WO2017119203A1 - 薄膜、及び有機エレクトロルミネッセンス素子 - Google Patents

薄膜、及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2017119203A1
WO2017119203A1 PCT/JP2016/084664 JP2016084664W WO2017119203A1 WO 2017119203 A1 WO2017119203 A1 WO 2017119203A1 JP 2016084664 W JP2016084664 W JP 2016084664W WO 2017119203 A1 WO2017119203 A1 WO 2017119203A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
represented
substituent
group
thin film
Prior art date
Application number
PCT/JP2016/084664
Other languages
English (en)
French (fr)
Inventor
優太 中村
井上 暁
西関 雅人
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US16/068,808 priority Critical patent/US20190157599A1/en
Priority to JP2017560048A priority patent/JP6802189B2/ja
Priority to KR1020187017959A priority patent/KR102148745B1/ko
Priority to CN201680078082.9A priority patent/CN108431983B/zh
Publication of WO2017119203A1 publication Critical patent/WO2017119203A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a thin film and an organic electroluminescence element.
  • a light-emitting thin film used in an organic electronic device typified by an organic electroluminescence element contains at least two compounds of a dopant and a host.
  • metal complexes containing heavy atoms such as Ir, Ru, and Pt are often used.
  • these metal complexes are capable of spin reversal, which is essentially forbidden from a singlet excited state to a triplet excited state, due to the heavy atom effect, and in principle, achieves an internal quantum efficiency of up to 100%. To get.
  • the host mainly has the following two roles, and is selected or designed in consideration of these roles.
  • the first function is to efficiently move carriers from the host to the dopant. This role is important for increasing the probability of carrier recombination on the dopant, in other words, for increasing the probability of exciton generation on the dopant when the organic EL element or the like is driven by an electric field.
  • the second role is to efficiently transfer exciton energy from the host to the dopant. This role is to transfer the energy of excitons generated by recombination of carriers on the host to the dopant without waste, and is an important role in realizing high internal quantum efficiency.
  • blue phosphorescent metal complex a metal complex that emits blue phosphorescence
  • level the energy level of blue phosphorescent metal complexes (hereinafter also simply referred to as “level”) is higher than that of red or green, and is generated by the aggregation and decomposition of dopants and hosts. This is because energy is easily transferred to the quenched material having a low level.
  • PL (with Quencher) is emission intensity in the presence of a quenching substance
  • PL0 (without Quencher) is emission intensity in the absence of the quenching substance
  • Kq is an energy transfer rate from the light emitting material to the quenching substance
  • Kd is the generation rate of the quenching substance due to aggregation / decomposition
  • t is the integrated excitation time by light or current
  • ⁇ 0 is the phosphorescence of the luminescent material in the absence of the quenching substance It is a lifetime.
  • Patent Document 1 discloses one using Ir.
  • the blue phosphorescent metal complex has a phosphorescence lifetime ( ⁇ ) of about several ⁇ s to several hundreds of ⁇ s, and is in principle 2-3 times longer than the fluorescence lifetime of the fluorescent material.
  • phosphorescence lifetime
  • the blue phosphorescent metal complex since the blue phosphorescent metal complex has a high level in the triplet excited state, the emission spectrum of the dopant and the absorption spectrum of the quenching substance easily overlap each other, and the energy transfer rate (Kq) is large.
  • the present invention has been made in view of the above circumstances, and its object is to provide a thin film and an organic electroluminescence element having a long light emission lifetime.
  • the light-emitting metal complex contains a light-emitting metal complex and a host, and the light-emitting metal complex satisfies the following formula (1) and is represented by the following general formula (1), and the host exhibits phosphorescence at room temperature.
  • a compound that exhibits thermally activated delayed fluorescence, or a singlet excited state that exhibits a level higher than the lowest singlet excited state and a triplet excited state that exhibits a level higher than the lowest triplet excited state A thin film characterized by being a compound that exhibits the phenomenon of reverse intersystem crossing.
  • M represents Ir or Pt
  • a 1 , A 2 , B 1 , B 2 each represents a carbon atom or a nitrogen atom
  • ring Z 1 is formed together with A 1 and A 2.
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • Ring Z 1 and ring Z 2 may each independently have a substituent, but have at least one substituent represented by the following general formula (2). By substituents of the ring Z 1 and the ring Z 2 are attached, may form a condensed ring structure, ligands each other represented by the ring Z 1 and the ring Z 2 may be linked .
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 3 when M is Ir
  • m + n is 2 when M is Pt.
  • the ligands or Ls represented by the ring Z 1 and the ring Z 2 may be the same or different, and the coordination represented by the ring Z 1 and the ring Z 2 The child and L may be connected.
  • * represents a linking portion between the ring Z 1 or the ring Z 2 in the general formula (1).
  • L ′ represents a single bond or a linking group.
  • R represents a hydrogen atom or a substituent.
  • n ′ represents an integer of 3 or more.
  • a plurality of R may be the same or different.
  • A represents a hydrogen atom or a substituent.
  • This represents the molecular volume of the structure including the substituent bonded to Z 1 and ring Z 2 .
  • V core represents a molecular volume of a structure in which a substituent bonded to ring Z 1 and ring Z 2 is substituted with a hydrogen atom from the structure representing the molecular volume of V all .
  • V all and V core satisfy the formula (1) in all cases represented by the above assumptions. . ]
  • the luminescent metal complex contains a luminescent metal complex and two types of hosts, and the luminescent metal complex is represented by the following general formula (1) and satisfies the following formula (1).
  • M represents Ir or Pt
  • a 1 , A 2 , B 1 , B 2 each represents a carbon atom or a nitrogen atom
  • ring Z 1 is formed together with A 1 and A 2.
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • Ring Z 1 and ring Z 2 may each independently have a substituent, but have at least one substituent represented by the following general formula (2). By substituents of the ring Z 1 and the ring Z 2 are attached, may form a condensed ring structure, ligands each other represented by the ring Z 1 and the ring Z 2 may be linked .
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 3 when M is Ir
  • m + n is 2 when M is Pt.
  • the ligands or Ls represented by the ring Z 1 and the ring Z 2 may be the same or different, and the coordination represented by the ring Z 1 and the ring Z 2
  • the child and L may be connected to each other.
  • * represents a linking portion between the ring Z 1 or the ring Z 2 in the general formula (1).
  • L ′ represents a single bond or a linking group.
  • R represents a hydrogen atom or a substituent.
  • n ′ represents an integer of 3 or more.
  • a plurality of R may be the same or different.
  • A represents a hydrogen atom or a substituent.
  • This represents the molecular volume of the structure including the substituent bonded to Z 1 and ring Z 2 .
  • V core represents a molecular volume of a structure in which a substituent bonded to ring Z 1 and ring Z 2 is substituted with a hydrogen atom from the structure representing the molecular volume of V all .
  • V all and V core satisfy the formula (1) in all cases represented by the above assumptions. . ]
  • the ligand represented by the ring Z 1 and the ring Z 2 in the general formula (1) has three or more substituents, according to any one of 1 to 3 above, Thin film.
  • the luminescent metal complex contains a luminescent metal complex and a host, and the luminescent metal complex is represented by any one of the following general formulas (3) to (5) and satisfies the following formula (1):
  • Non-metallic organic compounds that exhibit phosphorescence emission at room temperature, compounds that exhibit thermally activated delayed fluorescence, or singlet excited states that are higher than the lowest singlet excited state and higher levels than the lowest triplet excited state A thin film characterized by being a compound that exhibits a phenomenon of reverse intersystem crossing with a triplet excited state.
  • M represents Ir or Pt
  • a 1 to A 3 and B 1 to B 4 each represent a carbon atom or a nitrogen atom.
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 3 when M is Ir
  • m + n is 2 when M is Pt.
  • a ligand represented by ring Z 3 and ring Z 4 When m or n is 2 or more, a ligand represented by ring Z 3 and ring Z 4 , a ligand represented by ring Z 5 and ring Z 6, and ring Z 7 and ring Z 8
  • the ligands or L represented may be the same or different, and these ligands and L may be linked to each other.
  • ring Z 3 represents a 5-membered aromatic heterocycle formed together with A 1 and A 2 , or an aromatic condensed ring containing this ring
  • ring Z 4 represents B 1 to B 3.
  • R 1 represents a substituent having 2 or more carbon atoms.
  • Ring Z 3 and ring Z 4 may have a substituent other than R 1 and may form a condensed ring structure by bonding the substituents of ring Z 3 and ring Z 4.
  • the ligands represented by Z 3 and ring Z 4 may be linked to each other.
  • the ring Z 5 includes a 6-membered aromatic hydrocarbon ring, a 6-membered aromatic heterocycle formed together with A 1 to A 3 , or at least one of these rings.
  • ring Z 6 represents a 5-membered aromatic heterocyclic ring formed together with B 1 to B 3 or an aromatic condensed ring containing this ring.
  • R 2 and R 3 each represent a hydrogen atom or a substituent, and at least one represents a substituent having 2 or more carbon atoms.
  • Ring Z 5 and ring Z 6 may have a substituent other than R 2 and R 3 , and may form a condensed ring structure by bonding of the substituents of ring Z 5 and ring Z 6.
  • the ligands represented by ring Z 5 and ring Z 6 may be linked together.
  • the ring Z 7 includes a 6-membered aromatic hydrocarbon ring, a 6-membered aromatic heterocycle formed together with A 1 and A 2 , or at least one of these rings.
  • ring Z 8 is a 6-membered aromatic hydrocarbon ring formed with B 1 to B 4 , a 6-membered aromatic heterocycle, or an aromatic containing at least one of these rings Represents a condensed group ring.
  • R 4 and R 5 each represent a hydrogen atom or a substituent, and at least one of them represents a substituent having 2 or more carbon atoms.
  • Ring Z 7 and ring Z 8 may have a substituent other than R 4 and R 5 , and may form a condensed ring structure by combining the substituents of ring Z 7 and ring Z 8.
  • the ligands represented by ring Z 7 and ring Z 8 may be linked together.
  • This represents the molecular volume of the structure including a substituent bonded to Z 3 to ring Z 8 .
  • V core represents the molecular volume of a structure in which a substituent bonded to ring Z 3 to ring Z 8 is substituted with a hydrogen atom from the structure representing the molecular volume of V all .
  • V all and V core satisfy the formula (1) in all cases represented by the above assumption. ]
  • the luminescent metal complex contains a luminescent metal complex and two types of hosts, and the luminescent metal complex is represented by any one of the following general formulas (3) to (5) and satisfies the following formula (1):
  • M represents Ir or Pt
  • a 1 to A 3 and B 1 to B 4 each represent a carbon atom or a nitrogen atom.
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 3 when M is Ir
  • m + n is 2 when M is Pt.
  • a ligand represented by ring Z 3 and ring Z 4 When m or n is 2 or more, a ligand represented by ring Z 3 and ring Z 4 , a ligand represented by ring Z 5 and ring Z 6, and ring Z 7 and ring Z 8
  • the ligands or L represented may be the same or different, and these ligands and L may be linked to each other.
  • ring Z 3 represents a 5-membered aromatic heterocycle formed together with A 1 and A 2 , or an aromatic condensed ring containing this ring
  • ring Z 4 represents B 1 to B 3.
  • R 1 represents a substituent having 2 or more carbon atoms.
  • Ring Z 3 and ring Z 4 may have a substituent other than R 1 and may form a condensed ring structure by bonding the substituents of ring Z 3 and ring Z 4.
  • the ligands represented by Z 3 and ring Z 4 may be linked to each other.
  • the ring Z 5 includes a 6-membered aromatic hydrocarbon ring, a 6-membered aromatic heterocycle formed together with A 1 to A 3 , or at least one of these rings.
  • ring Z 6 represents a 5-membered aromatic heterocyclic ring formed together with B 1 to B 3 or an aromatic condensed ring containing this ring.
  • R 2 and R 3 each represent a hydrogen atom or a substituent, and at least one represents a substituent having 2 or more carbon atoms.
  • Ring Z 5 and ring Z 6 may have a substituent other than R 2 and R 3 , and may form a condensed ring structure by bonding of the substituents of ring Z 5 and ring Z 6.
  • the ligands represented by ring Z 5 and ring Z 6 may be linked together.
  • the ring Z 7 includes a 6-membered aromatic hydrocarbon ring, a 6-membered aromatic heterocycle formed together with A 1 and A 2 , or at least one of these rings.
  • ring Z 8 is a 6-membered aromatic hydrocarbon ring formed with B 1 to B 4 , a 6-membered aromatic heterocycle, or an aromatic containing at least one of these rings Represents a condensed group ring.
  • R 4 and R 5 each represent a hydrogen atom or a substituent, and at least one of them represents a substituent having 2 or more carbon atoms.
  • Ring Z 7 and ring Z 8 may have a substituent other than R 4 and R 5 , and may form a condensed ring structure by combining the substituents of ring Z 7 and ring Z 8.
  • the ligands represented by ring Z 7 and ring Z 8 may be linked together.
  • This represents the molecular volume of the structure including a substituent bonded to Z 3 to ring Z 8 .
  • V core represents the molecular volume of a structure in which a substituent bonded to ring Z 3 to ring Z 8 is substituted with a hydrogen atom from the structure representing the molecular volume of V all .
  • V all and V core satisfy the formula (1) in all cases represented by the above assumption. ]
  • An organic electroluminescence device comprising at least one light emitting layer between an anode and a cathode, wherein the thin film according to any one of 1 to 7 is contained.
  • the means for extending the lifetime by suppressing the attenuation of the emission intensity of the dopant in the thin film are as follows: (1) shortening the lifetime ( ⁇ ) of the emission of the dopant, (2) light or electric field There are three methods of reducing the amount of quenching substance ([Q]) generated during driving, and (3) suppressing the energy transfer rate (Kq) to the generated quenching substance.
  • the present inventors paid attention to the means for suppressing Kq in (3) among the above means.
  • it decided to use the dopant (henceforth a "core-shell type dopant" suitably) provided with a core part and a shell part as a luminescent metal complex.
  • the core-shell type dopant 10 includes a shell portion 12 around the core portion 11. Therefore, the core-shell type dopant 10 can provide a physical distance between the core portion 11 that is the emission center and the quenching substance 13 as compared with the normal dopant 20. As a result, the energy transfer rate (Kq) from the core part 11 to the quenching substance 13 can be suppressed.
  • the core-shell type dopant 10 has the following drawbacks. As shown in FIG. 2, the core-shell type dopant 10 can suppress Kq by providing the shell portion 12, while carriers and excitons from the host 14 to the core portion 11, which have been performed without any problem with the normal dopant 20. Even the transfer of energy is suppressed. If it is difficult to deliver carriers from the host 14 to the core-shell dopant 10, the carrier recombination probability on the host 14 increases when the thin film is excited by electric field, and excitons are easily generated on the host 14.
  • the energy transfer to the core-shell type dopant 10 is suppressed as described above, the generated exciton energy on the host 14 is liable to be deactivated on the host 14, and as a result, the emission lifetime of the thin film is reduced. It was shortened.
  • the reason why the known core-shell type dopant does not have a desired light emission lifetime is based on the above-described defects of the core-shell type dopant.
  • the energy transfer of the triplet exciton to the dopant is not a long-distance Ferster-type transfer, but occurs between adjacent molecules.
  • the movement of the mold is considered to occur preferentially.
  • the effect of suppressing the exciton energy transfer that occurs when using the core-shell type dopant described above is due to the Dexter type movement having a short movement distance, rather than the Forster type movement having a long movement distance. On the other hand, it appears prominently. As a result, as shown in FIG.
  • triplet excitons occupying 75% of the host excitons generated by electric field excitation suppress the Dexter-type transfer to the core-shell type dopant. Has been deactivated on the host.
  • the present inventors first made the existence of the shell part long in the excitonic energy transfer from the host to the core-shell type dopant. We focused on the Felster-type movement that is not easily affected. And it discovered that a thin film with a long light emission lifetime was obtained by making a thin film contain a core-shell type dopant and the host which performs the transfer of the energy (many or all) of an exciton by a Forster type.
  • the thin film according to the present invention contains a luminescent metal complex and a host.
  • the content of the luminescent metal complex and the host in the thin film according to the present invention can be arbitrarily determined based on the conditions required for the product to be applied, and is contained at a uniform concentration in the film thickness direction. Or may have an arbitrary concentration distribution.
  • the content of the luminescent metal complex in the thin film according to the present invention is preferably 1 to 50% by mass, and preferably 1 to 30% by mass, when the mass of the thin film is 100% by mass in order to suitably exhibit the luminescence phenomenon. Is more preferable.
  • the content of the host in the thin film according to the present invention is preferably 50 to 99% by mass, and more preferably 70 to 99% by mass, when the mass of the thin film is 100% by mass.
  • the luminescent metal complex according to the present invention is a “core-shell type dopant” that is represented by a predetermined general formula, satisfies the formula (1), and includes a core portion and a shell portion.
  • the luminescent metal complex (core-shell type dopant) is any one of “a compound represented by the general formula (1)” and “a compound represented by the general formulas (3) to (5)”. is there.
  • each luminescent metal complex will be described as “a luminescent metal complex according to the first embodiment” or the like as appropriate in the order of description.
  • the luminescent metal complex according to the first embodiment is represented by the following general formula (1).
  • M represents Ir or Pt
  • a 1 , A 2 , B 1 , and B 2 each represent a carbon atom or a nitrogen atom
  • ring Z 1 is formed together with A 1 and A 2.
  • ring Z 2 is formed together with B 1 and B 2
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • Ring Z 1 and ring Z 2 may each independently have a substituent, but have at least one substituent represented by the following general formula (2).
  • substituents of the ring Z 1 and the ring Z 2 are attached, may form a condensed ring structure, ligands each other represented by the ring Z 1 and the ring Z 2 may be linked .
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 3 when M is Ir
  • m + n is 2 when M is Pt.
  • the ligands or Ls represented by the ring Z 1 and the ring Z 2 may be the same or different, and the coordination represented by the ring Z 1 and the ring Z 2
  • the child and L may be connected.
  • * represents a linking portion between the ring Z 1 or the ring Z 2 in the general formula (1).
  • L ′ represents a single bond or a linking group.
  • R represents a hydrogen atom or a substituent.
  • n ′ represents an integer of 3 or more.
  • a plurality of R may be the same or different.
  • A represents a hydrogen atom or a substituent.
  • the light-emitting metal complex according to the first embodiment includes a core portion that is a light emission center by having a linear alkylene structure having 3 or more carbon atoms represented by the general formula (2) in the ring Z 1 or the ring Z 2.
  • a physical distance can be provided between the quencher and the energy transfer to the quencher.
  • n ′ in the general formula (2) is preferably an integer of 4 or more, and more preferably an integer of 6 or more.
  • L ′ in the general formula (2) is preferably a non-conjugated linking group.
  • L ′ a non-conjugated linking group.
  • the HOMO part and the LUMO part can be easily localized in the central metal, the ring Z1 and the ring Z2, in other words, the HOMO part and the LUMO part to the substituent part forming the shell part.
  • the delocalization of the part can be suppressed.
  • a sufficient physical distance can be provided between the core portion that is the emission center and the quenching substance.
  • the non-conjugated linking group is a case where the linking group cannot be expressed by repetition of a single bond (also referred to as a single bond) and a double bond, or the conjugated group of aromatic rings constituting the linking group is sterically cleaved.
  • a single bond also referred to as a single bond
  • a double bond or the conjugated group of aromatic rings constituting the linking group is sterically cleaved.
  • the ligand represented by the ring Z 1 and the ring Z 2 in the general formula (1) has three or more substituents (when n is 2 or more, It is preferred that the ligand has three or more substituents.
  • the shell portion can be formed three-dimensionally with respect to the core portion that is the emission center, and a physical distance from the quenching substance can be provided in all directions.
  • Examples of the substituent in the general formula (1) (other than the substituent represented by the general formula (2)), the R substituent in the general formula (2), and the A substituent include an alkyl group (for example, a methyl group).
  • Ureido groups eg, methylureido group, ethylureido group, pentylureido group, cyclohexylureido group, octylureido
  • Group dodecylureido group, phenylureido group, naphthylureido group, 2-pyridylaminoureido group, etc.
  • sulfinyl group for example, methylsulfinyl group, ethylsulfinyl group, butylsulfinyl group, cyclohexylsulfinyl group, 2-ethylhexylsulfinyl group, dodecyl
  • Sulfinyl group phenylsulfinyl group, naphthylsulfinyl group, 2-pyridylsulfinyl group, etc.
  • Examples of the linking group for L ′ in the general formula (2) include a substituted or unsubstituted alkylene group having 1 to 12 carbon atoms, a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, and the number of ring forming atoms. And a divalent linking group comprising 5 to 30 heteroarylene groups or a combination thereof.
  • the alkylene group having 1 to 12 carbon atoms may be linear or have a branched structure, and may have a cyclic structure such as a cycloalkylene group.
  • the arylene group having 6 to 30 ring carbon atoms may be non-condensed or condensed.
  • Examples of the arylene group having 6 to 30 ring carbon atoms include o-phenylene group, m-phenylene group, p-phenylene group, naphthalenediyl group, phenanthrene diyl group, biphenylene group, terphenylene group, quarterphenylene group, and triphenylene.
  • a diyl group, a fluorenediyl group, etc. are mentioned.
  • heteroarylene group having 5 to 30 ring atoms examples include pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, pyrrole ring, imidazole ring, pyrazole ring, triazole ring, indole ring, isoindole ring, Benzimidazole ring, furan ring, benzofuran ring, isobenzofuran ring, dibenzofuran ring, thiophene ring, benzothiophene ring, silole ring, benzosilol ring, dibenzosilole ring, quinoline ring, isoquinoline ring, quinoxaline ring, phenanthridine ring, phenanthroline ring , Acridine ring, phenazine ring, phenoxazine ring, phenothiazine ring, phenoxathiin
  • More preferred heteroarylene groups include removing two hydrogen atoms from a pyridine ring, pyrazine ring, pyrimidine ring, piperidine ring, triazine ring, dibenzofuran ring, dibenzothiophene ring, carbazole ring, carboline ring, diazacarbazole ring, etc. Examples thereof include a divalent group to be derived. These linking groups may be substituted with the above-described substituents.
  • the luminescent metal complex according to the second embodiment is represented by the following general formulas (3) to (5).
  • M represents Ir or Pt
  • a 1 to A 3 and B 1 to B 4 each represent a carbon atom or a nitrogen atom.
  • One of the bond between A 1 and M and the bond between B 1 and M is a coordination bond, and the other represents a covalent bond.
  • L represents a monoanionic bidentate ligand coordinated to M, and may have a substituent.
  • m represents an integer of 0 to 2
  • n represents an integer of 1 to 3 when M is Ir
  • m + n is 2 when M is Pt.
  • a ligand represented by ring Z 3 and ring Z 4 When m or n is 2 or more, a ligand represented by ring Z 3 and ring Z 4 , a ligand represented by ring Z 5 and ring Z 6, and ring Z 7 and ring Z 8
  • the ligands or L represented may be the same or different, and these ligands and L may be linked to each other.
  • ring Z 3 represents a 5-membered aromatic heterocycle formed together with A 1 and A 2 , or an aromatic condensed ring containing this ring
  • ring Z 4 represents B 1 to B 3.
  • R 1 represents a substituent having 2 or more carbon atoms.
  • Ring Z 3 and ring Z 4 may have a substituent other than R 1 and may form a condensed ring structure by bonding the substituents of ring Z 3 and ring Z 4.
  • the ligands represented by Z 3 and ring Z 4 may be linked to each other.
  • the ring Z 5 includes a 6-membered aromatic hydrocarbon ring, a 6-membered aromatic heterocycle formed together with A 1 to A 3 , or at least one of these rings.
  • ring Z 6 represents a 5-membered aromatic heterocyclic ring formed together with B 1 to B 3 or an aromatic condensed ring containing this ring.
  • R 2 and R 3 each represent a hydrogen atom or a substituent, and at least one represents a substituent having 2 or more carbon atoms.
  • Ring Z 5 and ring Z 6 may have a substituent other than R 2 and R 3 , and may form a condensed ring structure by bonding of the substituents of ring Z 5 and ring Z 6.
  • the ligands represented by ring Z 5 and ring Z 6 may be linked together.
  • the ring Z 7 includes a 6-membered aromatic hydrocarbon ring, a 6-membered aromatic heterocycle formed together with A 1 and A 2 , or at least one of these rings.
  • Represents an aromatic condensed ring wherein ring Z 8 is a 6-membered aromatic hydrocarbon ring formed with B 1 to B 4 , a 6-membered aromatic heterocycle, or an aromatic containing at least one of these rings Represents a condensed group ring.
  • R 4 and R 5 each represent a hydrogen atom or a substituent, and at least one of them represents a substituent having 2 or more carbon atoms.
  • Ring Z 7 and ring Z 8 may have a substituent other than R 4 and R 5 , and may form a condensed ring structure by combining the substituents of ring Z 7 and ring Z 8.
  • the ligands represented by ring Z 7 and ring Z 8 may be linked together.
  • the luminescent metal complex according to the second embodiment has a substituent having a carbon number of 2 or more in R 1 to R 5 of the general formula (3), so that the physical property between the core portion that is the luminescent center and the quenching substance is present.
  • An effective distance can be provided to suppress energy transfer to the quenching substance.
  • the substituent is preferably a substituent having 3 or more carbon atoms, and more preferably a substituent having 4 or more carbon atoms.
  • the luminescent metal complex according to the second embodiment is represented by a ligand represented by ring Z 3 and ring Z 4 in general formula (3), and ring Z 5 and ring Z 6 in general formula (4).
  • a ligand represented by ring Z 7 and ring Z 8 in general formula (5) has three or more substituents (when n is 2 or more, each ligand is It preferably has 3 or more substituents.
  • the luminescent metal complex according to the present invention (the luminescent metal complex according to the first and second embodiments) satisfies the following formula (1).
  • V core represents a molecular volume of a structure in which a substituent bonded to ring Z 1 to ring Z 8 is substituted with a hydrogen atom from the structure representing the molecular volume of V all .
  • the rings Z 1 to Z 8 are aromatic condensed rings
  • V core represents the molecular volume of a structure in which a substituent bonded to the aromatic condensed ring is substituted with a hydrogen atom.
  • V all is represented by ligand represented by the ring Z 1 and the ring Z 2, ligand represented by the ring Z 3 and ring Z 4, ring Z 5 and the ring Z 6
  • V all and V core are represented by the above formula ( It is necessary to satisfy 1). Specifically, it is as follows. As shown in the following example (1), the luminescent metal in which the ligands represented by the ring Z 5 and the ring Z 6 in the general formula (4) and the ring Z 7 and the ring Z 8 in the general formula (5) exist, respectively.
  • V all the molecular volume of the structure of the following example (2)
  • V all2 the molecular volume of the structure of the following example (3)
  • V core having the structure of the following example (3) is represented by the following example (5) (defined as V core2 ). Both V all / V core and V all2 / V core2 must satisfy the formula (1).
  • V all and V core are van der Waals molecular volumes in detail, and can be calculated by molecular drawing software, for example, Winstar (manufactured by Crossability Co., Ltd.).
  • the volume ratio of V all for V core exceeds 2, 2.5 or more.
  • the upper limit of the volume ratio is not particularly limited, but is preferably 5 or less and more preferably 3 or less from the viewpoint of ease of production.
  • V all / V core 2 or less.
  • a V all / V core 1.
  • the host according to the present invention is a “Felster-type host” that moves the exciton energy to the Forster-type with high efficiency with respect to the light-emitting metal complex that is a core-shell type dopant.
  • the host according to the present invention when there is one kind of host, is “a non-metallic organic compound that exhibits phosphorescence emission at room temperature”, “a compound that exhibits thermally activated delayed fluorescence”, or “a quasi higher than the lowest singlet excited state”. A compound that exhibits a phenomenon of reverse intersystem crossing between a singlet excited state indicating a level and a triplet excited state exhibiting a higher level than the lowest triplet excited state.
  • it is “a combination in which two types of hosts form an exciplex”.
  • each host will be described as “host according to the first embodiment” or the like as appropriate according to the order of description.
  • the host according to the first embodiment is a non-metallic organic compound that exhibits phosphorescence emission at room temperature. Specifically, it is a compound having a phosphorescence quantum yield at 25 ° C. of 0.01 or more (preferably 0.1 or more). is there. Since the host according to the first embodiment exhibits phosphorescence emission at room temperature, the triplet exciton has a large emission rate constant unlike a normal host. Can move. Therefore, as shown in FIG. 4, when the host according to the first embodiment is used, not only the energy of the singlet exciton but also the energy of the triplet exciton can be transferred to the core-shell type dopant in the Forster type. it can.
  • the non-metallic organic compound that exhibits phosphorescence emission at room temperature is not particularly limited.
  • DOI: 10.1038 / NMAT4259 A compound etc. are mentioned. Note that a non-metallic organic compound that emits phosphorescence at room temperature does not necessarily have to exhibit phosphorescence in an isolated molecular state, and phosphorescence may be observed in a thin film state.
  • the host according to the second embodiment is a compound that exhibits thermally activated delayed fluorescence (TADF). Since the host according to the second embodiment exhibits thermally activated delayed fluorescence, the interval between the level of the lowest triplet excited state and the level of the lowest singlet excited state is small, and the two states are reversed. Expresses the phenomenon of intersystem crossing. Therefore, as shown in FIG. 5, when the host according to the second embodiment is used, the energy (all or a part) of triplet excitons in the lowest triplet excited state (T1) is the lowest singlet excited state (S1). The exciton energy is transferred from the lowest singlet excited state to the core-shell type dopant in the Forster type.
  • TADF thermally activated delayed fluorescence
  • the host according to the third embodiment includes an inverse intersystem crossing between a singlet excited state showing a level higher than the lowest singlet excited state and a triplet excited state showing a level higher than the lowest triplet excited state.
  • Tn triplet excitons in the triplet excited state
  • Sn singlet excited state
  • S1 lowest singlet excited state
  • exciton energy is transferred from the lowest singlet excited state to the core-shell dopant in the Forster type.
  • the iST compound is not particularly limited. Mater. Chem. C, 2015, 3, 870-878, and the like.
  • the host according to the fourth embodiment is composed of two types of hosts, and the two types of hosts form a combination that forms an exciplex.
