WO2017114415A1 - 一种干涉仪测量装置及其控制方法 - Google Patents

一种干涉仪测量装置及其控制方法 Download PDF

Info

Publication number
WO2017114415A1
WO2017114415A1 PCT/CN2016/112643 CN2016112643W WO2017114415A1 WO 2017114415 A1 WO2017114415 A1 WO 2017114415A1 CN 2016112643 W CN2016112643 W CN 2016112643W WO 2017114415 A1 WO2017114415 A1 WO 2017114415A1
Authority
WO
WIPO (PCT)
Prior art keywords
interferometer
mirror
stage
plane mirrors
measuring
Prior art date
Application number
PCT/CN2016/112643
Other languages
English (en)
French (fr)
Inventor
沈鑫
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Priority to US16/067,328 priority Critical patent/US10393507B2/en
Priority to KR1020187021085A priority patent/KR102044112B1/ko
Priority to JP2018534058A priority patent/JP6617202B2/ja
Publication of WO2017114415A1 publication Critical patent/WO2017114415A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/026Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02016Interferometers characterised by the beam path configuration contacting two or more objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02075Reduction or prevention of errors; Testing; Calibration of particular errors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70775Position control, e.g. interferometers or encoders for determining the stage position

Definitions

  • the invention relates to an opto-mechanical device, in particular to an interferometer measuring device and a control method thereof.
  • laser interferometers are often used to accurately measure the position and rotation of a stage or wafer stage (collectively referred to as a stage).
  • a stage a stage or wafer stage
  • FIG. 1 the measurement of the X direction or the Y direction of the lithography machine stage 1 in the horizontal direction (the coordinate system is defined as the Z direction in the vertical direction and the X direction and the Y direction in the horizontal direction), generally directly on the stage.
  • the long strip mirror 2 is mounted on the side so that the light emitted from the laser interferometer 3 is incident perpendicularly to the elongated mirror 2 for measuring the X coordinate and the Y coordinate.
  • the vertical stroke of the stage 1 is not large, but the horizontal stroke is large, so it is necessary to mount the long-length mirror 2 on the side and the stroke, and the X of the stage 1 can be measured in a large stroke. Coordinates and Y coordinates. Therefore, in the conventional lithography machine interferometer measurement system, the horizontal stroke of the stage 1 is usually limited by the length of the long mirror 2, and if the range of the stage 1 is to be increased, it is necessary to correspondingly The length of the long strip mirror 2 is increased, but the longer strip mirror 2 is bound to increase the processing difficulty and the manufacturing cost.
  • the invention provides an interferometer measuring device and a control method thereof, so as to solve the technical problem that the long processing of the long strip mirror leads to processing difficulty and manufacturing cost in the prior art.
  • the present invention provides an interferometer measuring device, including a stage, a laser interferometer and a measuring mirror mounted on the stage, wherein the measuring mirror is formed by splicing a plurality of plane mirrors in a horizontal direction, the laser interferometer comprising a first interferometer and a second interferometer, The first interferometer and the second interferometer are arranged to move in a horizontal direction when the stage is moved relative to the laser interferometer, so that light emitted by the first interferometer and the second interferometer is incident to When a transition region of two adjacent plane mirrors is adjacent, light emitted by the first interferometer is incident on one of the adjacent two plane mirrors, and light emitted by the second interferometer is incident on the adjacent two plane mirrors Another one, and the first interferometer and the second interferometer alternately provide position information to the stage.
  • the measuring mirror is formed by splicing a plurality of rectangular plane mirrors in a horizontal direction, the first interferometer and the second interferometer are distributed left and right, and the width of the transition region is defined as at least twice as described. The distance between an interferometer and a second interferometer.
  • the measuring mirror is formed by splicing a plurality of "convex" shaped plane mirrors in a horizontal direction, and the convex directions of the two adjacent "convex” shaped plane mirrors are opposite, the "convex” word
  • a planar mirror of the type includes a bottom portion and a raised portion, the first interferometer and the second interferometer being vertically distributed, the transition region being defined by the bottoms of two adjacent planar mirrors.
  • the laser interferometer uses a single axis interferometer or a dual axis interferometer.
  • the measuring mirror is mounted on the side of the stage and perpendicular to the horizontal plane, and the light beam emitted by the laser interferometer is normally incident on the surface of the measuring mirror and returns along the original path, and the incident direction of the light beam is The normal vectors of the measuring mirrors are parallel.
  • the measuring mirror is mounted on a side of the stage and at 135 degrees to a side of the stage, the laser interferometer further comprising a second plane mirror above the stage, The second plane mirror is parallel to the carrier surface of the stage, and the light beam emitted by the laser interferometer is incident on the surface of the measuring mirror and then reflected to the second plane mirror, after which the beam returns along the original path.
  • the direction of the beam is 45° to the normal of the measuring mirror.
  • the present invention also provides a control method using the interferometer measuring device as described above, when the light emitted by the first interferometer and the second interferometer passes through the transition region, the first interferometer and the first The two interferometers alternately provide the currently measured position information to the stage while alternately utilizing the same The position information measured by one of the interferometers is used to update the zero reference of the other interferometer to correct the difference in the surface nonlinearity of two adjacent plane mirrors.
  • the alternately using the position information measured by one of the interferometers to update the zero reference of the other interferometer comprises the following steps:
  • the interferometer is defined as an invalid interferometer and the other is defined as an effective interferometer
  • the alternately using the position information measured by one of the interferometers to update the zero reference of the other interferometer further comprises: when the light emitted by the effective interferometer also passes through two adjacent plane mirrors The zero reference of the active interferometer is updated with the updated zero reference when splicing.
  • the surface type nonlinear difference is a difference between optical path data of the first interferometer and the second interferometer in the transition region.
