WO2017121118A1 - 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用 - Google Patents

超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用 Download PDF

Info

Publication number
WO2017121118A1
WO2017121118A1 PCT/CN2016/096119 CN2016096119W WO2017121118A1 WO 2017121118 A1 WO2017121118 A1 WO 2017121118A1 CN 2016096119 W CN2016096119 W CN 2016096119W WO 2017121118 A1 WO2017121118 A1 WO 2017121118A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
ammonium polyphosphate
reaction
melamine
modified ammonium
Prior art date
Application number
PCT/CN2016/096119
Other languages
English (en)
French (fr)
Inventor
何燕岭
张秀芹
Original Assignee
中山康诺德新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中山康诺德新材料有限公司 filed Critical 中山康诺德新材料有限公司
Priority to US15/737,618 priority Critical patent/US10486970B2/en
Publication of WO2017121118A1 publication Critical patent/WO2017121118A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/38Condensed phosphates
    • C01B25/40Polyphosphates
    • C01B25/405Polyphosphates of ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/28Ammonium phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/322Ammonium phosphate
    • C08K2003/323Ammonium polyphosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the invention relates to the field of preparation of flame retardants, in particular to ammonium polyphosphate modification, in particular to a preparation method and application of ultra-low water-slip hydrolysis-resistant graft modified ammonium polyphosphate.
  • Ammonium polyphosphate product is a representative halogen-free phosphorus-nitrogen flame retardant, which has the advantages of low toxicity, environmental protection, high efficiency flame retardancy and low cost, and therefore is widely used in flame retardants.
  • ammonium polyphosphate its own problems have become increasingly prominent, easy to water-slip, poor hydrolysis resistance, general compatibility with resins, resulting in resin modified by traditional ammonium polyphosphate.
  • Serious decline in physical properties, applied to larger parts, products will produce gas lines, electrical components used for long-term contact with water vapor, precipitation problems, etc., to a certain extent, can not completely replace bromine antimony flame retardant, limiting Application of ammonium polyphosphate system flame retardant.
  • ammonium polyphosphate coating is mainly divided into 7 types of ammonium polyphosphate coating: the first one uses melamine formaldehyde resin to microcapsule ammonium polyphosphate, such as patent CN103980541A, CN103483873A, etc.; the second uses epoxy resin to ammonium polyphosphate Microcapsule treatment, such as CN101362836; third, surface treatment of ammonium polyphosphate with silicone oil, such as CN104479172A; fourth, grafting treatment of ammonium polyphosphate with organic amine, such as CN103382267A, CN103694742A, etc., fifth First, melamine formaldehyde resin microcapsules are used, followed by acrylate coating double-layer treatment, such as CN103554999A, CN103588992A; the sixth type is treated with urea-formaldehy
  • the first to sixth above are coated or grafted with ammonium polyphosphate itself, and the first, second, fifth and sixth microcapsules coated with ammonium polyphosphate have reduced viscosity and water solubility. If there is some help, but the initial decomposition temperature of the modified ammonium polyphosphate product after treatment will be reduced, there is the risk of early decomposition, color change, high temperature processing, and processing in high temperature application processing.
  • the surface wall sac will be destroyed, so that the bulk of the ammonium polyphosphate is exposed, and there is still a problem of poor water resistance, and at the same time, during the high temperature processing, the ammonium polyphosphate coated with the melamine formaldehyde resin may have a risk of releasing formaldehyde. It has an adverse effect on the performance and environment of the material.
  • the third type is coated with silicone oil, which can improve the viscosity, water solubility and dispersibility of the ammonium polyphosphate surface, but the coating has incomplete problems. At the same time, the silicone oil coating will be destroyed during the hot working shearing process, resulting in the late stage. The water resistance is not good.
  • the fourth kind is grafted with organic amine, the reaction activity of ammonium polyphosphate with high polymerization degree is weak, the grafting of organic amine is difficult, and the grafting is incomplete, the final modified ammonium polyphosphate can not reach the expected high temperature and high humidity. effect.
  • the seventh type introduces silane structure in the synthesis of ammonium polyphosphate. The process is complicated and takes a long time. At the same time, there is no guarantee that acid-free polyphosphate exists in the later products. The presence of small molecules also affects water solubility and high temperature resistance. Wet effect.
  • the object of the present invention is to overcome the above problems existing in the prior art, and to provide a preparation method and application of ultra-low water-slip hydrolysis-resistant graft modified ammonium polyphosphate.
  • the present invention uses ammonia water as an aminosilane hydrolyzing agent. Phosphorus pentoxide, dihydrogen phosphate, melamine as raw material to synthesize ammonium polyphosphate, add hydrolyzed aminosilane ammonia mixture, and then continue to raise the temperature. When the temperature drops to a certain temperature, melamine is added to maintain high temperature reaction for a certain period of time. The temperature is lowered to obtain ultra-low water-slip hydrolysis-resistant graft modified ammonium polyphosphate.
  • the method disclosed by the invention solves the following problems existing in the prior art: the prior art generally adopts the coating treatment of ammonium polyphosphate, the coating is incomplete, the hot processing shearing process is easy to break the capsule, and the wrapped object is exposed; or The introduction of silane groups during synthesis is complicated and time consuming. There are still a small amount of acid ammonium polyphosphate or short chain ammonium polyphosphate small molecules in the subsequent products, and there is still some water solubility, which can not really improve the product modification. High temperature and high humidity resistance in plastics. The present invention is directed to the above disadvantages, and obtains a modified ammonium polyphosphate product which is truly resistant to high temperature and high humidity.
  • a preparation method of ultra-low water-slip hydrolysis-resistant graft modified ammonium polyphosphate firstly, aminosilane is hydrolyzed under ammonia water, and the mixture after hydrolysis is added to the reaction of phosphorus pentoxide, diammonium phosphate and melamine.
  • the reaction takes place in the device, including the following steps:
  • the aminosilane is put into the reaction vessel, protected with nitrogen, and stirred, and the aqueous ammonia solution is added dropwise at room temperature. After the completion of the dropwise addition, the reaction temperature in the reaction vessel is controlled to be 25-100 ° C, and the reaction is 1- 10h;
  • the concentration of the aqueous ammonia solution in (1) is 25%, and the ratio of the molar ratio of water in the aqueous ammonia solution to the alkoxy group in the aminosilane is 1-1.5:1, the aminosilane and 2) the mass ratio of the phosphorus pentoxide is 0.01-0.15;
  • the ratio of the molar ratio of phosphorus pentoxide to diammonium hydrogen phosphate in (6) is 1-1.5:1, and the ratio of the mass of the melamine to the phosphorus pentoxide is 0.001-0.025;
  • the mass ratio of the melamine described in (7) to the phosphorus pentoxide described in (2) is from 0.01 to 0.1.
  • the method further includes the following steps:
  • the aminosilane is put into the reaction vessel, protected with nitrogen, and stirred, and the aqueous ammonia solution is added dropwise at room temperature. After the completion of the dropwise addition, the reaction temperature in the reaction vessel is controlled to be 40-80 ° C, and the reaction is 1- 6h;
  • the ratio of the molar ratio of water in the aqueous ammonia solution to the alkoxy group in the aminosilane in (1) is 1-1.1:1, and the aminosilane and the phosphorus pentoxide in (2)
  • the mass ratio is 0.02-0.1;
  • the ratio of the molar ratio of phosphorus pentoxide to diammonium hydrogen phosphate in (8) is 1-1.08:1, the ratio of the mass of the melamine to the phosphorus pentoxide is 0.003-0.015;
