WO2017114295A1 - 一种无人机起落控制系统和控制方法 - Google Patents

一种无人机起落控制系统和控制方法 Download PDF

Info

Publication number
WO2017114295A1
WO2017114295A1 PCT/CN2016/111573 CN2016111573W WO2017114295A1 WO 2017114295 A1 WO2017114295 A1 WO 2017114295A1 CN 2016111573 W CN2016111573 W CN 2016111573W WO 2017114295 A1 WO2017114295 A1 WO 2017114295A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
coil
magnetic field
apron
landing
Prior art date
Application number
PCT/CN2016/111573
Other languages
English (en)
French (fr)
Inventor
胡腾飞
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Priority to CA3009708A priority Critical patent/CA3009708C/en
Priority to JP2018534568A priority patent/JP6535137B2/ja
Priority to US16/060,888 priority patent/US10287033B2/en
Priority to KR1020187015016A priority patent/KR101939037B1/ko
Priority to EP16881084.4A priority patent/EP3372492B1/en
Publication of WO2017114295A1 publication Critical patent/WO2017114295A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/04Ground or aircraft-carrier-deck installations for launching aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C19/00Aircraft control not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • B64D45/08Landing aids; Safety measures to prevent collision with earth's surface optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/02Ground or aircraft-carrier-deck installations for arresting aircraft, e.g. nets or cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/36Other airport installations
    • B64F1/362Installations for supplying conditioned air to parked aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/90Launching from or landing on platforms
    • B64U70/99Means for retaining the UAV on the platform, e.g. dogs or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N15/00Holding or levitation devices using magnetic attraction or repulsion, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/25Fixed-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U80/00Transport or storage specially adapted for UAVs
    • B64U80/80Transport or storage specially adapted for UAVs by vehicles
    • B64U80/86Land vehicles

