WO2017122638A1 - 形質転換体、およびトランスフェリンの製造方法 - Google Patents
形質転換体、およびトランスフェリンの製造方法 Download PDFInfo
- Publication number
- WO2017122638A1 WO2017122638A1 PCT/JP2017/000497 JP2017000497W WO2017122638A1 WO 2017122638 A1 WO2017122638 A1 WO 2017122638A1 JP 2017000497 W JP2017000497 W JP 2017000497W WO 2017122638 A1 WO2017122638 A1 WO 2017122638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gene
- transferrin
- transformant
- protein
- host
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/80—Vectors or expression systems specially adapted for eukaryotic hosts for fungi
- C12N15/81—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
- C12N15/815—Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts for yeasts other than Saccharomyces
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/79—Transferrins, e.g. lactoferrins, ovotransferrins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/64—General methods for preparing the vector, for introducing it into the cell or for selecting the vector-containing host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1048—Glycosyltransferases (2.4)
- C12N9/1051—Hexosyltransferases (2.4.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2510/00—Genetically modified cells
- C12N2510/02—Cells for production
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
Definitions
- the present invention relates to a method for producing transferrin using a transformant incorporating a transferrin gene using Schizosaccharomyces pombe (hereinafter referred to as “S. pombe”) as a host.
- S. pombe Schizosaccharomyces pombe
- Transferrin (hereinafter also referred to as “TF”) is a type of glycoprotein that binds to Fe 3+ ions and is deeply involved in iron metabolism.
- human serum transferrin (hereinafter also referred to as “human transferrin” or “hTF”) belongs to the in vivo iron-binding protein family and is involved in in vivo iron transport and metabolism. It is used as an additive to culture media, pharmaceuticals, and DDS transport carriers.
- TF is a glycoprotein of about 80 kDa having two domains, N-lobe and C-lobe, and is synthesized by translation as an immature protein having a secretory signal peptide at the N-terminus. Thereafter, the secretory signal peptide is secreted outside the cell as a cleaved mature glycoprotein.
- a method of producing a full-length recombinant protein using a cultured cell line of a mammalian cell such as a hamster kidney cell (BHK cell) is known.
- S. is a fission yeast.
- a method using a pombe is known.
- S. Pombe unlike Saccharomyces cerevisiae, which is a budding yeast, is close to human cells in cell division and transcription, and does not contain substances that adversely affect the human body. Therefore, S. The method of producing a full-length recombinant protein of TF in pombe is an excellent method for producing TF that is ingested by humans such as pharmaceuticals.
- S.A A method is disclosed in which a transformant having a pombe as a host and having the hTF gene introduced is cultured in a liquid medium containing casamino acid, and hTF is efficiently produced and secreted into the liquid medium for recovery.
- Patent Document 2 discloses S.I. In Pombe, it is described that the production efficiency of heterologous proteins can be improved by using an improved host in which at least one gene selected from genes encoding a specific protease (protease gene group) is deleted or inactivated. ing.
- the hTF protein can be secreted and produced by producing it with the secretion signal (endoplasmic reticulum transfer signal) peptide added to the N-terminus of the hTF protein.
- secretion signal endoplasmic reticulum transfer signal
- S.M secretion signal
- P-factor mating pheromone
- Patent Document 3 discloses that a secretory signal peptide, a domain, and b domain of PDI1 (Protein disulfide isomerase 1), which is a protein having a molecular chaperone function and localized in the endoplasmic reticulum on the N-terminal side of a target foreign protein.
- PDI1 Protein disulfide isomerase 1
- PDI1 has a c domain including an ER transition signal, a domain, b domain, b ′ domain, x domain, a ′ domain, and ER localization signal (ADEL) in this order from the N-terminus.
- ADDL ER localization signal
- CGHC active center of molecular chaperone activity in each of the a domain and the a 'domain, and all four of the a domain, b domain, b' domain, and a 'domain form a thioredoxin fold.
- JP 2011-125281 A International Publication No. 2007/015470 International Publication No. 2013/111754
- the object of the present invention is S.I. It is an object of the present invention to provide a method for secreting and producing TF with high productivity using a transformant of pombe, and a transformant suitable for the method.
- the transformant according to the present invention is S. cerevisiae. Pombe is used as a host, and has a TF gene and a secretory signal peptide gene that is present in the upstream region of the TF gene and expresses a TF to which a secretory signal peptide that functions in the host is bound.
- the Gas2 gene that the host originally has is deleted. Or it is inactivated.
- the TF gene is preferably a gene encoding human transferrin.
- the TF gene is a mutant TF gene in which a mutation is introduced into a gene encoding a natural TF possessed by a mammal, and the mutant TF gene is at least one site of the natural TF.
- the transformant preferably has at least one protease gene originally possessed by the host deleted or inactivated.
- the protease gene is more preferably a gene selected from the group consisting of a metalloprotease gene group, a serine protease gene group, a cysteine protease gene group, and an aspartic protease gene group.
- the protease gene to be deleted or inactivated is at least one gene selected from the group consisting of psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene Further preferred.
- the TF gene is preferably linked directly or indirectly downstream of the gene encoding the secretory carrier protein containing the secretory signal peptide, and the gene encoding the secretory carrier protein is More preferably, it is a fusion gene of a gene encoding the secretory signal peptide portion of the host PDI1, a gene encoding the ab domain portion of human PDI1, and a gene encoding the x domain portion of the host PDI1.
- the method for producing TF according to the present invention is characterized in that the transformant according to the present invention is cultured in a liquid medium, and transferrin is obtained from the liquid medium.
- the transformant is preferably cultured in a liquid medium having a pH of 5.5 to 6.5, and the transformant is preferably cultured in a liquid medium containing adenine. It is also preferable to obtain transferrin from the liquid medium after culturing the transformant until the cell density (OD 660 ) reaches 100 or more.
- the method for producing a transformant according to the present invention is described in S.A. It is characterized by incorporating a secretory signal peptide gene functioning in the host with a pombe and a TF gene located downstream of the secretory signal peptide gene, and deleting or inactivating the Gas2 gene inherent in the host And
- TF By culturing the transformant according to the present invention, TF can be produced efficiently.
- S.I. Pombe can be used to secrete and produce TF with high productivity.
- FIG. 1 shows the structure of the secretory expression vector pSL6PDI1 (SP) Hsabx-hTF (N413QN611Q).
- FIG. 2 is an SDS-PAGE CBB-stained image of the culture solution of the A8-hTF (1) strain and the A8-gas2 ⁇ -hTF (1) strain.
- FIG. 3 is a graph showing changes over time in the amount of secreted hTF (N413Q / N611Q) protein in the A8-hTF (1) strain and the A8-gas2 ⁇ -hTF (1) strain.
- FIG. 1 shows the structure of the secretory expression vector pSL6PDI1 (SP) Hsabx-hTF (N413QN611Q).
- FIG. 2 is an SDS-PAGE CBB-stained image of the culture solution of the A8-hTF (1) strain and the A8-gas2 ⁇ -hTF (1) strain.
- FIG. 3 is a graph showing changes over time in the amount of secreted
- TF gene refers to a structural gene encoding a mature TF protein.
- the mature TF protein is hereinafter referred to as “TF protein”.