  • the present invention provides an interferometer measuring device and a control method thereof, the device comprising a stage, a laser interferometer and a measuring mirror mounted on the stage, wherein the measuring The mirror is formed by splicing a plurality of plane mirrors in a horizontal direction, the laser interferometer comprising a first interferometer and a second interferometer, and when the stage moves, the light emitted by the laser interferometer is corresponding to the incident region
  • the first interferometer and the second interferometer alternately provide position information to the stage, the transition region being incident on the first interferometer and the second interferometer to different The area that passes through the mirror.
  • the splicing of a plurality of plane mirrors is used, and the zero position reference is alternately updated by the two interferometers to extend the measurement stroke of the stage on the horizontal plane.
  • FIG. 1 is a schematic structural view of a conventional interferometer measuring device
  • FIG. 2 is a schematic structural view of an interferometer measuring device according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a laser interferometer in an interferometer measuring device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram showing the arrangement of return-to-zero positions in a transition region of an interferometer measuring device according to Embodiment 1 of the present invention.
  • 5a to 5d are schematic diagrams showing a control method of an interferometer measuring device according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic structural diagram of an interferometer measuring device according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural view of a laser interferometer in an interferometer measuring device according to Embodiment 2 of the present invention.
  • FIGS. 8a to 8c are schematic diagrams showing a control method of an interferometer measuring device according to a second embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of an interferometer measuring apparatus according to a third embodiment of the present invention.
  • FIG. 2-9 10-stage, 20-laser interferometer, 21-first interferometer, 22-second interferometer, 30-first strip mirror, 31-plane mirror, 32-transition area, 33 - Zero position, 40-45° plane mirror, 50-second plane mirror.
  • the interferometer measuring device includes a stage 10, a laser interferometer 20, and a first elongated mirror 30 mounted on a side of the stage 10, the first The strip mirror 30 is formed by splicing a plurality of plane mirrors 31 in a horizontal direction, and adjacent two plane mirrors 31 form a transition region 32 at the joint; the laser interferometer 20 includes a first interferometer 21 and a second interferometer 22 , When the stage 10 is moved such that the light emitted by the laser interferometer 20 is incident on the transition region 32, the light emitted by the first interferometer 21 and the second interferometer 22 respectively corresponds to the transition.
  • the transition region 32 is a region through which the first interferometer 21 and the second interferometer 22 are incident on different plane mirrors 31.
  • the splicing of the plurality of plane mirrors 31 is used, and the zero position reference is alternately updated by the two interferometers to extend the measurement stroke of the stage 10 on the horizontal plane.
  • the first elongated mirror 30 is formed by splicing a plurality of “convex” shaped plane mirrors 31 in a horizontal direction, and adjacent two “convex” shaped
  • the convex directions of the plane mirror 31 are opposite, that is, the convex direction of one plane mirror 31 faces upward, and the convex direction of the other plane mirror 31 faces downward.
  • the first interferometer 21 and the second interferometer 22 are distributed up and down.
  • the zero reference of the single laser interferometer will be invalid. In turn, the measurement accuracy is affected.
  • two interferometers are respectively used in the transition region 32 to correspond to the two plane mirrors 31 to compensate for the stitching error.
  • the "convex"-shaped plane mirror 31 includes a bottom portion and a convex portion.
  • the transition region 32 in this embodiment is composed of two adjacent "convex"-shaped plane mirrors 31.
  • the bottom portion is spliced up and down, and a plurality of return-to-zero positions 33 are provided at the edge of the bottom portion to prompt the laser interferometer 20 to enter the transition region 32.
  • the four return-to-zero positions 33 are only shown schematically in FIG. 4, and the present invention should not be limited thereto.
  • the number of return-to-zero points 33 can be based on the length of the transition region 32, the sampling frequency of the interferometer, and the stage. One or more of the parameters such as the moving speed of 10 are determined.
  • the laser interferometer 20 may employ a single-axis interferometer to measure translation in a single direction of the stage 10; a dual-axis interferometer may also be employed to measure translation of the stage 10 in a single direction and Rotate.
  • the laser interferometer 20 is fixed on a main substrate of the lithography machine, and the laser interferometer 20 measures the direction of the stroke coincident with the outgoing direction of the beam of the laser interferometer 20, and the first strip
  • the normal vector directions of the mirrors 30 are parallel such that the light beams emitted by the laser interferometer 20 are vertically illuminated
  • the first long mirror 30 is on.
  • the present invention also provides a control method of the interferometer measuring device as described above, when the light emitted by the first interferometer 21 and the second interferometer 22 passes through the transition region 32, the first interferometer 21 and the second interferometer 22 alternately provide the position information of the current position, and alternately use the position information measured by itself to update the zero reference of the opponent, and correct the difference in the surface type of the adjacent two plane mirrors.
  • the surface type nonlinear difference is the difference between the optical path data of the first interferometer 21 and the second interferometer 22, specifically, in the transition region 32, the stage 10 moves along the lateral direction.
  • the optical path data of the first interferometer 21 is measured as va
  • the optical path data of the second interferometer 22 is ldi
  • the stage 10 carries the first elongated mirror 30 to translate relative to the laser interferometer 20
  • the light emitted by the laser interferometer 20 scans the first elongated mirror 30.
  • the first interferometer 21 and the second interferometer 22 scan the light beam through the adjacent two
  • the interferometer at the junction of the plane mirror 31 is defined as an invalid interferometer, and the other is defined as an effective interferometer, wherein the effective interferometer is used to provide current position information to the stage 10, the invalid interference
  • the instrument then corrects its zero reference, wherein the zero reference is corrected by the position information provided by the effective interferometer and the surface nonlinear difference delta_l of two adjacent plane mirrors 31.
  • the null reference of the invalid interferometer is modified by taking a plurality of zero-return points 33 along the length direction of the first elongated mirror 30 in the transition region 32, and measuring according to the effective interferometer.