  • the mass ratio of the melamine described in (9) to the phosphorus pentoxide described in (2) is 0.03-0.06.
  • the aminosilane includes one or more of the following: ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N - ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltriethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropylmethyldiethoxysilane, anilinomethyltriethoxysilane, anilinomethyltrimethoxysilane , ⁇ -aminoethylaminopropyltrimethoxysilane, polyaminoalkyltrialkoxysilane.
  • the graft modified ammonium polyphosphate is applied to the modified PP flame retardant material, and the formulation comprises: 240 g grafting Modified ammonium polyphosphate, 687g homopoly PP, 3g internal lubricant EBS, 3g external lubricant PE wax, 2g antioxidant B215, 3g coupling agent NT201, 2-3g anti-drip agent TF1645, 60g high temperature resistant water-soluble Carbon forming agent.
  • the method further comprises: after mixing the components in the formulation according to the amount in the formulation, the mixture is put into a twin-screw extruder, and the host temperature is set to 160 ° C. 180 ° C, 190 ° C, 190 ° C, 200 ° C, 200 ° C, 190 ° C, 180 ° C, the host speed is 240-360 rpm.
  • the method further comprises the homopolymer PP having a melt index of 12.
  • the present invention uses two amino-containing grafts to graft ammonium polyphosphate in stages, so that the grafting is more thorough, greatly improving the water-slip property of the ammonium polyphosphate itself, and the modification after grafting.
  • the ammonium polyphosphate product is basically free from water slip.
  • the preparation method of the invention involves the introduction of an aminosilane structure, and the amino group in the aminosilane is involved in the synthesis reaction of ammonium polyphosphate to form a silane-containing ammonium polyphosphate product, which can improve the dispersibility and processability of the product, and at the same time, the amino group.
  • the introduction of silane increases the flame retardant efficiency of the product.
  • the invention uses an appropriate amount of ammonia to hydrolyze the aminosilane, which can accelerate the hydrolysis of the aminosilane, and the hydrolyzed mixture can be directly sprayed into the reaction equipment without introducing impurities, and the produced alcohol can pass through the nitrogen belt at a higher temperature. Out of the reaction equipment.
  • the hydrolyzed aminosilane self-polymerizes at a higher temperature to form a crosslinked ammonium polyphosphate product, which can reduce water solubility and improve hydrolysis resistance.
  • the present invention solves the problem that the traditional ammonium polyphosphate is easy to be slippery, is not resistant to hydrolysis, has poor processability, and has high water solubility, and broadens the application range of the ammonium polyphosphate product.
  • the ammonia flow rate is reduced to 0.5. M3/h, the temperature will continue to rise at this time.
  • 400 g of melamine was added from the feed port, and the oil temperature was set at 268 ° C for 3.5 h, then the temperature was lowered to below 80 ° C, and the graft-modified ammonium polyphosphate was obtained.
  • the flow rate is 10 m3 / h
  • the temperature rises to 275-278 ° C, at this time reduce the ammonia flow to 5 M3/h, the temperature will continue to rise at this time. If it rises to 320 °C, the temperature is controlled by switching nitrogen gas. When the temperature drops to 300 °C, the ammonia gas is switched, and the flow rate is still 5 m3/h.
  • reaction temperature is controlled at 65 ⁇ 70°C. Reaction time 4h; ready to use.
  • Thermogravimetric test The German Benz TG 209 F3 thermogravimetric analyzer was tested.
  • Particle size test British Malvern MS2000 laser particle size analyzer for testing.
  • Phosphorus content test Tianrui Instrument EDX1800BS environmental protection instrument for testing.
  • Silicon content test Send SGS test.
  • the above aminosilane may be selected from any of the following to produce a modified ammonium polyphosphate product: gamma-aminopropyltriethoxysilane, gamma-aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, N- ⁇ (aminoethyl)- ⁇ - Aminopropyltriethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropylmethyldiethoxysilane, anilinomethyltriethoxysilane, anilinomethyltrimethoxysilane, ⁇ -aminoethylaminopropyltrimethoxysilane, polyaminoalkyltrialkoxysilane.
  • Example 1 the graft modified ammonium polyphosphate obtained in Example 1-4 was applied to a modified PP flame retardant material, and the material formulation was as shown in Table 1.
  • the host temperature was set to 160 ° C, 180 ° C, 190 ° C, 190 ° C, 200 ° C, 200 ° C, 190 ° C, 180 ° C, and the host speed was 240-360 rpm.
  • the flame retardant material obtained by the above preparation was subjected to performance test, and the test results are shown in Table 2.
  • Performance testing method unit Formula 1 Formula 2 Formula 3 Formula 4 Formula 5 density ASTM D-792 g/cm 3 1.06 1.06 1.06 1.07 1.06 Melt index (230 °C / 2.16kg) ASTM D-955 g/10min 10.1 10.2 10.3 10.2 6.9 Heat distortion temperature (0.45MPa) ASTM D-648 °C 128 128 128 129 128 Tensile Strength ASTM D-638 MPa 29 30 29 30 27 Elongation at break ASTM D-638 % 53 54 54 55 46 Bending strength ASTM D-790 MPa 40 41 41 42 41 Flexural modulus ASTM D-790 MPa 2590 2592 2593 2600 2595 Izod notched impact strength ASTM D-256 J/m 26 26 25 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 Flame retard
  • ammonium polyphosphate was grafted in stages via two amino-containing grafts, and excess melamine was reacted with residual reactive groups, including ungrafted ammonium polyphosphate and acid or
  • the short-chain ammonium polyphosphate product eliminates the generation of water-soluble small molecules.
  • the ammonium polyphosphate in Examples 1-4 has a significant improvement in water resistance, and is verified by flame-retardant application test. The invention has no effect on the flame retardancy of the modified PP.
  • ammonium polyphosphate products By upgrading ammonium polyphosphate products, the use of ammonium polyphosphate products in pressure cooker covers and electrical components for long-term exposure to water vapor has been broadened. Due to the absence of low molecular weight, there is also a certain improvement in large parts, and the gas lines are obviously reduced or disappeared, making it possible for the ammonium polyphosphate system to completely replace bromine.
  • the present invention uses two amino-containing grafts to graft ammonium polyphosphate in stages to make the grafting more thorough, greatly improving the water-slip property of the ammonium polyphosphate itself, after grafting.
  • the modified ammonium polyphosphate product has basically no water slip phenomenon when it meets water.
  • the above method involves the introduction of an aminosilane structure, and the use of an amino group in the aminosilane to participate in the synthesis reaction of ammonium polyphosphate to form a silane-containing ammonium polyphosphate product can improve the dispersibility and processability of the product, and the introduction of the aminosilane increases.
  • the flame retardant efficiency of the product is the following method.
  • the late addition of excess melamine in addition to the graft modification of ammonium polyphosphate, it also reacts with the incompletely polymerized acidic ammonium polyphosphate to form a polyphosphate melamine salt, thereby eliminating water-soluble small molecules.
  • the water solubility of the product is reduced to a greater extent, and the water solubility is less than 0.1g/100ml; while the excess melamine and the formed melamine polyphosphate have no effect on product performance and flame retardancy during application.
  • the aminosilane is hydrolyzed by using an appropriate amount of ammonia water to accelerate the hydrolysis of the aminosilane, and the hydrolyzed mixture can be directly sprayed into the reaction equipment without introducing impurities, and the produced alcohol can be taken out at a higher temperature by nitrogen. Reaction equipment.
  • the hydrolyzed aminosilane self-polymerizes at a higher temperature to form a crosslinked ammonium polyphosphate product, which can reduce water solubility and improve hydrolysis resistance.
  • the invention solves the problem that the traditional ammonium polyphosphate is easy to be slippery, is not resistant to hydrolysis, has poor processability and high water solubility, and broadens the application range of the ammonium polyphosphate product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

