JP2018055463A - 飛行ロボット制御システムおよび飛行ロボット - Google Patents

飛行ロボット制御システムおよび飛行ロボット Download PDF

Info

Publication number
JP2018055463A
JP2018055463A JP2016191578A JP2016191578A JP2018055463A JP 2018055463 A JP2018055463 A JP 2018055463A JP 2016191578 A JP2016191578 A JP 2016191578A JP 2016191578 A JP2016191578 A JP 2016191578A JP 2018055463 A JP2018055463 A JP 2018055463A
Authority
JP
Japan
Prior art keywords
flying robot
flight
flying
wind speed
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016191578A
Other languages
English (en)
Inventor
神山 憲
Ken Kamiyama
憲 神山
青木 文男
Fumio Aoki
文男 青木
友博 成尾
Tomohiro Naruo
友博 成尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secom Co Ltd
Original Assignee
Secom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secom Co Ltd filed Critical Secom Co Ltd
Priority to JP2016191578A priority Critical patent/JP2018055463A/ja
Publication of JP2018055463A publication Critical patent/JP2018055463A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

【課題】全ての飛行ルートを回りつつ、飛行中のバッテリ切れを極力防止する。【解決手段】飛行ロボットが飛行を開始すると(ST1)、飛行ロボット周囲の風速を判定し(ST2)、飛行ロボット周囲の風速に応じて第1の閾値を設定する(ST3)。計測されるバッテリ残量が第1の閾値以上であれば予め定められた飛行ルートまたはセンタ装置から通知された飛行ルートを飛行する通常モードに設定し(ST5)、バッテリ残量が第1の閾値未満であれば所定の充電可能な地点に帰還する帰還モードに設定する(ST6)。【選択図】図5