Definitions

  • the invention relates to the technical field of drones, in particular to a drone landing control system and a control method.
  • UAVs have a wide range of applications in applications such as surveillance/monitoring, communication relay, electronic countermeasures, disaster prevention, and emergency search.
  • Some people in the prior art have also proposed an idea design to apply the drone to a car, making it a "eye" that the car can move. When the drone is not working, it is parked in the apron of the roof and can be wirelessly charged. At work, people control the drone to detect the traffic conditions in the road ahead, and at the same time can act as a camera for the reversing radar.
  • the above design concept can not be achieved.
  • One of the most important problems is that the drone is vulnerable to collision or tilting during take-off or landing, making the drone's life short and practicable.
  • the wing has to consume a large amount of electric energy to get out of the apron, and the energy consumption is large, which is not conducive to continuous use.
  • the invention provides a drone landing control system and a control method, aiming at solving the problem that the drone is easily damaged during take-off and landing.
  • the invention provides a drone landing control system, comprising:
  • a magnet assembly disposed on the side of the drone and a magnetic field assembly disposed on the side of the apron; wherein the magnetic field assembly is provided with an energized coil;
  • a current is applied to the energized coil, and the magnetic field component generates a supporting magnetic field on the apron side to form a thrust acting on the drone; the thrust and the lift of the drone during the takeoff or landing of the drone or The resistance of the drone forms a resultant force to supplement the lift or resistance.
  • the method further includes a rotation speed measuring device, a distance measuring device and a controller; the rotation speed measuring device measures a rotation speed of the drone wing, and the distance measuring device measures a distance between the drone and the predetermined parking position; the control The direction and magnitude of the current flowing into the energized coil are varied based on the rotational speed measured by the rotational speed measuring device and/or the distance measured by the distance measuring device.
  • the drone receives the takeoff command, the forward current is passed through the energized coil and the forward current is continuously increased, the support magnetic field generates an upward thrust acting on the drone; and the support magnetic field acts on the drone
  • the thrust is equal to the gravity of the drone, the forward current flowing into the energizing coil is the largest, and an air gap is formed between the drone and the apron.
  • the drone wing begins to rotate; the forward current flowing into the energized coil decreases as the rotational speed of the drone's wing increases; The rotation speed of the drone's wing is equal to the setting At the speed of rotation, the current flowing into the energized coil drops to zero.
  • the controller receives the landing command, inputs a forward current in the energized coil and continuously increases the forward current; the drone wing speed is zero and the ranging device detects the drone and stops When the distance between the pings is zero, the controller controls to stop supplying power to the energized coil.
  • the controller receives the landing command, and the distance measuring device detects whether the distance between the drone and the apron belongs to a dropable range; if the distance between the drone and the apron belongs to the range that can be dropped, then the The speed of the drone's wing is constant, and a reverse current is applied to the energized coil to pull the drone directly above the preset parking position.
  • the method further includes an energy storage device disposed in the drone and a charging coil disposed on the landing gear of the drone, and the energy storage device and the charging coil are electrically connected; when the drone is in a flight state, the energy storage device The device is disconnected from the charging coil; when the drone is parked on the tarmac, a charging current is applied to the energizing coil, the magnetic field component generates a varying charging magnetic field on the apron side, and the energy storage device is connected to the charging coil. Charge the energy storage device.
  • the distance measuring device comprises an infrared distance measuring device disposed on the drone and an infrared receiving device disposed on the side of the apron; the width of the infrared receiving device is greater than the width of the infrared distance measuring device.
  • the magnet assembly includes a permanent magnet disposed on a corresponding contact surface of the drone landing gear and the apron; the magnetic field assembly includes an iron core disposed at the tarmac, and the energized coil is wound Outside the core.
  • the drone landing control system disclosed in the above embodiments of the present invention forms a uniform magnetic field by changing the current of the energized coil during the take-off and landing of the drone, and generates a thrust acting on the drone to balance the drone.
  • the force during the landing process improves the safety performance of the drone, reduces the energy consumption of the drone, and prolongs the service life of the drone.
  • the invention provides a drone landing control method, which specifically comprises the following steps:
  • the controller receives the take-off command, controls the forward current flowing into the energized coil and continuously increases the forward current; and the supporting magnetic field acts on the drone equal to the gravity of the drone, and the positive current is applied to the energizing coil The current is the largest, and an air gap is formed between the drone and the apron;
  • the controller controls the maximum forward current flowing into the energizing coil to be unchanged, and the drone wing starts to rotate; the input of the controller inputs the rotation speed detecting device feedback The rotation speed detection signal, and according to the input rotation speed detection signal output control signal, the forward current flowing into the energization coil is decreased as the rotation speed of the UAV wing increases; the rotation speed of the UAV wing is equal to When the rotational speed is set, the controller controls the current flowing into the energized coil to drop to zero;
  • the controller receives the landing command, and the ranging device detects whether the distance between the drone and the apron is in a range that can be dropped;
  • the controller inputs the control signal to keep the speed of the drone's wing constant, and controls the reverse current flowing into the energized coil to pull the drone. Up to the top of the preset parking position;
  • the controller applies a forward current in the energized coil and continuously increases the forward current to form a thrust acting on the drone to supplement the resistance loss caused by the drone speed of the drone;
  • the speed of the drone wing is Zero and the distance measuring device detects that the distance between the drone and the apron is zero, the controller input control signal stops supplying power to the energizing coil;
  • the energy storage device when the drone is working, the energy storage device is disconnected from the charging coil; when the drone is parked on the tarmac, the controller outputs a control signal, and the charging current is passed through the energizing coil, and the magnetic field component is stopped. A charging magnetic field is generated on the ping side, and the energy storage device is connected to the charging coil to charge the energy storage device.
  • the control method disclosed by the invention reduces the energy consumption during the take-off and landing of the drone, improves the safety performance of the drone, and has the advantages of good operability.
  • FIG. 1 is a schematic structural view of an embodiment of a drone landing control system according to the present invention.
  • FIG. 2 is a schematic block diagram of an embodiment of a drone landing control system according to the present invention.
  • FIG. 3 is a flow chart of an embodiment of a drone landing control method according to the present invention.
  • the landing control system disclosed herein includes a magnet assembly disposed on the side of the drone 1 and a magnetic field assembly disposed on the side of the apron.
  • the magnet assembly is a permanent magnet 5 disposed on the contact surface of the drone landing gear and the apron.
  • the permanent magnet 5 is light in weight and has stable magnetic properties.
  • the magnetic field assembly includes a core disposed at the tarmac and an energized coil 2 wound around the outside of the core. For magnetic field components placed in special environments such as the roof, the energized coil 2 is placed in the washer to avoid the influence of the bottom magnetic leakage on other items.
  • the energized coil 2 When the energized coil 2 is energized, a magnetic field is formed on the side of the drone. Since the magnetic field strength on the apron side is much larger than the magnetic field strength of the magnetic field formed by the permanent magnet 5, the magnetic field generated by the magnetic field component is a uniform magnetic field with respect to the drone, and does not cause the drone to tip over or fall.