- a fusion protein in which a protein containing a secretory signal peptide (secretory carrier protein) and the TF protein are linked is expressed, and the fusion protein is secreted by the endoplasmic reticulum or the Golgi apparatus.
- the protein is cut off and the TF protein is secreted outside the cell.
- secretory signal peptide and secretory carrier protein in the present invention are preferably secretory signal peptides and secretory carrier proteins other than those originally possessed on the N-terminal side of the TF protein, which function sufficiently in the host.
- “functioning in the host” means having a function of secreting a fusion protein expressed in the host as a TF protein outside the host cell.
- the TF protein and the secretory signal peptide or secretory carrier protein may be directly linked or indirectly linked by a linker consisting of a peptide having 1 to several tens of amino acid residues.
- the transformant according to the present invention is S. cerevisiae.
- Gas2 gene inherently possessed by the host, comprising a TF gene as a host, a TF gene, and a secretory signal peptide gene that is present in the upstream region of the TF gene and expresses a TF protein bound to a secretory signal peptide that functions in the host. Is deleted or inactivated.
- the TF protein encoded by the TF gene of the transformant according to the present invention is a natural TF protein derived from any species (a TF encoded by a TF gene present in the chromosome of a wild-type organism). Protein) or a modified protein of a natural TF protein. Examples of the modified protein include a polypeptide having an amino acid sequence in which one or several amino acids in the amino acid sequence of a natural TF protein are substituted, added, or deleted, and having a TF function.
- a polymorphism comprising an amino acid sequence having a sequence identity of 80% or more, preferably 85% or more, more preferably 90% or more, and even more preferably 95% or more with the amino acid sequence of a natural TF protein, and having a TF function Peptides are mentioned.
- the function of TF means a function of binding to Fe 3+ ions and binding to a TF receptor on the cell surface to be taken into a cell.
- Examples of the TF protein encoded by the TF gene of the transformant according to the present invention include natural TF proteins derived from mammals such as humans, monkeys, mice, rats, rabbits, cows, horses, dogs and cats, or modifications thereof. Proteins are preferred, and hTF or modified proteins thereof are particularly preferred.
- the TF protein encoded by the TF gene possessed by the transformant according to the present invention is a modified protein of a natural TF protein
- the modification includes, for example, asparagine which is an N-linked sugar chain modification site after translation. Preference is given to point mutations in the amino acid sequence in which at least one or more of the acid residues are deleted or substituted with other amino acid residues.
- the resulting recombinant protein is modified with a high-mannose sugar chain with a non-uniform length, resulting in reduced uniformity and quality. There is a risk.
- the TF gene possessed by the transformant according to the present invention is a mutant TF gene encoding a mutant TF protein into which a mutation that eliminates the N-linked sugar chain modification site is introduced
- the transformant is cultured.
- the mutant TF gene includes at least one N-linked sugar chain among the two N-linked sugar chain modification sites (432th and 630th aspartic acid residues) of the natural hTF protein.
- a mutant TF gene encoding a mutant TF protein in which the asparagine residue as a chain modification site has been deleted or replaced with another amino acid is preferred, and the two N-linked sugar chain modification sites are amino acids other than asparagine residues.
- a mutant TF gene encoding a mutant TF protein substituted with a residue is more preferable, and a mutant TF gene (sequence) encoding a mutant TF protein in which two N-linked sugar chain modification sites are substituted with glutamine residues. Number 2) is more preferred.
- the secretory signal peptide gene possessed by the transformant according to the present invention is a structural gene encoding a secretory signal peptide that functions in the cells of the transformant.
- the secretory signal peptide gene may be part of a structural gene that encodes a secretory carrier protein. That is, the structural gene encoding the secretory carrier protein may have a structural gene portion encoding a secretory carrier protein other than the secretory signal peptide gene portion downstream of the secretory signal peptide gene.
- the secretory signal peptide is Anything that functions within the pombe can be used. Those described in International Publication No.
- a secretory signal peptide of a secretory protein possessed by Pombe and a P3 secretion signal (34 amino acid residues) can be used.
- Pombe's PDI1 secretion signal peptide is preferred.
- the secretory carrier protein that functions in the pombe is preferably a full-length protein of PDI1, a partial protein of PDI1, or a protein in which these mutant proteins are fused, including a secretory signal peptide.
- a protein containing the a domain of PDI1 or a protein containing the a ′ domain of PDI1 is preferred, and a protein containing at least one of the a domain or a ′ domain of PDI1 and at least one of the b domain or b ′ domain is more preferred. More preferred is a protein comprising at least one of the a domain or a ′ domain, at least one of the b domain or b ′ domain, and the x domain (see Patent Document 3).
- Each domain of PDI1 contained in the protein fused downstream of the secretory signal peptide may be derived from the same species or a combination of domains derived from two or more species.
- the ability to produce TF is further enhanced.
- the transformant according to the present invention is S. cerevisiae.
- a TF gene derived from an organism other than Pombe is obtained by genetic engineering. It is obtained by introducing it into Pombe.
- the base sequence of the TF gene possessed by the transformant according to the present invention may be the gene sequence itself of the biological species from which the TF protein is derived. It may be modified to a codon frequently used in pombe.
- the gene in which the secretory signal peptide gene and the TF gene of the transformant are directly or indirectly linked may be 1 copy or 2 copies or more. Good.
- the SP-TF gene is S. cerevisiae. It may be introduced as a plasmid outside the pombe chromosome. It may be introduced into the pombe chromosome. By introducing a foreign gene into the chromosome, a transformant having excellent passage stability can be obtained.
- various expression systems particularly expression vectors, secretion signals, gene transfer expression vectors, and the like have been developed in order to more stably and efficiently express heterologous proteins. These can be widely applied in the production of transformants according to the above.
- S.M. Examples of expression systems using pombe as a host include Japanese Patent No. 2776085, Japanese Patent Application Laid-Open No. 07-163373, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. 10-215867, Japanese Patent Application Laid-Open No. 11-192094, and Japanese Patent Application Laid-Open No. 11-192094. -1919944, JP-A-2000-262284, WO96 / 023890, etc. are known, and these expression systems can be widely used for the production of transformants according to the present invention.
- S. host The introduction of the SP-TF gene into Pombe is, for example, the SP-TF gene and S. cerevisiae.
- An expression cassette containing a promoter and terminator that functions in a pombe can be introduced into the host cell as it is, or an integrated vector can be introduced into the host cell.
- the expression cassette may contain any one or more of 5'-untranslated region and 3'-untranslated region, and may contain an auxotrophic complementary marker such as ura4 gene.
- promoters that function in pombe include alcohol dehydrogenase gene promoter, nmt1 gene promoter, fructose-1, 6-bisphosphatase gene promoter, invertase gene promoter (see International Publication No. 99/23223), heat shock protein gene Promoters (see International Publication No. 2007/26617, International Publication No. 2014/030644), etc.
- promoters derived from animal cell viruses such as Pombe's inherent promoter, hCMV promoter, and SV40 promoter.
- the terminator that functions in the pombe include an LPI (human lipocortin I) terminator.
- plasmids derived from E. coli such as pBR322, pBR325, pUC118, pUC119, pUC18, and pUC19 are preferably used.
- the vector preferably has a marker for selecting a transformant. Examples of the marker include ura4 gene (auxotrophic complementary marker) and isopropylmalate dehydrogenase gene (leu1 gene).
