WO2020062166A1 - 无人机的控制方法和无人机 - Google Patents

无人机的控制方法和无人机 Download PDF

Info

Publication number
WO2020062166A1
WO2020062166A1 PCT/CN2018/108774 CN2018108774W WO2020062166A1 WO 2020062166 A1 WO2020062166 A1 WO 2020062166A1 CN 2018108774 W CN2018108774 W CN 2018108774W WO 2020062166 A1 WO2020062166 A1 WO 2020062166A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
phase
high wind
return
cruise
Prior art date
Application number
PCT/CN2018/108774
Other languages
English (en)
French (fr)
Inventor
李阳
陈晨
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880049113.7A priority Critical patent/CN110998474B/zh
Priority to PCT/CN2018/108774 priority patent/WO2020062166A1/zh
Priority to CN202310751221.1A priority patent/CN116560411A/zh
Publication of WO2020062166A1 publication Critical patent/WO2020062166A1/zh
Priority to US17/206,105 priority patent/US20210208609A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/106Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones
    • G05D1/1062Change initiated in response to external conditions, e.g. avoidance of elevated terrain or of no-fly zones specially adapted for avoiding bad weather conditions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • B64D43/02Arrangements or adaptations of instruments for indicating aircraft speed or stalling conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0052Navigation or guidance aids for a single aircraft for cruising
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0091Surveillance aids for monitoring atmospheric conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/04Anti-collision systems
    • G08G5/045Navigation or guidance aids, e.g. determination of anti-collision manoeuvers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • B64U2201/104UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS] using satellite radio beacon positioning systems, e.g. GPS
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • G01P5/165Arrangements or constructions of Pitot tubes