  • the exciplex formed by the host according to the fourth embodiment is the lowest triplet excited state level and the lowest singlet excited state level, similar to the host according to the second embodiment showing thermally activated delayed fluorescence. The interval between and is small, and the phenomenon of reverse intersystem crossing between the two states appears. Therefore, as shown in FIG. 5, when the host according to the fourth embodiment is used, the energy (all or a part) of triplet excitons in the lowest triplet excited state (T1) is the lowest singlet excited state (S1). The exciton energy is transferred from the lowest singlet excited state to the core-shell type dopant in the Forster type.
  • the combination for forming the exciplex is not particularly limited.
  • Adv. Mater. 2014, 26, 4730-4734 a combination of compounds described in Adv. Mater. And combinations of the compounds described in 2015, 27, 2378-2383, and the like.
  • the “luminescent metal complex” and the “host” contained in the thin film according to the present invention have been described as being divided into a plurality of embodiments, but any combination of the “luminescent metal complex” and the “host” is possible. May be.
  • the “luminescent metal complex” of the plurality of embodiments described above may be used in combination
  • the “host” of the plurality of embodiments described above may be used in combination.
  • the thin film which concerns on this invention is applicable to various products, for example, can be applied to an organic electroluminescent element, an organic thin-film solar cell, etc. of a postscript.
  • the thin film according to the present invention may further contain a known substance that is usually used when applied to each product, in addition to the above-mentioned “luminescent metal complex” and “host”.
  • Anode / light emitting layer / cathode (2) Anode / light emitting layer / electron transport layer / cathode (3) Anode / hole transport layer / light emitting layer / cathode (4) Anode / hole transport layer / light emitting layer / electron Transport layer / cathode (5) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode (6) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / cathode ( 7) Anode / hole injection layer / hole transport layer / (electron blocking layer /) light emitting layer / (hole blocking layer /) electron transport layer / electron injection layer / cathode Among the above, the configuration of (7) is preferable. Although used, it is not limited to this.
  • the light emitting layer according to the present invention is composed of a single layer or a plurality of layers, and when there are a plurality of light emitting layers, a non-light emitting intermediate layer may be provided between the light emitting layers.
  • a hole blocking layer also referred to as a hole blocking layer
  • an electron injection layer also referred to as a cathode buffer layer
  • An electron blocking layer also referred to as an electron barrier layer
  • a hole injection layer also referred to as an anode buffer layer
  • the electron transport layer according to the present invention is a layer having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer. Moreover, you may be comprised by multiple layers.
  • the hole transport layer according to the present invention is a layer having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer. Moreover, you may be comprised by multiple layers.
  • the layer excluding the anode and the cathode is also referred to as “organic layer”.
  • the organic EL element according to the present invention may be an element having a so-called tandem structure in which a plurality of light emitting units including at least one light emitting layer are stacked.
  • first light emitting unit / second light emitting unit / third light emitting unit / cathode Anode / first light emitting unit / intermediate layer / second light emitting unit / intermediate layer / third light emitting unit / cathode
  • first light emitting unit The second light emitting unit and the third light emitting unit may all be the same or different. Two light emitting units may be the same, and the remaining one may be different.
  • the third light emitting unit may not be provided, and on the other hand, a light emitting unit or an intermediate layer may be further provided between the third light emitting unit and the electrode.
  • a plurality of light emitting units may be laminated directly or via an intermediate layer, and the intermediate layer is generally an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, an intermediate layer.
  • a known material structure can be used as long as it is also called an insulating layer and has a function of supplying electrons to the anode-side adjacent layer and holes to the cathode-side adjacent layer.
  • Examples of materials used for the intermediate layer include ITO (indium tin oxide), IZO (indium zinc oxide), ZnO 2 , TiN, ZrN, HfN, TiOx, VOx, CuI, InN, GaN, and CuAlO 2.
  • Preferred examples of the configuration within the light emitting unit include, for example, those obtained by removing the anode and the cathode from the configurations (1) to (7) mentioned in the above representative device configurations, but the present invention is not limited to these. Not.
  • tandem organic EL element examples include, for example, US Pat. No. 6,337,492, US Pat. No. 7,420,203, US Pat. No. 7,473,923, US Pat. No. 6,872,472, US Pat. No. 6,107,734. Specification, U.S. Pat. No. 6,337,492, International Publication No.
  • JP-A-2006-228712 JP-A-2006-24791, JP-A-2006-49393, JP-A-2006-49394 JP-A-2006-49396, JP-A-2011-96679, JP-A-2005-340187, JP-A-4711424, JP-A-34968681, JP-A-3884564, JP-A-42131169, JP-A-2010-192719.
  • Examples include constituent materials, but the present invention is not limited to these.
  • the light-emitting layer used in the present invention is a layer that provides a field in which electrons and holes injected from an electrode or an adjacent layer are recombined to emit light via excitons, and the light-emitting portion is the light-emitting layer Even in the layer, it may be the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer according to the present invention is composed of the “thin film” described above.
  • the light emitting layer used for this invention satisfy
  • the total thickness of the light emitting layer is not particularly limited, but it prevents the uniformity of the film to be formed, the application of unnecessary high voltage during light emission, and the improvement of the stability of the emission color with respect to the driving current. From the viewpoint, it is preferable to adjust to a range of 2 nm to 5 ⁇ m, more preferably to a range of 2 nm to 500 nm, and further preferably to a range of 5 nm to 200 nm.
  • each light emitting layer is preferably adjusted to a range of 2 nm to 1 ⁇ m, more preferably adjusted to a range of 2 to 200 nm, and further preferably adjusted to a range of 3 to 150 nm.
  • the light emitting layer according to the present invention includes the above-described “luminescent metal complex” (core-shell type dopant) and “host”.
  • the light-emitting layer according to the present invention has the following “(1) light-emitting dopant: (1.1) phosphorescent light-emitting dopant, (1.2) fluorescence, as long as the effects of the present invention are not hindered.
  • “Luminescent dopant” and "(2) host compound” may be contained.
  • Luminescent dopant The luminescent dopant used for this invention is demonstrated.
  • a phosphorescent dopant also referred to as a phosphorescent dopant or a phosphorescent compound
  • a fluorescent dopant also referred to as a fluorescent dopant or a fluorescent compound
  • the light emitting dopant used in the present invention may be used in combination of two or more kinds, a combination of dopants having different structures, or a combination of a fluorescent light emitting dopant and a phosphorescent light emitting dopant. Thereby, arbitrary luminescent colors can be obtained.
  • the color emitted by the organic EL device of the present invention and the thin film of the present invention is shown in FIG. 4.16 on page 108 of “New Color Science Handbook” (edited by the Japan Color Society, University of Tokyo Press, 1985). It is determined by the color when the result measured with CS-1000 (manufactured by Konica Minolta Co., Ltd.) is applied to the CIE chromaticity coordinates.
  • one or a plurality of light-emitting layers contain a plurality of light-emitting dopants having different emission colors and emit white light.
  • the white color in the organic EL device of the present invention is not particularly limited, and may be white near orange or white near blue, but when the 2 ° viewing angle front luminance is measured by the method described above.
  • the phosphorescent dopant used in the present invention is a compound in which light emission from triplet excitation is observed, specifically, a compound that emits phosphorescence at room temperature (25 ° C.), and the phosphorescence quantum yield is Although defined as a compound of 0.01 or more at 25 ° C., a preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield in the present invention can be measured by the method described in Spectra II, page 398 (1992 edition, Maruzen) of the Fourth Edition Experimental Chemistry Course 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence dopant according to the present invention achieves the phosphorescence quantum yield (0.01 or more) in any solvent. That's fine.
  • phosphorescent dopants There are two types of light emission of phosphorescent dopants in principle. One is the recombination of carriers on the host compound to which carriers are transported to generate an excited state of the host compound, and this energy is transferred to the phosphorescent dopant. It is an energy transfer type to obtain light emission from a phosphorescent dopant. The other is a carrier trap type in which a phosphorescent dopant serves as a carrier trap, and carrier recombination occurs on the phosphorescent dopant to emit light from the phosphorescent dopant. In any case, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host compound.
  • the phosphorescent dopant that can be used in the present invention can be appropriately selected from known ones used in the light emitting layer of the organic EL device.
  • a preferable phosphorescent dopant includes an organometallic complex having Ir as a central metal. More preferably, a complex containing at least one coordination mode of a metal-carbon bond, a metal-nitrogen bond, a metal-oxygen bond, or a metal-sulfur bond is preferable.
  • Fluorescent luminescent dopant (hereinafter also referred to as “fluorescent dopant”) used in the present invention will be described.
  • the fluorescent dopant used in the present invention is a compound that can emit light from singlet excitation, and is not particularly limited as long as light emission from singlet excitation is observed.
  • Examples of the fluorescent dopant used in the present invention include anthracene derivatives, pyrene derivatives, chrysene derivatives, fluoranthene derivatives, perylene derivatives, fluorene derivatives, arylacetylene derivatives, styrylarylene derivatives, styrylamine derivatives, arylamine derivatives, boron complexes, coumarins.
  • pyran derivatives cyanine derivatives, croconium derivatives, squalium derivatives, oxobenzanthracene derivatives, fluorescein derivatives, rhodamine derivatives, pyrylium derivatives, perylene derivatives, polythiophene derivatives, rare earth complex compounds, and the like.
  • luminescent dopants using delayed fluorescence have been developed, and these may be used.
  • luminescent dopant using delayed fluorescence examples include, for example, compounds described in International Publication No. 2011/156793, Japanese Patent Application Laid-Open No. 2011-213643, Japanese Patent Application Laid-Open No. 2010-93181, and the like. Is not limited to these.
  • the host compound used in the present invention is a compound mainly responsible for charge injection and transport in the light emitting layer, and its own light emission is not substantially observed in the organic EL device.
  • it is a compound having a phosphorescence quantum yield of phosphorescence of less than 0.1 at room temperature (25 ° C.), more preferably a compound having a phosphorescence quantum yield of less than 0.01.
  • the excited state energy of the host compound is preferably higher than the excited state energy of the light-emitting dopant contained in the same layer.
  • the host compounds may be used alone or in combination of two or more. By using a plurality of types of host compounds, it is possible to adjust the movement of charges, and the organic EL element can be made highly efficient.
  • the host compound that can be used in the present invention is not particularly limited, and compounds conventionally used in organic EL devices can be used. It may be a low molecular compound or a high molecular compound having a repeating unit, or a compound having a reactive group such as a vinyl group or an epoxy group.
  • Tg glass transition temperature
  • the glass transition point (Tg) is a value determined by a method based on JIS-K-7121 using DSC (Differential Scanning Colorimetry).
  • the electron transport layer is made of a material having a function of transporting electrons, and may have a function of transmitting electrons injected from the cathode to the light emitting layer.
  • the total thickness of the electron transport layer used in the present invention is not particularly limited, but is usually in the range of 2 nm to 5 ⁇ m, more preferably 2 to 500 nm, and further preferably 5 to 200 nm.
  • the organic EL element when the light generated in the light emitting layer is extracted from the electrode, the light extracted directly from the light emitting layer interferes with the light extracted after being reflected by the electrode from which the light is extracted and the electrode located at the counter electrode. It is known to wake up. When light is reflected at the cathode, this interference effect can be efficiently utilized by appropriately adjusting the total thickness of the electron transport layer between 5 nm and 1 ⁇ m.
  • the electron mobility of the electron transport layer is preferably 10 ⁇ 5 cm 2 / Vs or more.
  • the material used for the electron transport layer may be any of electron injecting or transporting properties and hole blocking properties, and can be selected from conventionally known compounds. Can be selected and used.
  • nitrogen-containing aromatic heterocyclic derivatives (carbazole derivatives, azacarbazole derivatives (one or more carbon atoms constituting the carbazole ring are substituted with nitrogen atoms), pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, pyridazine derivatives, Triazine derivatives, quinoline derivatives, quinoxaline derivatives, phenanthroline derivatives, azatriphenylene derivatives, oxazole derivatives, thiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, etc.), dibenzofuran derivatives, And dibenzothiophene derivatives, silole derivatives, aromatic hydrocarbon ring derivatives (naphthalene derivatives, anthracene derivatives, triphenylene, etc.)
  • a metal complex having a quinolinol skeleton or a dibenzoquinolinol skeleton as a ligand such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7- Dibromo-8-quinolinol) aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • a metal complex in which the central metal is replaced with In, Mg, Cu, Ca, Sn, Ga, or Pb can also be used as the electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • the distyrylpyrazine derivative exemplified as the material for the light emitting layer can also be used as an electron transport material, and an inorganic semiconductor such as n-type-Si, n-type-SiC, etc. as in the case of the hole injection layer and the hole transport layer. Can also be used as an electron transporting material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can be used.
  • the electron transport layer may be doped with a doping material as a guest material to form an electron transport layer having a high n property (electron rich).
  • the doping material include n-type dopants such as metal complexes and metal compounds such as metal halides.
  • Specific examples of the electron transport layer having such a structure include, for example, JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J. Pat. Appl. Phys. , 95, 5773 (2004) and the like.
  • More preferable electron transport materials in the present invention include pyridine derivatives, pyrimidine derivatives, pyrazine derivatives, triazine derivatives, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, azacarbazole derivatives, and benzimidazole derivatives.
  • the electron transport material may be used alone or in combination of two or more.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is preferably made of a material having a function of transporting electrons while having a small ability to transport holes, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the structure of the electron transport layer described above can be used as a hole blocking layer according to the present invention, if necessary.
  • the hole blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the cathode side of the light emitting layer.
  • the layer thickness of the hole blocking layer used in the present invention is preferably in the range of 3 to 100 nm, and more preferably in the range of 5 to 30 nm.
  • the material used for the hole blocking layer As the material used for the hole blocking layer, the material used for the above-described electron transport layer is preferably used, and the material used as the above-described host compound is also preferably used for the hole blocking layer.
  • the electron injection layer (also referred to as “cathode buffer layer”) used in the present invention is a layer provided between the cathode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. It is described in detail in Volume 2, Chapter 2, “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization (issued by NTT Corporation on November 30, 1998)”.
  • the electron injection layer may be provided as necessary, and may be present between the cathode and the light emitting layer or between the cathode and the electron transport layer as described above.
  • the electron injection layer is preferably a very thin film, and the layer thickness is preferably in the range of 0.1 to 5 nm, depending on the material. Moreover, the nonuniform film
  • JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like Specific examples of materials preferably used for the electron injection layer are as follows. , Metals typified by strontium and aluminum, alkali metal compounds typified by lithium fluoride, sodium fluoride, potassium fluoride, etc., alkaline earth metal compounds typified by magnesium fluoride, calcium fluoride, etc., oxidation Examples thereof include metal oxides typified by aluminum, metal complexes typified by lithium 8-hydroxyquinolate (Liq), and the like. Further, the above-described electron transport material can also be used.
  • the materials used for the electron injection layer may be used alone or in combination of two or more.
  • the hole transport layer is made of a material having a function of transporting holes and may have a function of transmitting holes injected from the anode to the light emitting layer.
  • the total thickness of the hole transport layer used in the present invention is not particularly limited, but is usually in the range of 5 nm to 5 ⁇ m, more preferably 2 to 500 nm, still more preferably 5 nm to 200 nm.
  • a material used for the hole transport layer (hereinafter referred to as a hole transport material), any material that has either a hole injection property or a transport property or an electron barrier property may be used. Any one can be selected and used.
  • porphyrin derivatives for example, porphyrin derivatives, phthalocyanine derivatives, oxazole derivatives, oxadiazole derivatives, triazole derivatives, imidazole derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, hydrazone derivatives, stilbene derivatives, polyarylalkane derivatives, triarylamine derivatives, carbazole derivatives , Indolocarbazole derivatives, isoindole derivatives, acene derivatives such as anthracene and naphthalene, fluorene derivatives, fluorenone derivatives, and polyvinyl carbazole, polymer materials or oligomers with aromatic amines introduced into the main chain or side chain, polysilane, conductive And polymer (for example, PEDOT: PSS, aniline copolymer, polyaniline, polythiophene, etc.).
  • PEDOT PSS, aniline copolymer, polyaniline
  • triarylamine derivative examples include a benzidine type typified by ⁇ NPD, a starburst type typified by MTDATA, and a compound having fluorene or anthracene in the triarylamine linking core part.
  • hexaazatriphenylene derivatives such as those described in JP-T-2003-519432 and JP-A-2006-135145 can also be used as a hole transport material.
  • a hole transport layer having a high p property doped with impurities can also be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • JP-A-11-251067, J. Org. Huang et. al. It is also possible to use so-called p-type hole transport materials and inorganic compounds such as p-type-Si and p-type-SiC, as described in the literature (Applied Physics Letters 80 (2002), p. 139). Further, ortho-metalated organometallic complexes having Ir or Pt as a central metal as typified by Ir (ppy) 3 are also preferably used.
  • the above-mentioned materials can be used as the hole transport material, but a triarylamine derivative, a carbazole derivative, an indolocarbazole derivative, an azatriphenylene derivative, an organometallic complex, or an aromatic amine is introduced into the main chain or side chain.
  • the polymer materials or oligomers used are preferably used.
  • preferable hole transport materials used in the organic EL device of the present invention include, but are not limited to, the compounds described in the following documents in addition to the documents listed above.
  • the hole transport material may be used alone or in combination of two or more.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is preferably made of a material having a function of transporting holes and a small ability to transport electrons, and transporting electrons while transporting holes. The probability of recombination of electrons and holes can be improved by blocking.
  • the above-described configuration of the hole transport layer can be used as an electron blocking layer used in the present invention, if necessary.
  • the electron blocking layer provided in the organic EL device of the present invention is preferably provided adjacent to the anode side of the light emitting layer.
  • the layer thickness of the electron blocking layer used in the present invention is preferably in the range of 3 to 100 nm, more preferably in the range of 5 to 30 nm.
  • the material used for the electron blocking layer is preferably used, and the material used for the host compound is also preferably used for the electron blocking layer.
  • the hole injection layer (also referred to as “anode buffer layer”) used in the present invention is a layer provided between the anode and the light emitting layer in order to lower the driving voltage and improve the light emission luminance. 2 and Chapter 2 “Electrode Materials” (pages 123 to 166) of “The Forefront of Industrialization” (published by NTT Corporation on November 30, 1998).
  • the hole injection layer may be provided as necessary, and may be present between the anode and the light emitting layer or between the anode and the hole transport layer as described above.
  • the details of the hole injection layer are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069, etc.
  • Examples of materials used for the hole injection layer include: Examples thereof include materials used for the above-described hole transport layer.
  • phthalocyanine derivatives typified by copper phthalocyanine, hexaazatriphenylene derivatives, metal oxides typified by vanadium oxide, amorphous carbon as described in JP-T-2003-519432 and JP-A-2006-135145, etc.
  • the materials used for the hole injection layer described above may be used alone or in combination of two or more.
  • the organic layer in the present invention described above may further contain other inclusions.
  • halogen elements and halogenated compounds such as bromine, iodine and chlorine, alkali metals and alkaline earth metals such as Pd, Ca, and Na, transition metal compounds, complexes, and salts.
  • the content of the inclusions can be arbitrarily determined, but is preferably 1000 ppm or less, more preferably 500 ppm or less, still more preferably 50 ppm or less with respect to the total mass% of the contained layer. .
  • the formation method of the organic layer used in the present invention is not particularly limited, and a conventionally known formation method such as a vacuum deposition method or a wet method (also referred to as a wet process) can be used.
  • the organic layer is preferably a layer formed by a wet process. That is, it is preferable to produce an organic EL element by a wet process.
  • a uniform film (coating film) can be easily obtained, and effects such as the difficulty of generating pinholes can be achieved.
  • membrane (coating film) here is a thing of the state dried after application
  • Examples of the wet method include spin coating method, casting method, ink jet method, printing method, die coating method, blade coating method, roll coating method, spray coating method, curtain coating method, and LB method (Langmuir-Blodgett method). From the viewpoint of obtaining a homogeneous thin film easily and high productivity, a method with high roll-to-roll method suitability such as a die coating method, a roll coating method, an ink jet method, and a spray coating method is preferable.
  • liquid medium for dissolving or dispersing the organic EL material according to the present invention examples include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • ketones such as methyl ethyl ketone and cyclohexanone
  • fatty acid esters such as ethyl acetate
  • halogenated hydrocarbons such as dichlorobenzene, toluene, xylene, and mesitylene.
  • Aromatic hydrocarbons such as cyclohexylbenzene, aliphatic hydrocarbons such as cyclohexane, decalin, and dodecane
  • organic solvents such as DMF and DMSO
  • a dispersion method it can be dispersed by a dispersion method such as ultrasonic wave, high shearing force dispersion or media dispersion.
  • vapor deposition conditions vary depending on the type of compound used, but generally a boat heating temperature of 50 to 450 ° C., a degree of vacuum of 10 ⁇ 6 to 10 ⁇ 2 Pa, and a vapor deposition rate of 0.01 to It is desirable to select appropriately within a range of 50 nm / second, a substrate temperature of ⁇ 50 to 300 ° C., and a thickness of 0.1 nm to 5 ⁇ m, preferably 5 to 200 nm.
  • the formation of the organic layer used in the present invention is preferably made from the hole injection layer to the cathode consistently by a single evacuation, but it may be taken out halfway and subjected to different film forming methods. In that case, it is preferable to perform the work in a dry inert gas atmosphere.
  • anode in the organic EL element those having a work function (4 eV or more, preferably 4.5 V or more) of a metal, an alloy, an electrically conductive compound and a mixture thereof as an electrode material are preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • these electrode materials may be formed into a thin film by a method such as vapor deposition or sputtering, and a pattern of a desired shape may be formed by a photolithography method, or when pattern accuracy is not so required (about 100 ⁇ m or more) A pattern may be formed through a mask having a desired shape during the vapor deposition or sputtering of the electrode material.
  • a wet film forming method such as a printing method or a coating method can also be used.
  • the transmittance be greater than 10%, and the sheet resistance as the anode is preferably several hundred ⁇ / ⁇ or less.
  • the thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 to 200 nm.
  • Electrode a material having a work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof as an electrode material is used.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, aluminum, rare earth metals and the like.
  • a mixture of an electron injecting metal and a second metal which is a stable metal having a larger work function than this for example, a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ / ⁇ or less, and the thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the emission luminance is improved, which is convenient.
  • a transparent or semi-transparent cathode can be produced by producing the conductive transparent material mentioned in the description of the anode on the cathode after producing the metal with a thickness of 1 to 20 nm.
  • a support substrate (hereinafter also referred to as a substrate, substrate, substrate, support, etc.) that can be used in the organic EL device of the present invention, there is no particular limitation on the type of glass, plastic, etc., and it is transparent. May be opaque. When extracting light from the support substrate side, the support substrate is preferably transparent. Examples of the transparent support substrate preferably used include glass, quartz, and a transparent resin film. A particularly preferable support substrate is a resin film capable of giving flexibility to the organic EL element.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate (TAC), cellulose acetate butyrate, cellulose acetate propionate ( CAP), cellulose esters such as cellulose acetate phthalate, cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide , Polyethersulfone (PES), polyphenylene sulfide, polysulfones Cycloolefin resins such as polyetherimide, polyetherketoneimide, polyamide, fluororesin, nylon, polymethylmethacrylate, acrylic, or polyarylate, Arton (trade name, manufactured by JSR) or Appel (
  • the surface of the resin film may be formed with an inorganic film, an organic film, or a hybrid film of both, and the water vapor permeability (25 ⁇ 0.5 ° C.) measured by a method according to JIS K 7129-1992.
  • Relative humidity (90 ⁇ 2)% RH) is preferably 0.01 g / (m 2 ⁇ 24 h) or less, and further, oxygen measured by a method according to JIS K 7126-1987.
  • a high barrier film having a permeability of 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less and a water vapor permeability of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is preferable.
  • the material for forming the barrier film may be any material that has a function of suppressing the entry of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, and the like can be used.
  • the method for forming the barrier film is not particularly limited.
  • vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma polymerization A plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used, but an atmospheric pressure plasma polymerization method as described in JP-A-2004-68143 is particularly preferable.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • the external extraction quantum efficiency at room temperature of light emission of the organic EL device of the present invention is preferably 1% or more, and more preferably 5% or more.
  • the external extraction quantum efficiency (%) the number of photons emitted to the outside of the organic EL element / the number of electrons sent to the organic EL element ⁇ 100.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter that converts the emission color from the organic EL element into multiple colors using a phosphor may be used in combination.
  • sealing means used for sealing the organic EL element of the present invention include a method of bonding a sealing member, an electrode, and a support substrate with an adhesive.
  • a sealing member it should just be arrange
  • transparency and electrical insulation are not particularly limited.
  • Specific examples include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include those made of one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • a polymer film and a metal film can be preferably used because the organic EL element can be thinned.
  • the polymer film has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ atm) or less, and a method according to JIS K 7129-1992.
  • the measured water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)%) is preferably 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less.
  • sealing member For processing the sealing member into a concave shape, sandblasting, chemical etching, or the like is used.
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates. be able to.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an organic EL element may deteriorate by heat processing, what can be adhesively cured from room temperature to 80 ° C. is preferable.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • the electrode and the organic layer are coated on the outside of the electrode facing the support substrate with the organic layer interposed therebetween, and an inorganic or organic layer is formed in contact with the support substrate to form a sealing film.
  • the material for forming the film may be any material that has a function of suppressing intrusion of elements that cause deterioration of elements such as moisture and oxygen.
  • silicon oxide, silicon dioxide, silicon nitride, or the like may be used. it can.
  • a laminated structure of these inorganic layers and layers made of organic materials it is preferable to have a laminated structure of these inorganic layers and layers made of organic materials.
  • the method of forming these films There are no particular limitations on the method of forming these films. For example, vacuum deposition, sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam, ion plating, plasma polymerization, atmospheric pressure plasma A combination method, a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • an inert gas such as nitrogen or argon, or an inert liquid such as fluorinated hydrocarbon or silicon oil can be injected in the gas phase and liquid phase.
  • a vacuum can also be used.
  • a hygroscopic compound can also be enclosed inside.
  • hygroscopic compound examples include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • metal halides eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.
  • perchloric acids eg perchloric acid Barium, magnesium perchlorate, and the like
  • anhydrous salts are preferably used in sulfates, metal halides, and perchloric acids.