  • the positional information and the non-linear difference between the two adjacent plane mirrors 31 in the transition region 32, and the zeroing offsets h01, h02, h03, ... of the nulling interferometer at the return-to-zero point 33 are calculated,
  • the coarse points are removed (the maximum and minimum deviations from the average of all the zero offsets are treated as coarse points), and the remaining values are averaged as the updated zero reference for the invalid interferometer.
  • the control process of the interferometer measuring device provided by the present invention is:
  • the light beam emitted by the upper first interferometer 21 and the lower second interferometer 22 All are incident on the same plane mirror 31 (the plane mirror 1 shown in the figure), and the second interferometer 22 is selected to provide position information;
  • the upper first interferometer 21 transitions to the next planar mirror 31 (the mirror 2 shown), while the lower second interferometer 22 remains with the front A plane mirror 31 (the plane mirror 1 shown in the figure) corresponds to a gap between two adjacent plane mirrors 31.
  • the first interferometer 21 scans through the slit first, so the first interferometer 21 is an invalid interferometer, and the reading is performed. Failure, continue to provide position information by the second interferometer 22, and update the zero reference of the first interferometer 21 with the position information provided by the second interferometer 22;
  • the second interferometer 22 fails to read, which is provided by the corrected first interferometer 21 Position information to the stage 10;
  • the upper first interferometer 21 still corresponds to the second planar mirror 31 (the mirror 2 shown in the figure), while the lower second interferometer 22 transitions to the next plane mirror 31 (the plane mirror 3 shown in the figure), at which time the position information is updated by the first interferometer 21 to update the zero reference of the second interferometer 22, and the first interferometer 21 is transitioned to the plane mirror in the figure.
  • the second interferometer 22 is updated to provide position information to the stage 10;
  • the loop is repeated in the manner described above until the first long mirror 30 is measured.
  • the application of the above method not only solves the problem of processing difficulty and processing cost caused by the long length of the long mirror, but also avoids the influence of the stitching error caused by the stitching of the plane mirror 31 on the measurement precision.
  • the first elongated mirror 30 is formed by splicing a plurality of rectangular planar mirrors 31 in a horizontal direction, and the first interferometer 21 and the second interferometer 22 are distributed to the left and right.
  • the width of the transition region 32 is at least twice the distance between the first interferometer 21 and the second interferometer 22.
  • the second interferometer 22 first transitions to the next plane mirror 31, at which time the position information is provided by the first interferometer 21 while updating the zero of the second interferometer 22.
  • the position information is provided by the second interferometer 22, and the zero position reference of the first interferometer 21 is updated; Measurement of the first long mirror 30.
  • the control process of the interferometer measuring device is:
  • the first interferometer 21 on the left and the second interferometer 22 on the right are incident on the same plane mirror 31 (the plane mirror 1 shown in the figure), and the first interferometer 21 is selected to provide position information;
  • the second interferometer 22 transitions to the next planar mirror 31 (the mirror 2 shown in the drawing), and the first interference
  • the meter 21 still corresponds to the previous plane mirror 31 (the plane mirror 1 shown in the figure), at which time the second interferometer 22 fails, and when the second interferometer 22 is incident on the zero point 33 on the plane mirror 31 (the plane mirror 2 in the figure)
  • the positional information and the non-linear difference between the two adjacent plane mirrors 31 are corrected by the first interferometer 21 to correct the second interferometer 22, and the zero position of the second interferometer 22 is updated.
  • the first interferometer 21 when the first interferometer 21 also transitions to the next plane mirror 31 (the plane mirror 2 shown), the first interferometer 21 reading fails, at which time the position is corrected by the second interferometer 22 The information is given to the stage 10, and the position information is updated by the second interferometer 22 to update the zero reference of the first interferometer 21.
  • the second interferometer 22 transitions to the in-plane mirror 3, it is changed to the updated first Interferometer 21 provides position information to the stage 10;
  • the loop is repeated in the manner described above until the first long mirror 30 is measured.
  • the difference between this embodiment and the first embodiment is that the interferometer measuring device provided by the present invention further includes a 45° plane mirror 40 and a second plane mirror 50 , and the 45° plane mirror 40 is disposed at the Below the first elongated mirror 30, and the angle between the 45° plane mirror 40 and the first elongated mirror 30 is 135°, and the angle between the 45° planar mirror 50 and the second planar mirror 50 is 45°, the laser interferometer A portion of the light emitted by 20 is incident on the 45° plane mirror 40, reflected by the 45° plane mirror 40 The light is incident on the second plane mirror 50, and then the light beam returns along the original path.
  • the 45° plane mirror 40 extends the measurement stroke by the splicing method described in the first embodiment.
  • This embodiment can measure the level of the stage 10
  • the vertical degree of freedom of the stage 10 is further measured on the basis of the degree of freedom.
  • the difference between this embodiment and the third embodiment is that the 45° plane mirror 40 of the embodiment extends the measurement stroke by using the splicing method described in the second embodiment.
  • the present invention provides an interferometer measuring device and a control method thereof, the device comprising a stage 10, a laser interferometer 20, and a measuring mirror mounted on a side of the stage 10 (which is a first long mirror) 30 and/or 45° plane mirror 40), the measuring mirror is formed by splicing a plurality of plane mirrors 31 in a horizontal direction, the laser interferometer 20 comprising a first interferometer 21 and a second interferometer 22, when the carrying object
  • the stage 10 moves such that when the light emitted by the laser interferometer 20 corresponds to the incident region 32, the light emitted by the first interferometer 21 and the second interferometer 22 respectively corresponds to two incidents into the transition region 32.
  • position information is alternately supplied to the stage 10 by the first interferometer 21 and the second interferometer 22.
  • the splicing of the plurality of plane mirrors 31 is used, and the zero position reference is alternately updated by the two interferometers to extend the measurement stroke of the stage 10 on the horizontal plane.