Description

本発明は、予め設定された飛行ルートを飛行する飛行ロボットと、この飛行ロボットの飛行を制御する飛行ロボット制御システムに関する。
従来、充電式バッテリを搭載した自律型の移動ロボットとして、例えば下記特許文献1に開示されるものが知られている。この特許文献1に開示される自律型の移動ロボットでは、バッテリ残量が第1の所定値以下になると、消費電力の少ない省電力モードに設定し、作業を継続しながら充電ステーションに移動する。また、バッテリ残量が第1の所定値より低い値に定められた第2の所定値以下になると、充電優先モードに設定し、直ちに充電ステーションに移動する。
このように、特許文献1には、移動ロボットのバッテリ残量を考慮して動作モードを設定することにより、充電ステーションに行き着くまでにバッテリ切れになることを防止する技術が開示されている。
特開2000−047728号公報
ところで、ドローン等の小型飛行ロボットは、地上走行型のロボットと比較して移動可能な時間(バッテリの持ち)が短く、バッテリ残量を考慮して飛行制御を行うことは極めて重要である。
しかしながら、バッテリ消費量は、同じ経路をたどる場合であっても、その際の環境によって変動する。例えば、ドローンは風の影響を強く受け飛行ルートから外れたり、バランスを崩したりすることがある。こうした状況では、飛行ルートの再生成や姿勢の制御を行い、飛行を継続するが、これらの制御はドローンのバッテリを多く消費してしまう。
このように、通常時よりも多くのバッテリを消費してしまう場合、上述した特許文献1に開示される従来技術のように、動作モードの切替の基準となるバッテリ残量が固定されたものであると、所定の充電地点に辿り着くことができず、飛行中にバッテリ切れとなって飛行ロボットが墜落してしまう虞がある。
そこで、上記の問題を解消するため、予め動作モードの切替の基準となるバッテリ残量を高い値に設定すれば、飛行中のバッテリ切れの防止には繋がるが、飛行ルートを全てまわるのに十分なバッテリ残量が飛行ロボットにあるにもかかわらず、本来巡回すべき地点を省いて帰還してしまうという別の問題が生じてしまう。
本発明は、上記課題を解決しようとするものであり、バッテリ残量に余裕を持って飛行が行え、極力全ての飛行ルートを回りつつ、飛行中のバッテリ切れを極力防止することができる飛行ロボット制御システムおよび飛行ロボットを提供することを目的としている。
上記した目的を達成するために、本発明に係る飛行ロボット制御システムは、バッテリ残量に応じて、動作モードを切替える飛行ロボットを制御する飛行ロボット制御システムにおいて、
前記飛行ロボットのバッテリ残量を計測する計測部と、
飛行ロボット周囲の風速を判定する判定部と、
前記バッテリ残量が第1の閾値以上であれば予め定められた飛行ルートまたはセンタ装置から通知された飛行ルートを飛行する通常モードに設定し、前記バッテリ残量が第1の閾値未満であれば所定の充電可能な地点に帰還する帰還モードに設定する設定部と、
を備え、
前記設定部は、前記第1の閾値を前記飛行ロボット周囲の風速に応じて設定することを特徴とする。
また、本発明に係る飛行ロボット制御システムは、前記設定部が、前記飛行ロボット周囲の風速が大きいほど前記第1の閾値を大きい値に設定してもよい。
さらに、本発明に係る飛行ロボット制御システムは、前記判定部が、前記飛行ロボットが所定速度以上で飛行している時間における飛行距離が短いほど風速が大きいと判定してもよい。
また、本発明に係る飛行ロボット制御システムは、前記設定部が、気流の安定度に応じて前記第1の閾値を設定してもよい。
さらに、本発明に係る飛行ロボット制御システムは、前記飛行ルートの所定の地点ごとに予め重要度を設定しておき、
前記設定部は、前記バッテリ残量が前記第1の閾値以上、かつ第2の閾値未満の場合に、消費電力の少ない省電力モードに設定するとともに、当該第2の閾値は、前記飛行ロボット周囲の風速または気流の安定度に応じて設定し、
前記省電力モードでは、重要度の高い地点を優先的に飛行してもよい。
また、本発明に係る飛行ロボットは、バッテリ残量に応じて、動作モードを切替える飛行ロボットにおいて、
前記飛行ロボットのバッテリ残量を計測する計測部と、
飛行ロボット周囲の風速を判定する判定部と、
前記バッテリ残量が第1の閾値以上であれば予め定められた飛行ルートまたはセンタ装置から通知された飛行ルートを飛行する通常モードに設定し、前記バッテリ残量が第1の閾値未満であれば所定の充電可能な地点に帰還する帰還モードに設定する設定部と、
を備え、
前記設定部は、前記第1の閾値を前記飛行ロボット周囲の風速に応じて設定することを特徴とする。
本発明の飛行ロボット制御システムおよび飛行ロボットによれば、飛行ロボットの飛行環境に応じた動作モードの設定が可能になり、飛行ロボットが全ての飛行ルートを回りつつ、飛行中にバッテリ切れとなってしまうことを極力防止できる。
本発明に係る飛行ロボット制御システムの概要を示すイメージ図であって、飛行ロボットが巡回する巡回経路を示す図である。 本発明に係る飛行ロボット制御システムの全体構成を示す模式図である。 本発明に係る飛行ロボットのブロック構成図である。 本発明に係る飛行ロボット制御システムにおける飛行制御装置のブロック構成図である。 本発明に係る飛行ロボット制御システムにおける動作モード設定時の動作フローチャートである。
以下、本発明を実施するための形態について、図1〜5を参照しながら詳細に説明する。
[本発明の概要について]