- the expression cassette containing the SP-TF gene When integrating into the pombe chromosome by homologous recombination, the target site into which the expression cassette is incorporated is S. cerevisiae. It may be present only at one location in the pombe chromosome, or may be present at two or more locations. When two or more target sites exist, S.P.
- the vector can be integrated at two or more positions on the pombe chromosome.
- the target site described in the method described in JP-A No. 2000-262284 can be used. Two or more vectors having different integration sites can be used to integrate the vectors into different target sites.
- a vector into which an expression cassette containing an SP-TF gene is incorporated for example, a vector into which a secretory signal peptide gene and an hTF gene described in Patent Document 1, Patent Document 3, etc. are incorporated can be used.
- the transformant according to the present invention is a host of S. cerevisiae.
- the Gas2 gene (SPBC29A10.08.1) inherent in Pombe has been deleted or inactivated.
- S. cerevisiae into which the SP-TF gene was introduced was introduced.
- the Pombe transformant is cultured at a high density where the cell density (optical density at 660 nm measured by a turbidimeter: OD 660 ) is 100 or more, Gas2 (1,3- ⁇ -glucanosyl transferase) is combined with TF. Increased protein expression level.
- the Gas2 protein is a glycoprotein that is localized in the cell wall and is involved in the biosynthesis of the cell wall of fission yeast, and is not considered to be directly involved in the expression and secretion of TF. Nevertheless, in the high-density cell culture process of the TF expression strain (transformant introduced with the SP-TF gene), the Gas2 protein is secreted in a large amount in the liquid medium simultaneously with the TF protein, and the production of TF Efficiency is reduced. Strangely, the increase in expression and secretion amount of Gas2 protein observed during high-density culture of TF-expressing strains is not clearly observed during general batch culture with an OD 660 of 20-30. Since the Gas2 gene is deleted or inactivated in the transformant according to the present invention, the Gas2 protein is not expressed even during high-density culture, and the amount of TF secreted into the liquid medium is also increased.
- the transformant according to the present invention is preferably one in which at least one of the protease genes (genes encoding the protease) has been deleted or inactivated. S. By inhibiting the protease activity of at least one protease gene inherently possessed by Pombe, the production efficiency of TF protein is improved and the production amount of TF protein is further increased.
- the transformant according to the present invention includes serine protease gene group (group of genes encoding serine protease), aminopeptidase gene group (group of genes encoding aminopeptidase), carboxypeptidase gene group (encodes carboxypeptidase). Preferably, one or more genes selected from the group consisting of a group of genes) and a dipeptidase gene group (a group of genes encoding dipeptidase) have been deleted or inactivated.
- protease gene group group of genes encoding metalloprotease
- serine protease gene group group of genes encoding cysteine protease
- cysteine protease gene group group of genes encoding cysteine protease
- aspartic protease gene group encoding aspartic protease
- a transformant in which at least one gene selected from the group consisting of genes is deleted is preferable, and at least one gene selected from the group consisting of metalloprotease gene group and serine protease gene group and cysteine
- a transformant in which at least one gene selected from the group consisting of a protease gene group and an aspartic protease gene group is deleted is also preferable.
- protease gene groups of Pombe include the following. Metalloprotease gene group: cdb4 (SPAC23H4.09), mas2 (SPBC18E5.12c), pgp1 (SPCC1259.10), ppp20 (SPAC4F10.02), ppp22 (SPBC14C8.03), ppp51 (SPAC22G7.01c), ppp52 (SPBC18A7 .01), ppp53 (SPAP14E8.04).
- Serine protease gene group isp6 (SPAC4A8.04), ppp16 (SPBC1711.12), psp3 (SPAC1006.01), sxa2 (SPAC1296.03c).
- Cysteine protease gene group ppp80 (SPAC19B12.08), pca1 (SPCC1840.04), cut1 (SPCC5E4.04), gpi8 (SPCC11E10.02c).
- Aspartic protease gene group sxa1 (SPAC26A3.01), yps1 (SPCC1795.09), ppp81 (SPAC25B8.17).
- the transformant according to the present invention is a host of S. cerevisiae. It can be produced by deleting or inactivating the Gas2 gene of a transformant in which an expression cassette containing the SP-TF gene has been introduced into Pombe, and the Gas2 gene has been deleted or inactivated in advance. It can also be produced by introducing an expression cassette containing the SP-TF gene into pombe. As a host used in this case, at least one protease gene has been deleted or inactivated. By using the Pombe mutant, a transformant in which the SP-TF gene has been introduced, the Gas2 gene has been deleted or inactivated, and at least one protease gene has been deleted or inactivated can be obtained. It is done. S.
- mutant strains in which at least one protease gene originally possessed by Pombe is deleted or inactivated include psp3 gene, isp6 gene, ppp53 gene, ppp16 gene, such as A8 strain described in Patent Document 2, The ppp22 gene, the sxa2 gene, the ppp80 gene, and the ppp20 gene have been deleted. Pombe mutants are preferably used.
- the gene can be deleted by using the Latour method (described in Nucreic Acids Research magazine, 2006, 34, e11, International Publication No. 2007/063919).
- mutation isolation methods using mutants Yeast Molecular Genetics Experiment Method, 1996, Society Publishing Center
- random mutation methods using PCR PCR Methods Application, Vol. 2, pages 28-33, 1992
- the gene can be inactivated by introducing a mutation into a part of the gene.
- the part where a specific gene is deleted or inactivated may be an ORF (open reading frame) part or an expression regulatory sequence part.
- a particularly preferable method is a method of deletion or inactivation by a PCR-mediated homologous recombination method (Yeast, Vol. 14, pages 943-951, 1998) in which the ORF portion of the structural gene is replaced with a marker gene.
- transformation method Any known transformation method may be used as the transformation method.
- the transformation method include conventionally known methods such as lithium acetate method, electroporation method, spheroplast method, glass bead method, and the method described in JP-A-2005-198612.
- a commercially available yeast transformation kit may also be used.
- the transformant according to the present invention can be cultured in the same manner as natural Schizosaccharomyces yeasts.
- a liquid medium for culturing the transformant a known yeast culture medium can be used, which contains a carbon source, a nitrogen source, inorganic salts, etc. that can be assimilated by a yeast belonging to the genus Schizosaccharomyces. What is necessary is just to be able to culture genus yeast efficiently.
- a natural medium or a synthetic medium may be used as the liquid medium.
- liquid medium examples include MMA (Minimal medium with agar), SDC (Synthetic dextrose complete medium), TES (0.5% Bacto-yeast extract, 3% glucose, supplemented with uracil, leucine, histidine, lysine, adenine), YES (0.5% Bacto-yeast extract, 3% glucose, supplemented with uracil, leucine, histidine, lysine, adenine), YPD (1% Bacto-yeast extract, 2% Bactopeptone, 2% glucose) and the like.
- Examples of the carbon source include sugars such as glucose, fructose, and sucrose.
- Examples of the nitrogen source include inorganic acids such as ammonia, ammonium chloride, and ammonium acetate, ammonium salts of inorganic acids, peptone, and casamino acids.
- examples of inorganic salts include magnesium phosphate, magnesium sulfate, and sodium chloride.