Abstract

一种干涉仪测量装置,包括载物台(10)、激光干涉仪(20)以及安装于载物台上的测量镜(30),其中,测量镜(30)由多个平面镜(31)沿水平方向拼接而成,激光干涉仪(20)包括第一干涉仪(21)和第二干涉仪(22),第一干涉仪(21)和第二干涉仪(22)设置为当载物台(10)相对于激光干涉仪(20)沿水平移动,使第一干涉仪(21)和第二干涉仪(22)发出的光对应入射至相邻两个平面镜(31)的过渡区域(32)时,第一干涉仪(21)发出的光入射至相邻两个平面镜(31)中的一个,第二干涉仪(22)发出的光入射至相邻两个平面镜(31)中的另一个,且第一干涉仪(21)和第二干涉仪(22)交替提供位置信息给载物台(10)。一种干涉仪测量装置的控制方法。该装置和方法利用多个平面镜(31)的拼接,同时配合两个干涉仪(21、22)交替更新零位基准,来延展载物台(10)在水平面上的测量行程。

Description

一种干涉仪测量装置及其控制方法 技术领域
本发明涉及一种光机电设备,尤其涉及一种干涉仪测量装置及其控制方法。
背景技术
在传统的光刻机台干涉仪测量系统中,激光干涉仪常被用于精确测量载物台或硅片台(统称载物台)的位置及旋转。请参考图1,对于光刻机载物台1水平方向X向或Y向的测量(在此定义坐标系垂向为Z向,水平方向为X向和Y向),一般直接在载物台1侧面安装长条形反射镜2,使激光干涉仪3发出的光垂直入射至长条形反射镜2,用以测量X坐标和Y坐标。一般说来,载物台1垂向行程不大,但水平向行程却很大,因此需要在侧面安装和行程相当的长条形反射镜2,可以在大行程内测量载物台1的X坐标和Y坐标。因此,在传统的光刻机台干涉仪测量系统中,载物台1的水平向行程通常会受到长条形反射镜2的长度限制,如果要增加载物台1的行程范围,就需要相应的增加长条形反射镜2的长度,但是较长的长条形反射镜2势必会提高加工难度以及制造成本。
因此,如何提供一种在不增加长条形反射镜长度的前提下提升载物台测量行程的干涉仪测量装置及其控制方法,是本领域技术人员亟待解决的一个技术问题。
发明内容
本发明提供一种干涉仪测量装置及其控制方法,以解决现有技术中,长条形反射镜过长导致加工难度和制造成本提高的技术问题。
为解决上述技术问题,本发明提供一种干涉仪测量装置,包括载物台、 激光干涉仪以及安装于所述载物台上的测量镜,其中,所述测量镜由多个平面镜沿水平方向拼接而成,所述激光干涉仪包括第一干涉仪和第二干涉仪,所述第一干涉仪和所述第二干涉仪设置为当所述载物台相对于所述激光干涉仪沿水平方向移动,使所述第一干涉仪和第二干涉仪发出的光对应入射至相邻两个平面镜的过渡区域时,所述第一干涉仪发出的光入射至所述相邻两个平面镜中的一个,所述第二干涉仪发出的光入射至所述相邻两平面镜中的另一个,且所述第一干涉仪和所述第二干涉仪交替提供位置信息给所述载物台。
较佳地,所述测量镜由多个长方形的平面镜沿水平方向拼接而成,所述第一干涉仪和第二干涉仪左右分布,所述过渡区域的宽度定义为至少为两倍所述第一干涉仪和第二干涉仪之间的距离。
较佳地,所述测量镜由多个“凸”字型的平面镜沿水平方向拼接而成,相邻两个所述“凸”字型的平面镜的凸起方向相反,所述“凸”字型的平面镜包括底部和凸起部,所述第一干涉仪和第二干涉仪上下分布,所述过渡区域由相邻两个所述平面镜的底部定义。
较佳地,所述激光干涉仪采用单轴干涉仪或者双轴干涉仪。
较佳地,所述测量镜安装于所述载物台侧面且垂直于水平面,所述激光干涉仪发射的光束垂直入射至所述测量镜表面后沿原路返回,所述光束的入射方向与所述测量镜的法向量平行。
较佳地,所述测量镜安装于所述载物台侧面并与所述载物台的侧面成135°度,所述激光干涉仪还包括位于所述载物台上方的第二平面镜,所述第二平面镜平行于所述载物台的载物面,所述激光干涉仪发射的光束入射至所述测量镜表面后被反射到所述第二平面镜,之后所述光束沿原路返回,所述光束的方向与所述测量镜的法向量成45°。
本发明还提供了一种采用如上所述的干涉仪测量装置的控制方法,当所述第一干涉仪和第二干涉仪发出的光经过所述过渡区域时,所述第一干涉仪和第二干涉仪交替提供当前测得的位置信息给所述载物台,同时交替利用其 中一个干涉仪测得的位置信息来更新其中另一个干涉仪的零位基准,以对相邻两个所述平面镜的面型非线性差异进行校正。
1.较佳地,所述交替利用其中一个干涉仪测得的位置信息来更新其中另一个干涉仪的零位基准具体包括以下步骤:
当所述第一干涉仪和第二干涉仪发出的光经过所述过渡区域时,所述第一干涉仪和第二干涉仪中其发出的光先经过相邻两个所述平面镜的拼接处的该干涉仪定义为无效干涉仪,另一个定义为有效干涉仪;
由所述有效干涉仪提供当前测得的位置信息给所述载物台及所述无效干涉仪;
由所述无效干涉仪根据所述有效干涉仪测得的位置信息和所述过渡区域内相邻两个所述平面镜的面型非线性差异,计算所述无效干涉仪的更新后的零位基准。
较佳地,所述交替利用其中一个干涉仪测得的位置信息来更新其中另一个干涉仪的零位基准还包括:当所述有效干涉仪发出的光也经过相邻两个所述平面镜的拼接处时,利用所述更新后的零位基准来更新所述有效干涉仪的零位基准。
较佳地,所述面型非线性差异为所述第一干涉仪和所述第二干涉仪在所述过渡区域的光程数据之差。