  • a protective film or a protective plate may be provided outside the sealing film or the sealing film on the side facing the support substrate with the organic layer interposed therebetween.
  • the mechanical strength is not necessarily high, and thus it is preferable to provide such a protective film and a protective plate.
  • the same glass plate, polymer plate / film, metal plate / film, etc. used for the sealing can be used, but the polymer film is light and thin. Is preferably used.
  • An organic electroluminescent element emits light inside a layer having a refractive index higher than that of air (with a refractive index of about 1.6 to 2.1), and about 15% to 20% of light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (interface between the transparent substrate and air) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between the light and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the side surface of the device.
  • a technique for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the transparent substrate and the air interface (for example, US Pat. No. 4,774,435), A method for improving efficiency by providing light condensing property (for example, Japanese Patent Laid-Open No. 63-134795), a method for forming a reflective surface on the side surface of an element (for example, Japanese Patent Laid-Open No. 1-220394), a substrate A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the substrate and the light emitter (for example, Japanese Patent Laid-Open No.
  • these methods can be used in combination with the organic EL device of the present invention.
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter, or a substrate, transparent A method of forming a diffraction grating between any layers of the electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the light extracted from the transparent electrode has a higher extraction efficiency to the outside as the refractive index of the medium is lower.
  • the low refractive index layer examples include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally in the range of about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferable that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished when the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method uses the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction.
  • the light that cannot be emitted due to total internal reflection between layers is diffracted by introducing a diffraction grating into any layer or medium (in the transparent substrate or transparent electrode). , Trying to extract light out.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction is diffracted. The light extraction efficiency does not increase so much.
  • the refractive index distribution a two-dimensional distribution
  • the light traveling in all directions is diffracted, and the light extraction efficiency is increased.
  • the position where the diffraction grating is introduced may be in any layer or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated.
  • the period of the diffraction grating is preferably in the range of about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element of the present invention can be processed in a specific direction, for example, an element by combining a so-called condensing sheet, for example, by processing so as to provide a structure on a microlens array on the light extraction side of a support substrate (substrate). Condensing light in the front direction with respect to the light emitting surface can increase the luminance in a specific direction.
  • a quadrangular pyramid having a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is preferably within a range of 10 to 100 ⁇ m. If it is smaller than this, the effect of diffraction is generated and colored, and if it is too large, the thickness becomes thick, which is not preferable.
  • the condensing sheet it is possible to use, for example, an LED backlight of a liquid crystal display device that has been put into practical use.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • BEF brightness enhancement film
  • a substrate may be formed with a ⁇ -shaped stripe having an apex angle of 90 degrees and a pitch of 50 ⁇ m, or the apex angle is rounded and the pitch is changed randomly. Other shapes may also be used.
  • a light diffusion plate / film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the organic EL element of the present invention can be used as a display device, a display, and various light emission sources.
  • lighting devices home lighting, interior lighting
  • clock and liquid crystal backlights billboard advertisements, traffic lights, light sources of optical storage media, light sources of electrophotographic copying machines, light sources of optical communication processors, light
  • the light source of a sensor etc. are mentioned, It is not limited to this, Especially, it can use effectively for the use as a backlight of a liquid crystal display device, and a light source for illumination.
  • patterning may be performed by a metal mask, an ink jet printing method, or the like when forming a film, if necessary.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire layer of the element may be patterned.
  • a conventionally known method is used. Can do.
  • FIG. 7 is a schematic perspective view showing an example of the configuration of a display device including the organic EL element of the present invention, and displays image information by light emission of the organic EL element, for example, a display such as a mobile phone FIG.
  • the display 1 includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • Control unit B is electrically connected to display unit A.
  • the control unit B sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside.
  • each pixel sequentially emits light according to the image data signal for each scanning line by the scanning signal, and the image information is displayed on the display unit A.
  • FIG. 8 is a schematic diagram of the display unit A shown in FIG.
  • the display unit A has a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main components of the display unit A will be described below.
  • FIG. 8 shows a case where the light emitted from the pixel 3 is extracted in the direction of the white arrow (downward).
  • Each of the scanning lines 5 and the plurality of data lines 6 in the wiring portion is made of a conductive material.
  • the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions (details are not shown).
  • the pixel 3 When the scanning signal is transmitted from the scanning line 5, the pixel 3 receives the image data signal from the data line 6 and emits light according to the received image data.
  • a full-color display is possible by arranging pixels in the red region, the green region, and the blue region as appropriate in parallel on the same substrate.
  • the non-light emitting surface of the organic EL device of the present invention is covered with a glass case, a 300 ⁇ m thick glass substrate is used as a sealing substrate, and an epoxy photocurable adhesive (LUX The track LC0629B) is applied, and this is overlaid on the cathode and brought into close contact with the transparent support substrate, irradiated with UV light from the glass substrate side, cured, sealed, and illuminated as shown in FIGS.
  • a device can be formed.
  • FIG. 9 shows a schematic diagram of the lighting device, and the organic EL element 101 of the present invention is covered with a glass cover 102 (in addition, the sealing operation with the glass cover is to bring the organic EL element 101 into contact with the atmosphere.
  • a glove box under a nitrogen atmosphere (in an atmosphere of high-purity nitrogen gas with a purity of 99.999% or higher).
  • FIG. 10 shows a cross-sectional view of the lighting device.
  • 105 denotes a cathode
  • 106 denotes an organic EL layer (light emitting unit)
  • 107 denotes a glass substrate with a transparent electrode.
  • the glass cover 102 is filled with nitrogen gas 108 and a water catching agent 109 is provided.
  • FIG. 11 is a cross-sectional view of a lighting device having an organic EL element manufactured by a wet process using a coating liquid using a flexible support substrate 201.
  • the organic EL element 200 according to a preferred embodiment of the present invention has a flexible support substrate 201.
  • An anode 202 is formed on the flexible support substrate 201, various organic functional layers shown below are formed on the anode 202, and a cathode 208 is formed on the organic functional layer.
  • the organic functional layer includes, for example, a hole injection layer 203, a hole transport layer 204, a light emitting layer 205, an electron transport layer 206, and an electron injection layer 207.
  • a hole block layer, an electron block layer, and the like are included. May be.
  • the anode 202, the organic functional layer, and the cathode 208 on the flexible support substrate 201 are sealed with a flexible sealing member 210 via a sealing adhesive 209.
  • the thin film and the organic electroluminescence device according to the present invention will be described by exemplifying an example that satisfies the requirements of the present invention and a comparative example that is not.
  • Reference Example 1 Before explaining the present invention using Examples and Comparative Examples, first, in Reference Example 1, a compound assuming blue light emission was used, and the energy transfer rate from the dopant to the quencher was confirmed.
  • a quartz substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • the transparent substrate is then used as a substrate holder for a commercially available vacuum deposition apparatus.
  • Each of the vapor deposition crucibles of the vacuum vapor deposition apparatus was filled with “host” and “dopant” shown in Table 1 and “Q-1” as “quenching substance” so as to be an optimum amount for device fabrication.
  • the crucible for vapor deposition was made of molybdenum-based resistance heating material.
  • the comparative thin film is the same as the above-mentioned “Preparation of the thin film for evaluation” except that the quenching substance is not vapor-deposited (the quenching substance is changed to 0% by volume, and the reduced amount of the quenching substance is changed to the host compound). Fabrication was performed.
  • One comparative thin film is provided for each evaluation thin film (specifically, a comparative thin film 1-1Ref in which a quenching substance is not deposited on the evaluation thin film 1-1, the evaluation thin film 1-1). Comparative thin film 1-2Ref etc. in which no quenching material was deposited on thin film 1-2).
  • the emission lifetime (phosphorescence lifetime) of the dopant of the evaluation thin film and the comparative thin film was determined by measuring transient PL characteristics.
  • a small fluorescent lifetime measuring device C11367-03 manufactured by Hamamatsu Photonics was used for measurement of transient PL characteristics.
  • the attenuation component was measured in TCC900 mode using a 340 nm LED as an excitation light source.
  • the emission lifetime was 0.8 ⁇ s
  • the emission lifetime of the comparative thin film 1-1-Ref was 1.6 ⁇ s. there were. This is because, in the thin film for evaluation 1-1 to which the quenching substance Q-1 is added, quenching due to energy transfer from the dopant to Q-1 occurs in part, so that it is more than the comparative thin film 1-1-Ref. It is inferred that the light emission lifetime was short.
  • the energy transfer rate (Kq) from the dopant to the quenching substance is calculated based on the following formula (2) obtained by modifying the formula (1), and the emission lifetime ( ⁇ ( with Quencher)) and the emission lifetime ( ⁇ 0 (without Quencher)) of the dopant of the comparative thin film.
  • the thin film for evaluation was calculated by substituting 1 for [Q] because the content of the quenching substance was 1% by volume.
  • PL (with Quencher) is the emission intensity in the presence of the quenching substance
  • PL0 (without Quencher) is the emission intensity in the absence of the quenching substance
  • Kq is the energy transfer rate from the light emitting material to the quenching substance
  • Kd is the rate of formation of the quenching substance due to aggregation / decomposition
  • t is the integrated excitation time by light or current
  • is the phosphorescence lifetime of the dopant in the presence of the quenching substance
  • ⁇ 0 is the phosphorescence lifetime of the luminescent material in the absence of a quenching substance.
  • the Kq of each evaluation thin film was calculated by the above-described method, and the relative ratio (Kq ratio) where Kq of the evaluation thin film 1-1 was set to 1 was obtained.
  • V all / V core value In the calculation of the V all / V core value, V all and V core are as defined above. Then, the V all / V core value was calculated by calculating the van der Waals molecular volume of V all and V core with Winstar (manufactured by Crossability Co., Ltd.) and then dividing V all by V core .
  • Reference Example 2 Next, in Reference Example 2, a compound that assumed blue light emission was used, and the energy transfer rate from the dopant to the quencher was confirmed.
  • Reference Example 3 Next, in Reference Example 3, a compound that assumed blue light emission was used, and the energy transfer rate from the dopant to the quencher was confirmed.
  • Reference Example 4 Next, in Reference Example 4, a compound that assumed green light emission was used, and the energy transfer rate from the dopant to the quencher was confirmed.
  • Reference Example 5 Next, in Reference Example 5, a compound assuming red light emission was used, and the energy transfer rate from the dopant to the quencher was confirmed.
  • Example 1 Next, in Example 1, a compound assuming blue light emission was used, and the light emission lifetime of the thin film was confirmed.
  • a quartz substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm is ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • the transparent substrate is then used as a substrate holder for a commercially available vacuum deposition apparatus.
  • Each of the crucibles for vapor deposition of the vacuum vapor deposition apparatus was filled with “host” and “dopant” shown in Table 6 so as to be the optimum amounts for device fabrication.
  • the crucible for vapor deposition was made of molybdenum-based resistance heating material.
  • the inside of the vacuum deposition apparatus was depressurized to a degree of vacuum of 1 ⁇ 10 ⁇ 4 Pa, and then co-deposited so that the host and dopant were 85% by volume and 15% by volume, respectively, to produce a 30 nm-thick evaluation thin film.
  • the luminance residual ratio in the UV irradiation test using the HgXe light source was determined.
  • a mercury xenon lamp UV irradiation device LC8 manufactured by Hamamatsu Photonics was used, and A9616-05 was attached to the UV cut filter.
  • the irradiation fiber light emitting surface and the glass cover surface of the sample (evaluation thin film) were arranged so as to be horizontal, and irradiation was performed at a distance of 1 cm until the number of emitted photons was reduced to half. The measurement was performed at room temperature (300K).
  • the time (half-life time) required until the number of luminescent photons was halved was measured, and a relative value (LT50 ratio) with the value at 1 at room temperature (300 K) of the thin film 6-1 was determined.
  • the luminance (number of emitted photons) was measured with a spectral radiance meter CS-1000 (manufactured by Konica Minolta) from an angle inclined 45 degrees from the axis of the irradiation fiber.
  • Example 1 ⁇ Examination of Results: Example 1 >> As shown in Table 6, for the evaluation thin films 6-8 to 6-15, a Forster type host was used as the host, and a core-shell type dopant satisfying the requirements of the present invention was used as the dopant. As a result, it was confirmed that in the thin films for evaluation 6-8 to 6-15, the exciton energy transfer from the host to the dopant was good, and the emission lifetime was long.
  • Example 2 Next, in Example 2, a compound that assumed blue light emission was used, and the light emission lifetime of the thin film was confirmed.
  • a thin film for evaluation was produced in the same manner as in Example 1 except that “host” and “dopant” shown in Table 7 were used.
  • Example 2 >> As shown in Table 7, for the thin films for evaluation 7-8 to 7-15, two kinds of hosts in combination forming an exciplex were used, and a core-shell type dopant satisfying the requirements of the present invention was used as a dopant. . As a result, it was confirmed that in the thin films for evaluation 7-8 to 7-15, the exciton energy transfer from the host to the dopant was good, and the emission lifetime was long.
  • Example 3 Next, in Example 3, a compound that assumed green light emission was used, and the light emission lifetime of the thin film was confirmed.
  • a thin film for evaluation was produced in the same manner as in Example 1 except that “host” and “dopant” shown in Table 8 were used.
  • Example 3 As shown in Table 8, for the thin films for evaluation 8-10 to 8-15, two types of hosts, a Forster type host or a combination forming an exciplex, are used as a host, and the requirements of the present invention are used as a dopant. A core-shell dopant to fill was used. As a result, it was confirmed that the thin films for evaluation 8-10 to 8-15 had good exciton energy transfer from the host to the dopant, and that the light emission lifetime was long even as a green light-emitting thin film.
  • Example 4 Next, in Example 4, a compound assuming red light emission was used, and the light emission lifetime of the thin film was confirmed.
  • a thin film for evaluation was produced in the same manner as in Example 1 except that “host” and “dopant” shown in Table 9 were used.
  • Example 4 As shown in Table 9, for the thin films for evaluation 9-12 to 9-20, two types of hosts, a Forster type host or a combination forming an exciplex, are used as the host, and the requirements of the present invention are used as the dopant. A core-shell dopant to fill was used. As a result, it was confirmed that the thin films for evaluation 9-12 to 9-20 had good exciton energy transfer from the host to the dopant, and that the light emission lifetime was long even as a thin film emitting red light.
  • Example 5 Next, in Example 5, a compound that assumed blue light emission was used, and the lifetime of the lighting device (and element) was confirmed.
  • An ITO (indium tin oxide) film having a thickness of 150 nm is formed on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • the transparent substrate to which the ITO transparent electrode is attached is isopropyl.
  • this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-1 was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A hole injection layer was formed.
  • HT-1 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 30 nm.
  • the resistance heating boat containing “host” and “dopant” shown in Table 10 is energized and heated, so that the host and dopant become 85% by volume and 15% by volume, respectively, on the hole transport layer. Evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.
  • HB-1 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm. Further thereon, ET-1 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 45 nm. Then, after vapor-depositing lithium fluoride so that layer thickness may be 0.5 nm, 100 nm of aluminum was vapor-deposited, the cathode was formed, and the organic EL element for evaluation was produced.
  • the non-light-emitting surface of the organic EL element is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material to the surroundings, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side.
  • an evaluation illumination device having a configuration as shown in FIGS. 9 and 10 was produced.
  • Example 5 As shown in Table 10, in the evaluation lighting devices 10-8 to 10-15, the core-shell type dopant satisfying the requirements of the present invention was used as the dopant, and the Forster type host was used as the host. As a result, it was confirmed that the evaluation lighting devices 10-8 to 10-15 were excellent in continuous drive stability.
  • Example 6 Next, in Example 6, a compound that assumed blue light emission was used, and the lifetime of the lighting device (and element) was confirmed.
  • An ITO (indium tin oxide) film having a thickness of 150 nm is formed on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • the transparent substrate to which the ITO transparent electrode is attached is isopropyl.
  • this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-2 was energized and heated, and deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second. A hole injection layer was formed.
  • HT-2 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 30 nm.
  • the resistance heating boat containing “host” and “dopant” shown in Table 11 was energized and heated, and the host and dopant were placed on the hole transport layer so that the volume was 85% by volume and 15% by volume, respectively. Co-evaporation was performed to form a light emitting layer with a layer thickness of 30 nm.
  • HB-2 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 5 nm. Further thereon, ET-2 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 45 nm. Then, after vapor-depositing lithium fluoride so that layer thickness may be 0.5 nm, 100 nm of aluminum was vapor-deposited, the cathode was formed, and the organic EL element for evaluation was produced.
  • the non-light-emitting surface of the organic EL element is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material to the surroundings, and this is placed on the cathode and brought into close contact with the transparent support substrate, and UV light is irradiated from the glass substrate side.
  • an evaluation illumination device having a configuration as shown in FIGS. 9 and 10 was produced.
  • Example 6 ⁇ Examination of Results: Example 6 >> As shown in Table 11, for the evaluation lighting devices 11-8 to 11-15, the core-shell type dopant satisfying the requirements of the present invention is used as the dopant, and two types of hosts that form an exciplex are used as the host. Was. As a result, it was confirmed that the evaluation lighting devices 11-8 to 11-15 were excellent in continuous drive stability.
  • Example 7 Next, in Example 7, a compound that assumed green light emission was used, and the lifetime of the lighting device (and element) was confirmed.
  • An ITO (indium tin oxide) film having a thickness of 150 nm is formed on a glass substrate having a size of 50 mm ⁇ 50 mm and a thickness of 0.7 mm.
  • the transparent substrate to which the ITO transparent electrode is attached is isopropyl.
  • this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • the resistance heating boat was made of molybdenum or tungsten.
  • the resistance heating boat containing HI-2 was energized and heated, deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second, and a positive thickness of 20 nm. A hole injection layer was formed.
  • HT-1 was deposited at a deposition rate of 0.1 nm / second to form a hole transport layer having a layer thickness of 20 nm.
  • a resistance heating boat containing “host” and “dopant” shown in Table 12 is energized and heated so that the host and dopant are 85% by volume and 15% by volume on the hole transport layer, respectively.
  • Co-evaporation was performed to form a light emitting layer with a layer thickness of 30 nm.
  • HB-3 was deposited at a deposition rate of 0.1 nm / second to form a first electron transport layer having a layer thickness of 10 nm.
  • ET-2 was deposited at a deposition rate of 0.1 nm / second to form a second electron transport layer having a layer thickness of 40 nm.
  • vapor-depositing lithium fluoride so that layer thickness may be 0.5 nm
  • 100 nm of aluminum was vapor-deposited, the cathode was formed, and the organic EL element for evaluation was produced.
  • the non-light-emitting surface of the organic EL element is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material to the surroundings, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side.
  • an evaluation illumination device having a configuration as shown in FIGS. 9 and 10 was produced.
  • Example 7 ⁇ Examination of Results: Example 7 >> As shown in Table 12, for the evaluation lighting devices 12-10 to 12-15, a core-shell type dopant that satisfies the requirements of the present invention is used as a dopant, and a Forster type host or an exciplex is formed as a host. Two types of hosts were used. As a result, it was confirmed that the evaluation illumination devices 12-10 to 12-15 were excellent in continuous drive stability even as green light emitting devices.
  • Example 8 Next, in Example 8, a compound that assumed red light emission was used, and the lifetime of the lighting device (and element) was confirmed.
  • a transparent substrate with an ITO (Indium Tin Oxide) film having a thickness of 120 nm formed on a glass substrate of 50 mm ⁇ 50 mm and a thickness of 0.7 mm, patterned, and then attached with this ITO transparent electrode was subjected to ultrasonic cleaning with isopropyl alcohol, dried with dry nitrogen gas, and UV ozone cleaning was performed for 5 minutes.
  • ITO Indium Tin Oxide
  • a solution obtained by diluting poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS, Bayer, Baytron P Al 4083) to 70% with pure water on this transparent substrate was used at 3000 rpm, 30 A thin film was formed by spin coating under the conditions of seconds, followed by drying at 200 ° C. for 1 hour to provide a hole injection layer having a layer thickness of 20 nm. Next, this transparent substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus. Each of the resistance heating boats for vapor deposition in the vacuum vapor deposition apparatus was filled with the constituent material of each layer in an amount optimal for device fabrication.
  • PEDOT / PSS polystyrene sulfonate
  • the resistance heating boat for vapor deposition was made of molybdenum or tungsten. After depressurizing to a vacuum degree of 1 ⁇ 10 ⁇ 4 Pa, the resistance heating boat containing HT-2 was energized and heated, and deposited on the hole injection layer at a deposition rate of 0.1 nm / second. A hole transport layer was formed. Next, the resistance heating boat containing “host” and “dopant” shown in Table 13 was energized and heated, so that the host and dopant were 85% by volume and 15% by volume on the hole transport layer, respectively. Co-evaporation was performed to form a light emitting layer having a layer thickness of 40 nm.
  • ET-1 was deposited at a deposition rate of 0.1 nm / second to form an electron transport layer having a layer thickness of 40 nm.
  • lithium fluoride was vapor-deposited so as to have a layer thickness of 0.5 nm, and then 100 nm of aluminum was vapor-deposited to form a cathode, thereby producing an organic EL device for evaluation.
  • the non-light-emitting surface of the organic EL element is covered with a glass case in an atmosphere of high purity nitrogen gas with a purity of 99.999% or more, and a glass substrate having a thickness of 300 ⁇ m is used as a sealing substrate.
  • an epoxy-based photo-curing adhesive (Lux Track LC0629B manufactured by Toagosei Co., Ltd.) is applied as a sealing material to the surroundings, and this is placed on the cathode so as to be in close contact with the transparent support substrate and irradiated with UV light from the glass substrate side. Then, after curing and sealing, an evaluation illumination device having a configuration as shown in FIGS. 9 and 10 was produced.
  • Example 8 As shown in Table 13, for the evaluation lighting devices 13-12 to 13-20, a core-shell type dopant that satisfies the requirements of the present invention is used as a dopant, and a Forster type host or an exciplex is formed as a host. Two types of hosts were used. As a result, it was confirmed that the evaluation illumination devices 13-12 to 13-20 were excellent in continuous drive stability even as red light emitting devices.
  • Example 9 Next, in Example 9, the lifetime of the lighting device (and element) manufactured by the wet process was confirmed using the coating liquid.
  • a flexible base material having a gas barrier property with an oxygen permeability of 0.001 mL / (m 2 ⁇ 24 h) or less and a water vapor permeability of 0.001 g / (m 2 ⁇ 24 h) or less was produced.
  • ITO indium tin oxide
  • the base material on which the hole transport layer was formed was applied at a coating speed of 5 m / min by a die coating method using a coating solution for forming a light emitting layer having the following composition, and naturally dried, then at 120 ° C. for 30 minutes.
  • the light emitting layer having a thickness of 50 nm was formed.
  • the substrate was attached to a vacuum deposition apparatus without being exposed to the atmosphere. Further, a molybdenum resistance heating boat containing sodium fluoride and potassium fluoride was attached to a vacuum vapor deposition apparatus, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 5 Pa. Thereafter, the boat was energized and heated, and sodium fluoride was deposited on the electron transport layer at 0.02 nm / second to form a thin film having a thickness of 1 nm. Similarly, potassium fluoride was vapor-deposited on the sodium fluoride thin film at 0.02 nm / second to form an electron injection layer having a layer thickness of 1.5 nm. Subsequently, aluminum was deposited to form a cathode having a thickness of 100 nm.
  • the sealing base material was adhere
  • An agent layer was provided, and a laminate of a polyethylene terephthalate (PET) film having a thickness of 12 ⁇ m was prepared.
  • a thermosetting adhesive as a sealing adhesive was uniformly applied at a thickness of 20 ⁇ m along the adhesive surface (shiny surface) of the aluminum foil of the sealing substrate using a dispenser.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
  • A Bisphenol A diglycidyl ether (DGEBA)
  • B Dicyandiamide (DICY)
  • C Epoxy adduct-based curing accelerator
  • DGEBA Bisphenol A diglycidyl ether
  • DIY Dicyandiamide
  • C Epoxy adduct-based curing accelerator
  • the sealing base material is closely attached to the laminate, and a pressure roll is used at a pressure roll temperature of 100 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / second.
  • the sealing device was tightly sealed under the pressure bonding condition of min, and an evaluation illumination device as shown in FIG. 11 was produced.
  • Example 9 ⁇ Examination of Results: Example 9 >> As shown in Table 14, for the evaluation lighting devices 14-8 to 14-15, the core-shell type dopant satisfying the requirements of the present invention is used as the dopant, and two types of hosts that form an exciplex are used as the host. Was. As a result, it was confirmed that the evaluation illumination devices 14-8 to 14-15 were excellent in continuous drive stability even in the elements produced by the coating process.
  • Example 10 Next, in Example 10, the lifetime of the illumination device (and element) manufactured by the inkjet process was confirmed using the coating liquid.
  • a flexible base material having a gas barrier property with an oxygen permeability of 0.001 mL / (m 2 ⁇ 24 h) or less and a water vapor permeability of 0.001 g / (m 2 ⁇ 24 h) or less was produced.
  • ITO indium tin oxide
  • the base material on which the hole injection layer is formed is transferred to a nitrogen atmosphere using nitrogen gas (grade G1), and is applied by an inkjet method using a coating liquid for forming a hole transport layer having the following composition.
  • the film was dried at 150 ° C. for 30 minutes to form a hole transport layer having a layer thickness of 30 nm.
  • the base material on which the hole transport layer was formed was applied by an inkjet method using a light emitting layer forming coating solution having the following composition, and dried at 130 ° C. for 30 minutes, A light emitting layer having a layer thickness of 50 nm was formed.
  • the substrate was attached to a vacuum deposition apparatus without being exposed to the atmosphere. Further, a molybdenum resistance heating boat containing sodium fluoride and potassium fluoride was attached to a vacuum vapor deposition apparatus, and the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 5 Pa. Thereafter, the boat was energized and heated, and sodium fluoride was deposited on the electron transport layer at 0.02 nm / second to form a thin film having a thickness of 1 nm. Similarly, potassium fluoride was vapor-deposited on the sodium fluoride thin film at 0.02 nm / second to form an electron injection layer having a layer thickness of 1.5 nm. Subsequently, aluminum was deposited to form a cathode having a thickness of 100 nm.
  • the sealing base material was adhere
  • An agent layer was provided, and a laminate of a polyethylene terephthalate (PET) film having a thickness of 12 ⁇ m was prepared.
  • a thermosetting adhesive as a sealing adhesive was uniformly applied at a thickness of 20 ⁇ m along the adhesive surface (shiny surface) of the aluminum foil of the sealing substrate using a dispenser.
  • thermosetting adhesive an epoxy adhesive mixed with the following (A) to (C) was used.
  • A Bisphenol A diglycidyl ether (DGEBA)
  • B Dicyandiamide (DICY)
  • C Epoxy adduct-based curing accelerator
  • DGEBA Bisphenol A diglycidyl ether
  • DIY Dicyandiamide
  • C Epoxy adduct-based curing accelerator
  • the sealing base material is closely attached to the laminate, and a pressure roll is used at a pressure roll temperature of 100 ° C., a pressure of 0.5 MPa, and an apparatus speed of 0.3 m / second.
  • the sealing device was tightly sealed under the pressure bonding condition of min, and an evaluation illumination device as shown in FIG. 11 was produced.
  • Example 10 ⁇ Examination of Results: Example 10 >> As shown in Table 15, in the evaluation lighting devices 15-8 to 15-15, the core-shell type dopant satisfying the requirements of the present invention was used as the dopant, and the Forster type host was used as the host. As a result, it was confirmed that the evaluation lighting devices 15-8 to 15-15 were excellent in continuous drive stability even in an element manufactured by the inkjet process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光寿命の長い薄膜、及び有機エレクトロルミネッセンス素子を提供することである。 発光性金属錯体とホストとを含有し、前記発光性金属錯体は、一般式(1)で表されるとともに式(1)を満たし、前記ホストは、室温でリン光発光を示す非金属有機化合物、熱活性型遅延蛍光を示す化合物、又は、最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物、である薄膜により上記課題を解決する。