Definitions

  • the present disclosure relates to the field of drones, and in particular, to a drone control method and drones.
  • Drones may encounter high winds during flight, such as returning to home and normal operations. When the wind is strong, the forward component of the drone may not be enough to offset the wind, which will reduce the drone's speed and even stop the drone. Wind can also cause drones to severely deviate from their preset course. However, the current technology does not detect the gale, and the drone will not avoid the gale during the flight, which will easily cause the drone to run out of power and fail to reach the target point, affecting the flight safety of the drone.
  • the present disclosure provides a drone control method, which includes: generating a home return instruction to cause the drone to perform a home return action, the home return action including at least a cruise phase; during the cruise phase, a measurement station Said flight parameters of the drone, when it is judged that the drone is in a high wind blocking state according to the flight parameters, the drone enters a high wind return phase; during the high wind return phase, the flight parameters are measured When it is judged according to the flight parameters that the drone exits the high wind blocking state, the drone returns to the cruise stage.
  • the present disclosure also provides a drone, which includes: a fuselage, the fuselage is provided with a controller and at least one measurement device; the controller is configured to generate a home return instruction to cause the drone to perform a home return action
  • the returning action includes at least a cruise phase; in the cruise phase, the at least one measurement device is used to measure flight parameters of the drone, and when the controller judges the flight parameters based on the flight parameters
  • the controller controls the drone to enter a strong-wind return phase; in the strong-wind return phase, the at least one measurement device is used to measure the flight parameters.
  • the controller controls the drone to return to the cruise stage.
  • FIG. 1 is a flowchart of a method for controlling a drone according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart of a drone returning operation according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a pitot tube of a drone according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a drone according to an embodiment of the present disclosure.
  • FIG. 5 is a top view of a drone according to an embodiment of the present disclosure.
  • FIG. 6 is a top view of a drone according to another embodiment of the present disclosure.
  • FIG. 7 is a top view of a drone according to another embodiment of the present disclosure.
  • W-wind direction W1-component parallel to cruise heading
  • W2-component perpendicular to cruise heading
  • An embodiment of the present disclosure provides a control method for a drone. As shown in FIG. 1, the control method includes the following steps:
  • Step S101 By sending a home return instruction to the drone, the drone is caused to perform a home return action, and the return action includes at least one cruise stage.
  • the returning operation includes a climbing phase S1, a cruising phase S2, and a landing phase S3.
  • the cruising phase S2 includes a strong wind returning phase S21.
  • the climb phase includes: preparations for returning home, forced ascent, heading alignment, and automatic ascent.
  • the drone first performs a brake hover operation to prepare for returning home.
  • a brake hover operation to prepare for returning home.
  • the drone enters a forced ascent phase.
  • the drone During the forced ascent phase, the drone ascends at a preset speed. When the drone reaches the preset altitude or the time for forced ascent has exceeded the preset time, the drone enters the course alignment phase.
  • the drone hovers at a preset height and adjusts the heading to align with the cruise heading.
  • the drone can point the nose toward the home point or the tail toward the home point.
  • the drone enters the automatic ascent phase.
  • the drone During the automatic ascent phase, the drone is raised to the cruising altitude at a preset speed, and the cruising altitude is the smaller of the preset return altitude and the altitude limit of the drone.
  • the drone When the drone reaches the cruise altitude, or the time for automatic ascent has exceeded a preset time, or the drone receives a throttle lever operation instruction, the drone enters the cruise phase.
  • the drone During the cruise phase, the drone is flying towards the home point at a preset speed. When the drone reaches just above the home point, the cruise phase ends and the drone enters the landing phase.
  • the drone descends at a preset speed until it reaches the target point, and the return flight is completed.
  • the drone will detect the distance between its current position and surrounding objects during the cruise phase.
  • the surrounding object is considered to be an obstacle.
  • the cruise phase may also include an obstacle avoidance phase.
  • the drone first performs a brake hover operation and calculates the retracted position. The drone then retreated to the back position. When the distance between the position of the drone and the retreat position is less than the preset distance, or the retreat time exceeds the preset time, the drone starts to avoid obstacles and rises. The drone continuously detects the distance from the obstacle during the obstacle avoidance ascent. When the distance from the obstacle is greater than the preset distance, or when the obstacle avoidance ascent time exceeds the preset time, it continues to cruise to the altitude after obstacle avoidance and ascent. Home point.
  • Step S102 During the cruise phase, the flight parameters of the drone are measured. When it is judged that the drone is in a high wind blocking state according to the flight parameters, the drone enters the high wind return phase.
  • the flight parameters include airspeed and ground speed of the drone.
  • the drone is equipped with a positioning device and an airspeed meter, which are respectively used to measure the ground speed and airspeed when the drone is flying.
  • Ground speed refers to the speed of the drone relative to the ground
  • airspeed refers to the speed of the drone relative to the air.
  • the positioning device is, for example, a GPS receiver and / or an inertial measurement device.
  • the airspeed meter includes a pitot tube mounted outside the drone's fuselage. When the drone is flying in the air, the total pressure hole coming to the pitot tube stagnates. The static pressure hole of the pitot tube measures the static pressure.
  • the airspeed meter can calculate the dynamic pressure according to Bernoulli's equation, and get the Man-machine airspeed.
  • the high wind block state in this embodiment refers to a speed block state.
  • the airspeed of the drone is large, which means two possible situations.
  • One situation is that the drone is in an environment with no wind, small wind speed or small wind speed, and the drone is flying at high ground speed.
