer.
  • the ethylenically unsaturated monomer may further contain an ethylenically unsaturated compound having no carboxyl group.
  • the ethylenically unsaturated compound having a carboxyl group include compounds such as acrylic acid, methacrylic acid, ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate, pentaerythritol triacrylate, and pentaerythritol trimethacrylate.
  • Examples of the ethylenically unsaturated compound having no carboxyl group include 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxyethyl phthalate, linear or branched aliphatic or fatty acid It contains a compound such as a (meth) acrylic acid ester of a cyclic group (however, it may have a partially unsaturated bond in the ring).
  • the ethylenically unsaturated compound having an epoxy group preferably contains glycidyl (meth) acrylate.
  • the carboxyl group-containing resin (A) contains only the carboxyl group-containing resin (A1), only the carboxyl group-containing resin (A2), or the carboxyl group-containing resin (A1) and the carboxyl group-containing resin (A2).
  • the carboxyl group-containing resin (A) preferably contains 30% by mass or more of the carboxyl group-containing resin (A1), more preferably contains 50% by mass or more, and further preferably contains 60% by mass or more. It is still more preferable to contain by mass%.
  • the heat resistance and insulation reliability of the cured product of the photosensitive resin composition can be particularly improved.
  • membrane formed from the photosensitive resin composition can fully be reduced.
  • the developability of the photosensitive resin composition with an alkaline aqueous solution can be secured.
  • the unsaturated compound (B) can impart photocurability to the photosensitive resin composition.
  • the unsaturated compound (B) is, for example, a monofunctional (meth) acrylate such as 2-hydroxyethyl (meth) acrylate; and diethylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, ⁇ -caprolactone modified pentaerythritol hexaacrylate, tricyclodecandi
  • At least one compound selected from the group consisting of polyfunctional (meth) acrylates such as methanol di (meth) acrylate
  • the unsaturated compound (B) preferably contains a trifunctional compound, that is, a compound having three unsaturated bonds in one molecule.
  • a trifunctional compound that is, a compound having three unsaturated bonds in one molecule.
  • Trifunctional compounds include, for example, trimethylolpropane tri (meth) acrylate, EO modified trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethoxylated isocyanuric acid tri (meth) acrylate and ⁇ -caprolactone modified It can contain at least one compound selected from the group consisting of tris- (2-acryloxyethyl) isocyanurate and ethoxylated glycerin tri (meth) acrylate.
  • the unsaturated compound (B) contains a phosphorus-containing compound (phosphorus-containing unsaturated compound).
  • Phosphorus-containing unsaturated compounds include, for example, 2-methacryloyloxyethyl acid phosphate (specific examples: product number light ester P-1M and light ester P-2M manufactured by Kyoeisha Chemical Co., Ltd.), 2-acryloyloxyethyl acid phosphate (Specific examples are product number light acrylate P-1A manufactured by Kyoeisha Chemical Co., Ltd.), diphenyl-2-methacryloyloxyethyl phosphate (specific examples are product number MR-260 manufactured by Daihachi Industry Co., Ltd.), and Showa Polymer Co., Ltd.
  • HFA series (part number HFA-6003, which is an addition reaction product of dipentaerystol hexaacrylate and HCA (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) as a specific example, and HFA-6007, caprolactone Product No. HFA-3003, HFA-6127, etc., which are addition reaction products of modified dipentaerystol hexaacrylate and HCA (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) It can contain at least one compound selected from the group.
  • the unsaturated compound (B) may contain a prepolymer.
  • the prepolymer is at least one selected from the group consisting of, for example, a prepolymer obtained by polymerizing a monomer having an ethylenically unsaturated bond and then adding an ethylenically unsaturated group, and oligo (meth) acrylate prepolymers These compounds can be contained.
  • Oligo (meth) acrylate prepolymers include, for example, epoxy (meth) acrylate, polyester (meth) acrylate, urethane (meth) acrylate, alkyd resin (meth) acrylate, silicone resin (meth) acrylate, and spirane resin (meth) acrylate At least one component selected from the group consisting of:
  • the photopolymerization initiator (C) contains, for example, an acyl phosphine oxide photopolymerization initiator (C1). That is, the photosensitive resin composition contains, for example, an acyl phosphine oxide photopolymerization initiator (C1).
  • the photosensitive resin composition contains, for example, an acyl phosphine oxide photopolymerization initiator (C1).
  • cured material of the photosensitive resin composition is suppressed, and the insulation reliability of the same layer improves further.
  • the acylphosphine oxide photopolymerization initiator (C1) is unlikely to hinder the electrical insulation of the cured product. For this reason, by curing the photosensitive resin composition by exposure, a cured product having excellent electrical insulation can be obtained.
  • This cured product can be used as, for example, a solder resist layer, a plating resist layer, an etching resist layer, or an interlayer insulating layer. Is preferred.
  • Acylphosphine oxide photopolymerization initiators (C1) include monoacyl such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl-ethyl-phenyl-phosphinate, etc.
  • Phosphine oxide photopolymerization initiator and bis- (2,6-dichlorobenzoyl) phenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2 , 6-Dichlorobenzoyl) -4-propylphenylphosphine oxide, bis- (2,6-dichlorobenzoyl) -1-naphthylphosphine oxide, bis- (2,6-dimethoxybenzoyl) phenylphosphine oxide, bis- (2,6-dimethoxybe Zoyl) -2,4,4-trimethylpentylphosphine oxide, bis- (2,6-dimethoxybenzoyl) -2,5-dimethylphenylphosphine oxide, bis- (2,4,6-trimethylbenzoyl) phenylphosphine Contains at least one component selected from the group consist
  • the acylphosphine oxide photopolymerization initiator (C1) preferably contains 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and the acylphosphine oxide photopolymerization initiator (C1) contains 2, It is also preferred to contain only 4,6-trimethylbenzoyl-diphenyl-phosphine oxide.
  • the photopolymerization initiator (C) preferably contains a hydroxyketone photopolymerization initiator (C2) in addition to the acylphosphine oxide photopolymerization initiator (C1). That is, the photosensitive resin composition preferably contains a hydroxyketone photopolymerization initiator (C2). In this case, higher photosensitivity can be imparted to the photosensitive resin composition as compared with the case where the hydroxyketone photopolymerization initiator (C2) is not contained. Thereby, when irradiating and hardening an ultraviolet-ray to the coating film formed from the photosensitive resin composition, it becomes possible to fully harden a coating film over the deep part from the surface.
  • Examples of the hydroxyketone photopolymerization initiator (C2) include 1-hydroxy-cyclohexyl-phenyl-ketone, phenylglyoxyc acid methyl ester, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy -2-Methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propane-1- On and 2-hydroxy-2-methyl-1-phenyl-propan-1-one.
  • the mass ratio of the acylphosphine oxide photopolymerization initiator (C1) and the hydroxyketone photopolymerization initiator (C2) is preferably in the range of 1: 0.01 to 1:10.
  • the curability in the vicinity of the surface of the coating film formed from the photosensitive resin composition and the curability in the deep portion can be improved in a well-balanced manner.
  • the organic filler (E) may cause light scattering in the photosensitive resin composition during exposure. In this case, there may be a problem that good developability cannot be obtained with the photosensitive resin composition.
  • the acylphosphine oxide photopolymerization initiator (C1) and the hydroxyketone photopolymerization initiator (C2 ) Is particularly preferably within the range of 1: 0.01 to 1: 1.
  • the photopolymerization initiator (C) preferably contains a photopolymerization initiator (C3) having a benzophenone skeleton. That is, the photosensitive resin composition contains an acyl phosphine oxide photopolymerization initiator (C1) and a photopolymerization initiator (C3) having a benzophenone skeleton, or an acyl phosphine oxide photopolymerization initiator (C1), It is also preferable to contain a hydroxyketone photopolymerization initiator (C2) and a photopolymerization initiator (C3) having a benzophenone skeleton.
  • the photopolymerization initiator (C3) having a benzophenone skeleton include bis (diethylamino) benzophenone.
  • the amount of the photopolymerization initiator (C3) having a benzophenone skeleton with respect to the acylphosphine oxide photopolymerization initiator (C1) is preferably in the range of 0.5 to 20% by mass.
  • the amount of the photopolymerization initiator (C3) having a benzophenone skeleton with respect to the acylphosphine oxide photopolymerization initiator (C1) is 0.5% by mass or more, the resolution is particularly high.
  • the amount of the photopolymerization initiator (C3) having a benzophenone skeleton with respect to the acylphosphine oxide photopolymerization initiator (C1) is 20% by mass or less, the electrical insulation of the cured product of the photosensitive resin composition is improved.
  • the photopolymerization initiator (C3) having a benzophenone skeleton is difficult to inhibit.
  • the amount of bis (diethylamino) benzophenone relative to the acylphosphine oxide photopolymerization initiator (C1) is preferably in the range of 0.5 to 20% by mass.
  • the organic filler (E) may cause light scattering in the photosensitive resin composition during exposure. In this case, there may be a problem that good developability cannot be obtained with the photosensitive resin composition.
  • the amount of the photopolymerization initiator (C3) having a benzophenone skeleton is the same as that of the acylphosphine oxide photopolymerization initiator (C1). It is particularly preferably in the range of 1 to 18% by mass. From the same viewpoint, the amount of bis (diethylamino) benzophenone is particularly preferably in the range of 1 to 18% by mass relative to the acylphosphine oxide photopolymerization initiator (C1).
  • the photosensitive resin composition may further contain a known photopolymerization accelerator, sensitizer and the like.
  • the photosensitive resin composition includes benzoin and its alkyl ethers; acetophenones such as acetophenone and benzyldimethyl ketal; anthraquinones such as 2-methylanthraquinone; 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2- Thioxanthones such as isopropylthioxanthone, 4-isopropylthioxanthone and 2,4-diisopropylthioxanthone; benzophenones such as benzophenone and 4-benzoyl-4′-methyldiphenyl sulfide; xanthones such as 2,4-diisopropylxanthone; ⁇ -hydroxyketones such as hydroxy-2-methyl-1-phenyl-propan-1-one; 2-methyl-1- [4-
  • the photosensitive resin composition includes known photopolymerization initiators (C) and tertiary amines such as p-dimethylbenzoic acid ethyl ester, p-dimethylaminobenzoic acid isoamyl ester, and 2-dimethylaminoethylbenzoate. You may contain a photoinitiator, a sensitizer, etc.
  • the photosensitive resin composition may contain at least one of a photopolymerization initiator for visible light exposure and a photopolymerization initiator for near infrared exposure, if necessary.
  • the photosensitive resin composition contains a photopolymerization initiator (C) and a coumarin derivative such as 7-diethylamino-4-methylcoumarin, which is a sensitizer for laser exposure, a carbocyanine dye system, a xanthene dye system, and the like. May be.
  • the epoxy compound (D) can impart thermosetting properties to the photosensitive resin composition.
  • the epoxy compound (D) preferably contains a crystalline epoxy resin (D1).
  • the developability of the photosensitive resin composition can be improved.
  • the organic filler (E1) has a carboxyl group, the compatibility of the crystalline epoxy resin (D1) is improved with the organic filler (E1), and the crystalline epoxy resin (D1) in the photosensitive resin composition is recrystallized. Can be prevented.
  • the epoxy compound (D) may further contain an amorphous epoxy resin (D2).
  • the “crystalline epoxy resin” is an epoxy resin having a melting point
  • the “amorphous epoxy resin” is an epoxy resin having no melting point.
  • the crystalline epoxy resin (D1) is, for example, 1,3,5-tris (2,3-epoxypropyl) -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, Hydroquinone type crystalline epoxy resin (specifically, product name YDC-1312 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), biphenyl type crystalline epoxy resin (specifically, product name YX-4000 manufactured by Mitsubishi Chemical Corporation), diphenyl ether type crystalline epoxy Resin (part number YSLV-80DE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), bisphenol type crystalline epoxy resin (particularly product name YSLV-80XY manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), tetrakisphenol ethane type crystalline epoxy resin (specific example As specific examples, Nippon Kayaku Co., Ltd. product number GTR-1800), bisphenol fluoro Preferably it contains one or more components selected
  • the crystalline epoxy resin (D1) preferably has two epoxy groups in one molecule. In this case, it is possible to further prevent cracks in the cured product while the temperature change is repeated.
  • the crystalline epoxy resin (D1) preferably has an epoxy equivalent of 150 to 300 g / eq. This epoxy equivalent is the gram weight of the crystalline epoxy resin (D1) containing 1 gram equivalent of epoxy groups.
  • the crystalline epoxy resin (D1) has a melting point. Examples of the melting point of the crystalline epoxy resin (D1) include 70 to 180 ° C.
  • the epoxy compound (D) preferably contains a crystalline epoxy resin (D1-1) having a melting point of 110 ° C. or lower.
  • a crystalline epoxy resin (D1-1) having a melting point of 110 ° C. or lower In this case, the developability of the photosensitive resin composition with an alkaline aqueous solution is particularly improved. Crystalline epoxy resin (D1-1) having a melting point of 110 ° C.
  • biphenyl type epoxy resin specifically, product number YX-4000 manufactured by Mitsubishi Chemical Corporation
  • biphenyl ether type epoxy resin specifically, Nippon Steel & Sumikin Chemical Co., Ltd.
  • Company-made part number YSLV-80DE specifically, Nippon Steel & Sumikin Chemical Co., Ltd.
  • bisphenol type epoxy resin particularly Nippon Steel & Sumikin Chemicals part number YSLV-80XY
  • bisphenolfluorene type crystalline epoxy resin particularly epoxy resin having structure (S7)
  • the amorphous epoxy resin (D2) is, for example, a phenol novolac type epoxy resin (specifically, product number EPICLON N-775 manufactured by DIC Corporation), or a cresol novolac type epoxy resin (specific example, product number EPICLON N manufactured by DIC Corporation).
  • YSLV-120TE manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., rubber core-shell polymer modified bisphenol A type epoxy resin Kaneka product number MX-156), rubber-like core-shell polymer modified bisphenol F type epoxy resin (as a specific example, product number MX-13 manufactured by Kaneka Corporation) 6) and at least one component selected from the group consisting of rubber particle-containing bisphenol F type epoxy resin (specifically, product number Kane Ace MX-130 manufactured by Kaneka Corporation) is preferable.
  • the epoxy compound (D) may contain a phosphorus-containing epoxy resin.
  • the phosphorus-containing epoxy resin may be contained in the crystalline epoxy resin (D1) or may be contained in the amorphous epoxy resin (D2).
  • Examples of the phosphorus-containing epoxy resin include phosphoric acid-modified bisphenol F type epoxy resin (specific examples, product numbers EPICLON EXA-9726 and EPICLON EXA-9710 manufactured by DIC Corporation), and product number Epototo FX-305 manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Etc.
  • Organic filler (E) can impart thixotropy to the photosensitive resin composition.
  • the organic filler (E) includes an organic filler (E1).
  • the organic filler (E1) has a carboxyl group. Among the carboxyl groups, some of the carboxyl groups are preferably exposed on the surface of the organic filler (E1).
  • the organic filler (E1) has high compatibility in the photosensitive resin composition and can impart stronger thixotropy to the photosensitive resin composition.
  • the photosensitive resin composition contains the organic filler (E1) having a carboxyl group, the developability of the photosensitive resin composition can be improved.
  • the carboxyl group of an organic filler (E1) can react with the epoxy compound (for example, epoxy compound (D)) in the photosensitive resin composition at the time of thermosetting. Thereby, the hardened
  • the organic filler (E1) contained in the cured product is easily deteriorated at the stage of roughening the surface of the cured product.
  • the organic filler (E1) thus altered is easily removed from the cured product when a rough surface is imparted to the cured product. Thereby, a rough surface can be provided to the surface of the cured product to improve the adhesion between the cured product and the plating layer.
  • the photosensitive resin composition contains the organic filler (E1), the non-uniformity of the coating film due to the fluidity of the photosensitive resin composition can be reduced. Thereby, the film thickness of the layer formed with the photosensitive resin composition can be easily made uniform.
  • the photosensitive resin composition may not contain a rheology control agent.
  • the carboxyl group of the organic filler (E1) is formed as a side chain in the product by polymerizing or crosslinking a carboxylic acid monomer such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, fumaric acid, itaconic acid, etc. Is done.
  • the carboxylic acid monomer has a carboxyl group and a polymerizable unsaturated double bond.
  • the organic filler (E1) improves the stability (particularly storage stability) of the photosensitive resin composition in order to enhance the thixotropy of the photosensitive resin composition.
  • the organic filler (E1) has a carboxyl group, it improves the developability of the cured product and improves the compatibility of the crystalline epoxy resin to prevent crystallization in the photosensitive resin composition. it can.
  • the carboxyl group content of the organic filler (E1) is not particularly limited, but the acid value of the organic filler (E1) is preferably 1 to 60 mgKOH / g by acid-base titration. If the acid value is less than 1 mgKOH / g, the stability of the photosensitive resin composition and the developability of the cured product may be reduced. If the acid value is larger than 60 mgKOH / g, the moisture resistance reliability of the cured product may be lowered.
  • the acid value of the organic filler (E1) is more preferably 3 to 40 mgKOH / g.
  • the organic filler (E1) has a hydroxyl group. Of these hydroxyl groups, some hydroxyl groups are preferably exposed on the surface of the organic filler (E1). Thus, the dispersibility of the organic filler (E1) in the photosensitive resin composition further improves because the organic filler (E1) has a hydroxyl group.
  • the organic filler (E1) preferably has an average primary particle size of 1 ⁇ m or less.
  • the average primary particle diameter of the organic filler (E1) is 1 ⁇ m or less, the thixotropy of the photosensitive resin composition is efficiently increased. Therefore, the stability of the photosensitive resin composition is further improved.
  • cured material can be made fine because the average primary particle diameter of an organic filler (E1) will be 1 micrometer or less. Thereby, as the surface area of the cured product increases, the anchor effect increases and the adhesion between the rough surface and the plating layer can be improved.
  • the lower limit of the average primary particle diameter of the organic filler (E1) is not particularly limited, but is preferably 0.001 ⁇ m or more, for example.
  • the average primary particle size by a laser diffraction particle size distribution measuring device, is measured as D 50.
  • the average primary particle diameter of the organic filler (E1) is more preferably 0.4 ⁇ m or less, and further preferably 0.1 ⁇ m or less.
  • the roughness of the rough surface formed in the cured product can be made particularly fine.
  • scattering during exposure can be suppressed in the photosensitive resin composition, whereby the resolution of the photosensitive resin composition can be further improved.
  • the organic filler (E1) is preferably dispersed with a maximum particle size of less than 1.0 ⁇ m, more preferably less than 0.5 ⁇ m, in the photosensitive resin composition.
  • Maximum particle diameter by laser diffraction type particle size distribution measuring device, is measured as D 50. Alternatively, the maximum particle size is measured by observing the cured product with a transmission electron microscope (TEM).
  • the organic filler (E1) may aggregate in the photosensitive resin composition (for example, can form secondary particles). In this case, the maximum particle diameter means the size of the particles after aggregation.
  • the average primary particle diameter of the organic filler (E1) is 0.1 ⁇ m or less and the organic filler (E1) is dispersed with a particle diameter of 0.5 ⁇ m or less.
  • the maximum particle size is usually larger than the average primary particle size.
  • the organic filler (E1) preferably contains a rubber component. Moreover, it is preferable that an organic filler (E1) contains only a rubber component.
  • the rubber component can impart flexibility to the cured product of the photosensitive resin composition.
  • the rubber component can be composed of a resin.
  • the rubber component preferably contains at least one polymer selected from crosslinked acrylic rubber, crosslinked NBR, crosslinked MBS, and crosslinked SBR. In this case, the rubber component can impart excellent flexibility to the cured product of the photosensitive resin composition. Furthermore, a more appropriate rough surface can be imparted to the surface of the cured product.
  • the rubber component includes a crosslinked structure formed when the monomers constituting the polymer are copolymerized.
  • NBR is generally a copolymer of butadiene and acrylonitrile, and is classified as a nitrile rubber.
  • MBS is generally a copolymer composed of three components of methyl methacrylate, butadiene, and styrene, and is classified as a butadiene rubber.
  • SBR is generally a copolymer of styrene and butadiene, and is classified as styrene rubber.
  • Specific examples of the organic filler (E1) include product number XER-91-MEK manufactured by JSR Corporation, product number XER-32-MEK manufactured by JSR Corporation, product number XSK-500 manufactured by JSR Corporation, and the like.
  • XER-91-MEK is a crosslinked rubber (NBR) having a carboxyl group having an average primary particle size of 0.07 ⁇ m, and a methyl ethyl ketone dispersion having a content of 15% by weight of the crosslinked rubber. With an acid value of 10.0 mg KOH / g.
  • XER-32-MEK is a dispersion in which a carboxyl group-modified hydrogenated nitrile rubber polymer (linear particles) is dispersed in methyl ethyl ketone at a content of 17% by weight with respect to the total amount of the dispersion.
  • XSK-500 is a crosslinked rubber (SBR) having an average primary particle size of 0.07 ⁇ m and having a carboxyl group and a hydroxyl group, and is provided as a methyl ethyl ketone dispersion having a content of the crosslinked rubber of 15% by weight.
  • an organic filler (E1) may be mix
  • product number XER-92 manufactured by JSR Corporation may be mentioned.
  • Organic filler (E1) may contain particle components other than rubber components.
  • the organic filler (E1) can contain at least one particle component selected from the group consisting of acrylic resin fine particles having a carboxyl group and cellulose fine particles having a carboxyl group.
  • the acrylic resin fine particles having a carboxyl group can contain at least one particle component selected from the group consisting of non-crosslinked styrene / acrylic resin fine particles and crosslinked styrene / acrylic resin fine particles.
  • product number FS-201 average primary particle size 0.5 ⁇ m
  • Nippon Paint Industrial Coatings Co., Ltd. may be mentioned.
  • the organic filler (E1) may contain a particle component other than the particle component selected from the rubber component, the acrylic resin fine particles, and the cellulose fine particles.
  • the organic filler (E1) can contain a particle component having a carboxyl group. That is, the particle component having a carboxyl group may be different from the particle component selected from the rubber component, the acrylic resin fine particles, and the cellulose fine particles.
  • the organic filler (E) may further contain an organic filler other than the organic filler (E1).
  • Organic fillers other than the said organic filler (E1) do not need to have a carboxyl group.
  • the organic filler other than the organic filler (E1) may have an average primary particle size larger than 1 ⁇ m.
  • the photosensitive resin composition is other than the organic filler (E1).
  • the organic filler may not be included.
  • Organic filler (E) may contain only organic filler (E1) or organic filler (E1) and organic filler other than organic filler (E1).
  • the organic filler (E) preferably contains 30% by mass or more, more preferably 50% by mass or more, and still more preferably 100% by mass of the organic filler (E1).
  • the stability of the photosensitive resin composition is further improved.
  • cured material and a plating layer can further be improved.
  • the melamine compound (F) is at least one compound selected from the group of melamine and melamine derivatives.
  • the photosensitive resin composition contains melamine, the adhesion between the cured product of the photosensitive resin composition and a metal such as copper is increased. For this reason, the photosensitive resin composition especially suitable as an insulating material for printed wiring boards is obtained.
  • the plating resistance of the cured product of the photosensitive resin composition that is, the whitening resistance during the electroless nickel / gold plating process is improved. Thereby, the grade which remarkably corrodes the hardened
  • the photosensitive resin composition contains the melamine compound (F)
  • the surface of the cured product of the photosensitive resin composition is roughened in the previous step of the plating treatment, the thickness of the layer containing the cured product is increased. Can be made difficult to thin.
  • adhesion between the cured product of the photosensitive resin composition and a plating layer made of copper, gold, or the like can be improved.
  • the surface of the cured layer of the photosensitive resin composition is treated with, for example, potassium permanganate in the pre-process of the plating treatment.
  • the oxidant contained sometimes roughened.
  • the layer of the cured product was treated with the oxidizing agent, the surface of the cured product layer was excessively corroded, and the thickness of this layer might be reduced.
  • the carboxyl group-containing resin has a relatively high resistance to the oxidizing agent, but even if the photosensitive resin composition contains the carboxyl group-containing resin, the thickness of the cured product layer becomes excessively thin with the oxidizing agent. It turns out that there is something.
  • the carboxyl group-containing resin sometimes deteriorates the developability of the photosensitive resin composition. If the molecular weight of the carboxyl group-containing resin is reduced in order to improve developability, the resistance of the cured product layer to the oxidizing agent is reduced, and the thickness of the cured product layer is further reduced with the oxidizing agent. I understood. For this reason, conventionally, in order to improve the adhesion between the cured product and the plating layer, it has been difficult to appropriately roughen the surface of the cured product layer of the photosensitive resin composition with the oxidizing agent. Therefore, in the present embodiment, in view of these problems, the organic filler (E) and the melamine compound (F) are contained.
  • the photosensitive resin composition contains both the melamine compound (F) and the organic filler (E), it was excellent in developability, thixotropy, plating resistance, insulation reliability, and adhesion.
  • a photosensitive resin composition is obtained. Specifically, for example, an appropriate rough surface can be imparted to the cured product of the photosensitive resin composition, and adhesion between the cured product and the plating layer can be improved. Moreover, when giving a rough surface to hardened
  • a melamine compound (F) may contain only a melamine, may contain only a melamine derivative, and may contain a melamine and a melamine derivative.
  • Melamine is 2,4,6-triamino-1,3,5-triazine and is generally available from commercially available compounds.
  • the melamine derivative may be a compound having one triazine ring and an amino group in one molecule. Examples of melamine derivatives include guanamine; acetoguanamine; benzoguanamine; 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-4,6-diamino-S-triazine, 2-vinyl-4,6.
  • -S-triazine derivatives such as diamino-S-triazine isocyanuric acid adduct, 2,4-diamino-6-methacryloyloxyethyl-S-triazine isocyanuric acid adduct; and melamine such as melamine-tetrahydrophthalate
  • melamine derivatives include Shikoku Kasei Kogyo Co., Ltd. product name VD-1, product name VD-2, and product name VD-3.
  • the melamine derivative is preferably a compound having one triazine ring and two or more amino groups in one molecule.
  • the melamine derivative does not contain melamine.
  • the melamine derivative dispersed in the photosensitive resin composition is included in, for example, the conductive wiring of the plating layer or the core material and arranged with the metal element located on the contact surface with the photosensitive resin composition. Join. For this reason, the adhesiveness of the photosensitive resin composition can be improved.
  • the metal element include gold, silver, copper, and nickel.
  • the melamine compound (F) may be soluble in the photosensitive resin composition.
  • the melamine compound (F) when the melamine compound (F) is hardly soluble in the photosensitive resin composition, the melamine compound (F) having an average particle diameter of 20 ⁇ m or less, preferably 15 ⁇ m or less is dispersed in the photosensitive resin composition. It is preferable.
  • the melamine compound (F) is uniformly dispersed in the photosensitive resin composition, the melamine compound (F) is more easily coordinated with the metal element. Thereby, the adhesiveness of the photosensitive resin composition can further be improved.
  • a melamine compound (F) may be used as a melamine dispersion varnish which the melamine or the melamine derivative disperse
  • the minimum of the average particle diameter of a melamine compound (F) is not specifically limited, It can be 0.01 micrometer or more.
  • the coupling agent (G) includes a coupling agent (G1).
  • the coupling agent (G1) contains an atom selected from a silicon atom, an aluminum atom, a titanium atom, and a zirconia atom.
  • the coupling agent (G1) further contains two or more functional groups selected from alkoxy groups, acyloxy groups and alkoxides.
  • the coupling agent (G1) may contain two or more alkoxy groups, may contain two or more acyloxy groups, and may contain two or more alkoxides.
  • the coupling agent (G1) may contain two or more different functional groups selected from an alkoxy group, an acyloxy group, and an alkoxide.
  • the coupling agent (G1) has the dispersibility of the organic filler (E1) in the photosensitive resin composition by reaction or interaction with the carboxyl group contained in the carboxyl group-containing resin (A) and the organic filler (E1). In order to enhance, the thixotropy and stability (especially storage stability) of the photosensitive resin composition are improved.
  • the functional group selected from an alkoxy group, an acyloxy group, and an alkoxide is preferably directly bonded to an atom selected from a silicon atom, an aluminum atom, a titanium atom, and a zirconia atom.
  • examples of the coupling agent (G1) include tetraethoxysilane, tetramethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, and vinylmethyl.
  • examples of the coupling agent (G1) include acetoalkoxy aluminum diisopropylate, aluminum diisopropoxy monoethyl acetoacetate, aluminum trisethyl acetoacetate and the like. .
  • examples of the coupling agent (G1) include isopropyl tristearoyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraoctyl bis (ditridecyl phosphate titanate), tetra (2-2-diallyloxymethyl-1-butyl) bis (ditridecyl) phosphate titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate and the like.
  • the coupling agent (G1) contains a zirconia atom
  • examples of the coupling agent (G1) include zirconium tetranormal propoxide, zirconium tetranormal butoxide and the like.
  • the coupling agent (G1) preferably contains a silicon atom.
  • the coupling agent (G1) may be a silane coupling agent.
  • the coupling agent (G1) preferably contains a functional group selected from a methoxy group, an ethoxy group, and an acetoxy group.
  • a methoxy group and an ethoxy group are classified into alkoxy groups.
  • the acetoxy group is classified as an acyloxy group.
  • the coupling agent (G1) may contain only a methoxy group, may contain only an ethoxy group, or may contain only an acetoxy group. Further, the coupling agent (G1) may contain a different functional group selected from a methoxy group, an ethoxy group, and an acetoxy group.
  • the coupling agent (G1) contains a functional group selected from a methoxy group, an ethoxy group, and an acetoxy group, the reactivity between the organic filler (E1) and the coupling agent (G1) is improved, and the photosensitive resin Aggregation of the organic filler (E1) in the composition is less likely to occur. Therefore, the thixotropy and stability of the photosensitive resin composition are further improved. Moreover, the favorable resolution of the photosensitive resin composition is obtained.
  • the coupling agent (G1) preferably contains two to four functional groups selected from an alkoxy group, an acyloxy group, and an alkoxide.
  • the coupling agent (G1) may contain 2 to 4 alkoxy groups, may contain 2 to 4 acyloxy groups, and may contain 2 to 4 alkoxides.
  • the coupling agent (G1) may contain 2 to 4 methoxy groups, 2 to 4 ethoxy groups, or 2 to 4 acetoxy groups. Good.
  • the coupling agent (G1) may contain two to four different functional groups selected from an alkoxy group, an acyloxy group, and an alkoxide.
  • the coupling agent (G1) contains two to four functional groups selected from an alkoxy group, an acyloxy group and an alkoxide, so that excessive crosslinking is caused by a reaction between the organic filler (E1) and the coupling agent (G1). Reaction can be suppressed and the dispersibility of the organic filler (E1) in the photosensitive resin composition can be improved, and at the same time, gelation can be suppressed.
  • the coupling agent (G1) preferably contains at least one functional group selected from an amino group, an epoxy group, a vinyl group, a methacryl group, a mercapto group, an isocyanate group, and a sulfide group.
  • the coupling agent (G1) contains at least one functional group selected from an amino group, an epoxy group, a vinyl group, a methacryl group, a mercapto group, an isocyanate group, and a sulfide group, and thus included in the organic filler (E1).
  • the dispersibility of the organic filler (E1) in the photosensitive resin composition can be further efficiently increased. Therefore, the thixotropy, stability and resolution of the photosensitive resin composition are further improved.
  • the coupling agent (G1) contains an amino group
  • the amino group is introduced by, for example, an aminoalkyl group.
  • a coupling agent (G1) contains an epoxy group
  • an epoxy group is introduce
  • the coupling agent (G1) contains a vinyl group
  • the vinyl group is directly bonded to, for example, a silicon atom.
  • the coupling agent (G1) contains an amino group, an epoxy group, or a vinyl group
  • the reactivity with the organic filler (E1) increases, and the dispersibility of the organic filler (E1) in the photosensitive resin composition further increases. Increases efficiently.
  • the coupling agent (G1) has an epoxy group or a vinyl group.
  • the coupling agent (G1) has an epoxy group or a vinyl group, the insulating property between lines of the photosensitive resin composition is increased, and the stability is further improved.
  • the coupling agent (G) may further contain a coupling agent other than the coupling agent (G1).
  • the coupling agent other than the coupling agent (G1) may not contain an atom selected from a silicon atom, an aluminum atom, a titanium atom, and a zirconia atom.
  • the coupling agent other than the coupling agent (G1) may not contain two or more functional groups selected from an alkoxy group, an acyloxy group, and an alkoxide.
  • the photosensitive resin composition is other than the coupling agent (G1).
  • a coupling agent may not be included.
  • the coupling agent (G) contains only the coupling agent (G1) or a coupling agent other than the coupling agent (G1) and the coupling agent (G1).
  • the coupling agent (G) preferably contains 30% by mass or more, more preferably 50% by mass or more, and still more preferably 100% by mass of the coupling agent (G1). In this case, the dispersibility of the organic filler (E) in the photosensitive resin composition can be particularly improved.
  • the photosensitive resin composition may contain an organic solvent.
  • the organic solvent is used for the purpose of liquefaction or varnishing of the photosensitive resin composition, viscosity adjustment, application property adjustment, film formation property adjustment, and the like.
  • Organic solvents include, for example, linear, branched, secondary or polyhydric alcohols such as ethanol, propyl alcohol, isopropyl alcohol, hexanol and ethylene glycol; ketones such as methyl ethyl ketone and cyclohexanone; aromatic hydrocarbons such as toluene and xylene Petroleum aromatic mixed solvents such as Swazol series (manufactured by Maruzen Petrochemical Co., Ltd.), Solvesso series (manufactured by Exxon Chemical Co., Ltd.), cellosolves such as cellosolve and butylcellosolve, and carbitols such as carbitol and butylcarbitol Tolls; propylene glycol alkyl ethers such as propylene glycol methyl ether; polypropylene glycol alkyl ethers such as dipropylene glycol methyl ether; ethyl acetate, butyl acetate, cellosolve acetate
  • the amount of the component in the photosensitive resin composition is appropriately adjusted so that the photosensitive resin composition has photocurability and can be developed with an alkaline solution.
  • the amount of the carboxyl group-containing resin (A) relative to the solid content of the photosensitive resin composition is preferably within the range of 5 to 85% by mass, more preferably within the range of 10 to 75% by mass, and 30 to 60%. If it is in the range of mass%, it is still more preferable.
  • the amount of the carboxyl group-containing resin (A1) relative to the solid content of the photosensitive resin composition is preferably in the range of 5 to 85% by mass, more preferably in the range of 10 to 75% by mass, 30 More preferably, it is in the range of ⁇ 60% by mass.
  • the amount of the unsaturated compound (B) relative to the carboxyl group-containing resin (A) is preferably in the range of 1 to 50% by mass, more preferably in the range of 10 to 45% by mass, and 21 to 40% by mass. If it is in the range, it is more preferable.
  • the amount of the photopolymerization initiator (C) relative to the carboxyl group-containing resin (A) is preferably in the range of 0.1 to 30% by mass, and more preferably in the range of 1 to 25% by mass.
  • the total of the equivalents of epoxy groups contained in the epoxy compound (D) is 0.7 to 2.5 with respect to 1 equivalent of carboxyl groups contained in the carboxyl group-containing resin (A). Is preferably in the range of 0.7 to 2.3, more preferably in the range of 0.7 to 2.0. Further, the total of the equivalents of the epoxy groups contained in the crystalline epoxy resin (D1) is within the range of 0.1 to 2.0 with respect to 1 equivalent of the carboxyl groups contained in the carboxyl group-containing resin (A). Is more preferable, and is more preferably in the range of 0.2 to 1.9, and still more preferably in the range of 0.3 to 1.5. Alternatively, the total of equivalents of epoxy groups contained in the crystalline epoxy resin (D1) is within a range of 0.7 to 2.5 with respect to 1 equivalent of carboxyl groups contained in the carboxyl group-containing resin (A). Also good.
  • the content of the organic filler (E) is preferably in the range of 1 to 40 parts by mass when the content of the carboxyl group-containing resin (A) is 100 parts by mass.
  • the content of the organic filler (E) is within this range, the thixotropy of the photosensitive resin composition is increased and the stability is improved.
  • cured material of the photosensitive resin composition can be moderately roughened, and, thereby, the adhesiveness of the rough surface of hardened
  • the content of the organic filler (E) is more preferably in the range of 5 to 20 parts by mass, with the content of the carboxyl group-containing resin (A) being 100 parts by mass, preferably 10 to 17 parts by mass.
  • the content of the organic filler (E1) is preferably in the range of 1 to 40 parts by mass when the content of the carboxyl group-containing resin (A) is 100 parts by mass.
  • the content of the organic filler (E1) is within this range, the thixotropy of the photosensitive resin composition is increased, and the stability is effectively improved.
  • cured material of the photosensitive resin composition can be roughened more appropriately.
  • the content of the organic filler (E1) is more preferably in the range of 5 to 20 parts by mass, when the content of the carboxyl group-containing resin (A) is 100 parts by mass, and 10 to 17 parts by mass. More preferably it is.
  • the content of the rubber component is preferably in the range of 1 to 40 parts by mass, preferably in the range of 5 to 20 parts by mass, when the content of the carboxyl group-containing resin (A) is 100 parts by mass. More preferred is 10 to 17 parts by mass.