一种超低水滑性耐水解接枝改性聚磷酸铵的制备方法,属于阻燃剂制备领域。氨水作为氨基硅烷水解剂,在以五氧化二磷,磷酸氢二胺,三聚氰胺为原料合成聚磷酸铵的初期,加入水解后的氨基硅烷氨水混合物,再继续升温反应,在温度降至特定温度下,加入三聚氰胺维持高温反应一定时间,降温得到超低水滑耐水解接枝改性聚磷酸铵。采用两种含氨基接枝物分阶段对聚磷酸铵进行更彻底接枝,接枝后的改性聚磷酸铵产品遇水基本无水滑现象,由于后期加入过量的三聚氰胺,致使除用于接枝改性聚磷酸铵之外,还与聚合不完全的酸性聚磷酸铵反应,使之形成聚磷酸三聚氰胺盐,杜绝了水溶性小分子的产生,更大程度降低了产品的水溶性。

Description

超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用
技术领域
本发明涉及阻燃剂制备领域,尤其是聚磷酸铵改性,具体涉及一种超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用。
背景技术
聚磷酸铵产品是一种具有代表性的无卤磷氮型阻燃剂,其具有低毒、环保、高效阻燃和低廉成本的优点,因此,被广泛应用于阻燃剂中。但随着聚磷酸铵被接受并广泛应用,其自身存在的问题已日渐凸显,易水滑性,耐水解性差,对树脂的相容性一般,致使经传统聚磷酸铵改性后的树脂的物性下降严重,应用于较大制件,产品会产生气纹,用于长期接触水蒸气的电器部件,存在析出的问题等等,在一定程度上并不能完全取代溴锑阻燃剂,限制了聚磷酸铵体系阻燃剂的应用。
近年来很多学者已关注到聚磷酸铵不耐水解的问题,并且做了大量的工作。目前研究主要分为7类对聚磷酸铵进行包覆处理:第一种用三聚氰胺甲醛树脂对聚磷酸铵进行微胶囊处理,如专利CN103980541A,CN103483873A等;第二种用环氧树脂对聚磷酸铵进行微胶囊处理,如CN101362836等;第三种用硅油对聚磷酸铵进行表面处理,如CN104479172A等;第四种用有机胺对聚磷酸铵进行接枝处理,如CN103382267A,CN103694742A等,第五种先用三聚氰胺甲醛树脂微胶囊,然后再进行丙烯酸酯包覆双层处理,如CN103554999A,CN103588992A;第六种用脲醛树脂对聚磷酸铵进行微胶囊处理,如CN104513407A等;第七种在聚磷酸铵合成过程中引入硅烷结构,如CN104098789A等。
上述第一到第六种是针对聚磷酸铵本身进行包覆或接枝处理,第一、第二、第五种和第六种所述微胶囊包覆对聚磷酸铵在降低粘度,水溶性等有一定的帮助,但同时处理后的改性聚磷酸铵产品的起始分解温度会降低,在高温应用加工中存在提前分解,色变,不能长时间耐高温加工的风险,并且在一定加工或处理条件下会破坏表面壁囊,使得聚磷酸铵本体部分裸露,仍存在耐水性差的问题,同时在高温加工过程中,用三聚氰胺甲醛树脂包覆的聚磷酸铵可能存在释放甲醛的风险,这对材料的性能、环境产生不良的影响。第三种用硅油包覆,可以改善聚磷酸铵表面的粘度,水溶性和分散性,但包覆存在不完全的问题,同时热加工剪切过程中,硅油包覆层会被破坏,导致后期的耐水性不好。第四种用有机胺接枝,高聚合度聚磷酸铵的反应活性已较弱,有机胺接枝存在困难,接枝不完全情况,最终的改性聚磷酸铵不能达到预期耐高温高湿的效果。第七种在聚磷酸铵合成时引入硅烷结构,工艺较复杂,耗时较长,同时不能保证后期产品中无酸式聚磷酸盐存在,小分子的存在,同样会影响水溶性和耐高温高湿的效果。
发明内容
本发明的目的在于克服现有技术存在的以上问题,提供一种超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用,本发明是以氨水作为氨基硅烷水解剂,在以五氧化二磷,磷酸氢二胺,三聚氰胺为原料合成聚磷酸铵的初期,加入水解后的氨基硅烷氨水混合物,再继续升温反应,在温度降至特定温度下,加入三聚氰胺维持高温反应一定时间,降温得到超低水滑耐水解接枝改性聚磷酸铵。
本发明公开的方法解决了现在技术中存在的以下问题:现有技术一般采用对聚磷酸铵包覆处理,存在包覆不完全,热加工剪切处理容易破囊,使被包裹物裸露;或者在合成时引入硅烷基团,工艺复杂,耗时较长,后续产品仍存在少量酸式聚磷酸铵或短链的聚磷酸铵小分子,仍有一定水溶性存在,不能真正改善产品在改性塑料中耐高温高湿的效果。而本发明针对以上缺点,获得一种真正耐高温高湿的改性聚磷酸铵产品。
为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:
一种超低水滑性耐水解接枝改性聚磷酸铵的制备方法,首先氨基硅烷在氨水条件下水解,水解后的混合物加入至已投入五氧化二磷、磷酸氢二铵和三聚氰胺的反应设备中进行反应,包括以下步骤:
(1)把氨基硅烷投入反应釜中,用氮气保护,并且进行搅拌,在室温下滴加氨水溶液,滴加完毕后,控制所述反应釜中的反应温度为25-100℃,反应1-10h;
(2)将五氧化二磷、磷酸氢二铵和三聚氰胺加入至反应设备中,调节反应设备的转速,用氮气保护,加热至60-150℃,再调快转速,并加大氮气流量,在所述反应设备的上方均匀缓慢的喷洒(1)中获得的制备液,喷洒完毕后,保持所述反应设备的温度为60-150℃,0.1-6h后,开始切换通入氨气,所述反应设备中的温度升至250-320℃,如果温度高于320℃,切换通入氮气,待温度降至300℃以下,再切换通入氨气,此时的氨气流量小于开始通入氨气的流量;