本発明は、予め設定された飛行ルート(例えば、巡回スケジュールの巡回経路、任意に指定される移動目標位置に移動して警備情報を収集する飛行経路など)やセンタ装置から通知された飛行ルートを自律的に飛行する飛行ロボットと、この飛行ロボットの飛行を制御する飛行ロボット制御システムに関する。
本発明に係る飛行ロボットおよび飛行ロボット制御システムは、バッテリ残量に応じて動作モード(通常モード/帰還モード/省電力モードなど)を設定する際に、風の影響を考慮する、すなわち、風速に応じて動作モード設定時の閾値を動的にすることで、飛行途中でバッテリ切れとならないように適切に制御する機能を有する。
具体的には、風速が大きいほど閾値を大きく設定することでバッテリ残量に余裕をもって飛行を行えるようにする。これにより、風速が大きく、通常時よりもバッテリ消費量が増大してしまう場合であっても飛行中にバッテリ切れとなってしまうことを極力防止できる。
[飛行ロボット制御システムの構成について]
図1および図2に示すように、本実施の形態の飛行ロボット制御システム1は、上述した機能を実現するため、ロボポート2、飛行ロボット3、飛行制御装置4、センタ装置5によって構築される。この飛行ロボット制御システム1における飛行ロボット3は、図1において、例えばロボポート2(基準位置P0)→監視ポイントP1→監視ポイントP2→監視ポイントP3→監視ポイントP4→監視ポイントP5→ロボポート2(基準位置P0)の順番に巡回経路が決められた巡回番号1の巡回を行う場合、ロボポート2から離陸した後、P1→P2→P3→P4→P5の順番に移動して巡回し、監視ポイントP1〜P5の各エリアE1〜E5で警備情報(例えば撮影画像)を収集してロボポート2に帰還する。
尚、飛行ロボット3は巡回経路の移動中も警備情報を収集してもよい。飛行ロボット3が収集した警備情報は、飛行制御装置4を介してセンタ装置5に送信される。センタ装置5は、飛行ロボット3から飛行制御装置4を介して送信される警備情報をモニタに表示し、監視領域Eにおける巡回経路上や監視ポイントに異常が無いかの安全確認を行う。
[ロボポートの構成について]
ロボポート2は、飛行ロボット3の待機場所であり、飛行制御装置4からの指示を受け、飛行ロボット3の離陸や着陸を行うための設備を備える。また、ロボポート2は、飛行ロボット3が着陸するときに飛行ロボット3をポート内に収容する機構を備え、飛行ロボット3をポート内に収容したときに、飛行ロボット3に対して接触又は非接触にて給電を行う機能を有する。
[飛行ロボットの構成について]
飛行ロボット3は、図3に示すように、ロータ31、ロータ駆動部32、アンテナ33、高度センサ34、撮影部35、記憶部36、電源37、ロボ制御部38を含んで概略構成される。
ロータ31は、例えば4つの回転体で構成され、飛行ロボット3の機体を上昇・下降・方向転換、前進などの飛行をするようにロータ駆動部32によって駆動される。
ロータ駆動部32は、飛行ロボット3の機体を上昇・下降・方向転換、前進などの飛行をするため、ロボ制御部38の制御によりロータ31の各回転体を駆動する。
アンテナ33は、ロボット本体に設けられ、小電力無線、Wi−Fiなどで、飛行制御装置4との間で無線通信を行う。
高度センサ34は、ロボ制御部38の制御により、気圧センサの気圧値や飛行ロボット3の機体から鉛直下方に投受光されるレーザなどにより飛行ロボット3の現在高度を計測する。
撮影部35は、例えば撮像素子を用いたカメラで構成され、飛行ロボット3周囲(例えば前方や下方など)を撮影する。
記憶部36は、飛行制御装置4から検知物体情報、障害物情報を一時記憶する。また、記憶部36は、飛行ロボット3が飛行中のときに撮影部35が撮影した画像を逐次記憶する。
電源37は、例えばリチウムポリマー電池などの充電式電池などで構成され、飛行ロボット3の各部に必要な電力を供給する。
ロボ制御部38は、飛行ロボット3の各部を統括制御するもので、撮影制御手段38a、ロータ制御手段38b、姿勢制御手段38cを含む。
撮影制御手段38aは、撮影部35の撮影開始や終了、撮影部35の撮影角度の制御、撮影部35が撮影した画像を取得して飛行制御装置4へライブ画像を送信するなどの処理を行う。
ロータ制御手段38bは、飛行制御装置4から受信して記憶部36に一時記憶した障害物情報に応じて障害物を回避しつつ、ロータ駆動部32を制御して飛行ロボット3の高度や速度を飛行制御装置4から指示された目標値になるように制御する。
姿勢制御手段38cは、飛行ロボット3の飛行状態(向き、姿勢、加速度など)、現在位置、現在高度に基づいて飛行ロボット3の飛行中の姿勢を制御する。
そして、上記のように構成される飛行ロボット3は、飛行制御装置4から飛行指示を受けていない通常の状態ではロボポート2に待機しており、所定の時刻になると、予め設定された飛行ルートの情報またはセンタ装置5からの指示に基づいて、障害物を回避しながら自律的に飛行して撮影処理等を行う(巡回処理)。
また、飛行ロボット3は、物体検出センサ等の各種センサが異常を検知して飛行制御装置4に通報すると、飛行制御装置4からの指示により、予め記憶した監視区域E内の3次元の地理情報に基づいて障害物を回避しながら目標位置に向かって自律的に飛行し、目標位置近辺に障害物が無いと判断したときに撮影等を行うために下降制御する(異常対処処理)。
[飛行制御装置の構成について]
飛行制御装置4は、例えば監視領域E内の所定箇所や監視領域Eの近傍に設置され、飛行ロボット3の飛行を制御する。