  • the amount of the melamine compound (F) relative to the carboxyl group-containing resin (A) is preferably in the range of 0.1 to 10% by mass, and more preferably in the range of 0.5 to 5% by mass.
  • the content of the coupling agent (G) is 0.01 to 7 when the content of the organic filler (E) is 100 parts by mass. It is preferably within the range of parts by mass. When the content of the coupling agent (G) falls within this range, aggregation of the organic filler (E) in the photosensitive resin composition is prevented, and dispersibility is improved.
  • the content of the coupling agent (G) is more preferably in the range of 0.05 to 5 parts by mass when the content of the organic filler (E) is 100 parts by mass.
  • the content of the coupling agent (G1) is preferably in the range of 0.01 to 7 parts by mass when the content of the organic filler (E1) is 100 parts by mass.
  • the content of the coupling agent (G1) falls within this range, aggregation of the organic filler (E1) in the photosensitive resin composition is efficiently prevented, and dispersibility is effectively improved.
  • the content of the coupling agent (G1) is more preferably in the range of 0.05 to 5 parts by mass when the content of the organic filler (E1) is 100 parts by mass.
  • the amount of the organic solvent is such that when the coating film formed from the photosensitive resin composition is dried, the organic solvent is quickly volatilized and eliminated, that is, the organic solvent. Is preferably adjusted so as not to remain in the dry film.
  • the amount of the organic solvent relative to the entire photosensitive resin composition is preferably in the range of 0 to 99.5% by mass, and more preferably in the range of 15 to 60% by mass.
  • a ratio is suitably adjusted according to the application method.
  • solid content is a total amount of all the components remove
  • the photosensitive resin composition may further contain components other than the above components.
  • the photosensitive resin composition may contain an inorganic filler.
  • the inorganic filler can contain, for example, one or more materials selected from the group consisting of barium sulfate, crystalline silica, nanosilica, carbon nanotubes, talc, bentonite, hydrotalcite, aluminum hydroxide, magnesium hydroxide, and titanium oxide.
  • the inorganic filler contains a white material such as titanium oxide or zinc oxide, the photosensitive resin composition and its cured product can be whitened with the white material.
  • the proportion of the inorganic filler in the photosensitive resin composition is appropriately set, but is preferably in the range of 0 to 300% by mass with respect to the carboxyl group-containing resin (A).
  • the photosensitive resin composition may not contain fine powder silica as an inorganic filler. Although finely divided silica imparts thixotropy, it tends to reduce insulation reliability.
  • the photosensitive resin composition is imparted with excellent thixotropy by the organic filler (E1). Further, particularly excellent insulation reliability is imparted by the acylphosphine oxide photopolymerization initiator (C1).
  • Photosensitive resin composition comprising tolylene diisocyanate, morpholine diisocyanate, isophorone diisocyanate and hexamethylene diisocyanate blocked isocyanates blocked with caprolactam, oxime, malonic acid ester, etc .; melamine resin, n-butylated melamine resin , Amino resins such as isobutylated melamine resin, butylated urea resin, butylated melamine urea cocondensation resin, benzoguanamine cocondensation resin; various other thermosetting resins; ultraviolet curable epoxy (meth) acrylate; bisphenol A type , Phenol novolak type, cresol novolak type, alicyclic type and other epoxy resins obtained by adding (meth) acrylic acid; and diallyl phthalate resin, phenoxy resin, urethane resin, fluorine resin At least one resin selected from the group consisting of polymer compounds may be contained.
  • the photosensitive resin composition may contain a curing agent for curing the epoxy compound (D).
  • the curing agent include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 4-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1- (2 Imidazole derivatives such as -cyanoethyl) -2-ethyl-4-methylimidazole; dicyandiamide, benzyldimethylamine, 4- (dimethylamino) -N, N-dimethylbenzylamine, 4-methoxy-N, N-dimethylbenzylamine, Amine compounds such as 4-methyl-N, N-dimethylbenzylamine; hydrazine compounds such as adipic hydrazide and sebacic acid hydrazide; phosphorus compounds such as triphenylphosphine; acid anhydr
  • the photosensitive resin composition may contain an adhesion-imparting agent other than the melamine compound (F).
  • adhesion-imparting agent include guanamine, acetoguanamine, benzoguanamine, 2,4-diamino-6-methacryloyloxyethyl-S-triazine, 2-vinyl-4,6-diamino-S-triazine, 2-vinyl- Examples thereof include S-triazine derivatives such as 4,6-diamino-S-triazine / isocyanuric acid adduct and 2,4-diamino-6-methacryloyloxyethyl-S-triazine / isocyanuric acid adduct.
  • the photosensitive resin composition may contain a rheology control agent.
  • the viscosity of the photosensitive resin composition is easily optimized by the rheology control agent.
  • the rheology control agent include urea-modified medium polarity polyamides (product numbers BYK-430 and BYK-431 manufactured by Big Chemie Japan Co., Ltd.), polyhydroxycarboxylic acid amides (product numbers BYK-405 manufactured by Big Chemie Japan Co., Ltd.), Modified urea (product numbers BYK-410, BYK-411, BYK-420 manufactured by Big Chemie Japan Co., Ltd.), polymer urea derivative (product number BYK-415 manufactured by Big Chemie Japan Co., Ltd.), urea modified urethane (Big Chemie Japan stock) Company product number BYK-425), polyurethane (product number BYK-428 manufactured by Big Chemie Japan Co., Ltd.), castor oil wax, polyethylene wax, polyamide wax, bentonite, silica, si
  • Photosensitive resin composition includes curing accelerator; colorant; copolymer of silicone, acrylate, etc .; leveling agent; thixotropic agent; polymerization inhibitor; antihalation agent; flame retardant; It may contain at least one component selected from the group consisting of agents; pigments; and polymer dispersants.
  • the content of the amine compound in the photosensitive resin composition is preferably as small as possible. If it does in this way, the electrical insulation of the layer which consists of hardened
  • the amount of the amine compound relative to the carboxyl group-containing resin (A) is preferably 6% by mass or less, and more preferably 4% by mass or less.
  • the photosensitive resin composition can be prepared by blending the raw materials of the photosensitive resin composition as described above and kneading by a known kneading method using, for example, a three-roll, ball mill, sand mill or the like.
  • the raw material of the photosensitive resin composition contains a liquid component, a low viscosity component, etc.
  • the part of the raw material excluding the liquid component, the low viscosity component, etc. is first kneaded, and the resulting mixture is
  • the photosensitive resin composition may be prepared by adding and mixing a liquid component, a component having a low viscosity, and the like.
  • the first agent may be prepared by mixing a part of the components of the photosensitive resin composition
  • the second agent may be prepared by mixing the rest of the components.
  • the photosensitive resin composition may include a first agent and a second agent.
  • the unsaturated compound (B), a part of the organic solvent, and the thermosetting component are mixed in advance and dispersed to prepare the first agent.
  • the second agent may be prepared by mixing and dispersing the remainder of the components of the conductive resin composition. In this case, it is possible to prepare a mixed solution by mixing the necessary amount of the first agent and the second agent in a timely manner and curing the mixed solution to obtain a cured product.
  • the photosensitive resin composition according to this embodiment is suitable for an electrically insulating material for a printed wiring board.
  • the photosensitive resin composition is suitable for materials for electrically insulating layers such as a solder resist layer, a plating resist layer, an etching resist layer, and an interlayer insulating layer.
  • the photosensitive resin composition according to the present embodiment preferably has such a property that even a 25 ⁇ m thick film can be developed with an aqueous sodium carbonate solution.
  • the photosensitive resin composition since it is possible to produce a sufficiently thick electrically insulating layer from the photosensitive resin composition by a photolithography method, the photosensitive resin composition is used as an interlayer insulating layer, a solder resist layer, etc. in a printed wiring board. It can be widely applied to fabricate. Of course, it is also possible to produce an electrically insulating layer having a thickness of less than 25 ⁇ m from the photosensitive resin composition.
  • a wet paint film is formed by applying the photosensitive resin composition on a suitable substrate, and this wet paint film is heated at 80 ° C. for 40 minutes to form a film having a thickness of 25 ⁇ m.
  • the film is exposed by irradiating the film with ultraviolet light under the condition of 500 mJ / cm 2 with a negative mask having an exposed part that transmits ultraviolet light and a non-exposed part that blocks ultraviolet light directly applied. After the exposure, a 1% Na 2 CO 3 aqueous solution at 30 ° C.
  • FIGS. 1A to 1E an example of a method for producing a printed wiring board including an interlayer insulating layer formed from the photosensitive resin composition according to the present embodiment will be described with reference to FIGS. 1A to 1E.
  • a through hole is formed in the interlayer insulating layer by photolithography.
  • a core material 1 is prepared as shown in FIG. 1A.
  • the core material 1 includes, for example, at least one insulating layer 2 and at least one conductor wiring 3.
  • the conductor wiring 3 provided on one surface of the core material 1 is hereinafter referred to as a first conductor wiring 3.
  • a film 4 is formed on one surface of the core material 1 from a photosensitive resin composition. Examples of the method for forming the film 4 include a coating method and a dry film method.
  • a photosensitive resin composition is applied on the core material 1 to form a wet paint film.
  • the method for applying the photosensitive resin composition is selected from the group consisting of known methods such as dipping, spraying, spin coating, roll coating, curtain coating, and screen printing.
  • the wet coating film is dried at a temperature in the range of 60 to 120 ° C., for example, whereby the coating film 4 can be obtained.
  • a photosensitive resin composition is first applied on an appropriate support made of polyester or the like and then dried to form a dry film that is a dried product of the photosensitive resin composition on the support.
  • the laminated body dry film with a support body
  • the support body which supports a dry film is obtained.
  • pressure is applied to the dry film and the core material 1
  • the support is peeled from the dry film, so that the dry film is placed on the core material 1 from the support.
  • the coating 4 made of a dry film is provided on the core material 1.
  • the coating 4 is partially cured by exposing the coating 4 as shown in FIG. 1C.
  • a negative mask is applied to the film 4 and then the film 4 is irradiated with ultraviolet rays.
  • the negative mask includes an exposure part that transmits ultraviolet light and a non-exposure part that blocks ultraviolet light, and the non-exposure part is provided at a position that matches the position of the through hole 10.
  • the negative mask is a photo tool such as a mask film or a dry plate.
  • ultraviolet light sources include chemical lamps, low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, metal halide lamps, LEDs, g-line (436 nm), h-line (405 nm), i-line (365 nm), and It is selected from the group consisting of a combination of two or more of g-line, h-line and i-line.
  • the exposure method may be a method other than a method using a negative mask.
  • the film 4 may be exposed by a direct drawing method in which only the portion of the film 4 to be exposed is irradiated with ultraviolet rays emitted from a light source.
  • Light sources applied to the direct drawing method include, for example, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a metal halide lamp, LED, g-line (436 nm), h-line (405 nm), i-line (365 nm), and g-line, h-line, and i-line. Selected from the group consisting of two or more of the combinations.
  • the film 4 is exposed by irradiating the film 4 made of the dry film with ultraviolet rays through the support without peeling the support after the dry film in the laminate is stacked on the core material 1. Subsequently, the support may be peeled off from the film 4 before development processing.
  • the coating 4 is developed to remove the unexposed portion 5 of the coating 4 shown in FIG. 1C, whereby the hole 6 is formed at the position where the through hole 10 is formed as shown in FIG. 1D.
  • an appropriate developer according to the composition of the photosensitive resin composition can be used.
  • the developer is, for example, an alkaline aqueous solution containing at least one of an alkali metal salt and an alkali metal hydroxide, or an organic amine.
  • the alkaline aqueous solution is, for example, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, ammonium hydrogen carbonate, sodium hydroxide, potassium hydroxide, ammonium hydroxide, tetramethyl ammonium hydroxide and water. It contains at least one component selected from the group consisting of lithium oxide.
  • the solvent in the alkaline aqueous solution may be water alone or a mixture of water and a hydrophilic organic solvent such as lower alcohols.
  • the organic amine contains, for example, at least one component selected from the group consisting of monoethanolamine, diethanolamine, triethanolamine, monoisopropanolamine, diisopropanolamine and triisopropanolamine.
  • the developer is preferably an alkaline aqueous solution containing at least one of an alkali metal salt and an alkali metal hydroxide, and particularly preferably an aqueous sodium carbonate solution. In this case, it is possible to improve the work environment and reduce the burden of waste disposal.
  • the coating 4 is cured by heating.
  • the heating conditions are, for example, a heating temperature range of 120 to 200 ° C. and a heating time range of 30 to 120 minutes.
  • the coating film 4 may be further irradiated with ultraviolet rays before or after heating. In this case, photocuring of the film 4 can be further advanced.
  • the thickness of the interlayer insulating layer 7 is not particularly limited, but may be in the range of 10 to 50 ⁇ m.
  • the interlayer insulating layer 7 made of a cured product of the photosensitive resin composition is provided on the core material 1.
  • the second conductor wiring 8 and the hole plating 9 can be provided on the interlayer insulating layer 7 by a known method such as an additive method.
  • a printed wiring board 11 having a through hole 10 for electrically connecting the first conductor wiring 3 and the second conductor wiring 8 is obtained.
  • the hole plating 9 has a cylindrical shape that covers the inner surface of the hole 6, but the entire inner side of the hole 6 may be filled with the hole plating 9.
  • the entire inner surface of the hole 6 and a part of the outer surface of the interlayer insulating layer 7 can be roughened. In this manner, the adhesion between the core material 1 and the hole plating 9 can be improved by roughening a part of the outer surface of the interlayer insulating layer 7 and the inner side surface of the hole 6.
  • the same procedure as a general desmear process using an oxidizing agent can be performed.
  • an oxidizing agent is brought into contact with the outer surface of the interlayer insulating layer 7 to give a rough surface to the interlayer insulating layer 7.
  • the present invention is not limited to this, and a method of imparting a rough surface to a cured product such as plasma treatment, UV treatment, or ozone treatment can be appropriately employed.
  • the oxidizing agent may be an oxidizing agent available as a desmear liquid.
  • the oxidizing agent can be constituted by a commercially available desmear swelling liquid and desmear liquid.
  • Such an oxidizing agent can contain, for example, at least one permanganate selected from the group of sodium permanganate and potassium permanganate.
  • an initial wiring can be formed by subjecting a part of the roughened outer surface and the inner side surface of the hole 6 to electroless metal plating. Thereafter, the hole plating 9 can be formed by depositing a metal in the electrolyte plating solution on the initial wiring by electrolytic metal plating.
  • the core material includes, for example, at least one insulating layer and at least one conductor wiring.
  • a film is formed from the photosensitive resin composition on the surface of the core material where the conductor wiring is provided.
  • Examples of the method for forming the film include a coating method and a dry film method.
  • the coating method and the dry film method the same method as that for forming the interlayer insulating layer can be employed.
  • the film is partially cured by exposure. The exposure method can be the same as the method for forming the interlayer insulating layer.
  • the film is subjected to a development process to remove the unexposed part of the film, whereby the exposed part of the film remains on the core material.
  • the coating on the core material is heated and cured.
  • the developing method and the heating method can be the same as the method for forming the interlayer insulating layer.
  • the film may be further irradiated with ultraviolet rays before or after heating. In this case, photocuring of the film can be further advanced.
  • the thickness of the solder resist layer is not particularly limited, but may be in the range of 10 to 50 ⁇ m.
  • solderless resist layer made of a cured product of the photosensitive resin composition is provided on the core material.
  • a printed wiring board provided with the core material provided with an insulating layer and the conductor wiring on it, and the soldering resist layer which partially covers the surface in which the conductor wiring in a core material is provided is obtained.
  • the solder resist layer may be provided with a rough surface in the same manner as the interlayer insulating layer. Thereby, the adhesiveness of a soldering resist layer and the metal material which comprises conductor wiring, solder, etc. can be improved.
  • an electrically insulating layer such as a solder resist layer or an interlayer insulating layer is particularly well formed from a dry film containing a dried product of the photosensitive resin composition or from a coating film of the photosensitive resin composition. be able to. By providing a rough surface to this electrically insulating layer, the adhesion between the electrically insulating layer and the metal material can be improved.
  • the weight average molecular weight and acid value of the carboxyl group-containing resin are as shown in Table 1.
  • the polydispersity (Mw / Mn) of the carboxyl group-containing resin and the molar ratio between the components are also shown in Table 1.
  • Epoxy compound 1 a bisphenolfluorene type epoxy compound represented by the formula (7) and having an epoxy equivalent of 250 g / eq, wherein R 1 to R 8 in the formula (7) are all hydrogen.
  • Epoxy compound 2 epoxy equivalent 279 g represented by the formula (7), wherein R 1 and R 5 in the formula (7) are all methyl groups, and R 2 to R 4 and R 6 to R 8 are all hydrogen / Eq bisphenolfluorene type epoxy compound.
  • Epoxy compound 3 biphenyl novolac type epoxy resin (product name NC-3000-H manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 288 g / eq).
  • Epoxy compound 4 Cresol novolak type epoxy resin (product name YDC-700-5, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., epoxy equivalent 203 g / eq).
  • Epoxy compound 5 bisphenol A type epoxy resin (manufactured by Mitsubishi Chemical Corporation, product number jER1001, epoxy equivalent 472 g / eq).
  • ⁇ -carboxy-polycaprolactone (n ⁇ 2) monoacrylate manufactured by Toagosei Co., Ltd., trade name Aronix M-5300 (number average molecular weight 290).
  • photosensitive resin compositions of Examples 1 to 12 and Comparative Examples 1 to 3 were prepared as follows. A part of the components shown in the “Composition” column of Tables 2 to 4 below were kneaded with three rolls. Next, the kneaded product was transferred into a flask, and all components shown in Tables 2 to 4 below were stirred and mixed to obtain a photosensitive resin composition.
  • the melamine compound (F) was uniformly dispersed in the photosensitive resin composition.
  • the photosensitive resin compositions of Examples 13 to 32 and Comparative Examples 4 to 8 were prepared as follows.
  • a photosensitive resin composition was obtained by stirring and mixing the components shown in the column of “Composition” in Table 5, Table 6 and Table 7 below in a flask.
  • the photosensitive resin composition was subjected to pressure filtration with a filter having a hole diameter of 30 ⁇ m.
  • the photosensitive resin composition of Comparative Example 9 was prepared as follows. While stirring a 65% solution of a carboxyl group-containing resin and a coupling agent shown in the column of “Composition” in Table 7 below in the flask, a part of the other components are kneaded with a three-roll roll and then the flask. Next, all the remaining components were added and stirred and mixed in the flask to obtain a photosensitive resin composition.
  • the photosensitive resin composition was filtered under pressure with a filter having a hole diameter of 30 ⁇ m.
  • the photosensitive resin compositions of Examples 33 to 46 and Comparative Examples 10 to 14 were prepared as follows. The components shown in the column of “Composition” in Table 8 and Table 9 below were mixed, kneaded with a three-roller, and then stirred and mixed in a flask to obtain a photosensitive resin composition. The photosensitive resin composition was filtered under pressure with a filter having a hole diameter of 5 ⁇ m.
  • Unsaturated compound (TMPTA) trimethylolpropane triacrylate.
  • Unsaturated compound (DPCA) ⁇ -caprolactone-modified dipentaerystol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd., product number KAYARAD DPCA-20).
  • Photopolymerization initiator (TPO) 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (product number Irgacure TPO manufactured by BASF).
  • Photopolymerization initiator (IC819) bis- (2,4,6-trimethylbenzoyl) phenylphosphine oxide (manufactured by BASF, product number Irgacure 819).
  • Photopolymerization initiator (IC184) 1-hydroxy-cyclohexyl-phenyl-ketone (product number Irgacure 184, manufactured by BASF).
  • Photopolymerization initiator (IC1173) 2-hydroxy-2-methyl-1-phenyl-propan-1-one (manufactured by BASF, product number Irgacure 1173).
  • Photopolymerization initiator (IC907) 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropan-1-one (manufactured by BASF, product number Irgacure 907).
  • Crystalline epoxy resin (YX4000) Biphenyl type crystalline epoxy resin (product name YX-4000 manufactured by Mitsubishi Chemical Corporation, melting point 105 ° C., epoxy equivalent 187 g / eq).
  • Crystalline epoxy resin (YSLV80XY) Bisphenol type crystalline epoxy resin (product name YSLV-80XY, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., melting point 75 to 85 ° C., 192 g / eq).
  • Amorphous epoxy resin (EXA4816): solution of amorphous epoxy resin; long-chain carbon chain-containing bisphenol A type epoxy resin (manufactured by DIC, product number EPICLON EXA-4816, liquid resin, epoxy equivalent 410 g / eq) in solid content A solution dissolved in diethylene glycol monoethyl ether acetate at 90% (epoxy equivalent in terms of solid content of 90% is 455.56 g / eq).
  • Amorphous epoxy resin (NC3000): solution of amorphous epoxy resin; biphenyl novolac type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., product number NC-3000, softening point 53-63 ° C., epoxy equivalent 280 g / eq)
  • Organic filler (XER-91): Dispersion of organic filler having carboxyl group; Cross-linked rubber (NBR) having an average primary particle size of 0.07 ⁇ m in methyl ethyl ketone at a content of 15% by weight with respect to the total amount of the dispersion Dispersed dispersion (manufactured by JSR Corporation, product number XER-91-MEK, acid value 10.0 mgKOH / g).
  • Organic filler (XER-32): Dispersion of organic filler having carboxyl group; Polymer (linear particles) of carboxyl group-modified hydrogenated nitrile rubber (NBR) at a content of 17% by weight with respect to the total amount of the dispersion A dispersion (manufactured by JSR Corporation, product number XER-32-MEK) dispersed in methyl ethyl ketone.
  • Organic filler (XSK-500) dispersion of organic filler having carboxyl group and hydroxyl group; methyl ethyl ketone containing 15% by weight of crosslinked rubber (SBR) having an average primary particle size of 0.07 ⁇ m with respect to the total amount of the dispersion Dispersed liquid (product number XSK-500, manufactured by JSR Corporation).
  • Fine silica Product number MT-10, manufactured by Tokuyama Corporation.
  • Melamine manufactured by Nissan Chemical Industries, Ltd., fine melamine; dispersed in the photosensitive resin composition with an average particle size of 8 ⁇ m.
  • Melamine derivative Melamine-tetrahydrophthalate which is a reaction product of melamine and 1,2,3,6-tetrahydrophthalic anhydride; dispersed in the photosensitive resin composition with an average particle size of 6 ⁇ m.
  • Melamine dispersed varnish A fine melamine dispersed varnish manufactured by Nissan Chemical Industries, Ltd. Disperse 1.5 parts fine melamine and 3.5 parts unsaturated compound trimethylolpropane triacrylate in a bead mill.
  • Coupling agent (GP-TMS) 3-glycidoxypropyltrimethoxysilane.
  • Coupling agent (TEOS) tetraethoxysilane.
  • Coupling agent (MTMS) methyltrimethoxysilane.
  • Coupling agent (AEAP-MDMS) N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane.
  • Coupling agent (VL-TMS) Vinyltrimethoxysilane.
  • Antioxidant A hindered phenol antioxidant, manufactured by BASF, product number IRGANOX 1010. Surfactant: manufactured by DIC, product number MegaFuck F-477.
  • -Rheology control agent manufactured by Big Chemy Japan, product number BYK-430.
  • Colorant (BY-mix) Color pigment dispersion varnish containing a color index Pigment Blue 15: 3 and a color index Pigment Yellow 147 in a weight ratio of 1: 2.5 in total.
  • Colorant (Blue) phthalocyanine blue.
  • Antifoaming agent Product number KS-66 manufactured by Shin-Etsu Silicone Co., Ltd.
  • Solvent (EDGAC) Diethylene glycol monoethyl ether acetate.
  • Solvent (MEK) methyl ethyl ketone.
  • the dry film was produced with the following method.
  • the photosensitive resin composition was applied on a polyethylene terephthalate film with an applicator, and then dried by heating at 95 ° C. for 25 minutes to form a dry film on the film.
  • Two types of dry films having a thickness of 25 ⁇ m and a thickness of 30 ⁇ m were produced.
  • test pieces were prepared by the dry film method using a dry film as follows.
  • a glass epoxy copper clad laminate (FR-4 type) provided with a copper foil having a thickness of 17.5 ⁇ m was prepared.
  • a comb-shaped electrode having a line width / space width of 50 ⁇ m / 50 ⁇ m was formed as a conductor wiring by this subtractive method on this glass epoxy copper clad laminate, thereby obtaining a printed wiring board (core material).
  • the conductive wiring of the printed wiring board was roughened by dissolving and removing the surface portion of the conductive wiring having a thickness of about 1 ⁇ m with an etching agent (organic acid-based microetching agent, product number CZ-8100 manufactured by MEC Co., Ltd.).
  • the dry film was heat laminated on the entire surface of the printed wiring board with a vacuum laminator.
  • the heating lamination conditions were 0.5 MPa, 80 ° C., and 1 minute.
  • coat which consists of a dry film was formed on the printed wiring board.
  • This film in a state of applying a negative mask having a non-exposed portion having a pattern including a circular shape with a diameter of 50 ⁇ m or 60 ⁇ m directly, 250 mJ / cm 2 (except Example 44) in the film, or 500 mJ / cm 2 (Example 44) exposure was performed by irradiating with ultraviolet rays.
  • the diameter of the circular shape was 50 ⁇ m
  • the diameter of the circular shape was 60 ⁇ m.
  • the polyethylene terephthalate film was peeled from the dry film (coating). After the film was peeled off, the exposed film was developed. In the development process, a 1% Na 2 CO 3 aqueous solution at 30 ° C. was sprayed onto the film for 90 seconds at a spray pressure of 0.2 MPa. Subsequently, the coating film was washed by spraying pure water at a spray pressure of 0.2 MPa for 90 seconds. Thereby, the part which was not exposed in a film
  • Example 1 to 12 and Comparative Examples 1 to 3 the film was irradiated with ultraviolet rays under the condition of 1000 mJ / cm 2 , and then the film was heated at 160 ° C. for 60 minutes.
  • Examples 13 to 32 and Comparative Examples 4 to 9 after the film was irradiated with ultraviolet rays under the condition of 1000 mJ / cm 2 , the film was heated at 180 ° C. for 60 minutes.
  • Example 44 the film was heated at 160 ° C. for 60 minutes, and then the film was irradiated with ultraviolet rays under the condition of 1000 mJ / cm 2 .
  • cured material (it can also be said to be hardened
  • Examples 33 to 43, 45, 46, and Comparative Examples 10 to 14 For Examples 33 to 43, 45, and 46 and Comparative Examples 10 to 14, test pieces were prepared by the coating method using the photosensitive resin composition as follows.
  • a glass epoxy copper clad laminate (FR-4 type) provided with a copper foil having a thickness of 17.5 ⁇ m was prepared.
  • a comb-shaped electrode having a line width / space width of 50 ⁇ m / 50 ⁇ m was formed as a conductor wiring by this subtractive method on this glass epoxy copper clad laminate, thereby obtaining a printed wiring board (core material).
  • the conductive wiring of the printed wiring board was roughened by dissolving and removing the surface portion of the conductive wiring having a thickness of about 1 ⁇ m with an etching agent (organic acid-based microetching agent, product number CZ-8100 manufactured by MEC Co., Ltd.).
  • a wet paint film was formed by applying the photosensitive resin composition to the entire surface of the printed wiring board by spin coating.
  • This wet coating film was heated at 80 ° C. for 40 minutes and preliminarily dried to form a film having a thickness of 25 ⁇ m.
  • the film was exposed by irradiating it with ultraviolet rays under the condition of 500 mJ / cm 2 in a state where a negative mask having a non-exposed portion having a pattern including a circular shape with a diameter of 50 ⁇ m was directly applied to the film.
  • the exposed film was developed. In the development process, a 1% Na 2 CO 3 aqueous solution at 30 ° C. was sprayed onto the film for 90 seconds at a spray pressure of 0.2 MPa. Subsequently, the coating film was washed by spraying pure water at a spray pressure of 0.2 MPa for 90 seconds.
  • Test 1 The test pieces of Examples 1 to 12 and Comparative Examples 1 to 3 were evaluated by the following procedure. The results are shown in Tables 2 and 3 below. The following (1-1) to (1-6) were evaluated using test pieces having a film formed from a dry film having a thickness of 25 ⁇ m. The following (1-7) and (1-8) were evaluated with test pieces having a film formed from a dry film having a thickness of 30 ⁇ m.
  • (1-3) Plating resistance After a nickel plating layer is formed using a commercially available electroless nickel plating bath on a portion of the conductor wiring of the test piece of each example and comparative example that is exposed to the outside, a commercially available product is available. A gold plating layer was formed using an electroless gold plating bath. This formed the metal layer which consists of a nickel plating layer and a gold plating layer. The layer and metal layer which consisted of hardened
  • A No abnormality was observed in the appearance of the layer made of the cured product and the metal layer, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test did not occur.
  • B Although discoloration was recognized in the layer which consists of hardened
  • C Lifting of the layer made of the cured product was observed, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test occurred.
  • B The electric resistance value was always maintained at 10 8 ⁇ or more until 1000 hours passed from the start of the test, but the electric resistance value became less than 10 8 ⁇ before 2000 hours passed from the start of the test.
  • C The electric resistance value was less than 10 8 ⁇ before 1000 hours passed from the start of the test.
  • membrane layer which consists of hardened
  • cured material with respect to a desmear liquid was evaluated by the following evaluation criteria.
  • the adhesion between the copper plating layer thus formed and the cured product in the test piece was evaluated according to the following evaluation criteria.
  • the adhesion strength between the copper plating layer and the cured product was evaluated by the following procedure. This adhesion strength was measured according to JIS-C6481. A: Blister was not confirmed at the time of heating after the electroless copper plating treatment, and no blister was confirmed at the time of heating after the electrolytic copper plating treatment.
  • the adhesive strength of copper was 0.4 kN / m or more.
  • B Blister was not confirmed at the time of heating after electroless copper plating treatment, and blister was not confirmed at the time of heating after electrolytic copper plating treatment. Moreover, the adhesive strength of copper was less than 0.4 kN / m.
  • C Blisters were confirmed during heating after the electroless copper plating treatment or during heating after the electrolytic copper plating treatment.
  • the particle size distribution of the photosensitive resin composition was measured with MT3300EXII manufactured by Microtrack Bell Co., Ltd., and the results were evaluated as follows.
  • D The maximum particle size was larger than 20 ⁇ m by particle size distribution measurement.
  • Examples 13 to 32 are affected by the colorant and melamine, a composition containing no colorant and melamine dispersion varnish in the composition of Examples 13 to 32 shown in Tables 5 to 7 was prepared. As an evaluation of Examples 13 to 32, a particle size distribution was measured.
  • a wet paint film was formed by applying the photosensitive resin composition to the entire surface of the printed wiring board by the spin coat method. This wet coating film was heated at 80 ° C. for 40 minutes or 60 minutes to form a film having a thickness of 25 ⁇ m. This film was developed without exposure. In the development process, a 1% Na 2 CO 3 aqueous solution at 30 ° C. was jetted for 90 seconds at a jet pressure of 0.2 MPa, and then pure water was jetted for 90 seconds at a jet pressure of 0.2 MPa. The printed wiring board after the treatment was observed, and the result was evaluated as follows. A: The film was completely removed regardless of whether the heating time of the wet coating film was 40 minutes or 60 minutes.
  • the diameter of the bottom of the hole is 50 ⁇ m or more.
  • B The diameter of the bottom of the hole is 50 ⁇ m or more and less than 53 ⁇ m.
  • C The diameter of the bottom of the hole is 40 ⁇ m or more and less than 50 ⁇ m.
  • D The diameter of the bottom of the hole is less than 40 ⁇ m, or no clear hole is formed.
  • a nickel plating layer is formed on a portion of the conductor wiring of the test piece of each example and comparative example exposed to the outside using a commercially available electroless nickel plating bath, and then commercially available.
  • a gold plating layer was formed using an electroless gold plating bath. This formed the metal layer which consists of a nickel plating layer and a gold plating layer. The layer and metal layer which consisted of hardened
  • A No abnormality was observed in the appearance of the layer made of the cured product and the metal layer, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test did not occur.
  • B Although discoloration was recognized in the layer which consists of hardened
  • C Lifting of the layer made of the cured product was observed, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test occurred.
  • B The electric resistance value was always maintained at 10 6 ⁇ or more until 45 hours passed from the start of the test, but the electric resistance value became less than 10 6 ⁇ before 60 hours passed from the start of the test.
  • C The electrical resistance value was less than 10 6 ⁇ before 45 hours passed from the start of the test.
  • Example 44 evaluated with the test piece which has a membrane
  • Example 44 since the membrane
  • a wet paint film was formed by applying the photosensitive resin composition to the entire surface of the printed wiring board by spin coating. This wet coating film was heated at 80 ° C. for 40 minutes or 60 minutes to form a film having a thickness of 25 ⁇ m. This film was developed without exposure. In the development process, a 1% Na 2 CO 3 aqueous solution at 30 ° C. was jetted for 90 seconds at a jet pressure of 0.2 MPa, and then pure water was jetted for 90 seconds at a jet pressure of 0.2 MPa. The printed wiring board after the treatment was observed, and the result was evaluated as follows. A: The film was completely removed regardless of whether the heating time of the wet coating film was 40 minutes or 60 minutes.
  • Example 44 The developability of Example 44 was determined by development during test piece preparation. In Example 44, development was possible without problems in the development step after exposure for test piece production.
  • a nickel plating layer is formed using a commercially available electroless nickel plating bath on a portion of the conductor wiring of the test piece of each example and comparative example exposed to the outside, and then commercially available.
  • a gold plating layer was formed using an electroless gold plating bath. This formed the metal layer which consists of a nickel plating layer and a gold plating layer. The layer and metal layer which consisted of hardened
  • A No abnormality was observed in the appearance of the layer made of the cured product and the metal layer, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test did not occur.
  • B Although discoloration was recognized in the layer which consists of hardened
  • C Lifting of the layer made of the cured product was observed, and peeling of the layer made of the cured product by the cellophane adhesive tape peeling test occurred.
  • B The electric resistance value was constantly maintained at 10 6 ⁇ or more until 55 hours passed from the start of the test, but the electric resistance value became less than 10 6 ⁇ before 70 hours passed from the start of the test.
  • C The electric resistance value was always maintained at 10 6 ⁇ or more until 35 hours passed from the start of the test, but the electric resistance value became less than 10 6 ⁇ before 55 hours passed from the start of the test.
  • D The electric resistance value was less than 10 6 ⁇ before 35 hours passed from the start of the test.
  • the photosensitive resin composition of the first aspect according to the present invention is a non-polymer having a carboxyl group-containing resin (A) and at least one ethylenically unsaturated bond in one molecule. It is selected from the group consisting of a saturated compound (B), a photopolymerization initiator (C), an epoxy compound (D), an organic filler (E) containing an organic filler (E1) having a carboxyl group, and melamine and melamine derivatives. And at least one melamine compound (F).
  • the average primary particle diameter of the organic filler (E1) is 1 ⁇ m or less in the first aspect.
  • the organic filler (E1) contains a rubber component.
  • the photosensitive resin composition according to the fourth aspect of the present invention is the photosensitive resin composition according to the third aspect, wherein the rubber component is at least one heavy selected from the group consisting of crosslinked acrylic rubber, crosslinked NBR, crosslinked MBS, and crosslinked SBR. Contains coalescence.
  • the photopolymerization initiator (C) is an acylphosphine oxide photopolymerization initiator (C1). Containing In the photosensitive resin composition according to the sixth aspect of the present invention, in the fifth aspect, the photopolymerization initiator (C) further contains a photopolymerization initiator having a benzophenone skeleton.
  • the carboxyl group-containing resin (A) is a carboxyl group-containing resin having an ethylenically unsaturated group. contains.
  • the carboxyl group-containing resin (A) contains a carboxyl group-containing resin having a bisphenolfluorene skeleton.
  • the epoxy compound (D) contains a crystalline epoxy resin (D1).
  • the photosensitive resin composition according to the tenth aspect of the present invention in any one of the first to ninth aspects, further contains a coupling agent (G), and the coupling agent (G) contains a silicon atom.
  • a coupling agent (G1) containing an atom selected from an aluminum atom, a titanium atom and a zirconia atom, and further containing two or more functional groups selected from an alkoxy group, an acyloxy group and an alkoxide.
  • the coupling agent (G1) contains a silicon atom.
  • the coupling agent (G1) further includes an amino group, an epoxy group, a vinyl group, a methacryl group, a mercapto group, an isocyanate group, And at least one functional group selected from sulfide groups.
  • the dry film according to the thirteenth aspect of the present invention is a dried product of the photosensitive resin composition according to any one of the first to twelfth aspects.
  • a printed wiring board according to a fourteenth aspect of the present invention includes an interlayer insulating layer containing a cured product of the photosensitive resin composition according to any one of the first to twelfth aspects.
  • the printed wiring board according to the fifteenth aspect of the present invention includes a solder resist layer containing a cured product of the photosensitive resin composition according to any one of the first to twelfth aspects.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)と、カルボキシル基を有する有機フィラー(E1)を含む有機フィラー(E)と、メラミン及びメラミン誘導体の群から選択される少なくとも1種のメラミン化合物(F)とを含有する。ドライフィルムは、感光性樹脂組成物の乾燥物である。プリント配線板は、感光性樹脂組成物の硬化物を含む層間絶縁層又はソルダーレジスト層を備える。