Description

薄膜、及び有機エレクトロルミネッセンス素子
 本発明は、薄膜、及び有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス素子(以下、適宜「有機EL素子」という)に代表される有機電子デバイスに用いられる発光性の薄膜は、ドーパントとホストの少なくとも2種の化合物を含有している。
 ドーパントとしては、Ir、Ru、Ptといった重原子を含む金属錯体が用いられることが多い。その理由は、これらの金属錯体が、重原子効果によって一重項励起状態から三重項励起状態への本来禁制であるスピン反転が可能であり、原理的には最大100%の内部量子効率を実現し得るためである。
 一方、ホストは、主に次の2つの役割を有しており、これらの役割を考慮して選択又は設計される。
 1つ目は、ホストからドーパントに効率的にキャリアを移動させるという役割である。この役割は、有機EL素子等を電界駆動させた際、ドーパント上でのキャリアの再結合確率の上昇、言い換えれば、ドーパント上での励起子の生成確率を上昇させるために重要な役割である。
 2つ目は、ホストからドーパントに効率的に励起子のエネルギーを移動させるという役割である。この役割は、ホスト上でキャリアが再結合して生成した励起子のエネルギーを無駄なくドーパントへ移動させるというものであり、高い内部量子効率を実現させる上で重要な役割である。
 これまでにも、前記のようなドーパントとホストとを含有した薄膜を、有機電子デバイスに適用した例は数多く存在し、特に、緑色又は赤色に発光する金属錯体を含有する薄膜については、実用化レベルの発光寿命を発揮する例も報告されている。
 一方、青色にリン光発光する金属錯体(以下、適宜「青色リン光性金属錯体」という)を含有する薄膜については、十分な発光寿命が得られていない。その理由は、青色リン光性金属錯体のエネルギー準位(以下、単に「準位」ともいう)が、赤色や緑色のものと比較して高く、ドーパントやホストが凝集・分解等することによって生成された準位の低い消光物質にエネルギーが移動し易いからである。
 ここで、消光物質が生成した際のドーパントの消光現象は、下記に示すStern-Volmerの式(数式(1))によって説明することができる。
Figure JPOXMLDOC01-appb-M000011
 前記数式(1)中、PL(with Quencher)は消光物質存在下における発光強度、PL0(without Quencher)は消光物質非存在下における発光強度、Kqは発光材料から消光物質へのエネルギー移動速度、[Q](=Kd×t)は消光物質濃度、Kdは凝集・分解等による消光物質の生成速度、tは光又は電流による積算励起時間、τ0は消光物質が存在しない場合の発光材料のリン光寿命である。
 なお、青色リン光性金属錯体について、例えば、特許文献1では、Irを用いたものが開示されている。
国際公開第2006/121811号
 青色リン光性金属錯体は、リン光寿命(τ)が数μs~数100μs程度であり、原理上、蛍光発光材料の蛍光寿命と比較して2~3オーダー長くなっている。また、青色リン光性金属錯体は、三重項励起状態の準位が高いためにドーパントの発光スペクトルと消光物質の吸収スペクトルとに重なりが生じ易く、エネルギー移動速度(Kq)が大きくなっている。
 これらの事実を前記の数式(1)に当てはめると明らかなように、青色リン光性金属錯体は、原理的に消光が起き易く、発光寿命が十分に長くないことがわかる。
 そして、特許文献1に係る技術についても、発光寿命は十分には長くなく(詳細な理由については後述する)、発光寿命については改善の余地が残っている。
 本発明は、上記状況に鑑みてなされたものであり、その課題は、発光寿命の長い薄膜、及び有機エレクトロルミネッセンス素子を提供することである。
 すなわち、本発明の上記課題は、下記の構成により解決される。
 1.発光性金属錯体とホストとを含有し、前記発光性金属錯体は、下記一般式(1)で表されるとともに下記式(1)を満たし、前記ホストは、室温でリン光発光を示す非金属有機化合物、熱活性型遅延蛍光を示す化合物、又は、最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物、であることを特徴とする薄膜。
Figure JPOXMLDOC01-appb-C000012
〔前記一般式(1)において、MはIr又はPtを表し、A、A、B、Bは各々炭素原子又は窒素原子を表し、環ZはA及びAと共に形成される6員の芳香族炭化水素環、5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB及びBと共に形成される5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。環Z及び環Zはそれぞれ独立に置換基を有していてもよいが、下記一般式(2)で表される置換基を少なくとも1つ有する。環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子又はLは各々同じでも異なっていてもよく、環Zと環Zとで表される配位子とLとは連結していてもよい。〕
Figure JPOXMLDOC01-appb-C000013
〔前記一般式(2)において、*は前記一般式(1)における環Z又は環Zとの連結箇所を表す。L’は単結合又は連結基を表す。Rは水素原子又は置換基を表す。n’は3以上の整数を表す。複数のRは同じでも異なっていてもよい。Aは水素原子又は置換基を表す。〕
Figure JPOXMLDOC01-appb-C000014
〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z及び環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z及び環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
 2.発光性金属錯体と2種類のホストとを含有し、前記発光性金属錯体は、下記一般式(1)で表されるとともに下記式(1)を満たし、前記2種類のホストは、励起錯体を形成する組み合わせであることを特徴とする薄膜。
Figure JPOXMLDOC01-appb-C000015
〔前記一般式(1)において、MはIr又はPtを表し、A、A、B、Bは各々炭素原子又は窒素原子を表し、環ZはA及びAと共に形成される6員の芳香族炭化水素環、5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB及びBと共に形成される5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。環Z及び環Zはそれぞれ独立に置換基を有していてもよいが、下記一般式(2)で表される置換基を少なくとも1つ有する。環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子又はLは各々同じでも異なっていてもよく、環Zと環Zとで表される配位子とLとは互いに連結していてもよい。〕
Figure JPOXMLDOC01-appb-C000016
〔前記一般式(2)において、*は前記一般式(1)における環Z又は環Zとの連結箇所を表す。L’は単結合又は連結基を表す。Rは水素原子又は置換基を表す。n’は3以上の整数を表す。複数のRは同じでも異なっていてもよい。Aは水素原子又は置換基を表す。〕
Figure JPOXMLDOC01-appb-C000017
〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z及び環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z及び環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
 3.前記一般式(2)におけるL’は、非共役連結基であることを特徴とする前記1又は前記2に記載の薄膜。
 4.前記一般式(1)における環Zと環Zとで表される配位子は、3つ以上の置換基を有することを特徴とする前記1から前記3のいずれか1つに記載の薄膜。
 5.発光性金属錯体とホストとを含有し、前記発光性金属錯体は、下記一般式(3)~(5)のいずれか1つで表されるとともに下記式(1)を満たし、前記ホストは、室温でリン光発光を示す非金属有機化合物、熱活性型遅延蛍光を示す化合物、又は、最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物、であることを特徴とする薄膜。
Figure JPOXMLDOC01-appb-C000018
〔前記一般式(3)~(5)において、MはIr又はPtを表し、A~A、B~Bは各々炭素原子又は窒素原子を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、又は、Lは各々同じでも異なっていてもよく、これらの配位子とLとは互いに連結していてもよい。
 前記一般式(3)において、環ZはA及びAと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。Rは炭素数2以上の置換基を表す。環Z及び環ZはR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 前記一般式(4)において、環ZはA~Aと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。R及びRは各々水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 前記一般式(5)において、環ZはA及びAと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。R及びRはそれぞれ水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。〕
Figure JPOXMLDOC01-appb-C000019
〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z~環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z~環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、及び、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
 6.発光性金属錯体と2種類のホストとを含有し、前記発光性金属錯体は、下記一般式(3)~(5)のいずれか1つで表されるとともに下記式(1)を満たし、前記2種類のホストは、励起錯体を形成する組み合わせであることを特徴とする薄膜。
Figure JPOXMLDOC01-appb-C000020
〔前記一般式(3)~(5)において、MはIr又はPtを表し、A~A、B~Bは各々炭素原子又は窒素原子を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、又は、Lは各々同じでも異なっていてもよく、これらの配位子とLとは互いに連結していてもよい。
 前記一般式(3)において、環ZはA及びAと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。Rは炭素数2以上の置換基を表す。環Z及び環ZはR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 前記一般式(4)において、環ZはA~Aと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。R及びRは各々水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 前記一般式(5)において、環ZはA及びAと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。R及びRはそれぞれ水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。〕
Figure JPOXMLDOC01-appb-C000021
〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z~環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z~環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、及び、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
 7.前記一般式(3)における環Zと環Zとで表される配位子、前記一般式(4)における環Zと環Zとで表される配位子、又は、前記一般式(5)における環Zと環Zとで表される配位子は、3つ以上の置換基を有することを特徴とする前記5又は前記6に記載の薄膜。
 8.陽極と陰極の間に、少なくとも1つの発光層を有する有機エレクトロルミネッセンス素子において、前記1から前記7のいずれか1つに記載の薄膜を含有することを特徴とする有機エレクトロルミネッセンス素子。
 9.前記発光層が、前記1から前記7いずれか1つに記載の薄膜からなる単一層であることを特徴とする前記8に記載の有機エレクトロルミネッセンス素子。
 本発明によれば、発光寿命の長い薄膜、及び有機エレクトロルミネッセンス素子を提供することができる。
コアシェル型ドーパントと消光物質との関係を説明する概念図である。 コアシェル型ドーパントとホストとの関係を説明する概念図である。 従来のホストを用いた場合におけるホストとコアシェル型ドーパントとのエネルギー準位を示す図である。 第1実施形態に係るホストを用いた場合におけるホストとコアシェル型ドーパントとのエネルギー準位を示す図である。 第2、4実施形態に係るホストを用いた場合におけるホストとコアシェル型ドーパントとのエネルギー準位を示す図である。 第3実施形態に係るホストを用いた場合におけるホストとコアシェル型ドーパントとのエネルギー準位を示す図である。 本発明の有機EL素子を用いた表示装置の一例を示した概略斜視図である。 図7に示す表示部Aの構成の一例を示した概略斜視図である。 本発明の有機EL素子を用いた照明装置の一例を示した概略斜視図である。 本発明の有機EL素子を用いた照明装置の一例を示した概略断面図である。 本発明の可撓性有機EL素子を用いた照明装置の一例を示した概略断面図である。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。本発明において、特許請求の範囲及びその均等の範囲を逸脱しない限りにおいて、好ましい様態は任意に変更して実施しうる。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 まず、本発明に係る薄膜の「発光の長寿命化の発現機構」について説明する。
≪発光の長寿命化の発現機構≫
 前記のStern-Volmerの式によると、薄膜におけるドーパントの発光強度の減衰を抑えて長寿命化する手段としては、(1)ドーパントの発光の寿命(τ)を短くする、(2)光や電界駆動経時において生成する消光物質量([Q])を減らす、(3)生成した消光物質へのエネルギー移動速度(Kq)を抑制する、の3つが挙げられる。
 本発明者らは、前記手段の中で(3)のKqを抑制する手段に着目した。そして、本発明では、Kqを抑制するために、発光性金属錯体として、コア部とシェル部とを備えるドーパント(以下、適宜「コアシェル型ドーパント」という)を用いることとした。
<コアシェル型ドーパントの利点と欠点>
 図1に示すように、コアシェル型ドーパント10は、コア部11の周囲にシェル部12を備えている。よって、コアシェル型ドーパント10は、通常のドーパント20と比較して、発光中心であるコア部11と消光物質13との物理的な距離を設けることができる。その結果、コア部11から消光物質13へのエネルギー移動速度(Kq)を抑制することができる。
 しかしながら、本発明者らは、コアシェル型ドーパント10には次のような欠点があることを見出した。
 図2に示すように、コアシェル型ドーパント10は、シェル部12を備えることによってKqを抑制できる一方、通常のドーパント20では問題なく行われていたホスト14からコア部11へのキャリア、及び励起子のエネルギーの移動までもが抑制されてしまう。
 ホスト14からコアシェル型ドーパント10にキャリアを受け渡し難くなると、薄膜を電界励起させた際、ホスト14上でのキャリアの再結合確率が上昇し、ホスト14上で励起子が生成し易くなる。さらに、前記のとおりコアシェル型ドーパント10へのエネルギーの移動が抑制されてしまうため、生成したホスト14上の励起子のエネルギーは、ホスト14上で失活しやすくなり、結果として薄膜の発光寿命を短くしていた。
 なお、公知のコアシェル型ドーパントが所望の発光寿命が得られていないのは、前記のようなコアシェル型ドーパントの欠点に基づくものであると考える。
<コアシェル型ドーパントの欠点の究明と解決手段>
 通常のホストはスピン禁制である三重項励起子の発光速度定数が小さいため、ドーパントへの三重項励起子のエネルギー移動は、移動距離の長いフェルスター型の移動ではなく、近接分子間で生じるデクスター型の移動が優位に起こると考えられる。
 ここで、前記したコアシェル型ドーパントを用いた際に生じる励起子のエネルギー移動を抑制するとの影響は、移動距離の長いフェルスター型の移動に対してよりも、移動距離の短いデクスター型の移動に対して顕著に現れる。
 その結果、図3に示すように、通常のホストとコアシェル型ドーパントを用いた場合、電界励起によって生じるホスト励起子の75%を占める三重項励起子はコアシェル型ドーパントへのデクスター型の移動を抑制されることによって、ホスト上で失活してしまっていた。
 そこで、本発明者らは、コアシェル型ドーパントを用いた薄膜の発光寿命を長くするため、まず、ホストからコアシェル型ドーパントへの励起子のエネルギーの移動のうち、移動距離が長くシェル部の存在に左右され難いフェルスター型の移動に着目した。そして、コアシェル型ドーパントと、励起子のエネルギー(多く又は全部)の移動をフェルスター型で実行するホストと、を薄膜に含有させることによって、発光寿命の長い薄膜が得られることを見出した。
≪薄膜≫
 本発明に係る薄膜は、発光性金属錯体とホストとを含有する。
 本発明に係る薄膜における発光性金属錯体やホストの含有量は、適用する製品に要求される条件に基づいて、任意に決定することができるとともに、膜厚方向に対して均一な濃度で含有されていてもよく、また任意の濃度分布を有していてもよい。
 ただし、本発明に係る薄膜における発光性金属錯体の含有量は、発光現象を好適に発現させるべく、薄膜の質量を100質量%とした場合、1~50質量%が好ましく、1~30質量%がより好ましい。また、本発明に係る薄膜におけるホストの含有量は、薄膜の質量を100質量%とした場合、50~99質量%が好ましく、70~99質量%がより好ましい。
 次に、本発明に係る薄膜に含有される「発光性金属錯体」と「ホスト」とを詳細に説明する。
≪発光性金属錯体≫
 本発明に係る発光性金属錯体は、所定の一般式で表されるとともに式(1)を満たし、コア部とシェル部とから構成される「コアシェル型ドーパント」である。
 本発明において、この発光性金属錯体(コアシェル型ドーパント)は、「一般式(1)で表される化合物」、「一般式(3)~(5)で表される化合物」、のいずれかである。
 以下、各発光性金属錯体について、説明の順に応じて、適宜「第1実施形態に係る発光性金属錯体」等として説明する。
<第1実施形態に係る発光性金属錯体の構造部分>
 第1実施形態に係る発光性金属錯体は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000022
 前記一般式(1)において、MはIr又はPtを表し、A、A、B、Bは各々炭素原子又は窒素原子を表し、環ZはA及びAと共に形成される6員の芳香族炭化水素環、5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB及びBと共に形成される5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。環Z及び環Zはそれぞれ独立に置換基を有していてもよいが、下記一般式(2)で表される置換基を少なくとも1つ有する。環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子又はLは各々同じでも異なっていてもよく、環Zと環Zとで表される配位子とLとは連結していてもよい。
Figure JPOXMLDOC01-appb-C000023
 前記一般式(2)において、*は前記一般式(1)における環Z又は環Zとの連結箇所を表す。L’は単結合又は連結基を表す。Rは水素原子又は置換基を表す。n’は3以上の整数を表す。複数のRは同じでも異なっていてもよい。Aは水素原子又は置換基を表す。
 第1実施形態に係る発光性金属錯体は、一般式(2)で表される炭素数3以上の直鎖アルキレン構造を環Z又は環Zに有することによって、発光中心であるコア部と消光物質との間に物理的距離を設け、消光物質へのエネルギーの移動を抑制することができる。
 消光物質へのエネルギーの移動をより抑制するため、一般式(2)のn’は4以上の整数が好ましく、6以上の整数がより好ましい。
 第1実施形態に係る発光性金属錯体は、一般式(2)のL’が非共役連結基であることが好ましい。L’を非共役連結基とすることで、HOMO部、LUMO部が中心金属、環Z1、環Z2に局在化し易くなる、言い換えると、シェル部を形成する置換基部分へのHOMO部、LUMO部の非局在化を抑制することができる。その結果、発光中心であるコア部と消光物質との間に物理的距離を十分に設けることができる。
 ここで、非共役連結基とは、連結基が単結合(一重結合ともいう)と二重結合の繰り返しによって表記できない場合、又は、連結基を構成する芳香環同士の共役が立体的に切断されている場合を意味し、例えば、アルキレン基、シクロアルキレン基、エーテル基、チオエーテル基等である。
 第1実施形態に係る発光性金属錯体は、一般式(1)における環Zと環Zとで表される配位子が、3つ以上の置換基(nが2以上の場合、各配位子が3つ以上の置換基)を有するのが好ましい。
 このような構成とすることにより、発光中心であるコア部に対して3次元的にシェル部を形成することができ、全方位において消光物質との物理的距離を設けることができる。
 一般式(1)における置換基(一般式(2)で表される置換基以外)、一般式(2)のRの置換基、Aの置換基としては、例えば、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピラジル基、ピリミジニル基、トリアジル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、アザカルバゾリル基(前記カルバゾリル基のカルバゾール環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。
 これらの置換基は、上記の置換基によって更に置換されていてもよく、更に、これらの置換基は複数が互いに結合して環構造を形成してもよい。
 一般式(2)のL’の連結基としては、例えば、置換若しくは無置換の炭素数1~12のアルキレン基、置換若しくは無置換の環形成炭素数6~30のアリーレン基、環形成原子数5~30のヘテロアリーレン基又はこれらの組み合わせからなる2価の連結基等が挙げられる。
 そして、炭素数1~12のアルキレン基は、直鎖状であっても分岐構造を有していてもよく、また、シクロアルキレン基のように環状構造であってもよい。また、環形成炭素数6~30のアリーレン基は、非縮合であっても縮合環であってもよい。
 環形成炭素数6~30のアリーレン基としては、例えば、o-フェニレン基、m-フェニレン基、p-フェニレン基、ナフタレンジイル基、フェナントレンジイル基、ビフェニレン基、ターフェニレン基、クォーターフェニレン基、トリフェニレンジイル基、フルオレンジイル基等が挙げられる。
 環形成原子数5~30のヘテロアリーレン基としては、例えば、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ピロール環、イミダゾール環、ピラゾール環、トリアゾール環、インドール環、イソインドール環、ベンゾイミダゾール環、フラン環、ベンゾフラン環、イソベンゾフラン環、ジベンゾフラン環、チオフェン環、ベンゾチオフェン環、シロール環、ベンゾシロール環、ジベンゾシロール環、キノリン環、イソキノリン環、キノキサリン環、フェナントリジン環、フェナントロリン環、アクリジン環、フェナジン環、フェノキサジン環、フェノチアジン環、フェノキサチイン環、ピリダジン環、アクリジン環、オキサゾール環、オキサジアゾール環、ベンゾオキサゾール環、チアゾール環、チアジアゾール環、ベンゾチアゾール環、ベンゾジフラン環、チエノチオフェン環、ジベンゾチオフェン環、ベンゾジチオフェン環、サイクラジン環、キンドリン環、テペニジン環、キニンドリン環、トリフェノジチアジン環、トリフェノジオキサジン環、フェナントラジン環、アントラジン環、ペリミジン環、ナフトフラン環、ナフトチオフェン環、ベンゾジチオフェン環、ナフトジフラン環、ナフトジチオフェン環、アントラフラン環、アントラジフラン環、アントラチオフェン環、アントラジチオフェン環、チアントレン環、フェノキサチイン環、ナフトチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルバゾール環を構成する炭素原子の任意の二つ以上が窒素原子で置き換わったものを表す)、アザジベンゾフラン環(ジベンゾフラン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、アザジベンゾチオフェン環(ジベンゾチオフェン環を構成する炭素原子の任意の一つ以上が窒素原子で置き換わったものを表す)、インドロカルバゾール環、インデノインドール環、等から水素原子を二つ除くことにより導かれる2価の基が挙げられる。
 より好ましいヘテロアリーレン基としては、ピリジン環、ピラジン環、ピリミジン環、ピペリジン環、トリアジン環、ジベンゾフラン環、ジベンゾチオフェン環、カルバゾール環、カルボリン環、ジアザカルバゾール環等から水素原子を二つ除くことにより導かれる2価の基が挙げられる。
 これらの連結基は、前記した置換基によって置換されていてもよい。
<第2実施形態に係る発光性金属錯体の構造部分>
 第2実施形態に係る発光性金属錯体は、下記一般式(3)~(5)で表される。
Figure JPOXMLDOC01-appb-C000024
 前記一般式(3)~(5)において、MはIr又はPtを表し、A~A、B~Bは各々炭素原子又は窒素原子を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、又は、Lは各々同じでも異なっていてもよく、これらの配位子とLとは互いに連結していてもよい。
 前記一般式(3)において、環ZはA及びAと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。Rは炭素数2以上の置換基を表す。環Z及び環ZはR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 前記一般式(4)において、環ZはA~Aと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。R及びRは各々水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 前記一般式(5)において、環ZはA及びAと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。R及びRはそれぞれ水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
 第2実施形態に係る発光性金属錯体は、一般式(3)のR~Rに炭素数2以上の置換基を有することによって、発光中心であるコア部と消光物質との間に物理的距離を設け、消光物質へのエネルギーの移動を抑制することができる。
 消光物質へのエネルギーの移動をより抑制するため、前記の置換基は炭素数3以上の置換基が好ましく、炭素数4以上の置換基がより好ましい。
 第2実施形態に係る発光性金属錯体は、一般式(3)における環Zと環Zとで表される配位子、一般式(4)における環Zと環Zとで表される配位子、又は、一般式(5)における環Zと環Zとで表される配位子が、3つ以上の置換基(nが2以上の場合、各配位子が3つ以上の置換基)を有するのが好ましい。
 このような構成とすることにより、発光中心であるコア部に対して3次元的にシェル部を形成することができ、全方位において消光物質との物理的距離を設けることができる。
 なお、一般式(3)~(5)における置換基は、一般式(1)の置換基として例示したものと同様のものが挙げられる。
<第1、2実施形態に係る発光性金属錯体の分子体積>
 本発明に係る発光性金属錯体(第1、2実施形態に係る発光性金属錯体)は、下記式(1)を満たす。
Figure JPOXMLDOC01-appb-C000025
 前記式(1)において、Vallは、各一般式(1)、(3)~(5)において、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z~環Zに結合する置換基を含めた構造の分子体積を表す。
 一方、Vcoreは、Vallの分子体積を表す前記構造から環Z~環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。なお、環Z~環Zが芳香族縮合環である場合、Vcoreは前記芳香族縮合環に結合する置換基を水素原子と置換した構造の分子体積を表す。
 ただし、Vallは、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、及び、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表されるすべての場合において、Vall、coreは、前記式(1)を満たす必要がある。具体的には、以下のとおりである。
 下記例(1)のように、一般式(4)の環Zと環Z、一般式(5)の環Zと環Zで表される配位子がそれぞれ存在する発光性金属錯体の場合、n=3、m=0と仮定した構造としては、下記例(2)、下記例(3)の2つの構造が考えられる。下記例(2)の構造の分子体積をVall、下記例(3)の構造の分子体積をVall2とすると、下記例(2)の構造のVcoreは下記例(4)で表され、下記例(3)の構造のVcoreは下記例(5)で表される(Vcore2と定義する)。そして、Vall/Vcore、all2/Vcore2はいずれも前記式(1)を満たす必要がある。
Figure JPOXMLDOC01-appb-C000026
 なお、Vall、Vcoreは、詳細には、ファンデルワールス分子体積であり、分子描画ソフト、例えば、Winmostor(株式会社クロスアビリティ社製)によって算出することができる。
 本発明に係る発光性金属錯体は、Vcoreに対するVallの体積比率(Vall/Vcore)が2を超え、2.5以上が好ましい。
 発光性金属錯体を前記体積比率が大きくなるように設計することにより、図1で示すようなコアシェル型ドーパント10から消光物質3へのエネルギーの移動を好適に抑制することができる。
 前記体積比率の上限は、特に限定されないものの、製造容易性の観点から、5以下が好ましく、3以下がより好ましい。
 例えば、下記例(6)のように、緑色リン光発光する錯体として周知であるIr(ppy)は、シェル部を有していないため、Vall/Vcoreが2以下となる。詳細には、Vall=Vcore=450.04Åであり、Vall/Vcore=1となる。
 一方、下記例(7)のように、Ir(ppy)に対して前記一般式(2)を満たす置換基を導入してシェル部を備えた金属錯体は、Vall/Vcoreが2を超える。詳細には、Vall=960.05Å、Vcore=450.04Åであり、Vall/Vcore=2.13となる。
Figure JPOXMLDOC01-appb-C000027