与现有技术相比,本发明提供的干涉仪测量装置及其控制方法,该装置包括载物台、激光干涉仪以及安装于所述载物台上的测量镜,其特征在于,所述测量镜由多个平面镜沿水平方向拼接而成,所述激光干涉仪包括第一干涉仪和第二干涉仪,当所述载物台移动,使所述激光干涉仪发出的光对应入射至过渡区域时,所述第一干涉仪和所述第二干涉仪交替提供位置信息给所述载物台,所述过渡区域为所述第一干涉仪和所述第二干涉仪入射至不同的所述平面镜时经过的区域。本发明中,利用多个平面镜的拼接,同时配合两个干涉仪交替更新零位基准,来延展载物台在水平面上的测量行程。
附图说明
图1为现有的干涉仪测量装置的结构示意图;
图2为本发明实施例一的干涉仪测量装置的结构示意图;
图3为本发明实施例一的干涉仪测量装置中激光干涉仪的结构示意图;
图4为本发明实施例一的干涉仪测量装置过渡区域中归零点位的排列示意图;
图5a至图5d为本发明实施例一的干涉仪测量装置的控制方法示意图;
图6为本发明实施例二的干涉仪测量装置的结构示意图;
图7为本发明实施例二的干涉仪测量装置中激光干涉仪的结构示意图;
图8a至图8c为本发明实施例二的干涉仪测量装置的控制方法示意图;
图9为本发明实施例三的干涉仪测量装置的结构示意图。
图1中:1-载物台、2-长条形反射镜、3-激光干涉仪;
图2-9中:10-载物台、20-激光干涉仪、21-第一干涉仪、22-第二干涉仪、30-第一长条镜、31-平面镜、32-过渡区域、33-归零点位、40-45°平面镜、50-第二平面镜。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。需说明的是,本发明附图均采用简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
本发明提供的干涉仪测量装置,如图2和图3所示,包括载物台10、激光干涉仪20以及安装于所述载物台10侧面的第一长条镜30,所述第一长条镜30由多个平面镜31沿水平方向拼接而成,且相邻的两个平面镜31在连接处形成过渡区域32;所述激光干涉仪20包括第一干涉仪21和第二干涉仪22, 当所述载物台10移动,使激光干涉仪20发出的光对应入射至所述过渡区域32时,所述第一干涉仪21和第二干涉仪22发出的光分别对应入射至所述过渡区域32中的两个平面镜31上,所述过渡区域32为所述第一干涉仪21和所述第二干涉仪22入射至不同的所述平面镜31时经过的区域。本发明中,利用多个平面镜31的拼接,同时配合两个干涉仪交替更新零位基准,来延展载物台10在水平面上的测量行程。
请继续参考图2和图3,本实施例中,所述第一长条镜30由多个“凸”字型的平面镜31沿水平方向拼接而成,相邻两个“凸”字型的平面镜31的凸起方向相反,即一个平面镜31的凸起方向朝上,而另一个平面镜31的凸起方向朝下。所述第一干涉仪21和第二干涉仪22上下分布。
当采用拼接平面镜且使用单个激光干涉仪时,由于在相邻平面镜的拼接位置,两个相邻的平面镜之间可能存在缝隙,导致拼接误差,此时单个激光干涉仪的零位基准会失效,进而影响测量精度。而在本实施例中,利用两个干涉仪在过渡区域32中分别对应两个平面镜31,以补偿上述拼接误差。
较佳地,请重点参考图4,所述“凸”字型的平面镜31包括底部和凸起部,本实施例所述过渡区域32由相邻两个所述“凸”字型的平面镜31的底部上下拼接而成,所述底部的边缘处设有若干归零点位33,用以提示激光干涉仪20进入过渡区域32。图4中仅作为示意绘示出四个归零点位33,不应以此限制本发明,所述归零点位33的个数可以根据过渡区域32的长度、干涉仪的采样频率、载物台10的移动速度等参数中的一个或多个来确定。
较佳地,所述激光干涉仪20可以采用单轴干涉仪,以测量载物台10单个方向上的平移;也可以采用双轴干涉仪,以测量载物台10在单个方向上的平移和旋转。
较佳地,所述激光干涉仪20固定于光刻机的主基板上,所述激光干涉仪20测量行程的方向与所述激光干涉仪20光束的出射方向一致,与所述第一长条镜30的法向量方向平行,使得激光干涉仪20发出的光束垂直照射于所述 第一长条镜30上。
本发明还提供了一种如上所述的干涉仪测量装置的控制方法,当所述第一干涉仪21和第二干涉仪22发出的光经过所述过渡区域32时,所述第一干涉仪21和第二干涉仪22交替提供当前位置的位置信息,同时交替利用自身测得的位置信息来更新对方的零位基准,对相邻两个平面镜的面型非线性差异进行校正。
较佳地,所述面型非线性差异为第一干涉仪21和第二干涉仪22的光程数据之差,具体地,在过渡区域32中,载物台10沿着横向运动,此时,记录下不同位置下,测得第一干涉仪21的光程数据为lui,第二干涉仪22的光程数据为ldi,则两个平面镜31的面型非线性差异delta_l=lui-ldi。
较佳地,当载物台10承载着第一长条镜30相对于激光干涉仪20平移时,也可以理解为激光干涉仪20发出的光对第一长条镜30进行扫描。当所述第一干涉仪21和第二干涉仪22发出的光对所述过渡区域32进行扫描时,所述第一干涉仪21和第二干涉仪22中,其光束先扫描经过相邻两个所述平面镜31连接处的该干涉仪定义为无效干涉仪,另一个定义为有效干涉仪,此时所述有效干涉仪用于提供当前位置信息给所述载物台10,所述无效干涉仪则对其零位基准进行修正,其中,所述零位基准由有效干涉仪提供的位置信息及相邻两个所述平面镜31的面型非线性差异delta_l共同修正。