  • the magnetic field component forms a supporting magnetic field on the apron side to generate a thrust acting on the drone.
  • the thrust generated by the supporting magnetic field forms a resultant force with the lift of the aircraft take-off, supplementing the lift generated by the rotation of the wing, thereby reducing the energy consumption during the take-off of the drone.
  • the vertical drop occurs when the flight speed is high, and the lift is reduced quickly.
  • the supporting magnetic field acts on the unmanned machine to form a resultant force between the thrust and the resistance, so that the drone is evenly stressed.
  • the speed measuring device 6 and the infrared distance measuring device 7 are disposed on the side of the drone, and the signal transmitting and receiving module 10 and the controller 9 are disposed on the apron side.
  • the rotational speed detecting signal generated by the rotational speed measuring device 6 and the distance signal generated by the infrared ranging device 7 are output to the controller 9 through the signal transmitting and receiving module 10 as two independent control parameters of the controller 9.
  • the drone 1 receives the takeoff command and outputs a takeoff signal
  • the signal transceiver module 10 receives the takeoff signal and inputs Exit to controller 9.
  • the controller 9 controls the forward current to be supplied to the energized coil 2.
  • the wing of the drone 1 does not rotate.
  • the supporting magnetic field formed by the forward current generates an upward thrust acting on the drone.
  • the controller 9 controls the forward current flowing through the energized coil 2 to continuously increase.
  • the upward thrust is equal to the gravity of the drone 1, the forward current flowing into the energizing coil 2 is the largest, and an air gap is formed between the drone 1 and the apron, so that the drone 1 assumes a magnetic levitation state.
  • the infrared distance measuring device 7 After the air gap is formed between the drone 1 and the apron, the infrared distance measuring device 7 generates a distance detection value of the distance between the drone 1 and the predetermined parking position and feeds back to the input end of the controller 9 through the signal transceiving unit 10. .
  • the drone wing After the air gap is formed between the drone 1 and the apron, the drone wing begins to rotate, and the rotational speed measuring device 6 generates a rotational speed detection value and feeds back to the input end of the controller 9 through the signal transceiving unit 10. It is also possible to control the start of rotation of the drone wing when the distance measuring value of the distance between the drone 1 and the predetermined parking position is detected by the infrared distance measuring device 7, preferably 0.5 m, to improve safety. After the drone wing begins to rotate, the controller 9 controls the forward current flowing into the energized coil 2 to decrease as the rotational speed of the drone's wing increases.
  • the controller 9 controls the current flowing into the energized coil 2 to drop to zero. At this time, the supporting magnetic field generated on the apron side disappears, and the drone 1 operates in the original control mode.
  • the remote controller issues a landing command.
  • the drone 1 receives the landing command and outputs a falling signal, and the signal transceiving module 10 receives the falling signal and outputs it to the controller 9.
  • the controller 9 determines whether or not the drone 1 falls within the range that can be dropped based on the distance detection value of the distance between the drone 1 and the apron generated by the infrared distance measuring device 7.
  • the range that can be landed refers to a specific area on the apron centered on the preset parking position, and the specific distance is defined by the radius.
  • the control signal is output to keep the speed of the drone's wing unchanged, and a reverse current is applied to the energized coil 2 to form an attracting magnetic field, and no one is drawn.
  • the machine 1 is directly above the preset position.
  • the infrared receiving device 8 receives the infrared signal from the infrared ranging unit 7, indicating that the drone 1 is directly above the parking position, and can be dropped, so that it is not easy to see.
  • the user of the specific drone 1 position operates.
  • the width of the infrared receiving device 8 is slightly larger than the width of the infrared ranging unit 7, allowing a certain amount of downtime error.
  • the controller 9 controls the forward current to be supplied to the energized coil 2 and continues to increase the forward current.
  • the rotational speed measuring device 6 continues to feed back the wing speed detecting signal of the drone 1 to the controller 9. Since the forward current is logarithmically increased with time. According to the characteristics of the logarithmic function, the strength of the supporting magnetic field increases the fastest, and the thrust acting on the drone 1 increases rapidly to balance the lift loss during the landing; the strength of the supporting magnetic field increases with time, making the unmanned The thrust received when the machine approaches the predetermined parking position is the largest and stable.
  • the controller 9 controls to stop supplying power to the energizing coil 2, and the supporting magnetic field disappears and falls smoothly.
  • the control system further includes an energy storage device 11 and a charging coil 3 disposed in the drone 1, and the charging coil 3 is disposed on the drone landing gear.
  • the energy storage device 11 is disconnected from the charging coil 3.
  • the controller 9 controls the charging current to be supplied to the energizing coil 2, and the magnetic field component generates a varying charging magnetic field on the apron side.
  • the induced current is generated in the charging coil 3 by the constantly changing magnetic field, and an electromotive force conforming to the power supply specification of the drone 1 is obtained, thereby wirelessly charging the drone 1 .
  • the drone landing control system disclosed in the above embodiments of the present invention forms a uniform magnetic field by changing the current of the energized coil during the take-off and landing of the drone, generating a thrust acting on the drone, supplementing the take-off and landing.
  • the lift or resistance in the process improves the safety performance of the drone, reduces the energy consumption of the drone, and prolongs the service life of the drone.
  • the present invention also provides a control method for controlling the take-off and landing of a drone by using the drone landing control system disclosed in the above embodiment. Specifically, as shown in FIG. 3, the following steps are included:
  • the controller receives the take-off command, controls the forward current flowing into the energized coil and continuously increases the forward current; and the supporting magnetic field acts on the drone equal to the gravity of the drone, and the positive current is applied to the energizing coil The current is the largest, and an air gap is formed between the drone and the apron.
  • the controller controls the maximum forward current flowing into the energizing coil to be unchanged, and the drone wing starts to rotate; the controller inputs the rotational speed detecting device at one input end
  • the feedback rotation speed detection signal controls the forward current flowing into the energization coil according to the input rotation speed detection signal output control signal to decrease as the rotation speed of the UAV wing increases; when the UAV wing rotates
  • the controller controls the current flowing into the energized coil to drop to zero.
  • the controller receives the landing command, and the ranging device detects whether the distance between the drone and the apron is in a range that can be dropped.
  • the controller inputs the control signal to keep the speed of the drone's wing constant, and controls the reverse current flowing into the energized coil to pull the drone. To the top of the preset parking position.
  • the controller applies a forward current in the energized coil and continuously increases the forward current to form a thrust acting on the drone to supplement the resistance loss caused by the drone speed of the drone; the speed of the drone wing is Zero and the distance measuring device detects that the distance between the drone and the apron is zero, the controller input control signal stops supplying power to the energized coil.
  • the energy storage device when the drone is working, the energy storage device is disconnected from the charging coil; when the drone is parked on the tarmac, the controller outputs a control signal, and the charging current is passed through the energizing coil, and the magnetic field component is stopped. A charging magnetic field is generated on the ping side, and the energy storage device is connected to the charging coil to charge the energy storage device.
  • the control method proposed by the invention reduces the energy consumption during the take-off and landing of the drone, improves the safety performance of the drone, and has the advantages of good operability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无人机起落控制系统及控制方法,所述控制系统包括:设置在无人机(1)侧的磁体组件和设置在停机坪侧的磁场组件;所述磁场组件中设置有通电线圈(2);所述通电线圈(2)中通入电流,所述磁场组件在停机坪侧产生支撑磁场,形成作用于无人机(1)的推力;所述推力与无人机(1)起飞或降落过程中的升力或阻力形成合力,以补充所述升力或阻力。在无人机(1)的起飞和降落过程中通过改变通电线圈(2)的电流,形成均匀的磁场,产生作用于无人机(1)的推力,补充起飞和降落过程中的升力或阻力,提高了无人机(1)的安全性能,降低了无人机(1)的使用能耗,延长了无人机(1)的使用寿命。