また、飛行制御装置4は、利用者が操作する操作部を備え、この操作部にて利用者が監視区域Eの監視を開始又は解除するための操作を行うと、この操作に応じて監視区域Eの監視建物内外の監視状態を開始又は解除に設定する。この設定があると、それぞれ警備開始信号又は警備解除信号を物体検出センサに送信する。
さらに、飛行制御装置4は、監視状態が開始された状態において物体検出センサの検出信号等に基づき監視区域Eの異常を確定し、センタ装置5に異常信号を出力するとともに、飛行ロボット3に飛行指示を与える信号および検知物体情報、障害物情報を送信する。
飛行制御装置4は、図4に示すように、通信部41、記憶部42、制御部43を備える。
通信部41は、飛行ロボット3との間で例えば小電力無線やWi−Fi通信などの無線通信を行い、飛行ロボット3から飛行状態情報としての位置(緯度、経度、高度)、速度等の情報を受信し、この受信した情報に応じた各種制御信号を飛行ロボット3に送信する。
また、通信部41は、センタ装置5の監視卓5aから飛行ロボット3の飛行指示を受信すると、この飛行指示に従った各種制御信号を飛行ロボット3に送信する。
さらに、通信部41は、飛行ロボット3の撮影部35が撮影した画像をインターネット等の広域ネットワーク(WAN)上に構築された仮想専用ネットワーク(VPN)を介してセンタ装置5に送信する。また、通信部41は、物体検知センサから検知物体情報を受信する。
記憶部42は、例えばROM,RAMなどで構成され、飛行ロボット3が飛行する領域を緯度、経度、高度の3次元にて表現した飛行領域マップ、監視領域Eに関する各種情報である監視領域情報、飛行ロボット3と通信を行うためのデータや飛行ロボット3の飛行を制御するための各種パラメータ、ロボポート2の位置情報(緯度、経度情報)、監視領域E内における物体検知センサの種別および設置位置情報(緯度、経度情報)、飛行制御装置4の機能を実現するための各種プログラムが記憶されている。
制御部43は、記憶部42からソフトウェアモジュールを読み出し、CPU等にて各処理を行い、各部を統括制御するものであり、飛行制御手段43a、撮影制御手段43b、状態確認手段43c、風速判定手段43d、バッテリ残量計測手段43e、動作モード設定手段43fを備える。
飛行制御手段43aは、通信部41を介して飛行ロボット3から飛行状態情報、位置情報、高度情報を取得し、飛行ロボット3の目標位置P、速度などの飛行ロボット3の飛行に関わる制御信号を飛行ロボット3に通信部41を介して送信し、飛行ロボット3の飛行を制御する。
撮影制御手段43bは、飛行ロボット3の撮影部35による撮影を制御するもので、通信部41を介して飛行ロボット3から取得した現在位置に基づいて撮影許可信号(撮影禁止解除信号)又は撮影禁止信号を通信部41を介して飛行ロボット3に送信する。
状態確認手段43cは、飛行ロボット3の状態を確認するもので、飛行ロボット3がロボポート2に待機しているときに、定期的に飛行ロボット3の機能(充電状態を含む)が正常か否かを確認する。
風速判定手段43dは、飛行ロボット3の飛行距離または飛行時間に対するバッテリの消費量から風速を推定したり、モータの回転数に応じた飛行距離から風速を推定し、飛行ロボット3周囲の風速を判定する。また、飛行ルート上またはその周辺に設置された風速計において計測した風速の情報を受信し、これを飛行ロボット3周囲の風速として判定してもよい。
バッテリ残量計測手段43eは、飛行ロボット3のバッテリの残量を計測する。また、バッテリ残量計測手段43eは、予めバッテリ残量に応じた飛行可能距離を記憶しておいたり、飛行距離とバッテリの消費量から、現在のバッテリ残量で飛行可能な距離を算出したりする。
動作モード設定手段43fは、飛行ロボット3のバッテリ残量に応じて、動作モード(通常モード/省電力モード/帰還モードなど)を設定する。動作モードを設定する際のバッテリ残量は、飛行ロボット3周囲の風速に応じて設定する。動作モード設定手段43fは、動作モードを設定すると、通信部41を介して、動作モード設定信号を飛行ロボット3に送信する。
[センタ装置の構成について]
センタ装置5は、例えば警備会社などが運営する監視センタ等の施設内に設けられている。センタ装置5は、飛行ロボット3が撮影した映像を飛行制御装置4を介して受信し、受信した映像を表示する1又は複数のコンピュータからなる監視卓5aを備える。センタ装置5の監視卓5aは、各種機器を制御し、飛行制御装置4から受信した異常信号を記録するとともに、異常の情報をディスプレイに表示し、監視員が監視対象となる複数の監視区域Eを監視する。
また、監視員の判断によって監視卓5aを操作することにより任意の場所に飛行ロボット3を向かわせる飛行指示(飛行ルート指示、目標位置や速度の指示、離陸指示、帰還指示、上昇指示など)を行うこともできる。
尚、上述した飛行ロボット制御システム1では、風速判定手段43d、バッテリ残量計測手段43e、動作モード設定手段43fを飛行制御装置4に備えた構成として説明したが、これら風速判定手段43d、バッテリ残量計測手段43e、動作モード設定手段43fを飛行ロボット3に備えた構成としてもよい。
[動作モードについて]
動作モードは、予め設定された飛行ルートまたはセンタ装置5から通知された飛行ルートを飛行する「通常モード」と、所定の充電可能な地点(ロボポート2など)に帰還するよう飛行する「帰還モード」とを有する。