较佳地,所述无效干涉仪的零位基准的修正方法为:在过渡区域32内,取若干沿第一长条镜30长度方向设置的归零点位33,根据所述有效干涉仪测得的位置信息和所述过渡区域32内相邻两个所述平面镜31的面型非线性差异,计算所述无效干涉仪在所述归零点位33的归零偏置h01,h02,h03…,去除其中的粗大点(将与所有归零偏置的平均值的偏差最大和最小的值视为粗大点),再将剩余的值取平均后作为无效干涉仪更新后的零位基准。
请重点参考图5a至图5d,本发明提供的干涉仪测量装置的控制过程为:
如图5a所示,上部的第一干涉仪21和下部的第二干涉仪22发出的光束 均入射至同一块平面镜31(图中所示平面镜1),此时选取第二干涉仪22提供位置信息;
如图5b所示,当激光干涉仪20经过过渡区域32时,上部的第一干涉仪21过渡至下一块平面镜31(图中所示平面镜2),而下部的第二干涉仪22仍然与前一块平面镜31(图中所示平面镜1)对应,由于相邻两个平面镜31之间存在缝隙,此时第一干涉仪21先扫描经过缝隙,因此第一干涉仪21为无效干涉仪,其读数失效,继续由第二干涉仪22提供位置信息,并用第二干涉仪22提供的位置信息更新第一干涉仪21的零位基准;
如图5c所示,当下部的第二干涉仪22过渡至下一块平面镜31(图中所示平面镜2)时,第二干涉仪22读数失效,此时由补正后的第一干涉仪21提供位置信息给载物台10;
如图5d所示,当激光干涉仪20经过下一个过渡区域32时,上部的第一干涉仪21仍然与第二个平面镜31(图中所示平面镜2)对应,而下部的第二干涉仪22过渡至后一块平面镜31(图中所示平面镜3),此时由第一干涉仪21提供位置信息更新第二干涉仪22的零位基准,待第一干涉仪21过渡至图示中平面镜3时,改为更新后的第二干涉仪22提供位置信息给载物台10;
依照上述的方式循环,直至第一长条镜30测量完毕。
应用上述方法,既解决了由于长条镜过长导致的加工难度和加工成本过高的问题,同时避免了平面镜31拼接导致的拼接误差对测量精度的影响。
实施例二
较佳地,请重点参考图6和图7,所述第一长条镜30由多个长方形的平面镜31沿水平方向拼接而成,所述第一干涉仪21和第二干涉仪22左右分布,过渡区域32的宽度至少为两倍第一干涉仪21与第二干涉仪22之间的距离。在本实施例中,随着载物台10的移动,第二干涉仪22先过渡至下一个平面镜31上,此时由第一干涉仪21提供位置信息,同时更新第二干涉仪22的零 位基准;第一干涉仪21和第二干涉仪22均移动至下一个平面镜31后,由第二干涉仪22提供位置信息,同时更新第一干涉仪21的零位基准;依次循环,完成整个第一长条镜30的测量。
请重点参考图8a至图8c,本实施例提供的干涉仪测量装置的控制过程为:
如图8a所示,左边的第一干涉仪21和右边的第二干涉仪22均入射至同一块平面镜31(图中所示平面镜1),此时选取第一干涉仪21提供位置信息;
如图8b所示,当第一干涉仪21和第二干涉仪22均入射至过渡区域32时,第二干涉仪22过渡至下一块平面镜31(图中所示平面镜2),而第一干涉仪21仍然与前一块平面镜31(图中所示平面镜1)对应,此时第二干涉仪22失效,且当第二干涉仪22入射至平面镜31(图中平面镜2)上的归零点位33时,由第一干涉仪21提供位置信息及相邻两个平面镜31(图中平面镜1与平面镜2)的面型非线性差异去修正第二干涉仪22,更新第二干涉仪22的零位基准;
如图8c所示,当第一干涉仪21也过渡至下一块平面镜31(图中所示平面镜2)时,第一干涉仪21读数失效,此时由修正后的第二干涉仪22提供位置信息给载物台10,并由第二干涉仪22提供位置信息更新第一干涉仪21的零位基准,待第二干涉仪22过渡至图示中平面镜3时,改为更新后的第一干涉仪21提供位置信息给载物台10;
依照上述的方式循环,直至第一长条镜30测量完毕。
实施例三
较佳地,请重点参考图9,本实施例与实施例一的区别在于:本发明提供的干涉仪测量装置还包括45°平面镜40和第二平面镜50,所述45°平面镜40设置于所述第一长条镜30的下方,且所述45°平面镜40与第一长条镜30的夹角为135°,与第二平面镜50之间的夹角为45°,所述激光干涉仪20发出的一部分光入射至所述45°平面镜40,经所述45°平面镜40反射后入 射至所述第二平面镜50,之后光束沿原路返回,此处,所述45°平面镜40采用实施例一所述的拼接方式延展其测量行程,本实施例可以在测量载物台10水平向自由度的基础上,进一步测量载物台10的垂向自由度。
实施例四
本实施例与实施例三的区别在于:本实施例所述45°平面镜40采用实施例二所述的拼接方式延展其测量行程。
综上所述,本发明提供的干涉仪测量装置及其控制方法,该装置包括载物台10、激光干涉仪20以及安装于所述载物台10侧面的测量镜(为第一长条镜30和/或45°平面镜40),所述测量镜由多个平面镜31沿水平方向拼接而成,所述激光干涉仪20包括第一干涉仪21和第二干涉仪22,当所述载物台10移动,使激光干涉仪20发出的光对应入射至所述过渡区域32时,所述第一干涉仪21和第二干涉仪22发出的光分别对应入射至所述过渡区域32中的两个平面镜31上,并由所述第一干涉仪21和所述第二干涉仪22交替提供位置信息给所述载物台10。本发明中,利用多个平面镜31的拼接,同时配合两个干涉仪交替更新零位基准,来延展载物台10在水平面上的测量行程。
显然,本领域的技术人员可以对发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包括这些改动和变型在内。