Description

感光性樹脂組成物、ドライフィルム、及びプリント配線板
 本発明は、感光性樹脂組成物、前記感光性樹脂組成物の乾燥物であるドライフィルム、前記感光性樹脂組成物の硬化物を含む層間絶縁層を備えるプリント配線板、及び前記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備えるプリント配線板に関する。
 従来、プリント配線板の、ソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層等の電気絶縁性の層を形成するために電気絶縁性の樹脂組成物が使用されている。このような樹脂組成物は、例えば感光性樹脂組成物である。
 感光性樹脂組成物から得られる硬化物のクラックの発生を抑制し物理的強度を上げるために、感光性樹脂組成物に有機フィラーを配合することが知られている。例えば、日本国特許第5564144号(以下「特許文献1」という)では、有機フィラーを含有する感光性樹脂組成物が開示されている。
 しかし、感光性樹脂組成物に有機フィラーを添加するだけでは、硬化性が低下しやすくなる場合がある。また、有機フィラーの添加により、メッキ層の密着性等の各種の特性が低下する場合がある。そこで、例えば、特許文献1では、カルボキシル基含有樹脂、光重合開始剤、及び有機フィラーを含有する樹脂組成物において、表面がシリカで被覆された有機フィラーを用いることが開示されている。この樹脂組成物では、有機フィラーの表面をシリカで被覆することによって、樹脂組成物から得られる層の電気特性を改善し、層の強度を高めようとしている。
 しかし、特許文献1では、表面がシリカで被覆された有機フィラーを用いなければならない。有機フィラーを含み、現像性、チクソ性、耐メッキ性、絶縁信頼性、及び密着性に優れた感光性樹脂組成物を得ることは容易ではない。
 本発明の目的は、現像性、チクソ性、耐メッキ性、絶縁信頼性、及び密着性に優れた感光性樹脂組成物、前記感光性樹脂組成物の乾燥物であるドライフィルム、前記感光性樹脂組成物の硬化物を含む層間絶縁層を備えるプリント配線板、及び前記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備えるプリント配線板を提供することである。
 本発明の一態様に係る感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)と、カルボキシル基を有する有機フィラー(E1)を含む有機フィラー(E)と、メラミン及びメラミン誘導体の群から選択される少なくとも1種のメラミン化合物(F)と、を含有する。
 本発明の一態様に係るドライフィルムは、前記感光性樹脂組成物の乾燥物である。
 本発明の一態様に係るプリント配線板は、前記感光性樹脂組成物の硬化物を含む層間絶縁層を備える。
 本発明の一態様に係るプリント配線板は、前記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備える。
 本発明の一態様によれば、現像性、チクソ性、耐メッキ性、絶縁信頼性、及び密着性に優れた感光性樹脂組成物、前記感光性樹脂組成物の乾燥物であるドライフィルム、前記感光性樹脂組成物の硬化物を含む層間絶縁層を備えるプリント配線板、及び前記感光性樹脂組成物の硬化物を含むソルダーレジスト層を備えるプリント配線板が得られる。
図1A乃至図1Eは、本発明の一実施形態に係る多層プリント配線板を製造する工程を示す断面図である。
 以下、本発明の一実施形態について説明する。尚、以下の説明において、「(メタ)アクリル」とは、「アクリル」と「メタクリル」のうち少なくとも一方を意味する。例えば、(メタ)アクリレートは、アクリレートとメタクリレートとのうち少なくとも一方を意味する。
 本実施形態に係る感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)と、カルボキシル基を有する有機フィラー(E1)を含む有機フィラー(E)と、メラミン及びメラミン誘導体の群から選択される少なくとも1種のメラミン化合物(F)とを含有する。
 カルボキシル基含有樹脂(A)は、エチレン性不飽和基を有するカルボキシル基含有樹脂を含むことが好ましい。カルボキシル基含有樹脂(A)が、エチレン性不飽和基を有することで、光反応性を有する。このため、カルボキシル基含有樹脂(A)は感光性樹脂組成物に感光性、具体的には紫外線硬化性、を付与できる。
 カルボキシル基含有樹脂(A)は、芳香環を有するカルボキシル基含有樹脂を含むことが好ましい。カルボキシル基含有樹脂(A)が、芳香環を含むことで、カルボキシル基含有樹脂(A)を含有する感光性樹脂組成物の硬化物に高い耐熱性及び絶縁信頼性を付与できる。カルボキシル基含有樹脂(A)は、ビフェニル骨格、ナフタレン骨格、フルオレン骨格、及びアントラセン骨格のうちいずれかの多環芳香環を有するカルボキシル基含有樹脂を含むことがより好ましい。カルボキシル基含有樹脂(A)が、ビフェニル骨格、ナフタレン骨格、フルオレン骨格、及びアントラセン骨格のうちいずれかの多環芳香環を含むことで、カルボキシル基含有樹脂(A)を含有する感光性樹脂組成物の硬化物に、より高い耐熱性及び絶縁信頼性を付与できる。カルボキシル基含有樹脂(A)は、ビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含むことがさらに好ましい。カルボキシル基含有樹脂(A)が、ビスフェノールフルオレン骨格を含むことで、カルボキシル基含有樹脂(A)を含有する感光性樹脂組成物の硬化物に、さらに高い耐熱性及び絶縁信頼性を付与できる。
 カルボキシル基含有樹脂(A)は、下記説明の、ビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂(A1)を含有することが好ましい。カルボキシル基含有樹脂(A1)は、例えば、下記式(1)で示されるビスフェノールフルオレン骨格を有するエポキシ化合物(a1)と、不飽和基含有カルボン酸(a2-1)を含むカルボン酸(a2)との反応物である中間体と、酸無水物(a3)との反応物である。式(1)において、R~Rは各々独立に水素、炭素数1~5のアルキル基又はハロゲンである。
 カルボキシル基含有樹脂(A1)は、下記式(1)で示されるビスフェノールフルオレン骨格(S1)を有するエポキシ化合物(a1)と、不飽和基含有カルボン酸(a2-1)を含むカルボン酸(a2)とを反応させ、それにより得られた中間体と、酸無水物(a3)とを反応させることで合成される。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R~Rは各々独立に水素、炭素数1~5のアルキル基又はハロゲンである。すなわち、式(1)におけるR~Rの各々は、水素でもよいが、炭素数1~5のアルキル基又はハロゲンでもよい。なぜなら、芳香環における水素が低分子量のアルキル基又はハロゲンで置換されても、カルボキシル基含有樹脂(A1)の物性に悪影響はなく、むしろカルボキシル基含有樹脂(A1)を含む感光性樹脂組成物の硬化物の耐熱性或いは難燃性が向上する場合もあるからである。
 カルボキシル基含有樹脂(A1)がエポキシ化合物(a1)に由来する式(1)で示されるビスフェノールフルオレン骨格を有することで、感光性樹脂組成物の硬化物に高い耐熱性及び絶縁信頼性を付与できる。また、カルボキシル基含有樹脂(A1)が酸無水物(a3)に由来するカルボキシル基を有することで、感光性樹脂組成物に優れた現像性を付与できる。さらに、感光性樹脂組成物が、エポキシ樹脂を含有することで、感光性樹脂組成物に熱硬化性を付与できる。
 カルボキシル基含有樹脂(A1)は、例えば下記説明のようにして合成され得る。カルボキシル基含有樹脂(A1)を合成するためには、まずエポキシ化合物(a1)のエポキシ基(式(2)参照)の少なくとも一部と、不飽和基含有カルボン酸(a2-1)を含むカルボン酸(a2)とを反応させることで、中間体を合成する。中間体の合成は、第一反応と規定される。中間体は、エポキシ基とカルボン酸(a2)との開環付加反応により生じた下記式(3)に示す構造(S3)を有する。すなわち、中間体は、構造(S3)中に、エポキシ基とカルボン酸(a2)との開環付加反応により生じた二級の水酸基を有する。式(3)において、Aはカルボン酸残基である。このAは不飽和基含有カルボン酸残基を含む。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
 次に、中間体中の二級の水酸基と酸無水物(a3)とを反応させる。これにより、カルボキシル基含有樹脂(A1)を合成できる。中間体と酸無水物(a3)との反応は、第二反応と規定される。酸無水物(a3)は、酸一無水物及び酸二無水物を含み得る。酸一無水物とは、一分子内における二つのカルボキシル基が脱水縮合した、酸無水物基を一つ有する化合物である。酸二無水物とは、一分子内における四つのカルボキシル基が脱水縮合した、酸無水物基を二つ有する化合物である。
 酸無水物(a3)は、酸二無水物(a3-2)及び酸一無水物(a3-1)のうち少なくとも1つを含有してもよい。酸無水物(a3)が酸一無水物(a3-1)を含有する場合、カルボキシル基含有樹脂(A1)は式(1)で示されるビスフェノールフルオレン骨格(S1)と、下記式(4)に示す構造(S4)とを有する。
 構造(S4)は、中間体の構造(S3)中の二級の水酸基と、酸一無水物(a3-1)における酸無水物基とが反応することで生じる。式(4)において、Aはカルボン酸残基であり、Bは酸一無水物残基である。このAは不飽和基含有カルボン酸残基を含む。
Figure JPOXMLDOC01-appb-C000004
 酸無水物(a3)が酸二無水物(a3-2)を含有する場合、カルボキシル基含有樹脂(A1)は、式(1)に示すビスフェノールフルオレン骨格(S1)と、下記式(5)に示す構造(S5)とを有する。
 構造(S5)は、酸二無水物(a3-2)中の二つの酸無水物基と、中間体における二つの二級の水酸基とが、それぞれ反応することで生じる。すなわち、構造(S5)は、二つの二級の水酸基同士を酸二無水物(a3-2)が架橋することで生成する。なお、中間体の一つの分子中に存在する二つの二級の水酸基同士が架橋される場合と、中間体の二つの分子中にそれぞれ存在する二つの二級の水酸基同士が架橋される場合とが、ありうる。中間体の二つの分子中にそれぞれ存在する二つの二級の水酸基同士が架橋されると、分子量が増大する。式(5)において、Aはカルボン酸残基であり、Dは酸二無水物残基である。このAは不飽和基含有カルボン酸残基を含む。
Figure JPOXMLDOC01-appb-C000005
 中間体中の二級の水酸基と酸無水物(a3)とを反応させてカルボキシル基含有樹脂(A1)を得ることができる。酸無水物(a3)が酸二無水物(a3-2)及び酸一無水物(a3-1)を含有する場合、中間体中の二級の水酸基のうちの一部と酸二無水物(a3-2)とを反応させ、中間体中の二級の水酸基のうちの別の一部と酸一無水物(a3-1)とを反応させる。これにより、カルボキシル基含有樹脂(A1)を合成できる。この場合、カルボキシル基含有樹脂(A1)は、ビスフェノールフルオレン骨格(S1)と、構造(S4)と、構造(S5)とを有する。
 カルボキシル基含有樹脂(A1)が、更に下記式(6)で示す構造(S6)を有することもありうる。構造(S6)は、酸二無水物(a3-2)中の二つの酸無水物基のうち、一つのみが、中間体における二級の水酸基と反応することで生じる。式(6)において、Aはカルボン酸残基であり、Dは酸二無水物残基である。このAは不飽和基含有カルボン酸残基を含む。
Figure JPOXMLDOC01-appb-C000006
 中間体の合成時にエポキシ化合物(a1)中のエポキシ基の一部が未反応のまま残存する場合、カルボキシル基含有樹脂(A1)は式(2)に示す構造(S2)、すなわちエポキシ基を有することがありうる。また、中間体における構造(S3)の一部が未反応のまま残存する場合に、カルボキシル基含有樹脂(A1)は構造(S3)を有することもありうる。
 酸無水物(a3)が酸二無水物(a3-2)を含有する場合、カルボキシル基含有樹脂(A1)の合成時の反応条件を最適化することで、カルボキシル基含有樹脂(A1)中の構造(S2)、及び構造(S6)の数を低減し、或いは、カルボキシル基含有樹脂(A1)から構造(S2)、及び構造(S6)を殆どなくしている。
 上記のように、カルボキシル基含有樹脂(A1)は、ビスフェノールフルオレン骨格(S1)を有し、酸無水物(a3)が酸一無水物(a3-1)を含有する場合は構造(S4)を有し、酸無水物が酸二無水物(a3-2)を含有する場合は構造(S5)を有することができる。さらに、酸無水物(a3)が酸一無水物(a3-1)を含有する場合、カルボキシル基含有樹脂(A1)は、構造(S2)と構造(S3)とのうち少なくとも一種を有することがある。また、酸無水物(a3)が酸二無水物(a3-2)を含有する場合、カルボキシル基含有樹脂(A1)は、構造(S2)と、構造(S6)とのうち少なくとも一種を有することがある。また更に、酸無水物(a3)が酸一無水物(a3-1)と酸二無水物(a3-2)とを含有する場合、カルボキシル基含有樹脂(A1)は、構造(S2)と、構造(S3)と、構造(S6)とのうち少なくとも一種を有することがある。
 また、エポキシ化合物(a1)自体が二級の水酸基を有する場合、すなわち例えば後述する式(7)においてn=1以上である場合には、カルボキシル基含有樹脂(A1)は、エポキシ化合物(a1)中の二級の水酸基と酸無水物(a3)とが反応することで生じる構造を有することもある。
 なお、上述のカルボキシル基含有樹脂(A1)の構造は技術常識に基づいて合理的に類推されており、カルボキシル基含有樹脂(A1)の構造を分析によって特定することは現実にはできない。その理由は次の通りである。エポキシ化合物(a1)自体が二級の水酸基を有する場合(例えば式(7)においてnが1以上である場合)には、エポキシ化合物(a1)中の二級の水酸基の数によってカルボキシル基含有樹脂(A1)の構造が大きく変化してしまう。また、中間体と酸二無水物(a3-2)とが反応する際には、上述の通り、中間体の一つの分子中に存在する二つの二級の水酸基同士が酸二無水物(a3-2)で架橋される場合と、中間体の二つの分子中にそれぞれ存在する二つの二級の水酸基同士が酸二無水物(a3-2)で架橋される場合とが、ありうる。このため、最終的に得られるカルボキシル基含有樹脂(A1)は、互いに構造の異なる複数の分子を含み、カルボキシル基含有樹脂(A1)を分析してもその構造を特定できない。
 カルボキシル基含有樹脂(A1)は、不飽和基含有カルボン酸(a2-1)に由来するエチレン性不飽和基を有しているから、光反応性を有する。このため、カルボキシル基含有樹脂(A1)は、感光性樹脂組成物に、感光性(具体的には紫外線硬化性)を付与できる。また、カルボキシル基含有樹脂(A1)は、酸無水物(a3)に由来するカルボキシル基を有しているから、感光性樹脂組成物に、アルカリ金属塩及びアルカリ金属水酸化物のうち少なくとも一方を含有するアルカリ性水溶液による現像性を付与できる。さらに、酸無水物(a3)が酸二無水物(a3-2)を含有する場合、カルボキシル基含有樹脂(A1)の分子量は、酸二無水物(a3-2)による架橋の数に依存する。このため、酸価と分子量とが適度に調整されたカルボキシル基含有樹脂(A1)が得られる。酸無水物(a3)が酸二無水物(a3-2)及び酸一無水物(a3-1)を含有する場合、酸二無水物(a3-2)及び酸一無水物(a3-1)の量、並びに酸二無水物(a3-2)に対する酸一無水物(a3-1)の量を制御することで、所望の分子量及び酸価のカルボキシル基含有樹脂(A1)が容易に得られる。
 カルボキシル基含有樹脂(A1)の重量平均分子量は700~10000の範囲内であることが好ましい。重量平均分子量が700以上であると、感光性樹脂組成物から形成される皮膜のタック性が更に抑制されると共に硬化物の絶縁信頼性及び耐メッキ性が更に向上する。また、重量平均分子量が10000以下であると、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。重量平均分子量は、900~8000の範囲内であることが更に好ましく、1000~5000の範囲内であることが特に好ましい。
 カルボキシル基含有樹脂(A1)の固形分酸価は60~140mgKOH/gの範囲内であることが好ましい。この場合、感光性樹脂組成物の現像性が特に向上する。固形分酸価は、より好ましくは80~135mgKOH/gの範囲内であり、更に好ましくは90~130mgKOH/gの範囲内である。
 カルボキシル基含有樹脂(A1)の多分散度が1.0~4.8の範囲内であることが好ましい。この場合、感光性樹脂組成物から形成される硬化物の良好な絶縁信頼性及び耐メッキ性(例えば無電解ニッケル/金メッキ処理時の白化耐性)を確保しながら、感光性樹脂組成物に優れた現像性を付与できる。カルボキシル基含有樹脂(A1)の多分散度が1.1~4.0の範囲内であることがより好ましく、1.2~2.8の範囲内であることがさらに好ましい。なお、多分散度は、カルボキシル基含有樹脂(A1)の数平均分子量(Mn)に対する重量平均分子量(Mw)の比の値(Mw/Mn)である。
 カルボキシル基含有樹脂(A1)の重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィによる分子量測定結果から算出される。ゲル・パーミエーション・クロマトグラフィでの分子量測定は、例えば、次の条件の下で行うことができる。
 GPC装置:昭和電工社製 SHODEX SYSTEM 11、
 カラム:SHODEX KF-800P,KF-005,KF-003,KF-001の4本直列、
 移動相:THF、
 流量:1ml/分、
 カラム温度:45℃、
 検出器:RI、
 換算:ポリスチレン。
 カルボキシル基含有樹脂(A1)の原料、並びにカルボキシル基含有樹脂(A1)の合成時の反応条件について詳しく説明する。
 エポキシ化合物(a1)は、例えば下記式(7)に示す構造(S7)を有する。式(7)中のnは、例えば0~20の範囲内の数である。カルボキシル基含有樹脂(A1)の分子量を適切な値にするためには、nの平均は0~1の範囲内であることが特に好ましい。nの平均が0~1の範囲内であれば、特に酸無水物(a3)が酸二無水物(a3-2)を含有する場合、酸二無水物(a3-2)の付加による過剰な分子量の増大が抑制されやすくなる。
Figure JPOXMLDOC01-appb-C000007
 カルボン酸(a2)は、不飽和基含有カルボン酸(a2-1)を含む。カルボン酸(a2)は、不飽和基含有カルボン酸(a2-1)のみを含んでいてもよい。あるいは、カルボン酸(a2)は、不飽和基含有カルボン酸(a2-1)と、不飽和基含有カルボン酸(a2-1)以外のカルボン酸を含んでいてもよい。
 不飽和基含有カルボン酸(a2-1)は、例えば一分子中にエチレン性不飽和基を1個のみ有する化合物を含有できる。より具体的には、不飽和基含有カルボン酸(a2-1)は、例えばアクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート、クロトン酸、桂皮酸、2-アクリロイルオキシエチルコハク酸、2-メタクリロイルオキシエチルコハク酸、2-アクリロイルオキシエチルフタル酸、2-メタクリロイルオキシエチルフタル酸、2-アクリロイルオキシプロピルフタル酸、2-メタクリロイルオキシプロピルフタル酸、2-アクリロイルオキシエチルマレイン酸、2-メタクリロイルオキシエチルマレイン酸、β-カルボキシエチルアクリレート、2-アクリロイルオキシエチルテトラヒドロフタル酸、2-メタクリロイルオキシエチルテトラヒドロフタル酸、2-アクリロイルオキシエチルヘキサヒドロフタル酸、及び2-メタクリロイルオキシエチルヘキサヒドロフタル酸からなる群から選択される少なくとも一種の化合物を含有できる。好ましくは、不飽和基含有カルボン酸(a2-1)はアクリル酸を含有する。
 カルボン酸(a2)は、多塩基酸(a2-2)を含んでもよい。多塩基酸(a2-2)は、1分子内において2つ以上の水素原子が金属原子と置換可能な酸である。多塩基酸(a2-2)は、カルボキシル基を2つ以上有することが好ましい。この場合、エポキシ化合物(a1)は、不飽和基含有カルボン酸(a2-1)及び多塩基酸(a2-2)の両方と反応する。エポキシ化合物(a1)の2つの分子中に存在するエポキシ基を多塩基酸(a2-1)が架橋することで、分子量の増大が得られる。それにより、感光性樹脂組成物から形成される皮膜のタック性を更に制御すると共に硬化物の絶縁信頼性及び耐メッキ性を更に向上できる。
 多塩基酸(a2-2)は、ジカルボン酸を含むことが好ましい。例えば、4-シクロヘキセン-1,2-ジカルボン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、フタル酸、イソフタル酸、テレフタル酸からなる群から選択される一種以上の化合物を含有できる。好ましくは、多塩基酸(a2-2)が4-シクロヘキセン-1,2-ジカルボン酸を含有する。
 エポキシ化合物(a1)とカルボン酸(a2)とを反応させるに当たっては、公知の方法が採用され得る。例えば、エポキシ化合物(a1)の溶剤溶液にカルボン酸(a2)を加え、更に必要に応じて熱重合禁止剤及び触媒を加えて攪拌混合することで、反応性溶液を得る。この反応性溶液を常法により好ましくは60~150℃、特に好ましくは80~120℃の温度で反応させることで、中間体を得ることができる。溶剤は、例えばメチルエチルケトン、シクロヘキサノン等のケトン類、及びトルエン、キシレン等の芳香族炭化水素類、及び酢酸エチル、酢酸ブチル、セロソルブアセテート、ブチルセロソルブアセテート、カルビトールアセテート、ブチルカルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート等の酢酸エステル類、及びジアルキルグリコールエーテル類からなる群から選択される少なくとも一種の成分を含有できる。熱重合禁止剤は例えばハイドロキノン及びハイドロキノンモノメチルエーテルのうち少なくとも一方を含有する。触媒は例えばベンジルジメチルアミン、トリエチルアミン等の第3級アミン類、トリメチルベンジルアンモニウムクロライド、メチルトリエチルアンモニウムクロライド等の第4級アンモニウム塩類、トリフェニルフォスフィン、及びトリフェニルスチビンからなる群から選択される少なくとも一種の成分を含有できる。
 触媒が特にトリフェニルフォスフィンを含有することが好ましい。すなわち、トリフェニルフォスフィンの存在下で、エポキシ化合物(a1)とカルボン酸(a2)とを反応させることが好ましい。この場合、エポキシ化合物(a1)におけるエポキシ基とカルボン酸(a2)との開環付加反応が特に促進され、95%以上、或いは97%以上、或いはほぼ100%の反応率(転化率)を達成できる。このため、構造(S3)を有する中間体が高い収率で得られる。また、感光性樹脂組成物の硬化物を含む層におけるイオンマイグレーションの発生が抑制され、同層の絶縁信頼性が更に向上する。
 エポキシ化合物(a1)とカルボン酸(a2)とを反応させる際のエポキシ化合物(a1)のエポキシ基1モルに対するカルボン酸(a2)の量は0.5~1.2モルの範囲内であることが好ましい。この場合、優れた感光性と安定性とを有する感光性樹脂組成物が得られる。同様の観点から、エポキシ化合物(a1)のエポキシ基1モルに対する不飽和基含有カルボン酸(a2-1)の量が0.5~1.2モルの範囲内であることが好ましく、0.8~1.2モルの範囲内であることがより好ましい。あるいは、カルボン酸(a2)が、不飽和基含有カルボン酸(a2-1)以外のカルボン酸を含む場合には、エポキシ化合物(a1)のエポキシ基1モルに対する不飽和基含有カルボン酸(a2-1)の量が0.5~0.95モルの範囲内であってもよい。また、また、カルボン酸(a2)が、多塩基酸(a2-2)を含む場合、エポキシ化合物(a1)のエポキシ基1モルに対する多塩基酸(a2-2)の量は0.025~0.25モルの範囲内であることが好ましい。この場合、優れた感光性と安定性とを有する感光性樹脂組成物が得られる。
 エポキシ化合物(a1)とカルボン酸(a2)とを、エアバブリング下で反応させることも好ましい。この場合、不飽和基の付加重合反応が抑制されるから、中間体の分子量の増大及び中間体の溶液のゲル化を抑制できる。また、最終生成物であるカルボキシル基含有樹脂(A1)の過度な着色を抑制できる。
 このようにして得られる中間体は、エポキシ化合物(a1)のエポキシ基とカルボン酸(a2)のカルボキシル基との反応で生成された水酸基を備える。
 酸一無水物(s3-1)は、酸無水物基を一つ有する化合物である。酸一無水物(a3-1)は、ジカルボン酸の無水物を含有できる。酸一無水物(a3-1)は、例えばフタル酸無水物、1,2,3,6-テトラヒドロ無水フタル酸、メチルテトラヒドロフタル酸無水物、メチルナジック酸無水物、ヘキサヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、コハク酸無水物、メチルコハク酸無水物、マレイン酸無水物、シトラコン酸無水物、グルタル酸無水物、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、及びイタコン酸無水物からなる群から選択される少なくとも一種の化合物を含有できる。特に酸一無水物(a3-1)が1,2,3,6-テトラヒドロ無水フタル酸を含有することが好ましい。すなわち、酸無水物(a3)が1,2,3,6-テトラヒドロ無水フタル酸を含有することが好ましい。すなわち、カルボキシル基含有樹脂(A1)が構造(S4)を有し、式(4)におけるBが1,2,3,6-テトラヒドロ無水フタル酸残基を含むことが好ましい。この場合、感光性樹脂組成物の良好な現像性を確保しながら、感光性樹脂組成物から形成される皮膜のタック性を更に抑制すると共に硬化物の絶縁信頼性及び耐メッキ性を更に向上できる。酸一無水物(a3-1)全体に対する1,2,3,6-テトラヒドロ無水フタル酸の量は20~100モル%の範囲内であることが好ましく、40~100モル%の範囲内であることがより好ましいが、これらの範囲に限られない。
 酸二無水物(a3-2)は、酸無水物基を二つ有する化合物である。酸二無水物(a3-2)は、テトラカルボン酸の無水物を含有できる。酸二無水物(a3-2)は、例えば1,2,4,5-ベンゼンテトラカルボン酸二無水物、ベンゾフェノンテトラカルボン酸二無水物、メチルシクロヘキセンテトラカルボン酸二無水物、テトラカルボン酸二無水物、ナフタレン-1,4,5,8-テトラカルボン酸二無水物、エチレンテトラカルボン酸二無水物、9,9’-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、グリセリンビスアンヒドロトリメリテートモノアセテート、エチレングリコールビスアンヒドロトリメリテート、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト〔1,2-c〕フラン-1,3-ジオン、1,2,3,4-ブタンテトラカルボン酸二無水物、及び3,3’,4,4’-ビフェニルテトラカルボン酸二無水物からなる群から選択される少なくとも一種の化合物を含有できる。特に酸二無水物(a3-2)が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を含有することが好ましい。すなわち、式(5)及び式(6)におけるDが3,3’,4,4’-ビフェニルテトラカルボン酸二無水物残基を含むことが好ましい。この場合、感光性樹脂組成物の良好な現像性を確保しながら、感光性樹脂組成物から形成される皮膜のタック性を更に抑制すると共に硬化物の絶縁信頼性及び耐メッキ性を更に向上できる。酸二無水物(a3-2)全体に対する3,3’,4,4’-ビフェニルテトラカルボン酸二無水物の量は20~100モル%の範囲内であることが好ましく、40~100モル%の範囲内であることがより好ましいが、これらの範囲に限られない。
 中間体と酸無水物(a3)とを反応させるに当たっては、公知の方法が採用され得る。例えば中間体の溶剤溶液に酸無水物(a3)を加え、更に必要に応じて熱重合禁止剤及び触媒を加えて攪拌混合することで、反応性溶液を得る。この反応性溶液を常法により好ましくは60~150℃、特に好ましくは80~120℃の温度で反応させることで、カルボキシル基含有樹脂(A1)が得られる。溶剤、触媒及び重合禁止剤としては、適宜のものが使用でき、中間体の合成時に使用した溶剤、触媒及び重合禁止剤をそのまま使用することもできる。
