JP7325309B2 - 水中測定装置および水中測定方法 - Google Patents

水中測定装置および水中測定方法 Download PDF

Info

Publication number
JP7325309B2
JP7325309B2 JP2019208613A JP2019208613A JP7325309B2 JP 7325309 B2 JP7325309 B2 JP 7325309B2 JP 2019208613 A JP2019208613 A JP 2019208613A JP 2019208613 A JP2019208613 A JP 2019208613A JP 7325309 B2 JP7325309 B2 JP 7325309B2
Authority
JP
Japan
Prior art keywords
unit
measuring
water
underwater
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019208613A
Other languages
English (en)
Other versions
JP2021079816A (ja
Inventor
光男 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2019208613A priority Critical patent/JP7325309B2/ja
Publication of JP2021079816A publication Critical patent/JP2021079816A/ja
Application granted granted Critical
Publication of JP7325309B2 publication Critical patent/JP7325309B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、水中測定装置および水中測定方法に関する。
例えば、海底、湖底、河床などに対する浚渫作業や構造物の構築作業に際しては、海底、湖底、河床の底の水底形状を正確に測定することが必要である。
水底形状の測定装置として、観測船から支持フレームを介してソナーを水中に配置し、ソナーによって測定した水底の3次元形状情報と、観測船に搭載したGPS測位装置で測位された測位情報に基づいて水底の形状を地球上の座標位置で示される水底形状情報として生成する技術が提案されている(特許文献1参照)。
上記従来技術では、波浪による観測船の揺れによって生じる測定誤差を補正するために、観測船側に3次元位置センサを設けて観測船の3次元位置を取得すると共に、地上側にトータルステーションを設け、トータルステーションによって観測船の位置を測定して測位データを求め、これら観測船の3次元位置と測位データを用いて水底形状情報を補正するようにしている。
しかしながら、上記従来技術では、そもそも水底形状情報を得るために観測船と観測船を運行するための船舶免許資格者が必要となり、設備コスト、運用コストが高いものとなっている。
また、波浪による観測船の揺れによって生じる測定誤差を補正するために3次元位置センサ、トータルステーションといった装置が必要となり、また、測定誤差の補正を行なうための演算処理が必要となり、構成の簡素化、コストの低減を図る上で不利となる。
そこで、本出願人は、無人飛行体に吊り下げた3次元形状測定部(測定部)を水中に位置させることで水底形状の3次元形状である水底形状情報を生成し、観測船を用いることに伴う様々なコストを低減し、構成を簡素化する上で有利な水底形状の測定装置を既に提案している。
特開2010-30340号公報
ところで、上述のような測定部を水中に位置させて測定を行う水中測定装置では、無人飛行体がそれに搭載されたバッテリの電力によってロータを回転させて飛行するものや、無人飛行体がそれに搭載された化石燃料によって動作する内燃機関(エンジン)によってロータを回転させて飛行するものがあるが、測定中にバッテリや化石燃料などの動力源がなくなってしまうと無人飛行体が墜落して測定ができなくなってしまう。
そこで、動力源がなくなる前に無人飛行体に動力源を供給することが考えられるが、無人飛行体を動力源供給装置まで飛行させる際にも測定部を吊り下げた状態であると、飛行中も測定部の重量を無人飛行体が支えることになり、動力源の消費を抑制する上で不利となる。
本発明はこのような事情に鑑みなされたものであり、その目的は、動力源を供給するために無人飛行体を飛行させる際の動力源の消費を抑制し、測定可能な時間をより長く確保して測定効率の向上を図る上で有利な水中測定装置および水中測定方法を提供することにある。
上述した目的を達成するため本発明は、遠隔制御される無人飛行体と、前記無人飛行体を飛行させる飛行制御部と、前記無人飛行体から吊り下げられた接続部材に設けられた取付部に取り外し可能に連結され、水中に位置した状態で測定する測定部と、前記取付部と前記測定部の連結を制御する連結制御部と、前記測定部を所定範囲内に係留する係留部と、前記無人飛行体を飛行させる動力源の容量が所定の閾値以下であるか否かを判断する動力源管理部と、を備え、前記係留部は、前記動力源の容量が前記所定の閾値以下であると判断された場合、前記測定部を係留し、前記連結制御部は、前記測定部が前記所定範囲内に係留されている場合、前記取付部と前記測定部の連結を解除し、前記飛行制御部は、前記測定部が取り外された前記無人飛行体を動力源供給装置まで飛行させた後、前記動力源の供給が完了した前記無人飛行体を前記測定部まで飛行させ、前記連結制御部は、前記無人飛行体への前記動力源の供給が完了した場合、前記取付部と前記測定部を再度連結し、前記係留部は、前記取付部と前記測定部が再度連結された場合、前記測定部の係留を解除することを特徴とする。
また、本発明は、前記測定部に浮力を与える浮体と、前記測定部に設けられ、端部に抵抗部材が取り付けられた巻取部材を巻き取ることで前記抵抗部材を上昇させ、前記巻取部材を繰り出すことで前記抵抗部材を降下させる巻上装置と、をさらに備え、前記係留部は、前記浮体の浮力を制御する浮力制御部と、前記巻取部材の巻き取りおよび繰り出しを制御する巻取制御部とを含んで構成され、前記浮力制御部は、前記動力源の容量が前記所定の閾値以下であると判断された場合、前記浮体に浮力を与えて前記測定部を水面に移動させ、前記巻取制御部は、前記動力源の容量が前記所定の閾値以下であると判断されて前記測定部が水面に移動された場合、前記巻取部材を繰り出して前記抵抗部材を水底まで降下させて前記測定部を係留し、前記巻取制御部は、前記取付部と前記測定部が再度連結された場合、前記巻取部材を巻き取って前記抵抗部材を上昇させ、前記浮力制御部は、前記取付部と前記測定部が再度連結されて前記抵抗部材が上昇された場合、前記浮体から浮力を取り除くことを特徴とする。
また、本発明は、測位衛星から受信した測位信号に基づいて前記測定部の位置を示す測定部測位情報を生成する測定部側測位部をさらに備え、前記巻取制御部は、前記測定部測位情報により前記測定部が前記所定範囲内に係留されていないと判断された場合、前記巻取部材を巻き取って前記抵抗部材を上昇させ、前記飛行制御部は、前記無人飛行体を飛行させることで前記測定部を移動させ、前記巻取制御部は、前記測定部が移動された場合、前記巻取部材を繰り出して前記抵抗部材を水底まで降下させることを特徴とする。
また、本発明は、前記取付部は、電磁石であって、前記連結制御部は、前記電磁石への電力の供給を制御することで、前記電磁石と前記測定部の連結を制御することを特徴とする。
また、本発明は、前記測定部を収容し、上面が前記電磁石に吸引される金属材料で構成された筐体をさらに備え、前記連結制御部は、前記電磁石への電力の供給を制御することで、前記電磁石と前記筐体の上面の連結を制御することを特徴とする。
また、本発明は、前記浮体は、内部に気体と水とが給排されるバラストタンクであって、前記浮力制御部は、前記バラストタンクの内部への気体と水との給排を調整することで、前記バラストタンクの浮力を制御することを特徴とする。
また、本発明は、前記測定部は、水底の3次元形状を測定し3次元形状情報を生成する3次元形状測定部であって、前記無人飛行体に搭載され測位衛星から受信した測位信号に基づいて前記無人飛行体の位置を示す飛行体測位情報を生成する飛行体側測位部と、前記3次元形状情報および前記飛行体測位情報に基づいて前記水底の形状を地球上の座標位置で示される水底形状情報を生成する水底形状情報生成部と、をさらに備えることを特徴とする。