Claims (10)

  1. 一种干涉仪测量装置,包括载物台、激光干涉仪以及安装于所述载物台上的测量镜,其特征在于,所述测量镜由多个平面镜沿水平方向拼接而成,所述激光干涉仪包括第一干涉仪和第二干涉仪,所述第一干涉仪和所述第二干涉仪设置为当所述载物台相对于所述激光干涉仪沿水平方向移动,使所述第一干涉仪和第二干涉仪发出的光对应入射至相邻两个平面镜的过渡区域时,所述第一干涉仪发出的光入射至所述相邻两个平面镜中的一个,所述第二干涉仪发出的光入射至所述相邻两平面镜中的另一个,且所述第一干涉仪和所述第二干涉仪交替提供位置信息给所述载物台。
  2. 如权利要求1所述的干涉仪测量装置,其特征在于,所述测量镜由多个长方形的平面镜沿水平方向拼接而成,所述第一干涉仪和第二干涉仪左右分布,所述过渡区域的宽度定义为至少为两倍所述第一干涉仪和第二干涉仪之间的距离。
  3. 如权利要求1所述的干涉仪测量装置,其特征在于,所述测量镜由多个“凸”字型的平面镜沿水平方向拼接而成,相邻两个所述“凸”字型的平面镜的凸起方向相反,所述“凸”字型的平面镜包括底部和凸起部,所述第一干涉仪和第二干涉仪上下分布,所述过渡区域由相邻两个所述平面镜的底部定义。
  4. 如权利要求1所述的干涉仪测量装置,其特征在于,所述激光干涉仪采用单轴干涉仪或者双轴干涉仪。
  5. 如权利要求1或2或3所述的干涉仪测量装置,其特征在于,所述测量镜安装于所述载物台侧面且垂直于水平面,所述激光干涉仪发射的光束垂直入射至所述测量镜表面后沿原路返回,所述光束的入射方向与所述测量镜的法向量平行。
  6. 如权利要求1或2或3所述的干涉仪测量装置,其特征在于,所述测量镜安装于所述载物台侧面并与所述载物台的侧面成135°度,所述激光干涉 仪还包括位于所述载物台上方的第二平面镜,所述第二平面镜平行于所述载物台的载物面,所述激光干涉仪发射的光束入射至所述测量镜表面后被反射到所述第二平面镜,之后所述光束沿原路返回,所述光束的方向与所述测量镜的法向量成45°。
  7. 一种采用如权利要求1-6任一所述的干涉仪测量装置的控制方法,其特征在于,当所述第一干涉仪和第二干涉仪发出的光经过所述过渡区域时,所述第一干涉仪和第二干涉仪交替提供当前测得的位置信息给所述载物台,同时交替利用其中一个干涉仪测得的位置信息来更新其中另一个干涉仪的零位基准,以对相邻两个所述平面镜的面型非线性差异进行校正。
  8. 如权利要求7所述的控制方法,其特征在于,所述交替利用其中一个干涉仪测得的位置信息来更新其中另一个干涉仪的零位基准具体包括以下步骤:
    当所述第一干涉仪和第二干涉仪发出的光经过所述过渡区域时,所述第一干涉仪和第二干涉仪中其发出的光先经过相邻两个所述平面镜的拼接处的该干涉仪定义为无效干涉仪,另一个定义为有效干涉仪;
    由所述有效干涉仪提供当前测得的位置信息给所述载物台及所述无效干涉仪;
    由所述无效干涉仪根据所述有效干涉仪测得的位置信息和所述过渡区域内相邻两个所述平面镜的面型非线性差异,计算所述无效干涉仪的更新后的零位基准。
  9. 如权利要求8所述的控制方法,其特征在于,所述交替利用其中一个干涉仪测得的位置信息来更新其中另一个干涉仪的零位基准还包括:当所述有效干涉仪发出的光也经过相邻两个所述平面镜的拼接处时,利用所述更新后的零位基准来更新所述有效干涉仪的零位基准。
  10. 如权利要求7或8所述的控制方法,其特征在于,所述面型非线性差异为所述第一干涉仪和所述第二干涉仪在所述过渡区域的光程数据之差。
PCT/CN2016/112643 2015-12-31 2016-12-28 一种干涉仪测量装置及其控制方法 WO2017114415A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/067,328 US10393507B2 (en) 2015-12-31 2016-12-28 Interferometer measurement device and control method therefor
KR1020187021085A KR102044112B1 (ko) 2015-12-31 2016-12-28 간섭계 측정 장치 및 그 제어 방법
JP2018534058A JP6617202B2 (ja) 2015-12-31 2016-12-28 干渉計測定装置およびその制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511031860.2 2015-12-31
CN201511031860.2A CN106931878A (zh) 2015-12-31 2015-12-31 一种干涉仪测量装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2017114415A1 true WO2017114415A1 (zh) 2017-07-06

Family

ID=59224592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112643 WO2017114415A1 (zh) 2015-12-31 2016-12-28 一种干涉仪测量装置及其控制方法

Country Status (6)

Country Link
US (1) US10393507B2 (zh)
JP (1) JP6617202B2 (zh)
KR (1) KR102044112B1 (zh)
CN (1) CN106931878A (zh)
TW (1) TWI627382B (zh)
WO (1) WO2017114415A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107462166B (zh) * 2017-08-24 2019-10-15 中国科学院长春光学精密机械与物理研究所 基于衍射光栅的长行程、高精度位移测量方法
CN114216396B (zh) * 2021-12-16 2022-10-04 哈尔滨工业大学 一种基于激光干涉仪的复眼单元运动误差测量装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280054A (en) * 1979-04-30 1981-07-21 Varian Associates, Inc. X-Y Work table
US5757160A (en) * 1996-12-23 1998-05-26 Svg Lithography Systems, Inc. Moving interferometer wafer stage
CN1617048A (zh) * 2003-11-13 2005-05-18 Asml荷兰有限公司 光刻装置和器件制造方法
CN102564303A (zh) * 2010-12-30 2012-07-11 上海微电子装备有限公司 一种测量装置及方法
CN102809346A (zh) * 2011-05-31 2012-12-05 上海微电子装备有限公司 运动平台的位置测量装置及其测量方法
CN103376665A (zh) * 2012-04-20 2013-10-30 上海微电子装备有限公司 一种掩模台水平向测量装置及方法
CN103383271A (zh) * 2012-05-04 2013-11-06 上海微电子装备有限公司 双硅片台交换系统的交换位置测量装置及其测量方法
EP2815278A2 (en) * 2012-02-17 2014-12-24 Carl Zeiss SMT GmbH Optical component
CN104515470A (zh) * 2014-12-25 2015-04-15 中国科学院长春光学精密机械与物理研究所 全息扫描曝光二维工作台位移和摆角测量光路结构