(3)待所述反应设备的温度下降至280℃,从投料口加入三聚氰胺,并设定所述反应设备的油温为220-280℃,保温1-6h,降温,出料,获得接枝改性聚磷酸铵;
其中,(1)中所述氨水溶液的浓度为25%,所述氨水溶液中的水与所述氨基硅烷中的烷氧基的摩尔之比为1-1.5:1,所述氨基硅烷与(2)中所述五氧化二磷的质量之比为0.01-0.15;
(6)中所述五氧化二磷与磷酸氢二铵的摩尔之比为1-1.5:1,所述三聚氰胺与五氧化二磷的质量之比为0.001-0.025;
(7)中所述的三聚氰胺与(2)中所述的五氧化二磷的质量比为0.01-0.1。
在本发明的一个较佳实施例中,进一步包括,包括以下步骤:
(1)把氨基硅烷投入反应釜中,用氮气保护,并且进行搅拌,在室温下滴加氨水溶液,滴加完毕后,控制所述反应釜中的反应温度为40-80℃,反应1-6h;
(2)将五氧化二磷、磷酸氢二铵和三聚氰胺加入至反应设备中,调节反应设备的转速至10-40r/min,用氮气保护,氮气的流量为0.1-6m3/h,加热至70-120℃,再调快转速至40-60 r/min,并加大氮气流量至0.3-15m3/h,在所述反应设备的上方均匀缓慢的喷洒(1)中获得的制备液,喷洒完毕后,保持所述反应设备的温度为70-120℃,0.5-3h后,开始切换通入氨气,氨气的流量为1-15m3/h,所述反应设备中的温度升至250-320℃,如果温度高于320℃,切换通入氮气,待温度降至300℃以下,再切换通入氨气,氨气的流量为0.1-6m3/h,并且此时的氨气流量小于开始通入氨气的流量;
(3)待所述反应设备的温度下降至280℃,从投料口加入三聚氰胺,并设定所述反应设备的油温为240-270℃,保温2-5h,降温至25-180℃,出料,获得接枝改性聚磷酸铵;
其中,(1)中所述氨水溶液中的水与所述氨基硅烷中的烷氧基的摩尔之比为1-1.1:1,所述氨基硅烷与(2)中所述五氧化二磷的质量之比为0.02-0.1;
(8)中所述五氧化二磷与磷酸氢二铵的摩尔之比为1-1.08:1,所述三聚氰胺与五氧化二磷的质量之比为0.003-0.015;
(9)中所述的三聚氰胺与(2)中所述的五氧化二磷的质量比为0.03-0.06。
在本发明的一个较佳实施例中,进一步包括,所述氨基硅烷包括以下中的一种或几种:γ-氨丙基三乙氧基硅烷,γ-氨丙基三甲氧基硅烷,N-β(氨乙基)-γ-氨丙基三甲氧基硅烷,N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷,N-β(氨乙基)-γ-氨丙基三乙氧基硅烷,N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷,苯胺基甲基三乙氧基硅烷,苯胺基甲基三甲氧基硅烷,γ-氨乙基氨丙基三甲氧基硅烷,多氨基烷基三烷氧基硅烷。
在本发明的一个较佳实施例中,进一步包括,一种接枝改性聚磷酸铵的应用,将接枝改性聚磷酸铵应用于改性PP阻燃材料中,配方包括:240g接枝改性聚磷酸铵,687g均聚PP,3g内润滑剂EBS,3g外润滑剂PE蜡,2g抗氧剂B215,3g偶联剂NT201,2-3g抗滴落剂TF1645,60g耐高温不水溶成炭剂。
在本发明的一个较佳实施例中,进一步包括,将所述配方中的各组分按照配方中的量混合后,将混合物投入至双螺杆挤出机中,主机温度设定为:160℃、180℃、190℃、190℃、200℃、200℃、190℃、180℃,主机转速为240-360rpm。
在本发明的一个较佳实施例中,进一步包括,所述均聚PP的熔融指数为12。
本发明的有益效果是:
其一、本发明采用两种含氨基接枝物分阶段对聚磷酸铵进行接枝,使接枝更彻底,很大程度的改善了聚磷酸铵本身的水滑性问题,接枝后的改性聚磷酸铵产品遇水基本无水滑现象。
其二、本发明的制备方法中涉及氨基硅烷结构的引入,利用氨基硅烷中氨基参与到聚磷酸铵合成反应中生成含硅烷的聚磷酸铵产品,可提高产品的分散性和加工性,同时氨基硅烷的引入,增加了产品的阻燃效率。
其三、本发明的制备方法中由于后期加入过量的三聚氰胺,致使除用于接枝改性聚磷酸铵之外,还与聚合不完全的酸性聚磷酸铵反应,使之形成聚磷酸三聚氰胺盐,杜绝了水溶性小分子的产生,更大程度降低了产品的水溶性,水溶性小于0.1g/100ml;同时过量的三聚氰胺及生成的三聚氰胺聚磷酸盐在应用过程中对产品性能及阻燃无影响。
其四、本发明采用适量氨水水解氨基硅烷,可加速氨基硅烷水解,同时水解后的混合物可直接喷洒入反应设备,不会引入杂质,产生的醇类物质可在较高温度下,通过氮气带出反应设备。
其五、水解后的氨基硅烷,在较高温度下自聚,形成交联的聚磷酸铵产品,可降低水溶性及提高耐水解性能。
其六、本发明物解决了传统聚磷酸铵易水滑,不耐水解,加工性不好,水溶性高的问题,拓宽了聚磷酸铵产品的应用范围。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附表详细说明如后。本发明的具体实施方式由以下实施例及其附表详细给出。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)氨基硅烷水解
把960g的γ-氨丙基三乙氧基硅烷投入到2L反应釜中,氮气保护,搅拌条件下,室温下,缓慢滴加315g浓度为25%的氨水溶液,40min滴加完毕,控制反应温度65-70℃,反应时间3h;待用。
(2)改性聚磷酸铵合成