 触媒が特にトリフェニルフォスフィンを含有することが好ましい。すなわち、トリフェニルフォスフィンの存在下で、中間体と、酸無水物(a3)とを反応させることが好ましい。この場合、中間体における二級の水酸基と酸無水物(a3)との反応が特に促進され、90%以上、95%以上、97%以上、或いはほぼ100%の反応率(転化率)を達成できる。このため、構造(S4)及び構造(S5)のうち少なくとも一方の構造を有するカルボキシル基含有樹脂(A1)が高い収率で得られる。また、感光性樹脂組成物の硬化物を含む層におけるイオンマイグレーションの発生が抑制され、同層の絶縁信頼性が更に向上する。
 酸無水物(a3)が酸二無水物(a3-2)と酸一無水物(a3-1)とを含有する場合、エポキシ化合物(a1)のエポキシ基1モルに対して、酸二無水物(a3-2)の量は、0.05~0.24モルの範囲内であることが好ましい。また、エポキシ化合物(a1)のエポキシ基1モルに対して、酸一無水物(a3-1)の量は0.3~0.7モルの範囲内であることが好ましい。この場合、酸価と分子量とが適度に調整されたカルボキシル基含有樹脂(A1)が容易に得られる。
 中間体と、酸無水物(a3)とを、エアバブリング下で反応させることも好ましい。この場合、生成されるカルボキシル基含有樹脂(A1)の過度な分子量増大が抑制されることで、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。
 カルボキシル基含有樹脂(A)は、カルボキシル基含有樹脂(A1)のみ又はカルボキシル基含有樹脂(A1)以外のカルボキシル基含有樹脂のみを含有してもよく、カルボキシル基含有樹脂(A1)とカルボキシル基含有樹脂(A1)以外のカルボキシル基含有樹脂とを含有してもよい。カルボキシル基含有樹脂(A1)以外のカルボキシル基含有樹脂は、ビスフェノールフルオレン骨格を有さないカルボキシル基含有樹脂(以下、カルボキシル基含有樹脂(A2)ともいう)を含む。
 カルボキシル基含有樹脂(A2)は、例えば、カルボキシル基を有し光重合性を有さない化合物(以下、(A2-1)成分という)を含有できる。(A2-1)成分は、例えばカルボキシル基を有するエチレン性不飽和化合物を含むエチレン性不飽和単量体の重合体を含有する。カルボキシル基を有するエチレン性不飽和化合物は、アクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート等の化合物を含有できる。カルボキシル基を有するエチレン性不飽和化合物は、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート等と二塩基酸無水物との反応物も含有できる。エチレン性不飽和単量体は、2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、直鎖又は分岐の脂肪族或いは脂環族(但し、環中に一部不飽和結合を有してもよい)の(メタ)アクリル酸エステル等の、カルボキシル基を有さないエチレン性不飽和化合物を更に含有してもよい。
 カルボキシル基含有樹脂(A2)は、カルボキシル基及びエチレン性不飽和基を有する化合物(以下、(A2-2)成分という)を含有してもよい。またカルボキシル基含有樹脂(A2)は、(A2-2)成分のみを含有してもよい。(A2-2)成分は、例えば一分子中に二個以上のエポキシ基を有するエポキシ化合物(x1)とエチレン性不飽和化合物(x2)との反応物である中間体と、多価カルボン酸及びその無水物の群から選択される少なくとも一種の化合物(x3)との反応物である樹脂(第一の樹脂(x)という)を含有する。第一の樹脂(x)は、例えばエポキシ化合物(x1)中のエポキシ基と、エチレン性不飽和化合物(x2)中のカルボキシル基とを反応させて得られた中間体に化合物(x3)を付加させて得られる。エポキシ化合物(x1)は、クレゾールノボラック型エポキシ化合物、フェノールノボラック型エポキシ化合物、ビフェニルノボラック型エポキシ化合物等の適宜のエポキシ化合物を含有できる。特にエポキシ化合物(x1)はビフェニルノボラック型エポキシ化合物、クレゾールノボラック型エポキシ化合物の群から選択される少なくとも1種の化合物を含有することが好ましい。エポキシ化合物(x1)は、ビフェニルノボラック型エポキシ化合物のみを含有してもよく、或いはクレゾールノボラック型エポキシ化合物のみを含有してもよい。この場合、エポキシ化合物(x1)の主鎖に芳香族環が含まれるので、感光性樹脂組成物の硬化物が、例えば過マンガン酸カリウムなどを含有する酸化剤により、著しく腐食される程度を低減することができる。エポキシ化合物(x1)は、エチレン性不飽和化合物(z)の重合体を含有してもよい。エチレン性不飽和化合物(z)は、例えばグリシジル(メタ)アクリレート等のエポキシ基を有する化合物(z1)を含有し、或いは更に2-(メタ)アクリロイロキシエチルフタレート等のエポキシ基を有さない化合物(z2)を含有する。エチレン性不飽和化合物(x2)は、アクリル酸及びメタクリル酸のうち少なくとも一方を含有することが好ましい。化合物(x3)は、例えばフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸等の多価カルボン酸と、これらの多価カルボン酸の無水物とからなる群から選択される一種以上の化合物を含有する。特に化合物(x3)はフタル酸、テトラヒドロフタル酸、メチルテトラヒドロフタル酸の群から選択される少なくとも1種の多価カルボン酸を含有することが好ましい。
 (A2-2)成分は、カルボキシル基を有するエチレン性不飽和化合物を含有するエチレン性不飽和単量体の重合体とエポキシ基を有するエチレン性不飽和化合物との反応物である樹脂(第二の樹脂(y)という)を含有してもよい。エチレン性不飽和単量体はカルボキシル基を有さないエチレン性不飽和化合物を更に含有してもよい。第二の樹脂(y)は、重合体におけるカルボキシル基の一部にエポキシ基を有するエチレン性不飽和化合物を反応させることで得られる。エチレン性不飽和単量体は、カルボキシル基を有さないエチレン性不飽和化合物を更に含有してもよい。カルボキシル基を有するエチレン性不飽和化合物は、例えばアクリル酸、メタクリル酸、ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート等の化合物を含有する。カルボキシル基を有さないエチレン性不飽和化合物は、例えば2-(メタ)アクリロイロキシエチルフタレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチルフタレート、直鎖又は分岐の脂肪族或いは脂環族(但し、環中に一部不飽和結合を有してもよい)の(メタ)アクリル酸エステル等の化合物を含有する。エポキシ基を有するエチレン性不飽和化合物は、グリシジル(メタ)アクリレートを含有することが好ましい。
 カルボキシル基含有樹脂(A)は、カルボキシル基含有樹脂(A1)のみ、カルボキシル基含有樹脂(A2)のみ、又はカルボキシル基含有樹脂(A1)とカルボキシル基含有樹脂(A2)とを含有する。カルボキシル基含有樹脂(A)は、カルボキシル基含有樹脂(A1)を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましく、60質量%以上含有することが更に好ましく、100質量%含有することがより更に好ましい。この場合、感光性樹脂組成物の硬化物の耐熱性及び絶縁信頼性を特に向上させることができる。また、感光性樹脂組成物から形成される皮膜のタック性を十分に低減できる。更に、感光性樹脂組成物の、アルカリ性水溶液による現像性を確保できる。
 不飽和化合物(B)は、感光性樹脂組成物に光硬化性を付与できる。不飽和化合物(B)は、例えば2-ヒドロキシエチル(メタ)アクリレート等の単官能(メタ)アクリレート;並びにジエチレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ε-カプロラクトン変性ペンタエリストールヘキサアクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の多官能(メタ)アクリレートからなる群から選択される少なくとも一種の化合物を含有できる。
 特に不飽和化合物(B)は、三官能の化合物、すなわち一分子中に不飽和結合を3つ有する化合物を含有することが好ましい。この場合、感光性樹脂組成物から形成される皮膜を露光・現像する場合の解像性が向上すると共に、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。三官能の化合物は、例えばトリメチロールプロパントリ(メタ)アクリレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、エトキシ化イソシアヌル酸トリ(メタ)アクリレート及びε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート及びエトキシ化グリセリントリ(メタ)アクリレートからなる群から選択される少なくとも一種の化合物を含有できる。
 不飽和化合物(B)は、リン含有化合物(リン含有不飽和化合物)を含有することも好ましい。この場合、感光性樹脂組成物の硬化物の難燃性が向上する。リン含有不飽和化合物は、例えば2-メタクリロイロキシエチルアシッドフォスフェート(具体例として共栄社化学株式会社製の品番ライトエステルP-1M、及びライトエステルP-2M)、2-アクリロイルオキシエチルアシッドフォスフェート(具体例として共栄社化学株式会社製の品番ライトアクリレートP-1A)、ジフェニル-2-メタクリロイルオキシエチルフォスフェート(具体例として大八工業株式会社製の品番MR-260)、並びに昭和高分子株式会社製のHFAシリーズ(具体例としてジペンタエリストールヘキサアクリレートとHCA(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド)との付加反応物である品番HFA-6003、及びHFA-6007、カプロラクトン変性ジペンタエリストールヘキサアクリレートとHCA(9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド)との付加反応物である品番HFA-3003、及びHFA-6127等)からなる群から選択される少なくとも一種の化合物を含有できる。
 不飽和化合物(B)は、プレポリマーを含有してもよい。プレポリマーは、例えばエチレン性不飽和結合を有するモノマーを重合させてからエチレン性不飽和基を付加して得られるプレポリマー、並びにオリゴ(メタ)アクリレートプレポリマー類からなる群から選択される少なくとも一種の化合物を含有できる。オリゴ(メタ)アクリレートプレポリマー類は、例えばエポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、アルキド樹脂(メタ)アクリレート、シリコーン樹脂(メタ)アクリレート、及びスピラン樹脂(メタ)アクリレートからなる群から選択される少なくとも一種の成分を含有できる。
 光重合開始剤(C)は、例えばアシルフォスフィンオキサイド系光重合開始剤(C1)を含有する。すなわち、感光性樹脂組成物は例えばアシルフォスフィンオキサイド系光重合開始剤(C1)を含有する。この場合、感光性樹脂組成物を紫外線で露光する場合に、感光性樹脂組成物に高い感光性を付与できる。また、感光性樹脂組成物の硬化物を含む層におけるイオンマイグレーションの発生が抑制され、同層の絶縁信頼性が更に向上する。
 また、アシルフォスフィンオキサイド系光重合開始剤(C1)は硬化物の電気絶縁性を阻害しにくい。このため、感光性樹脂組成物を露光硬化することで、電気的絶縁性に優れた硬化物が得られ、この硬化物は、例えばソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層として好適である。
 アシルフォスフィンオキサイド系光重合開始剤(C1)は、例えば2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、2,4,6-トリメチルベンゾイル-エチル-フェニル-フォスフィネート等のモノアシルフォスフィンオキサイド系光重合開始剤、並びにビス-(2,6-ジクロロベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-4-プロピルフェニルフォスフィンオキサイド、ビス-(2,6-ジクロロベンゾイル)-1-ナフチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)フェニルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド、ビス-(2,6-ジメトキシベンゾイル)-2,5-ジメチルフェニルフォスフィンオキサイド、ビス-(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、(2,5,6-トリメチルベンゾイル)-2,4,4-トリメチルペンチルフォスフィンオキサイド等のビスアシルフォスフィンオキサイド系光重合開始剤からなる群から選択される少なくとも一種の成分を含有できる。特にアシルフォスフィンオキサイド系光重合開始剤(C1)が2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドを含有することが好ましく、アシルフォスフィンオキサイド系光重合開始剤(C1)が2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドのみを含有することも好ましい。
 光重合開始剤(C)はアシルフォスフィンオキサイド系光重合開始剤(C1)に加えてヒドロキシケトン系光重合開始剤(C2)を含有することが好ましい。すなわち感光性樹脂組成物はヒドロキシケトン系光重合開始剤(C2)を含有することが好ましい。この場合、ヒドロキシケトン系光重合開始剤(C2)を含有しない場合と比べて、感光性樹脂組成物に更に高い感光性を付与できる。これにより、感光性樹脂組成物から形成される塗膜に紫外線を照射して硬化させる場合、塗膜をその表面から深部に亘って十分に硬化させることが可能となる。ヒドロキシケトン系光重合開始剤(C2)としては、例えば1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、フェニルグリオキシックアシッドメチルエステル、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン及び2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンが挙げられる。
 アシルフォスフィンオキサイド系光重合開始剤(C1)とヒドロキシケトン系光重合開始剤(C2)との質量比は、1:0.01~1:10の範囲内であることが好ましい。この場合、感光性樹脂組成物から形成される塗膜の表面付近における硬化性と深部における硬化性とを、バランス良く向上させることができる。ここで、感光性樹脂組成物が有機フィラー(E)を含有することにより、有機フィラー(E)が、露光時に、感光性樹脂組成物内で光散乱を生じさせる場合がある。この場合、感光性樹脂組成物で良好な現像性が得られない問題が生じる可能性がある。このような観点から、解像性を向上させて良好な現像性を感光性樹脂組成物で得るために、アシルフォスフィンオキサイド系光重合開始剤(C1)とヒドロキシケトン系光重合開始剤(C2)との質量比は、1:0.01~1:1の範囲内であることが特に好ましい。
 光重合開始剤(C)は、ベンゾフェノン骨格を有する光重合開始剤(C3)を含有することも好ましい。すなわち、感光性樹脂組成物がアシルフォスフィンオキサイド系光重合開始剤(C1)及びベンゾフェノン骨格を有する光重合開始剤(C3)を含有し、或いはアシルフォスフィンオキサイド系光重合開始剤(C1)、ヒドロキシケトン系光重合開始剤(C2)及びベンゾフェノン骨格を有する光重合開始剤(C3)を含有することも好ましい。この場合、感光性樹脂組成物から形成される塗膜を部分的に露光してから現像する場合、露光されない部分の硬化が抑制されるから、解像性が特に高くなる。このため、非常に微細なパターンの感光性樹脂組成物の硬化物を形成できる。特に、感光性樹脂組成物から多層プリント配線板の層間絶縁層を作製すると共にこの層間絶縁層にスルーホールのための小径の穴をフォトリソグラフィー法で設ける場合(図1参照)、小径の穴を精密且つ容易に形成できる。ベンゾフェノン骨格を有する光重合開始剤(C3)は、たとえば、ビス(ジエチルアミノ)ベンゾフェノンが挙げられる。
 アシルフォスフィンオキサイド系光重合開始剤(C1)に対するベンゾフェノン骨格を有する光重合開始剤(C3)の量は、0.5~20質量%の範囲内であることが好ましい。アシルフォスフィンオキサイド系光重合開始剤(C1)に対するベンゾフェノン骨格を有する光重合開始剤(C3)の量が0.5質量%以上であると、解像性が特に高くなる。また、アシルフォスフィンオキサイド系光重合開始剤(C1)に対するベンゾフェノン骨格を有する光重合開始剤(C3)の量が20質量%以下であると、感光性樹脂組成物の硬化物の電気絶縁性を、ベンゾフェノン骨格を有する光重合開始剤(C3)が阻害しにくい。同様の観点から、アシルフォスフィンオキサイド系光重合開始剤(C1)に対するビス(ジエチルアミノ)ベンゾフェノンの量は、0.5~20質量%の範囲内であることが好ましい。ここで、感光性樹脂組成物が有機フィラー(E)を含有することにより、有機フィラー(E)が、露光時に、感光性樹脂組成物内で光散乱を生じさせる場合がある。この場合、感光性樹脂組成物で良好な現像性が得られない問題が生じる可能性がある。このような観点から、良好な解像性を感光性樹脂組成物で得るために、ベンゾフェノン骨格を有する光重合開始剤(C3)の量は、アシルフォスフィンオキサイド系光重合開始剤(C1)に対して1~18質量%の範囲内であることが特に好ましい。同様の観点から、ビス(ジエチルアミノ)ベンゾフェノンの量は、アシルフォスフィンオキサイド系光重合開始剤(C1)に対して1~18質量%の範囲内であることが特に好ましい。
 感光性樹脂組成物は、更に公知の光重合促進剤、増感剤等を含有してもよい。例えば感光性樹脂組成物は、ベンゾインとそのアルキルエーテル類;アセトフェノン、ベンジルジメチルケタール等のアセトフェノン類;2-メチルアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルスルフィド等のベンゾフェノン類;2,4-ジイソプロピルキサントン等のキサントン類;並びに2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のα-ヒドロキシケトン類;2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン等の窒素原子を含む化合物からなる群から選択される少なくとも一種の成分を含有できる。感光性樹脂組成物は、光重合開始剤(C)と共に、p-ジメチル安息香酸エチルエステル、p-ジメチルアミノ安息香酸イソアミルエステル、2-ジメチルアミノエチルベンゾエート等の第三級アミン系等の公知の光重合促進剤や増感剤等を含有してもよい。感光性樹脂組成物は、必要に応じて、可視光露光用の光重合開始剤及び近赤外線露光用の光重合開始剤のうちの少なくとも一種を含有してもよい。感光性樹脂組成物は、光重合開始剤(C)と共に、レーザ露光法用増感剤である7-ジエチルアミノ-4-メチルクマリン等のクマリン誘導体、カルボシアニン色素系、キサンテン色素系等を含有してもよい。
 エポキシ化合物(D)は、感光性樹脂組成物に熱硬化性を付与できる。エポキシ化合物(D)は、結晶性エポキシ樹脂(D1)を含有することが好ましい。この場合、感光性樹脂組成物の現像性を向上させることができる。更に、有機フィラー(E1)がカルボキシル基を有するので、有機フィラー(E1)で結晶性エポキシ樹脂(D1)の相溶性を向上させ、感光性樹脂組成物における結晶性エポキシ樹脂(D1)の再結晶化を防ぐことができる。またエポキシ化合物(D)は、非晶性エポキシ樹脂(D2)を更に含有してもよい。ここで「結晶性エポキシ樹脂」は融点を有するエポキシ樹脂であり、「非晶性エポキシ樹脂」は融点を有さないエポキシ樹脂である。
 結晶性エポキシ樹脂(D1)は、例えば、1,3,5-トリス(2,3-エポキシプロピル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン、ハイドロキノン型結晶性エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品名YDC-1312)、ビフェニル型結晶性エポキシ樹脂(具体例として三菱化学株式会社製の品名YX-4000)、ジフェニルエーテル型結晶性エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品番YSLV-80DE)、ビスフェノール型結晶性エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品名YSLV-80XY)、テトラキスフェノールエタン型結晶性エポキシ樹脂(具体例として日本化薬株式会社製の品番GTR-1800)、ビスフェノールフルオレン型結晶性エポキシ樹脂(具体例として構造(S7)を有するエポキシ樹脂)からなる群から選択される一種以上の成分を含有することが好ましい。
 結晶性エポキシ樹脂(D1)は、1分子中に2個のエポキシ基を有することが好ましい。この場合、温度変化が繰り返される中で、硬化物にクラックを更に生じ難くさせることができる。
 結晶性エポキシ樹脂(D1)は150~300g/eqのエポキシ当量を有することが好ましい。このエポキシ当量は、1グラム当量のエポキシ基を含有する結晶性エポキシ樹脂(D1)のグラム重量である。結晶性エポキシ樹脂(D1)は融点を有する。結晶性エポキシ樹脂(D1)の融点としては、例えば70~180℃が挙げられる。
 特にエポキシ化合物(D)は、融点110℃以下の結晶性エポキシ樹脂(D1-1)を含有することが好ましい。この場合、感光性樹脂組成物のアルカリ性水溶液による現像性が特に向上する。融点110℃以下の結晶性エポキシ樹脂(D1-1)は、例えばビフェニル型エポキシ樹脂(具体例として三菱化学株式会社製の品番YX-4000)、ビフェニルエーテル型エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品番YSLV-80DE)、及びビスフェノール型エポキシ樹脂(具体例として新日鉄住金化学製の品番YSLV-80XY)、ビスフェノールフルオレン型結晶性エポキシ樹脂(具体例として構造(S7)を有するエポキシ樹脂)からなる群から選択される少なくとも一種の成分を含有できる。
 非晶性エポキシ樹脂(D2)は、例えば、フェノールノボラック型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON N-775)、クレゾールノボラック型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON N-695)、ビスフェノールAノボラック型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON N-865)、ビスフェノールA型エポキシ樹脂(具体例として三菱化学株式会社製の品番jER1001)、ビスフェノールF型エポキシ樹脂(具体例として三菱化学株式会社製の品番jER4004P)、ビスフェノールS型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON EXA-1514)、ビスフェノールAD型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂(具体例として日本化薬株式会社製の品番NC-3000)、水添ビスフェノールA型エポキシ樹脂(具体例として新日鉄住金化学株式会社製の品番ST-4000D)、ナフタレン型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON HP-4032、EPICLON HP-4700、EPICLON HP-4770)、ターシャリーブチルカテコール型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON HP-820)、ジシクロペンタジエン型エポキシ樹脂(具体例としてDIC製の品番EPICLON HP-7200)、アダマンタン型エポキシ樹脂(具体例として出光興産株式会社製の品番ADAMANTATE X-E-201)、特殊二官能型エポキシ樹脂(具体例として、三菱化学株式会社製の品番YL7175-500、及びYL7175-1000;DIC株式会社製の品番EPICLON TSR-960、EPICLON TER-601、EPICLON TSR-250-80BX、EPICLON 1650-75MPX、EPICLON EXA-4850、EPICLON EXA-4816、EPICLON EXA-4822、及びEPICLON EXA-9726;新日鉄住金化学株式会社製の品番YSLV-120TE)、ゴム状コアシェルポリマー変性ビスフェノールA型エポキシ樹脂(具体例として株式会社カネカ製の品番MX-156)、ゴム状コアシェルポリマー変性ビスフェノールF型エポキシ樹脂(具体例として株式会社カネカ製の品番MX-136)、並びにゴム粒子含有ビスフェノールF型エポキシ樹脂(具体例として株式会社カネカ製の品番カネエースMX-130)からなる群から選択される少なくとも一種の成分を含有することが好ましい。
 エポキシ化合物(D)はリン含有エポキシ樹脂を含有してもよい。この場合、感光性樹脂組成物の硬化物の難燃性が向上する。リン含有エポキシ樹脂は結晶性エポキシ樹脂(D1)に含有されてもよいし、或いは非晶性エポキシ樹脂(D2)に含有されてもよい。リン含有エポキシ樹脂は、例えば、リン酸変性ビスフェノールF型エポキシ樹脂(具体例としてDIC株式会社製の品番EPICLON EXA-9726、及びEPICLON EXA-9710)、新日鉄住金化学株式会社製の品番エポトートFX-305等である。
 有機フィラー(E)は、感光性樹脂組成物にチクソ性を付与することができる。有機フィラー(E)は、有機フィラー(E1)を含む。有機フィラー(E1)は、カルボキシル基を有する。このカルボキシル基のうち、一部のカルボキシル基は有機フィラー(E1)の表面で露出しているとよい。
 有機フィラー(E1)は、感光性樹脂組成物中で高い相溶性を有し、より強いチクソ性を感光性樹脂組成物に付与することができる。感光性樹脂組成物が、カルボキシル基を有する有機フィラー(E1)を含有することで、感光性樹脂組成物の現像性を向上させることができる。また、有機フィラー(E1)のカルボキシル基は、熱硬化時に、感光性樹脂組成物中のエポキシ化合物(例えば、エポキシ化合物(D))と反応することができる。これにより、熱硬化後の硬化物は、その内部で均一に分散された有機フィラー(E1)を含有することができる。更に、硬化物の表面を粗化する段階で有機フィラー(E1)の未反応のカルボキシル基を変性させることもできる。すなわち、硬化物に含有される有機フィラー(E1)のうち硬化物の表面付近に位置する有機フィラー(E1)が硬化物の表面を粗化する段階で変質され易くなる。このようにして変質した有機フィラー(E1)は、硬化物に粗面を付与する際に、硬化物から取り除かれ易くなる。これにより、硬化物の表面に粗面を付与して硬化物とメッキ層との密着性を向上することができる。
 また更に感光性樹脂組成物が有機フィラー(E1)を含有することで、感光性樹脂組成物の流動性に起因する塗膜の不均一性を低減することができる。これにより、感光性樹脂組成物で形成された層の膜厚を均一にさせ易くすることができる。この場合、感光性樹脂組成物はレオロジーコントロール剤を含有しなくてもよい。