動作モードの種類は、上述した「通常モード」と「帰還モード」の2つのみでもよいし、速度や高度を制御したり、特定の処理(撮影等)を行わないようにしたりすることで消費電力を低減した状態で飛行する「省電力モード」、強制的に現在地点で着陸させる「強制着陸モード」など、別のモードを付加して3つ以上の動作モードに細分化してもよい。
動作モードは、「通常モード」と「帰還モード」とを有する場合、飛行ロボット3のバッテリ残量が第1の閾値以上であれば「通常モード」に設定し、飛行ロボット3のバッテリ残量が第1の閾値未満であれば「帰還モード」に設定する。ここで、第1の閾値は、飛行ロボット3が自力で所定の充電地点(ロボポート2等の充電可能な地点)へ飛行可能な値とすることが好ましい。
また、動作モードが「通常モード」と「帰還モード」に加えて「省電力モード」を有する場合は、飛行ロボット3のバッテリ残量が第1の閾値以上、かつ第2の閾値未満であれば「省電力モード」に設定する。すなわち、動作モードは、飛行ロボット3のバッテリ残量と予め設定される閾値との比較に基づいて何れかのモードに設定される。
[動作モードの閾値の設定について]
第1の閾値は、飛行ロボット3が現在の飛行ルートの最終地点または所定の充電地点までバッテリ切れとならずに飛行できるような値に設定する。ここで、前述の通り、第1の閾値は、飛行ロボット3周囲の風速に応じて可変的に設定する。例えば、風速が大きい場合には、飛行ロボット3は飛行ルートの維持や姿勢制御のためにバッテリの消費量が通常時よりも増大するので、第1の閾値が通常時よりも大きい値となるよう設定する。これにより、バッテリに余裕をもって飛行ロボット3を飛行することが可能になるので、飛行中にバッテリ切れとなることを極力防止できる。第2の閾値においても、同様に、風速が大きい場合には、通常時よりも大きい値となるよう設定する。
また、第1の閾値および第2の閾値は、現在位置から現在の飛行ルートの最終地点または所定の充電地点までの距離に応じて設定することが好適である。具体的には、当該最終地点または所定地点までの距離が近いほどバッテリ残量の閾値を小さい値に設定し、距離が遠いほどバッテリ残量の閾値を大きい値に設定するよう調整する。さらに、閾値の設定において、バッテリの減少率(時間当たりのバッテリ消費量)を考慮し、バッテリの減少率が高いほど、閾値を大きい値に設定してもよい。また、これに限らず、異常対処時などで残り飛行距離が定まっていない場合などは、第1の閾値および第2の閾値を所定の値(例えば、通常時に5分間飛行するために必要となるバッテリ残量の値)にしておき、風速に応じて閾値を可変的にしても良い。また、第2の閾値は、飛行ロボット3周囲の風速または気流の安定度に応じて第1の閾値よりも大きい値に設定する。
尚、風速が大きいことの判断は、所定期間における最大風速で判断しても良いし、平均風速で判断してもよい。
また、所定以上の風速が所定時間以上継続(例えば、風速5m/sが3秒以上継続)する場合には、飛行ロボット3の飛行が危険であるため、飛行中であればその場でホバリングまたは着陸したり、離陸前であれば離陸をキャンセルしたりするよう制御する。
さらに、風速が大きくない場合であっても、気流の安定度が低い場合には、飛行ロボット3がバランスを崩して姿勢制御のためにバッテリ消費量が増すため、気流の安定度が低いほど第1の閾値および第2の閾値を通常時よりも大きくなるように設定してもよい。これにより、気流が不安定で、通常時よりもバッテリ消費量が増大してしまう場合であっても飛行中にバッテリ切れとなってしまうことを極力防止できる。
さらに、動作モードを切替える際の閾値の設定には、風向きを考慮しても良い。具体的には、飛行ロボット3にとって追い風となる場合には、バッテリ消費量は通常時と比べて増大しない。一方、横風や、向かい風の場合は飛行ルート維持や姿勢制御のために通常時よりもバッテリ消費量が増大する。したがって、風速が大きい場合であっても、追い風の場合には、飛行ロボット3の飛行速度の制御を行うが、閾値の変更をしないようにしても良いし、風速が大きい場合でなくても、横風や向かい風が継続している場合には閾値を大きくなるように設定しても良い。
[風速の判定方法について]
飛行ロボット3または飛行制御装置4にて風速を判定する場合には、飛行ロボット3が所定速度以上で飛行している時間における飛行距離に応じて判定することができる。具体的には、飛行距離が短いほど風速が大きいと判定する。ここで、所定速度以上とは、飛行ロボット3がホバリングをしている際の速度よりも大きい速度とすることが好適である。また、飛行ロボット3の無風時におけるモータの回転数とこの場合における移動距離・移動速度の値とを予め測定しておき、風速判定手段43dにて現時点のモータの回転数と実際の移動距離・移動速度の値とを求め、両者を比較することにより、現時点の風速を推測して飛行ロボット3周囲の風速を判定してもよい。さらにまた、所定期間において飛行ロボット3が飛行ルートから外れた回数が所定回数以上の場合には、風速が大きいと判定してもよい。これらの方法を用いて風速を判定する場合には、風速計を搭載しなくとも、飛行ロボット3周囲のおおよその風速を判定することができるため、飛行ロボットの軽量化につながりバッテリの消費量を抑えられる。
また、地面や壁面等に設置された固定型の複数の風速計を用い、飛行ロボット3の飛行ルートの各位置における風速を測定してもよい。この場合の風速計としては、プロペラ等の回転子を利用し、プロペラの回転数により風速を換算する機械式の風速計や、超音波方式やレーザードップラー方式などを利用した電気式の風速計など種々の風速計を用いることができる。風速計を用いて計測した風速や風向の情報は、小電力無線やWi−Fi通信等により飛行制御装置4または飛行ロボット3に通知する。