Description

一种无人机起落控制系统和控制方法 技术领域
本发明涉及无人机技术领域,尤其涉及一种无人机起落控制系统和控制方法。
发明背景
无人机在侦查/监视、通信中继、电子对抗、灾害防治、应急搜索等应用领域需求广泛。现有技术中有人还提出了一种理念设计,将无人机应用于汽车,使其成为汽车可移动的“眼睛”。无人机不工作时停驻在车顶的停机坪中,同时可以进行无线充电。工作时,人们控制无人机侦查前方路段交通状况,同时可以充当倒车雷达的摄像头。
但是,由于工作环境、空气流动或操作难度大的原因,上述设计理念还无法实现。其中一个最主要的问题是无人机起飞或降落过程中容易受碰撞或倾斜坠落,使得无人机寿命短暂、实用性不高。而且,无人机起飞时,机翼须消耗大量电能以脱离停机坪,能耗较大,不利于持续使用。
发明内容
本发明提供一种无人机起落控制系统和控制方法,旨在解决无人机起飞降落过程中容易损坏的问题。
本发明提供的一种无人机起落控制系统,包括:
设置在无人机侧的磁体组件和设置在停机坪侧的磁场组件;所述磁场组件中设置有通电线圈;
所述通电线圈中通入电流,所述磁场组件在停机坪侧产生支撑磁场,形成作用于无人机的推力;所述推力与无人机起飞或降落过程中无人机的升力或作用于无人机的阻力形成合力,以补充所述升力或阻力。
进一步的,还包括转速测量装置、测距装置和控制器;所述转速测量装置测量无人机机翼的转速,所述测距装置测量无人机与预定停驻位置的距离;所述控制器根据转速测量装置测得的转速和/或测距装置测得的距离改变通入所述通电线圈中的电流方向和大小。
更进一步的,无人机接收起飞指令,所述通电线圈中通入正向电流并持续增大正向电流,所述支撑磁场产生作用于无人机的向上推力;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙。
进一步的,无人机与停机坪之间形成空气间隙后,无人机机翼开始转动;通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;当无人机机翼的旋转转速等于设定 转速时,通入所述通电线圈中的电流下降为零。
更进一步的,所述控制器接收降落指令,在所述通电线圈中通入正向电流并持续增大正向电流;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,所述控制器控制停止对所述通电线圈供电。
进一步的,所述控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否属于可降落范围;如果无人机与停机坪之间的距离属于可降落的范围,则保持无人机机翼转速不变,在所述通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方。
进一步的,还包括设置在无人机中的储能装置和设置在所述无人机起落架上的充电线圈,储能装置和充电线圈电连接;当无人机处于飞行状态时,储能装置与充电线圈断开;当无人机停驻在停机坪上时,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为储能装置充电。
进一步的,所述测距装置包括设置在无人机上的红外测距装置和设置在停机坪侧的红外接收装置;所述红外接收装置的宽度大于红外测距装置宽度。
优选的,所述磁体组件包括永磁铁,所述永磁铁设置在无人机起落架与停机坪的对应接触面上;所述磁场组件包括设置在停机坪处的铁芯,所述通电线圈缠绕在所述铁芯外部。
本发明上述实施例所公开的无人机起落控制系统,在无人机的起飞和降落过程中通过改变通电线圈的电流,形成均匀的磁场,产生作用于无人机的推力,平衡无人机起落过程中的受力,提高了无人机的安全性能,降低了无人机的使用能耗,延长了无人机的使用寿命。
本发明提供的一种无人机起落控制方法,具体包括以下步骤:
S1,控制器接收起飞指令,控制通电线圈中通入正向电流并持续增大正向电流;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙;
S2,无人机与停机坪之间形成间隙后,控制器控制通入所述通电线圈上的最大正向电流不变,无人机机翼开始旋转;控制器一路输入端输入转速检测装置反馈的转速检测信号,并根据输入的转速检测信号输出控制信号控制通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;无人机机翼的旋转转速等于设定转速时,控制器控制通入所述通电线圈中的电流下降为零;
S3,控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否处于可降落的范围;
S4,如果无人机与停机坪之间的距离属于可降落的范围,控制器输入控制信号保持无人机机翼转速不变,并控制在通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方;
S5,控制器在通电线圈中通入正向电流并持续增大正向电流,形成作用于无人机的推力以补充无人机机翼转速下降而造成的阻力损失;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,所述控制器输入控制信号停止对所述通电线圈供电;
S6,无人机工作时,储能装置与充电线圈断开;无人机停驻在停机坪上时,控制器输出控制信号,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为储能装置充电。
本发明所公开的控制方法,降低了无人机起飞降落过程中的能耗,提高了无人机的安全性能,具有可操作性好的优点。
附图简要说明
图1为本发明所提出的无人机起落控制系统一种实施例的结构示意图;
图2为本发明所提出的无人机起落控制系统一种实施例的示意框图;
图3为本发明所提出的无人机起落控制方法一种实施例的流程图。
具体实施方式
参见图1至图2所示,本发明所公开的起落控制系统包括设置在无人机1侧的磁体组件和设置在停机坪侧的磁场组件。具体来说,磁体组件为设置在无人机起落架与停机坪接触面上的永磁铁5。永磁铁5重量轻且具有稳定的磁性。磁场组件中包括设置在停机坪处的铁芯和缠绕在铁芯外部的通电线圈2。对于设置在车顶等特殊环境中的磁场组件,通电线圈2设置在华司之中,避免底部磁泄漏对其它物品的影响。通电线圈2通电后在无人机侧形成磁场。由于停机坪侧的磁场强度远大于永磁铁5形成的磁场的磁场强度,所以磁场组件生成的磁场是一个相对于无人机的均匀磁场,不会使无人机出现倾翻或坠落的现象。