 以下、本発明に係る発光性金属錯体の具体例(第1実施形態、第2実施形態)を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
≪ホスト≫
 本発明に係るホストは、コアシェル型ドーパントである発光性金属錯体に対して励起子のエネルギーを高効率でフェルスター型移動させる「フェルスター型ホスト」である。
 本発明に係るホストは、ホストが1種類の場合、「室温でリン光発光を示す非金属有機化合物」、「熱活性型遅延蛍光を示す化合物」、又は「最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物」である。ホストが2種類の場合、「2種類のホストが励起錯体を形成する組み合わせ」である。
 以下、各ホストについて、説明の順に応じて、適宜「第1実施形態に係るホスト」等として説明する。
<第1実施形態に係るホスト>
 第1実施形態に係るホストは、常温でリン光発光を示す非金属有機化合物であり、詳細には、25℃におけるリン光量子収率が0.01以上(好ましくは0.1以上)の化合物である。
 そして、第1実施形態に係るホストは、常温でリン光発光を示すことから、通常のホストとは異なり三重項励起子の発光速度定数が大きいため、三重項励起子のエネルギーがフェルスター型の移動を行うことができる。
 よって、図4に示すように、第1実施形態に係るホストを用いると、一重項励起子のエネルギーだけでなく、三重項励起子のエネルギーについてもフェルスター型でコアシェル型ドーパントに移動させることができる。
 常温でリン光発光を示す非金属有機化合物としては、特に限定されないが、例えば、特開2006-66562、特開平11-256148に示すようなベンゾフェノン構造を有する化合物、Nature. Materials. 6 APRIL 2015 | DOI: 10.1038/NMAT4259に記載の化合物等が挙げられる。
 なお、常温でリン光発光を示す非金属有機化合物は、必ずしも孤立分子状態でリン光発光を示す必要はなく、薄膜状態においてリン光が観測されればよい。
 以下、本発明に係る第1実施形態に係るホストの具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000033
<第2実施形態に係るホスト>
 第2実施形態に係るホストは、熱活性型遅延蛍光(TADF:thermally activated delayed fluorescence)を示す化合物である。
 そして、第2実施形態に係るホストは、熱活性型遅延蛍光を示すことから、最低三重項励起状態の準位と最低一重項励起状態の準位との間隔が小さく、両状態の間で逆項間交差の現象を発現する。
 よって、図5に示すように、第2実施形態に係るホストを用いると、最低三重項励起状態(T1)の三重項励起子のエネルギー(全部又は一部)が最低一重項励起状態(S1)に移動し、最低一重項励起状態から励起子のエネルギーがフェルスター型でコアシェル型ドーパントに移動することとなる。
 熱活性型遅延を示す化合物としては、特に限定されないが、例えば、Adv.Mater.2014,DOI:10.1002/adma.201402532に記載の化合物等が挙げられる。
 以下、本発明に係る第2実施形態に係るホストの具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000034
<第3実施形態に係るホスト>
 第3実施形態に係るホストは、最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物(iST化合物:inverted Singlet-Triplet)である。
 図6に示すように、第3実施形態に係るホストを用いると、三重項励起状態(Tn)の三重項励起子のエネルギー(全部又は一部)が一重項励起状態(Sn)に移動し、最低一重項励起状態(S1)に移動する。その後、最低一重項励起状態から励起子のエネルギーがフェルスター型でコアシェル型ドーパントに移動することとなる。
 iST化合物としては、特に限定されないが、例えば、J.Mater.Chem.C,2015,3,870-878に記載の化合物等が挙げられる。
 以下、本発明に係る第3実施形態に係るホストの具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
<第4実施形態に係るホスト>
 第4実施形態に係るホストは、2種類のホストから構成されるとともに、この2種類のホストが励起錯体(exciplex)を形成する組み合わせである。
 そして、第4実施形態に係るホストが形成する励起錯体は、熱活性型遅延蛍光を示す第2実施形態に係るホストと同様、最低三重項励起状態の準位と最低一重項励起状態の準位との間隔が小さく、両状態の間で逆項間交差の現象を発現する。
 よって、図5に示すように、第4実施形態に係るホストを用いると、最低三重項励起状態(T1)の三重項励起子のエネルギー(全部又は一部)が最低一重項励起状態(S1)に移動し、最低一重項励起状態から励起子のエネルギーがフェルスター型でコアシェル型ドーパントに移動することとなる。
 励起錯体を形成する組み合わせとしては、特に限定されないが、例えば、Adv.Mater.2014,26,4730-4734に記載の化合物の組み合わせ、Adv.Mater.2015,27,2378-2383に記載の化合物の組み合わせ等が挙げられる。
 以下、本発明に係る第4実施形態に係るホストの具体例を示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000036
 以上、本発明に係る薄膜に含有される「発光性金属錯体」と「ホスト」とを複数の実施形態に分けて説明したが、いずれの「発光性金属錯体」と「ホスト」の組み合わせであってもよい。また、前記した複数の実施形態の「発光性金属錯体」を併用してもよいとともに、前記した複数の実施形態の「ホスト」を併用してもよい。
 そして、本発明に係る薄膜は、様々な製品に適用可能であり、例えば、後記の有機エレクトロルミネッセンス素子、有機薄膜太陽電池等に適用することができる。なお、本発明に係る薄膜は、前記した「発光性金属錯体」と「ホスト」以外にも、各製品に適用する際に通常使用されている公知物質をさらに含有していてもよい。
≪有機エレクトロルミネッセンス素子の構成層≫
 本発明の有機EL素子における代表的な素子構成としては、以下の構成を挙げることができるが、これらに限定されるものではない。
(1)陽極/発光層/陰極
(2)陽極/発光層/電子輸送層/陰極
(3)陽極/正孔輸送層/発光層/陰極
(4)陽極/正孔輸送層/発光層/電子輸送層/陰極
(5)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(6)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
(7)陽極/正孔注入層/正孔輸送層/(電子阻止層/)発光層/(正孔阻止層/)電子輸送層/電子注入層/陰極
 前記の中で(7)の構成が好ましく用いられるが、これに限定されるものではない。
 本発明に係る発光層は、単層又は複数層で構成されており、発光層が複数の場合は各発光層の間に非発光性の中間層を設けてもよい。
 必要に応じて、発光層と陰極との間に正孔阻止層(正孔障壁層ともいう)や電子注入層(陰極バッファー層ともいう)を設けてもよく、また、発光層と陽極との間に電子阻止層(電子障壁層ともいう)や正孔注入層(陽極バッファー層ともいう)を設けてもよい。
 本発明に係る電子輸送層とは、電子を輸送する機能を有する層であり、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。また、複数層で構成されていてもよい。
 本発明に係る正孔輸送層とは、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。また、複数層で構成されていてもよい。
 前記の代表的な素子構成において、陽極と陰極を除いた層を「有機層」ともいう。
(タンデム構造)
 また、本発明に係る有機EL素子は、少なくとも1層の発光層を含む発光ユニットを複数積層した、いわゆるタンデム構造の素子であってもよい。
 タンデム構造の代表的な素子構成としては、例えば以下の構成を挙げることができる。
 陽極/第1発光ユニット/第2発光ユニット/第3発光ユニット/陰極
 陽極/第1発光ユニット/中間層/第2発光ユニット/中間層/第3発光ユニット/陰極
 ここで、前記第1発光ユニット、第2発光ユニット及び第3発光ユニットは全て同じであっても、異なっていてもよい。また二つの発光ユニットが同じであり、残る一つが異なっていてもよい。
 また、第3発光ユニットはなくてもよく、一方で第3発光ユニットと電極の間に更に発光ユニットや中間層を設けてもよい。
 複数の発光ユニットは直接積層されていても、中間層を介して積層されていてもよく、中間層は、一般的に中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、陽極側の隣接層に電子を、陰極側の隣接層に正孔を供給する機能を持った層であれば、公知の材料構成を用いることができる。
 中間層に用いられる材料としては、例えば、ITO(インジウム・スズ酸化物)、IZO(インジウム・亜鉛酸化物)、ZnO、TiN、ZrN、HfN、TiOx、VOx、CuI、InN、GaN、CuAlO、CuGaO、SrCu、LaB、RuO、Al等の導電性無機化合物層や、Au/Bi等の2層膜や、SnO/Ag/SnO、ZnO/Ag/ZnO、Bi/Au/Bi、TiO/TiN/TiO、TiO/ZrN/TiO等の多層膜、またC60等のフラーレン類、オリゴチオフェン等の導電性有機物層、金属フタロシアニン類、無金属フタロシアニン類、金属ポルフィリン類、無金属ポルフィリン類等の導電性有機化合物層等が挙げられるが、本発明はこれらに限定されない。
 発光ユニット内の好ましい構成としては、例えば前記の代表的な素子構成で挙げた(1)~(7)の構成から、陽極と陰極を除いたもの等が挙げられるが、本発明はこれらに限定されない。
 タンデム型有機EL素子の具体例としては、例えば、米国特許第6337492号明細書、米国特許第7420203号明細書、米国特許第7473923号明細書、米国特許第6872472号明細書、米国特許第6107734号明細書、米国特許第6337492号明細書、国際公開第2005/009087号、特開2006-228712号公報、特開2006-24791号公報、特開2006-49393号公報、特開2006-49394号公報、特開2006-49396号公報、特開2011-96679号公報、特開2005-340187号公報、特許第4711424号、特許第3496681号、特許第3884564号、特許第4213169号、特開2010-192719号公報、特開2009-076929号公報、特開2008-078414号公報、特開2007-059848号公報、特開2003-272860号公報、特開2003-045676号公報、国際公開第2005/094130号等に記載の素子構成や構成材料等が挙げられるが、本発明はこれらに限定されない。
 以下、本発明の有機EL素子を構成する各層について説明する。
≪発光層≫
 本発明に用いられる発光層は、電極又は隣接層から注入されてくる電子及び正孔が再結合し、励起子を経由して発光する場を提供する層であり、発光する部分は発光層の層内であっても、発光層と隣接層との界面であってもよい。そして、本発明に係る発光層は、前記した「薄膜」で構成される。
 なお、本発明に用いられる発光層は、本発明で規定する薄膜に関する要件を満たしていれば、その構成に特に制限はない。
 発光層の膜厚の総和は、特に制限はないが、形成する膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、より好ましくは2nm~500nmの範囲に調整され、更に好ましくは5nm~200nmの範囲に調整される。
 また、本発明において個々の発光層の層厚としては、2nm~1μmの範囲に調整することが好ましく、より好ましくは2~200nmの範囲に調整され、更に好ましくは3~150nmの範囲に調整される。
 本発明に係る発光層は、前記した「発光性金属錯体」(コアシェル型ドーパント)と「ホスト」を含有して構成される。
 ただし、本発明に係る発光層は、本発明の効果を妨げない範囲内において、別途、以下に示す「(1)発光ドーパント:(1.1)リン光発光性ドーパント、(1.2)蛍光発光性ドーパント」や「(2)ホスト化合物」を含有していてもよい。
(1)発光ドーパント
 本発明に用いられる発光ドーパントについて説明する。
 発光ドーパントとしては、リン光発光性ドーパント(リン光ドーパント、リン光性化合物ともいう)、蛍光発光性ドーパント(蛍光ドーパント、蛍光性化合物ともいう)を用いてもよい。
 また、本発明に用いられる発光ドーパントは、複数種を併用して用いてもよく、構造の異なるドーパント同士の組み合わせや、蛍光発光性ドーパントとリン光発光性ドーパントとを組み合わせて用いてもよい。これにより、任意の発光色を得ることができる。
 本発明の有機EL素子や本発明の薄膜の発光する色は、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16において、分光放射輝度計CS-1000(コニカミノルタ(株)製)で測定した結果をCIE色度座標に当てはめたときの色で決定される。
 本発明においては、1層又は複数層の発光層が、発光色の異なる複数の発光ドーパントを含有し、白色発光を示すことも好ましい。
 白色を示す発光ドーパントの組み合わせについては特に限定はないが、例えば青と橙や、青と緑と赤の組み合わせ等が挙げられる。
 本発明の有機EL素子における白色とは、特に限定はなく、橙色寄りの白色であっても青色寄りの白色であってもよいが、2度視野角正面輝度を前述の方法により測定した際に、1000cd/mでのCIE1931表色系における色度がx=0.39±0.09、y=0.38±0.08の領域内にあることが好ましい。
(1.1)リン光発光性ドーパント
 本発明に用いられるリン光発光性ドーパント(以下、「リン光ドーパント」ともいう)について説明する。
 本発明に用いられるリン光ドーパントは、三重項励起からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、リン光量子収率が、25℃において0.01以上の化合物であると定義されるが、好ましいリン光量子収率は0.1以上である。
 本発明におけるリン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、本発明に係るリン光ドーパントは、任意の溶媒のいずれかにおいて前記リン光量子収率(0.01以上)が達成されればよい。
 リン光ドーパントの発光は原理としては二種挙げられ、一つはキャリアが輸送されるホスト化合物上でキャリアの再結合が起こってホスト化合物の励起状態が生成し、このエネルギーをリン光ドーパントに移動させることでリン光ドーパントからの発光を得るというエネルギー移動型である。もう一つはリン光ドーパントがキャリアトラップとなり、リン光ドーパント上でキャリアの再結合が起こりリン光ドーパントからの発光が得られるというキャリアトラップ型である。いずれの場合においても、リン光ドーパントの励起状態のエネルギーはホスト化合物の励起状態のエネルギーよりも低いことが条件である。
 本発明において使用できるリン光ドーパントとしては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。
 本発明に使用できる公知のリン光ドーパントの具体例としては、以下の文献に記載されている化合物等が挙げられる。
 Nature 395,151(1998)、Appl.Phys.Lett.78,1622(2001)、Adv.Mater.19,739(2007)、Chem.Mater. 17,3532(2005)、Adv.Mater.17,1059(2005)、国際公開第2009/100991号、国際公開第2008/101842号、国際公開第2003/040257号、米国特許公開第2006/835469号明細書、米国特許公開第2006/0202194号明細書、米国特許公開第2007/0087321号明細書、米国特許公開第2005/0244673号明細書、Inorg.Chem.40,1704(2001)、Chem.Mater.16,2480(2004)、Adv.Mater.16,2003(2004)、Angew.Chem.lnt.Ed.2006,45,7800、Appl.Phys.Lett.86,153505(2005)、Chem.Lett.34,592(2005)、Chem.Commun.2906(2005)、Inorg.Chem.42,1248(2003)、国際公開第2009/050290号、国際公開第2002/015645号、国際公開第2009/000673号、米国特許公開第2002/0034656号明細書、米国特許第7332232号明細書、米国特許公開第2009/0108737号明細書、米国特許公開第2009/0039776号、米国特許第6921915号明細書、米国特許第6687266号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2006/0008670号明細書、米国特許公開第2009/0165846号明細書、米国特許公開第2008/0015355号明細書、米国特許第7250226号明細書、米国特許第7396598号明細書、米国特許公開第2006/0263635号明細書、米国特許公開第2003/0138657号明細書、米国特許公開第2003/0152802号明細書、米国特許第7090928号明細書、Angew.Chem.lnt.Ed.47,1(2008)、Chem.Mater.18,5119(2006)、Inorg.Chem.46,4308(2007)、Organometallics 23,3745(2004)、Appl.Phys.Lett.74,1361(1999)、国際公開第2002/002714号、国際公開第2006/009024号、国際公開第2006/056418号、国際公開第2005/019373号、国際公開第2005/123873号、国際公開第2005/123873号、国際公開第2007/004380号、国際公開第2006/082742号、米国特許公開第2006/0251923号明細書、米国特許公開第2005/0260441号明細書、米国特許第7393599号明細書、米国特許第7534505号明細書、米国特許第7445855号明細書、米国特許公開第2007/0190359号明細書、米国特許公開第2008/0297033号明細書、米国特許第7338722号明細書、米国特許公開第2002/0134984号明細書、米国特許第7279704号明細書、米国特許公開第2006/098120号明細書、米国特許公開第2006/103874号明細書、国際公開第2005/076380号、国際公開第2010/032663号、国際公開第2008/140115号、国際公開第2007/052431号、国際公開第2011/134013号、国際公開第2011/157339号、国際公開第2010/086089号、国際公開第2009/113646号、国際公開第2012/020327号、国際公開第2011/051404号、国際公開第2011/004639号、国際公開第2011/073149号、米国特許公開第2012/228583号明細書、米国特許公開第2012/212126号明細書、特開2012-069737号公報、特開2012-195554号公報、特開2009-114086号公報、特開2003-81988号公報、特開2002-302671号公報、特開2002-363552号公報等である。
 中でも、好ましいリン光ドーパントとしてはIrを中心金属に有する有機金属錯体が挙げられる。更に好ましくは、金属-炭素結合、金属-窒素結合、金属-酸素結合、金属-硫黄結合の少なくとも一つの配位様式を含む錯体が好ましい。
(1.2)蛍光発光性ドーパント
 本発明に用いられる蛍光発光性ドーパント(以下、「蛍光ドーパント」ともいう)について説明する。
 本発明に用いられる蛍光ドーパントは、一重項励起からの発光が可能な化合物であり、一重項励起からの発光が観測される限り特に限定されない。
 本発明に用いられる蛍光ドーパントとしては、例えば、アントラセン誘導体、ピレン誘導体、クリセン誘導体、フルオランテン誘導体、ペリレン誘導体、フルオレン誘導体、アリールアセチレン誘導体、スチリルアリーレン誘導体、スチリルアミン誘導体、アリールアミン誘導体、ホウ素錯体、クマリン誘導体、ピラン誘導体、シアニン誘導体、クロコニウム誘導体、スクアリウム誘導体、オキソベンツアントラセン誘導体、フルオレセイン誘導体、ローダミン誘導体、ピリリウム誘導体、ペリレン誘導体、ポリチオフェン誘導体、又は希土類錯体系化合物等が挙げられる。
 また、近年では遅延蛍光を利用した発光ドーパントも開発されており、これらを用いてもよい。
 遅延蛍光を利用した発光ドーパントの具体例としては、例えば、国際公開第2011/156793号、特開2011-213643号公報、特開2010-93181号公報等に記載の化合物が挙げられるが、本発明はこれらに限定されない。
(2)ホスト化合物
 本発明に用いられるホスト化合物は、発光層において主に電荷の注入及び輸送を担う化合物であり、有機EL素子においてそれ自体の発光は実質的に観測されない。
 好ましくは室温(25℃)においてリン光発光のリン光量子収率が、0.1未満の化合物であり、更に好ましくはリン光量子収率が0.01未満の化合物である。
 また、ホスト化合物の励起状態エネルギーは、同一層内に含有される発光ドーパントの励起状態エネルギーよりも高いことが好ましい。
 ホスト化合物は、単独で用いてもよく、又は複数種併用して用いてもよい。ホスト化合物を複数種用いることで、電荷の移動を調整することが可能であり、有機EL素子を高効率化することができる。
 本発明で用いることができるホスト化合物としては、特に制限はなく、従来有機EL素子で用いられる化合物を用いることができる。低分子化合物でも繰り返し単位を有する高分子化合物でもよく、また、ビニル基やエポキシ基のような反応性基を有する化合物でもよい。
 公知のホスト化合物としては、正孔輸送能又は電子輸送能を有しつつ、且つ、発光の長波長化を防ぎ、更に、有機EL素子を高温駆動時や素子駆動中の発熱に対して安定して動作させる観点から、高いガラス転移温度(Tg)を有することが好ましい。好ましくはTgが90℃以上であり、より好ましくは120℃以上である。
 ここで、ガラス転移点(Tg)とは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS-K-7121に準拠した方法により求められる値である。
 本発明の有機EL素子に用いられる、公知のホスト化合物の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報、米国特許公開第2003/0175553号明細書、米国特許公開第2006/0280965号明細書、米国特許公開第2005/0112407号明細書、米国特許公開第2009/0017330号明細書、米国特許公開第2009/0030202号明細書、米国特許公開第2005/0238919号明細書、国際公開第2001/039234号、国際公開第2009/021126号、国際公開第2008/056746号、国際公開第2004/093207号、国際公開第2005/089025号、国際公開第2007/063796号、国際公開第2007/063754号、国際公開第2004/107822号、国際公開第2005/030900号、国際公開第2006/114966号、国際公開第2009/086028号、国際公開第2009/003898号、国際公開第2012/023947号、特開2008-074939号公報、特開2007-254297号公報、欧州特許第2034538号明細書等である。
≪電子輸送層≫
 本発明において電子輸送層とは、電子を輸送する機能を有する材料からなり、陰極より注入された電子を発光層に伝達する機能を有していればよい。
 本発明に用いられる電子輸送層の総層厚については特に制限はないが、通常は2nm~5μmの範囲であり、より好ましくは2~500nmであり、更に好ましくは5~200nmである。
 また、有機EL素子においては発光層で生じた光を電極から取り出す際、発光層から直接取り出される光と、光を取り出す電極と対極に位置する電極によって反射されてから取り出される光とが干渉を起こすことが知られている。光が陰極で反射される場合は、電子輸送層の総層厚を5nm~1μmの間で適宜調整することにより、この干渉効果を効率的に利用することが可能である。
 一方で、電子輸送層の層厚を厚くすると電圧が上昇しやすくなるため、特に層厚が厚い場合においては、電子輸送層の電子移動度は10-5cm/Vs以上であることが好ましい。
 電子輸送層に用いられる材料(以下、電子輸送材料という)としては、電子の注入性又は輸送性、正孔の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、含窒素芳香族複素環誘導体(カルバゾール誘導体、アザカルバゾール誘導体(カルバゾール環を構成する炭素原子の一つ以上が窒素原子に置換されたもの)、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、ピリダジン誘導体、トリアジン誘導体、キノリン誘導体、キノキサリン誘導体、フェナントロリン誘導体、アザトリフェニレン誘導体、オキサゾール誘導体、チアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体等)、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、シロール誘導体、芳香族炭化水素環誘導体(ナフタレン誘導体、アントラセン誘導体、トリフェニレン等)等が挙げられる。
 また、配位子にキノリノール骨格やジベンゾキノリノール骨格を有する金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層の材料として例示したジスチリルピラジン誘導体も、電子輸送材料として用いることができるし、正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、これらの材料を高分子鎖に導入した、又はこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 本発明に用いられる電子輸送層においては、電子輸送層にドープ材をゲスト材料としてドープして、n性の高い(電子リッチ)電子輸送層を形成してもよい。ドープ材としては、金属錯体やハロゲン化金属など金属化合物等のn型ドーパントが挙げられる。このような構成の電子輸送層の具体例としては、例えば、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等の文献に記載されたものが挙げられる。
 本発明の有機EL素子に用いられる、公知の好ましい電子輸送材料の具体例としては、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 米国特許第6528187号明細書、米国特許第7230107号明細書、米国特許公開第2005/0025993号明細書、米国特許公開第2004/0036077号明細書、米国特許公開第2009/0115316号明細書、米国特許公開第2009/0101870号明細書、米国特許公開第2009/0179554号明細書、国際公開第2003/060956号、国際公開第2008/132085号、Appl.Phys.Lett.75,4(1999)、Appl.Phys.Lett.79,449(2001)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.81,162(2002)、Appl.Phys.Lett.79,156(2001)、米国特許第7964293号明細書、米国特許公開第2009/030202号明細書、国際公開第2004/080975号、国際公開第2004/063159号、国際公開第2005/085387号、国際公開第2006/067931号、国際公開第2007/086552号、国際公開第2008/114690号、国際公開第2009/069442号、国際公開第2009/066779号、国際公開第2009/054253号、国際公開第2011/086935号、国際公開第2010/150593号、国際公開第2010/047707号、欧州特許第2311826号明細書、特開2010-251675号公報、特開2009-209133号公報、特開2009-124114号公報、特開2008-277810号公報、特開2006-156445号公報、特開2005-340122号公報、特開2003-45662号公報、特開2003-31367号公報、特開2003-282270号公報、国際公開第2012/115034号等である。
 本発明におけるよりより好ましい電子輸送材料としては、ピリジン誘導体、ピリミジン誘導体、ピラジン誘導体、トリアジン誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、アザカルバゾール誘導体、ベンズイミダゾール誘導体が挙げられる。
 電子輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
≪正孔阻止層≫
 正孔阻止層とは広い意味では電子輸送層の機能を有する層であり、好ましくは電子を輸送する機能を有しつつ正孔を輸送する能力が小さい材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。
 本発明の有機EL素子に設ける正孔阻止層は、発光層の陰極側に隣接して設けられることが好ましい。
 本発明に用いられる正孔阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 正孔阻止層に用いられる材料としては、前述の電子輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も正孔阻止層に好ましく用いられる。
≪電子注入層≫
 本発明に用いられる電子注入層(「陰極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陰極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において電子注入層は必要に応じて設け、前記の如く陰極と発光層との間、又は陰極と電子輸送層との間に存在させてもよい。
 電子注入層はごく薄い膜であることが好ましく、素材にもよるがその層厚は0.1~5nmの範囲が好ましい。また構成材料が断続的に存在する不均一な膜であってもよい。
 電子注入層は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等にもその詳細が記載されており、電子注入層に好ましく用いられる材料の具体例としては、ストロンチウムやアルミニウム等に代表される金属、フッ化リチウム、フッ化ナトリウム、フッ化カリウム等に代表されるアルカリ金属化合物、フッ化マグネシウム、フッ化カルシウム等に代表されるアルカリ土類金属化合物、酸化アルミニウムに代表される金属酸化物、リチウム8-ヒドロキシキノレート(Liq)等に代表される金属錯体等が挙げられる。また、前述の電子輸送材料を用いることも可能である。
 また、前記の電子注入層に用いられる材料は単独で用いてもよく、複数種を併用して用いてもよい。
≪正孔輸送層≫
 本発明において正孔輸送層とは、正孔を輸送する機能を有する材料からなり、陽極より注入された正孔を発光層に伝達する機能を有していればよい。
 本発明に用いられる正孔輸送層の総層厚については特に制限はないが、通常は5nm~5μmの範囲であり、より好ましくは2~500nmであり、更に好ましくは5nm~200nmである。
 正孔輸送層に用いられる材料(以下、正孔輸送材料という)としては、正孔の注入性又は輸送性、電子の障壁性のいずれかを有していればよく、従来公知の化合物の中から任意のものを選択して用いることができる。