称取12kg的五氧化二磷,10.94kg的磷酸氢二胺,50g三聚氰胺加入50L的捏合机中,调转速为30r/min,氮气流量0.5m3/h,加热至80-82℃,调快转速至50 r/min,并加大氮气流量至1 m3/h,从捏合机上盖底部喷头均匀缓慢喷洒(1)制备液,控制速度30min喷洒完毕,保持釜温95-100℃ 0.5h,之后,开始切换至氨气,流量为3 m3/h,温度升至275-278℃,此时减小氨气流量至0.5 m3/h,此时温度仍会继续上升。待温度下降至280℃,从投料口加入400g的三聚氰胺,并设定油温268℃,保温3.5h,之后降温至80℃以下,出料,获得接枝改性聚磷酸铵。
将获得的接枝改性聚磷酸铵产品用气流粉碎机粉碎,对产品进行理化性质测试:水分0.1%,白度93%,粒径D50=9.64μm,D98=23.69μm,水溶性<0.08g/100ml水,磷含量为30.5%,硅含量为0.35%,起始分解温度≥265℃的双层接枝的改性聚磷酸铵产品1。
实施例2
(1)氨基硅烷水解
把9.6kg的γ-氨丙基三乙氧基硅烷投入到20L反应釜中,氮气保护,搅拌条件下,室温下,缓慢滴加3.15kg浓度为25%的氨水溶液,1h滴加完毕,控制反应温度65-70℃,反应时间4h;待用。
(2)改性聚磷酸铵合成
称取120kg的五氧化二磷,109.4kg的磷酸氢二胺,500g三聚氰胺加入500L的捏合机中,调转速为30r/min,氮气流量5m3/h,加热至80-82℃,调快转速至50 r/min,并加大氮气流量至10 m3/h,从捏合机上盖底部喷头均匀缓慢喷洒(1)制备液,控制速度1h喷洒完毕,保持釜温95-100℃ 1h,之后,开始切换至氨气,流量为10 m3/h,温度升至275-278℃,此时减小氨气流量至5 m3/h,此时温度仍会继续上升,若上升至320℃,采用切换氮气控温,待温度下降至300℃,再切换氨气,流量仍为5 m3/h。
待温度下降至280℃,从投料口加入4kg的三聚氰胺,并设定油温270℃,保温4h,之后降温至80℃以下,出料。
将上述产品用气流粉碎机粉碎,测得水分0.1%,白度94%,粒径D50=9.89μm,D98=24.76μm,水溶性<0.05g/100ml水,本实施例中获得的产品:磷含量为30.4%,硅含量为0.349%,起始分解温度≥268℃的双层接枝的改性聚磷酸铵产品2。
实施例3
(1)氨基硅烷水解
把9.7kg的γ-氨丙基三甲氧基硅烷投入到20L反应釜中,氮气保护,搅拌条件下,室温下,缓慢滴加3.94kg浓度为25%的氨水溶液,1h滴加完毕,控制反应温度65~70℃,反应时间4h;待用。
(2)改性聚磷酸铵合成
称取120kg的五氧化二磷,109.4kg的磷酸氢二胺,450g三聚氰胺加入500L的捏合机中,调转速为30r/min,氮气流量5m3/h,加热至80~82℃,调快转速至50 r/min,并加大氮气流量至10 m3/h,从捏合机上盖底部喷头均匀缓慢喷洒(1)制备液,控制速度1h喷洒完毕,保持釜温95-100℃ 1h,之后,开始切换至氨气,流量为10 m3/h,温度升至275-278℃,此时减小氨气流量至5 m3/h,此时温度仍会继续上升,若上升至320℃,采用切换氮气控温,待温度下降至300℃,再切换氨气,流量仍为5 m3/h。待温度下降至280℃,从投料口加入4.5kg的三聚氰胺,并设定油温270℃,保温4h,之后降温至80℃以下,出料。
产品用气流粉碎机粉碎。水分0.1%,白度92%,粒径D50=9.86μm,D98=24.84μm,水溶性<0.04g/100ml水,磷含量为30.3%,硅含量为0.435%,起始分解温度≥268℃的双层接枝的改性聚磷酸铵产品3。
实施例4
(1)氨基硅烷水解
把12.0kg的苯胺甲基三乙氧基硅烷投入到20L反应釜中,氮气保护,搅拌条件下,室温下,缓慢滴加3.25kg氨水溶液,1h滴加完毕,控制反应温度65~70℃,反应时间4h;待用。
(2)改性聚磷酸铵合成
称取120kg的五氧化二磷,109.4kg的磷酸氢二胺,450g三聚氰胺加入500L的捏合机中,调转速为30r/min,氮气流量5m3/h,加热至80-82℃,调快转速至50 r/min,并加大氮气流量至10 m3/h,从捏合机上盖底部喷头均匀缓慢喷洒(1)制备液,控制速度1h喷洒完毕,保持釜温95-100℃ 1h,之后,开始切换至氨气,流量为10 m3/h,温度升至275-278℃,此时减小氨气流量至5 m3/h,此时温度仍会继续上升,若上升至320℃,采用切换氮气控温,待温度下降至300℃,再切换氨气,流量仍为5 m3/h。待温度下降至280℃,从投料口加入4.5kg的三聚氰胺,并设定油温270℃,保温4h,之后降温至80℃以下,出料。
产品用气流粉碎机粉碎,测得产品的水分0.1%,白度94%,粒径D50=9.96μm,D98=24.97μm,水溶性<0.03g/100ml水,磷含量为30.6%,硅含量为0.359%,起始分解温度≥268℃的双层接枝的改性聚磷酸铵产品4。
在上述实施例1-4中,对产品进行性能测试,所用到的仪器为:
残留水分:瑞士梅特勒-托利多MJ33快速水分测定仪进行测试;
热失重测试:德国耐驰TG 209 F3热重分析仪进行测试。
白度测试:上海悦丰SBDY-1白度计进行测试。
粒径测试:英国马尔文MS2000 激光粒度仪进行测试。
磷含量测试:天瑞仪器EDX1800BS环保仪进行测试。
硅含量测试:外送SGS测试。