- nutrient media such as YPD medium (MDRose et al., “Methods In Yeast Genetics”, Cold Spring Harbor Laboratory Press (1990)) or minimal media such as MB medium (K.Okazaki et al., Nucleic Acids Res., 18, 6485-6489 (1990)) can be used.
- a well-known yeast culture method can be used for culture
- the culture temperature is preferably 23 to 37 ° C, more preferably 30 to 32 ° C.
- the culture time can be determined as appropriate.
- the culture may be batch culture or continuous culture.
- TF expression strain TF expression strain having a SP-TF gene with pombe as a host
- the TF protein secreted in the liquid medium after the culture can be obtained.
- the liquid medium and culture method for cultivating the TF expression strain can be carried out by a known culture method using a known yeast culture medium, similarly to the culture of the transformant according to the present invention.
- the pH condition of the liquid medium in which the TF-expressing strain is cultured is preferably pH 5.5 or more, more preferably pH 5.5 to 6.5.
- the culture time for culturing the TF-expressing strain is preferably 2 days or more, more preferably 3 to 6 days, and even more preferably 3 to 5 days.
- the liquid medium for culturing the TF expression strain contains adenine.
- the TF expression strain has one or more copies of the SP-TF gene, it tends to lyse and the expression level of TF tends to decrease.
- the adenine content of the liquid medium can be, for example, 0.5 to 200 mg / L, preferably 1 to 100 mg / L per OD 660 indicating the cell density.
- the initial medium and fed-batch culture are performed under the conditions of pH 5.5 to 6.5, preferably pH 5.5 to 6.0, while controlling the aeration rate of the culture tank, the agitation rate, and the addition rate of the fed-batch medium. Preferably it is done. Since the medium is continuously added (fed) according to the growth rate and nutrient consumption rate while keeping the glucose concentration of the medium low at a certain level, the bacterial cell density is finally adjusted in a test tube or flask.
- a high cell density can be achieved, and a larger amount of TF can be secreted and produced.
- the transformant according to the present invention is preferable.
- the transformant according to the present invention has no expression of the host-derived Gas2 protein and has a high efficiency of secretory expression of TF.
- the TF protein is purified from the liquid medium after high-density culture, separation and purification from the Gas2 protein is not required, and purification can be performed more simply.
- a known method is used to obtain the TF protein from the liquid medium after culturing. For example, a method in which bacterial cells are separated and removed from a liquid medium after completion of culture by centrifugation, and the resulting culture supernatant is adsorbed on an affinity column and washed and then eluted, a dye using activated carbon, etc. A method for removing impurities, a method for separation using a separation membrane, and the like are performed. When a TF expression strain having a Gas2 gene is cultured at high density, a large amount of Gas2 protein is contained in the collected culture supernatant, so an anion using DEAE resin is used for the culture supernatant.
- the fraction containing TF protein also contains Gas2 protein. Therefore, the TF protein can be purified by separation from the Gas2 protein only after the fraction containing the TF protein is further subjected to hydrophobic interaction chromatography or gel filtration chromatography. On the other hand, the TF protein can be purified by performing only one anion exchange chromatography using DEAE resin on the culture supernatant after the high-density culture of the transformant according to the present invention.
- the ORF (SEQ ID NO: 1) of the natural hTF gene encodes a protein having a total length of 698 residues in which an hTF protein is fused downstream of a 19-residue secretory signal peptide.
- Perform PCR using a primer pair (Forward primer # 9220 (SEQ ID NO: 3) and Reverse primer # 9221 (SEQ ID NO: 4)) using the human cDNA library as a template, and 5 'end of the gene encoding the hTF protein.
- a double digestion product of AflII and XbaI of the obtained DNA fragment is arranged with a gene encoding a P3 secretion signal peptide downstream of the hCMV promoter, and a chromosomal single locus of fission yeast having a multiple cloning site between the gene and the LPI terminator
- an integrative secretion expression vector by ligation and transformation into E. coli DH5 ⁇ , 4 residues of the C-terminal part of the abx domain are left at the N-terminus.
- Plasmid DNA of an expression vector pSL6P3-hTF in which a gene encoding a natural type hTF protein containing a group was cloned was prepared.
- the vector fragment that has been linearized by cutting with the restriction enzyme NotI is adjacent to the fission yeast chromosome by chromosome homologous recombination.
- the pSL6P3 vector also complements the point mutation (leu1-32) portion of the mutant (leu1 ⁇ ) gene (the gene in which the leucine synthesis gene (leu1) is inactivated by the point mutation (leu1-32)).
- a leucine marker gene fragment (leu1 + ) is incorporated.
- a transformant in which the linearized fragment of the pSL6P3 vector is integrated into the chromosome recovers from the leucine requirement.
- Clones can be selected on a minimal medium (MMA plate) that does not contain leucine.
- hTF (N413Q / N611Q) expression vector A DNA fragment containing the coding region of hTF (N413Q / N611Q) obtained by double digesting pSL6P3-hTF (N413Q / N611Q) with AflII and XbaI was placed downstream of the hCMV promoter.
- a chromosomal single locus integration secretory expression vector of fission yeast comprising a gene encoding a secretory carrier protein (PDI1 (SP) -Hsabx) consisting of the x domain of Pombe's PDI1 and having a multicloning site between the gene and the LPI terminator pSL6PDI1 (SP) Hsabx-AflII is incorporated into a double digestion product of AflII and XbaI by ligation and transformed into E.
- PDI1 secretory carrier protein
- coli DH5 ⁇ to produce a secreted carrier protein (PDI1 (SP) -Hsabx) and a mutant hTF (N413Q / PSL6PDI1 (SP) Hsabx-hTF (N413QN611Q) (8749 bp, FIG. 1), which is a chromosomal single locus integration expression vector of a fusion protein of N611Q) protein, was prepared.
- PDI1 (SP) -Hsabx secreted carrier protein
- SP mutant hTF
- N413QN611Q mutant hTF
- N413QN611Q mutant hTF
- S. Leucine uracil auxotrophic S. pombe (leu1 - ura4 -) strain (genotype: h- leu1-32 ura4-D18) with respect to a is ARC010 strain by Latour method, PSP3 gene, ISP 6 gene, Ppp53 gene, PPP 16 gene A8 strain from which 8 genes of ppp22 gene, sxa2 gene, ppp80 gene and ppp20 gene have been deleted (genotype: h-leu1-32 psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1- D17 ppp80-D11) was prepared.
- the A8 strain was a leucine-requiring strain. More specifically, the Latour method deletes a gene deletion fragment (Latour fragment: a homologous recombination region at both ends, a ura4 + marker gene sandwiched between it and an OL (overlapping sequence) region) on the fission yeast genome.
- a latent strain was produced by integrating the gene in the upstream or downstream of the target region by homologous recombination. Subsequently, the latent strain was cultured in a medium containing 5′-FOA, homologous recombination was caused between the incorporated OLs, and a gene-deleted strain in which the deletion target region containing the ura4 + marker gene was dropped was formed as a colony. .
- the obtained gene-deleted strain was confirmed by PCR that the target gene was deleted.
- the target gene was deleted.
- Table 1 shows the base sequences of the primers used in preparing a Latour fragment for deleting each gene by PCR.
- the A8-gas2 ⁇ strain (genotype: h-leu1-32 psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1-D17 was deleted from the A8 strain by the Latour method. ppp80-D11 gas2-D15) was prepared. The obtained gene-deleted strain was confirmed by PCR that the target gene was deleted.