通电线圈2通入正向电流后,磁场组件在停机坪侧形成一个支撑磁场,产生作用于无人机的推力。在起飞的过程中,支撑磁场产生的推力与飞机起飞的升力形成合力,补充机翼旋转产生的升力,从而降低无人机起飞过程中的能耗。而在降落的过程中,由于无人机自身的重量较轻,在飞行速度较高时垂直降落,升力降低很快。为避免降落时出现坠机,支撑磁场作用于无人机的推力与阻力形成合力,使无人机受力均匀。
本实施例所述的无人机起落控制系统中,在无人机侧设置有转速测量装置6和红外测距装置7,在停机坪侧设置有信号收发模块10和控制器9。转速测量装置6生成的转速检测信号和红外测距装置7生成的距离信号通过信号收发模块10输出至控制器9,作为控制器9的两路独立的控制参数。
具体来说,无人机1接收起飞指令并输出起飞信号,信号收发模块10接收起飞信号并输 出至控制器9。控制器9控制通电线圈2中通入正向电流。此时无人机1的机翼不旋转。正向电流形成的支撑磁场产生作用于无人机的向上推力。控制器9控制通电线圈2中通入的正向电流持续增大。当向上推力等于无人机1的重力时,通入通电线圈2上的正向电流最大,无人机1与停机坪之间形成空气间隙,使无人机1呈现磁悬浮状态。无人机1与停机坪之间形成空气间隙后,红外测距装置7生成无人机1与预定停驻位置之间距离的距离检测值并通过信号收发单元10反馈至控制器9的输入端。
无人机1和停机坪之间形成空气间隙后,无人机机翼开始转动,转速测量装置6生成转速检测值并通过信号收发单元10反馈至控制器9的输入端。也可以在红外测距装置7检测无人机1和预定停驻位置之间距离的距离检测值为某一特定值时控制无人机机翼开始转动,优选为0.5米以提高安全性。无人机机翼开始转动后,控制器9控制通入通电线圈2中的正向电流随无人机机翼旋转转速的增加而减小。无人机机翼的旋转转速等于设定转速时,控制器9控制通入通电线圈2中的电流下降为零。此时,停机坪侧产生的支撑磁场消失,无人机1按原有的控制模式运行。
无人机1准备降落时,遥控器发出降落指令。无人机1接收降落指令并输出降落信号,信号收发模块10接收降落信号并输出至控制器9。控制器9根据红外测距装置7生成的无人机1与停机坪之间距离的距离检测值判断无人机1是否属于可降落的范围内。可降落的范围是指停机坪上以预设停驻位置为圆心,特定距离为半径限定的一个特定区域。如果控制器9判断无人机1属于可降落的范围内,则输出控制信号,保持无人机机翼转速不变,在通电线圈2中通入反向电流,形成一个吸引磁场,牵引无人机1处于预设位置的正上方。当无人机1处于预设位置的正上方时,红外接收装置8接收到红外测距单元7发出的红外信号,表示无人机1处于停驻位置的正上方,可以降落,便于看不到具体无人机1位置的用户进行操作。红外接收装置8的宽度略大于红外测距单元7的宽度,允许有一定的停机误差。
随后,控制器9控制通电线圈2中通入正向电流并持续增大正向电流。同时,转速测量装置6继续反馈无人机1的机翼转速检测信号至控制器9。由于正向电流是随时间变化成对数增加的。根据对数函数的特性,支撑磁场的强度增加速度最快,作用于无人机1的推力快速增加,用于平衡降落过程中的升力损失;支撑磁场的强度增加速度随时间减缓,使无人机接近预定停驻位置时受到的推力最大且稳定。无人机机翼转速降低为零且红外测距装置检测无人机1与停机坪之间的距离为零时,控制器9控制停止对通电线圈2供电,支撑磁场消失,平稳降落。
控制系统还包括设置在无人机1中的储能装置11和充电线圈3,充电线圈3设置在无人机起落架上。无人机1处于飞行状态时,储能装置11与充电线圈3断开。当无人机1停驻在 停机坪上时,储能装置11与充电线圈3电连接,控制器9控制通电线圈2中通入充电电流,磁场组件在停机坪侧产生变化的充电磁场。通过不断变化的磁场,使得充电线圈3中出现感应电流,得到符合无人机1电源规格的电动势,实现对无人机1的无线充电。
本发明上述实施例所公开的无人机起落控制系统,在无人机的起飞和降落过程中通过改变通电线圈的电流,形成均匀的磁场,产生作用于无人机的推力,补充起飞和降落过程中的升力或阻力,提高了无人机的安全性能,降低了无人机的使用能耗,延长了无人机的使用寿命。
本发明同时还提供了一种采用上述实施例所公开的无人机起落控制系统控制无人机起飞降落的控制方法,具体如图3所示包括以下步骤:
S1,控制器接收起飞指令,控制通电线圈中通入正向电流并持续增大正向电流;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙。
S2,无人机与停机坪之间形成空气间隙后,控制器控制通入所述通电线圈上的最大正向电流不变,无人机机翼开始旋转;控制器一路输入端输入转速检测装置反馈的转速检测信号,并根据输入的转速检测信号输出控制信号控制通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;当无人机机翼的旋转转速等于设定转速时,控制器控制通入所述通电线圈中的电流下降为零。
S3,控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否处于可降落的范围。
S4,如果无人机与停机坪之间的距离属于可降落的范围,控制器输入控制信号保持无人机机翼转速不变,并控制在通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方。
S5,控制器在通电线圈中通入正向电流并持续增大正向电流,形成作用于无人机的推力以补充无人机机翼转速下降而造成的阻力损失;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,所述控制器输入控制信号停止对所述通电线圈供电。
S6,无人机工作时,储能装置与充电线圈断开;无人机停驻在停机坪上时,控制器输出控制信号,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为储能装置充电。
本发明所提出的控制方法,降低了无人机起飞降落过程中的能耗,提高了无人机的安全性能,具有可操作性好的优点。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前 述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种无人机起落控制系统,其特征在于,包括:
    设置在无人机侧的磁体组件和设置在停机坪侧的磁场组件;所述磁场组件中设置有通电线圈;