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH021505A (ja) * 1988-06-03 1990-01-05 Nikon Corp 干渉計付ステージ
JP3282233B2 (ja) * 1992-08-18 2002-05-13 株式会社ニコン 距離測定装置、及びそれを用いた投影露光装置
JPH08233524A (ja) * 1995-02-28 1996-09-13 Nikon Corp 多軸位置決めユニット
JP3413122B2 (ja) * 1998-05-21 2003-06-03 キヤノン株式会社 位置決め装置及びこれを用いた露光装置並びにデバイス製造方法
JP2000075928A (ja) * 1998-08-31 2000-03-14 Nippon Seiko Kk レーザ干渉計を用いたステージ位置決め装置
TWI307827B (en) * 2002-03-19 2009-03-21 Chi Mei Optoelectronics Corp A positioning system with multiple bar mirrors
TW584713B (en) * 2003-03-12 2004-04-21 Chi Mei Optoelectronics Corp Positioning system with multiple bar mirrors
US7289226B2 (en) * 2003-11-04 2007-10-30 Zygo Corporation Characterization and compensation of errors in multi-axis interferometry systems
US7158236B2 (en) * 2004-05-21 2007-01-02 Agilent Technologies, Inc. Heterodyne laser interferometer for measuring wafer stage translation
US20060139595A1 (en) * 2004-12-27 2006-06-29 Asml Netherlands B.V. Lithographic apparatus and method for determining Z position errors/variations and substrate table flatness
TWI264523B (en) * 2005-09-06 2006-10-21 Instr Technology Res Ct Method and instrument for measuring decenter and tilt of lens by interferometer
JP5032821B2 (ja) * 2006-10-04 2012-09-26 大日本スクリーン製造株式会社 基板移動装置
CN101393009B (zh) * 2008-11-05 2010-08-25 上海微电子装备有限公司 大行程激光干涉仪垂向测量装置和方法
CN102042804B (zh) * 2009-10-13 2012-12-12 上海微电子装备有限公司 激光干涉仪测量装置和方法
CN102445149B (zh) * 2010-10-14 2014-02-19 上海微电子装备有限公司 一种工件台位置测量装置与测量方法
US9069265B2 (en) * 2011-03-30 2015-06-30 Mapper Lithography Ip B.V. Interferometer module
JP5953657B2 (ja) * 2011-05-17 2016-07-20 株式会社ニコン 空間光変調器、露光装置、及びデバイス製造方法
CN103197500B (zh) * 2012-01-05 2015-09-30 上海微电子装备有限公司 一种测量镜面形补偿效果的方法
ITMI20131791A1 (it) 2013-10-28 2015-04-29 Gruppo Cimbali Spa Dispositivo per il riconoscimento di un portafiltro di macchine per caffe' espresso.

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4280054A (en) * 1979-04-30 1981-07-21 Varian Associates, Inc. X-Y Work table
US5757160A (en) * 1996-12-23 1998-05-26 Svg Lithography Systems, Inc. Moving interferometer wafer stage
CN1617048A (zh) * 2003-11-13 2005-05-18 Asml荷兰有限公司 光刻装置和器件制造方法
CN102564303A (zh) * 2010-12-30 2012-07-11 上海微电子装备有限公司 一种测量装置及方法
CN102809346A (zh) * 2011-05-31 2012-12-05 上海微电子装备有限公司 运动平台的位置测量装置及其测量方法
EP2815278A2 (en) * 2012-02-17 2014-12-24 Carl Zeiss SMT GmbH Optical component
CN103376665A (zh) * 2012-04-20 2013-10-30 上海微电子装备有限公司 一种掩模台水平向测量装置及方法
CN103383271A (zh) * 2012-05-04 2013-11-06 上海微电子装备有限公司 双硅片台交换系统的交换位置测量装置及其测量方法
CN104515470A (zh) * 2014-12-25 2015-04-15 中国科学院长春光学精密机械与物理研究所 全息扫描曝光二维工作台位移和摆角测量光路结构

Also Published As

Publication number Publication date
TW201730510A (zh) 2017-09-01
CN106931878A (zh) 2017-07-07
KR20180095079A (ko) 2018-08-24
US20190033057A1 (en) 2019-01-31
TWI627382B (zh) 2018-06-21
JP2019500614A (ja) 2019-01-10
US10393507B2 (en) 2019-08-27
JP6617202B2 (ja) 2019-12-11
KR102044112B1 (ko) 2019-11-12

Similar Documents

Publication Publication Date Title
KR100281211B1 (ko) 투영 노광 방법, 투영 노광 장치, 및 디바이스 제조 방법
KR20000075541A (ko) 시간절약형 높이측정을 이용하여 마스크패턴을 반복적으로 투영하는 방법 및 장치
CN108801158A (zh) 一种光栅尺标定装置及标定方法
US20090073458A1 (en) Means and method for determining the spatial position of moving elements of a coordinate measuring machine
JPH0310105A (ja) 位置測定方法、位置測定装置、位置決め方法、位置決め装置、および露光装置
KR20010014187A (ko) 간섭측정법으로 제어된 스테이지용 2피이스의 거울장치
US11402762B2 (en) Movable body apparatus, moving method, exposure apparatus, exposure method, flat-panel display manufacturing method, and device manufacturing method
US7397039B2 (en) Real-time compensation of mechanical position error in pattern generation or imaging applications
WO2017114415A1 (zh) 一种干涉仪测量装置及其控制方法
JPH09260274A (ja) 露光装置および露光方法
US6674512B2 (en) Interferometer system for a semiconductor exposure system
CN209485273U (zh) 一种空间光路的光栅尺标定装置
US8149383B2 (en) Method for determining the systematic error in the measurement of positions of edges of structures on a substrate resulting from the substrate topology
JP3772444B2 (ja) ステージ装置、座標測定装置および位置測定方法
US20220260452A1 (en) Plane grating calibration system
JP2005024567A (ja) 位置測定装置
CN209485272U (zh) 一种光栅尺标定装置
JPH05315221A (ja) 位置決め装置
JP2009200147A (ja) 電子ビーム描画装置
JP2001143997A (ja) 位置決め装置、露光装置、及びデバイスの製造方法
JP3744107B2 (ja) ステージ移動装置
JP2016100541A (ja) マスクステージ及びステージ装置
JP5188140B2 (ja) 寸法測定方法
JPH0782390B2 (ja) ステージ位置決め方法
JPH11108645A (ja) 反射鏡の反射面の真直度測定方法及びステージ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881204

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018534058

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187021085

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020187021085

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 16881204

Country of ref document: EP

Kind code of ref document: A1