在其它实施例中,上述氨基硅烷选择以下中的任意一种都能制备出改性聚磷酸铵产品:γ-氨丙基三乙氧基硅烷,γ-氨丙基三甲氧基硅烷,N-β(氨乙基)-γ-氨丙基三甲氧基硅烷,N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷,N-β(氨乙基)-γ-氨丙基三乙氧基硅烷,N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷,苯胺基甲基三乙氧基硅烷,苯胺基甲基三甲氧基硅烷,γ-氨乙基氨丙基三甲氧基硅烷,多氨基烷基三烷氧基硅烷。
实施例5
本实施例中,将实施例1-4中获得的接枝改性聚磷酸铵应用到改性PP阻燃材料中,材料配方如表1中所示。
表1 实施例5中材料配方表
材 料 配方1 配方2 配方3 配方4 配方5
均聚PP(MI=12) 687g 687g 687g 687g 687g
内润滑剂EBS 3g 3g 3g 3g 3g
外润滑剂PE蜡 3g 3g 3g 3g 3g
抗氧剂B215 2g 2g 2g 2g 2g
偶联剂NT201 3g 3g 3g 3g 3g
抗滴落剂 TF1645 2g 2g 2g 3g 3g
耐高温不水溶成碳剂 60g 60g 60g 60g 60g
实施例1 240g - - - -
实施例2 - 240g - - -
实施例3 - - 240g - -
实施例4 - - - 240g -
对比例(传统II型APP) 240g
将上述配方中的各组分按照配方中的量混合后,将混合物投入至双螺杆挤出机中,加纤口前剪切块:45°/5/32 五个, 30°/7/48两个,45°/5/32L一个。
主机温度设定为:160℃、180℃、190℃、190℃、200℃、200℃、190℃、180℃,主机转速为240-360rpm。
将上述制备获得的阻燃材料进行性能测试,测试结果如表2中所示。
表2 性能测试结果表
性 能 测试方法 单位 配方1 配方2 配方3 配方4 配方5
密度 ASTM D-792 g/cm3 1.06 1.06 1.06 1.07 1.06
熔融指数(230 ℃ /2.16kg) ASTM D-955 g/10min 10.1 10.2 10.3 10.2 6.9
热变形温度(0.45MPa) ASTM D-648 128 128 128 129 128
拉伸强度 ASTM D-638 MPa 29 30 29 30 27
断裂伸长率 ASTM D-638 % 53 54 54 55 46
弯曲强度 ASTM D-790 MPa 40 41 41 42 41
弯曲模量 ASTM D-790 MPa 2590 2592 2593 2600 2595
Izod 缺口冲击强度 ASTM D-256 J/m 26 26 25 26 26
阻燃性能 UL 94 1.5mm V-0 V-0 V-0 V-0 V-0
3.0mm V-0 V-0 V-0 V-0 V-0
GWIT 3.0mm 750 ℃ 750 ℃ 750 ℃ 750 ℃ 750 ℃
GWFI 3.0mm 960 ℃ 960 ℃ 960 ℃ 960 ℃ 960 ℃
70 ℃×168h水煮试验后
的阻燃性能
UL746C 1.5mm V-0 V-0 V-0 V-0 NG
3.0mm V-0 V-0 V-0 V-0 NG
湿度85/温度85℃测试 连续168h - 无析出 无析出 无析出 无析出 24h 后析出
由表2中的结果可以看出,在PP应用中,实施例1-4的接枝改性聚磷酸铵均可较好的通过70℃×168h水煮测试和湿度85/温度85℃测试,对比例中,则无法通过70℃×168h水煮测试和湿度85/温度85℃测试。
在实施例1-4中,经过两种含氨基接枝物分阶段对聚磷酸铵进行接枝,过量的三聚氰胺,与残留的活性基团反应,包括未接枝完全的聚磷酸铵和酸性或短链的聚磷酸铵产品,杜绝水溶小分子的产生,实施例1-4中的聚磷酸铵在耐水性方面有了显著的提高,同时通过阻燃应用测试验证,在同等添加分量下,本发明物对改性PP阻燃性能未有影响。
通过对聚磷酸铵产品进行了升级,拓宽了聚磷酸铵产品在高压锅盖及用于长期接触水蒸气的电器部件上的应用。由于无低分子存在,在大制件方面也有一定的改善,气纹明显减少或消失,使未来聚磷酸铵体系完全取代溴锑成为了可能。
综上上述,本发明采用两种含氨基接枝物分阶段对聚磷酸铵进行接枝,使接枝更彻底,很大程度的改善了聚磷酸铵本身的水滑性问题,接枝后的改性聚磷酸铵产品遇水基本无水滑现象。
上述方法中涉及氨基硅烷结构的引入,利用氨基硅烷中氨基参与到聚磷酸铵合成反应中生成含硅烷的聚磷酸铵产品,可提高产品的分散性和加工性,同时氨基硅烷的引入,增加了产品的阻燃效率。
并且,由于后期加入过量的三聚氰胺,致使除用于接枝改性聚磷酸铵之外,还与聚合不完全的酸性聚磷酸铵反应,使之形成聚磷酸三聚氰胺盐,杜绝了水溶性小分子的产生,更大程度降低了产品的水溶性,水溶性小于0.1g/100ml;同时过量的三聚氰胺及生成的三聚氰胺聚磷酸盐在应用过程中对产品性能及阻燃无影响。
在上述方法中采用适量氨水水解氨基硅烷,可加速氨基硅烷水解,同时水解后的混合物可直接喷洒入反应设备,不会引入杂质,产生的醇类物质可在较高温度下,通过氮气带出反应设备。水解后的氨基硅烷,在较高温度下自聚,形成交联的聚磷酸铵产品,可降低水溶性及提高耐水解性能。解决了传统聚磷酸铵易水滑,不耐水解,加工性不好,水溶性高的问题,拓宽了聚磷酸铵产品的应用范围。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (6)