さらに、飛行ロボット3自身が風速計を搭載してもよい。この場合、自らの移動速度などの移動制御に係る情報を考慮して風速計の出力を補正し、実際の風速に近い値を求めることが好適である。
[気流の安定度の判定方法について]
気流の安定度の判定は、短期間における、多様な方向への姿勢制御度合いで行う。姿勢制御の回数が多いほど、または/および、姿勢制御の方向が多いほど気流の安定度が低い、すなわち、気流が不安定であると判定する。この判定は、飛行ロボット3自身が行っても良いし、姿勢制御の情報(例えば、姿勢制御を行った回数など)を飛行ロボット3と飛行制御装置4との間で通信し、飛行制御装置4が行うようにしても良い。
[通常モードにおける制御について]
通常モードにおける制御では、予め設定されたルートで障害物を避けながら飛行ロボット3を飛行したり、監視ポイントや監視ポイント間の移動中に撮影を行ったりする。
[省電力モードにおける制御について]
省電力モードにおける制御では、速度や高度を制御したり、特定の動作(撮影)等を禁止したりすることで消費電力の低減をする。速度や高度の制御においては、距離当たり最も消費電力の少なくなる速度または高度を設定するようにしたり、急激に速度や高度を変更しないようにしたりする。また、飛行ルートにおける監視ポイント毎に、優先して監視すべき度合いに応じて重要度を設定しておき、重要度の高い地点を優先して監視するようにし、重要度の低い地点はスキップ(飛行ルートに含まないようにしたり、撮影等の特定の処理を行わないようにしたりするなど)する。例えば、重要度高、重要度中、重要度低のように重要度を設定しておき、重要度高の地点は優先的に飛行ルートに含まれるようにする。
今回スキップした地点は、次回の飛行では監視を行うようにするため、重要度を高く設定する。例えば、スキップされた重要度低の地点は次回の飛行の際に限り、重要度中に設定する。
これにより、バッテリ残量が少なく全ての地点を飛行(監視)できない状況であっても重要度の高い地点は極力漏れなく飛行できるとともに、同一地点を連続して飛行しなくなってしまうことを防止できる。
[帰還モードにおける制御について]
帰還モードにおける制御では、予め設定された飛行ルートによらず、所定の充電可能な地点(ロボポート2等)へ向け飛行する。なお、充電可能な地点が複数設けられている場合には、飛行ロボット3の現在位置から最も近い地点または最短で到達できる地点へ向け飛行することが好適である。
[動作モード設定時の動作について]
次に、飛行ロボット制御システム1による動作モード設定時の動作について図5のフローチャートを参照しながら説明する。
まず、飛行ロボット3は、巡回時刻の到来やセンタ装置5からの指示等があると、ロボポート2から離陸し飛行を開始する(ST1)。
風速判定手段43dは、飛行ロボット3が飛行を開始すると、飛行ロボット3周囲の風速を判定する(ST2)。
次に、動作モード設定手段43fは、風速判定手段43dにて判定した風速に基づいて第1の閾値を設定する(ST3)。
そして、バッテリ残量計測手段43eは、計測した現在のバッテリ残量が、動作モード設定手段43fにて設定した第1の閾値以上か否かを判定する(ST4)。
現在のバッテリ残量が第1の閾値以上であれば(ST4−Yes)、「通常モード」に設定し(ST5)、飛行ロボット3の飛行を継続する。そして、飛行ロボット3の飛行が終了したか否かを判定する(ST7)。飛行が終了したと判定すると(ST7−Yes)、動作モード設定を終了し、飛行が終了していないと判定すると(ST7−No)、ST2に戻って同様の処理を繰り返す。
また、現在のバッテリ残量が第1の閾値未満であれば(ST4−No)、「帰還モード」に設定し(ST6)、動作モード設定を終了する。
尚、上述した動作モード設定の説明では、動作モードの種類を「通常モード」と「帰還モード」の2種類としているが、これに限定されるものではない。すなわち、動作モードは、「通常モード」と「帰還モード」を少なくとも含み、例えば「省電力モード」、「強制着陸モード」、その他の別のモードを適宜付加することもできる。この場合、飛行ロボット3のバッテリ残量に応じて何れかのモードに設定される。
以上、本発明に係る飛行ロボット制御システムおよび飛行ロボットの最良の形態について説明したが、この形態による記述および図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例および運用技術などはすべて本発明の範疇に含まれることは勿論である。
1 飛行ロボット制御システム
2 ロボポート
3 飛行ロボット
4 飛行制御装置
5 センタ装置
5a 監視卓
31 ロータ
32 ロータ駆動部
33 アンテナ
34 高度センサ
35 撮影部
36 記憶部
37 電源
38 ロボ制御部
38a 撮影制御手段
38b ロータ制御手段
38c 姿勢制御手段
41 通信部
42 記憶部
43 制御部
43a 飛行制御手段
43b 撮影制御手段
43c 状態確認手段
43d 風速判定手段
43e バッテリ残量計測手段
43f 動作モード設定手段
E 監視領域
E1,E2,E3,E4,E5 エリア
P 目標位置
P0 基準位置
P1,P2,P3,P4,P5 監視ポイント