    所述通电线圈中通入电流,所述磁场组件在停机坪侧产生支撑磁场,形成作用于无人机的推力;所述推力与无人机起飞或降落过程中无人机的升力或作用于无人机的阻力形成合力,以补充所述升力或阻力。
  2. 根据权利要求1所述的无人机起落控制系统,其特征在于,还包括转速测量装置、测距装置和控制器;所述转速测量装置测量无人机机翼的转速,所述测距装置测量无人机与预定停驻位置的距离;所述控制器根据转速测量装置测得的转速和/或测距装置测得的距离改变通入所述通电线圈中的电流方向和大小。
  3. 根据权利要求2所述的无人机起落控制系统,其特征在于,无人机接收起飞指令,所述通电线圈中通入正向电流并持续增大正向电流,所述支撑磁场产生作用于无人机的向上推力;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙。
  4. 根据权利要求3所述的无人机起落控制系统,其特征在于,无人机与停机坪之间形成空气间隙后,无人机机翼开始转动;通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;当无人机机翼的旋转转速等于设定转速时,通入所述通电线圈中的电流下降为零。
  5. 根据权利要求4所述的无人机起落控制系统,其特征在于,所述控制器接收降落指令,在所述通电线圈中通入正向电流并持续增大正向电流;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,控制器控制停止对所述通电线圈供电。
  6. 根据权利要求5所述的无人机起落控制系统,其特征在于,所述控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否属于可降落范围;如果无人机与停机坪之间的距离属于可降落的范围,则保持无人机机翼转速不变,在所述通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方。
  7. 根据权利要求6所述的无人机起落控制系统,其特征在于,还包括设置在无人机中的储能装置和设置在所述无人机起落架上的充电线圈,储能装置和充电线圈电连接;当无人机处于飞行状态时,储能装置与充电线圈断开;当无人机停驻在停机坪上时,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为 储能装置充电。
  8. 根据权利要求7所述的无人机起落控制系统,其特征在于,所述测距装置包括设置在无人机上的红外测距装置和设置在停机坪侧的红外接收装置;所述红外接收装置的宽度大于红外测距装置宽度。
  9. 根据权利要求8所述的无人机起落控制系统,其特征在于,所述磁体组件包括永磁铁,所述永磁铁设置在无人机起落架与停机坪的对应接触面上;所述磁场组件包括设置在停机坪处的铁芯,所述通电线圈缠绕在所述铁芯外部。
  10. 一种采用权利要求9所述无人机起落控制系统控制无人机起落的控制方法,其特征在于,包括以下步骤:
    S1,控制器接收起飞指令,控制通电线圈中通入正向电流并持续增大正向电流;支撑磁场作用于无人机的推力等于无人机的重力时,通入所述通电线圈上的正向电流最大,无人机与停机坪之间形成空气间隙;
    S2,无人机与停机坪之间形成空气间隙后,控制器控制通入所述通电线圈上的最大正向电流不变,无人机机翼开始旋转;控制器一路输入端输入转速检测装置反馈的转速检测信号,并根据输入的转速检测信号输出控制信号控制通入所述通电线圈中的正向电流随无人机机翼旋转转速的增加而减小;无人机机翼的旋转转速等于设定转速时,控制器控制通入所述通电线圈中的电流下降为零;
    S3,控制器接收降落指令,测距装置检测无人机与停机坪之间的距离是否处于可降落的范围;
    S4,如果无人机与停机坪之间的距离属于可降落的范围,控制器输入控制信号保持无人机机翼转速不变,并控制在通电线圈中通入反向电流,牵引无人机至预设停驻位置的正上方;
    S5,控制器在通电线圈中通入正向电流并持续增大正向电流,形成作用于无人机的推力以补充无人机机翼转速下降而造成的阻力损失;无人机机翼转速为零且所述测距装置检测无人机与停机坪之间的距离为零时,所述控制器输入控制信号停止对所述通电线圈供电;
    S6,无人机工作时,储能装置与充电线圈断开;无人机停驻在停机坪上时,控制器输出控制信号,所述通电线圈中通入充电电流,所述磁场组件在停机坪侧产生变化的充电磁场,储能装置与充电线圈连接为储能装置充电。
PCT/CN2016/111573 2015-12-31 2016-12-22 一种无人机起落控制系统和控制方法 WO2017114295A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA3009708A CA3009708C (en) 2015-12-31 2016-12-22 Unmanned aerial vehicle take-off and landing control system and control method
JP2018534568A JP6535137B2 (ja) 2015-12-31 2016-12-22 無人航空機の離着陸制御システム及び制御方法
US16/060,888 US10287033B2 (en) 2015-12-31 2016-12-22 Unmanned aerial vehicle take-off and landing control system and control method
KR1020187015016A KR101939037B1 (ko) 2015-12-31 2016-12-22 무인기 이착륙 제어 시스템 및 제어 방법
EP16881084.4A EP3372492B1 (en) 2015-12-31 2016-12-22 Unmanned aerial vehicle take-off and landing control system and control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201511014413.6A CN105667768B (zh) 2015-12-31 2015-12-31 一种无人机起落控制系统和控制方法
CN201511014413.6 2015-12-31