また、本発明は、遠隔制御される無人飛行体を備えた水中測定装置で実行される水中測定方法であって、前記無人飛行体は、前記無人飛行体から吊り下げられた支持部材に設けられた取付部に取り外し可能に連結され、水中に位置した状態で測定する測定部を備え、前記無人飛行体を飛行させる動力源の容量が所定の閾値以下であるか否かを判断する動力源管理ステップと、前記動力源の容量が前記所定の閾値以下であると判断された場合、前記測定部を所定範囲内に係留する係留ステップと、前記測定部が前記所定範囲内に係留されている場合、前記取付部と前記測定部の連結を解除する連結解除ステップと、前記測定部が取り外された前記無人飛行体を動力源供給装置に飛行させた後、前記動力源の供給が完了した前記無人飛行体を前記測定部まで飛行させる飛行制御ステップと、前記無人飛行体への前記動力源の供給が完了した場合、前記取付部と前記測定部を再度連結する連結ステップと、前記取付部と前記測定部が再度連結された場合、前記測定部の係留を解除する係留解除ステップと、を含むことを特徴とする。
本発明によれば、無人飛行体を飛行させる動力源の容量が所定の閾値以下であると判断された場合、無人飛行体から吊り下げられた接続部材に設けられた取付部に連結された測定部を係留し、測定部が所定範囲内に係留されている場合に取付部と測定部の連結を解除する。そして、測定部が取り外された無人飛行体を動力源供給装置まで飛行させて動力源を供給し、動力源の供給が完了した場合、無人飛行体を測定部まで飛行させ、取付部と測定部を再度連結し、測定部の係留を解除することで、測定部による測定を再開可能にする。
したがって、動力源を供給するために無人飛行体を飛行させる際の動力源の消費を抑制し、測定時間をより長く確保して測定効率の向上を図る上で有利となる。
また、本発明によれば、測定部に浮力を与える浮体と、測定部に設けられ抵抗部材が取り付けられた巻取部材を巻き取ることで抵抗部材を上昇させ、巻取部材を繰り出すことで抵抗部材を降下させる巻上装置とを備え、浮体の浮力を制御する浮力制御部と、巻取部材の巻き取りおよび繰り出しを制御する巻取制御部とで係留部を構成している。そして、動力源の容量が所定の閾値以下であると判断された場合、浮体に浮力を与えて測定部を水面に移動させ、抵抗部材を水底まで降下させることで、測定部を係留するため、簡易な構成により測定部を係留して、動力源の消費を抑制できる。
また、本発明によれば、測定部が所定範囲内に係留されていない場合、抵抗部材を上昇させて測定部を水平方向に移動させ、再度抵抗部材を水底まで降下させるため、係留した測定部が安定しない場合には係留をやり直すことができ、測定部の走錨を回避する上で有利となる。
また、本発明によれば、無人飛行体から吊り下げた3次元形状測定部を水中に位置させて水底の3次元形状を測定し3次元形状情報を生成すると共に、飛行体側測位部により無人飛行体の位置を示す飛行体測位情報を生成し、それら3次元形状情報および飛行体測位情報に基づいて水底の形状を地球上の座標位置で示される水底形状情報を生成する。
したがって、ソナーを設けた観測船が不要となるため、観測船と観測船を運行するための船舶免許資格者が必要となり、設備コスト、運用コストを低減する上で有利となる。
また、3次元形状測定部を支持する無人飛行体は、波浪の影響を受けることがなく、従来のように観測船の揺れを補正するための設備が不要となり、構成の簡素化、コストの低減を図る上で有利となる。
実施の形態の水底形状測定装置の構成を示すブロック図である。 無人飛行体によって水中部が水中に配置された測定状態を示す説明図である。 水底形状測定装置の水中部の構成を示す縦断面図である。 無人飛行体に連結された水中部が係留している状態を示す図である。 無人飛行体との連結が解除された水中部が係留している状態を示す図である。 水中部が水面に浮上した状態で無人飛行体により曳行されている状態を示す図である。 実施の形態の水底形状測定装置の動作を示すフローチャートである。 実施の形態の水底形状測定装置の動作を示すフローチャートである(続き)。
以下、本発明の実施の形態について図面を用いて説明する。以下の実施の形態では、本発明の水中測定装置を、水底形状を測定する水底測定装置に適用した例を示す。
図1に示すように、本実施の形態の水底形状測定装置10は、管理装置12と、管理装置12に遠隔制御される無人飛行体14および水中部16とを含んで構成されている。
管理装置12は、水底46(図2参照)の形状を測定する海、河川、湖などの近傍の地上に設けられている。
管理装置12は、遠隔操作司令部12Aと、管理装置側通信部12Bと、地図データベース部12Cと、表示部12Dと、管理装置側飛行制御部12Eと、水底形状情報生成部12Fと、情報処理部12Gと、記憶部12Hと、出力部12Iとを含んで構成されている。
遠隔操作司令部12Aは、ジョイスティックなどの操作部材を作業者が操作することで、無人飛行体14を遠隔操作するための飛行体操作指令情報を生成する。
また、遠隔操作司令部12Aは、操作ボタンなどの操作部材を作業者が操作することで、無人飛行体14に搭載された飛行体側測位部14Dの動作を開始させ、あるいは、停止させるための飛行体側測位部14Dの操作指令情報を生成する。
また、遠隔操作司令部12Aは、操作ボタンなどの操作部材を作業者が操作することで、水中部16に搭載された3次元形状測定部16A、測定部側測位部16B、浮力制御部16C、および巻上制御部16Dの動作を開始させ、あるいは、停止させるための3次元形状測定部16Aの操作指令情報、測定部側測位部16Bの操作指令情報、浮力制御部16Cの操作指令情報、および巻取制御部16Dの操作指令情報を生成する。
管理装置側通信部12Bは、無線回線Nを介して無人飛行体14と通信を行なうものであり、無人飛行体14に飛行体操作指令情報、飛行体側測位部14Dの操作指令情報を送信し、無人飛行体14を経由して後述する水中部16に3次元形状測定部16Aの操作指令情報、測定部側測位部16Bの操作指令情報、浮力制御部16Cの操作指令情報、および巻上制御部16Dの操作指令情報を送信する。
また、管理装置側通信部12Bは、無人飛行体14から送信される画像情報、飛行体測位情報、3次元形状情報、測定部測位情報を受信する。
図中符号1202は、管理装置側通信部12Bのアンテナを示す。なお、画像情報、飛行体測位情報、3次元形状情報、測定部測位情報については後で詳述する。
地図データベース部12Cは、水底46の形状を測定しようとする海、河川、湖などを含む地図情報を格納している。
表示部12Dは、管理装置側通信部12Bで受信された画像情報、3次元形状情報を表示するものである。
したがって、作業者は、表示部12Dによって表示された画像情報、3次元形状情報に基づいて無人飛行体14の遠隔操作を行なうことが可能となっている。
また、表示部12Dは、管理装置側通信部12Bで受信された飛行体測位情報に基づいて、地図データベース部12Cに格納されている地図情報を読み出して表示すると共に、無人飛行体14の現在位置を表示部12Dの表示画面上に表示された地図の上に表示するように構成されている。
したがって、作業者は、表示部12Dによって表示された地図と無人飛行体14の現在位置とに基づいて無人飛行体14の遠隔操作を行なうことが可能となっている。
管理装置側飛行制御部12Eは、作業者の遠隔操作に代えて、管理装置側通信部12Bで受信された飛行体測位情報と、予め定められた飛行ルートとに基づいて無人飛行体14を上記飛行ルートに沿って自動制御により飛行させる。
すなわち、地図データベース部12Cの地図情報に基づいて、無人飛行体14を測定すべき水底46に沿って飛行するような飛行コースを設定しておき、管理装置側飛行制御部12Eによって飛行体測位情報と飛行コースに基づいて飛行体操作指令情報を生成し、飛行体操作指令情報を管理装置側通信部12Bから無線回線Nを介して飛行体側通信部14Aに送信し、飛行体操作指令情報を飛行体側飛行制御部14Cに与えることで、無人飛行体14を自動制御することができる。
水底形状情報生成部12Fは、管理装置側通信部12Bで受信された3次元形状情報および飛行体測位情報に基づいて水底46の形状を地球上の座標位置で示される、言い換えると、3次元座標で示される水底形状情報を生成する。
情報処理部12Gは、水底形状情報を演算処理することで、水底46の形状を示す断面図、斜視図、等深線図などを生成する。
本実施の形態では、表示部12Dによる水底形状情報の表示は、情報処理部12Gによって生成された水底46の形状を示す断面図、斜視図、等深線図などを表示することでなされる。
記憶部12Hは、水底形状情報生成部12Fで生成された水底形状情報、情報処理部12Gで生成された水底46の形状を示す断面図、斜視図、等深線図などを格納するものである。
出力部12Iは、記憶部12Hに記憶された水底形状情報や断面図、斜視図、等深線図などを出力するものであり、例えば、メモリカードなどの半導体記録媒体にそれら水底形状情報や図を記録し、あるいは、ネットワークを介して端末装置にそれら水底形状情報や図を送信したり、あるいは、プリンタを用いて紙媒体にそれら水底形状情報や図を印刷する。
無人飛行体14は、図1、図2に示すように、飛行体本体18と、飛行体本体18に設けられた複数のロータ20と、ロータ20毎に設けられロータ20を回転駆動する複数のモータ(不図示)と、モータに電力を供給するバッテリ22と、飛行体本体18から吊り下げられたワイヤ24(接続部材)の下端に設けられた電磁石26(取付部)とを備えている。
なお、実施の形態では、無人飛行体14がバッテリ22の電力によってロータ20を回転させる場合について説明するが、本発明は、無人飛行体14が化石燃料で動作するエンジンによってロータ20を回転させるものであっても適用可能である。
また、無人飛行体14は、図1に示すように、飛行体側通信部14A、撮像部14B、飛行体側飛行制御部14C、飛行体側測位部14D、バッテリ管理部14E、電力制御部14F、バッテリ22、電磁石26を含んで構成されている。
飛行体側通信部14Aは、管理装置12の管理装置側通信部12Bと無線回線Nを介して通信を行なうものであり、撮像部14Bで撮像された画像情報、飛行体側測位部14Dで生成された飛行体測位情報、後述する水中部16に搭載された3次元形状測定部16Aで生成された3次元形状情報、測定部側測位部16Bで生成された測定部測位情報を、管理装置側通信部12Bに送信する。
また、飛行体側通信部14Aは、管理装置側通信部12Bから送信される飛行体操作指令情報、飛行体側測位部14Dの操作指令情報、3次元形状測定部16Aの操作指令情報、測定部側測位部16Bの操作指令情報、浮力制御部16Cの操作指令情報、および巻上制御部16Dの操作指令情報を受信する。
図中符号1402は、飛行体側通信部14Aのアンテナを示す。
撮像部14Bは、無人飛行体14の周囲を撮像して画像情報を生成する。
飛行体側飛行制御部14Cは、管理装置側通信部12Bから無線回線Nを介して飛行体側通信部14Aに送信された飛行体操作指令情報に基づいて各ロータ20を回転制御することで、無人飛行体14を飛行させる。
飛行体側測位部14Dは、飛行体本体18に搭載され測位衛星から受信した測位信号に基づいて無人飛行体14の位置を測位し、無人飛行体14の位置を示す飛行体測位情報を生成する。
このような測位衛星は、GPS、GLONASS、Galileo、準天頂衛星(QZSS)等のGNSS(Global Navigation Satellite System:全球測位衛星システム)で用いられるものであり、それら測量システムで使用される測位衛星の1つを用いてもよく、あるいは、2つ以上の測位衛星を組み合わせて用いてもよい。
バッテリ管理部14Eは、無人飛行体14を飛行させる動力源であるバッテリ22の容量を管理する動力源管理部を構成するものであり、バッテリ22の容量が予め定めた所定の閾値以下であるか否かを判断する。
バッテリ管理部14Eは、バッテリ22の容量が所定の閾値以下であった場合、例えば、その旨を画像情報に含めて管理装置12に送信し、表示部12Dに画像情報と共に表示することで作業者に知らせる。
所定の閾値は、例えば、水中部16を係留させ、バッテリ22に電力を供給するために無人飛行体14を電力供給装置まで往復飛行させ、さらに水中部16の係留を解除させることが可能な電力量が残っている値に設定する。
電磁石26は、電力が供給されることで磁力が発生し、電力の供給が停止されると磁力が失われる。
電力制御部14Fは、電磁石26への電力の供給を制御するものであって、電磁石26に電力を供給することで磁力を発生させ、電力の供給を停止することで磁力を失わせる。
電力制御部14Fは、本実施の形態では、電磁石26に電力を供給し、3次元形状測定部16Aを収容する筐体28(後述)の上面を引き寄せ電磁石26と筐体28を連結させた状態にする。
また、電力制御部14Fは、電磁石26への電力の供給を停止し、電磁石26と筐体28の上面の連結を解除し、筐体28を取り外す。
電力制御部14Fは、電磁石26と、3次元形状測定部16Aを収容している筐体28の上面との連結を制御することで、電磁石26と3次元形状測定部16Aの連結を制御する連結制御部を構成している。
電力制御部14Fは、本実施の形態では、3次元形状測定部16Aが測定を行う際には電磁石26と3次元形状測定部16Aを連結した状態としている。そして、電力制御部14Fは、無人飛行体14のバッテリ22に電力を供給する際、水中部16が所定範囲内に係留されている場合に、電磁石26と3次元形状測定部16Aの連結を解除し、また、無人飛行体14のバッテリ22への電力の供給が完了した場合、電磁石26と3次元形状測定部16Aを再度連結する。
図1~図3に示すように、水中部16は、筐体28と、3次元形状測定部16Aと、測定部側測位部16B、浮力制御部16C、巻取制御部16D、バラストタンク30(浮体)、水流通弁32と、気体流通弁34、ウインチ36(巻上装置)、アンカー38(抵抗部材)とを含んで構成されている。なお、水中部16の各構成はバッテリ22から不図示のケーブル等により供給された電力により駆動する。
筐体28は、水密に構成され、筐体28の内部に、3次元形状測定部16Aが収容され、筐体28の外部に浮体であるバラストタンク30が設けられている。
筐体28は、飛行体本体18から吊り下げられたワイヤ24の下部に設けられた電磁石26に取り外し可能に連結され、電磁石26に連結されている際には飛行体本体18の飛行により飛行体本体18と共に移動し、空中あるいは水中に位置した状態とされる。
本実施の形態では、筐体28は円柱状を呈し、図3に示すように、円板状の底壁2802と、底壁2802の周囲から起立する円筒状の側壁2804と、側壁2804の上端を接続する円板状の上壁2806とを備えている。
筐体28の上面である上壁2806は、電磁石26に吸引される金属材料で構成されており、その上面に電力を供給された電磁石26が連結される。なお、側壁2804および底壁2802は、上壁2806と同一の材質でも別の材質でもよい。
また、筐体28の形状は、円柱状に限定されるものではなく、四角柱状、多角形柱状、球状など任意である。
バラストタンク30は、3次元形状測定部16Aを収容する筐体28に浮力を与える浮体であって、内部に気体と水とが給排されることで浮力が調整される。
バラストタンク30は、水中に位置したときに水圧で変形しない硬質な材料で構成され、このような硬質な材料として、金属材料、合成樹脂材料など従来公知の様々な材料が使用可能である。
バラストタンク30は、筐体28の側壁2804の外周全周にわたって円環状に形成され、断面が均一形状を呈している。
バラストタンク30は、筐体28の側壁2804に重ね合わされる内径で形成された円筒壁状の内周壁部3002と、内周壁部3002の上端からバラストタンク30の半径方向外側に延在する上壁部3004と、内周壁部3002の下端からバラストタンク30の半径方向外側に延在する下壁部3006と、それら上壁部3004および下壁部3006の先端を接続する外周壁部3008とを含んで構成され、バラストタンク30の中心軸を含む断面でバラストタンク30を破断したときに、外周壁部3008はバラストタンク30の半径方向外側に凸の湾曲面を形成している。
バラストタンク30は、その内周壁部3002が筐体28の側壁2804に重ね合わされて取り付けられている。
バラストタンク30の下壁部3006の箇所には、水が出入りする水流通口3010が設けられている。
バラストタンク30の上壁部3004の箇所には、空気が出入りする気体流通口3012が設けられている。
水流通弁32は、バラストタンク30に水を供給することでバラストタンク30内部の気体を排出させる水供給部を構成し、水流通弁32の一端3202はバラストタンク30の水流通口3010に連通し、水流通弁32の他端3204はバラストタンク30の下部でバラストタンク30の外部に開放されている。
気体流通弁34は、バラストタンク30の内部に気体を供給することでバラストタンク30内部の水を排水する気体供給部を構成し、気体流通弁34の一端3402はバラストタンク30の気体流通口3012に連通し、気体流通弁34の他端3404はバラストタンク30の上部でバラストタンク30の外部に開放されている。
ウインチ36は、筐体28の下部に設けられ、端部にアンカー38が取り付けられたワイヤ3602(巻取部材)を巻き取ることでアンカー38を上昇させ、ワイヤ3602を繰り出すことでアンカー38を降下させるものである。
具体的には、ウインチ36は、両端にフランジ3604Aを有する円筒状の巻胴3604がモータ(不図示)により矢印で示すR1方向に回転(右回転)されることで、ワイヤ3602を巻胴3604の外周面に巻き取り、ワイヤ3602の先端に取り付けられたアンカー38を垂直方向に上昇させる。
また、ウインチ36は、巻胴3604がモータ(不図示)によりR1方向と反対方向であるR2方向に回転(左回転)されることで、ワイヤ3602を巻胴3604の外周面から繰り出し、ワイヤ3602の先端に取り付けられたアンカー38を垂直方向に降下させる。
ウインチ36は、巻胴3604の中心部を挿通する挿通部3606Aと、挿通部3606の両端部に両端が接合されコの字状に屈曲された取付板部3606Bとから構成された取付部材3606が設けられており、取付部材3606と筐体28の底壁2802の下面とが溶接などにより接合されることで、筐体28に取り付けられている。なお、ウインチ35は、3次元形状測定部16Aによる測定を妨げない位置に取り付けられるものとする。
アンカー38は、自重によって抵抗力(把駐力)を生じさせ、海底や湖底などの水底に沈むことで、接続されたものを一定範囲に係留する錨である。本実施の形態では、アンカー38は、下降されて水底に置かれることで、3次元形状測定部16Aを収容する筐体28を含んで構成される水中部16を水上の一定範囲に係留する。
3次元形状測定部16Aは、筐体28内部で底壁2202上に取り付けられ、筐体28が水中に位置した状態で水底46の3次元形状を測定し3次元形状情報を生成する。
3次元形状測定部16Aは、筐体28に収容されているため、筐体28が飛行体本体18から吊り下げられたワイヤ24の電磁石26に連結されている場合は、電磁石26と3次元形状測定部16Aが連結されていることとなり、筐体28と電磁石26の連結が解除された場合は、電磁石26と3次元形状測定部16Aの連結が解除されたことになる。
また、3次元形状測定部16Aは、筐体22が電磁石26に連結されている際には、筐体28と同様、飛行体本体18の飛行により飛行体本体18と共に移動し、空中あるいは水中に位置した状態とされる。
3次元形状測定部16Aとして、超音波50を用いるソナー、あるいは、レーザー光52を用いるレーザー測定機を用いることができる。
この場合、底壁2802には、超音波50あるいはレーザー光52を透過させる窓部が形成されている。なお、超音波50あるいはレーザー光52は、ウインチ36に遮断されない方向に照射されるものとする。
ソナーは、超音波50を水底46に照射すると共に、水底46からの反射波を受信し、受信波に基づいて3次元形状情報を生成するものである。
ソナーとして、単一のビーム状の超音波50を水底46に向かってスキャン(走査)するもの、あるいは、広がりを持った複数のビーム状の超音波50(マルチビーム)を同時に水底46に向かって照射するものの何れを用いても良く、このようなソナーとして従来公知の様々なソナーが使用可能である。
このように3次元形状測定部16Aを、超音波50を水底46に照射すると共に、水底46からの反射波を受信し、受信波に基づいて3次元形状情報を生成するソナーを含んで構成すると、海、湖、河川などの水中の透明度の影響を受けることなく、正確な3次元形状情報を得る上で有利となり、水底形状情報生成部12Fにより得られる水底形状情報の精度を確保する上で有利となる。
レーザー測定機は、レーザー光を水底46に照射すると共に、水底46から反射された反射光を受信し、受信した反射光に基づいて3次元形状情報を生成するものである。
レーザー測定機として、従来公知の単一のレーザー光52を水底46に向かってスキャン(走査)するものを使用することができる。
なお、形状測定に使用するレーザー光52としてはグリーンレーザーが用いられることが多く、これは、グリーンレーザーが水によって吸収されにくく水底46まで確実に届き、水底46からの反射光の強度を確保できるためである。
このように3次元形状測定部16Aを、レーザー光52を水底46に照射すると共に、水底46から反射された反射光を受信し、受信した反射光に基づいて3次元形状情報を生成するレーザー測定機を含んで構成すると、レーザー光52が空中から水中に照射される場合に比較して、レーザー光52が空気(大気)と水面48との界面を通らないため、界面でレーザー光52が散乱して光量が低下することが抑制されるので、より深度の大きな水底46の水底形状情報を得る上で有利となる。
測定部側測位部16Bは、筐体28の内部で3次元形状測定部16Aの近傍に搭載され、測位衛星から受信した測位信号に基づいて3次元形状測定部16Aの位置を測位し、3次元形状測定部16Aの位置を示す測定部測位情報を生成する。測位衛星については、飛行体側測位部14Dと同様である。
浮力制御部16Cは、水流通弁32および気体流通弁34を開閉し、バラストタンク30の内部への気体と水との給排を調整することで、バラストタンク30の浮力を制御する。
具体的には、浮力制御部16Cは、水中部16の下部が水中に位置した状態で、水流通弁32および気体流通弁34を開弁することにより、水流通弁32を介して水をバラストタンク30の内部に導入させると共に、気体流通弁34を介して空気を水中に排出させる。
これにより、その内部が水で満たされることでバラストタンク30による浮力がほぼゼロとなる。
また、浮力制御部16Cは、水中部16Bの全体が空中に位置した状態で、水流通弁32および気体流通弁34が開弁することにより、水流通弁32を介して水をバラストタンク30の内部から排出させると共に、気体流通弁34を介して空気をバラストタンク30の内部に導入させる。
そして、水流通弁32および気体流通弁34が閉弁されることにより、その内部が空気で満たされバラストタンク30による浮力が発生する。
また、浮力制御部16Cは、バラストタンク30の内部に導入される空気量(容積)を調整することでバラストタンク30に与える浮力を調整でき、これにより筐体28の少なくとも一部を水面48上に位置させることができる。
したがって、浮力制御部16Cは、バラストタンク30に空気を満たして浮力を与えることで、3次元形状測定部16Aを筐体28の内部に収容した水中部16を水面に移動させ、バラストタンク30に水を満たして浮力を取り除くことで、水中部16を水中に移動させる。
本実施の形態では、浮力制御部16Cは、バッテリ22の容量が所定の閾値以下であると判断された場合、バラストタンク30に空気を導入させて浮力を与えて3次元形状測定部16Aが収容された水中部16を水面に移動させる。
また、浮力制御部16Cは、バッテリ22への電力の供給が完了した無人飛行体14が水中部16まで飛行して戻り、電磁石26と水中部16が再度連結されてアンカー38が上昇された場合、バラストタンク30に水を導入させて浮体から浮力を取り除き3次元形状測定部16Aが収容された水中部16を水中に移動させる。
巻取制御部16Dは、ウインチ36のワイヤ3602の巻き取りおよび繰り出しを制御する。
具体的には、巻取制御部16Dは、モータ(不図示)によりウインチ36の巻胴3604をR1方向(図3)に回転させることで、ワイヤ3602を巻胴3604の外周面に巻き取らせ、ワイヤ3602の先端に取り付けられたアンカー38を水面に向けて垂直方向に上昇させる。
また、巻取制御部16Dは、モータ(不図示)によりウインチ36の巻胴3604をR2方向(図3)に回転させることで、ワイヤ3602を巻胴3604の外周面から繰り出させ、ワイヤ3602の先端に取り付けられたアンカー38を水底に向けて垂直方向に降下させる。
本実施の形態では、巻取制御部16Dは、バッテリ22の容量が所定の閾値以下であると判断され、3次元形状測定部16Aを収容する水中部16が水面に移動された場合、ワイヤ3602を繰り出してアンカー38を水底まで降下させて、水中部16を係留させる。
また、巻取制御部16Dは、バッテリ22への電力の供給が完了した無人飛行体14が水中部16まで飛行して戻り、電磁石26と水中部16が再度連結された場合、ワイヤ3602を巻き取ってアンカー38を上昇させる。
また、巻取制御部16Dは、測定部側測位部16Bにより生成された測定部測位情報により、水中部16が所定範囲内に係留されていないと判断された場合、ワイヤ3602を巻き取ってアンカー38を上昇させ、水中部16が水平方向に移動された場合、ワイヤ3602を繰り出して再度アンカー38を水底まで降下させる。
本実施の形態では、浮力制御部16Cと巻取制御部16Dとにより、3次元形状測定部16Aを所定範囲に係留する係留部を構成しており、係留部は、バッテリ22の容量が所定の閾値以下であると判断された場合、3次元形状測定部16Aを収容する水中部16を係留し、無人飛行体14のバッテリ22への電力の供給が完了して電磁石26と水中部16が再度連結された場合、水中部16の係留を解除する。
したがって、例えば、本実施の形態では、バッテリ22の容量が所定の閾値以下であると判断された場合、浮力制御部16Cにより水中部16を水面に移動し、巻取制御部16Dによりアンカー38を水底まで降下させることで、図4に示すように、水中部16を係留する。
図4では、水面に浮上した水中部16が水底に降下されたアンカー38により、走錨されないよう所定範囲内に係留している状態を示しており、無人飛行体14から吊り下げられたワイヤ24は水中部16に連結されたままであるが支持はしていない。
そして、水中部16Aが所定範囲内に係留している場合に電力制御部14Fにより電磁石26への電力の供給が停止されると、電磁石26と筐体28との連結が解除され、無人飛行体14は、図5に示すように、3次元形状測定部16Aを含む水中部16を吊り下げずに飛行できる。そして、水中部16は、アンカー38により係留されているため係留場所が不明になることはない。
図5では、ワイヤ24を下げた状態で無人飛行体14を飛行させている状態を示しているが、無人飛行体14のみで飛行する場合に電磁石26が取り付けられたワイヤ24を無人飛行体14の下部に収容する構成としてもよい。
また、図4に示すように、浮力制御部16Cにより水中部16が水面に移動され、巻取制御部16Dによりアンカー38が水底まで降下されても、アンカー38の水底での位置が安定していない場合は、水中部16を所定範囲に留めることができない。
水中部16が所定範囲内に係留されているか否かは、例えば、測定部側測位部16Bによって生成された測定部測位情報を用いて、所定時間(例えば1分)経過するまでに所定範囲内に留まっているか否かにより判断することができる。
水中部16が所定範囲内に係留されていない場合、図6に示すように、一旦巻取制御部16Dによりアンカー38を上昇させ、飛行体側飛行制御部14Cにより無人飛行体14を飛行させることで水中部16が水面に浮上した状態で曳行し、水平方向に移動させる。
そして、係留場所を移動した後、巻取制御部16Dによりアンカー38が水底まで降下させることで、水中部16の係留をやり直す。これにより、水中部16を走錨させることなく所定範囲内に係留することができる。
次に、図7-1、7-2のフローチャートを参照して水底形状測定装置10の動作について説明する。
予め、無人飛行体14は、所定の待機場所に置かれているものとする。
まず、作業者が管理装置12の遠隔操作司令部12Aを操作することで、浮力制御部16Cは、水流通弁32および気体流通弁34の双方を開弁しバラストタンク30の内部の水をバラストタンク30から排出したのち、水流通弁32および気体流通弁34の双方を閉弁し、バラストタンク30の内部に空気が満たされた状態としておく(ステップS10)。なお、予めバラストタンク30の内部に空気が満たされた状態であるならば、ステップS10は省略される。
そして、作業者からの遠隔操作により、電力制御部14Fは、電磁石26に電力を供給して電磁石26と筐体28の上面とを連結し、水中部16を無人飛行体16に連結する(ステップS12)。電磁石26に筐体28を連結させる場合、作業者がそれらを把持して連結させてもよいし、遠隔操作により無人飛行体14を飛行させて連結させてもよい。
次に、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を所定の待機場所から飛行させ、表示部12Dに表示される無人飛行体14周囲の画像情報を視認しつつ、水底形状を測定する海、湖、河川に向かって無人飛行体14を飛行させる(ステップS14)。
そして、無人飛行体14が海、湖、河川などの水面48の上方に到達したならば、表示部12Dに表示される無人飛行体14周囲の画像情報を視認しつつ、無人飛行体14を水面48に向けて降下させ、水中部16を空中から水面48に移動させた状態でホバリングさせその状態を維持する(ステップS16)。
ここで、水中部16は、バラストタンク30による浮力が筐体28に作用することで、筐体28が水面48に浮かび筐体28の一部が水面48上に位置した状態となる(ステップS18)。
そして、作業者は、遠隔操作司令部12Aを操作することにより、無水底形状を測定する海、湖、河川の測定箇所に向かって無人飛行体14を飛行させ水中部16を筐体28が水面48に浮んだ状態で測定箇所に向かって曳行する(ステップS20)。
ここで、水中部16は、筐体28が水面48に浮かび筐体28の一部が水面48上に位置した状態で、ワイヤ24を介して無人飛行体14によって測定箇所まで曳行されることになり、この際、無人飛行体14に加わる水中部16の重量はほぼゼロとなり、無人飛行体14からワイヤ24で吊り下げられた水中部16が空中に位置している場合に無人飛行体14に加わる重量に比較して大幅に軽減されることになる。
次に、作業者は、表示部12Dに表示される無人飛行体14周囲の画像情報を視認して筐体28が測定箇所の上方に到達したならば、その位置で無人飛行体14をホバリングさせその状態を維持する(ステップS22)。
そして、作業者からの遠隔操作により、浮力制御部16Cは、水流通弁32および気体流通弁34の双方を開弁させ、これによりバラストタンク30の内部の空気が気体流通弁34からバラストタンク30の外部に排出されると共に、水流通弁32から水がバラストタンク30の内部に導入され、やがて、バラストタンク30の内部の空気が排出され、バラストタンク30の内部が水で満たされる。これにより筐体28に作用していた浮力がほぼゼロとなる(ステップS24)。
そして、作業者は、表示部12Dに表示される無人飛行体14周囲の画像情報を視認しつつ、遠隔操作司令部12Aを操作することにより、無人飛行体14を水面48に向けて降下させ、水中部16を水面48から所定の深さに位置させた状態で、言い換えると、3次元形状測定部16Aによる水底46の測定が適切に行われるに足る深さまで水中部16を沈めた状態で、無人飛行体14をホバリングさせその状態を維持する(ステップS26)。
次に、作業者からの遠隔操作により、飛行体側測位部14Dおよび3次元形状測定部16Aは、測定動作を開始する(ステップS28)。
これにより、飛行体側測位部14Dで生成された飛行体測位情報、および3次元形状測定部16Aで生成された3次元形状情報が無線回線Nを介して無人飛行体14から管理装置12の水底形状情報生成部12Fに送信され(ステップS30)、水底形状情報生成部12Fは水底形状情報を生成する(ステップS32)。
次に、飛行体測位情報および3次元形状情報が管理装置12に送信されると、バッテリ管理部14Eは、バッテリ22の容量が所定の閾値以下であるか否かを判断する(ステップS34)。
ステップS34が否定ならば、すなわちバッテリ22の容量が所定の閾値より多い場合には、作業者は、表示部12Dに表示される画像情報、水底46の形状を示す断面図、斜視図、等深線図などを視認しつつ、まだ、形状測定がなされてない水底46の形状測定ができるように、遠隔操作司令部12Aを操作することにより、無人飛行体14を水面48に沿って飛行させ、測定箇所を移動させる(ステップS36)。
そして、作業者は、表示部12Dに表示される画像情報、水底46の形状を示す断面図、斜視図、等深線図などを視認することで、形状測定すべき水底46の領域の全域にわたって測定が終了したか否かを判断する(ステップS38)。
ステップS38が否定ならばステップS30に戻り同様の動作を行なう。
一方、ステップS38が肯定ならば、すなわち測定が終了したならば、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を上昇させ、水中部16の全体を空中まで上昇させる(ステップS40)。
ここで、水流通弁32および気体流通弁34の双方は開弁された状態であるため、気体流通弁34からバラストタンク30の内部に空気が導入されると共に、水流通弁32から水がバラストタンク30の外部に排出され、やがて、バラストタンク30の内部が空気で満たされたならば、水流通弁32および気体流通弁34の双方を閉弁し、バラストタンク30の内部に空気が満たされた状態とする(ステップS42)。
次いで、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を水面48に向けて降下させ、水中部16を空中から水面48に移動させた状態でホバリングさせその状態を維持する(ステップS44)。
ここで、水中部16は、バラストタンク30による浮力が筐体28に作用することで、筐体28が水面48に浮かび筐体28の一部が水面48上に位置した状態となる。
そして、作業者は、遠隔操作司令部12Aを操作することにより、待機場所に近い海、湖、河川の水面48に向かって無人飛行体14を飛行させ水中部16を筐体28が水面48に浮んだ状態で曳行する(ステップS46)。
ここで、ステップS20の場合と同様に、水中部16は、筐体28が水面48に浮かび筐体28の一部が水面48上に位置した状態で、ワイヤ24を介して無人飛行体14によって曳行されるため、無人飛行体14に加わる水中部16の重量はほぼゼロとなることになり、また、無人飛行体14に加わる水中部16が受ける水の抵抗が軽減されることになる。
そして、水中部16が待機場所に近い水面48の箇所に到達したならば、作業者は遠隔制御により無人飛行体14を上昇させ、水中部16の全体を水面48から空中に引き上げ、表示部12Dに表示される画像を視認しつつ、無人飛行体14を所定の待機場所に向かって飛行させ、待機場所に着陸させる(ステップS48)。
そして、記憶部12Hに格納されていた水底46の領域の全域の水底形状情報が出力部12Iから出力され(ステップS50)、一連の測定動作が終了する。
一方、ステップS34が肯定ならば、すなわちバッテリ22の容量が所定の閾値以下である場合、バッテリ管理部14Eがその旨を管理装置12に送信して作業者に知らせると、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を上昇させ、水中部16の全体を空中まで上昇させる(ステップS52)。
そして、水流通弁32および気体流通弁34の双方は開弁された状態であるため、気体流通弁34からバラストタンク30の内部に空気が導入されると共に、水流通弁32から水がバラストタンク30の外部に排出され、やがて、バラストタンク30の内部が空気で満たされたならば、水流通弁32および気体流通弁34の双方を閉弁し、バラストタンク30の内部に空気が満たされた状態とする(ステップS54)。
次に、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を水面48に向けて降下させ、水中部16を空中から水面48に移動させた状態でホバリングさせその状態を維持する(ステップS56)。
そして、作業者からの遠隔操作により、巻取制御部16Dは、ウインチ36の巻胴3604を回転させてワイヤ3602を繰り出させ、ワイヤ3602に取り付けられたアンカー38を降下させる(ステップS58)。
次に、作業者からの遠隔操作により、測定部側測位部16Bは、測位動作を開始して測定部測位情報を生成し(ステップS60)、飛行体側通信部14を経由して管理装置12に送信する。
作業者は、測定部測位情報により、3次元形状測定部16Aを収容する水中部16が所定範囲内に係留されているか否かを判断する(ステップS62)。
ステップS62が否定ならば、すなわち、水中部16が所定範囲内に係留されていない場合、作業者からの遠隔操作により、巻取制御部16Dは、ウインチ36の巻胴3604を回転させてワイヤ3602を巻き取り、ワイヤ3602に取り付けられたアンカー38を上昇させる(ステップS64)。
そして、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を飛行させ水中部16を筐体28が水面48に浮んだ状態で曳行し(ステップS66)、水中部16を水平方向に移動させる。
水中部16を水平方向に移動させた場合、再度ステップS58に戻り同様の動作を行う。
一方、ステップS62が肯定ならば、すなわち、水中部16が所定範囲内に係留されている場合、作業者からの遠隔操作により、電力制御部14Fは、電磁石26への電力の供給を停止して電磁石26と筐体28の上面との連結を解除し、水中部16を無人飛行体16から取り外す(ステップS68)。
次に、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を水中部16の係留場所から飛行させ、表示部12Dに表示される無人飛行体14周囲の画像情報を視認しつつ、電力供給装置まで無人飛行体14を飛行させる(ステップS70)。
そして、電力供給装置によって電力を供給してバッテリ22を充電し(ステップS72)、充電が完了すると、作業者は、遠隔操作司令部12Aを操作することにより、無人飛行体14を電力供給装置から飛行させ、表示部12Dに表示される無人飛行体14周囲の画像情報を視認しつつ、水中部16の係留場所まで無人飛行体14を飛行させる(ステップS74)。
無人飛行体14が水中部16まで戻ると、作業者からの遠隔操作により、電力制御部14Fは、電磁石26に電力を供給して電磁石26と筐体28の上面とを再度連結し、水中部16を無人飛行体16に再度連結する(ステップS76)。
そして、作業者からの遠隔操作により、巻取制御部16Dは、ウインチ36の巻胴3604を回転させてワイヤ3602を巻き取り、ワイヤ3602に取り付けられたアンカー38を上昇させる(ステップS78)。
アンカー38を上昇させた場合、ステップS36に戻り水底形状の測定を再開する。
以上説明したように、本実施の形態の水底形状測定装置10によれば、無人飛行体14を飛行させるバッテリ22の容量が所定の閾値以下であると判断された場合、無人飛行体14から吊り下げられたワイヤ24に設けられた電磁石26に連結された水中部16(3次元形状測定部16A)を係留し、電磁石26と水中部16の連結を解除する。そして、水中部16が取り外された無人飛行体16を電力供給装置まで飛行させて電力を供給し、電力の供給が完了した場合、無人飛行体16を水中部16まで飛行させ、電磁石26と水中部16を再度連結し、水中部16の係留を解除することで、3次元形状測定部16Aによる測定を再開可能にする。
したがって、電力を供給するために無人飛行体14を飛行させる際の電力の消費を抑制し、測定時間をより長く確保して測定効率の向上を図る上で有利となる。
また、水中部16の筐体28に浮力を与えるバラストタンク28と、水中部16に設けられアンカー38が取り付けられたワイヤ3602を巻き取ることでアンカー38を上昇させ、ワイヤ3602を繰り出すことでアンカー38を降下させるウインチ36とを備え、バラストタンク30の浮力を制御する浮力制御部16Cと、ワイヤ3602の巻き取りおよび繰り出しを制御する巻取制御部16Dとで係留部を構成している。そして、バッテリ22の容量が所定の閾値以下であると判断された場合、バラストタンク30に浮力を与えて水中部16を水面に移動させ、アンカー38を水底まで降下させることで水中部16を係留するため、簡易な構成により水中部16を係留して、電力の消費を抑制できる。
また、水中部16が所定範囲内に係留されていない場合、アンカー38を上昇させて水中部16を水平方向に移動させ、再度アンカー38を水底まで降下させるため、係留した水中部16が安定しない場合には係留をやり直すことができ、水中部16の走錨を回避する上で有利となる。
また、無人飛行体14から吊り下げた3次元形状測定部16Aを水中に位置させて水底の3次元形状を測定し3次元形状情報を生成すると共に、飛行体側測位部14Dにより無人飛行体14の位置を示す飛行体測位情報を生成し、それら3次元形状情報および飛行体測位情報に基づいて水底の形状を地球上の座標位置で示される水底形状情報を生成する。
したがって、ソナーを設けた観測船が不要となるため、観測船と観測船を運行するための船舶免許資格者が必要となり、設備コスト、運用コストを低減する上で有利となる。
また、3次元形状測定部16Aを支持する無人飛行体14は、波浪の影響を受けることがなく、従来のように観測船の揺れを補正するための設備が不要となり、構成の簡素化、コストの低減を図る上で有利となる。
上述した実施の形態では、水底形状情報を生成した後にバッテリ22の容量を判断する構成としているが、別のタイミングで判断してもよく、例えば、水底形状の測定前などに判断する構成としてもよい。
また、上述した実施の形態では、水底形状の測定処理にバッテリ22の容量不足による無人飛行体14の充電処理を含めているが、水底形状の測定処理に並行させて無人飛行体14の充電処理を行う構成としてもよい。この場合、バッテリ22の容量が所定の閾値以下と判断されたら、無人飛行体14の墜落を防止することを優先するため、水底形状の測定処理を中断して、無人飛行体14の充電処理を行う。
また、上述した実施の形態では、水中測定装置を水底形状を測定する水底測定装置に適用した例を示したが、無人飛行体を用いて水中を測定する装置であれば適用することが可能である。
また、上述した実施の形態では、作業者が無人飛行体14を遠隔制御する場合について説明したが、前述したように、自動制御により無人飛行体14を予め定められた飛行コースを飛行させ、飛行コースに沿った水底46の水底形状情報を得るようにしてもよく、その場合は、省人化を図りつつ水底形状の測定を効率的に行なう上で有利となる。
また、上述した実施の形態では、水底形状情報生成部12Fを管理装置12に備えていたが、無人飛行体14に設け、水底形状情報生成部12Fで生成された水底形状情報を、無線回線Nを介して無人飛行体14から離れた管理装置12へ送信するようにしてもよい。
しかしながら、本実施の形態のように、無人飛行体14から離れた管理装置12に水底形状情報生成部12Fを設け、水底形状情報生成部12Fによる水底形状情報の生成を、無線回線Nを介して供給される3次元形状情報および飛行体測位情報に基づいて行なうようにすると、無人飛行体14に水底形状情報生成部12Fを設ける場合に比較して、無人飛行体14の省電力化、軽量化を図れることから、無人飛行体14の飛行継続時間を確保でき、したがって、無人飛行体14の一回の飛行によってより広い範囲の水底46の3次元形状の測定を行なうことができ、測定の効率化を図る上で有利となる。
10 水底形状測定装置
12 管理装置
12A 遠隔操作司令部
12B 管理装置側通信部
12C 地図データベース部
12D 表示部
12E 管理装置側飛行制御部
12F 水底形状情報生成部
12G 情報処理部
12H 記憶部
12I 出力部
14 無人飛行体
14A 飛行体側通信部
14B 撮像部
14C 飛行体側飛行制御部
14D 飛行体側測位部
14E バッテリ管理部
14F 電力制御部
16 水中部
16A 3次元形状測定部
16B 測定部側測位部
16C 浮力制御部
16D 巻取制御部
18 飛行体本体
20 ロータ
22 バッテリ
24 ワイヤ
26 電磁石
28 筐体
30 バラストタンク
32 水流通弁
34 気体流通弁
36 ウインチ
38 アンカー
46 水底
48 水面
50 超音波
52 レーザー光

Claims (7)

  1. 遠隔制御される無人飛行体と、
    前記無人飛行体を飛行させる飛行制御部と、
    前記無人飛行体から吊り下げられた接続部材に設けられた取付部に取り外し可能に連結され、水中に位置した状態で測定する測定部と、
    前記取付部と前記測定部の連結を制御する連結制御部と、
    前記測定部を所定範囲内に係留する係留部と、
    前記無人飛行体を飛行させる動力源の容量が所定の閾値以下であるか否かを判断する動力源管理部と、を備え、
    前記係留部は、前記動力源の容量が前記所定の閾値以下であると判断された場合、前記測定部を係留し、
    前記連結制御部は、前記測定部が前記所定範囲内に係留されている場合、前記取付部と前記測定部の連結を解除し、
    前記飛行制御部は、前記測定部が取り外された前記無人飛行体を動力源供給装置まで飛行させた後、前記動力源の供給が完了した前記無人飛行体を前記測定部まで飛行させ、
    前記連結制御部は、前記無人飛行体への前記動力源の供給が完了した場合、前記取付部と前記測定部を再度連結し、
    前記係留部は、前記取付部と前記測定部が再度連結された場合、前記測定部の係留を解除し、
    前記測定部に浮力を与える浮体と、
    前記測定部に設けられ、端部に抵抗部材が取り付けられた巻取部材を巻き取ることで前記抵抗部材を上昇させ、前記巻取部材を繰り出すことで前記抵抗部材を降下させる巻上装置と、をさらに備え、
    前記係留部は、前記浮体の浮力を制御する浮力制御部と、前記巻取部材の巻き取りおよび繰り出しを制御する巻取制御部とを含んで構成され、
    前記浮力制御部は、前記動力源の容量が前記所定の閾値以下であると判断された場合、前記浮体に浮力を与えて前記測定部を水面に移動させ、
    前記巻取制御部は、前記動力源の容量が前記所定の閾値以下であると判断されて前記測定部が水面に移動された場合、前記巻取部材を繰り出して前記抵抗部材を水底まで降下させて前記測定部を係留し、
    前記巻取制御部は、前記取付部と前記測定部が再度連結された場合、前記巻取部材を巻き取って前記抵抗部材を上昇させ、
    前記浮力制御部は、前記取付部と前記測定部が再度連結されて前記抵抗部材が上昇された場合、前記浮体から浮力を取り除く、
    ことを特徴とする水中測定装置。
  2. 測位衛星から受信した測位信号に基づいて前記測定部の位置を示す測定部測位情報を生成する測定部側測位部をさらに備え、
    前記巻取制御部は、前記測定部測位情報により前記測定部が前記所定範囲内に係留されていないと判断された場合、前記巻取部材を巻き取って前記抵抗部材を上昇させ、
    前記飛行制御部は、前記無人飛行体を飛行させることで前記測定部を移動させ、
    前記巻取制御部は、前記測定部が移動された場合、前記巻取部材を繰り出して前記抵抗部材を水底まで降下させる、
    ことを特徴とする請求項に記載の水中測定装置。
  3. 前記取付部は、電磁石であって、
    前記連結制御部は、前記電磁石への電力の供給を制御することで、前記電磁石と前記測定部の連結を制御する、
    ことを特徴とする請求項1または2に記載の水中測定装置。
  4. 前記測定部を収容し、上面が前記電磁石に吸引される金属材料で構成された筐体をさらに備え、
    前記連結制御部は、前記電磁石への電力の供給を制御することで、前記電磁石と前記筐体の上面の連結を制御する、
    ことを特徴とする請求項に記載の水中測定装置。
  5. 前記浮体は、内部に気体と水とが給排されるバラストタンクであって、
    前記浮力制御部は、前記バラストタンクの内部への気体と水との給排を調整することで、前記バラストタンクの浮力を制御する、
    ことを特徴とする請求項1~4のいずれか一項に記載の水中測定装置。
  6. 前記測定部は、水底の3次元形状を測定し3次元形状情報を生成する3次元形状測定部であって、
    前記無人飛行体に搭載され測位衛星から受信した測位信号に基づいて前記無人飛行体の位置を示す飛行体測位情報を生成する飛行体側測位部と、
    前記3次元形状情報および前記飛行体測位情報に基づいて前記水底の形状を地球上の座標位置で示される水底形状情報を生成する水底形状情報生成部と、をさらに備える、
    ことを特徴とする請求項1~のいずれか一項に記載の水中測定装置。
  7. 遠隔制御される無人飛行体を備えた水中測定装置で実行される水中測定方法であって、
    記無人飛行体から吊り下げられた支持部材に設けられた取付部に取り外し可能に連結され、水中に位置した状態で測定する測定部と、前記測定部に浮力を与える浮体と設け
    前記無人飛行体を飛行させる動力源の容量が所定の閾値以下であるか否かを判断する動力源管理ステップと、
    前記動力源の容量が前記所定の閾値以下であると判断された場合、前記浮体に浮力を与えて前記測定部を水面に移動させると共に前記測定部を所定範囲内に係留する係留ステップと、
    前記測定部が前記所定範囲内に係留されている場合、前記取付部と前記測定部の連結を解除する連結解除ステップと、
    前記測定部が取り外された前記無人飛行体を動力源供給装置に飛行させた後、前記動力源の供給が完了した前記無人飛行体を前記測定部まで飛行させる飛行制御ステップと、
    前記無人飛行体への前記動力源の供給が完了した場合、前記取付部と前記測定部を再度連結する連結ステップと、
    前記取付部と前記測定部が再度連結された場合、前記測定部の係留を解除すると共に前記浮体から浮力を取り除く係留解除ステップと、を含む、
    ことを特徴とする水中測定方法。
JP2019208613A 2019-11-19 2019-11-19 水中測定装置および水中測定方法 Active JP7325309B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019208613A JP7325309B2 (ja) 2019-11-19 2019-11-19 水中測定装置および水中測定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019208613A JP7325309B2 (ja) 2019-11-19 2019-11-19 水中測定装置および水中測定方法

Publications (2)

Publication Number Publication Date
JP2021079816A JP2021079816A (ja) 2021-05-27
JP7325309B2 true JP7325309B2 (ja) 2023-08-14

Family

ID=75963913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019208613A Active JP7325309B2 (ja) 2019-11-19 2019-11-19 水中測定装置および水中測定方法

Country Status (1)

Country Link
JP (1) JP7325309B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6961266B1 (ja) * 2020-07-20 2021-11-05 株式会社amuse oneself 検出システム、被吊下装置及び検出方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018055463A (ja) 2016-09-29 2018-04-05 セコム株式会社 飛行ロボット制御システムおよび飛行ロボット
JP2018094961A (ja) 2016-12-08 2018-06-21 三菱重工業株式会社 浮沈装置
JP2018176905A (ja) 2017-04-07 2018-11-15 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法
JP2019073160A (ja) 2017-10-16 2019-05-16 株式会社安田測量 水底探査装置及び地形探査システム
JP2019529201A (ja) 2016-07-27 2019-10-17 シン, ジョン−フンSHIN, Jeong−Hoon ドローンの宅配物搭載装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139370A (ja) * 1991-11-18 1993-06-08 Mitsubishi Heavy Ind Ltd 自動深度設定式水中ブイ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529201A (ja) 2016-07-27 2019-10-17 シン, ジョン−フンSHIN, Jeong−Hoon ドローンの宅配物搭載装置
JP2018055463A (ja) 2016-09-29 2018-04-05 セコム株式会社 飛行ロボット制御システムおよび飛行ロボット
JP2018094961A (ja) 2016-12-08 2018-06-21 三菱重工業株式会社 浮沈装置
JP2018176905A (ja) 2017-04-07 2018-11-15 鹿島建設株式会社 無人飛行体を用いた水中調査システム及び水中調査方法
JP2019073160A (ja) 2017-10-16 2019-05-16 株式会社安田測量 水底探査装置及び地形探査システム

Also Published As

Publication number Publication date
JP2021079816A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
BRPI0610691A2 (pt) método para adquirir dados sìsmicos em uma pluralidade de posições dispersas sobre uma zona no fundo do mar, equipamento de guia destinado a dirigir uma unidade de aquisição sìsmica no sentido de uma posição alvo localizado sobre o fundo do mar e equipamento e sistema para aquisição sìsmica do fundo do mar
US5297109A (en) Piling and pier inspection apparatus and method
KR102229294B1 (ko) 해양관측 무인 이동체용 스마트 스테이션 시스템
KR101942823B1 (ko) 음향탐사에 의한 해수로의 지형변화 측량시스템
JP7325309B2 (ja) 水中測定装置および水中測定方法
CN112835049A (zh) 一种水下淤泥厚度探测机器人及其系统
KR200496182Y1 (ko) 쌍동선 타입의 모듈형 수상 로봇
Hardy et al. Hadal landers: the DEEPSEA CHALLENGE ocean trench free vehicles
CN108516058A (zh) 一种用于深海观测数据实时回收的无人船
KR101859569B1 (ko) 해저지형과 지리정보에 대한 데이터 수집시스템
CN116997508A (zh) 水上中继机与水中航行体的连结系统及其运用方法
KR20190141341A (ko) 드론과 소나를 이용한 수중구조물 무인 조사 방법
US5616059A (en) Tailbuoy with self-deploying mast
KR102004908B1 (ko) 수중 드론을 이용한 수상 태양광 설비의 수중 구조물 점검 시스템 및 이를 이용한 수중 구조물 점검 방법
JP6723111B2 (ja) 重力測定装置
JP7280799B2 (ja) 水中測定装置
JP7378891B2 (ja) 水底形状測定装置
JPH10287293A (ja) 海底調査観測設備
CN115341592B (zh) 一种基于水下机器人的海上风电桩基冲刷检测方法和系统
JP7280786B2 (ja) 水底形状測定装置
JP7313250B2 (ja) 水底形状測定装置
JP7401201B2 (ja) 水底形状測定装置
JP4157416B2 (ja) 水中物体の位置測定用補助装置、水中物体の位置測定システム、及び水中物体の位置測定方法、並びに既設沈埋函と新設沈埋函の接合方法
JP7325284B2 (ja) 水底形状測定装置
JP2021079821A (ja) 水底形状測定装置および水底形状測定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220817

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230801

R150 Certificate of patent or registration of utility model

Ref document number: 7325309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150