Claims (6)

  1. バッテリ残量に応じて、動作モードを切替える飛行ロボットを制御する飛行ロボット制御システムにおいて、
    前記飛行ロボットのバッテリ残量を計測する計測部と、
    飛行ロボット周囲の風速を判定する判定部と、
    前記バッテリ残量が第1の閾値以上であれば予め定められた飛行ルートまたはセンタ装置から通知された飛行ルートを飛行する通常モードに設定し、前記バッテリ残量が第1の閾値未満であれば所定の充電可能な地点に帰還する帰還モードに設定する設定部と、
    を備え、
    前記設定部は、前記第1の閾値を前記飛行ロボット周囲の風速に応じて設定することを特徴とする飛行ロボット制御システム。
  2. 前記設定部は、前記飛行ロボット周囲の風速が大きいほど前記第1の閾値を大きい値に設定する請求項1に記載の飛行ロボット制御システム。
  3. 前記判定部は、前記飛行ロボットが所定速度以上で飛行している時間における飛行距離が短いほど風速が大きいと判定する請求項1または2に記載の飛行ロボット制御システム。
  4. 前記設定部は、気流の安定度に応じて前記第1の閾値を設定する請求項1〜3の何れか一項に記載の飛行ロボット制御システム。
  5. 前記飛行ルートの所定の地点ごとに予め重要度を設定しておき、
    前記設定部は、前記バッテリ残量が前記第1の閾値以上、かつ第2の閾値未満の場合に、消費電力の少ない省電力モードに設定するとともに、当該第2の閾値は、前記飛行ロボット周囲の風速または気流の安定度に応じて設定し、
    前記省電力モードでは、重要度の高い地点を優先的に飛行する請求項1〜4の何れか一項に記載の飛行ロボット制御システム。
  6. バッテリ残量に応じて、動作モードを切替える飛行ロボットにおいて、
    前記飛行ロボットのバッテリ残量を計測する計測部と、
    飛行ロボット周囲の風速を判定する判定部と、
    前記バッテリ残量が第1の閾値以上であれば予め定められた飛行ルートまたはセンタ装置から通知された飛行ルートを飛行する通常モードに設定し、前記バッテリ残量が第1の閾値未満であれば所定の充電可能な地点に帰還する帰還モードに設定する設定部と、
    を備え、
    前記設定部は、前記第1の閾値を前記飛行ロボット周囲の風速に応じて設定することを特徴とする飛行ロボット。
JP2016191578A 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット Pending JP2018055463A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191578A JP2018055463A (ja) 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191578A JP2018055463A (ja) 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット

Publications (1)

Publication Number Publication Date
JP2018055463A true JP2018055463A (ja) 2018-04-05

Family

ID=61836732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191578A Pending JP2018055463A (ja) 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット

Country Status (1)

Country Link
JP (1) JP2018055463A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022266A1 (ja) * 2018-07-25 2020-01-30 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム
CN110871897A (zh) * 2018-09-03 2020-03-10 昆山优尼电能运动科技有限公司 无人机自检方法及系统
JP2021079816A (ja) * 2019-11-19 2021-05-27 株式会社フジタ 水中測定装置および水中測定方法
JPWO2021191947A1 (ja) * 2020-03-23 2021-09-30
US20210325908A1 (en) * 2018-08-22 2021-10-21 Nec Corporation Selection device, selection method, and selection program
WO2021251241A1 (ja) * 2020-06-10 2021-12-16 清水建設株式会社 巡回ロボット、情報収集システム、遠隔画像表示システム、情報収集方法、遠隔画像表示方法、現場支援装置、および現場支援装置システム
JP2022032429A (ja) * 2020-08-12 2022-02-25 株式会社東芝 点検システムおよび点検方法
CN115202384A (zh) * 2021-04-08 2022-10-18 顺丰科技有限公司 无人机飞行控制方法、装置、无人机系统和存储介质
WO2023037741A1 (ja) * 2021-09-09 2023-03-16 ソニーグループ株式会社 移動体、情報処理方法、情報処理システム及びコンピュータプログラム
WO2024053375A1 (ja) * 2022-09-08 2024-03-14 株式会社石川エナジーリサーチ 飛行装置およびその制御方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201183A (ja) * 2007-02-17 2008-09-04 Morioka Seiko Instruments Inc 姿勢制御装置
JP2014019431A (ja) * 2012-07-12 2014-02-03 General Electric Co <Ge> 飛行管理のためのシステムおよび方法
JP2014031118A (ja) * 2012-08-03 2014-02-20 Tsubakimoto Chain Co 飛行体及び飛行体システム
US20150336669A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle network-based recharging
US20150336667A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008201183A (ja) * 2007-02-17 2008-09-04 Morioka Seiko Instruments Inc 姿勢制御装置
JP2014019431A (ja) * 2012-07-12 2014-02-03 General Electric Co <Ge> 飛行管理のためのシステムおよび方法
JP2014031118A (ja) * 2012-08-03 2014-02-20 Tsubakimoto Chain Co 飛行体及び飛行体システム
US20150336669A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle network-based recharging
US20150336667A1 (en) * 2014-05-20 2015-11-26 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020022266A1 (ja) * 2018-07-25 2020-12-17 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム
WO2020022266A1 (ja) * 2018-07-25 2020-01-30 株式会社ナイルワークス ドローン、ドローンの制御方法、および、ドローン制御プログラム
US20210325908A1 (en) * 2018-08-22 2021-10-21 Nec Corporation Selection device, selection method, and selection program
CN110871897A (zh) * 2018-09-03 2020-03-10 昆山优尼电能运动科技有限公司 无人机自检方法及系统
CN110871897B (zh) * 2018-09-03 2023-09-19 昆山合朗航空科技有限公司 无人机自检方法及系统
JP7325309B2 (ja) 2019-11-19 2023-08-14 株式会社フジタ 水中測定装置および水中測定方法
JP2021079816A (ja) * 2019-11-19 2021-05-27 株式会社フジタ 水中測定装置および水中測定方法
JPWO2021191947A1 (ja) * 2020-03-23 2021-09-30
WO2021191947A1 (ja) * 2020-03-23 2021-09-30 株式会社ナイルワークス ドローンシステム、ドローンおよび障害物検知方法
JP7411280B2 (ja) 2020-03-23 2024-01-11 株式会社ナイルワークス ドローンシステム、ドローンおよび障害物検知方法
WO2021251241A1 (ja) * 2020-06-10 2021-12-16 清水建設株式会社 巡回ロボット、情報収集システム、遠隔画像表示システム、情報収集方法、遠隔画像表示方法、現場支援装置、および現場支援装置システム
JP2022032429A (ja) * 2020-08-12 2022-02-25 株式会社東芝 点検システムおよび点検方法
CN115202384A (zh) * 2021-04-08 2022-10-18 顺丰科技有限公司 无人机飞行控制方法、装置、无人机系统和存储介质
WO2023037741A1 (ja) * 2021-09-09 2023-03-16 ソニーグループ株式会社 移動体、情報処理方法、情報処理システム及びコンピュータプログラム
WO2024053375A1 (ja) * 2022-09-08 2024-03-14 株式会社石川エナジーリサーチ 飛行装置およびその制御方法
JP2024038895A (ja) * 2022-09-08 2024-03-21 株式会社石川エナジーリサーチ 飛行装置

Similar Documents

Publication Publication Date Title
JP2018055463A (ja) 飛行ロボット制御システムおよび飛行ロボット
JP6776083B2 (ja) 飛行ロボット制御システムおよび飛行ロボット
US10906662B2 (en) Method and system for recycling motor power of a movable object
AU2018355071B2 (en) UAV group charging based on demand for UAV service
JP6207746B2 (ja) 航空機姿勢制御方法及び装置
JP6239619B2 (ja) 位置決め及び相互動作用紐集合体を備えたフライングカメラ
CN106444795B (zh) 可移动物体的起飞辅助的方法以及系统
JP6585673B2 (ja) 航空機姿勢制御方法
JP2017505254A (ja) Uavのバッテリー電源バックアップシステムおよび方法
CN107820585B (zh) 飞行器降落方法、飞行器和计算机可读存储介质
JP2018100088A (ja) Uavにエネルギーを供給する方法、及びuav
US11840158B2 (en) Systems and methods for battery capacity management in a fleet of UAVs
JP6578113B2 (ja) 飛行ロボット制御システム及び飛行ロボット
JP2019172255A (ja) Uavにエネルギーを供給する方法、及び装置
JP2017007603A (ja) 運転支援制御装置
JP2021061005A (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
JP6832473B1 (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
JP2022097504A (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
JP2022007683A (ja) 飛行装置
CN116101507A (zh) 旋翼飞机的控制方法、装置、旋翼飞机及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210601