 有機フィラー(E1)のカルボキシル基は、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、フマル酸、イタコン酸等のカルボン酸モノマーを重合あるいは架橋させることで、その生成物における側鎖として形成される。前記カルボン酸モノマーは、カルボキシル基と重合性不飽和二重結合とを有する。有機フィラー(E1)は、感光性樹脂組成物のチクソ性を高めるため、感光性樹脂組成物の安定性(特に保存安定性)を向上させる。さらに、有機フィラー(E1)は、カルボキシル基を有するため、硬化物の現像性を向上させると共に、結晶性エポキシ樹脂の相溶性を向上させて感光性樹脂組成物中での結晶化を防ぐことができる。有機フィラー(E1)のカルボキシル基含有量は特に制限されないが、有機フィラー(E1)の酸価が、酸-塩基滴定による酸価で1~60mgKOH/gであることが好ましい。酸価が1mgKOH/gより小さいと感光性樹脂組成物の安定性及び硬化物の現像性が低下するおそれがある。酸価が60mgKOH/gより大きいと硬化物の耐湿信頼性が低下するおそれがある。有機フィラー(E1)の酸価は3~40mgKOH/gであることがより好ましい。
 有機フィラー(E1)は、水酸基を有することも好ましい。この水酸基のうち、一部の水酸基が、有機フィラー(E1)の表面で露出しているとよい。このように、有機フィラー(E1)が水酸基を有することで、感光性樹脂組成物中における有機フィラー(E1)の分散性が更に向上する。
 有機フィラー(E1)は、平均一次粒子径が1μm以下であることが好ましい。有機フィラー(E1)の平均一次粒子径が1μm以下となることで、感光性樹脂組成物のチクソ性が効率よく高まる。そのため、感光性樹脂組成物の安定性がさらに向上する。また、有機フィラー(E1)の平均一次粒子径が1μm以下となることで、硬化物に形成される粗面の粗さを細かくすることができる。これにより、硬化物の表面積が増加することに伴ってアンカー効果が大きくなり粗面と前記メッキ層との密着性を向上させることができる。有機フィラー(E1)の平均一次粒子径は、その下限は特に限定されないが、例えば、0.001μm以上であることが好ましい。平均一次粒子径は、レーザ回折式粒度分布測定装置により、D50として測定される。有機フィラー(E1)の平均一次粒子径が0.4μm以下であることがより好ましく、0.1μm以下であることがさらに好ましい。この場合、硬化物に形成される粗面の粗さを特に細かくすることができる。加えて露光時の散乱を感光性樹脂組成物中で抑えることができ、これにより、感光性樹脂組成物の解像性をさらに向上させることができる。
 有機フィラー(E1)は、感光性樹脂組成物中において最大粒子径が1.0μm未満で分散されていることが好ましく、0.5μm未満で分散されていることがより好ましい。最大粒子径は、レーザ回折式粒度分布測定装置により、D50として測定される。あるいは、最大粒子径は、硬化物を透過型電子顕微鏡(TEM)で観察することで測定される。有機フィラー(E1)は、感光性樹脂組成物中において凝集することがある(たとえば二次粒子を形成し得る)が、その場合、最大粒子径は凝集後の粒子のサイズを意味する。分散状態での有機フィラー(E1)の最大粒子径が前記の範囲であると、硬化物に形成される粗面の粗さを更に細かくすることができる。加えて露光時の散乱が感光性樹脂組成物中で抑えられ、これにより、感光性樹脂組成物の解像性がさらに向上する。また、感光性樹脂組成物の安定性が向上する。有機フィラー(E1)の平均一次粒子径が0.1μm以下であり、有機フィラー(E1)が0.5μm以下の粒子径で分散されていることが特に好ましい。なお、粒子の凝集が起こった場合、最大粒子径は、通常、平均一次粒子径よりも大きい。
 有機フィラー(E1)は、ゴム成分を含むことが好ましい。また、有機フィラー(E1)は、ゴム成分のみを含むことが好ましい。ゴム成分は、感光性樹脂組成物の硬化物に柔軟性を付与できる。ゴム成分は、樹脂により構成され得る。ゴム成分は、架橋アクリルゴム、架橋NBR、架橋MBS及び架橋SBRから選ばれる少なくとも1つの重合体を含むことが好ましい。この場合、ゴム成分が感光性樹脂組成物の硬化物に優れた柔軟性を付与することができる。更に、硬化物の表面に、より適度な粗面を付与することができる。ここでゴム成分は、前記重合体を構成するモノマーを共重合させる際に形成される架橋構造を含む。NBRは、一般的に、ブタジエンとアクリロニトリルの共重合体であり、ニトリルゴムに分類される。MBSは、一般的に、メチルメタアクリレート、ブタジエン、スチレンの3成分で構成される共重合体であり、ブタジエン系ゴムに分類される。SBRは、一般的に、スチレンとブタジエンとの共重合体であり、スチレンゴムに分類される。有機フィラー(E1)の具体例として、JSR株式会社製の品番XER-91-MEK、JSR株式会社製の品番XER-32-MEK、JSR株式会社製の品番XSK-500等が挙げられる。これらの有機フィラー(E1)のうち、XER-91-MEKは、平均一次粒子径0.07μmのカルボキシル基を有する架橋ゴム(NBR)であり、この架橋ゴムの含有割合15重量%のメチルエチルケトン分散液で提供され、その酸価が10.0mgKOH/gである。XER-32-MEKは、カルボキシル基変性水素化ニトリルゴムのポリマー(線状粒子)を、分散液全量に対して含有量17重量%で、メチルエチルケトン中で分散させた分散液である。また、XSK-500は、平均一次粒子径0.07μmのカルボキシル基及び水酸基を有する架橋ゴム(SBR)であり、この架橋ゴムの含有割合15重量%のメチルエチルケトン分散液で提供される。このように、有機フィラー(E1)は、分散液で、感光性樹脂組成物に配合されてもよい。すなわち、ゴム成分は、分散液で、感光性樹脂組成物に配合され得る。また、有機フィラー(E1)の具体例として、上記の他に、JSR株式会社製の品番XER-92等が挙げられる。
 有機フィラー(E1)は、ゴム成分以外の粒子成分を含有してもよい。この場合、有機フィラー(E1)は、カルボキシル基を有するアクリル樹脂微粒子、及びカルボキシル基を有するセルロース微粒子からなる群から選択される少なくとも1種の粒子成分を含有することができる。カルボキシル基を有するアクリル樹脂微粒子は、非架橋スチレン・アクリル樹脂微粒子及び架橋スチレン・アクリル樹脂微粒子からなる群から選択される少なくとも1種の粒子成分を含有することができる。非架橋スチレン・アクリル樹脂微粒子の具体例として、日本ペイント・インダストリアルコーティングス株式会社製の品番FS-201(平均一次粒子径0.5μm)が挙げられる。架橋スチレン・アクリル樹脂微粒子の具体例として、日本ペイント・インダストリアルコーティングス株式会社製の、品番MG-351(平均一次粒子径1.0μm)、及び品番BGK-001(平均一次粒子径1.0μm)が挙げられる。また、有機フィラー(E1)は、上記の、ゴム成分、アクリル樹脂微粒子、及びセルロース微粒子から選択される粒子成分以外の粒子成分を含有してもよい。この場合、有機フィラー(E1)は、カルボキシル基を有する粒子成分を含有することができる。すなわち、このカルボキシル基を有する粒子成分は、ゴム成分、アクリル樹脂微粒子、及びセルロース微粒子から選択される粒子成分と異なっていてよい。
 有機フィラー(E)は、前記有機フィラー(E1)以外の有機フィラーをさらに含んでいてもよい。前記有機フィラー(E1)以外の有機フィラーは、カルボキシル基を有さなくてよい。前記有機フィラー(E1)以外の有機フィラーは、平均一次粒子径が1μmより大きくてよい。ただし、チクソ性を効率よく得る観点、硬化物に粗面を付与する観点、及び感光性樹脂組成物の解像性を向上させる観点から、感光性樹脂組成物は、前記有機フィラー(E1)以外の有機フィラーを含まなくてよい。
 有機フィラー(E)は、有機フィラー(E1)のみ、又は有機フィラー(E1)と有機フィラー(E1)以外の有機フィラーとを含有してもよい。有機フィラー(E)は、有機フィラー(E1)を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましく、100質量%含有することが更に好ましい。この場合、感光性樹脂組成物の安定性がさらに向上する。また、この場合、感光性樹脂組成物の硬化物に粗面を更に付与しやすくなる。これにより、硬化物とメッキ層との密着性を更に向上させることができる。
 メラミン化合物(F)は、メラミン及びメラミン誘導体の群から選択される少なくとも1種の化合物である。感光性樹脂組成物がメラミンを含有することにより、感光性樹脂組成物の硬化物と銅などの金属との間の密着性が高くなる。このため、プリント配線板用の絶縁材料として特に適した感光性樹脂組成物が得られる。また、感光性樹脂組成物の硬化物の耐メッキ性、すなわち無電解ニッケル/金メッキ処理時の白化耐性が向上する。これにより、感光性樹脂組成物の硬化物を、例えば過マンガン酸カリウムを含有する酸化剤により著しく腐食させる程度を低減することができる。すなわち感光性樹脂組成物がメラミン化合物(F)を含有することで、感光性樹脂組成物の硬化物表面を、メッキ処理の前工程で粗化する際に、前記硬化物を含む層の厚みを薄くさせにくくできる。このようにして前記硬化物に粗面を付与することで、感光性樹脂組成物の硬化物と、銅や金等からなるメッキ層との密着性を向上させることができる。
 ここで、従来、感光性樹脂組成物の硬化物からなる層にメッキ層を形成する場合、メッキ処理の前工程で、感光性樹脂組成物の硬化物層の表面を、例えば過マンガン酸カリウムを含有する酸化剤で、粗化することがあった。その際、前記硬化物の層を前記酸化剤で処理すると、硬化物層の表面が過度に腐食され、この層の厚みが薄くなることがあった。カルボキシル基含有樹脂は前記酸化剤に対して比較的高い耐性を有するが、このカルボキシル基含有樹脂を感光性樹脂組成物が含有しても、硬化物層の厚みが前記酸化剤で過度に薄くなることがあることが分かった。また、カルボキシル基含有樹脂は、感光性樹脂組成物の現像性を低下させる場合があった。現像性を向上するために、カルボキシル基含有樹脂の分子量を小さくすると、硬化物層の、前記酸化剤に対する耐性が低下してしまい、前記酸化剤で硬化物層の厚みを更に薄くさせてしまうことが分かった。このため、従来では、硬化物とメッキ層との密着性を向上させるために、感光性樹脂組成物の硬化物層の表面を前記酸化剤で適度に粗化させることが困難であった。そこで、本実施形態では、これらの問題点に鑑み、有機フィラー(E)とメラミン化合物(F)とを含有するようにしたのである。
 このように、感光性樹脂組成物がメラミン化合物(F)と有機フィラー(E)との両方を含有することにより、現像性、チクソ性、耐メッキ性、絶縁信頼性、及び密着性に優れた感光性樹脂組成物が得られる。具体的には、例えば、感光性樹脂組成物の硬化物に適度な粗面を付与することができると共に硬化物とメッキ層との密着性を向上させることができる。また、メッキ処理の前工程で硬化物に粗面を付与する際に、感光性樹脂組成物で形成された層の膜厚を過度に薄くしにくくすることができる。
 本実施形態では、メラミン化合物(F)が、メラミンのみを含有してもよく、メラミン誘導体のみを含有してもよく、メラミン及びメラミン誘導体を含有してもよい。メラミンは、2,4,6-トリアミノ-1,3,5-トリアジンであり、一般的に市販されている化合物から入手可能である。また、メラミン誘導体は、その一分子中に1つのトリアジン環と、アミノ基とを有する化合物であるとよい。メラミン誘導体としては、例えばグアナミン;アセトグアナミン;ベンゾグアナミン;2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体;並びにメラミン-テトラヒドロフタル酸塩等のメラミンと酸無水物との反応物が、挙げられる。メラミン誘導体の、より詳細な具体例として、四国化成工業株式会社の製品名VD-1、製品名VD-2、製品名VD-3が挙げられる。メラミン誘導体は、その一分子中に1つのトリアジン環と、2つ以上のアミノ基とを有する化合物であることが好ましい。この2つ以上のアミノ基のうち、少なくとも1つは-NHの基を含まない置換基である。すなわち、メラミン誘導体はメラミンを含まない。このような場合、感光性樹脂組成物中に分散しているメラミン誘導体が、例えばメッキ層やコア材の導体配線に含まれ、且つ感光性樹脂組成物との接触面に位置する金属元素と配位結合する。このため感光性樹脂組成物の密着性を向上させることができる。前記金属元素として、例えば金、銀、銅、ニッケルが挙げられる。
 メラミン化合物(F)は感光性樹脂組成物に対して溶解可能であってもよい。或いはメラミン化合物(F)が感光性樹脂組成物に対して難溶解である場合、平均粒子径が20μm以下、好ましくは15μm以下のメラミン化合物(F)が、感光性樹脂組成物中で分散されることが好ましい。感光性樹脂組成物中にメラミン化合物(F)が均一に分散していることで、メラミン化合物(F)は前記金属元素と更に配位結合しやすくなる。これにより、感光性樹脂組成物の密着性を更に向上させることができる。また、メラミン化合物(F)は、たとえば、メラミン又はメラミン誘導体がワニス中に分散したメラミン分散ワニスとして用いられてもよい。メラミン化合物(F)の平均粒子径の下限は、特に限定されないが、0.01μm以上にすることができる。なお、メラミン化合物(F)の平均粒子径は、メラミン化合物(F)を未硬化の感光性樹脂組成物中で分散させた状態でレーザ回折式粒度分布測定装置により、D50として測定される。
 カップリング剤(G)は、カップリング剤(G1)を含む。カップリング剤(G1)は、ケイ素原子、アルミニウム原子、チタン原子、及びジルコニア原子から選ばれる原子を含有する。カップリング剤(G1)は、さらにアルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基を二つ以上含有する。カップリング剤(G1)は、アルコキシ基を二つ以上含有してもよく、アシルオキシ基を二つ以上含有してもよく、アルコキシドを二つ以上含有してもよい。また、カップリング剤(G1)は、アルコキシ基、アシルオキシ基及びアルコキシドから選ばれる異なる官能基を二つ以上含有してもよい。カップリング剤(G1)は、カルボキシル基含有樹脂(A)及び有機フィラー(E1)に含有されるカルボキシル基との反応または相互作用により、感光性樹脂組成物における有機フィラー(E1)の分散性を高めるため、感光性樹脂組成物のチクソ性及び安定性(特に保存安定性)を向上させる。アルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基は、ケイ素原子、アルミニウム原子、チタン原子、及びジルコニア原子から選ばれる原子に直接結合していることが好ましい。
 カップリング剤(G1)がケイ素原子を含有する場合、カップリング剤(G1)としては、例えばテトラエトキシシラン、テトラメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルメチルジメトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、p-スチリルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、N,N-ジメチル-3-(トリメトキシシリル)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、アリルクロロジメチルシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、3-クロロプロピルジメトキシメチルシラン、クロロメチルトリエトキシシラン、クロロメチルトリメトキシシラン、3-クロロプロピルメチルジエトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、シクロヘキシルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリメトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシラン、ドデシルトリエトキシシラン、ドデシルトリメトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ベンジルトリエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、フェニルトリエトキシシラン、フェニルトリメトキシシラン、p-トリルトリメトキシシラン、4-ビニルフェニルトリメトキシシラン、1-ナフチルトリメトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、11-ペンタフルオロフェノキシウンデシルトリメトキシシラン、ペンタフルオロフェニルトリメトキシシラン、11-アジドウンデシルトリメトキシシラン、2-シアノエチルトリエトキシシラン、ビニルトリアセトキシシラン等が挙げられる。
 カップリング剤(G1)がアルミニウム原子を含有する場合、カップリング剤(G1)としては、例えば、アセトアルコキシアルミニウムジイソプロピレート、アルミニウムジイソプロポキシモノエチルアセトアセテート、アルミニウムトリスエチルアセトアセテート等が挙げられる。
 カップリング剤(G1)がチタン原子を含有する場合、カップリング剤(G1)としては、例えば、イソプロピルトリステアロイルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトラオクチルビス(ジトリデシルホスフェートチタネート)、テトラ(2-2-ジアリルオキシメチル-1-ブチル)ビス(ジトリデシル)ホスフェートチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート等が挙げられる。
 カップリング剤(G1)がジルコニア原子を含有する場合、カップリング剤(G1)としては、例えば、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド等が挙げられる。
 カップリング剤(G1)は、ケイ素原子を含有することが好ましい。カップリング剤(G1)が、ケイ素原子を含有することで、感光性樹脂組成物における有機フィラー(E1)の分散性が効率よく高まる。そのため、感光性樹脂組成物のチクソ性及び安定性がさらに向上する。カップリング剤(G1)は、シランカップリング剤であってよい。
 カップリング剤(G1)は、メトキシ基、エトキシ基及びアセトキシ基から選ばれる官能基を含有することが好ましい。メトキシ基及びエトキシ基は、アルコキシ基に分類される。また、アセトキシ基は、アシルオキシ基に分類される。カップリング剤(G1)は、メトキシ基のみを含有してもよく、エトキシ基のみを含有してもよく、アセトキシ基のみを含有してもよい。また、カップリング剤(G1)は、メトキシ基、エトキシ基及びアセトキシ基から選ばれる異なる官能基を含有してもよい。カップリング剤(G1)が、メトキシ基、エトキシ基及びアセトキシ基から選ばれる官能基を含有することで、有機フィラー(E1)とカップリング剤(G1)との反応性が向上し、感光性樹脂組成物における有機フィラー(E1)の凝集がより生じにくくなる。そのため、感光性樹脂組成物のチクソ性及び安定性がさらに向上する。また、感光性樹脂組成物の良好な解像性が得られる。
 カップリング剤(G1)は、アルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基を二つから四つ含有することが好ましい。カップリング剤(G1)は、アルコキシ基を二つから四つ含有してもよく、アシルオキシ基を二つから四つ含有してもよく、アルコキシドを二つから四つ含有してもよい。たとえば、カップリング剤(G1)は、メトキシ基を二つから四つ含有してもよく、エトキシ基を二つから四つ含有してもよく、アセトキシ基を二つから四つ含有してもよい。また、カップリング剤(G1)は、アルコキシ基、アシルオキシ基及びアルコキシドから選ばれる異なる官能基を二つから四つ含有してもよい。カップリング剤(G1)が、アルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基を二つから四つ含有することで、有機フィラー(E1)とカップリング剤(G1)との反応による過剰な架橋反応を抑制することができ、感光性樹脂組成物における有機フィラー(E1)の分散性を向上させると同時に、ゲル化を抑制することができる。
 カップリング剤(G1)は、アミノ基、エポキシ基、ビニル基、メタクリル基、メルカプト基、イソシアネート基、及びスルフィド基から選ばれる少なくとも一つの官能基を含有することが好ましい。カップリング剤(G1)が、アミノ基、エポキシ基、ビニル基、メタクリル基、メルカプト基、イソシアネート基、及びスルフィド基から選ばれる少なくとも一つの官能基を含有することで、有機フィラー(E1)に含まれるカルボキシル基と反応することができ、感光性樹脂組成物における有機フィラー(E1)の分散性がさらに効率よく高まる。そのため、感光性樹脂組成物のチクソ性、安定性及び解像性がさらに向上する。
 カップリング剤(G1)がアミノ基を含有する場合、アミノ基は例えば、アミノアルキル基で導入される。また、カップリング剤(G1)がエポキシ基を含有する場合、エポキシ基は例えば、グリシドキシ基で導入される。カップリング剤(G1)がビニル基を含有する場合、ビニル基は例えば、ケイ素原子に直接結合する。カップリング剤(G1)がアミノ基、エポキシ基、又はビニル基を含有することで、有機フィラー(E1)との反応性が高まり、感光性樹脂組成物における有機フィラー(E1)の分散性がさらに効率よく高まる。カップリング剤(G1)がエポキシ基又はビニル基を有することが好ましい。カップリング剤(G1)がエポキシ基又はビニル基を有することで、感光性樹脂組成物の線間絶縁性が高まり、安定性がさらに向上する。
 カップリング剤(G)は、前記カップリング剤(G1)以外のカップリング剤をさらに含んでいてもよい。前記カップリング剤(G1)以外のカップリング剤は、ケイ素原子、アルミニウム原子、チタン原子、及びジルコニア原子から選ばれる原子を含有しなくてもよい。前記カップリング剤(G1)以外のカップリング剤は、アルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基を二つ以上含有しなくてもよい。ただし、有機フィラー(E1)の分散性を効率よく得る観点、また感光性樹脂組成物のチクソ性及び安定性を向上させる観点から、感光性樹脂組成物は、前記カップリング剤(G1)以外のカップリング剤を含まなくてよい。
 カップリング剤(G)は、カップリング剤(G1)のみ、又はカップリング剤(G1)とカップリング剤(G1)以外のカップリング剤とを含有する。カップリング剤(G)は、カップリング剤(G1)を30質量%以上含有することが好ましく、50質量%以上含有することがより好ましく、100質量%含有することが更に好ましい。この場合、感光性樹脂組成物における有機フィラー(E)の分散性を特に向上させることができる。
 感光性樹脂組成物は、有機溶剤を含有してもよい。有機溶剤は、感光性樹脂組成物の液状化又はワニス化、粘度調整、塗布性の調整、造膜性の調整などの目的で使用される。
 有機溶剤は、例えばエタノール、プロピルアルコール、イソプロピルアルコール、ヘキサノール、エチレングリコール等の直鎖、分岐、2級或いは多価のアルコール類;メチルエチルケトン、シクロヘキサノン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;スワゾールシリーズ(丸善石油化学社製)、ソルベッソシリーズ(エクソン・ケミカル社製)等の石油系芳香族系混合溶剤;セロソルブ、ブチルセロソルブ等のセロソルブ類;カルビトール、ブチルカルビトール等のカルビトール類;プロピレングリコールメチルエーテル等のプロピレングリコールアルキルエーテル類;ジプロピレングリコールメチルエーテル等のポリプロピレングリコールアルキルエーテル類;酢酸エチル、酢酸ブチル、セロソルブアセテート、カルビトールアセテート等の酢酸エステル類;並びにジアルキルグリコールエーテル類からなる群から選択される少なくとも一種の化合物を含有できる。
 感光性樹脂組成物中の成分の量は、感光性樹脂組成物が光硬化性を有しアルカリ性溶液で現像可能であるように、適宜調整される。
 感光性樹脂組成物の固形分量に対するカルボキシル基含有樹脂(A)の量は、5~85質量%の範囲内であれば好ましく、10~75質量%の範囲内であればより好ましく、30~60質量%の範囲内であれば更に好ましい。また、感光性樹脂組成物の固形分量に対するカルボキシル基含有樹脂(A1)の量は、5~85質量%の範囲内であれば好ましく、10~75質量%の範囲内であればより好ましく、30~60質量%の範囲内であれば更に好ましい。
 カルボキシル基含有樹脂(A)に対する不飽和化合物(B)の量は、1~50質量%の範囲内であれば好ましく、10~45質量%の範囲内であればより好ましく、21~40質量%の範囲内であれば更に好ましい。
 カルボキシル基含有樹脂(A)に対する光重合開始剤(C)の量は、0.1~30質量%の範囲内であることが好ましく、1~25質量%の範囲内であれば更に好ましい。
 エポキシ化合物(D)の量に関しては、エポキシ化合物(D)に含まれるエポキシ基の当量の合計が、カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対して0.7~2.5の範囲内であることが好ましく、0.7~2.3の範囲内であることがより好ましく、0.7~2.0の範囲内であれば更に好ましい。また、結晶性エポキシ樹脂(D1)に含まれるエポキシ基の当量の合計が、カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対して0.1~2.0の範囲内であることが好ましく、0.2~1.9の範囲内であればより好ましく、0.3~1.5の範囲内であれば更に好ましい。あるいは、結晶性エポキシ樹脂(D1)に含まれるエポキシ基の当量の合計が、カルボキシル基含有樹脂(A)に含まれるカルボキシル基1当量に対して0.7~2.5の範囲内になってもよい。
 有機フィラー(E)の含有量は、カルボキシル基含有樹脂(A)の含有量を100質量部としたときに、1~40質量部の範囲内であることが好ましい。有機フィラー(E)の含有量がこの範囲となることで、感光性樹脂組成物のチクソ性が高まり、安定性が向上する。また、感光性樹脂組成物の硬化物における表面を適度に粗化することができ、これにより、硬化物の粗面とメッキ層との密着性を向上することができる。有機フィラー(E)の含有量は、カルボキシル基含有樹脂(A)の含有量を100質量部としたときに、5~20質量部の範囲内であることがより好ましく、10~17質量部の範囲内であることが更に好ましい。また、有機フィラー(E1)の含有量は、カルボキシル基含有樹脂(A)の含有量を100質量部としたときに、1~40質量部の範囲内であることが好ましい。有機フィラー(E1)の含有量がこの範囲となることで、感光性樹脂組成物のチクソ性が高まり、安定性が効果的に向上する。また、感光性樹脂組成物の硬化物における表面をより適度に粗化することができる。有機フィラー(E1)の含有量は、カルボキシル基含有樹脂(A)の含有量を100質量部としたときに、5~20質量部の範囲内であることがより好ましく、10~17質量部であることが更に好ましい。ゴム成分の含有量は、カルボキシル基含有樹脂(A)の含有量を100質量部としたときに、1~40質量部の範囲内であることが好ましく、5~20質量部の範囲内であることがより好ましく、10~17質量部であることが更に好ましい。
 カルボキシル基含有樹脂(A)に対するメラミン化合物(F)の量は、0.1~10質量%の範囲内であることが好ましく、0.5~5質量%の範囲内であれば更に好ましい。
 感光性樹脂組成物がカップリング剤(G)を含有する場合、カップリング剤(G)の含有量は、有機フィラー(E)の含有量を100質量部としたときに、0.01~7質量部の範囲内であることが好ましい。カップリング剤(G)の含有量がこの範囲となることで、感光性樹脂組成物における有機フィラー(E)の凝集を防ぎ、分散性が向上する。カップリング剤(G)の含有量は、有機フィラー(E)の含有量を100質量部としたときに、0.05~5質量部の範囲内であることがより好ましい。また、カップリング剤(G1)の含有量は、有機フィラー(E1)の含有量を100質量部としたときに、0.01~7質量部の範囲内であることが好ましい。カップリング剤(G1)の含有量がこの範囲となることで、感光性樹脂組成物における有機フィラー(E1)の凝集を効率よく防ぎ、分散性が効果的に向上する。カップリング剤(G1)の含有量は、有機フィラー(E1)の含有量を100質量部としたときに、0.05~5質量部の範囲内であることがより好ましい。
 感光性樹脂組成物が有機溶剤を含有する場合、有機溶剤の量は、感光性樹脂組成物から形成される塗膜を乾燥させる際に速やかに有機溶剤が揮散して無くなるように、すなわち有機溶剤が乾燥膜に残存しないように、調整されることが好ましい。特に、感光性樹脂組成物全体に対する有機溶剤の量は、0~99.5質量%の範囲内であることが好ましく、15~60質量%の範囲内であれば更に好ましい。なお、有機溶剤の好適な割合は、塗布方法などにより異なるので、塗布方法に応じて割合が適宜調節されることが好ましい。
 なお、固形分量とは、感光性樹脂組成物から溶剤などの揮発性成分を除いた、全成分の合計量のことである。
 本実施形態の効果を阻害しない限りにおいて、感光性樹脂組成物は、上記成分以外の成分を更に含有してもよい。
 感光性樹脂組成物は、無機フィラーを含有してもよい。この場合、感光性樹脂組成物から形成される膜の硬化収縮が低減する。無機フィラーは、例えば硫酸バリウム、結晶性シリカ、ナノシリカ、カーボンナノチューブ、タルク、ベントナイト、ハイドロタルサイト、水酸化アルミニウム、水酸化マグネシウム、及び酸化チタンからなる群から選択される一種以上の材料を含有できる。無機フィラーが酸化チタン、酸化亜鉛等の白色材料を含有する場合、感光性樹脂組成物及びその硬化物を前記白色材料で白色化させることができる。感光性樹脂組成物中の無機フィラーの割合は適宜設定されるが、カルボキシル基含有樹脂(A)に対して0~300質量%の範囲内であることが好ましい。
 感光性樹脂組成物では、無機フィラーとしての微粉シリカを含有しなくてもよい。微粉シリカは、チクソ性を付与するものの、絶縁信頼性を低下させる傾向にある。感光性樹脂組成物は、有機フィラー(E1)によって優れたチクソ性が付与される。また、アシルフォスフィンオキサイド系光重合開始剤(C1)によって特に優れた絶縁信頼性が付与される。
 感光性樹脂組成物は、カプロラクタム、オキシム、マロン酸エステル等でブロックされたトリレンジイソシアネート系、モルホリンジイソシアネート系、イソホロンジイソシアネート系及びヘキサメチレンジイソシアネート系のブロックドイソシアネート;メラミン樹脂、n-ブチル化メラミン樹脂、イソブチル化メラミン樹脂、ブチル化尿素樹脂、ブチル化メラミン尿素共縮合樹脂、ベンゾグアナミン系共縮合樹脂等のアミノ樹脂;前記以外の各種熱硬化性樹脂;紫外線硬化性エポキシ(メタ)アクリレート;ビスフェノールA型、フェノールノボラック型、クレゾールノボラック型、脂環型等のエポキシ樹脂に(メタ)アクリル酸を付加して得られる樹脂;並びにジアリルフタレート樹脂、フェノキシ樹脂、ウレタン樹脂、フッ素樹脂等の高分子化合物からなる群から選択される少なくとも一種の樹脂を含有してもよい。
 感光性樹脂組成物は、エポキシ化合物(D)を硬化させるための硬化剤を含有してもよい。硬化剤は、例えば、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物;アジピン酸ヒドラジド、セバシン酸ヒドラジド等のヒドラジン化合物;トリフェニルフォスフィン等のリン化合物;酸無水物;フェノール;メルカプタン;ルイス酸アミン錯体;及びオニウム塩からなる群から選択される少なくとも一種の成分を含有できる。これらの成分の市販品は、例えば、四国化成株式会社製の2MZ-A、2MZ-OK、2PHZ、2P4BHZ、2P4MHZ(いずれもイミダゾール系化合物の商品名)、サンアプロ株式会社製のU-CAT3503N、U-CAT3502T(いずれもジメチルアミンのブロックイソシアネート化合物の商品名)、DBU、DBN、U-CATSA102、U-CAT5002(いずれも二環式アミジン化合物及びその塩)である。
 感光性樹脂組成物は、メラミン化合物(F)以外の密着性付与剤を含有してもよい。密着性付与剤としては、例えばグアナミン、アセトグアナミン、ベンゾグアナミン、並びに2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体が、挙げられる。
 感光性樹脂組成物は、レオロジーコントロール剤を含有してもよい。レオロジーコントロール剤により、感光性樹脂組成物の粘性が好適化しやすくなる。レオロジーコントロール剤としては、例えば、ウレア変性中極性ポリアマイド(ビッグケミー・ジャパン株式会社製の品番BYK-430、BYK-431)、ポリヒドロキシカルボン酸アミド(ビッグケミー・ジャパン株式会社製の品番BYK-405)、変性ウレア(ビッグケミー・ジャパン株式会社製の品番BYK-410、BYK-411、BYK-420)、高分子ウレア誘導体(ビッグケミー・ジャパン株式会社製の品番BYK-415)、ウレア変性ウレタン(ビッグケミー・ジャパン株式会社製の品番BYK-425)、ポリウレタン(ビッグケミー・ジャパン株式会社製の品番BYK-428)、ひまし油ワックス、ポリエチレンワックス、ポリアマイドワックス、ベントナイト、シリカ、シリカゲル、カオリン、クレーが挙げられる。ただし、感光性樹脂組成物は、有機フィラー(E1)によってより好適に粘性が好適化し得る。そのため、感光性樹脂組成物はレオロジーコントロール剤を含有しなくてもよい。
 感光性樹脂組成物は、硬化促進剤;着色剤;シリコーン、アクリレート等の共重合体;レベリング剤;チクソトロピー剤;重合禁止剤;ハレーション防止剤;難燃剤;消泡剤;酸化防止剤;界面活性剤;顔料;並びに高分子分散剤からなる群から選択される少なくとも一種の成分を含有してもよい。
 感光性樹脂組成物中のアミン化合物の含有量はできるだけ少ないことが好ましい。このようにすれば、感光性樹脂組成物の硬化物からなる層の電気絶縁性が損なわれにくい。特にカルボキシル基含有樹脂(A)に対するアミン化合物の量は6質量%以下であることが好ましく、4質量%以下であれば更に好ましい。
 上記のような感光性樹脂組成物の原料が配合され、例えば三本ロール、ボールミル、サンドミル等を用いる公知の混練方法によって混練されることにより、感光性樹脂組成物が調製され得る。感光性樹脂組成物の原料に液状の成分、粘度の低い成分等が含まれる場合には、原料のうち液状の成分、粘度の低い成分等を除く部分をまず混練し、得られた混合物に、液状の成分、粘度の低い成分等を加えて混合することで、感光性樹脂組成物を調製してもよい。
 保存安定性等を考慮して、感光性樹脂組成物の成分の一部を混合することで第一剤を調製し、成分の残部を混合することで第二剤を調製してもよい。すなわち、感光性樹脂組成物は、第一剤と第二剤とを備えてもよい。この場合、例えば、感光性樹脂組成物の成分のうち、不飽和化合物(B)、有機溶剤の一部、及び熱硬化性成分を予め混合して分散させることで第一剤を調製し、感光性樹脂組成物の成分のうち、残部を混合して分散させることで第二剤を調製してもよい。この場合、適時必要量の第一剤と第二剤とを混合して混合液を調製し、この混合液を硬化させて硬化物を得ることができる。
 本実施形態に係る感光性樹脂組成物は、プリント配線板用の電気絶縁性材料に適している。特に感光性樹脂組成物は、ソルダーレジスト層、メッキレジスト層、エッチングレジスト層、層間絶縁層等の、電気絶縁性の層の材料に適している。
 本実施形態に係る感光性樹脂組成物は、厚み25μmの皮膜であっても炭酸ナトリウム水溶液で現像可能であるような性質を有することが好ましい。この場合、十分に厚い電気絶縁性の層を感光性樹脂組成物からフォトリソグラフィー法で作製することが可能であるため、感光性樹脂組成物を、プリント配線板における層間絶縁層、ソルダーレジスト層等を作製するために広く適用可能である。勿論、感光性樹脂組成物から厚み25μmより薄い電気絶縁性の層を作製することも可能である。
 厚み25μmの皮膜が炭酸ナトリウム水溶液で現像可能であるかどうかは、次の方法で確認できる。適当な基材上に感光性樹脂組成物を塗布することで湿潤塗膜を形成し、この湿潤塗膜を80℃で40分加熱することで、厚み25μmの皮膜を形成する。この皮膜に紫外線を透過する露光部と紫外線を遮蔽する非露光部とを有するネガマスクを直接当てた状態で、皮膜に500mJ/cmの条件で紫外線を照射して露光を行う。露光後に、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射してから、純水を0.2MPaの噴射圧で90秒間噴射する処理を行う。この処理後に皮膜を観察した結果、皮膜における非露光部に対応する部分が除去されて残渣が認められない場合に、厚み25μmの皮膜が炭酸ナトリウム水溶液で現像可能であると判断できる。なお、他の厚み(例えば30μm)の皮膜についても、同様に、炭酸ナトリウム水溶液での現像が可能かどうかを確認することができる。
 以下に、本実施形態による感光性樹脂組成物から形成された層間絶縁層を備えるプリント配線板を製造する方法の一例を、図1Aから図1Eを参照して説明する。本方法では、層間絶縁層にフォトリソグラフィー法でスルーホールを形成する。
 まず、図1Aに示すようにコア材1を用意する。コア材1は、例えば少なくとも一つの絶縁層2と少なくとも一つの導体配線3とを備える。コア材1の一面上に設けられている導体配線3を、以下、第一の導体配線3という。図1Bに示すように、コア材1の一面上に、感光性樹脂組成物から皮膜4を形成する。皮膜4の形成方法は、例えば、塗布法とドライフィルム法とがある。
 塗布法では、例えばコア材1上に感光性樹脂組成物を塗布して湿潤塗膜を形成する。感光性樹脂組成物の塗布方法は、公知の方法、例えば浸漬法、スプレー法、スピンコート法、ロールコート法、カーテンコート法、及びスクリーン印刷法からなる群から選択される。続いて、感光性樹脂組成物中の有機溶剤を揮発させるために、例えば60~120℃の範囲内の温度下で湿潤塗膜を乾燥させ、これによって、皮膜4を得ることができる。
 ドライフィルム法では、まずポリエステルなどでできた適宜の支持体上に感光性樹脂組成物を塗布してから乾燥することで、支持体上に感光性樹脂組成物の乾燥物であるドライフィルムを形成する。これにより、ドライフィルムと、ドライフィルムを支持する支持体とを備える積層体(支持体付きドライフィルム)が得られる。この積層体におけるドライフィルムをコア材1に重ねてから、ドライフィルムとコア材1に圧力をかけ、続いて支持体をドライフィルムから剥離することで、ドライフィルムを支持体上からコア材1上へ転写する。これにより、コア材1上に、ドライフィルムからなる皮膜4が設けられる。
 皮膜4を露光することで図1Cに示すように皮膜4を部分的に硬化させる。そのために、例えばネガマスクを皮膜4に当ててから、皮膜4に紫外線を照射する。ネガマスクは、紫外線を透過させる露光部と紫外線を遮蔽する非露光部とを備え、非露光部はスルーホール10の位置と合致する位置に設けられる。ネガマスクは、例えばマスクフィルム、乾板等のフォトツールである。紫外線の光源は、例えばケミカルランプ、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、メタルハライドランプ、LED、g線(436nm)、h線(405nm)、i線(365nm)、並びにg線、h線及びi線のうちの二種以上の組み合わせからなる群から選択される。
 なお、露光方法は、ネガマスクを用いる方法以外の方法であってもよい。例えば光源から発せられる紫外線を皮膜4の露光すべき部分のみに照射する直接描画法で皮膜4を露光してもよい。直接描画法に適用される光源は、例えば高圧水銀灯、超高圧水銀灯、メタルハライドランプ、LED、g線(436nm)、h線(405nm)、i線(365nm)、並びにg線、h線及びi線のうちの二種以上の組み合わせからなる群から選択される。
 また、ドライフィルム法では、積層体におけるドライフィルムをコア材1に重ねてから、支持体を剥離することなく、支持体を通して紫外線をドライフィルムからなる皮膜4に照射することで皮膜4を露光し、続いて現像処理前に皮膜4から支持体を剥離してもよい。
 続いて、皮膜4に現像処理を施すことで、図1Cに示す皮膜4の露光されていない部分5を除去し、これにより、図1Dに示すようにスルーホール10が形成される位置に穴6を設ける。現像処理では、感光性樹脂組成物の組成に応じた適宜の現像液を使用できる。現像液は、例えばアルカリ金属塩及びアルカリ金属水酸化物のうち少なくとも一方を含有するアルカリ性水溶液、又は有機アミンである。アルカリ性水溶液は、より具体的には例えば炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素アンモニウム、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、水酸化テトラメチルアンモニウム及び水酸化リチウムからなる群から選択される少なくとも一種の成分を含有する。アルカリ性水溶液中の溶媒は、水のみであっても、水と低級アルコール類等の親水性有機溶媒との混合物であってもよい。有機アミンは、例えばモノエタノールアミン、ジエタノールアミン、トリエタノールアミン、モノイソプロパノールアミン、ジイソプロパノールアミン及びトリイソプロパノールアミンからなる群から選択される少なくとも一種の成分を含有する。
 現像液は、アルカリ金属塩及びアルカリ金属水酸化物のうち少なくとも一方を含有するアルカリ性水溶液であることが好ましく、炭酸ナトリウム水溶液であることが特に好ましい。この場合、作業環境の向上及び廃棄物処理の負担軽減を達成できる。
 続いて、皮膜4を加熱することで硬化させる。加熱の条件は、例えば加熱温度120~200℃の範囲内、加熱時間30~120分間の範囲内である。このようにして皮膜4を熱硬化させると、層間絶縁層7の強度、硬度、耐薬品性等の性能が向上する。
 必要により、加熱前と加熱後のうちの一方又は両方で、皮膜4に更に紫外線を照射してもよい。この場合、皮膜4の光硬化を更に進行させることができる。
 層間絶縁層7の厚みは、特に限定されないが、10~50μmの範囲内であってよい。
 以上により、コア材1上に、感光性樹脂組成物の硬化物からなる層間絶縁層7が設けられる。この層間絶縁層7上に、アディティブ法などの公知の方法で、第二の導体配線8及びホールめっき9を設けることができる。これにより、図1Eに示すように、第一の導体配線3、第二の導体配線8、第一の導体配線3と第二の導体配線8との間に介在する層間絶縁層7、並びに第一の導体配線3と第二の導体配線8とを電気的に接続するスルーホール10を備えるプリント配線板11が得られる。なお、図1Eにおいて、ホールめっき9は穴6の内面を覆う筒状の形状を有するが、穴6の内側全体にホールめっき9が充填されていてもよい。
 また、図1Eのようなホールめっき9を設ける前に、穴6の内側面全体と層間絶縁層7の外表面の一部とを粗化することができる。このようにして、層間絶縁層7の外表面の一部と、穴6の内側面とを粗化することでコア材1とホールめっき9との密着性を向上することができる。
 層間絶縁層7の外表面の一部と穴6の内側面全体とを粗化するにあたって、酸化剤を用いた一般的なデスミア処理と同じ手順で行うことができる。例えば、層間絶縁層7の外表面に酸化剤を接触させて層間絶縁層7に粗面を付与する。しかし、これに限らず、プラズマ処理、UV処理やオゾン処理等の硬化物に粗面を付与する手法を適宜採用することができる。
 前記酸化剤は、デスミア液として入手可能な酸化剤であってもよい。たとえば、市販のデスミア用膨潤液とデスミア液とにより、酸化剤が構成され得る。このような酸化剤は、例えば過マンガン酸ナトリウムや過マンガン酸カリウムの群から選択される少なくとも1種の過マンガン酸塩を含有することができる。
 ホールめっき9を設けるにあたって、粗化された外表面の一部と、穴6の内側面とに無電解金属メッキ処理を施して初期配線を形成することができる。その後、電解金属メッキ処理で初期配線に電解質メッキ液中の金属を析出させることでホールめっき9を形成することができる。
 本実施形態による感光性樹脂組成物から形成されたソルダーレジスト層を備えるプリント配線板を製造する方法の一例を説明する。
 まず、コア材を用意する。コア材は、例えば少なくとも一つの絶縁層と少なくとも一つの導体配線とを備える。コア材の導体配線が設けられている面上に、感光性樹脂組成物から皮膜を形成する。皮膜の形成方法として、塗布法とドライフィルム法が挙げられる。塗布法とドライフィルム法としては、上記の層間絶縁層を形成する場合と同じ方法を採用できる。皮膜を露光することで部分的に硬化させる。露光方法も、上記の層間絶縁層を形成する場合と同じ方法を採用できる。続いて、皮膜に現像処理を施すことで、皮膜の露光されていない部分を除去し、これにより、コア材上に、皮膜の露光された部分が残存する。続いて、コア材上の皮膜を加熱することで熱硬化させる。現像方法及び加熱方法も、上記の層間絶縁層を形成する場合と同じ方法を採用できる。必要により、加熱前と加熱後のうちの一方又は両方で、皮膜に更に紫外線を照射してもよい。この場合、皮膜の光硬化を更に進行させることができる。
 ソルダーレジスト層の厚みは、特に限定されないが、10~50μmの範囲内であってよい。
 以上により、コア材上に、感光性樹脂組成物の硬化物からなるソルダーレレジスト層が設けられる。これにより、絶縁層とその上の導体配線とを備えるコア材、並びにコア材における導体配線が設けられている面を部分的に覆うソルダーレジスト層を備える、プリント配線板が得られる。なお、ソルダーレジスト層には、前記層間絶縁層と同様に粗面が付与されてもよい。それにより、ソルダーレジスト層と、導体配線やはんだ等を構成する金属材料との密着性を向上させることができる。
 本実施形態では、感光性樹脂組成物の乾燥物を含有するドライフィルムから、あるいは感光性樹脂組成物の塗膜から、ソルダーレジスト層や層間絶縁層等の電気絶縁性層を特に良好に形成することができる。この電気絶縁性層に粗面を付与することで、電気絶縁性層と前記金属材料との密着性を向上することができる。
 [カルボキシル基含有樹脂の合成]
 合成例A-1~合成例A-4、及び合成例B-1~合成例B-3
 還流冷却器、温度計、空気吹き込み管及び攪拌機を取付けた四つ口フラスコ内に、表1中の「第一反応」欄に示す原料成分を加えて、これらをエアバブリング下で攪拌することで混合物を調製した。この混合物を四つ口フラスコ内でエアバブリング下で攪拌しながら、「第一反応」欄の「反応条件」欄に示す反応温度及び反応時間で加熱した。これにより、中間体の溶液を調製した。
 続いて、四つ口フラスコ内の中間体の溶液に表1の「第二反応」欄に示す原料成分を投入し、エアバブリング下で四つ口フラスコ内の溶液を攪拌しながら「第二反応」欄の「反応条件(1)」欄に示す反応温度及び反応時間で加熱した。続いて、合成例B-1~合成例B-3を除き、エアバブリング下で四つ口フラスコ内の溶液を攪拌しながら「第二反応」欄の「反応条件(2)」欄に示す反応温度及び反応時間で加熱した。これにより、カルボキシル基含有樹脂の65質量%溶液を得た。カルボキシル基含有樹脂の重量平均分子量、及び酸価は表1に示す通りである。合成例A-1~合成例A-4については、カルボキシル基含有樹脂の多分散度(Mw/Mn)、及び成分間のモル比も表1に示している。
 なお、表1中の(a1)欄に示す成分の詳細は次の通りである。
・エポキシ化合物1:式(7)で示され、式(7)中のR~Rがすべて水素であるエポキシ当量250g/eqのビスフェノールフルオレン型エポキシ化合物。
・エポキシ化合物2:式(7)で示され、式(7)中のR及びRがいずれもメチル基、R~R及びR~Rがいずれも水素であるエポキシ当量279g/eqのビスフェノールフルオレン型エポキシ化合物。
 また、表1中の(g1)欄に示す成分の詳細は次の通りである。
・エポキシ化合物3:ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製の品名NC-3000-H、エポキシ当量288g/eq)。
・エポキシ化合物4:クレゾールノボラック型エポキシ樹脂(新日鉄住金化学株式会社製の品名YDC-700-5、エポキシ当量203g/eq)。
・エポキシ化合物5:ビスフェノールA型エポキシ樹脂(三菱化学株式会社製、品番jER1001、エポキシ当量472g/eq)。
 また、表1中の(a2)又は(g2)欄に示される成分の詳細は次の通りである。
・ω-カルボキシ-ポリカプロラクトン(n≒2)モノアクリレート:東亞合成株式会社製、商品名アロニックスM-5300(数平均分子量290)。
Figure JPOXMLDOC01-appb-T000001
 [感光性樹脂組成物の調製]
 実施例1~12、比較例1~3の感光性樹脂組成物については、次のように調製した。後掲の表2~表4の「組成」の欄に示す成分の一部を3本ロールで混練した。次にこの混練物をフラスコ内に移して後掲の表2~表4に示す全成分を撹拌混合することで、感光性樹脂組成物を得た。感光性樹脂組成物を作製する際、メラミン化合物(F)を感光性樹脂組成物中で均一に分散させた。
 実施例13~32、比較例4~8の感光性樹脂組成物については、次のように調製した。後掲の表5、表6及び表7の「組成」の欄に示す成分をフラスコ内で撹拌混合することで、感光性樹脂組成物を得た。感光性樹脂組成物は、穴径30μmのフィルターで加圧ろ過した。
 比較例9の感光性樹脂組成物については、次のように調製した。後掲の表7の「組成」の欄に示すカルボキシル基含有樹脂の65%溶液とカップリング剤とをフラスコ内で撹拌しながら、その他の成分の一部を3本ロールで混練してからフラスコに加え、次いで、その他成分の残りすべてを追加してフラスコ内で撹拌混合することで、感光性樹脂組成物を得た。感光性樹脂組成物は穴径30μmのフィルターで加圧ろ過した。
 実施例33~46、比較例10~14の感光性樹脂組成物については、次のように調製した。後掲の表8及び表9の「組成」の欄に示す成分を混合して3本ロールで混練してからフラスコ内で撹拌混合することで、感光性樹脂組成物を得た。感光性樹脂組成物は、穴径5μmのフィルターで加圧ろ過した。
 なお、表2~表9に示される成分の詳細は次の通りである。
・不飽和化合物(TMPTA):トリメチロールプロパントリアクリレート。
・不飽和化合物(DPCA):ε-カプロラクトン変性ジペンタエリストールヘキサアクリレート(日本化薬株式会社製、品番KAYARAD DPCA-20)。
・光重合開始剤(TPO):2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(BASF社製、品番Irgacure TPO)。
・光重合開始剤(IC819):ビス-(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド(BASF社製、品番Irgacure 819)。
・光重合開始剤(IC184):1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製、品番Irgacure 184)。
・光重合開始剤(IC1173):2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(BASF社製、品番Irgacure 1173)。
・光重合開始剤(EAB):4,4’-ビス(ジエチルアミノ)ベンゾフェノン。
・光重合開始剤(IC907):2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン(BASF社製、品番Irgacure 907)。
・結晶性エポキシ樹脂(YX4000):ビフェニル型結晶性エポキシ樹脂(三菱化学株式会社製の品名YX-4000、融点105℃、エポキシ当量187g/eq)。
・結晶性エポキシ樹脂(YSLV80XY):ビスフェノール型結晶性エポキシ樹脂(新日鉄住金化学株式会社製の品名YSLV-80XY、融点75~85℃、192g/eq)。
・非晶性エポキシ樹脂(EXA4816):非晶性エポキシ樹脂の溶液;長鎖炭素鎖含有ビスフェノールA型エポキシ樹脂(DIC製、品番EPICLON EXA-4816、液状樹脂、エポキシ当量410g/eq)を固形分90%でジエチレングリコールモノエチルエーテルアセテートに溶解した溶液(固形分90%換算のエポキシ当量は、455.56g/eq)。
・非晶性エポキシ樹脂(NC3000):非晶性エポキシ樹脂の溶液;ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、品番NC-3000、軟化点53~63℃、エポキシ当量280g/eq)を固形分80%でジエチレングリコールモノエチルエーテルアセテートに溶解した溶液(固形分80%換算のエポキシ当量は、350g/eq)。
・有機フィラー(XER-91):カルボキシル基を有する有機フィラーの分散液;平均一次粒子径0.07μmの架橋ゴム(NBR)を、分散液全量に対して含有量15重量%で、メチルエチルケトン中で分散させた分散液(JSR株式会社製、品番XER-91-MEK、酸価10.0mgKOH/g)。
・有機フィラー(XER-32):カルボキシル基を有する有機フィラーの分散液;カルボキシル基変性水素化ニトリルゴム(NBR)のポリマー(線状粒子)を、分散液全量に対して含有量17重量%で、メチルエチルケトン中で分散させた分散液(JSR株式会社製、品番XER-32-MEK)。
・有機フィラー(XSK-500):カルボキシル基及び水酸基を有する有機フィラーの分散液;平均一次粒子径0.07μmの架橋ゴム(SBR)を、分散液全量に対して含有量15重量%で、メチルエチルケトン中で分散させた分散液(JSR株式会社製、品番XSK-500)。
・有機フィラー(NBR-powder):エポキシ基を有する有機フィラー;パウダー状で、平均一次粒子径0.3μmのグリシジル変性アクリロニトリルブタジエンゴム。
・微粉シリカ:株式会社トクヤマ製、品番MT-10。
・メラミン:日産化学工業株式会社製、微粉メラミン;感光性樹脂組成物中において平均粒子径8μmで分散。
・メラミン誘導体:メラミンと1,2,3,6-テトラヒドロ無水フタル酸との反応物であるメラミン-テトラヒドロフタル酸塩;感光性樹脂組成物中において平均粒子径6μmで分散。
・メラミン分散ワニス:日産化学工業株式会社製、微粉メラミンの分散ワニス。微粉メラミン1.5部、及び不飽和化合物トリメチロールプロパントリアクリレート3.5部をビーズミルにて分散。
・カップリング剤(GP-TMS):3-グリシドキシプロピルトリメトキシシラン。
・カップリング剤(TEOS):テトラエトキシシラン。
・カップリング剤(MTMS):メチルトリメトキシシラン。
・カップリング剤(AEAP-MDMS):N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン。
・カップリング剤(VL-TMS):ビニルトリメトキシシラン。
・酸化防止剤:ヒンダードフェノール系酸化防止剤、BASF社製、品番IRGANOX 1010。
・界面活性剤:DIC製、品番メガファックF-477。
・レオロジーコントロール剤:ビッグケミー・ジャパン株式会社製、品番BYK-430。
・着色剤(BY-mix): カラーインデックスPigment Blue 15:3と、カラーインデックスPigment Yellow 147とを、重量比で1:2.5の割合で合計15重量%含有する色顔料分散ワニス。
・着色剤(Blue):フタロシアニンブルー。
・消泡剤:信越シリコーン株式会社製、品番KS-66。
・溶剤(EDGAC):ジエチレングリコールモノエチルエーテルアセテート。
・溶剤(MEK):メチルエチルケトン。
 [ドライフィルムの作製]
 実施例及び比較例について、次の方法によりドライフィルムを作製した。感光性樹脂組成物を、ポリエチレンテレフタレート製のフィルム上にアプリケータで塗布してから、95℃で25分加熱することで乾燥させることにより、フィルム上にドライフィルムを形成した。厚み25μmと、厚み30μmとの2種類のドライフィルムを作製した。
 [テストピースの作製]
 <実施例1~32、44、及び比較例1~9>
 実施例1~32、44、及び比較例1~9については、以下のようにドライフィルムを用いて、ドライフィルム法によりテストピースを作製した。