Publications (1)

Publication Number Publication Date
WO2017114295A1 true WO2017114295A1 (zh) 2017-07-06

Family

ID=56297782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111573 WO2017114295A1 (zh) 2015-12-31 2016-12-22 一种无人机起落控制系统和控制方法

Country Status (7)

Country Link
US (1) US10287033B2 (zh)
EP (1) EP3372492B1 (zh)
JP (1) JP6535137B2 (zh)
KR (1) KR101939037B1 (zh)
CN (1) CN105667768B (zh)
CA (1) CA3009708C (zh)
WO (1) WO2017114295A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL237130A0 (en) 2015-02-05 2015-11-30 Ran Krauss Landing and loading system for an unmanned aircraft
CN105667768B (zh) * 2015-12-31 2017-11-14 歌尔科技有限公司 一种无人机起落控制系统和控制方法
CN105912004B (zh) * 2016-06-23 2018-06-26 北京理工大学 无人机自主高速着舰辅助系统及方法
CN105912003B (zh) * 2016-06-23 2018-07-20 北京理工大学 垂直起降无人机自主着舰的辅助系统及方法
CN106043728B (zh) * 2016-06-23 2018-09-28 北京理工大学 直升机着舰系统和着舰方法
CN106143915A (zh) * 2016-08-25 2016-11-23 欧志洪 设有磁场强度探测器的智能电力巡检无人机
KR101874204B1 (ko) * 2016-12-13 2018-07-03 한국항공우주연구원 드론 착륙 시스템
CN106774292B (zh) * 2016-12-30 2023-11-24 歌尔科技有限公司 一种控制无人机的手表和一种控制无人机的方法
CN106853870A (zh) * 2017-01-03 2017-06-16 上海量明科技发展有限公司 飞行器的起落台、控制系统、起飞方法及降落方法
GB2560000B (en) * 2017-02-24 2021-06-09 Roke Manor Res Limited A coupling mechanism for light vehicles
CN108688798B (zh) * 2017-04-11 2020-11-06 北京乐普盛通信息技术有限公司 飞行器辅助起降装置及其降落与起飞控制方法
CN107161343B (zh) * 2017-04-26 2020-08-21 海南大学 一种旋翼无人机及其更换电池系统
WO2019020158A1 (de) * 2017-07-24 2019-01-31 Volocopter Gmbh Abfertigungseinrichtung und -verfahren für passagiere befördernde fluggeräte
CN109407684B (zh) * 2017-08-18 2022-08-19 昊翔电能运动科技(昆山)有限公司 旋翼无人机姿态控制方法及系统
CN107380440A (zh) * 2017-09-01 2017-11-24 云南电网有限责任公司电力科学研究院 一种磁悬浮式巡线无人机
CN107565989B (zh) * 2017-09-28 2020-07-10 歌尔股份有限公司 一种无人机宽频天线复用方法及装置
CN110654559B (zh) * 2017-10-13 2021-05-28 南京涵曦月自动化科技有限公司 一种旋翼无人机的起落控制装置的控制方法
CN109782791A (zh) * 2017-11-14 2019-05-21 长城汽车股份有限公司 一种无人机的降落方法和装置
IL258310B (en) 2018-03-22 2022-04-01 Israel Aerospace Ind Ltd System and method for securing an aerial vehicle
CN108528749B (zh) * 2018-06-06 2023-10-20 吉林大学 基于电磁吸合技术的车载无人机回收装置及方法
CN108979279A (zh) * 2018-06-22 2018-12-11 送飞实业集团有限公司 一种磁悬浮式直升机坪
US11267581B2 (en) * 2018-09-17 2022-03-08 Insitu, Inc. Unmanned aerial vehicle (UAV) launch and recovery
CN109305336A (zh) * 2018-09-18 2019-02-05 湖南优加特装智能科技有限公司 一种无人机引导降落并固定的装置及方法
CN109515640B (zh) * 2018-11-22 2020-11-06 深圳市海斯比海洋科技股份有限公司 基于电活性聚合物的无人艇收放无人机装置以及控制方法
JP7340756B2 (ja) * 2019-06-28 2023-09-08 パナソニックIpマネジメント株式会社 飛行体制御システムおよび飛行体制御方法
CN110262558B (zh) * 2019-07-18 2022-05-06 成都飞机工业(集团)有限责任公司 一种无人机定点着陆的控制方法
CN110673630A (zh) * 2019-09-23 2020-01-10 广西诚新慧创科技有限公司 一种基于电磁信号的无人机降落方法及系统
CN110844101B (zh) * 2019-11-19 2020-09-22 乐清市芮易经济信息咨询有限公司 一种具有自我保护功能且可快速起落的无人机
CN112824871B (zh) * 2019-11-20 2022-11-15 中国南方电网有限责任公司超高压输电公司贵阳局 基于瞬变电磁视电阻率成像技术的接地网缺陷诊断方法
CN111532444A (zh) * 2020-05-22 2020-08-14 徐州蓝湖信息科技有限公司 一种用于无人机的辅助起降机构
KR102336741B1 (ko) * 2020-06-04 2021-12-07 최민준 이륙 제어장치가 구비된 무인 비행체
DE102020119847B4 (de) 2020-07-28 2022-03-31 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Landeplattform für ein Luftfahrzeug
CN112722095B (zh) * 2020-12-29 2022-04-19 湖南工程学院 一种风电巡检机器人
DE102021000102B8 (de) * 2021-01-10 2022-10-27 Frank Obrist Tragschrauber und geeigneter Start- und Landeplatz für denselben
CN112874329A (zh) * 2021-01-25 2021-06-01 武汉理工大学 一种基于图像识别定位的无人机无线充电系统和充电方法
CN113212782B (zh) * 2021-03-25 2023-04-14 上海空间电源研究所 一种固定翼无人机超短距降落系统
CN113246757A (zh) * 2021-04-26 2021-08-13 北京航空航天大学 一种重力自适应无人机自主充电装置
CN113137982A (zh) * 2021-04-29 2021-07-20 深圳市道通智能航空技术股份有限公司 一种无人机坠落的判断方法、装置、无人机及存储介质
CN113246778A (zh) * 2021-05-24 2021-08-13 武汉理工大学 一种无人机无线充电系统及充电方法
US20230140387A1 (en) * 2021-10-28 2023-05-04 Flir Unmanned Aerial Systems Ulc Landing systems and methods for unmanned aerial vehicles
CN114180090B (zh) * 2021-12-11 2024-02-02 浙江极客桥智能装备股份有限公司 一种无人机智能存放管理方法及系统
CN116395165B (zh) * 2023-06-08 2023-10-13 成都航空职业技术学院 一种中继保植无人机系统及其充电方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671988A (zh) * 2008-09-11 2010-03-17 上海市建青实验学校 一种电磁跑道
CN202193207U (zh) * 2011-06-22 2012-04-18 曾彬 一种磁悬浮式飞机升降跑道
CN103879563A (zh) * 2012-12-23 2014-06-25 吴汉民 一种飞机着陆的减速停机装置
CN204297122U (zh) * 2014-11-25 2015-04-29 南京艾凌节能技术有限公司 一种永磁磁悬浮弹射助飞系统
CN204297116U (zh) * 2014-11-25 2015-04-29 南京艾凌节能技术有限公司 一种永磁磁悬浮助降系统
US20150251561A1 (en) * 2013-08-20 2015-09-10 Airbus Ds Gmbh Air Vehicle and Levitation System for Air Vehicle
CN105667768A (zh) * 2015-12-31 2016-06-15 歌尔科技有限公司 一种无人机起落控制系统和控制方法
CN205366055U (zh) * 2015-12-31 2016-07-06 歌尔科技有限公司 一种无人机起落控制系统