- the A8-gas2 ⁇ strain was a leucine-requiring strain. Table 2 shows the base sequences of the primers used in preparing a Latour fragment for deleting the Gas2 gene by PCR.
- the prepared A8 strain and A8-gas2 ⁇ strain were evaluated for growth (measurement of ⁇ max and growth curve) at a test tube level (inoculated in 5 mL of YES and cultured at 30 ° C. for 68 hours).
- the maximum specific growth rate ( ⁇ max relative value) indicating the first rise of the cell growth is slightly decreased (about 8 to 12) as compared with the wild strain (ARC001) having the same auxotrophy (leu1 ⁇ ).
- the final cell density (OD 660 ) slightly increased (increased by about 9 to 17%), and both strains were confirmed to be able to grow in the same manner as the leucine-requiring wild strain. (Not shown). In particular, no changes in growth and phenotype were observed for the A8 strain and the A8-gas2 ⁇ strain.
- hTF (N413Q / N611Q) expression strain.
- Transformants obtained by introducing pSL6PDI1 (SP) Hsabx-hTF (N413QN611Q) into the A8 strain and the A8-gas2 ⁇ strain were designated as A8-hTF (1) strain and A8-gas2 ⁇ -hTF (1) strain, respectively.
- the A8-gas2 ⁇ -hTF (1) strain was cultured to secrete and express hTF (N413Q / N611Q). Specifically, after culturing for about 24 hours in 5 mL of YES using a glass test tube and performing pre-culture, in a 5 mL of adenine-containing YPD + MES medium (pH 6.0) using a 24-well plate, Cultured at 32 ° C for 3 days, 4 days, or 5 days with shaking, and subjected to ELISA using a commercially available kit (product name: “Human Transferrin ELISA Quantitation Set”, manufactured by Bethyl Laboratories).
- hTF N413Q / N611Q
- the A8-hTF (1) strain and A8-gas2 ⁇ -hTF (1) strain were cultured, and hTF (N413Q / N611Q) was cultured at high density for secretory expression.
- the pH of the culture solution was adjusted to 5.5 to 6.0 while controlling the aeration rate of the culture tank, the stirring rate, and the feeding rate of the fed-batch medium.
- Medium and fed-batch culture were performed.
- an adenine-containing semi-synthetic medium (several percent of Bacto-yeast extract, each synthetic component such as glucose, vitamins, minerals and inorganic salts) was used. While suppressing the glucose concentration to 2%, the medium was continuously added (fed) according to the growth rate and nutrient consumption rate. Eventually, the cell density (OD 660 ) was about 200 to 800.
- hTF indicates a band of hTF (N413Q / N611Q).
- the expression of gas2 was suppressed in the A8-gas2 ⁇ -hTF (1) strain at any of the culture times 48, 72 and 96 hours, and the A8- It was confirmed that the gas2 ⁇ -hTF (1) strain has a higher secretion amount of hTF (N413Q / N611Q).
- ELISA was performed in the same manner as described above using the sampled culture solution, and the protein amount of hTF (N413Q / N611Q) secreted into the culture supernatant was measured. As shown in FIG. 3, there is no difference in the amount of secretion between the two strains for about 48 hours from the start of the culture, but after that, the A8-gas2 ⁇ -hTF (1) strain was clearly more than the A8-hTF (1) strain. The amount of hTF (N413Q / N611Q) secreted was large.
- Table 3 shows the final amount of secretion of both strains (A8-hTF (1) strain is 168 hours after the start of culture, and A8-gas2 ⁇ -hTF (1) strain is 96 hours after the start of culture).
- the A8-gas2 ⁇ -hTF (1) strain has a hTF secretion amount of 4.8 times or more per culture medium and a hTF secretion amount per microbial cell (per OD 660 ) than the A8-hTF (1) strain. It was more than 1 time.
- the fraction size was 30.3 mL.
- FIG. 4 shows the result of SDS-PAGE performed by collecting fractions containing the hTF (N413Q / N611Q) protein (the third to sixth fractions) together.
- “After Gas2 deletion” is a CBB-stained image of the purified fraction of the culture solution of A8-gas2 ⁇ -hTF (1) strain
- “Before Gas2 deletion” is the culture solution of A8-hTF (1) strain. It is a CBB dyeing
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Toxicology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
該形質転換体としては、TF遺伝子がヒト・トランスフェリンをコードする遺伝子であることが好ましい。
また、該形質転換体としては、TF遺伝子が、哺乳動物が有する天然型のTFをコードする遺伝子に変異が導入された変異TF遺伝子であり、変異TF遺伝子が、天然型TFの少なくとも1箇所のN結合型糖鎖修飾部位であるアスパラギン残基が欠失または他のアミノ酸残基に置換された変異TFをコードする遺伝子であることが好ましい。
また、該形質転換体としては、宿主が本来有する少なくとも1種のプロテアーゼ遺伝子が削除または不活性化されていることが好ましい。プロテアーゼ遺伝子としては、メタロプロテアーゼ遺伝子群、セリンプロテアーゼ遺伝子群、システインプロテアーゼ遺伝子群およびアスパラギン酸プロテアーゼ遺伝子群からなる群から選ばれる遺伝子であることがより好ましい。削除または不活性化されるプロテアーゼ遺伝子としては、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる少なくとも1種の遺伝子であることがさらに好ましい。
また、該形質転換体としては、TF遺伝子が、分泌シグナルペプチドを含む分泌キャリア蛋白質をコードする遺伝子の下流に直接または間接的に連結されていることが好ましく、分泌キャリア蛋白質をコードする遺伝子が、宿主のPDI1の分泌シグナルペプチド部分をコードする遺伝子とヒトのPDI1のabドメイン部分をコードする遺伝子と宿主のPDI1のxドメイン部分をコードする遺伝子との融合遺伝子であることがより好ましい。
該TFの製造方法としては、形質転換体を、pH5.5~6.5の液体培地中で培養することが好ましく、形質転換体を、アデニンを含有する液体培地中で培養することも好ましく、形質転換体を、菌体密度(OD660)が100以上になるまで培養した後、該液体培地からトランスフェリンを取得することも好ましい。
また、本発明に係るTFの製造方法により、S.ポンベを用いて、高い生産性でTFを分泌産生できる。
本発明において、「TF遺伝子」とは、成熟型のTF蛋白質をコードする構造遺伝子をいう。また、成熟型のTF蛋白質を、以下、「TF蛋白質」という。
本発明に係る形質転換体は、S.ポンベを宿主とし、TF遺伝子と、TF遺伝子の上流域に存在し、宿主内で機能する分泌シグナルペプチドが結合したTF蛋白質を発現させる、分泌シグナルペプチド遺伝子とを有し、宿主が本来有するGas2遺伝子が削除または不活性化されていることを特徴とする。
本発明に係る形質転換体が有するTF遺伝子が、N結合型糖鎖修飾部位を消失させる変異が導入された変異TF蛋白質をコードする変異TF遺伝子である場合には、該形質転換体を培養することにより、TFの機能が安定しており、かつ品質が均質な組換えTF蛋白質を分泌生産できる。たとえば、該変異TF遺伝子としては、天然型のhTF蛋白質が有する2箇所のN結合型糖鎖修飾部位(432番目および630番目のアスパラギン酸残基)のうち、少なくも1箇所のN結合型糖鎖修飾部位であるアスパラギン残基が欠失または他のアミノ酸に置換された変異TF蛋白質をコードする変異TF遺伝子が好ましく、2箇所のN結合型糖鎖修飾部位がいずれもアスパラギン残基以外のアミノ酸残基に置換された変異TF蛋白質をコードする変異TF遺伝子がより好ましく、2箇所のN結合型糖鎖修飾部位がいずれもグルタミン残基に置換された変異TF蛋白質をコードする変異TF遺伝子(配列番号2)がさらに好ましい。
本発明に係る形質転換体としては、TFの分泌産生能がより高められるため、該分泌キャリア蛋白質としては、上流側から順に、S.ポンベのPDI1の分泌シグナルペプチド遺伝子とヒトのPDI1のabxドメイン部分をコードする遺伝子またはヒトのPDI1のabb’xドメイン部分をコードする遺伝子とが直接または間接的に連結した融合遺伝子、S.ポンベのPDI1の分泌シグナルペプチド遺伝子とヒトのPDI1のabドメイン部分をコードする遺伝子またはヒトのPDI1のabb’ドメイン部分をコードする遺伝子とS.ポンベのPDI1のxドメイン部分をコードする遺伝子とが直接または間接的に連結した融合遺伝子が好ましい。
メタロプロテアーゼ遺伝子群:cdb4(SPAC23H4.09)、mas2(SPBC18E5.12c)、pgp1(SPCC1259.10)、ppp20(SPAC4F10.02)、ppp22(SPBC14C8.03)、ppp51(SPAC22G7.01c)、ppp52(SPBC18A7.01)、ppp53(SPAP14E8.04)。
セリンプロテアーゼ遺伝子群:isp6(SPAC4A8.04)、ppp16(SPBC1711.12)、psp3(SPAC1006.01)、sxa2(SPAC1296.03c)。
システインプロテアーゼ遺伝子群:ppp80(SPAC19B12.08)、pca1(SPCC1840.04)、cut1(SPCC5E4.04)、gpi8(SPCC11E10.02c)。
アスパラギン酸プロテアーゼ遺伝子群:sxa1(SPAC26A3.01)、yps1(SPCC1795. 09)、ppp81(SPAC25B8.17)。
該形質転換体の培養のための液体培地には、公知の酵母培養培地を用いることができ、シゾサッカロミセス属酵母が資化しうる炭素源、窒素源、無機塩類等を含有し、シゾサッカロミセス属酵母の培養を効率良く行えるものであればよい。液体培地としては、天然培地を用いてもよく、合成培地を用いてもよい。
液体培地としては、たとえば、MMA(Minimal medium with agar)、SDC(Synthetic dextrose complete medium)、TES(0.5% Bacto-yeast extract,3% glucose,supplemented with uracil,leucine, histidine,lysine,adenine)、YES(0.5% Bacto-yeast extract, 3% glucose, supplemented with uracil, leucine, histidine, lysine, adenine)、YPD(1% Bacto-yeast extract,2% Bactopeptone,2% glucose)等が挙げられる。
また、培養温度は、23~37℃であることが好ましく、30~32℃であることがさらに好ましい。また、培養時間は適宜決定できる。
また、培養は、回分培養であってもよく、連続培養であってもよい。
S.ポンベを宿主とし、SP-TF遺伝子を有する形質転換体(TF発現株)を液体培地中で培養すると、培養後の該液体培地に分泌されたTF蛋白質を取得できる。TF発現株を培養する液体培地や培養方法は、本発明に係る形質転換体の培養と同様に、公知の酵母培養培地を用い、公知の培養方法で行うことができる。
TF蛋白質の分泌生産量をより高くできるため、TF発現株を培養する培養時間は、2日以上が好ましく、3~6日間がより好ましく、3~5日間がさらに好ましい。
TF発現株を培養する液体培地はアデニンを含有していることが好ましい。TF発現株が1コピー以上のSP-TF遺伝子を有する場合には、溶菌しやすく、TFの発現量が低下する傾向がある。アデニン含有液体培地中で培養することにより、1コピー以上のSP-TF遺伝子を有するTF発現株であっても、良好に増殖し、TFの分泌生産効率が高くなる。液体培地のアデニン含有量は、たとえば、菌体密度を示すOD660あたりで0.5~200mg/L、好ましくは1~100mg/Lにできる。
<hTF変異体の遺伝子の作製>
天然型のhTF遺伝子のORF(配列番号1)は、19残基の分泌シグナルペプチドの下流にhTF蛋白質が融合した全長698残基の蛋白質をコードしている。ヒトcDNAライブラリーを鋳型にして、プライマーペア(Forward primer #9220(配列番号3)およびReverse primer #9221(配列番号4))を用いたPCRを行い、hTF蛋白質をコードする遺伝子の5’末端側に制限酵素サイトAflIIとヒトPDI1のabxドメインのC末端部分の4残基(Leu-Lys-Lys-Arg)をコードする塩基配列を、3’末端側に制限酵素サイトXbaIをそれぞれ付加したDNA断片を得た。
pSL6P3-hTF(N413Q/N611Q)をAflIIとXbaIで二重消化したhTF(N413Q/N611Q)のコード領域を含むDNA断片を、hCMVプロモーター下流に、S.ポンベのPDI1の分泌シグナルペプチドとヒトのPDI1のabドメインとS.ポンベのPDI1のxドメインからなる分泌キャリア蛋白質(PDI1(SP)-Hsabx)をコードする遺伝子を配し、該遺伝子とLPIターミネーターの間にマルチクローニングサイトを備える分裂酵母の染色体単座組込み型分泌発現ベクターpSL6PDI1(SP)Hsabx-AflIIのAflIIとXbaIの二重消化産物にライゲーションにより組込み、大腸菌DH5αへの形質転換を行うことによって、分泌キャリア蛋白質(PDI1(SP)-Hsabx)と変異型hTF(N413Q/N611Q)蛋白質の融合蛋白質の染色体単座組込み型発現ベクターであるpSL6PDI1(SP)Hsabx-hTF(N413QN611Q)(8749bp、図1)を作成した。
S.ポンベのロイシン・ウラシル要求性(leu1- ura4-)株(遺伝子型:h- leu1-32 ura4-D18)であるARC010株に対して、Latour法により、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子、およびppp20遺伝子の8遺伝子を削除したA8株(遺伝子型:h-leu1-32 psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1-D17 ppp80-D11)を作製した。A8株は、ロイシン要求性株であった。より詳細には、Latour法は、遺伝子削除断片(Latour断片: 両末端の相同組換え領域、それで挟まれたura4+マーカー遺伝子とOL(オーバーラップ配列)領域からなる)を分裂酵母ゲノム上の削除対象領域の上流または下流に一旦相同組換えで組込み、潜在株を作製した。次いで、該潜在株を5’-FOAを含む培地で培養し、組込まれたOL間で相同組換えを起こし、ura4+マーカー遺伝子を含む削除標的領域が脱落した遺伝子削除株をコロニーとして形成させた。得られた遺伝子削除株は、目的の遺伝子が削除されていることをPCRにより確認した。該方法では、ura4+マーカー遺伝子を含む外来遺伝子が残らないため、外来遺伝子を組込むことなく目的の遺伝子のみを削除できる上、ura4+マーカー遺伝子をリサイクルしながら繰り返し遺伝子削除が行える。各遺伝子を削除するためのLatour断片をPCRにより作製する際に用いたプライマーの塩基配列を表1に示す。