 厚み17.5μmの銅箔を備えるガラスエポキシ銅張積層板(FR-4タイプ)を用意した。このガラスエポキシ銅張積層板にサブトラクティブ法で導体配線としてライン幅/スペース幅が50μm/50μmであるくし型電極を形成し、これによりプリント配線板(コア材)を得た。このプリント配線板の導体配線における厚み1μm程度の表面部分を、エッチング剤(メック株式会社製の有機酸系マイクロエッチング剤、品番CZ-8100)で溶解除去することにより、導体配線を粗化した。このプリント配線板の一面全面に上記ドライフィルムを真空ラミネーターで加熱ラミネートした。加熱ラミネートの条件は、0.5MPa、80℃、1分間とした。これにより、プリント配線板上に、ドライフィルムからなる皮膜を形成した。この皮膜に、直径50μm又は60μmの円形形状を含むパターンを有する非露光部を有するネガマスクを直接当てた状態で、皮膜に250mJ/cm(実施例44以外)、又は500mJ/cm(実施例44)の条件で紫外線を照射して露光を行った。実施例1~12、44、及び比較例1~3では、前記円形形状の直径を50μmとし、実施例13~32、及び比較例4~9では、前記円形形状の直径を60μmとした。露光後、現像前に、ドライフィルム(皮膜)からポリエチレンテレフタレート製のフィルムを剥離した。フィルム剥離後、露光後の皮膜に現像処理を施した。現像処理に当たっては、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射した。続いて皮膜に純水を0.2MPaの噴射圧で90秒間噴射することで皮膜を洗浄した。これにより、皮膜における露光されていない部分を除去して、皮膜に穴を形成した。続いて、次のように追加の紫外線照射及び加熱を行った。実施例1~12及び比較例1~3では、皮膜に1000mJ/cmの条件で紫外線を照射した後、皮膜を160℃で60分間加熱した。また、実施例13~32及び比較例4~9では、皮膜に1000mJ/cmの条件で紫外線を照射した後、皮膜を180℃で60分間加熱した。また、実施例44では、皮膜を160℃で60分間加熱した後、皮膜に1000mJ/cmの条件で紫外線を照射した。これにより、プリント配線板(コア材)上に、感光性樹脂組成物の硬化物(ドライフィルムの硬化物ともいえる)からなる層を形成した。これによりテストピースを得た。
 <実施例33~43、45、46、及び比較例10~14>
 実施例33~43、45、46、及び比較例10~14については、以下のように感光性樹脂組成物を用いて、塗布法によりテストピースを作製した。
 厚み17.5μmの銅箔を備えるガラスエポキシ銅張積層板(FR-4タイプ)を用意した。このガラスエポキシ銅張積層板にサブトラクティブ法で導体配線としてライン幅/スペース幅が50μm/50μmであるくし型電極を形成し、これによりプリント配線板(コア材)を得た。このプリント配線板の導体配線における厚み1μm程度の表面部分を、エッチング剤(メック株式会社製の有機酸系マイクロエッチング剤、品番CZ-8100)で溶解除去することにより、導体配線を粗化した。このプリント配線板の一面全面に感光性樹脂組成物をスピンコート法で塗布することで、湿潤塗膜を形成した。この湿潤塗膜を80℃で40分加熱して予備乾燥することで、膜厚25μmの皮膜を形成した。この皮膜に、直径50μmの円形形状を含むパターンを有する非露光部を有するネガマスクを直接当てた状態で、皮膜に500mJ/cmの条件で紫外線を照射して露光を行った。露光後の皮膜に現像処理を施した。現像処理に当たっては、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射した。続いて皮膜に純水を0.2MPaの噴射圧で90秒間噴射することで皮膜を洗浄した。これにより、皮膜における露光されていない部分を除去して、皮膜に穴を形成した。続いて皮膜を160℃で60分間加熱してから、皮膜に1000mJ/cmの条件で紫外線を照射した。これにより、プリント配線板(コア材)上に、感光性樹脂組成物の硬化物からなる層を形成した。これによりテストピースを得た。
 [評価試験1]
 実施例1~12及び比較例1~3の各々のテストピースを、下記手順で評価した。その結果を下記表2及び表3に示す。なお、下記(1-1)~(1-6)は、厚み25μmのドライフィルムから形成された皮膜を有するテストピースで評価した。下記(1-7)及び(1-8)は、厚み30μmのドライフィルムから形成された皮膜を有するテストピースで評価した。
 (1-1)現像性
 各実施例及び比較例のテストピースについて、前記現像処理後のプリント配線板の非露光部を観察し、その結果を次のように評価した。
良好:露光されていない皮膜が全て除去されている。
不適:露光されていない皮膜の一部がプリント配線板上に残存した。
 (1-2)解像性
 各実施例及び比較例のテストピースにおける硬化物からなる層に形成された穴を観察し、その結果を次のように評価した。
A:穴の底の直径が40μm以上である。
B:穴の底の直径が25μm以上40μm未満である。
C:穴の底の直径が25μm未満である。
D:明確な穴が形成されない。
 (1-3)耐メッキ性
 各実施例及び比較例のテストピースの導体配線における外部に露出する部分の上に、市販の無電解ニッケルメッキ浴を用いてニッケルメッキ層を形成してから、市販の無電解金メッキ浴を用いて金メッキ層を形成した。これにより、ニッケルメッキ層及び金メッキ層からなる金属層を形成した。硬化物からなる層及び金属層を目視で観察した。また、硬化物からなる層に対してセロハン粘着テープ剥離試験をおこなった。その結果を次のように評価した。
A:硬化物からなる層及び金属層の外観に異常は認められず、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
B:硬化物からなる層に変色が認められるが、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
C:硬化物からなる層の浮き上がりが認められ、セロハン粘着テープ剥離試験による硬化物からなる層の剥離が生じた。
 (1-4)線間絶縁性
 各実施例及び比較例のテストピースにおける導体配線(くし型電極)にDC30Vのバイアス電圧を印加しながら、テストピースを121℃、97%R.H.の試験環境下に100時間曝露した。この試験環境下における硬化物からなる層のくし型電極間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から100時間経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から80時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から100時間経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から80時間経過する前に電気抵抗値が10Ω未満となった。
 (1-5)層間絶縁性
 各実施例及び比較例のテストピースにおける硬化物からなる層の上に導電テープを貼り付けた。この導電テープにDC100Vのバイアス電圧を印加しながら、テストピースを85℃、85%R.H.の試験環境下に2000時間曝露した。この試験環境下における硬化物からなる層の導体配線と導電テープとの間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から2000時間経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から1000時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から2000時間経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から1000時間経過する前に電気抵抗値が10Ω未満となった。
 (1-6)PCT(プレッシャクッカ試験)
 各実施例及び比較例のテストピースを121℃、100%R.H.の環境下で100時間放置した後、硬化物からなる層の外観を次の評価基準により評価した。
A:硬化物からなる層に異常は見られなかった。
B:硬化物からなる層に変色が見られた。
C:硬化物からなる層に大きな変色が見られ、一部膨れが発生していた。
 (1-7)粗化耐性
 各実施例及び比較例のテストピースにおける硬化物からなる層の外表面を、メッキ処理前の前工程において一般的なデスミア処理に基いた下記手順で粗化させた。デスミア用膨潤液として市販されている膨潤液(アトテックジャパン(株)製のスウェリング・ディップ・セキュリガンスP)を用いて膨潤処理を60℃で5分間行い、硬化物の表面を膨潤させた。そして、この膨潤された表面に対して湯洗を行った。続いて過マンガン酸カリウムを含有し、デスミア液として市販されている酸化剤(アトテックジャパン(株)製のコンセントレート・コンパクトCP)を用いて粗化処理を80℃で10分間行い、湯洗後の表面を粗化した。このように粗化された表面に対して湯洗を行い、更に、この硬化物表面におけるデスミア液の残渣を中和液(アトテックジャパン(株)製のリダクションソリューション・セキュリガントP)を用いて40℃で5分間除去した。そして、中和後の硬化物表面を水洗した。このようにして粗面が付与された皮膜(感光性樹脂組成物の硬化物からなる層)の膜厚を測定し、デスミア液に対する硬化物の粗化耐性を次の評価基準により評価した。
A:粗化による膜厚の減少が5μm未満である。
B:粗化による膜厚の減少が5μm以上、10μm未満である。
C:粗化による膜厚の減少が10μm以上である。
 (1-8)銅メッキ層の密着性
 各実施例及び比較例のテストピースについて、硬化物からなる層に、上記(1-7)の方法で粗面を付与した後、市販の薬液を用いてテストピースの粗面に無電解銅メッキ処理で初期配線を形成した。この初期配線が設けられたテストピースを150℃で1時間加熱した。更に電解銅メッキ処理により、2A/dmの電流密度の下で市販の薬液から初期配線に厚さ33μmの銅を直接析出させた。続いて銅を析出させたテストピースを180℃で30分間加熱して銅メッキ層を形成した。このようにして形成された銅メッキ層と、テストピースにおける硬化物との密着性を次の評価基準により評価した。ここで、無電解銅メッキ処理後及び電解銅メッキ処理後の両方の加熱時にテストピースにブリスターが確認されない場合、銅メッキ層と硬化物との密着強度を下記の手順で評価した。この密着強度はJIS-C6481に準拠して測定された。
A:無電解銅メッキ処理後の加熱時にブリスターが確認されず、電解銅メッキ処理後の加熱時でもブリスターが確認されなかった。また、銅の密着強度は0.4kN/m以上であった。
B:無電解銅メッキ処理後の加熱時にブリスターが確認されず、電解銅メッキ処理後の加熱時でもブリスターが確認されなかった。また、銅の密着強度は0.4kN/m未満であった。
C:無電解銅メッキ処理後の加熱時、あるいは電解銅メッキ処理後の加熱時にブリスターが確認された。
 実施例1~12及び比較例1~3の評価結果を下記表2~4に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 [評価試験2]
 実施例13~32及び比較例4~9の各々の感光性樹脂組成物、ドライフィルム及びテストピースを、下記手順で評価した。その結果を下記の表5、表6及び表7に示す。なお、(2-5)~(2-12)は、厚み30μmのドライフィルムから形成された皮膜を有するテストピースで評価した。
 (2-1)分散性
 各実施例及び比較例について、感光性樹脂組成物の粒度分布をマイクロトラック・ベル株式会社製のMT3300EXIIで計測し、その結果を次のように評価した。
A:粒度分布測定により、最大粒子径が0.5μm以下であった。
B:粒度分布測定により、最大粒子径が0.5μmより大きく、1.0μm以下であった。
C:粒度分布測定により、最大粒子径が1.0μmより大きく、20μm以下であった。
D:粒度分布測定により、最大粒子径が20μmより大きかった。
 ただし、実施例13~32は着色剤及びメラミンの影響を受けるため、表5~7の実施例13~32の組成において着色剤及びメラミン分散ワニスを配合しない組成物を調製し、その組成物を実施例13~32の評価として粒度分布を計測した。
 (2-2)安定性
 各実施例及び比較例について、感光性樹脂組成物を冷蔵庫(4℃)に1週間保存した後、感光性樹脂組成物を観察し、その結果を次のように評価した。
A:感光性樹脂組成物中の成分の分離は生じておらず、均一な状態を保っていた。
B:感光性樹脂組成物に若干の濁りが見られたが、沈殿物は見られなかった。
C:感光性樹脂組成物中の成分に分離が生じ、沈殿物が見られた。
 (2-3)塗膜均一性
 各実施例及び比較例について、フィルム上に形成した厚み30μmのドライフィルムを観察し、その結果を次のように評価した。
A:凝集物及びボイド(泡)は観察されず、表面状態は均一であった。
B:凝集物及び/又はボイド(泡)が若干観察された。
C:凝集物及び/又はボイド(泡)が多く観察され、表面状態は均一でなかった、あるいは、均一な膜厚が得られなかった。
 (2-4)現像性
 各実施例及び比較例について、プリント配線板の一面全面に感光性樹脂組成物をスピンコート法で塗布することで、湿潤塗膜を形成した。この湿潤塗膜を80℃で40分又は60分加熱することで、厚み25μmの皮膜を形成した。この皮膜に、露光することなく現像処理を施した。現像処理に当たっては、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射してから、純水を0.2MPaの噴射圧で90秒間噴射した。処理後のプリント配線板を観察し、その結果を次のように評価した。
A:湿潤塗膜の加熱時間が40分、60分のいずれの場合でも、皮膜が全て除去されている。
B:湿潤塗膜の加熱時間が40分である場合には皮膜が全て除去されたが、60分では皮膜の一部がプリント配線板上に残存した。
C:湿潤塗膜の加熱時間が40分、60分のいずれの場合でも、皮膜の一部がプリント配線板上に残存した。
 (2-5)解像性
 各実施例及び比較例のテストピースについて、硬化物からなる層に形成された穴を観察し、その結果を次のように評価した。
A:穴の底の直径が50μm以上である。
B:穴の底の直径が50μm以上53μm未満である。
C:穴の底の直径が40μm以上50μm未満である。
D:穴の底の直径が40μm未満であり、或いは明確な穴が形成されない。
 (2-6)耐メッキ性
 各実施例及び比較例のテストピースの導体配線における外部に露出する部分の上に、市販の無電解ニッケルメッキ浴を用いてニッケルメッキ層を形成してから、市販の無電解金メッキ浴を用いて金メッキ層を形成した。これにより、ニッケルメッキ層及び金メッキ層からなる金属層を形成した。硬化物からなる層及び金属層を目視で観察した。また、硬化物からなる層に対してセロハン粘着テープ剥離試験をおこなった。その結果を次のように評価した。
A:硬化物からなる層及び金属層の外観に異常は認められず、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
B:硬化物からなる層に変色が認められるが、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
C:硬化物からなる層の浮き上がりが認められ、セロハン粘着テープ剥離試験による硬化物からなる層の剥離が生じた。
 (2-7)線間絶縁性
 各実施例及び比較例のテストピースにおける導体配線(くし型電極)にDC30Vのバイアス電圧を印加しながら、テストピースを121℃、97%R.H.の試験環境下に120時間曝露した。この試験環境下における硬化物からなる層のくし型電極間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から120時間経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から100時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から120時間経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から80時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から100時間経過する前に電気抵抗値が10Ω未満となった。
D:試験開始時から80時間経過する前に電気抵抗値が10Ω未満となった。
 (2-8)層間絶縁性
 各実施例及び比較例のテストピースにおける硬化物からなる層の上に導電テープを貼り付けた。この導電テープにDC100Vのバイアス電圧を印加しながら、テストピースを121℃、97%R.H.の試験環境下に60時間曝露した。この試験環境下における硬化物からなる層の導体配線と導電テープとの間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から60時間経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から45時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から60時間経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から45時間経過する前に電気抵抗値が10Ω未満となった。
 (2-9)PCT(プレッシャクッカ試験)
 各実施例及び比較例のテストピースを121℃、100%R.H.の環境下で100時間放置した後、硬化物からなる層の外観を次の評価基準により評価した。
A:硬化物からなる層に異常は見られなかった。
B:硬化物からなる層に変色が見られた。
C:硬化物からなる層に大きな変色が見られ、一部膨れが発生していた。
 (2-10)冷熱サイクル耐性
 各実施例及び比較例のテストピースを温度変化させ、-65℃で10分(低温条件)と、150℃で10分(高温条件)とを経たもの1サイクルとして、750サイクル及び1000サイクルの温度サイクル試験を行った。その後、硬化物からなる層の外観を次の評価基準により評価した。
A:1000サイクルでクラックが見られなかった。
B:750サイクルでクラックが見られないが、1000サイクルでクラックが見られた。
C:750サイクルでクラックが見られた。
 (2-11)粗化耐性
 各実施例及び比較例のテストピースについて、上記「評価試験1」の(1-7)と同様の試験、及び評価を行った。
 (2-12)銅メッキ層の密着性
 各実施例及び比較例のテストピースについて、上記「評価試験1」の(1-8)と同様の試験、及び評価を行った。
 実施例13~32及び比較例4~9の評価結果を下記表5、表6及び表7に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 [評価試験3]
 実施例33~46及び比較例10~14の各々の感光性樹脂組成物及びテストピースを、下記手順で評価した。その結果を下記の表8及び表9に示す。なお、実施例44は、厚み25μmのドライフィルムから形成された皮膜を有するテストピースで評価した。
 (3-1)塗膜均一性
 各実施例及び比較例の感光性樹脂組成物を、ポリエチレンテレフタレート製のフィルム上にアプリケータを用いて膜厚50μmに塗布してから、60℃で20分加熱した後、80℃で40分加熱することで乾燥させることにより、フィルム上に乾燥塗膜を形成した。塗膜を観察し、外観を次の評価基準により評価した。
良 :塗膜にムラが見られず、均一である。
不適:塗膜にムラが見られる。
 (3-2)タック性
 各実施例及び比較例のテストピースの作製時に、被膜の露光後に被膜からネガマスクを取り外す際の被膜のタック性の程度を、次に示すように評価した。
A:被膜からネガマスクを取り外す際に抵抗が感じられず、ネガマスクを取り外した後の被膜には貼付痕が認められない。
B:被膜からネガマスクを取り外す際に抵抗が感じられ、ネガマスクを取り外した後の被膜には貼付痕が認められた。
C:被膜からネガマスクを取り外すことが困難であり、無理にネガマスクを取り外すと被膜が破損した。
 尚、実施例44については、ドライフィルムから皮膜を形成したため、タック性の評価を行っていない。
 (3-3)現像性
 各実施例及び比較例について、プリント配線板の一面全面に感光性樹脂組成物をスピンコート法で塗布することで、湿潤塗膜を形成した。この湿潤塗膜を80℃で40分又は60分加熱することで、厚み25μmの皮膜を形成した。この皮膜に、露光することなく現像処理を施した。現像処理に当たっては、皮膜に30℃の1%NaCO水溶液を0.2MPaの噴射圧で90秒間噴射してから、純水を0.2MPaの噴射圧で90秒間噴射した。処理後のプリント配線板を観察し、その結果を次のように評価した。
A:湿潤塗膜の加熱時間が40分、60分のいずれの場合でも、皮膜が全て除去されている。
B:湿潤塗膜の加熱時間が40分である場合には皮膜が全て除去されたが、60分では皮膜の一部がプリント配線板上に残存した。
C:湿潤塗膜の加熱時間が40分、60分のいずれの場合でも、皮膜の一部がプリント配線板上に残存した。
 実施例44の現像性については、テストピース作製時の現像により判断した。実施例44は、テストピース作製時の露光後の現像工程において、問題なく現像できていた。
 (3-4)解像性
 各実施例及び比較例のテストピースにおける硬化物からなる層に形成された穴を観察し、その結果を次のように評価した。
A:穴の底の直径が40μm以上である。
B:穴の底の直径が25μm以上40μm未満である。
C:穴の底の直径が25μm未満である。
D:明確な穴が形成されない。
 (3-5)耐メッキ性
 各実施例及び比較例のテストピースの導体配線における外部に露出する部分の上に、市販の無電解ニッケルメッキ浴を用いてニッケルメッキ層を形成してから、市販の無電解金メッキ浴を用いて金メッキ層を形成した。これにより、ニッケルメッキ層及び金メッキ層からなる金属層を形成した。硬化物からなる層及び金属層を目視で観察した。また、硬化物からなる層に対してセロハン粘着テープ剥離試験をおこなった。その結果を次のように評価した。
A:硬化物からなる層及び金属層の外観に異常は認められず、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
B:硬化物からなる層に変色が認められるが、セロハン粘着テープ剥離試験による硬化物からなる層の剥離は生じなかった。
C:硬化物からなる層の浮き上がりが認められ、セロハン粘着テープ剥離試験による硬化物からなる層の剥離が生じた。
 (3-6)線間絶縁性
 各実施例及び比較例のテストピースにおける導体配線(くし型電極)にDC30Vのバイアス電圧を印加しながら、テストピースを121℃、97%R.H.の試験環境下に150時間曝露した。この試験環境下における硬化物からなる層のくし型電極間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から150時間経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から120時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から150時間経過する前に電気抵抗値が10Ω未満となった。
C:試験開始から60時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から120時間経過する前に電気抵抗値が10Ω未満となった。
D:試験開始時から60時間経過する前に電気抵抗値が10Ω未満となった。
 (3-7)層間絶縁性
 各実施例及び比較例のテストピースにおける硬化物からなる層の上に導電テープを貼り付けた。この導電テープにDC100Vのバイアス電圧を印加しながら、テストピースを121℃、97%R.H.の試験環境下に70時間曝露した。この試験環境下における硬化物からなる層の導体配線と導電テープとの間の電気抵抗値を常時測定し、その結果を次の評価基準により評価した。
A:試験開始時から70時間経過するまでの間、電気抵抗値が常に10Ω以上を維持した。
B:試験開始時から55時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から70時間経過する前に電気抵抗値が10Ω未満となった。
C:試験開始時から35時間経過するまでは電気抵抗値が常に10Ω以上を維持したが、試験開始時から55時間経過する前に電気抵抗値が10Ω未満となった。
D:試験開始時から35時間経過する前に電気抵抗値が10Ω未満となった。
 (3-8)PCT(プレッシャクッカ試験)
 各実施例及び比較例のテストピースを121℃、100%R.H.の環境下で100時間放置した後、硬化物からなる層の外観を次の評価基準により評価した。
A:硬化物からなる層に異常は見られなかった。
B:硬化物からなる層に変色が見られた。
C:硬化物からなる層に大きな変色が見られ、一部膨れが発生していた。
 (3-9)冷熱サイクル耐性
 各実施例及び比較例のテストピースを温度変化させ、-65℃で10分(低温条件)と、150℃で10分(高温条件)とを経たもの1サイクルとして、500サイクル及び1000サイクルの温度サイクル試験を行った。その後、硬化物からなる層の外観を次の評価基準により評価した。
A:1000サイクルでクラックが見られなかった。
B:500サイクルでクラックが見られないが、1000サイクルでクラックが見られた。
C:500サイクルでクラックが見られた。
 (3-10)粗化耐性
 各実施例及び比較例のテストピースについて、上記「評価試験1」の(1-7)と同様の試験、及び評価を行った。
 (3-11)銅メッキ層の密着性
 各実施例及び比較例のテストピースについて、上記「評価試験1」の(1-8)と同様の試験、及び評価を行った。
 実施例33~46及び比較例10~14の評価結果を下記表8及び表9に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 以上の実施形態から明らかなように、本発明に係る第1の態様の感光性樹脂組成物は、カルボキシル基含有樹脂(A)と、エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、光重合開始剤(C)と、エポキシ化合物(D)と、カルボキシル基を有する有機フィラー(E1)を含む有機フィラー(E)と、メラミン及びメラミン誘導体の群から選択される少なくとも1種のメラミン化合物(F)と、を含有する。
 本発明の第2の態様に係る感光性樹脂組成物は、第1の態様において、有機フィラー(E1)の平均一次粒子径が1μm以下である。
 本発明の第3の態様に係る感光性樹脂組成物では、第1又は第2の態様において、有機フィラー(E1)は、ゴム成分を含有する。
 本発明の第4の態様に係る感光性樹脂組成物は、第3の態様において、ゴム成分は、架橋アクリルゴム、架橋NBR、架橋MBS、及び架橋SBRの群から選択される少なくとも1種の重合体を含有する。
 本発明の第5の態様に係る感光性樹脂組成物では、第1乃至第4のいずれか一の態様において、光重合開始剤(C)は、アシルフォスフィンオキサイド系光重合開始剤(C1)を含有する、
 本発明の第6の態様に係る感光性樹脂組成物は、第5の態様において、光重合開始剤(C)は、さらにベンゾフェノン骨格を有する光重合開始剤を含有する。
 本発明の第7の態様に係る感光性樹脂組成物では、第1乃至第6のいずれか一の態様において、カルボキシル基含有樹脂(A)は、エチレン性不飽和基を有するカルボキシル基含有樹脂を含有する。
 本発明の第8の態様に係る感光性樹脂組成物では、第1乃至第7のいずれか一の態様において、カルボキシル基含有樹脂(A)は、ビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有する。
 本発明の第9の態様に係る感光性樹脂組成物では、第1乃至第8のいずれか一の態様において、エポキシ化合物(D)は、結晶性エポキシ樹脂(D1)を含有する、
 本発明の第10の態様に係る感光性樹脂組成物は、第1乃至第9のいずれか一の態様において、カップリング剤(G)をさらに含有し、カップリング剤(G)は、ケイ素原子、アルミニウム原子、チタン原子、及びジルコニア原子から選ばれる原子を含有し、さらにアルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基を二つ以上含有するカップリング剤(G1)を含有する。
 本発明の第11の態様に係る感光性樹脂組成物では、第10の態様において、カップリング剤(G1)は、ケイ素原子を含有する。
 本発明の第12の態様に係る感光性樹脂組成物では、第11の態様において、カップリング剤(G1)は、さらに、アミノ基、エポキシ基、ビニル基、メタクリル基、メルカプト基、イソシアネート基、及びスルフィド基から選ばれる少なくとも一つの官能基を含有する。
 本発明の第13の態様に係るドライフィルムは、第1乃至第12のいずれか一の態様に係る感光性樹脂組成物の乾燥物である。
 本発明の第14の態様に係るプリント配線板は、第1乃至第12のいずれか一の態様に係る感光性樹脂組成物の硬化物を含む層間絶縁層を備える。
 本発明の第15の態様に係るプリント配線板は、第1乃至第12のいずれか一の態様に係る感光性樹脂組成物の硬化物を含むソルダーレジスト層を備える。