  1. 一种超低水滑性耐水解接枝改性聚磷酸铵的制备方法,其特征在于,首先氨基硅烷在氨水条件下水解,水解后的混合物加入至已投入五氧化二磷、磷酸氢二铵和三聚氰胺的反应设备中进行反应,包括以下步骤:
    (1)把氨基硅烷投入反应釜中,用氮气保护,并且进行搅拌,在室温下滴加氨水溶液,滴加完毕后,控制所述反应釜中的反应温度为25-100℃,反应1-10h;
    (2)将五氧化二磷、磷酸氢二铵和三聚氰胺加入至反应设备中,调节反应设备的转速,用氮气保护,加热至60-150℃,再调快转速,并加大氮气流量,在所述反应设备的上方均匀缓慢的喷洒(1)中获得的制备液,喷洒完毕后,保持所述反应设备的温度为60-150℃,0.1-6h后,开始切换通入氨气,所述反应设备中的温度升至250-320℃,如果温度高于320℃,切换通入氮气,待温度降至300℃以下,再切换通入氨气,此时的氨气流量小于开始通入氨气的流量;
    (3)待所述反应设备的温度下降至280℃,从投料口加入三聚氰胺,并设定所述反应设备的油温为220-280℃,保温1-6h,降温,出料,获得接枝改性聚磷酸铵;
    其中,(1)中所述氨水溶液的浓度为25%,所述氨水溶液中的水与所述氨基硅烷中的烷氧基的摩尔之比为1-1.5:1,所述氨基硅烷与(2)中所述五氧化二磷的质量之比为0.01-0.15;
    (2)中所述五氧化二磷与磷酸氢二铵的摩尔之比为1-1.5:1,所述三聚氰胺与五氧化二磷的质量之比为0.001-0.025;
    (3)中所述的三聚氰胺与(2)中所述的五氧化二磷的质量比为0.01-0.1。
  2. 根据权利要求1所述的超低水滑性耐水解接枝改性聚磷酸铵的制备方法,其特征在于,包括以下步骤:
    (1)把氨基硅烷投入反应釜中,用氮气保护,并且进行搅拌,在室温下滴加氨水溶液,滴加完毕后,控制所述反应釜中的反应温度为40-80℃,反应1-6h;
    (2)将五氧化二磷、磷酸氢二铵和三聚氰胺加入至反应设备中,调节反应设备的转速至10-40r/min,用氮气保护,氮气的流量为0.1-6m3/h,加热至70-120℃,再调快转速至40-60 r/min,并加大氮气流量至0.3-15m3/h,在所述反应设备的上方均匀缓慢的喷洒(1)中获得的制备液,喷洒完毕后,保持所述反应设备的温度为70-120℃,0.5-3h后,开始切换通入氨气,氨气的流量为1-15m3/h,所述反应设备中的温度升至250-320℃,如果温度高于320℃,切换通入氮气,待温度降至300℃以下,再切换通入氨气,氨气的流量为0.1-6m3/h,并且此时的氨气流量小于开始通入氨气的流量;
    (3)待所述反应设备的温度下降至280℃,从投料口加入三聚氰胺,并设定所述反应设备的油温为240-270℃,保温2-5h,降温至25-180℃,出料,获得接枝改性聚磷酸铵;
    其中,(1)中所述氨水溶液中的水与所述氨基硅烷中的烷氧基的摩尔之比为1-1.1:1,所述氨基硅烷与(2)中所述五氧化二磷的质量之比为0.02-0.1;
    (4)中所述五氧化二磷与磷酸氢二铵的摩尔之比为1-1.08:1,所述三聚氰胺与五氧化二磷的质量之比为0.003-0.015;
    (5)中所述的三聚氰胺与(2)中所述的五氧化二磷的质量比为0.03-0.06。
  3. 根据权利要求2所述的超低水滑性耐水解接枝改性聚磷酸铵的制备方法,其特征在于,所述氨基硅烷包括以下中的一种或几种:γ-氨丙基三乙氧基硅烷,γ-氨丙基三甲氧基硅烷,N-β(氨乙基)-γ-氨丙基三甲氧基硅烷,N-β(氨乙基)-γ-氨丙基甲基二甲氧基硅烷,N-β(氨乙基)-γ-氨丙基三乙氧基硅烷,N-β(氨乙基)-γ-氨丙基甲基二乙氧基硅烷,苯胺基甲基三乙氧基硅烷,苯胺基甲基三甲氧基硅烷,γ-氨乙基氨丙基三甲氧基硅烷,多氨基烷基三烷氧基硅烷。
  4. 一种接枝改性聚磷酸铵的应用,其由权利要求1-3任意一项中所述的超低水滑性耐水解接枝改性聚磷酸铵的制备方法制备而成,其特征在于,将接枝改性聚磷酸铵应用于改性PP阻燃材料中,配方包括:240g接枝改性聚磷酸铵,687g均聚PP,3g内润滑剂EBS,3g外润滑剂PE蜡,2g抗氧剂B215,3g偶联剂NT201,2-3g抗滴落剂TF1645,60g耐高温不水溶成炭剂。
  5. 根据权利要求4所述的一种接枝改性聚磷酸铵的应用,其特征在于,将所述配方中的各组分按照配方中的量混合后,将混合物投入至双螺杆挤出机中,主机温度设定为:160℃、180℃、190℃、190℃、200℃、200℃、190℃、180℃,主机转速为240-360rpm。
  6. 根据权利要求4所述的一种接枝改性聚磷酸铵的应用,其特征在于,所述均聚PP的熔融指数为12。
PCT/CN2016/096119 2016-01-14 2016-08-20 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用 WO2017121118A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/737,618 US10486970B2 (en) 2016-01-14 2016-08-20 Method for preparation of graft modified ammonium polyphosphate with ultra-low hydroplaning and resistance to hydrolysis and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610029669.2 2016-01-14
CN201610029669.2A CN105482160B (zh) 2016-01-14 2016-01-14 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用