A8株に対して、Latour法により、Gas2遺伝子を削除したA8-gas2Δ株(遺伝子型:h-leu1-32 psp3-D13 isp6-D14 oma1-D10 ppp16-D20 fma2-D13 sxa2-D15 aap1-D17
ppp80-D11 gas2-D15)を作製した。得られた遺伝子削除株は、目的の遺伝子が削除されていることをPCRにより確認した。A8-gas2Δ株は、ロイシン要求性株であった。Gas2遺伝子を削除するためのLatour断片をPCRにより作製する際に用いたプライマーの塩基配列を表2に示す。
pSL6PDI1(SP)Hsabx-hTF(N413QN611Q)を制限酵素NotIで切断して線状化したベクター断片(6993bp)を調製し、該ベクター断片を、酢酸リチウム法を用いて、ロイシン要求性S.ポンベであるA8株またはA8-gas2Δ株を宿主として形質転換を行なった。形質転換処理後の菌体を、MMAプレートに塗布し、ロイシン要求性が相補されて形成したコロニーを組換え体クローンとして取得した。その後、PCRにより目的遺伝子が正しく導入されたことが確認されたクローンをポジティブクローン(hTF(N413Q/N611Q)発現株)として選択した。A8株およびA8-gas2Δ株にpSL6PDI1(SP)Hsabx-hTF(N413QN611Q)を導入した形質転換体をそれぞれA8-hTF(1)株およびA8-gas2Δ-hTF(1)株と命名した。
A8-hTF(1)株およびA8-gas2Δ-hTF(1)株を培養し、hTF(N413Q/N611Q)を分泌発現させた。具体的には、ガラス試験管を用いて5mLのYES中で約24時間ずつ起こし培養と前培養を行なった後、ガラス試験管を用いて5mLのYPD+MES培地(YPDに0.3MのMESバッファーを含有させた液体培地)(pH6.0)中で、32℃、3日間または5日間振盪培養した。培養終了時点における菌体密度(最終到達OD660)は、30~36であった。培養液から回収した培養液上清画分と菌体ペレットのそれぞれについて、SDS-PAGE解析を行い、hTF(N413Q/N611Q)が菌体内外に発現されたことを確認した(図示せず。)。また、A8-hTF(1)株およびA8-gas2Δ-hTF(1)株のいずれにおいても、3日間培養したものよりも5日間培養したもののほうが、菌体ペレット中のhTF(N413Q/N611Q)量が少なく、培養上清中のhTF(N413Q/N611Q)量が多かったことから、培養時間を延長することにより、hTF(N413Q/N611Q)の分泌量を増加させ、未分泌の菌体内に残留量を少なくできることがわかった。
A8-gas2Δ-hTF(1)株を培養し、hTF(N413Q/N611Q)を分泌発現させた。具体的には、ガラス試験管を用いて5mLのYES中で約24時間ずつ起こし培養と前培養を行なった後、24穴プレートを用いて5mLのアデニン含有YPD+MES培地(pH6.0)中で、32℃、3日間、4日間、または5日間振盪培養し、市販のキット(製品名:「Human Transferrin ELISA Quantitation Set」、Bethyl Laboratories社製)を用いてELISAを行い、培養終了後の培養上清中に分泌されたhTF(N413Q/N611Q)の蛋白質量を測定した。培養時間が長くなるほど、hTF(N413Q/N611Q)の分泌量は多くなった。また、培養5日間における培養上清当たりのhTF(N413Q/N611Q)の分泌量は、A8-gas2Δ-hTF(1)株が30~40mg/Lであった。
A8-hTF(1)株およびA8-gas2Δ-hTF(1)株を培養し、hTF(N413Q/N611Q)を高密度培養し、分泌発現させた。具体的には、5Lの培養スケールで、培養槽の通気速度、撹拌速度、流加培地の添加速度を制御しながら、培養液のpHを5.5~6.0に調節した条件で、初発培地と流加培養を行った。液体培地としては、アデニン含有の半合成培地(数%のBacto-yeast extract、グルコース、ビタミン類、ミネラル類、無機塩類など各合成成分)を用いた。グルコース濃度を2%に低く抑えながら、増殖速度や栄養消費速にあわせて培地を継続的に添加(流加)した。最終的には、菌体密度(OD660)は200~800程度になった。
なお、2016年01月12日に出願された日本特許出願2016-003606号の明細書、特許請求の範囲、要約書および図面の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
Claims (15)
- シゾサッカロミセス・ポンベを宿主とし、トランスフェリン遺伝子と、前記トランスフェリン遺伝子の上流域に存在し、前記宿主内で機能する分泌シグナルペプチドが結合したトランスフェリンを発現させる分泌シグナルペプチド遺伝子とを有し、前記宿主が本来有するGas2遺伝子が削除または不活性化されていることを特徴とする形質転換体。
- 前記トランスフェリン遺伝子が哺乳動物由来の天然型のTF蛋白質またはその改変蛋白質をコードする遺伝子である、請求項1に記載の形質転換体。
- 前記トランスフェリン遺伝子がヒト・トランスフェリンまたはその改変蛋白質をコードする遺伝子である、請求項1または2に記載の形質転換体。
- 前記トランスフェリン遺伝子が、哺乳動物が有する天然型のトランスフェリンをコードする遺伝子に変異が導入された変異トランスフェリン遺伝子であり、前記変異トランスフェリン遺伝子が、天然型トランスフェリンの少なくとも1箇所のN結合型糖鎖修飾部位であるアスパラギン残基が欠失または他のアミノ酸残基に置換された変異トランスフェリンをコードする遺伝子である、請求項1または2に記載の形質転換体。
- 前記トランスフェリン遺伝子が、ヒトが有する天然型のトランスフェリンをコードする遺伝子に変異が導入された変異トランスフェリン遺伝子である、請求項4に記載の形質転換体。
- 前記宿主が本来有する少なくとも1種のプロテアーゼ遺伝子が削除または不活性化されている、請求項1~5のいずれか一項に記載の形質転換体。
- 前記プロテアーゼ遺伝子が、メタロプロテアーゼ遺伝子群、セリンプロテアーゼ遺伝子群、システインプロテアーゼ遺伝子群およびアスパラギン酸プロテアーゼ遺伝子群からなる群から選ばれる遺伝子である、請求項6に記載の形質転換体。
- 前記プロテアーゼ遺伝子が、psp3遺伝子、isp6遺伝子、ppp53遺伝子、ppp16遺伝子、ppp22遺伝子、sxa2遺伝子、ppp80遺伝子およびppp20遺伝子からなる群から選ばれる遺伝子である、請求項6または7に記載の形質転換体。
- 前記トランスフェリン遺伝子が、分泌シグナルペプチドを含む分泌キャリア蛋白質をコードする遺伝子の下流に直接または間接的に連結されている、請求項1~8のいずれか一項に記載の形質転換体。
- 前記分泌キャリア蛋白質をコードする遺伝子が、前記宿主のPDI1の分泌シグナルペプチド部分をコードする遺伝子とヒトのPDI1のabドメイン部分をコードする遺伝子と前記宿主のPDI1のxドメイン部分をコードする遺伝子との融合遺伝子である、請求項9に記載の形質転換体。
- 請求項1~10のいずれか一項に記載の形質転換体を液体培地中で培養し、該液体培地からトランスフェリンを取得することを特徴とする、トランスフェリンの製造方法。
- 前記形質転換体を、pH5.5~6.5の液体培地中で培養する、請求項11に記載のトランスフェリンの製造方法。
- 前記形質転換体を、アデニンを含有する液体培地中で培養する、請求項11または12に記載のトランスフェリンの製造方法。
- 前記形質転換体を、菌体密度(OD660)が100以上になるまで培養した後、該液体培地からトランスフェリンを取得する、請求項11~13のいずれか一項に記載のトランスフェリンの製造方法。
- シゾサッカロミセス・ポンベを宿主とし、前記宿主内で機能する分泌シグナルペプチド遺伝子と、前記分泌シグナルペプチド遺伝子の下流に位置するトランスフェリン遺伝子とを組込むこと、および、前記宿主が本来有するGas2遺伝子を削除または不活性化することを特徴とする形質転換体の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP17738392.4A EP3404098B1 (en) | 2016-01-12 | 2017-01-10 | Transformant, and transferrin manufacturing method |
CN201780006400.5A CN109153985B (zh) | 2016-01-12 | 2017-01-10 | 转化体、以及转铁蛋白的制造方法 |
JP2017561112A JP6801675B2 (ja) | 2016-01-12 | 2017-01-10 | 形質転換体、およびトランスフェリンの製造方法 |
US16/033,832 US10465199B2 (en) | 2016-01-12 | 2018-07-12 | Transformant, and method for producing transferrin |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016003606 | 2016-01-12 | ||