 例えば、ポルフィリン誘導体、フタロシアニン誘導体、オキサゾール誘導体、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、ヒドラゾン誘導体、スチルベン誘導体、ポリアリールアルカン誘導体、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、イソインドール誘導体、アントラセンやナフタレン等のアセン系誘導体、フルオレン誘導体、フルオレノン誘導体、及びポリビニルカルバゾール、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー、ポリシラン、導電性ポリマー又はオリゴマー(例えばPEDOT:PSS、アニリン系共重合体、ポリアニリン、ポリチオフェン等)等が挙げられる。
 トリアリールアミン誘導体としては、αNPDに代表されるベンジジン型や、MTDATAに代表されるスターバースト型、トリアリールアミン連結コア部にフルオレンやアントラセンを有する化合物等が挙げられる。
 また、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体も同様に正孔輸送材料として用いることができる。
 更に不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような、いわゆるp型正孔輸送材料やp型-Si、p型-SiC等の無機化合物を用いることもできる。更にIr(ppy)に代表されるような中心金属にIrやPtを有するオルトメタル化有機金属錯体も好ましく用いられる。
 正孔輸送材料としては、前記のものを使用することができるが、トリアリールアミン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、アザトリフェニレン誘導体、有機金属錯体、芳香族アミンを主鎖又は側鎖に導入した高分子材料又はオリゴマー等が好ましく用いられる。
 本発明の有機EL素子に用いられる、公知の好ましい正孔輸送材料の具体例としては、前記で挙げた文献の他、以下の文献に記載の化合物等が挙げられるが、これらに限定されない。
 例えば、Appl.Phys.Lett.69,2160(1996)、J.Lumin.72-74,985(1997)、Appl.Phys.Lett.78,673(2001)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.90,183503(2007)、Appl.Phys.Lett.51,913(1987)、Synth.Met.87,171(1997)、Synth.Met.91,209(1997)、Synth.Met.111,421(2000)、SID Symposium Digest,37,923(2006)、J.Mater.Chem.3,319(1993)、Adv.Mater.6,677(1994)、Chem.Mater.15,3148(2003)、米国特許公開第2003/0162053号明細書、米国特許公開第2002/0158242号明細書、米国特許公開第2006/0240279号明細書、米国特許公開第2008/0220265号明細書、米国特許第5061569号明細書、国際公開第2007/002683号、国際公開第2009/018009号、欧州特許第650955号明細書、米国特許公開第2008/0124572号、米国特許公開第2007/0278938号明細書、米国特許公開第2008/0106190号明細書、米国特許公開第2008/0018221号明細書、国際公開第2012/115034号、特表2003-519432号公報、特開2006-135145号公報、米国特許出願番号13/585981号等である。
 正孔輸送材料は単独で用いてもよく、また複数種を併用して用いてもよい。
≪電子阻止層≫
 電子阻止層とは広い意味では正孔輸送層の機能を有する層であり、好ましくは正孔を輸送する機能を有しつつ電子を輸送する能力が小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。
 また、前述する正孔輸送層の構成を必要に応じて、本発明に用いられる電子阻止層として用いることができる。
 本発明の有機EL素子に設ける電子阻止層は、発光層の陽極側に隣接して設けられることが好ましい。
 本発明に用いられる電子阻止層の層厚としては、好ましくは3~100nmの範囲であり、更に好ましくは5~30nmの範囲である。
 電子阻止層に用いられる材料としては、前述の正孔輸送層に用いられる材料が好ましく用いられ、また、前述のホスト化合物として用いられる材料も電子阻止層に好ましく用いられる。
≪正孔注入層≫
 本発明に用いられる正孔注入層(「陽極バッファー層」ともいう)とは、駆動電圧低下や発光輝度向上のために陽極と発光層との間に設けられる層のことで、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に詳細に記載されている。
 本発明において正孔注入層は必要に応じて設け、前記の如く陽極と発光層又は陽極と正孔輸送層との間に存在させてもよい。
 正孔注入層は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等にもその詳細が記載されており、正孔注入層に用いられる材料としては、例えば前述の正孔輸送層に用いられる材料等が挙げられる。
 中でも銅フタロシアニンに代表されるフタロシアニン誘導体、特表2003-519432号公報や特開2006-135145号公報等に記載されているようなヘキサアザトリフェニレン誘導体、酸化バナジウムに代表される金属酸化物、アモルファスカーボン、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子、トリス(2-フェニルピリジン)イリジウム錯体等に代表されるオルトメタル化錯体、トリアリールアミン誘導体等が好ましい。
 前述の正孔注入層に用いられる材料は単独で用いてもよく、また複数種を併用して用いてもよい。
≪含有物≫
 前述した本発明における有機層は、更に他の含有物が含まれていてもよい。
 含有物としては、例えば臭素、ヨウ素及び塩素等のハロゲン元素やハロゲン化化合物、Pd、Ca、Na等のアルカリ金属やアルカリ土類金属、遷移金属の化合物や錯体、塩等が挙げられる。
 含有物の含有量は、任意に決定することができるが、含有される層の全質量%に対して1000ppm以下であることが好ましく、より好ましくは500ppm以下であり、更に好ましくは50ppm以下である。
 ただし、電子や正孔の輸送性を向上させる目的や、励起子のエネルギー移動を有利にするための目的等によってはこの範囲内ではない。
≪有機層の形成方法≫
 本発明に用いられる有機層(正孔注入層、正孔輸送層、電子阻止層、発光層、正孔阻止層、電子輸送層、電子注入層等)の形成方法について説明する。
 本発明に用いられる有機層の形成方法は、特に制限はなく、従来公知の例えば真空蒸着法、湿式法(ウェットプロセスともいう)等による形成方法を用いることができる。ここで、有機層が、ウェットプロセスで形成された層であることが好ましい。すなわち、ウェットプロセスで有機EL素子を作製することが好ましい。有機EL素子をウェットプロセスで作製することで、均質な膜(塗膜)が得られやすく、且つピンホールが生成しにくい等の効果を奏することができる。なお、ここでの膜(塗膜)とは、ウェットプロセスによる塗布後に乾燥させた状態のものである。
 湿式法としては、スピンコート法、キャスト法、インクジェット法、印刷法、ダイコート法、ブレードコート法、ロールコート法、スプレーコート法、カーテンコート法、LB法(ラングミュア-ブロジェット法)等があるが、均質な薄膜が得られやすく、且つ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・to・ロール方式適性の高い方法が好ましい。
 本発明に係る有機EL材料を溶解又は分散する液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。
 また、分散方法としては、超音波、高剪断力分散やメディア分散等の分散方法により分散することができる。
 更に層毎に異なる製膜法を適用してもよい。製膜に蒸着法を採用する場合、その蒸着条件は使用する化合物の種類等により異なるが、一般にボート加熱温度50~450℃、真空度10-6~10-2Pa、蒸着速度0.01~50nm/秒、基板温度-50~300℃、厚さ0.1nm~5μm、好ましくは5~200nmの範囲で適宜選ぶことが望ましい。
 本発明に用いられる有機層の形成は、一回の真空引きで一貫して正孔注入層から陰極まで作製するのが好ましいが、途中で取り出して異なる製膜法を施しても構わない。その際は作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
≪陽極≫
 有機EL素子における陽極としては、仕事関数の大きい(4eV以上、好ましくは4.5V以上)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。このような電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させ、フォトリソグラフィー法で所望の形状のパターンを形成してもよく、又はパターン精度をあまり必要としない場合は(100μm以上程度)、前記電極物質の蒸着やスパッタリング時に所望の形状のマスクを介してパターンを形成してもよい。
 又は、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等湿式製膜法を用いることもできる。この陽極より発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/□以下が好ましい。
 陽極の厚さは材料にもよるが、通常10nm~1μm、好ましくは10~200nmの範囲で選ばれる。
≪陰極≫
 陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、アルミニウム、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、陰極としてのシート抵抗は数百Ω/□以下が好ましく、厚さは通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
 なお、発光した光を透過させるため、有機EL素子の陽極又は陰極のいずれか一方が透明又は半透明であれば発光輝度が向上し好都合である。
 また、陰極に前記金属を1~20nmの厚さで作製した後に、陽極の説明で挙げる導電性透明材料をその上に作製することで、透明又は半透明の陰極を作製することができ、これを応用することで陽極と陰極の両方が透過性を有する素子を作製することができる。
≪支持基板≫
 本発明の有機EL素子に用いることのできる支持基板(以下、基体、基板、基材、支持体等とも言う)としては、ガラス、プラスチック等の種類には特に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板は透明であることが好ましい。好ましく用いられる透明な支持基板としては、ガラス、石英、透明樹脂フィルムを挙げることができる。特に好ましい支持基板は、有機EL素子にフレキシブル性を与えることが可能な樹脂フィルムである。
 樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート(TAC)、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル、又はポリアリレート類、アートン(商品名JSR社製)若しくはアペル(商品名三井化学社製)といったシクロオレフィン系樹脂等を挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよく、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、更には、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・atm)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが好ましい。
 バリア膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることがより好ましい。無機層と有機層の積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 バリア膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができるが、特開2004-68143号公報に記載されているような大気圧プラズマ重合法によるものが特に好ましい。
 不透明な支持基板としては、例えば、アルミニウム、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 本発明の有機EL素子の発光の室温における外部取り出し量子効率は、1%以上であることが好ましく、5%以上であるとより好ましい。
 ここで、外部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100である。
 また、カラーフィルター等の色相改良フィルター等を併用しても、有機EL素子からの発光色を蛍光体を用いて多色へ変換する色変換フィルターを併用してもよい。
≪封止≫
 本発明の有機EL素子の封止に用いられる封止手段としては、例えば、封止部材と、電極、支持基板とを接着剤で接着する方法を挙げることができる。封止部材としては、有機EL素子の表示領域を覆うように配置されていればよく、凹板状でも、平板状でもよい。また、透明性、電気絶縁性は特に限定されない。
 具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる一種以上の金属又は合金からなるものが挙げられる。
 本発明においては、有機EL素子を薄膜化できるということからポリマーフィルム、金属フィルムを好ましく使用することができる。更には、ポリマーフィルムはJIS K 7126-1987に準拠した方法で測定された酸素透過度が1×10-3ml/(m・24h・atm)以下、JIS K 7129-1992に準拠した方法で測定された、水蒸気透過度(25±0.5℃、相対湿度(90±2)%)が、1×10-3g/(m・24h)以下のものであることが好ましい。
 封止部材を凹状に加工するのは、サンドブラスト加工、化学エッチング加工等が使われる。
 接着剤として具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。また、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、有機EL素子が熱処理により劣化する場合があるので、室温から80℃までに接着硬化できるものが好ましい。また、前記接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、有機層を挟み支持基板と対向する側の電極の外側に該電極と有機層を被覆し、支持基板と接する形で無機物、有機物の層を形成し封止膜とすることも好適にできる。この場合、該膜を形成する材料としては、水分や酸素等素子の劣化をもたらすものの浸入を抑制する機能を有する材料であればよく、例えば、酸化ケイ素、二酸化ケイ素、窒化ケイ素等を用いることができる。
 更に該膜の脆弱性を改良するために、これら無機層と有機材料からなる層の積層構造を持たせることが好ましい。これらの膜の形成方法については特に限定はなく、例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスターイオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザーCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙には、気相及び液相では、窒素、アルゴン等の不活性気体やフッ化炭化水素、シリコンオイルのような不活性液体を注入することが好ましい。また、真空とすることも可能である。また、内部に吸湿性化合物を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、ヨウ化バリウム、ヨウ化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられ、硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
≪保護膜、保護板≫
 有機層を挟み支持基板と対向する側の前記封止膜又は前記封止用フィルムの外側に、素子の機械的強度を高めるために、保護膜若しくは保護板を設けてもよい。特に、封止が前記封止膜により行われている場合には、その機械的強度は必ずしも高くないため、このような保護膜、保護板を設けることが好ましい。これに使用することができる材料としては、前記封止に用いたのと同様なガラス板、ポリマー板・フィルム、金属板・フィルム等を用いることができるが、軽量かつ薄膜化ということからポリマーフィルムを用いることが好ましい。
≪光取り出し向上技術≫
 有機エレクトロルミネッセンス素子は、空気よりも屈折率の高い(屈折率1.6~2.1程度の範囲内)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないと一般的に言われている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができないことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
 この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面での全反射を防ぐ方法(例えば、米国特許第4774435号明細書)、基板に集光性を持たせることにより効率を向上させる方法(例えば、特開昭63-314795号公報)、素子の側面等に反射面を形成する方法(例えば、特開平1-220394号公報)、基板と発光体の間に中間の屈折率を持つ平坦層を導入し、反射防止膜を形成する方法(例えば、特開昭62-172691号公報)、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法(例えば、特開2001-202827号公報)、基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法(特開平11-283751号公報)等が挙げられる。
 本発明においては、これらの方法を本発明の有機EL素子と組み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法、又は基板、透明電極層や発光層のいずれかの層間(含む、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
 本発明は、これらの手段を組み合わせることにより、更に高輝度又は耐久性に優れた素子を得ることができる。
 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚さで形成すると、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が高くなる。
 低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度の範囲内であるので、低屈折率層は、屈折率がおよそ1.5以下であることが好ましい。また更に1.35以下であることが好ましい。
 また、低屈折率媒質の厚さは、媒質中の波長の2倍以上となるのが望ましい。これは、低屈折率媒質の厚さが、光の波長程度になってエバネッセントで染み出した電磁波が基板内に入り込む層厚になると、低屈折率層の効果が薄れるからである。
 全反射を起こす界面又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が1次の回折や、2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層間での全反射等により外に出ることができない光を、いずれかの層間若しくは、媒質中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外に取り出そうとするものである。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周期的な屈折率分布を持っている一般的な一次元回折格子では、特定の方向に進む光しか回折されず、光の取り出し効率がさほど上がらない。
 しかしながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率が上がる。
 回折格子を導入する位置としては、いずれかの層間、若しくは媒質中(透明基板内や透明電極内)でも良いが、光が発生する場所である有機発光層の近傍が望ましい。このとき、回折格子の周期は、媒質中の光の波長の約1/2~3倍程度の範囲内が好ましい。回折格子の配列は、正方形のラチス状、三角形のラチス状、ハニカムラチス状等、二次元的に配列が繰り返されることが好ましい。
≪集光シート≫
 本発明の有機EL素子は、支持基板(基板)の光取り出し側に、例えばマイクロレンズアレイ上の構造を設けるように加工したり、又は、いわゆる集光シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集光することにより、特定方向上の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を二次元に配列する。一辺は10~100μmの範囲内が好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚さが厚くなり好ましくない。
 集光シートとしては、例えば液晶表示装置のLEDバックライトで実用化されているものを用いることが可能である。このようなシートとして例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。プリズムシートの形状としては、例えば基材に頂角90度、ピッチ50μmの△状のストライプが形成されたものであってもよいし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状であっても良い。
 また、有機EL素子からの光放射角を制御するために光拡散板・フィルムを、集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
≪用途≫
 本発明の有機EL素子は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。
 発光光源として、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられるがこれに限定するものではないが、特に液晶表示装置のバックライト、照明用光源としての用途に有効に用いることができる。
 本発明の有機EL素子においては、必要に応じ製膜時にメタルマスクやインクジェットプリンティング法等でパターニングを施してもよい。パターニングする場合は、電極のみをパターニングしてもよいし、電極と発光層をパターニングしてもよいし、素子全層をパターニングしてもよく、素子の作製においては、従来公知の方法を用いることができる。
≪表示装置≫
 以下、本発明の有機EL素子を有する表示装置の一例を図面に基づいて説明する。
 図7は、本発明の有機EL素子から構成される表示装置の構成の一例を示した概略斜視図であって、有機EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの模式図である。図7に示すとおり、ディスプレイ1は、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。
 制御部Bは表示部Aと電気的に接続されている。制御部Bは、複数の画素それぞれに対し、外部からの画像情報に基づいて走査信号と画像データ信号を送る。その結果、各画素が走査信号により走査線毎に画像データ信号に応じて順次発光し、画像情報が表示部Aに表示される。
 図8は、図7に記載の表示部Aの模式図である。
 表示部Aは基板上に、複数の走査線5及びデータ線6を含む配線部と、複数の画素3等とを有する。
 表示部Aの主要な部材の説明を以下に行う。
 図8においては、画素3の発光した光が白矢印方向(下方向)へ取り出される場合を示している。配線部の走査線5及び複数のデータ線6はそれぞれ導電材料から構成されている。走査線5とデータ線6は互いに格子状に直交して、その直交する位置で画素3に接続されている(詳細は図示していない)。
 画素3は、走査線5から走査信号が送信されると、データ線6から画像データ信号を受け取り、受け取った画像データに応じて発光する。
 発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並列配置することによって、フルカラー表示が可能となる。
≪照明装置≫
 本発明の有機EL素子を具備した、本発明の照明装置の一態様について説明する。
 本発明の有機EL素子の非発光面をガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材として、エポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止し、図9、図10に示すような照明装置を形成することができる。
 図9は、照明装置の概略図を示し、本発明の有機EL素子101はガラスカバー102で覆われている(なお、ガラスカバーでの封止作業は、有機EL素子101を大気に接触させることなく窒素雰囲気下のグローブボックス(純度99.999%以上の高純度窒素ガスの雰囲気下)で行う。)。
 図10は、照明装置の断面図を示し、図10において、105は陰極、106は有機EL層(発光ユニット)、107は透明電極付きガラス基板を示す。なお、ガラスカバー102内には窒素ガス108が充填され、捕水剤109が設けられている。
 図11は、可撓性支持基板201を用いて、塗布液によるウェットプロセスで作製した有機EL素子を有する照明装置の断面図である。図11に示すとおり、本発明の好ましい実施形態にかかる有機EL素子200は、可撓性支持基板201を有している。可撓性支持基板201上には陽極202が形成され、陽極202上には、下記に示す種々の有機機能層が形成され、有機機能層上には陰極208が形成されている。
 有機機能層には、例えば、正孔注入層203、正孔輸送層204、発光層205、電子輸送層206、電子注入層207が含まれ、そのほかに正孔ブロック層や電子ブロック層等が含まれてもよい。
 可撓性支持基板201上の陽極202、有機機能層、陰極208は封止接着剤209を介して可撓性封止部材210によって封止されている。
 次に、本発明の要件を満たす実施例とそうでない比較例とを例示して、本発明に係る薄膜、及び有機エレクトロルミネッセンス素子について説明する。
[参考例1]
 実施例と比較例とを用いて本発明を説明する前に、まず、参考例1では、青色発光を想定した化合物を使用し、ドーパントから消光物質へのエネルギー移動速度について確認した。
≪評価用薄膜の作製≫
 50mm×50mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置の蒸着用るつぼの各々に、表1に示す「ホスト」及び「ドーパント」、並びに「消光物質」としてQ-1を、各々素子作製に最適の量となるように充填した。蒸着用るつぼはモリブデン性の抵抗加熱用材料で作製されたものを用いた。
 真空蒸着装置内を真空度1×10-4Paまで減圧した後、ホスト、ドーパント、消光物質がそれぞれ84体積%、15体積%、1体積%になるように共蒸着させ、膜厚30nmの評価用薄膜を作製した。
≪比較用薄膜の作製≫
 比較用薄膜は、消光物質の蒸着を行わない点(消光物質を0体積%、消光物質を減らした分はホスト化合物に変更)以外は、前記の「評価用薄膜の作製」と同様の方法で作製を行った。
 なお、比較用薄膜は、各評価用薄膜1つに対して1つずつ(具体的には、評価用薄膜1-1に対して消光物質を蒸着させていない比較用薄膜1-1Ref、評価用薄膜1-2に対して消光物質を蒸着させていない比較用薄膜1-2Ref等)作製した。
≪コアシェル型ドーパントの発光寿命の測定≫
 評価用薄膜、比較用薄膜のドーパントの発光寿命(リン光寿命)について、過渡PL特性を測定することによって求めた。過渡PL特性の測定には、小型蛍光寿命測定装置C11367-03(浜松ホトニクス社製)を用いた。減衰成分は、340nmのLEDを励起光源としたTCC900モードにて測定した。
 なお、評価用薄膜1-1に対して無酸素状態で測定を行ったところ、発光寿命は0.8μsであったのに対し、比較用薄膜1-1-Refの発光寿命は1.6μsであった。これは、消光物質のQ-1が添加された評価用薄膜1-1において、ドーパントからQ-1へのエネルギー移動による消光が一部起こっているため、比較用薄膜1-1-Refよりも短い発光寿命になったものと推察される。
≪ドーパントから消光物質へのエネルギー移動速度(Kq)の算出≫
 ドーパントから消光物質へのエネルギー移動速度(Kq)は、前記の数式(1)を変形した下記数式(2)に基づいて、前記の方法にて求めた評価用薄膜のドーパントの発光寿命(τ(with Quencher))の値と比較用薄膜のドーパントの発光寿命(τ0(without Quencher))の値を代入することによって算出した。
 なお、評価用薄膜については、消光物質の含有量が1体積%であることから、[Q]には1を代入して算出した。
Figure JPOXMLDOC01-appb-M000038
 前記数式(2)中、PL(with Quencher)は消光物質存在下における発光強度、PL0(without Quencher)は消光物質非存在下における発光強度、Kqは発光材料から消光物質へのエネルギー移動速度、[Q](=Kd×t)は消光物質濃度、Kdは凝集・分解等による消光物質の生成速度、tは光又は電流による積算励起時間、τは消光物質が存在する場合のドーパントのリン光寿命、τ0は消光物質が存在しない場合の発光材料のリン光寿命である。
 前記の方法によって各評価用薄膜のKqを算出し、評価用薄膜1-1のKqを1とする相対比(Kq比)を求めた。
≪Vall/Vcore値の算出≫
 Vall/Vcore値の算出において、Vall、Vcoreは前記した定義のとおりである。そして、Vall/Vcore値は、Vall、Vcoreのファンデルワールス分子体積をWinmostor(株式会社クロスアビリティ社製)によって算出した後、VallをVcoreで割ることにより算出した。
 なお、本実施例([参考例1]~[参考例5]、[実施例1]~[実施例10])において使用した各種化合物については、前記した化合物に加え、以下の化合物を使用した。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
 以下、各評価の結果を表1に示す。
 なお、表中のホストの番号、ドーパントの番号は、前記した化合物例の番号に対応している。
Figure JPOXMLDOC01-appb-T000042
≪結果の検討:参考例1≫
 表1に示すとおり、評価用薄膜1-10~1-17については、ドーパントのVall/Vcoreが2を超えているとともに、本発明で規定する一般式を満たすコアシェル型ドーパントを用いたことから、ドーパントから消光物質へのエネルギー移動が抑制され、小さいKq値(Kq比)となることが確認できた。
[参考例2]
 次に、参考例2では、青色発光を想定した化合物を使用し、ドーパントから消光物質へのエネルギー移動速度について確認した。
≪評価用薄膜、比較用薄膜の作製≫
 評価用薄膜、比較用薄膜は、表2に示す「ホスト」及び「ドーパント」を使用した点以外は、参考例1と同様の方法で作製を行った。
≪各値の測定、算出≫
 コアシェル型ドーパントの発光寿命の測定、ドーパントから消光物質へのエネルギー移動速度(Kq)の算出、Vall/Vcore値の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜2-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000043
≪結果の検討:参考例2≫