Publications (1)

Publication Number Publication Date
WO2017121118A1 true WO2017121118A1 (zh) 2017-07-20

Family

ID=55669451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/096119 WO2017121118A1 (zh) 2016-01-14 2016-08-20 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用

Country Status (3)

Country Link
US (1) US10486970B2 (zh)
CN (1) CN105482160B (zh)
WO (1) WO2017121118A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816218A1 (en) * 2019-10-30 2021-05-05 Hamilton Sundstrand Corporation A polymer-ceramic composite and methods of making the same
CN116333323A (zh) * 2023-05-17 2023-06-27 重庆科聚孚新材料有限责任公司 一种高耐温和析出的化学封端三聚氰胺聚磷酸盐及其制备方法和装置和在阻燃尼龙中的应用

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105482160B (zh) * 2016-01-14 2017-06-27 中山康诺德新材料有限公司 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用
CN108059731B (zh) * 2017-12-12 2019-06-14 滨海雅克化工有限公司 一种不易水解的聚磷酸铵阻燃剂的制备方法
CN111138713A (zh) * 2019-12-30 2020-05-12 上海普利特复合材料股份有限公司 一种硬脂胺改性聚磷酸铵及其制备方法和应用
CN113580293A (zh) * 2021-07-27 2021-11-02 菏泽奕普新材料有限公司 一种高分散改性三聚氰胺聚磷酸盐阻燃剂及其制备方法和应用
CN114455887B (zh) * 2022-03-25 2023-01-17 中咨数据有限公司 一种高强沥青混凝土及其制备方法
CN115159487B (zh) * 2022-08-05 2023-08-08 重庆消防安全技术研究服务有限责任公司 一种利用废弃干粉灭火剂制备聚磷酸铵的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101235221A (zh) * 2008-02-20 2008-08-06 北京理工大学 氨基硅烷偶联剂改性聚磷酸铵的制备方法
CN101597044A (zh) * 2009-07-15 2009-12-09 广东聚石化学股份有限公司 高聚合度窄分子量分布的结晶ⅱ型聚磷酸铵的制备方法
CN102167304A (zh) * 2011-02-16 2011-08-31 普塞呋(清远)磷化学有限公司 一种高纯度高聚合度水不溶性结晶ⅱ型聚磷酸铵的制备方法
JP5146644B2 (ja) * 2007-06-19 2013-02-20 信越化学工業株式会社 ポリリン酸アンモニウムの改質方法
CN104098789A (zh) * 2014-05-12 2014-10-15 杭州捷尔思阻燃化工有限公司 一种在主链中含硅烷结构的多聚磷酸铵及其制备方法与应用
CN105482160A (zh) * 2016-01-14 2016-04-13 中山康诺德新材料有限公司 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3607019A (en) * 1969-03-10 1971-09-21 Fmc Corp Process for producing a sodium polyphosphate from an aqueous orthophosphate solution
US3723074A (en) * 1971-01-18 1973-03-27 Monsanto Co Ammonium polyphosphate materials and processes for preparing the same
GB1520876A (en) 1974-08-20 1978-08-09 Rolls Royce Surface coating for machine elements having rubbing surfaces
KR100190204B1 (ko) * 1991-01-10 1999-06-01 고토 기치 2형 폴리인산암모늄 미립자의 제조방법
EP0637608A3 (en) * 1993-08-03 1996-12-18 Nissan Chemical Ind Ltd Composition of flame retardant thermoplastic resin.
US5700575A (en) * 1993-12-27 1997-12-23 Chisso Corporation Water-insoluble ammonium polyphosphate particles
CN101987728A (zh) * 2010-11-15 2011-03-23 华东理工大学 一种五氧化二磷原料路线制备结晶v型聚磷酸铵的方法
CN102259843B (zh) * 2011-06-16 2013-02-13 华东理工大学 一种低水溶性结晶ⅰ型聚磷酸铵的制备方法
CN103086342B (zh) * 2013-01-15 2014-10-29 贵州开磷(集团)有限责任公司 一种高纯度偏磷酸铵合成工艺
CN104401952B (zh) * 2014-10-16 2017-08-01 云南省化工研究院 一种分段合成结晶ii型聚磷酸铵的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5146644B2 (ja) * 2007-06-19 2013-02-20 信越化学工業株式会社 ポリリン酸アンモニウムの改質方法
CN101235221A (zh) * 2008-02-20 2008-08-06 北京理工大学 氨基硅烷偶联剂改性聚磷酸铵的制备方法
CN101597044A (zh) * 2009-07-15 2009-12-09 广东聚石化学股份有限公司 高聚合度窄分子量分布的结晶ⅱ型聚磷酸铵的制备方法
CN102167304A (zh) * 2011-02-16 2011-08-31 普塞呋(清远)磷化学有限公司 一种高纯度高聚合度水不溶性结晶ⅱ型聚磷酸铵的制备方法
CN104098789A (zh) * 2014-05-12 2014-10-15 杭州捷尔思阻燃化工有限公司 一种在主链中含硅烷结构的多聚磷酸铵及其制备方法与应用
CN105482160A (zh) * 2016-01-14 2016-04-13 中山康诺德新材料有限公司 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3816218A1 (en) * 2019-10-30 2021-05-05 Hamilton Sundstrand Corporation A polymer-ceramic composite and methods of making the same
CN116333323A (zh) * 2023-05-17 2023-06-27 重庆科聚孚新材料有限责任公司 一种高耐温和析出的化学封端三聚氰胺聚磷酸盐及其制备方法和装置和在阻燃尼龙中的应用

Also Published As

Publication number Publication date
US20180354796A1 (en) 2018-12-13
US10486970B2 (en) 2019-11-26
CN105482160B (zh) 2017-06-27
CN105482160A (zh) 2016-04-13

Similar Documents

Publication Publication Date Title
WO2017121118A1 (zh) 超低水滑性耐水解接枝改性聚磷酸铵的制备方法及应用
TWI413644B (zh) 磷系雙胺及其衍生物之製造方法
CN111793090A (zh) 一种dopo基硅磷协效阻燃剂及其制备方法和应用
CN112920604A (zh) 一种基于大片径氧化石墨烯制备散热膜的方法
CN110256814B (zh) 一种含哌嗪结构的dopo衍生物改性阻燃环氧树脂的制备方法
CN109988285B (zh) 一种多元羧酸及其阻燃环氧树脂的制备方法
WO2021054513A1 (ko) 폴리이미드 분말의 제조방법 및 이를 통해 제조된 폴리이미드 분말
CN113045800A (zh) 一种基于app和dopo的新型阻燃剂及其制备方法
CN115850708B (zh) 一种含N-P-Si笼状聚倍半硅氧烷阻燃剂的制备方法及其应用
JP4333365B2 (ja) リン含有カルボン酸誘導体、その製造方法及び難燃剤
CN108314799B (zh) 一种含磷杂吖嗪基和马来酰亚胺基的化合物、环氧树脂材料及其制备方法和应用
CN114989395A (zh) 一种含dopo阻燃剂的阻燃环氧树脂及其制备方法
CN105295092B (zh) 一类含磷、氮元素的茂铁盐阻燃剂及其制备方法和用途
CN114213707B (zh) 一种膨胀型阻燃剂、制备方法及其用途
CN113201277B (zh) 一种芳纶绝缘涂料
CN107501526A (zh) 一种新型dopo型环氧树脂固化剂及其制备方法
CN112062963B (zh) 一种有机硅倍半硅氧烷阻燃剂及其制备方法
CN114591557A (zh) 一种阻燃低密度聚乙烯复合材料及其制备方法
JPH08188649A (ja) ラダーポリシロキサンおよびその製造方法
WO2016043426A1 (ko) 올리고머로 표면개질된 실리카 나노입자를 포함하는 유무기 나노 하이브리드 코팅제, 수지 및 그 제조방법
CN109575076B (zh) 一种含磷双马来酰亚胺的制备及在阻燃环氧树脂中的应用
CN109233710B (zh) 一种具有高玻璃化转变温度、高温粘结性的绝缘材料及其制备方法
JPH09255812A (ja) 樹脂組成物
CN108774365A (zh) 一种磷化纳米pdu线束护套材料及其制备方法
CN112830981A (zh) 一种舒更葡糖钠的中间体及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884672

Country of ref document: EP

Kind code of ref document: A1