JP2016-003606 | 2016-01-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/033,832 Continuation US10465199B2 (en) | 2016-01-12 | 2018-07-12 | Transformant, and method for producing transferrin |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017122638A1 true WO2017122638A1 (ja) | 2017-07-20 |
Family
ID=59311724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/000497 WO2017122638A1 (ja) | 2016-01-12 | 2017-01-10 | 形質転換体、およびトランスフェリンの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10465199B2 (ja) |
EP (1) | EP3404098B1 (ja) |
JP (1) | JP6801675B2 (ja) |
CN (1) | CN109153985B (ja) |
WO (1) | WO2017122638A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118460394B (zh) * | 2024-07-12 | 2024-09-24 | 通化安睿特生物制药股份有限公司 | 一种用于制备转铁蛋白的工程菌及其应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007015470A1 (ja) * | 2005-08-03 | 2007-02-08 | Asahi Glass Company, Limited | 酵母宿主、形質転換体および異種タンパク質の製造方法 |
JP2011125281A (ja) * | 2009-12-18 | 2011-06-30 | Asahi Glass Co Ltd | 形質転換体の培養方法および異種タンパク質の生産方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1575456B1 (en) * | 2002-12-20 | 2011-02-09 | Smith & Nephew, Inc. | High performance knee prostheses |
GB0329722D0 (en) * | 2003-12-23 | 2004-01-28 | Delta Biotechnology Ltd | Modified plasmid and use thereof |
CN104066841B (zh) * | 2012-01-23 | 2018-01-02 | 旭硝子株式会社 | 表达载体和蛋白质的制造方法 |
-
2017
- 2017-01-10 EP EP17738392.4A patent/EP3404098B1/en active Active
- 2017-01-10 CN CN201780006400.5A patent/CN109153985B/zh active Active
- 2017-01-10 WO PCT/JP2017/000497 patent/WO2017122638A1/ja active Application Filing
- 2017-01-10 JP JP2017561112A patent/JP6801675B2/ja not_active Expired - Fee Related
-
2018
- 2018-07-12 US US16/033,832 patent/US10465199B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007015470A1 (ja) * | 2005-08-03 | 2007-02-08 | Asahi Glass Company, Limited | 酵母宿主、形質転換体および異種タンパク質の製造方法 |
JP2011125281A (ja) * | 2009-12-18 | 2011-06-30 | Asahi Glass Co Ltd | 形質転換体の培養方法および異種タンパク質の生産方法 |
Non-Patent Citations (1)
Title |
---|
DE MEDINA-REDONDO, M. ET AL.: "beta(1,3)- Glucanosyl-Transferase Activity Is Essential for Cell Wall Integrity and Viability of Scyzosaccharomyces pombe", PLOS ONE, vol. 5, no. 11, November 2010 (2010-11-01), pages e14046, XP055510666 * |
Also Published As
Publication number | Publication date |
---|---|
US20180312853A1 (en) | 2018-11-01 |
JP6801675B2 (ja) | 2020-12-16 |
EP3404098A4 (en) | 2019-06-26 |
JPWO2017122638A1 (ja) | 2018-11-01 |
US10465199B2 (en) | 2019-11-05 |
CN109153985A (zh) | 2019-01-04 |
CN109153985B (zh) | 2022-02-22 |
EP3404098B1 (en) | 2021-06-30 |
EP3404098A1 (en) | 2018-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE37767E1 (en) | Highly stable recombinant yeasts for the production of recombinant proteins | |
JP2614215B2 (ja) | ピチア属酵母の部位選択的ゲノム修飾 | |
KR20180037237A (ko) | 프로모터 변이체 | |
CN103003438B (zh) | 减少蛋白质糖基化的方法和过程及其蛋白质 | |
US10174304B2 (en) | Expression vector and method for producing protein | |
JP5662363B2 (ja) | 難発現性タンパク質の分泌のためのタンパク質融合因子(tfp)を明らかにする方法、タンパク質融合因子(tfp)ライブラリーを製造する方法、及び難発現性タンパク質の組み換え的生産方法 | |
KR100490190B1 (ko) | 개량된 단백질 발현균주 | |
KR102501259B1 (ko) | 목적 단백질의 분비 생산능이 향상된 재조합 코리네박테리움 | |
WO2017122638A1 (ja) | 形質転換体、およびトランスフェリンの製造方法 | |
JP2855130B2 (ja) | 異種蛋白発現用融合酵母菌、該菌の製造方法および異種蛋白の製造方法 | |
Maleki et al. | High expression of methylotrophic yeast-derived recombinant human erythropoietin in a pH-controlled batch system | |
CN113056554A (zh) | 重组酵母细胞 | |
JP6515502B2 (ja) | 形質転換体の製造方法、形質転換体、および単座組込み用ベクターキット | |
US10351864B2 (en) | Cloning vector | |
JP2019088191A (ja) | 誘導型プロモーター | |
Lee et al. | Purification and glycosylation pattern of human L-ferritin in Pichia pastoris | |
US8703444B2 (en) | Pichia pastoris deficient in endogenous secreted protease | |
AU2021411733A1 (en) | Novel yeast strains | |
WO2013099881A1 (ja) | シゾサッカロミセス・ポンベゲノム縮小化株 | |
ES2730173T3 (es) | Promotor regulable | |
JPS63152982A (ja) | 新規dnaおよびその用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17738392 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017561112 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2017738392 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017738392 Country of ref document: EP Effective date: 20180813 |