Claims (15)

  1.  カルボキシル基含有樹脂(A)と、
     エチレン性不飽和結合を一分子中に少なくとも一つ有する不飽和化合物(B)と、
     光重合開始剤(C)と、
     エポキシ化合物(D)と、
     カルボキシル基を有する有機フィラー(E1)を含む有機フィラー(E)と、
     メラミン及びメラミン誘導体の群から選択される少なくとも1種のメラミン化合物(F)と、を含有する、
     感光性樹脂組成物。
  2.  前記有機フィラー(E1)の平均一次粒子径が1μm以下である、
     請求項1に記載の感光性樹脂組成物。
  3.  前記有機フィラー(E1)は、ゴム成分を含有する、
     請求項1又は2に記載の感光性樹脂組成物。
  4.  前記ゴム成分は、架橋アクリルゴム、架橋NBR、架橋MBS、及び架橋SBRの群から選択される少なくとも1種の重合体を含有する、
     請求項3に記載の感光性樹脂組成物。
  5.  前記光重合開始剤(C)は、アシルフォスフィンオキサイド系光重合開始剤(C1)を含有する、
     請求項1乃至4のいずれか一項に記載の感光性樹脂組成物。
  6.  前記光重合開始剤(C)は、さらにベンゾフェノン骨格を有する光重合開始剤を含有する、
     請求項5に記載の感光性樹脂組成物。
  7.  前記カルボキシル基含有樹脂(A)は、エチレン性不飽和基を有するカルボキシル基含有樹脂を含有する、
     請求項1乃至6のいずれか一項に記載の感光性樹脂組成物。
  8.  前記カルボキシル基含有樹脂(A)は、ビスフェノールフルオレン骨格を有するカルボキシル基含有樹脂を含有する、
     請求項1乃至7のいずれか一項に記載の感光性樹脂組成物。
  9.  前記エポキシ化合物(D)は、結晶性エポキシ樹脂(D1)を含有する、
     請求項1乃至8のいずれか一項に記載の感光性樹脂組成物。
  10.  カップリング剤(G)をさらに含有し、
     前記カップリング剤(G)は、ケイ素原子、アルミニウム原子、チタン原子、及びジルコニア原子から選ばれる原子を含有し、さらにアルコキシ基、アシルオキシ基及びアルコキシドから選ばれる官能基を二つ以上含有するカップリング剤(G1)を含有する、
     請求項1乃至9のいずれか一項に記載の感光性樹脂組成物。
  11.  前記カップリング剤(G1)は、ケイ素原子を含有する、
     請求項10に記載の感光性樹脂組成物。
  12.  前記カップリング剤(G1)は、さらに、アミノ基、エポキシ基、ビニル基、メタクリル基、メルカプト基、イソシアネート基、及びスルフィド基から選ばれる少なくとも一つの官能基を含有する、
     請求項11に記載の感光性樹脂組成物。
  13.  請求項1乃至12のいずれか一項に記載の感光性樹脂組成物の乾燥物である、ドライフィルム。
  14.  請求項1乃至12のいずれか一項に記載の感光性樹脂組成物の硬化物を含む層間絶縁層を備える、プリント配線板。
  15.  請求項1乃至12のいずれか一項に記載の感光性樹脂組成物の硬化物を含むソルダーレジスト層を備える、プリント配線板。
PCT/JP2016/002474 2016-01-19 2016-05-20 感光性樹脂組成物、ドライフィルム、及びプリント配線板 WO2017125966A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680079243.6A CN108475015B (zh) 2016-01-19 2016-05-20 感光性树脂组合物、干膜和印刷布线板
KR1020187020772A KR101956661B1 (ko) 2016-01-19 2016-05-20 감광성 수지 조성물, 드라이 필름 및 프린트 배선판

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-008324 2016-01-19
JP2016008324A JP2017129687A (ja) 2016-01-19 2016-01-19 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2016044995A JP6272372B2 (ja) 2016-03-08 2016-03-08 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP2016-044995 2016-03-08
JP2016044996A JP6204519B2 (ja) 2016-03-08 2016-03-08 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP2016-044996 2016-03-08
JP2016-044536 2016-03-08
JP2016044536A JP6204518B2 (ja) 2016-03-08 2016-03-08 感光性樹脂組成物、ドライフィルム、及びプリント配線板

Publications (1)

Publication Number Publication Date
WO2017125966A1 true WO2017125966A1 (ja) 2017-07-27

Family

ID=59361954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002474 WO2017125966A1 (ja) 2016-01-19 2016-05-20 感光性樹脂組成物、ドライフィルム、及びプリント配線板

Country Status (4)

Country Link
KR (1) KR101956661B1 (ja)
CN (1) CN108475015B (ja)
TW (1) TWI653506B (ja)
WO (1) WO2017125966A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144479A (ja) * 2018-02-22 2019-08-29 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板
KR20200028438A (ko) 2018-06-01 2020-03-16 고오 가가쿠고교 가부시키가이샤 감광성 수지 조성물, 드라이 필름, 및 프린트 배선판
JP2020160320A (ja) * 2019-03-27 2020-10-01 日立化成株式会社 感光性樹脂組成物、配線層及び半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7495708B2 (ja) * 2019-07-10 2024-06-05 互応化学工業株式会社 多層基板の製造方法
TWI807464B (zh) * 2020-11-06 2023-07-01 日商互應化學工業股份有限公司 印刷線路板及印刷線路板的製造方法
JP7382068B2 (ja) * 2020-11-16 2023-11-16 互応化学工業株式会社 層間絶縁膜の製造方法及び層間絶縁膜
US20240012326A1 (en) * 2021-01-29 2024-01-11 Asahi Kasei Kabushiki Kaisha Photosensitive element, and method for forming resist pattern
KR102594260B1 (ko) * 2021-11-09 2023-10-30 주식회사 아이델 Uv 경화형 접착제 및 이를 포함하는 이종 접합시트
CN114488691B (zh) * 2022-02-28 2022-07-22 河源诚展科技有限公司 一种感光阻焊干膜及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303974A (ja) * 1997-11-28 2002-10-18 Hitachi Chem Co Ltd 光硬化性樹脂組成物及びこれを用いた感光性エレメント
JP2005043580A (ja) * 2003-07-25 2005-02-17 Mitsubishi Chemicals Corp 熱硬化性感光性組成物、並びにそれを用いた画像形成材料、画像形成材、及び画像形成方法
JP2006096962A (ja) * 2004-09-28 2006-04-13 Sanei Kagaku Kk 感光性熱硬化性樹脂組成物、並びにレジスト被覆プリント配線板及びその製造法
JP2011059656A (ja) * 2009-06-04 2011-03-24 Asahi Kasei E-Materials Corp ネガ型感光性樹脂組成物、硬化レリーフパターン形成・製造方法、並びに半導体装置
JP2011123219A (ja) * 2009-12-09 2011-06-23 Asahi Kasei E-Materials Corp 感光性ポリアミド樹脂組成物、硬化レリーフパターンの形成方法及び半導体装置
JP2012041452A (ja) * 2010-08-19 2012-03-01 Hitachi Chem Co Ltd ポリヒドロキシウレタン化合物及びその製造方法、並びに、硬化性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058788A1 (fr) * 1999-03-26 2000-10-05 Nippon Steel Chemical Co., Ltd. Article multicouche photopolymerisable haute definition et dispositif semiconducteur fabrique avec cet article
TWI256523B (en) * 2002-10-08 2006-06-11 Hitachi Chemical Co Ltd Photosensitive resin composition, photosensitive element using the composition, method for forming resist pattern and printed wiring board
CN101762974A (zh) * 2009-10-30 2010-06-30 泰兴市东方实业公司 羧基酚醛树脂活性酯及醚化物作为阻溶剂的热敏ctp感热成像液
JP5223980B2 (ja) 2011-04-21 2013-06-26 大日本印刷株式会社 色材分散液、カラーフィルター用着色樹脂組成物、カラーフィルター、液晶表示装置及び有機発光表示装置
JP2014091790A (ja) * 2012-11-05 2014-05-19 Toyo Ink Sc Holdings Co Ltd 樹脂組成物
WO2014175196A1 (ja) * 2013-04-23 2014-10-30 太陽ホールディングス株式会社 ソルダーレジスト組成物およびそれを用いたプリント配線板
CN105143310B (zh) * 2013-04-25 2020-09-18 三井化学株式会社 嵌段聚酰亚胺和嵌段聚酰胺酸酰亚胺、以及其用途
US9029052B1 (en) 2013-12-05 2015-05-12 Chi Mei Corporation Photosensitive resin composition, color filter and method for manufacturing the same, and liquid crystal display apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002303974A (ja) * 1997-11-28 2002-10-18 Hitachi Chem Co Ltd 光硬化性樹脂組成物及びこれを用いた感光性エレメント
JP2005043580A (ja) * 2003-07-25 2005-02-17 Mitsubishi Chemicals Corp 熱硬化性感光性組成物、並びにそれを用いた画像形成材料、画像形成材、及び画像形成方法
JP2006096962A (ja) * 2004-09-28 2006-04-13 Sanei Kagaku Kk 感光性熱硬化性樹脂組成物、並びにレジスト被覆プリント配線板及びその製造法
JP2011059656A (ja) * 2009-06-04 2011-03-24 Asahi Kasei E-Materials Corp ネガ型感光性樹脂組成物、硬化レリーフパターン形成・製造方法、並びに半導体装置
JP2011123219A (ja) * 2009-12-09 2011-06-23 Asahi Kasei E-Materials Corp 感光性ポリアミド樹脂組成物、硬化レリーフパターンの形成方法及び半導体装置
JP2012041452A (ja) * 2010-08-19 2012-03-01 Hitachi Chem Co Ltd ポリヒドロキシウレタン化合物及びその製造方法、並びに、硬化性樹脂組成物、感光性エレメント、レジストパターンの形成方法及びプリント配線板の製造方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019144479A (ja) * 2018-02-22 2019-08-29 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板
CN110187604A (zh) * 2018-02-22 2019-08-30 互应化学工业株式会社 感光性树脂组合物、干膜及印刷布线板
JP7029797B2 (ja) 2018-02-22 2022-03-04 互応化学工業株式会社 感光性樹脂組成物、ドライフィルム、及びプリント配線板
KR20200028438A (ko) 2018-06-01 2020-03-16 고오 가가쿠고교 가부시키가이샤 감광성 수지 조성물, 드라이 필름, 및 프린트 배선판
CN111095102A (zh) * 2018-06-01 2020-05-01 互应化学工业株式会社 感光性树脂组合物、干膜和印刷布线板
JP2020160320A (ja) * 2019-03-27 2020-10-01 日立化成株式会社 感光性樹脂組成物、配線層及び半導体装置
JP7263879B2 (ja) 2019-03-27 2023-04-25 株式会社レゾナック 感光性樹脂組成物、配線層及び半導体装置

Also Published As

Publication number Publication date
KR101956661B1 (ko) 2019-03-11
TW201727373A (zh) 2017-08-01
KR20180089520A (ko) 2018-08-08
CN108475015B (zh) 2022-03-18
TWI653506B (zh) 2019-03-11
CN108475015A (zh) 2018-08-31

Similar Documents

Publication Publication Date Title
WO2017125966A1 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
WO2020095972A1 (ja) 皮膜の製造方法及びプリント配線板
JP6204518B2 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP6733929B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP2022107466A (ja) 感光性樹脂組成物、ドライフィルム、硬化物及びプリント配線板
JP6391121B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP7240009B2 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
WO2016121395A1 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP6478351B2 (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及びプリント配線板の製造方法
WO2017125967A1 (ja) ドライフィルム積層体
JP2017191204A (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
CN110187604B (zh) 感光性树脂组合物、干膜及印刷布线板
JP6705084B2 (ja) 多層プリント配線板の製造方法及び多層プリント配線板
JP6272372B2 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
JP2017129687A (ja) 感光性樹脂組成物、ドライフィルム、プリント配線板、及び感光性樹脂組成物の製造方法
JP7104397B2 (ja) 黒色感光性樹脂組成物、ドライフィルム及びプリント配線板
JP6204519B2 (ja) 感光性樹脂組成物、ドライフィルム、及びプリント配線板
CN114449745A (zh) 印刷布线板和印刷布线板的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16886212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187020772

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187020772

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16886212

Country of ref document: EP

Kind code of ref document: A1