 表2に示すとおり、評価用薄膜2-2~2-27については、ドーパントのVall/Vcoreが2を超えているとともに、本発明で規定する一般式を満たすコアシェル型ドーパントを用いたことから、ドーパントから消光物質へのエネルギー移動が抑制されることにより、小さいKq値(Kq比)となることが確認できた。特に、一般式(2)におけるL’が非共役連結基であった評価用薄膜、又は、環Zと環Zとで表される配位子が3つ以上の置換基を有していた評価用薄膜については、かなり小さいKq値(Kq比)となることが確認できた。
[参考例3]
 次に、参考例3では、青色発光を想定した化合物を使用し、ドーパントから消光物質へのエネルギー移動速度について確認した。
≪評価用薄膜、比較用薄膜の作製≫
 評価用薄膜、比較用薄膜は、表3に示す「ホスト」及び「ドーパント」を使用し、「消光物質」としてQ-2を使用し、消光物質を0.1体積%(消光物質を減らした分はホスト化合物に変更)とした点以外は、参考例1と同様の方法で作製を行った。
≪各値の測定、算出≫
 コアシェル型ドーパントの発光寿命の測定、ドーパントから消光物質へのエネルギー移動速度(Kq)の算出、Vall/Vcore値の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜3-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000044
≪結果の検討:参考例3≫
 表3に示すとおり、評価用薄膜3-2~3-25については、ドーパントのVall/Vcoreが2を超えているとともに、本発明で規定する一般式を満たすコアシェル型ドーパントを用いたことから、ドーパントから消光物質へのエネルギー移動が抑制されることにより、小さいKq値(Kq比)となることが確認できた。特に、環Z~環Zで表される配位子が3つ以上の置換基を有していた評価用薄膜については、かなり小さいKq値(Kq比)となることが確認できた。
[参考例4]
 次に、参考例4では、緑色発光を想定した化合物を使用し、ドーパントから消光物質へのエネルギー移動速度について確認した。
≪評価用薄膜、比較用薄膜の作製≫
 評価用薄膜、比較用薄膜は、表4に示す「ホスト」及び「ドーパント」を使用した点以外は、参考例1と同様の方法で作製を行った。
≪各値の測定、算出≫
 コアシェル型ドーパントの発光寿命の測定、ドーパントから消光物質へのエネルギー移動速度(Kq)の算出、Vall/Vcore値の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜4-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000045
≪結果の検討:参考例4≫
 表4に示すとおり、評価用薄膜4-6~4-15については、ドーパントのVall/Vcoreが2を超えているとともに、本発明で規定する一般式を満たすコアシェル型ドーパントを用いたことから、ドーパントから消光物質へのエネルギー移動が抑制されることにより、緑色発光の薄膜としても、小さいKq値(Kq比)となることが確認できた。特に、一般式(2)におけるL’が非共役連結基であった評価用薄膜、又は、環Zと環Zとで表される配位子が3つ以上の置換基を有していた評価用薄膜については、かなり小さいKq値(Kq比)となることが確認できた。
[参考例5]
 次に、参考例5では、赤色発光を想定した化合物を使用し、ドーパントから消光物質へのエネルギー移動速度について確認した。
≪評価用薄膜、比較用薄膜の作製≫
 評価用薄膜、比較用薄膜は、表5に示す「ホスト」及び「ドーパント」を使用した点以外は、参考例1と同様の方法で作製を行った。
≪各値の測定、算出≫
 コアシェル型ドーパントの発光寿命の測定、ドーパントから消光物質へのエネルギー移動速度(Kq)の算出、Vall/Vcore値の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜5-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000046
≪結果の検討:参考例5≫
 表5に示すとおり、評価用薄膜5-7~5-17については、ドーパントのVall/Vcoreが2を超えているとともに、本発明で規定する一般式を満たすコアシェル型ドーパントを用いたことから、ドーパントから消光物質へのエネルギー移動が抑制されることにより、赤色発光の薄膜としても、小さいKq値(Kq比)となることが確認できた。
[実施例1]
 次に、実施例1では、青色発光を想定した化合物を使用し、薄膜の発光寿命について確認した。
≪評価用薄膜の作製≫
 50mm×50mm、厚さ0.7mmの石英基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。真空蒸着装置の蒸着用るつぼの各々に、表6に示す「ホスト」及び「ドーパント」を、各々素子作製に最適の量となるように充填した。蒸着用るつぼはモリブデン性の抵抗加熱用材料で作製されたものを用いた。
 真空蒸着装置内を真空度1×10-4Paまで減圧した後、ホスト、ドーパントがそれぞれ85体積%、15体積%になるように、共蒸着させ、膜厚30nmの評価用薄膜を作製した。
≪発光寿命評価≫
 下記の方法にしたがって、HgXe光源を用いたUV照射試験における輝度残存率を求めた。
 HgXe光源を用いたUV照射試験では、浜松ホトニクス製水銀キセノンランプUV照射装置LC8を使用し、UVカットフィルターにA9616-05を取り付けて使用した。照射ファイバー出光面と試料(評価用薄膜)のガラスカバー表面が水平をなすように配置し、1cmの距離にて、発光フォトン数が半減するまで照射した。測定は室温(300K)の条件下で行った。
 各評価用薄膜について、発光フォトン数が半減するまでに要した時間(半減時間)を測定し、薄膜6-1の室温(300K)における値を1とする相対値(LT50比)を求めた。
 なお、輝度(発光フォトン数)の測定は、照射ファイバーの軸から45度傾いた角度から分光放射輝度計CS-1000(コニカミノルタ社製)により測定した。
≪Kqの算出≫
 ドーパントから消光物質へのエネルギー移動速度(Kq)の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜6-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000047
≪結果の検討:実施例1≫
 表6に示すとおり、評価用薄膜6-8~6-15については、ホストとしてフェルスター型ホストを使用し、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用していた。その結果、評価用薄膜6-8~6-15は、ホストからドーパントへの励起子のエネルギー移動が良好となり、発光寿命が長くなることが確認できた。
[実施例2]
 次に、実施例2では、青色発光を想定した化合物を使用し、薄膜の発光寿命について確認した。
≪評価用薄膜の作製≫
 評価用薄膜は、表7に示す「ホスト」及び「ドーパント」を使用した点以外は、実施例1と同様の方法で作製を行った。
≪発光寿命評価、Kqの算出≫
 発光寿命評価は、実施例1と同様の方法で行った。
 なお、LT50比については、評価用薄膜7-1の半減時間を1とする相対比(LT50比)を求めた。
 ドーパントから消光物質へのエネルギー移動速度(Kq)の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜7-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000048
≪結果の検討:実施例2≫
 表7に示すとおり、評価用薄膜7-8~7-15については、励起錯体を形成する組み合わせの2種類のホストを使用し、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用していた。その結果、評価用薄膜7-8~7-15は、ホストからドーパントへの励起子のエネルギー移動が良好となり、発光寿命が長くなることが確認できた。
[実施例3]
 次に、実施例3では、緑色発光を想定した化合物を使用し、薄膜の発光寿命について確認した。
≪評価用薄膜の作製≫
 評価用薄膜は、表8に示す「ホスト」及び「ドーパント」を使用した点以外は、実施例1と同様の方法で作製を行った。
≪発光寿命評価、Kqの算出≫
 発光寿命評価は、実施例1と同様の方法で行った。
 なお、LT50比については、評価用薄膜8-1の半減時間を1とする相対比(LT50比)を求めた。
 ドーパントから消光物質へのエネルギー移動速度(Kq)の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜8-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000049
≪結果の検討:実施例3≫
 表8に示すとおり、評価用薄膜8-10~8-15については、ホストとしてフェルスター型ホスト、又は、励起錯体を形成する組み合わせの2種類のホストを使用し、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用していた。その結果、評価用薄膜8-10~8-15は、ホストからドーパントへの励起子のエネルギー移動が良好となり、緑色発光の薄膜としても、発光寿命が長くなることが確認できた。
[実施例4]
 次に、実施例4では、赤色発光を想定した化合物を使用し、薄膜の発光寿命について確認した。
≪評価用薄膜の作製≫
 評価用薄膜は、表9に示す「ホスト」及び「ドーパント」を使用した点以外は、実施例1と同様の方法で作製を行った。
≪発光寿命評価、Kqの算出≫
 発光寿命評価は、実施例1と同様の方法で行った。
 なお、LT50比については、評価用薄膜9-1の半減時間を1とする相対比(LT50比)を求めた。
 ドーパントから消光物質へのエネルギー移動速度(Kq)の算出については、参考例1と同様の方法で行った。
 なお、Kq比については、評価用薄膜9-1のKqを1とする相対比(Kq比)を求めた。
Figure JPOXMLDOC01-appb-T000050
≪結果の検討:実施例4≫
 表9に示すとおり、評価用薄膜9-12~9-20については、ホストとしてフェルスター型ホスト、又は、励起錯体を形成する組み合わせの2種類のホストを使用し、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用していた。その結果、評価用薄膜9-12~9-20は、ホストからドーパントへの励起子のエネルギー移動が良好となり、赤色発光の薄膜としても、発光寿命が長くなることが確認できた。
[実施例5]
 次に、実施例5では、青色発光を想定した化合物を使用し、照明装置(及び素子)の寿命について確認した。
≪評価用照明装置の作製≫
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-1の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚15nmの正孔注入層を形成した。
 次いで、HT-1を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。
 次いで、表10に示す「ホスト」及び「ドーパント」の入った抵抗加熱ボートに通電して加熱し、ホスト、ドーパントがそれぞれ85体積%、15体積%になるように、正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。
 次いで、HB-1を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。さらにその上に、ET-1を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。その後、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。
 有機EL素子の作製後、有機EL素子の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図9及び図10に示すような構成からなる評価用照明装置を作製した。
≪連続駆動安定性(半減寿命)の評価≫
 各評価用照明装置について、分光放射輝度計CS-2000を用いて輝度を測定し、測定した輝度が半減する時間(LT50)を半減寿命として求めた。駆動条件は、15mA/cmとなる電流値とした。
 そして、各評価用照明装置について、評価用照明装置10-1の半減寿命を1とする相対値(半減寿命:相対値)を求めた。
Figure JPOXMLDOC01-appb-T000051
≪結果の検討:実施例5≫
 表10に示すとおり、評価用照明装置10-8~10-15については、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用し、ホストとしてフェルスター型ホストを使用していた。その結果、評価用照明装置10-8~10-15は、連続駆動安定性に優れることが確認できた。
[実施例6]
 次に、実施例6では、青色発光を想定した化合物を使用し、照明装置(及び素子)の寿命について確認した。
≪評価用照明装置の作製≫
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚10nmの正孔注入層を形成した。
 次いで、HT-2を蒸着速度0.1nm/秒で蒸着し、層厚30nmの正孔輸送層を形成した。
 次いで、表11に示す「ホスト」及び「ドーパント」の入った抵抗加熱ボートに通電して加熱し、ホスト、ドーパントがそれぞれ85体積%、15体積%になるように、前記正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。
 次いで、HB-2を蒸着速度0.1nm/秒で蒸着し、層厚5nmの第一電子輸送層を形成した。さらにその上に、ET-2を蒸着速度0.1nm/秒で蒸着し、層厚45nmの第二電子輸送層を形成した。その後、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。
 有機EL素子の作製後、有機EL素子の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図9及び図10に示すような構成からなる評価用照明装置を作製した。
≪連続駆動安定性(半減寿命)の評価≫
 連続駆動安定性(半減寿命)の評価は、実施例5と同様の方法で行った。
 なお、「半減寿命:相対値」については、評価用照明装置11-1の半減時間を1とする相対比を求めた。
Figure JPOXMLDOC01-appb-T000052
≪結果の検討:実施例6≫
 表11に示すとおり、評価用照明装置11-8~11-15については、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用し、ホストとして励起錯体を形成する組み合わせの2種類のホストを使用していた。その結果、評価用照明装置11-8~11-15は、連続駆動安定性に優れることが確認できた。
[実施例7]
 次に、実施例7では、緑色発光を想定した化合物を使用し、照明装置(及び素子)の寿命について確認した。
≪評価用照明装置の作製≫
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウムチンオキシド)を150nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った後、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。前記抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HI-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒でITO透明電極上に蒸着し、層厚20nmの正孔注入層を形成した。
 次いで、HT-1を蒸着速度0.1nm/秒で蒸着し、層厚20nmの正孔輸送層を形成した。
 次いで、表12に示す「ホスト」及び「ドーパント」の入った抵抗加熱ボートに通電して加熱し、ホスト、ドーパントがそれぞれ85体積%、15体積%になるように、前記正孔輸送層上に共蒸着し、層厚30nmの発光層を形成した。
 次いで、HB-3を蒸着速度0.1nm/秒で蒸着し、層厚10nmの第一電子輸送層を形成した。さらにその上に、ET-2を蒸着速度0.1nm/秒で蒸着し、層厚40nmの第二電子輸送層を形成した。その後、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。
 有機EL素子の作製後、有機EL素子の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図9及び図10に示すような構成からなる評価用照明装置を作製した。
≪連続駆動安定性(半減寿命)の評価≫
 連続駆動安定性(半減寿命)の評価は、実施例5と同様の方法で行った。
 なお、「半減寿命:相対値」については、評価用照明装置12-1の半減時間を1とする相対比を求めた。
Figure JPOXMLDOC01-appb-T000053
≪結果の検討:実施例7≫
 表12に示すとおり、評価用照明装置12-10~12-15については、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用し、ホストとしてフェルスター型ホスト、又は、励起錯体を形成する組み合わせの2種類のホストを使用していた。その結果、評価用照明装置12-10~12-15は、緑色発光の装置としても、連続駆動安定性に優れることが確認できた。
[実施例8]
 次に、実施例8では、赤色発光を想定した化合物を使用し、照明装置(及び素子)の寿命について確認した。
≪評価用照明装置の作製≫
 50mm×50mm、厚さ0.7mmのガラス基板上に、陽極としてITO(インジウム・スズ酸化物)を120nmの厚さで成膜し、パターニングを行った後、このITO透明電極を付けた透明基板をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。
 この透明基板上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を用い、3000rpm、30秒の条件でスピンコート法により薄膜を形成した後、200℃にて1時間乾燥し、層厚20nmの正孔注入層を設けた。
 次に、この透明基板を市販の真空蒸着装置の基板ホルダーに固定した。
 真空蒸着装置内の蒸着用の抵抗加熱ボートの各々に、各層の構成材料を、各々素子作製に最適の量を充填した。蒸着用抵抗加熱ボートはモリブデン製又はタングステン製を用いた。
 真空度1×10-4Paまで減圧した後、HT-2の入った抵抗加熱ボートに通電して加熱し、蒸着速度0.1nm/秒で正孔注入層上に蒸着し、層厚20nmの正孔輸送層を形成した。
 次いで、表13に示す「ホスト」及び「ドーパント」の入った抵抗加熱ボートに通電して加熱し、ホスト、ドーパントがそれぞれ85体積%、15体積%になるように、前記正孔輸送層上に共蒸着し、層厚40nmの発光層を形成した。
 次いで、ET-1を蒸着速度0.1nm/秒で蒸着し、層厚40nmの電子輸送層を形成した。
 その上に、フッ化リチウムを層厚0.5nmになるよう蒸着した後に、アルミニウム100nmを蒸着して陰極を形成し、評価用の有機EL素子を作製した。
 有機EL素子の作製後、有機EL素子の非発光面を、純度99.999%以上の高純度窒素ガスの雰囲気下にてガラスケースで覆い、厚さ300μmのガラス基板を封止用基板として用いて、周囲にシール材としてエポキシ系光硬化型接着剤(東亞合成社製ラックストラックLC0629B)を適用し、これを前記陰極上に重ねて透明支持基板と密着させ、ガラス基板側からUV光を照射して、硬化させて、封止して、図9及び図10に示すような構成からなる評価用照明装置を作製した。
≪連続駆動安定性(半減寿命)の評価≫
 連続駆動安定性(半減寿命)の評価は、実施例5と同様の方法で行った。
 なお、「半減寿命:相対値」については、評価用照明装置13-1の半減時間を1とする相対比を求めた。
Figure JPOXMLDOC01-appb-T000054
≪結果の検討:実施例8≫
 表13に示すとおり、評価用照明装置13-12~13-20については、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用し、ホストとしてフェルスター型ホスト、又は、励起錯体を形成する組み合わせの2種類のホストを使用していた。その結果、評価用照明装置13-12~13-20は、赤色発光の装置としても、連続駆動安定性に優れることが確認できた。
[実施例9]
 次に、実施例9では、塗布液を用いて、ウェットプロセスにて作製した照明装置(及び素子)の寿命について確認した。
≪評価用照明装置の作製≫
(基材の準備)
 まず、ポリエチレンナフタレートフィルム(以下、PENと略記する。)(帝人デュポンフィルム株式会社製)の陽極を形成する側の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m・24h)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリアー性を有する可撓性の基材を作製した。
(陽極の形成)
 上記基材上に厚さ120nmのITO(インジウム・スズ酸化物)をスパッタ法により製膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
(正孔注入層の形成)
 陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をダイコート法にて塗布、自然乾燥し、層厚40nmの正孔注入層を形成した。
(正孔輸送層の形成)
 次に、正孔注入層を形成した基材を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、下記組成の正孔輸送層形成用塗布液を用いて、ダイコート法にて5m/minで塗布、自然乾燥した後に、130℃で30分間保持し、層厚30nmの正孔輸送層を形成した。
〈正孔輸送層形成用塗布液〉
 正孔輸送材料 HT-3(重量平均分子量Mw=80000)  10質量部
 クロロベンゼン                     3000質量部
(発光層の形成)
 次に、正孔輸送層を形成した基材を、下記組成の発光層形成用塗布液を用い、ダイコート法にて5m/minの塗布速度で塗布し、自然乾燥した後に、120℃で30分間保持し、層厚50nmの発光層を形成した。
〈発光層形成用塗布液〉
 表14に示すホスト化合物                    9質量部
 表14に示すドーパント                     1質量部
 酢酸イソプロピル                     2000質量部
(電子輸送層の形成)
 次に、ブロック層を形成した基材を、下記組成の電子輸送層形成用塗布液を用い、ダイコート法にて5m/minの塗布速度で塗布し、自然乾燥した後に、80℃で30分間保持し、層厚30nmの電子輸送層を形成した。
〈電子輸送層形成用塗布液〉
 ET-1                            6質量部
 1H,1H,3H-テトラフルオロプロパノール(TFPO) 2000質量部
(電子注入層、陰極の形成)
 次に、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した。その後、ボートに通電して加熱し、フッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、膜厚1nmの薄膜を形成した。同様に、フッ化カリウムを0.02nm/秒でフッ化ナトリウム薄膜上に蒸着し、層厚1.5nmの電子注入層を形成した。
 引き続き、アルミニウムを蒸着して厚さ100nmの陰極を形成した。
(封止)
 以上の工程により形成した積層体に対し、市販のロールラミネート装置を用いて封止基材を接着した。
 封止基材として、可撓性を有する厚さ30μmのアルミニウム箔(東洋アルミニウム(株)製)に、ドライラミネーション用の2液反応型のウレタン系接着剤を用いて層厚1.5μmの接着剤層を設け、厚さ12μmのポリエチレンテレフタレート(PET)フィルムをラミネートしたものを作製した。
 封止用接着剤として熱硬化性接着剤を、ディスペンサーを使用して封止基材のアルミニウム箔の接着面(つや面)に沿って厚さ20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。更に、その封止基材を露点温度-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動して、12時間以上乾燥させ、封止用接着剤の含水率が100ppm以下となるように調整した。
 熱硬化性接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 上記封止基材を上記積層体に対して密着・配置して、圧着ロールを用いて、圧着ロール温度100℃、圧力0.5MPa、装置速度0.3m/minの圧着条件で密着封止し、図11に示すような評価用照明装置を作製した。
≪連続駆動安定性(半減寿命)の評価≫
 連続駆動安定性(半減寿命)の評価は、実施例5と同様の方法で行った。
 なお、「半減寿命:相対値」については、評価用照明装置14-1の半減時間を1とする相対比を求めた。
Figure JPOXMLDOC01-appb-T000055
≪結果の検討:実施例9≫
 表14に示すとおり、評価用照明装置14-8~14-15については、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用し、ホストとして励起錯体を形成する組み合わせの2種類のホストを使用していた。その結果、評価用照明装置14-8~14-15は、塗布プロセスで作製した素子においても、連続駆動安定性に優れることが確認できた。
[実施例10]
次に、実施例10では、塗布液を用いて、インクジェットプロセスにて作製した照明装置(及び素子)の寿命について確認した。
≪評価用照明装置の作製≫
(基材の準備)
 まず、ポリエチレンナフタレートフィルム(以下、PENと略記する。)(帝人デュポンフィルム株式会社製)の陽極を形成する側の全面に、特開2004-68143号公報に記載の構成の大気圧プラズマ放電処理装置を用いて、SiOからなる無機物のガスバリアー層を層厚500nmとなるように形成した。これにより、酸素透過度0.001mL/(m・24h)以下、水蒸気透過度0.001g/(m・24h)以下のガスバリアー性を有する可撓性の基材を作製した。
(陽極の形成)
 上記基材上に厚さ120nmのITO(インジウム・スズ酸化物)をスパッタ法により製膜し、フォトリソグラフィー法によりパターニングを行い、陽極を形成した。なお、パターンは発光領域の面積が5cm×5cmになるようなパターンとした。
(正孔注入層の形成)
 陽極を形成した基材をイソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行った。そして、陽極を形成した基材上に、特許第4509787号公報の実施例16と同様に調製したポリ(3,4-エチレンジオキシチオフェン)/ポリスチレンスルホネート(PEDOT/PSS)の分散液をイソプロピルアルコールで希釈した2質量%溶液をインクジェット法にて塗布、80℃で5分乾燥し、層厚40nmの正孔注入層を形成した。
(正孔輸送層の形成)
 次に、正孔注入層を形成した基材を、窒素ガス(グレードG1)を用いた窒素雰囲気下に移し、下記組成の正孔輸送層形成用塗布液を用いて、インクジェット法にて塗布、150℃で30分乾燥し、層厚30nmの正孔輸送層を形成した。
〈正孔輸送層形成用塗布液〉
 正孔輸送材料 HT-3(重量平均分子量Mw=80000)  10質量部
 パラキシレン                      3000質量部
(発光層の形成)
 次に、正孔輸送層を形成した基材を、下記組成の発光層形成用塗布液を用い、発光層形成用塗布液を用い、インクジェット法にて塗布し、130℃で30分間乾燥し、層厚50nmの発光層を形成した。
〈発光層形成用塗布液〉
 表15に示すホスト化合物                    9質量部
 表15に示すドーパント                     1質量部
 酢酸ノルマルブチル                     2000質量部
(電子輸送層の形成)
 次に、ブロック層を形成した基材を、下記組成の電子輸送層形成用塗布液を用い、インクジェット法にて塗布し、80℃で30分間乾燥し、層厚30nmの電子輸送層を形成した。
〈電子輸送層形成用塗布液〉
 ET-1                            6質量部
 1H,1H,3H-テトラフルオロプロパノール(TFPO) 2000質量部
(電子注入層、陰極の形成)
 次に、基板を大気に曝露することなく真空蒸着装置へ取り付けた。また、モリブデン製抵抗加熱ボートにフッ化ナトリウム及びフッ化カリウムを入れたものを真空蒸着装置に取り付け、真空槽を4×10-5Paまで減圧した。その後、ボートに通電して加熱し、フッ化ナトリウムを0.02nm/秒で前記電子輸送層上に蒸着し、膜厚1nmの薄膜を形成した。同様に、フッ化カリウムを0.02nm/秒でフッ化ナトリウム薄膜上に蒸着し、層厚1.5nmの電子注入層を形成した。
 引き続き、アルミニウムを蒸着して厚さ100nmの陰極を形成した。
(封止)
 以上の工程により形成した積層体に対し、市販のロールラミネート装置を用いて封止基材を接着した。
 封止基材として、可撓性を有する厚さ30μmのアルミニウム箔(東洋アルミニウム(株)製)に、ドライラミネーション用の2液反応型のウレタン系接着剤を用いて層厚1.5μmの接着剤層を設け、厚さ12μmのポリエチレンテレフタレート(PET)フィルムをラミネートしたものを作製した。
 封止用接着剤として熱硬化性接着剤を、ディスペンサーを使用して封止基材のアルミニウム箔の接着面(つや面)に沿って厚さ20μmで均一に塗布した。これを100Pa以下の真空下で12時間乾燥させた。更に、その封止基材を露点温度-80℃以下、酸素濃度0.8ppmの窒素雰囲気下へ移動して、12時間以上乾燥させ、封止用接着剤の含水率が100ppm以下となるように調整した。
 熱硬化性接着剤としては下記の(A)~(C)を混合したエポキシ系接着剤を用いた。
 (A)ビスフェノールAジグリシジルエーテル(DGEBA)
 (B)ジシアンジアミド(DICY)
 (C)エポキシアダクト系硬化促進剤
 上記封止基材を上記積層体に対して密着・配置して、圧着ロールを用いて、圧着ロール温度100℃、圧力0.5MPa、装置速度0.3m/minの圧着条件で密着封止し、図11に示すような評価用照明装置を作製した。
≪連続駆動安定性(半減寿命)の評価≫
 連続駆動安定性(半減寿命)の評価は、実施例5と同様の方法で行った。
 なお、「半減寿命:相対値」については、評価用照明装置15-1の半減時間を1とする相対比を求めた。
Figure JPOXMLDOC01-appb-T000056
≪結果の検討:実施例10≫
 表15に示すとおり、評価用照明装置15-8~15-15については、ドーパントとして本発明の要件を満たすコアシェル型ドーパントを使用し、ホストとしてフェルスター型ホストを使用していた。その結果、評価用照明装置15-8~15-15は、インクジェットプロセスで作製した素子においても、連続駆動安定性に優れることが確認できた。
 1   ディスプレイ
 3   画素
 5   走査線
 6   データ線
 A   表示部
 B   制御部
 10  コアシェル型ドーパント
 11  コア部
 12  シェル部
 13  消光物質
 14  ホスト
 20  通常のドーパント
 101 有機EL素子
 102 ガラスカバー
 105 陰極
 106 有機EL層
 107 透明電極尽きガラス基板
 108 窒素ガス
 109 捕水剤
 201 可撓性支持基板
 202 陽極
 203 正孔注入層
 204 正孔輸送層
 205 発光層
 206 電子輸送層
 207 電子注入層
 208 陰極
 209 封止接着剤
 210 可撓性封止部材
 200 有機EL素子