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60263725A (ja) * 1984-06-12 1985-12-27 Toshiba Corp 磁気軸受装置
JPS61113598A (ja) * 1984-11-06 1986-05-31 岡田 照子 ヘリコプタ−及びヘリポ−ト超電導磁石装置
CN1483634A (zh) * 2002-09-22 2004-03-24 刘本林 飞机的电磁起降系统
JP2007145317A (ja) * 2005-10-28 2007-06-14 Soriton Syst:Kk 飛翔体の離着陸装置
CN101992856A (zh) * 2009-08-12 2011-03-30 李宗新 飞行器着舰(陆)减速装置
CN201633925U (zh) * 2010-04-14 2010-11-17 曾彬 一种磁悬浮式飞机升降装置
US8602349B2 (en) * 2010-06-23 2013-12-10 Dimitri Petrov Airborne, tethered, remotely stabilized surveillance platform
ES2533199B1 (es) * 2012-03-07 2016-06-09 Indra Sistemas, S.A. Sistema automático de fijación a superficie móvil para vehículos aéreos de despegue y aterrizaje vertical, y procedimientos de despegue y aterrizaje
CN202848035U (zh) * 2012-08-27 2013-04-03 张连科 电磁式直升机甲板
JP2015101168A (ja) * 2013-11-22 2015-06-04 国立大学法人東北大学 飛行装置
CN203937865U (zh) * 2013-12-03 2014-11-12 海丰通航科技有限公司 无人值守飞行器起降指挥和保障系统
FR3016864B1 (fr) * 2014-01-24 2017-07-21 Nexter Systems Dispositif d'accueil d'un drone sur un vehicule, vehicule et drone associes a un tel dispositif
JP6338911B2 (ja) 2014-03-28 2018-06-06 三菱重工業株式会社 無人機搭載部及びモジュール装甲
US9561871B2 (en) * 2014-05-07 2017-02-07 Deere & Company UAV docking system and method
EP2976687B1 (en) * 2014-05-30 2017-09-06 SZ DJI Technology Co., Ltd. Systems and methods for uav docking
US9845165B2 (en) * 2014-07-16 2017-12-19 Airogistic, L.L.C. Methods and apparatus for unmanned aerial vehicle landing and launch
CN104503459A (zh) * 2014-11-25 2015-04-08 深圳市鸣鑫航空科技有限公司 多旋翼无人机回收系统
US9540121B2 (en) * 2015-02-25 2017-01-10 Cisco Technology, Inc. Pre-flight self test for unmanned aerial vehicles (UAVs)
CN107209521A (zh) * 2015-04-30 2017-09-26 深圳市大疆创新科技有限公司 通过磁场降落移动平台的系统和方法
CN105059539B (zh) * 2015-07-14 2017-03-01 深圳市盛祥科技开发有限公司 一种高效无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671988A (zh) * 2008-09-11 2010-03-17 上海市建青实验学校 一种电磁跑道
CN202193207U (zh) * 2011-06-22 2012-04-18 曾彬 一种磁悬浮式飞机升降跑道
CN103879563A (zh) * 2012-12-23 2014-06-25 吴汉民 一种飞机着陆的减速停机装置
US20150251561A1 (en) * 2013-08-20 2015-09-10 Airbus Ds Gmbh Air Vehicle and Levitation System for Air Vehicle
CN204297122U (zh) * 2014-11-25 2015-04-29 南京艾凌节能技术有限公司 一种永磁磁悬浮弹射助飞系统
CN204297116U (zh) * 2014-11-25 2015-04-29 南京艾凌节能技术有限公司 一种永磁磁悬浮助降系统
CN105667768A (zh) * 2015-12-31 2016-06-15 歌尔科技有限公司 一种无人机起落控制系统和控制方法
CN205366055U (zh) * 2015-12-31 2016-07-06 歌尔科技有限公司 一种无人机起落控制系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3372492A4 *

Also Published As

Publication number Publication date
CA3009708A1 (en) 2017-07-06
EP3372492A4 (en) 2018-10-31
JP6535137B2 (ja) 2019-06-26
KR20180066246A (ko) 2018-06-18
EP3372492A1 (en) 2018-09-12
CN105667768A (zh) 2016-06-15
US10287033B2 (en) 2019-05-14
EP3372492B1 (en) 2020-04-08
CN105667768B (zh) 2017-11-14
KR101939037B1 (ko) 2019-01-15
CA3009708C (en) 2019-07-02
US20190009926A1 (en) 2019-01-10
JP2019500272A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017114295A1 (zh) 一种无人机起落控制系统和控制方法
US10222800B2 (en) System and method for automated aerial system operation
US20170075360A1 (en) Unmanned Aerial Vehicle Low-Power Operation
US11061415B2 (en) Maintaining a stable phase difference between multiple tethered vehicles lifting a payload
US10377500B2 (en) Electrified aircraft and method of controlling regenerative electric power of electrified aircraft
US9958876B2 (en) Flight configuration for payload and lift aircraft
CA2865632A1 (en) Aircraft electric motor system
CN101918277A (zh) 无牵引杆的飞机牵引车
CN104118559A (zh) 侦察用虚拟桅杆
NL2017971A (en) Unmanned aerial vehicle
KR102220394B1 (ko) 자동 항공 시스템 동작을 위한 시스템 및 방법
CN207712312U (zh) 一种旋翼无人机辅助降落装置
JP2018055463A (ja) 飛行ロボット制御システムおよび飛行ロボット
US11840158B2 (en) Systems and methods for battery capacity management in a fleet of UAVs
CN205366055U (zh) 一种无人机起落控制系统
US10747237B2 (en) Adjusting load on tethered aircraft
CN209274915U (zh) 一种防滑型旋翼无人机辅助降落装置
KR102009772B1 (ko) 하이브리드 드론 및 그의 제어방법
CN205983224U (zh) 无人机的控制系统
TW202027371A (zh) 無人機電池置換方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881084

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187015016

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3009708

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018534568

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE