JP6776083B2 - 飛行ロボット制御システムおよび飛行ロボット - Google Patents

飛行ロボット制御システムおよび飛行ロボット Download PDF

Info

Publication number
JP6776083B2
JP6776083B2 JP2016191579A JP2016191579A JP6776083B2 JP 6776083 B2 JP6776083 B2 JP 6776083B2 JP 2016191579 A JP2016191579 A JP 2016191579A JP 2016191579 A JP2016191579 A JP 2016191579A JP 6776083 B2 JP6776083 B2 JP 6776083B2
Authority
JP
Japan
Prior art keywords
flight
robot
route
flying
wind speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016191579A
Other languages
English (en)
Other versions
JP2018052341A (ja
Inventor
神山 憲
憲 神山
青木 文男
文男 青木
友博 成尾
友博 成尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Secom Co Ltd
Original Assignee
Secom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Secom Co Ltd filed Critical Secom Co Ltd
Priority to JP2016191579A priority Critical patent/JP6776083B2/ja
Publication of JP2018052341A publication Critical patent/JP2018052341A/ja
Application granted granted Critical
Publication of JP6776083B2 publication Critical patent/JP6776083B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本発明は、予め設定された飛行ルートを飛行する飛行ロボットと、この飛行ロボットの飛行を制御する飛行ロボット制御システムに関する。
従来、充電式バッテリを搭載した自律型の移動ロボットとして、例えば下記特許文献1に開示されるものが知られている。この特許文献1に開示される自律型の移動ロボットでは、バッテリ残量が第1の所定値以下になると、消費電力の少ない省電力モードに設定し、作業を継続しながら充電ステーションに移動する。
また、下記特許文献2には、移動体のバッテリ残量を計測し、バッテリ残量が所定値以下の場合に、移動体が走行する道路の勾配の緩やかなルートを選択して移動体へのエネルギーの補給に関する案内を行う案内装置が知られている。
特開2000−047728号公報 特開2014−202519号公報
ところで、ドローン等の小型飛行ロボットは、地上走行型のロボットと比較して移動可能な時間(バッテリの持ち)が短く、バッテリ残量を考慮して飛行制御を行うことは極めて重要である。
しかしながら、この種の小型飛行ロボットは、風速が大きい状況では、姿勢の制御や飛行ルートの維持のためにバッテリの消費量が増大してしまう。このような場合、小型飛行ロボットは、予め設定していた経路を飛行しようとすると、経路の途中でバッテリ残量がなくなって飛行中に墜落してしまう虞がある。
本発明は、上記課題を解決しようとするものであり、飛行中のバッテリ切れを極力防止することができる飛行ロボット制御システムおよび飛行ロボットを提供することを目的としている。
上記した目的を達成するために、本発明に係る飛行ロボット制御システムは、予め設定された飛行ルートを飛行する飛行ロボットを制御する飛行ロボット制御システムにおいて、
飛行ロボット周囲の風速が基準値以上か否かを判定する風速判定部と、
飛行ロボット周囲の気流の安定度を判定する気流判定部と、
前記飛行ロボットのバッテリ残量を計測する計測部と、
を備え、
前記飛行ロボット周囲の風速が基準値以上、かつ前記バッテリ残量が第1の閾値未満の場合、または、前記飛行ロボット周囲の気流の安定度が低く、かつ前記バッテリ残量が前記第1の閾値未満の場合、以降の飛行ルートを現在よりもバッテリ消費量が少なくなる飛行ルートに変更することを特徴とする。
また、本発明に係る飛行ロボット制御システムは、前記飛行ロボット周囲の風速が大きいほど前記第1の閾値を大きく設定してもよい。
さらに、本発明に係る飛行ロボット制御システムは、前記気流の安定度が低いほど前記第1の閾値を大きく設定してもよい。
また、本発明に係る飛行ロボット制御システムは、前記飛行ルートを変更する場合、現在設定されている飛行ルートよりも総飛行距離が短くなる短縮ルートに設定してもよい。
さらに、本発明に係る飛行ロボット制御システムは、前記短縮ルートを、予め設定された重要度の低い地点をスキップする飛行ルートに設定してもよい。
また、本発明に係る飛行ロボット制御システムは、前記短縮ルートを、現在の飛行における飛行距離とバッテリ消費量とから飛行可能距離を算出し、当該飛行可能距離に基づいて目的地点に到達できるルートに設定してもよい。
さらに、本発明に係る飛行ロボット制御システムは、前記飛行ロボット周囲の風速の値にかかわらず、前記バッテリ残量が前記第1の閾値より小さい第2の閾値未満の場合、所定の充電可能な地点に前記飛行ロボットを飛行させる飛行ルートに設定してもよい。
また、本発明に係る飛行ロボットは、予め設定された飛行ルートを飛行する飛行ロボットにおいて、
飛行ロボット周囲の風速が基準値以上か否かを判定する風速判定部と、
飛行ロボット周囲の気流の安定度を判定する気流判定部と、
前記飛行ロボットのバッテリ残量を計測する計測部と、
を備え、
前記飛行ロボット周囲の風速が基準値以上、かつ前記バッテリ残量が第1の閾値未満の場合、または、前記飛行ロボット周囲の気流の安定度が低く、かつ前記バッテリ残量が前記第1の閾値未満の場合、以降の飛行ルートを現在よりもバッテリ消費量が少なくなる飛行ルートに変更することを特徴とする。
本発明の飛行ロボット制御システムおよび飛行ロボットによれば、飛行ロボットの飛行環境及びバッテリ残量に応じた飛行ルートの設定が可能になり、飛行中のバッテリ切れを極力防止できる。
本発明に係る飛行ロボット制御システムの概要を示すイメージ図であって、飛行ロボットが巡回する巡回経路を示す図である。 本発明に係る飛行ロボット制御システムの全体構成を示す模式図である。 本発明に係る飛行ロボットのブロック構成図である。 本発明に係る飛行ロボット制御システムにおける飛行制御装置のブロック構成図である。 本発明に係る飛行ロボット制御システムにおける飛行ルート変更時の動作フローチャートである。
以下、本発明を実施するための形態について、図1〜5を参照しながら詳細に説明する。
[本発明の概要について]
本発明は、予め設定された飛行ルート(例えば、巡回スケジュールの巡回経路、任意に指定される移動目標位置に移動して警備情報を収集する飛行経路など)を飛行する飛行ロボットと、この飛行ロボットの飛行を制御する飛行ロボット制御システムに関する。
本発明に係る飛行ロボット制御システムおよび飛行ロボットは、飛行ロボットの飛行中において、バッテリの消費量が増大すると予測される風速が大きい状況下で、かつバッテリ残量が所定値以下の場合、予め設定された飛行ルートを変更(短縮ルートに変更/風の影響を受けにくいルートに変更)する機能を有する。このように、風速とバッテリ残量とが所定の条件を満たした時点で飛行ルートを変更することにより、風が強い中を飛行し続け、バッテリ切れになることを防止するよう早期に判断すること可能となる。
[飛行ロボット制御システムの構成について]
図1および図2に示すように、本実施の形態の飛行ロボット制御システム1は、上述した機能を実現するため、ロボポート2、飛行ロボット3、飛行制御装置4、センタ装置5によって構築される。この飛行ロボット制御システム1における飛行ロボット3は、図1において、例えばロボポート2(基準位置P0)→監視ポイントP1→監視ポイントP2→監視ポイントP3→監視ポイントP4→監視ポイントP5→監視ポイントP6→監視ポイントP7→ロボポート2(基準位置P0)の順番に巡回経路が決められた巡回番号1の巡回を行う場合、ロボポート2から離陸した後、P1→P2→P3→P4→P5→P6→P7の順番に移動して巡回し、監視ポイントP1〜P7の各エリアE1〜E7で警備情報(例えば撮影画像)を収集してロボポート2に帰還する。
尚、飛行ロボット3は巡回経路の移動中も警備情報を収集してもよい。飛行ロボット3が収集した警備情報は、飛行制御装置4を介してセンタ装置5に送信される。センタ装置5は、飛行ロボット3から飛行制御装置4を介して送信される警備情報をモニタに表示し、監視領域Eにおける巡回経路上や監視ポイントに異常が無いかの安全確認を行う。
[ロボポートの構成について]
ロボポート2は、飛行ロボット3の待機場所であり、飛行制御装置4からの指示を受け、飛行ロボット3の離陸や着陸を行うための設備を備える。また、ロボポート2は、飛行ロボット3が着陸するときに飛行ロボット3をポート内に収容する機構を備え、飛行ロボット3をポート内に収容したときに、飛行ロボット3に対して接触又は非接触にて給電を行う機能を有する。
[飛行ロボットの構成について]
飛行ロボット3は、図3に示すように、ロータ31、ロータ駆動部32、アンテナ33、高度センサ34、撮影部35、記憶部36、電源37、ロボ制御部38を含んで概略構成される。
ロータ31は、例えば4つの回転体で構成され、飛行ロボット3の機体を上昇・下降・方向転換、前進などの飛行をするようにロータ駆動部32によって駆動される。
ロータ駆動部32は、飛行ロボット3の機体を上昇・下降・方向転換、前進などの飛行をするため、ロボ制御部38の制御によりロータ31の各回転体を駆動する。
アンテナ33は、ロボット本体に設けられ、小電力無線、Wi−Fiなどで、飛行制御装置4との間で無線通信を行う。
高度センサ34は、ロボ制御部38の制御により、気圧センサの気圧値や飛行ロボット3の機体から鉛直下方に投受光されるレーザなどにより飛行ロボット3の現在高度を計測する。
撮影部35は、例えば撮像素子を用いたカメラで構成され、飛行ロボット3周囲(例えば前方や下方など)を撮影する。
記憶部36は、飛行制御装置4から検知物体情報、障害物情報を一時記憶する。また、記憶部36は、飛行ロボット3が飛行中のときに撮影部35が撮影した画像を逐次記憶する。
電源37は、例えばリチウムポリマー電池などの充電式電池などで構成され、飛行ロボット3の各部に必要な電力を供給する。
ロボ制御部38は、飛行ロボット3の各部を統括制御するもので、撮影制御手段38a、ロータ制御手段38b、姿勢制御手段38cを含む。
撮影制御手段38aは、撮影部35の撮影開始や終了、撮影部35の撮影角度の制御、撮影部35が撮影した画像を取得して飛行制御装置4へライブ画像を送信するなどの処理を行う。
ロータ制御手段38bは、飛行制御装置4から受信して記憶部36に一時記憶した障害物情報に応じて障害物を回避しつつ、ロータ駆動部32を制御して飛行ロボット3の高度や速度を飛行制御装置4から指示された目標値になるように制御する。
姿勢制御手段38cは、飛行ロボット3の飛行状態(向き、姿勢、加速度など)、現在位置、現在高度に基づいて飛行ロボット3の飛行中の姿勢を制御する。
そして、上記のように構成される飛行ロボット3は、飛行制御装置4から飛行指示を受けていない通常の状態ではロボポート2に待機しており、所定の時刻になると、予め設定された飛行ルートの情報またはセンタ装置5からの指示に基づいて、障害物を回避しながら自律的に飛行して撮影処理等を行う(巡回処理)。
また、飛行ロボット3は、物体検出センサ等の各種センサが異常を検知して飛行制御装置4に通報すると、飛行制御装置4からの指示により、予め記憶した監視区域E内の3次元の地理情報に基づいて障害物を回避しながら目標位置に向かって自律的に飛行し、目標位置近辺に障害物が無いと判断したときに撮影等を行うために下降制御する(異常対処処理)。
[飛行制御装置の構成について]
飛行制御装置4は、例えば監視領域E内の所定箇所や監視領域Eの近傍に設置され、飛行ロボット3の飛行を制御する。
また、飛行制御装置4は、利用者が操作する操作部を備え、この操作部にて利用者が監視区域Eの監視を開始又は解除するための操作を行うと、この操作に応じて監視区域Eの監視建物内外の監視状態を開始又は解除に設定する。この設定があると、それぞれ警備開始信号又は警備解除信号を物体検出センサに送信する。
さらに、飛行制御装置4は、監視状態が開始された状態において物体検出センサの検出信号等に基づき監視区域Eの異常を確定し、センタ装置5に異常信号を出力するとともに、飛行ロボット3に飛行指示を与える信号および検知物体情報、障害物情報を送信する。
また、飛行制御装置4は、図4に示すように、通信部41、記憶部42、制御部43を備える。
通信部41は、飛行ロボット3との間で例えば小電力無線やWi−Fi通信などの無線通信を行い、飛行ロボット3から飛行状態情報としての位置(緯度、経度、高度)、速度等の情報を受信し、この受信した情報に応じた各種制御信号を飛行ロボット3に送信する。
また、通信部41は、センタ装置5の監視卓5aから飛行ロボット3の飛行指示を受信すると、この飛行指示に従った各種制御信号を飛行ロボット3に送信する。
さらに、通信部41は、飛行ロボット3の撮影部35が撮影した画像をインターネット等の広域ネットワーク(WAN)上に構築された仮想専用ネットワーク(VPN)を介してセンタ装置5に送信する。また、通信部41は、物体検知センサから検知物体情報を受信する。
記憶部42は、例えばROM,RAMなどで構成され、飛行ロボット3が飛行する領域を緯度、経度、高度の3次元にて表現した飛行領域マップ、監視領域Eに関する各種情報である監視領域情報、飛行ロボット3と通信を行うためのデータや飛行ロボット3の飛行を制御するための各種パラメータ、ロボポート2の位置情報(緯度、経度情報)、監視領域E内における物体検知センサの種別および設置位置情報(緯度、経度情報)、飛行制御装置4の機能を実現するための各種プログラムが記憶されている。
制御部43は、記憶部42からソフトウェアモジュールを読み出し、CPU等にて各処理を行い、各部を統括制御するものであり、飛行制御手段43a、撮影制御手段43b、状態確認手段43c、風速判定手段43d、バッテリ残量計測手段43e、飛行ルート設定手段43fを備える。
飛行制御手段43aは、通信部41を介して飛行ロボット3から飛行状態情報、位置情報、高度情報を取得し、飛行ロボット3の目標位置P、速度などの飛行ロボット3の飛行に関わる制御信号を飛行ロボット3に通信部41を介して送信し、飛行ロボット3の飛行を制御する。
撮影制御手段43bは、飛行ロボット3の撮影部35による撮影を制御するもので、通信部41を介して飛行ロボット3から取得した現在位置に基づいて撮影許可信号(撮影禁止解除信号)又は撮影禁止信号を通信部41を介して飛行ロボット3に送信する。
状態確認手段43cは、飛行ロボット3の状態を確認するもので、飛行ロボット3がロボポート2に待機しているときに、定期的に飛行ロボット3の機能(充電状態を含む)が正常か否かを確認する。
風速判定手段43dは、飛行ロボット3の飛行距離または飛行時間に対するバッテリの消費量から風速を推定したり、モータの回転数に応じた飛行距離から風速を推定し、飛行ロボット3周囲の風速を判定する。また、飛行ルート上またはその周辺に設置された風速計において計測した風速の情報を受信し、これを飛行ロボット3周囲の風速として判定してもよい。
バッテリ残量計測手段43eは、飛行ロボット3のバッテリの残量を計測する。また、バッテリ残量計測手段43eは、予めバッテリ残量に応じた飛行可能距離を記憶しておいたり、飛行距離とバッテリ消費量から、現在のバッテリ残量で飛行可能な距離を算出したりする。
飛行ルート設定手段43fは、飛行ロボット3周囲の風速が基準値以上、かつバッテリ残量が第1の閾値未満の場合、飛行ロボット3が現在のバッテリ残量で飛行を完了できるような飛行ルートを設定する。また、飛行ルート設定手段43fは、飛行ロボット3のバッテリ残量が第1の閾値より小さい第2の閾値未満の場合、所定の充電可能な地点に飛行する飛行ルートに設定する。
[センタ装置の構成について]
センタ装置5は、例えば警備会社などが運営する監視センタ等の施設内に設けられている。センタ装置5は、飛行ロボット3が撮影した映像を飛行制御装置4を介して受信し、受信した映像を表示する1又は複数のコンピュータからなる監視卓5aを備える。センタ装置5の監視卓5aは、各種機器を制御し、飛行制御装置4から受信した異常信号を記録するとともに、異常の情報をディスプレイに表示し、監視員が監視対象となる複数の監視区域Eを監視する。
また、監視員の判断によって監視卓5aを操作することにより任意の場所に飛行ロボット3を向かわせる飛行指示(飛行ルート指示、目標位置や速度の指示、離陸指示、帰還指示、上昇指示など)を行うこともできる。
尚、上述した飛行ロボット制御システム1では、風速判定手段43d、バッテリ残量計測手段43e、飛行ルート設定手段43fを飛行制御装置4に備えた構成として説明したが、これら風速判定手段43d、バッテリ残量計測手段43e、飛行ルート設定手段43fを飛行ロボット3に備えた構成としてもよい。
[風速の判定方法について]
飛行ロボット3または飛行制御装置4にて風速を判定する場合には、飛行ロボット3が所定速度以上で飛行している時間における飛行距離に応じて判定することができる。具体的には、飛行距離が短いほど風速が大きいと判定する。ここで、所定速度以上とは、飛行ロボット3がホバリングをしている際の速度よりも大きい速度とすることが好適である。また、飛行ロボット3の無風時におけるモータの回転数とこの場合における移動距離・移動速度の値とを予め測定しておき、風速判定手段43dにて現時点のモータの回転数と実際の移動距離・移動速度の値とを求め、両者を比較することにより、現時点の風速を推測して飛行ロボット3周囲の風速を判定してもよい。さらにまた、所定期間において飛行ロボット3が飛行ルートから外れた回数が所定回数以上の場合には、風速が大きいと判定してもよい。これらの方法を用いて風速を判定する場合には、風速計を搭載しなくとも、飛行ロボット3周囲のおおよその風速を判定することができるため、飛行ロボットの軽量化につながりバッテリの消費量を抑えられる。
また、地面や壁面等に設置された固定型の複数の風速計を用い、飛行ロボット3の飛行ルートの各位置における風速を測定してもよい。この場合の風速計としては、プロペラ等の回転子を利用し、プロペラの回転数により風速を換算する機械式の風速計や、超音波方式やレーザードップラー方式などを利用した電気式の風速計など種々の風速計を用いることができる。風速計を用いて計測した風速や風向の情報は、小電力無線やWi−Fi通信等により飛行制御装置4または飛行ロボット3に通知する。
さらに、飛行ロボット3自身が風速計を搭載してもよい。この場合、自らの移動速度などの移動制御に係る情報を考慮して風速計の出力を補正し、実際の風速に近い値を求めることが好適である。
[気流の安定度の判定方法について]
飛行ロボット3周囲の気流の安定度の判定は、短期間における、多様な方向への姿勢制御度合いで行う。姿勢制御の回数が多いほど、または/および、姿勢制御の方向が多いほど気流の安定度が低い、すなわち、気流が不安定であると判定する。この判定は、飛行ロボット3自身が行っても良いし、姿勢制御の情報(例えば、姿勢制御を行った回数など)を飛行ロボット3と飛行制御装置4との間で通信し、飛行制御装置4が行うようにしても良い。
[飛行ルートの変更処理について]
飛行ルートの変更処理は、飛行ロボット3周囲の風速が基準値以上であり、かつバッテリ残量が第1の閾値未満の場合に行う。飛行ルートを変更する際の第1の閾値は、風速が大きいほど又は気流の安定度が低いほど大きく設定することが好適である。これにより、風速が大きく、通常時よりもバッテリ消費量が増大する場合には、バッテリ残量に余裕をもって飛行ルートの設定が可能になり、飛行中のバッテリ切れを極力防止できる。また、この際、現在の飛行ルートの残り距離も考慮して第1の閾値を設定することが好適である。具体的には、残り距離が短いほど第1の閾値を小さい値に設定すればよい。
なお、風速の基準値は、飛行ロボット3が飛行ルートから外れたり、姿勢を崩したりする等の飛行ロボット3の飛行に影響を及ぼす風速に設定する。この値は、飛行ロボット3の性能等に応じて実験的に定めてよく、例えば3m/sに設定される。
また、第1の閾値は、通常時における飛行ロボット3のバッテリ消費量あたりの飛行距離や飛行ルートの総距離等に応じて実験的に定められる。例えば、通常時の飛行において、飛行ロボット3が所定距離(例えば、500m)飛行できる値や総距離の30%に相当する距離を飛行できる値に設定する。また、これに限らず、通常時の飛行において、所定時間(例えば、2分間)飛行可能な値に設定してもよい。このようにして設定した第1の閾値は、風速、気流の安定度に応じた可変値としてもよい。この場合、風速が大きいほど、または、気流の安定度が低いほど第1の閾値を大きく設定する。また、第1の閾値の設定には、現在の飛行ルートの残り距離を考慮することが好適である。また、風向をさらに考慮して、向かい風や横風の場合に第1の閾値を大きくしてもよい。
さらにまた、飛行ルートを変更した場合、短縮した距離に応じて、第1の閾値を小さくすることが好適である。この際、第1の閾値が第2の閾値未満の値に設定された場合、第1の閾値によらず、第2の閾値未満になると所定の充電可能な地点に向けて飛行する飛行ルートに変更する。なお、第2の閾値の設定方法については後述する。
飛行ルートは、予め設定していたルートよりも飛行距離または飛行時間を短縮する短縮ルートに設定したり、風の影響を受けにくいルート、例えば、現在の風向に基づいて横風を受ける距離が少ないと予測されるルートに設定したりすることが好ましい。これにより、飛行ルートの設定において、バッテリ消費量の少ないルートを設定することができる。
風の影響を受けにくいルートの設定においては、風速や風向、気流の安定度等に基づいて飛行ロボット3の飛行への影響度を総合的に考慮して設定してもよい。例えば、風速が大きい状況や、横風の状況、気流の安定度が低い状況では、それぞれ影響度高とし、風速が小さい状況や、追風の状況、気流の安定度が高い状況では、それぞれ影響度低とする。このように設定した重要度に基づいて、飛行ルートにおける風の影響度を推定し、最も影響度の少なくなるルートに設定すればよい。また、特定の条件を優先的に考慮してもよい。
飛行ルートの変更処理にあたっては、現在の飛行における飛行距離とバッテリ消費量とから、現在のバッテリ残量での飛行可能距離を算出して推定し、飛行可能距離内に収まる飛行ルートに設定する。飛行可能距離範囲に収まる飛行ルートが生成できなかった場合は、所定の充電可能な地点(ロボポート2を含む)に飛行する飛行ルートに設定する。
尚、所定以上の風速が所定時間以上継続(例えば、風速5m/sが3秒以上継続)する場合には、飛行ロボット3の飛行は危険であるため、飛行中であればその場に着陸したり、離陸前であれば離陸をキャンセルしたりするよう制御する。
また、風速が基準値未満で風速が大きくない場合であっても、気流の安定度が低いと判定し、かつバッテリ残量が第1の閾値未満の場合には飛行ルートを変更するようにしてもよい。これにより、気流が不安定で、通常時よりもバッテリ消費量が増大する場合には、バッテリ残量に余裕をもって飛行ルートの設定が可能になり、飛行中のバッテリ切れを極力防止できる。また、第1の閾値は気流の安定度が低いほど、大きく設定することが好適である。
さらに、短縮ルートでは、監視ポイント毎に、優先して監視すべき度合いに応じて重要度を設定しておき、重要度の高い地点を優先して経由するようなルートを設定し、重要度の低い地点をスキップしたり、撮影等の特定の処理を行わないようにしてもよい。例えば、重要度高、重要度中、重要度低のように重要度を設定しておき、重要度高の地点は優先的に短縮ルートに含まれるようにする。この場合、今回スキップした重要度の低い地点や未実行の特定の処理を次回の飛行の際に重要度を高く設定する。例えば、スキップされた重要度低の地点は次回の飛行の際に限り、重要度中に設定する。これにより、バッテリ残量が少なく、全ての地点を監視できない場合であっても、重点的に監視すべきポイントについては、もれなく監視することが可能になる。さらに、スキップした重要度の低い地点や未実行の特定の処理を次回の飛行の際に重要度を高く設定することにより、同一地点や未実行の特定の処理を連続して監視対象から外れてしまうことを防止できる。
また、バッテリ残量が第1の閾値より小さい第2の閾値未満の場合、風速によらず飛行ルート上又は周辺に設定された所定の充電可能な地点(ロボポート2を含む)に飛行ロボット3を飛行させる飛行ルートに設定する。これにより、飛行中の飛行ロボットを墜落させずに充電可能な地点に飛行させることができる。また、この場合、飛行中の飛行ロボット3がバッテリ残量の低下によって墜落の危険性があるため、飛行ロボット3の現在の飛行位置から最も近い充電可能な地点を飛行ルートに設定して墜落の危険性を回避するのが好ましい。これにより、飛行ロボット3は、充電可能な地点での充電が完了すれば、ルート移行前のルートに戻って飛行を継続することができる。
第2の閾値は、飛行ロボット3が所定の充電可能な地点まで飛行可能となる値に設定される。すなわち、飛行ルートと所定の充電可能な地点とを考慮して、いずれの地点で第2の閾値未満となった場合でも、飛行途中で墜落することなく所定の充電可能な地点まで辿り着ける値に設定することが好適である。なお、風速が大きい場合や気流の安定度が低い場合には、第2の閾値を大きくしてもよい。
また、バッテリ残量が第1の閾値未満であれば、現在の飛行における飛行距離とバッテリ消費量とから、現在のバッテリ残量での飛行可能距離を算出して推定し、この推定した飛行可能距離に基づいて目的地点(例えば、充電可能な地点、安全な地点など)に到達できる短縮ルートに設定することもできる。これにより、飛行ロボットの飛行環境及びバッテリ残量に応じて、飛行中のバッテリ切れを極力防止しつつ、短縮ルートの全ての地点が飛行可能となる飛行ルートの設定が可能となる。また、この場合、飛行ロボット3が目的地点に到達して充電が完了した後、飛行ルートを変更する前の飛行ルートに戻して設定すれば、変更前の状態から継続して全てのルートを飛行してロボポート2に帰還することができる。
また、所定期間内において、所定回数以上連続して飛行ルートの変更が行われた場合には、予め設定された飛行ルートを再生成してもよい。これにより、飛行ロボットのバッテリ容量に合った飛行ルートを事前に生成することが可能になる。
次に、図1における飛行ルートの例を用いて、上述した飛行ルートの変更について詳述する。ここでは、P0(ロボポート)〜P1〜P2〜P3〜P4〜P5〜P6〜P7〜P0(ロボポート)の順に各地点を飛行する飛行ルートが設定されており、各地点の重要度は以下のように定められているものとする。重要度高P1、P7、重要度中P2、P3、P4、P6、重要度低P5。このような飛行ルートを飛行ロボット3が飛行している場合に、P4地点に到達した際に風速が基準値以上でバッテリ残量が第1の閾値未満になったとする。この場合、残りのP5〜P7を全て飛行しようとすると、途中でバッテリ切れとなり墜落してしまう虞がある。そこで、当初予定されていた飛行ルートを変更して飛行をする。具体的には、飛行距離を短縮するためにP6地点をスキップする飛行ルートに変更し、P4〜P5〜P7〜P0の順に飛行する。また、各地点の重要度を考慮して重要度低のP5地点をスキップするような飛行ルートに変更し、P4〜P6〜P7〜P0の順に飛行してもよい。これらの飛行ルートにおいても、現在のバッテリ残量から算出された飛行可能距離を越えてしまう場合には、さらに重要度中のP6地点をスキップし、P4から直接P7に向かうようにするのが好適である。これにより、飛行ロボット3が飛行途中で墜落してしまう危険性を低減することができる。
また、P5〜P6間を飛行中にバッテリ残量が第2の閾値未満となった場合には、現在の風速によらず充電可能なP0地点に向けて飛行する。なお、P0よりも現在位置から近くに充電可能な地点があれば、その地点に向けて飛行することが好適である。
さらにまた、この飛行ルートにおいて、複数回(例えば、3回以上)連続して飛行ルートの変更があったとする。このような場合、この飛行ルートが飛行ロボット3のバッテリ容量に適していないと判断し、飛行ルートを再生成する。具体的には、飛行距離を短縮するためにこの飛行ルートからP5地点を除外し、P0〜P1〜P2〜P3〜P4〜P6〜P7〜P0を新たな飛行ルートとして生成し、以後の飛行にはこの飛行ルートを用いる。この飛行ルートの再生成は、飛行制御装置4で行ってもよいし、飛行制御装置4からセンタ装置5へ飛行ルートを再生成する指示信号を送信するようにしてもよい。
[飛行ルート変更時の動作について]
次に、飛行ロボット制御システム1による飛行ルート変更時の動作について図5のフローチャートを参照しながら説明する。
まず、飛行ロボット3は、巡回時刻の到来やセンタ装置5からの指示等があると、ロボポート2から離陸し飛行を開始する(ST1)。
風速判定手段43dは、飛行ロボット3が飛行を開始すると、飛行ロボット3周囲の風速が基準値以上か否かを判定する(ST2)。
そして、飛行ロボット3周囲の風速が基準値以上であると判定すると(ST2−Yes)、バッテリ残量計測手段43eにて計測した現在のバッテリ残量が第1の閾値未満か否かを判定する(ST3)。
バッテリ残量計測手段43eにて計測した現在のバッテリ残量が第1の閾値未満であると判定すると(ST3−Yes)、上述した飛行ルートの変更処理に従い、飛行ロボット3周囲の風速とバッテリ残量とに基づいて飛行ルートを変更し(ST4)、飛行を継続する。そして、飛行ロボット3の飛行が終了したか否かを判定する(ST5)。飛行が終了したと判定すると(ST5−Yes)、飛行ルート変更を終了し、飛行が終了していないと判定すると(ST5−No)、ST2に戻って同様の処理を繰り返す。
そして、飛行ロボット3周囲の風速が基準値以上ではないと判定したとき(ST2−No)、バッテリ残量計測手段43eにて計測した現在のバッテリ残量が第1の閾値未満ではないと判定したときには(ST3−No)、現在の飛行ルートのまま飛行を継続し(ST6)、ST5の飛行ロボット3の飛行が終了したか否かの判定処理に移行する。
尚、図5のフローチャートにおいて、ST2の飛行ロボット3周囲の風速が基準値以上であるかの判定と、ST3のバッテリ残量計測手段43eにて計測した現在のバッテリ残量が第1の閾値未満であるかの判定とを並行処理してもよい。
また、飛行ロボット3周囲の風速が基準値以上ではないと判定した場合(ST2−No)、飛行ロボット3周囲の気流の安定度が低く、かつバッテリ残量計測手段43eにて計測した現在のバッテリ残量が第1の閾値未満であると判定したときには飛行ルートを再生成してもよい。
なお、本実施形態では風速の大きさや気流の安定度の判断を行っているが、飛行ロボットの性能に応じて、風速の大きさや気流の安定度によって受ける影響度合いは異なる。したがって、これらの判断は、飛行ロボットの性能に応じて判断することが好適である。
以上、本発明に係る飛行ロボット制御システムおよび飛行ロボットの最良の形態について説明したが、この形態による記述および図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例および運用技術などはすべて本発明の範疇に含まれることは勿論である。
1 飛行ロボット制御システム
2 ロボポート
3 飛行ロボット
4 飛行制御装置
5 センタ装置
5a 監視卓
31 ロータ
32 ロータ駆動部
33 アンテナ
34 高度センサ
35 撮影部
36 記憶部
37 電源
38 ロボ制御部
38a 撮影制御手段
38b ロータ制御手段
38c 姿勢制御手段
41 通信部
42 記憶部
43 制御部
43a 飛行制御手段
43b 撮影制御手段
43c 状態確認手段
43d 風速判定手段
43e バッテリ残量計測手段
43f 飛行ルート設定手段
E 監視領域
E1,E2,E3,E4,E5、E6、E7 エリア
P 目標位置
P0 基準位置
P1,P2,P3,P4,P5、P6、P7 監視ポイント

Claims (8)

  1. 予め設定された飛行ルートを飛行する飛行ロボットを制御する飛行ロボット制御システムにおいて、
    飛行ロボット周囲の風速が基準値以上か否かを判定する風速判定部と、
    飛行ロボット周囲の気流の安定度を判定する気流判定部と、
    前記飛行ロボットのバッテリ残量を計測する計測部と、
    を備え、
    前記飛行ロボット周囲の風速が基準値以上、かつ前記バッテリ残量が第1の閾値未満の場合、または、前記飛行ロボット周囲の気流の安定度が低く、かつ前記バッテリ残量が前記第1の閾値未満の場合、以降の飛行ルートを現在よりもバッテリ消費量が少なくなる飛行ルートに変更することを特徴とする飛行ロボット制御システム。
  2. 前記飛行ロボット周囲の風速が大きいほど前記第1の閾値を大きく設定する請求項1に記載の飛行ロボット制御システム。
  3. 記気流の安定度が低いほど前記第1の閾値を大きく設定する請求項1または2に記載の飛行ロボット制御システム。
  4. 前記飛行ルートの変更は、現在設定されている飛行ルートよりも総飛行距離が短くなる短縮ルートに設定する請求項1〜3の何れか一項に記載の飛行ロボット制御システム。
  5. 前記短縮ルートは、予め設定された重要度の低い地点をスキップする飛行ルートに設定する請求項4に記載の飛行ロボット制御システム。
  6. 前記短縮ルートは、現在の飛行における飛行距離とバッテリ消費量とから飛行可能距離を算出し、当該飛行可能距離に基づいて目的地点に到達できるルートに設定する請求項4または5に記載の飛行ロボット制御システム。
  7. 前記飛行ロボット周囲の風速の値にかかわらず、前記バッテリ残量が前記第1の閾値より小さい第2の閾値未満の場合、所定の充電可能な地点に前記飛行ロボットを飛行させる飛行ルートに設定する請求項1〜6のいずれか一項に記載の飛行ロボット制御システム。
  8. 予め設定された飛行ルートを飛行する飛行ロボットにおいて、
    飛行ロボット周囲の風速が基準値以上か否かを判定する風速判定部と、
    飛行ロボット周囲の気流の安定度を判定する気流判定部と、
    前記飛行ロボットのバッテリ残量を計測する計測部と、
    を備え、
    前記飛行ロボット周囲の風速が基準値以上、かつ前記バッテリ残量が第1の閾値未満の場合、または、前記飛行ロボット周囲の気流の安定度が低く、かつ前記バッテリ残量が前記第1の閾値未満の場合、以降の飛行ルートを現在よりもバッテリ消費量が少なくなる飛行ルートに変更することを特徴とする飛行ロボット。
JP2016191579A 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット Active JP6776083B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016191579A JP6776083B2 (ja) 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016191579A JP6776083B2 (ja) 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット

Publications (2)

Publication Number Publication Date
JP2018052341A JP2018052341A (ja) 2018-04-05
JP6776083B2 true JP6776083B2 (ja) 2020-10-28

Family

ID=61833810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016191579A Active JP6776083B2 (ja) 2016-09-29 2016-09-29 飛行ロボット制御システムおよび飛行ロボット

Country Status (1)

Country Link
JP (1) JP6776083B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6673811B2 (ja) * 2016-12-09 2020-03-25 Kddi株式会社 飛行装置、通報方法及びプログラム
WO2020037602A1 (zh) * 2018-08-23 2020-02-27 深圳市大疆创新科技有限公司 一种无人机的返航控制方法、设备、及无人机
WO2020062166A1 (zh) * 2018-09-29 2020-04-02 深圳市大疆创新科技有限公司 无人机的控制方法和无人机
JP7171364B2 (ja) * 2018-10-25 2022-11-15 株式会社Nttドコモ 情報処理装置
JP7027295B2 (ja) * 2018-11-08 2022-03-01 Kddi株式会社 環境測定システム、ロボット、コンピュータプログラム及び環境測定方法
US20220254262A1 (en) * 2019-03-18 2022-08-11 Ntt Docomo, Inc. Information processing device and information processing method
JP2021001775A (ja) * 2019-06-20 2021-01-07 三菱電機株式会社 形状測定システム
JP7036958B1 (ja) 2021-01-25 2022-03-15 Kddi株式会社 飛行制御装置及び飛行制御方法
WO2023199797A1 (ja) * 2022-04-11 2023-10-19 有機米デザイン株式会社 自動航行装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9311760B2 (en) * 2014-05-12 2016-04-12 Unmanned Innovation, Inc. Unmanned aerial vehicle authorization and geofence envelope determination
US9783293B2 (en) * 2014-05-20 2017-10-10 Verizon Patent And Licensing Inc. Unmanned aerial vehicle platform

Also Published As

Publication number Publication date
JP2018052341A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6776083B2 (ja) 飛行ロボット制御システムおよび飛行ロボット
JP2018055463A (ja) 飛行ロボット制御システムおよび飛行ロボット
AU2018355071B2 (en) UAV group charging based on demand for UAV service
JP6852672B2 (ja) 飛行体制御装置、飛行体制御方法、及びプログラム
JP5887641B1 (ja) 無人飛行体
US10725479B2 (en) Aerial vehicle landing method, aerial vehicle, and computer readable storage medium
JP2015123918A (ja) 地上走行可能な飛行体
JP2016171442A (ja) 監視システム及び飛行ロボット
KR102217918B1 (ko) 드론 이착륙 제어 장치 및 그 제어 방법
TWI779215B (zh) 在飛行控制器信號丟失後對機器人運載工具進行控制的方法和經配置成執行此方法的機器人運載工具
JP2007245797A (ja) 飛行制御装置及び飛行制御装置を備えた飛行体
JP2017007603A (ja) 運転支援制御装置
JP6578113B2 (ja) 飛行ロボット制御システム及び飛行ロボット
JPWO2020111096A1 (ja) 作業計画装置、作業計画装置の制御方法、および、その制御プログラム、ならびにドローン
US11840158B2 (en) Systems and methods for battery capacity management in a fleet of UAVs
JP2021061005A (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法
JP2018055362A (ja) 監視システム
JP6202407B2 (ja) 無人飛行体
JP5999537B1 (ja) 無人飛行体
CN112135776A (zh) 无人机的控制方法和无人机
JP2017010445A (ja) 運転支援制御装置
KR102100606B1 (ko) 드론 착륙 시스템 및 그의 동작 방법
CN108778931B (zh) 一种摄像装置的转动控制方法、控制设备以及飞行器
JP2017010450A (ja) 運転支援制御装置
JP6832473B1 (ja) 処理システム、無人で飛行可能な航空機、及び粉塵状態推定方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201007

R150 Certificate of patent or registration of utility model

Ref document number: 6776083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250