Claims (9)

  1.  発光性金属錯体とホストとを含有し、
     前記発光性金属錯体は、下記一般式(1)で表されるとともに下記式(1)を満たし、
     前記ホストは、室温でリン光発光を示す非金属有機化合物、熱活性型遅延蛍光を示す化合物、又は、最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物、であることを特徴とする薄膜。
    〔前記一般式(1)において、MはIr又はPtを表し、A、A、B、Bは各々炭素原子又は窒素原子を表し、環ZはA及びAと共に形成される6員の芳香族炭化水素環、5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB及びBと共に形成される5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。環Z及び環Zはそれぞれ独立に置換基を有していてもよいが、下記一般式(2)で表される置換基を少なくとも1つ有する。環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子又はLは各々同じでも異なっていてもよく、環Zと環Zとで表される配位子とLとは連結していてもよい。〕
    Figure JPOXMLDOC01-appb-C000002
    〔前記一般式(2)において、*は前記一般式(1)における環Z又は環Zとの連結箇所を表す。L’は単結合又は連結基を表す。Rは水素原子又は置換基を表す。n’は3以上の整数を表す。複数のRは同じでも異なっていてもよい。Aは水素原子又は置換基を表す。〕
    Figure JPOXMLDOC01-appb-C000003
    〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z及び環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z及び環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
  2.  発光性金属錯体と2種類のホストとを含有し、
     前記発光性金属錯体は、下記一般式(1)で表されるとともに下記式(1)を満たし、
     前記2種類のホストは、励起錯体を形成する組み合わせであることを特徴とする薄膜。
    Figure JPOXMLDOC01-appb-C000004
    〔前記一般式(1)において、MはIr又はPtを表し、A、A、B、Bは各々炭素原子又は窒素原子を表し、環ZはA及びAと共に形成される6員の芳香族炭化水素環、5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB及びBと共に形成される5員若しくは6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。環Z及び環Zはそれぞれ独立に置換基を有していてもよいが、下記一般式(2)で表される置換基を少なくとも1つ有する。環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子又はLは各々同じでも異なっていてもよく、環Zと環Zとで表される配位子とLとは互いに連結していてもよい。〕
    Figure JPOXMLDOC01-appb-C000005
    〔前記一般式(2)において、*は前記一般式(1)における環Z又は環Zとの連結箇所を表す。L’は単結合又は連結基を表す。Rは水素原子又は置換基を表す。n’は3以上の整数を表す。複数のRは同じでも異なっていてもよい。Aは水素原子又は置換基を表す。〕
    Figure JPOXMLDOC01-appb-C000006
    〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z及び環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z及び環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
  3.  前記一般式(2)におけるL’は、非共役連結基であることを特徴とする請求項1又は請求項2に記載の薄膜。
  4.  前記一般式(1)における環Zと環Zとで表される配位子は、3つ以上の置換基を有することを特徴とする請求項1から請求項3のいずれか1項に記載の薄膜。
  5.  発光性金属錯体とホストとを含有し、
     前記発光性金属錯体は、下記一般式(3)~(5)のいずれか1つで表されるとともに下記式(1)を満たし、
     前記ホストは、室温でリン光発光を示す非金属有機化合物、熱活性型遅延蛍光を示す化合物、又は、最低一重項励起状態よりも高い準位を示す一重項励起状態と最低三重項励起状態よりも高い準位を示す三重項励起状態との間で逆項間交差の現象を発現する化合物、であることを特徴とする薄膜。
    Figure JPOXMLDOC01-appb-C000007
    〔前記一般式(3)~(5)において、MはIr又はPtを表し、A~A、B~Bは各々炭素原子又は窒素原子を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、又は、Lは各々同じでも異なっていてもよく、これらの配位子とLとは互いに連結していてもよい。
     前記一般式(3)において、環ZはA及びAと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。Rは炭素数2以上の置換基を表す。環Z及び環ZはR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
     前記一般式(4)において、環ZはA~Aと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。R及びRは各々水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
     前記一般式(5)において、環ZはA及びAと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。R及びRはそれぞれ水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。〕
    Figure JPOXMLDOC01-appb-C000008
    〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z~環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z~環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、及び、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
  6.  発光性金属錯体と2種類のホストとを含有し、
     前記発光性金属錯体は、下記一般式(3)~(5)のいずれか1つで表されるとともに下記式(1)を満たし、
     前記2種類のホストは、励起錯体を形成する組み合わせであることを特徴とする薄膜。
    Figure JPOXMLDOC01-appb-C000009
    〔前記一般式(3)~(5)において、MはIr又はPtを表し、A~A、B~Bは各々炭素原子又は窒素原子を表す。AとMとの結合及びBとMとの結合は、一方が配位結合であり、他方は共有結合を表す。LはMに配位したモノアニオン性の二座配位子を表し、置換基を有していてもよい。mは0~2の整数を表し、nは1~3の整数を表し、MがIrの場合のm+nは3であり、MがPtの場合のm+nは2である。m又はnが2以上のとき、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、又は、Lは各々同じでも異なっていてもよく、これらの配位子とLとは互いに連結していてもよい。
     前記一般式(3)において、環ZはA及びAと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。Rは炭素数2以上の置換基を表す。環Z及び環ZはR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
     前記一般式(4)において、環ZはA~Aと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される5員の芳香族複素環、又はこの環を含む芳香族縮合環を表す。R及びRは各々水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。
     前記一般式(5)において、環ZはA及びAと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表し、環ZはB~Bと共に形成される6員の芳香族炭化水素環、6員の芳香族複素環、又はこれらの環のうちの少なくとも1つを含む芳香族縮合環を表す。R及びRはそれぞれ水素原子又は置換基を表し、少なくとも一方は炭素数2以上の置換基を表す。環Z及び環ZはR及びR以外に置換基を有していてもよく、環Z及び環Zの置換基が結合することによって、縮環構造を形成していてもよく、環Zと環Zとで表される配位子同士が連結していてもよい。〕
    Figure JPOXMLDOC01-appb-C000010
    〔前記式(1)において、Vallは、MがIrの場合にはn=3、m=0と仮定し、MがPtの場合にはn=2、m=0と仮定するとともに、環Z~環Zに結合する置換基を含めた構造の分子体積を表す。Vcoreは、Vallの分子体積を表す前記構造から環Z~環Zに結合する置換基を水素原子と置換した構造の分子体積を表す。ただし、環Zと環Zとで表される配位子、環Zと環Zとで表される配位子、及び、環Zと環Zとで表される配位子が複数種存在する場合、前記の仮定で表される全ての場合において、Vall、coreは、前記式(1)を満たす。〕
  7.  前記一般式(3)における環Zと環Zとで表される配位子、前記一般式(4)における環Zと環Zとで表される配位子、又は、前記一般式(5)における環Zと環Zとで表される配位子は、3つ以上の置換基を有することを特徴とする請求項5又は請求項6に記載の薄膜。
  8.  陽極と陰極の間に、少なくとも1つの発光層を有する有機エレクトロルミネッセンス素子において、
     請求項1から請求項7のいずれか1項に記載の薄膜を含有することを特徴とする有機エレクトロルミネッセンス素子。
  9.  前記発光層が、請求項1から請求項7のいずれか1項に記載の薄膜からなる単一層であることを特徴とする請求項8に記載の有機エレクトロルミネッセンス素子。
PCT/JP2016/084664 2016-01-08 2016-11-22 薄膜、及び有機エレクトロルミネッセンス素子 WO2017119203A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/068,808 US20190157599A1 (en) 2016-01-08 2016-11-22 Thin film and organic electroluminescent element
JP2017560048A JP6802189B2 (ja) 2016-01-08 2016-11-22 薄膜、及び有機エレクトロルミネッセンス素子
KR1020187017959A KR102148745B1 (ko) 2016-01-08 2016-11-22 박막 및 유기 일렉트로루미네센스 소자
CN201680078082.9A CN108431983B (zh) 2016-01-08 2016-11-22 薄膜和有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016002899 2016-01-08
JP2016-002899 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017119203A1 true WO2017119203A1 (ja) 2017-07-13

Family

ID=59274247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/084664 WO2017119203A1 (ja) 2016-01-08 2016-11-22 薄膜、及び有機エレクトロルミネッセンス素子

Country Status (5)

Country Link
US (1) US20190157599A1 (ja)
JP (1) JP6802189B2 (ja)
KR (1) KR102148745B1 (ja)
CN (1) CN108431983B (ja)
WO (1) WO2017119203A1 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097156A1 (ja) * 2016-11-25 2018-05-31 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機材料用組成物
EP3345914A1 (en) * 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
WO2018135656A1 (ja) * 2017-01-23 2018-07-26 三菱ケミカル株式会社 発光層形成用組成物及び該発光層形成用組成物を含有する有機電界発光素子
JP2019050370A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
JP2019050369A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
JP2019050371A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
CN111518140A (zh) * 2019-02-01 2020-08-11 环球展览公司 有机电致发光材料和装置
WO2020240333A1 (ja) * 2019-05-31 2020-12-03 株式会社半導体エネルギー研究所 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2022121387A (ja) * 2021-02-06 2022-08-19 北京夏禾科技有限公司 エレクトロルミネッセンス素子
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2023025008A (ja) * 2018-03-16 2023-02-21 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
WO2023204174A1 (ja) * 2022-04-18 2023-10-26 住友化学株式会社 組成物及びそれを用いた発光素子

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961089B (zh) * 2020-09-18 2023-10-31 南京佳诺霖光电科技有限公司 一种有机金属配合物及其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273389A (ja) * 2003-03-12 2004-09-30 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2009008357A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子
JP2013060595A (ja) * 2011-09-09 2013-04-04 Samsung Electronics Co Ltd ポリマー及び該ポリマーを含んだ有機発光素子
JP2014096557A (ja) * 2012-04-13 2014-05-22 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
JP2015017088A (ja) * 2013-06-14 2015-01-29 株式会社半導体エネルギー研究所 有機金属イリジウム錯体、発光素子、発光装置、および照明装置
JP2015065225A (ja) * 2013-09-24 2015-04-09 日本放送協会 有機エレクトロルミネッセンス素子及びこれを用いた表示装置、照明装置
WO2016194865A1 (ja) * 2015-06-01 2016-12-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2016225486A (ja) * 2015-06-01 2016-12-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051344B2 (en) 2005-05-06 2015-06-09 Universal Display Corporation Stability OLED materials and devices
JP5127206B2 (ja) * 2006-11-28 2013-01-23 キヤノン株式会社 金属錯体化合物、有機発光素子及び表示装置
KR102069497B1 (ko) * 2012-01-13 2020-01-23 미쯔비시 케미컬 주식회사 이리듐 착물 화합물 그리고 그 화합물을 함유하는 용액 조성물, 유기 전계 발광 소자, 표시 장치 및 조명 장치
KR102073138B1 (ko) * 2012-12-17 2020-02-04 엘지디스플레이 주식회사 청색 인광 화합물 및 이를 포함하는 유기전계발광소자

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004273389A (ja) * 2003-03-12 2004-09-30 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2009008357A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子
JP2013060595A (ja) * 2011-09-09 2013-04-04 Samsung Electronics Co Ltd ポリマー及び該ポリマーを含んだ有機発光素子
JP2014096557A (ja) * 2012-04-13 2014-05-22 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
JP2015017088A (ja) * 2013-06-14 2015-01-29 株式会社半導体エネルギー研究所 有機金属イリジウム錯体、発光素子、発光装置、および照明装置
JP2015065225A (ja) * 2013-09-24 2015-04-09 日本放送協会 有機エレクトロルミネッセンス素子及びこれを用いた表示装置、照明装置
WO2016194865A1 (ja) * 2015-06-01 2016-12-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
JP2016225486A (ja) * 2015-06-01 2016-12-28 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018097156A1 (ja) * 2016-11-25 2018-05-31 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機材料用組成物
JPWO2018097156A1 (ja) * 2016-11-25 2019-10-17 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機材料用組成物
EP3345914A1 (en) * 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
JP2018135319A (ja) * 2017-01-09 2018-08-30 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
JP7482939B2 (ja) 2017-01-09 2024-05-14 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
US11780865B2 (en) 2017-01-09 2023-10-10 Universal Display Corporation Organic electroluminescent materials and devices
JP2022122930A (ja) * 2017-01-09 2022-08-23 ユニバーサル ディスプレイ コーポレイション 有機エレクトロルミネセンス材料及びデバイス
WO2018135656A1 (ja) * 2017-01-23 2018-07-26 三菱ケミカル株式会社 発光層形成用組成物及び該発光層形成用組成物を含有する有機電界発光素子
JPWO2018135656A1 (ja) * 2017-01-23 2019-11-07 三菱ケミカル株式会社 発光層形成用組成物及び該発光層形成用組成物を含有する有機電界発光素子
US11283027B1 (en) 2017-03-03 2022-03-22 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10892425B1 (en) 2017-03-03 2021-01-12 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10547014B2 (en) 2017-06-23 2020-01-28 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11069860B2 (en) 2017-08-21 2021-07-20 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP2019050369A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
JP7346015B2 (ja) 2017-09-06 2023-09-19 住友化学株式会社 発光素子
JP2019050370A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
JP2019050371A (ja) * 2017-09-06 2019-03-28 住友化学株式会社 発光素子
US11444250B2 (en) 2017-12-05 2022-09-13 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11575088B2 (en) 2017-12-22 2023-02-07 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US10644249B2 (en) 2017-12-22 2020-05-05 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11542260B2 (en) 2018-01-31 2023-01-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11104669B2 (en) 2018-02-02 2021-08-31 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
JP7513069B2 (ja) 2018-03-16 2024-07-09 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
US11943997B2 (en) 2018-03-16 2024-03-26 Mitsubishi Chemical Corporation Polymer, composition for organic electroluminescent element, organic electroluminescent element, organic EL display device, organic EL lighting, and manufacturing method for organic electroluminescent element
JP2023025008A (ja) * 2018-03-16 2023-02-21 三菱ケミカル株式会社 重合体、有機電界発光素子用組成物、有機電界発光素子、有機el表示装置、有機el照明及び有機電界発光素子の製造方法
US11608333B2 (en) 2018-03-20 2023-03-21 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11498914B2 (en) 2018-03-30 2022-11-15 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
US11778904B2 (en) 2018-05-09 2023-10-03 Kyulux, Inc. Composition of matter for use in organic light-emitting diodes
EP4301117A3 (en) * 2019-02-01 2024-03-13 Universal Display Corporation Organic electroluminescent materials and devices
CN111518140A (zh) * 2019-02-01 2020-08-11 环球展览公司 有机电致发光材料和装置
WO2020240333A1 (ja) * 2019-05-31 2020-12-03 株式会社半導体エネルギー研究所 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
JP7347860B2 (ja) 2021-02-06 2023-09-20 北京夏禾科技有限公司 エレクトロルミネッセンス素子
JP2022121387A (ja) * 2021-02-06 2022-08-19 北京夏禾科技有限公司 エレクトロルミネッセンス素子
WO2023204174A1 (ja) * 2022-04-18 2023-10-26 住友化学株式会社 組成物及びそれを用いた発光素子

Also Published As

Publication number Publication date
KR102148745B1 (ko) 2020-08-27
CN108431983A (zh) 2018-08-21
US20190157599A1 (en) 2019-05-23
JPWO2017119203A1 (ja) 2018-10-25
CN108431983B (zh) 2020-12-22
JP6802189B2 (ja) 2020-12-16
KR20180085007A (ko) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6802189B2 (ja) 薄膜、及び有機エレクトロルミネッセンス素子
JP5831654B1 (ja) 芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6761463B2 (ja) 発光性薄膜及び有機エレクトロルミネッセンス素子
KR102241439B1 (ko) 유기 일렉트로루미네센스 소자, 유기 일렉트로루미네센스 소자의 제조 방법, 표시 장치 및 조명 장치
WO2018186462A1 (ja) 蛍光発光性化合物、有機材料組成物、発光性膜、有機エレクトロルミネッセンス素子材料及び有機エレクトロルミネッセンス素子
JP6128119B2 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、表示装置および照明装置
JP2017107992A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び電子デバイス用有機機能性材料
JP2017108006A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6941116B2 (ja) 有機エレクトロルミネッセンス素子及び有機材料用組成物
JP7255499B2 (ja) 発光性膜、有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
JP2018006700A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、π共役系化合物
JP6593114B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6319228B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2018173600A1 (ja) 有機エレクトロルミネッセンス素子
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2017103436A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP2017103437A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
WO2016194865A1 (ja) 有機エレクトロルミネッセンス素子
JP6606986B2 (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置及び芳香族複素環誘導体
JP6319231B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6319229B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6319230B2 (ja) 有機エレクトロルミネッセンス素子用の芳香族複素環誘導体、それを用いた有機エレクトロルミネッセンス素子、照明装置及び表示装置
JPWO2016047661A1 (ja) 有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017560048

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187017959

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187017959

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883703

Country of ref document: EP

Kind code of ref document: A1