  • Another situation is the speed block state, that is, the wind speed is very large, but the ground speed of the drone is very small or even zero.
  • the airspeed measured by the airspeed meter is very large, due to the effect of wind, the drone can hardly fly to the return point. If the drone continues to cruise, it will be difficult to complete the return flight.
  • the airspeed and ground speed of the drone are first measured using an anemometer and a positioning device, respectively, and the difference between the airspeed and ground speed of the drone is calculated. It is then determined whether the difference is greater than a first threshold. If it is less than the first threshold, the wind speed is not large enough to affect the cruising of the drone. If it is greater than the first threshold, it means that the wind speed is very large, and due to the effect of wind, it is difficult for the drone to fly to the home point again, and it is in a state of speed retardation. It is necessary to make the drone enter the high wind home phase.
  • This embodiment measures the airspeed when the drone cruises at the maximum flight inclination during the cruise phase, that is, when the drone cruises at the maximum flight inclination, the axis of the pitot tube is parallel to the cruise course, thereby increasing the airspeed.
  • the accuracy of the measurement can more accurately determine the judgment result of the speed block state.
  • the airflow affected area is, for example, around the rotor, especially below the rotor.
  • the airspeed meter uses the air outside the airflow affected area to measure the airspeed. It can avoid the influence of airflow on the pitot tube and further improve the accuracy of airspeed measurement.
  • Step S103 In the high wind return phase, the flight parameters are measured. When it is judged that the drone exits the high wind block state based on the flight parameters, the drone returns to the cruise phase.
  • Wind is formed by a large range of air movement. When the wind passes through the surface, it will cause friction with the surface objects, thereby reducing the wind speed. As the altitude decreases, the effect of air-surface friction gradually increases, and the air velocity decreases. So for drone flying near the ground, the wind speed will decrease as the altitude decreases.
  • the drone in order to overcome the blockage of the speed, the drone enters the descent phase during the high wind return phase, so that the drone maintains the cruise power and descends at a preset speed.
  • the wind speed gradually decreases, and it is judged in real time whether the drone has exited the speed block state. If it has exited the speed block state, the drone will stop descending and continue to fly to the return point during the return cruise phase.
  • the airspeed and ground speed of the drone were measured using an anemometer and a positioning device, respectively, and the difference between the airspeed and ground speed of the drone was calculated. It is then determined whether the difference is greater than a first threshold. If it is still greater than the first threshold, it means that the drone is still in a speed block state. If it is less than the first threshold, it is considered that the drone has exited the speed blocking state, and the drone returns to the cruise stage, and continues to cruise to the return point at the descended altitude.
  • the drone can also perform obstacle avoidance operations during the high wind return phase.
  • the drone stops descending and maintains cruise power.
  • the drone continues to descend. This can prevent the drone from being damaged by obstacles and improve cruise safety.
  • this embodiment by detecting whether the drone is in a speed retardation state during the cruise phase and executing a corresponding return strategy to avoid the impact of strong winds on the return flight, this embodiment ensures that the drone can return safely and solves the existing
  • the technology has a slow return speed or even stagnation under high wind conditions, which causes the problem that the drone is exhausted and unable to return, which improves the reliability and safety of the return drone.
  • the control method of this embodiment measures flight parameters, and when it is judged that the drone is in a high-wind blocking state according to the flying parameters, a return home instruction is generated.
  • the airspeed and ground speed of the drone were measured using an airspeed meter and a positioning device, respectively, and the difference between the airspeed and the ground speed of the drone was calculated. It is then determined whether the difference is greater than a first threshold. If it is less than the first threshold, the wind speed is not large enough to affect the normal flight of the drone. If it is greater than the first threshold, it indicates that the wind speed is very large, and due to the effect of wind, it is difficult for the drone to perform normal flight and is in a state of speed retardation. At this time, a return command is generated to make the drone perform the return as described above action.
  • a control method of a drone according to another embodiment of the present disclosure is a brief description, and features that are the same as or similar to those of the previous embodiment will not be repeated, and only the features that are different from the previous embodiment are described below.
  • the drone during the cruise phase, when the drone is in a high wind blocking state, it enters the high wind returning phase, wherein the high wind blocking state refers to a heading deviation state, and the flight parameters include: the actual drone course.
  • the actual course E of the drone will deviate from the cruise direction C under the action of the wind.
  • the actual course E and cruise An included angle ⁇ is formed between the heading C, and the magnitude of the angle ⁇ reflects the difference between the actual heading E and the cruise heading C.
  • the included angle ⁇ will increase with the increase of wind force.
  • the included angle ⁇ is too large, the actual heading E and the cruise heading C will be severely shifted, and the drone cannot successfully fly to the home point.
  • the positioning device is used to measure the actual course E of the drone, and the difference between the actual course E of the drone and the cruise course C is calculated. It is then determined whether the difference is greater than a second threshold. If it is less than the second threshold, it means that the wind is not strong enough to affect the cruise of the drone. If it is greater than the second threshold value, it indicates that the wind is very strong, and due to the effect of the wind, the drone is flying in a direction deviating from the home point, and is in a heading deviation state, and the drone needs to enter the windy home phase.
  • the drone in order to overcome the heading deviation, the drone enters the descent phase during the high wind return phase. During the descent, the wind speed gradually decreases, and it is judged in real time whether the drone has exited the heading deviation state. If it has exited the heading deviation state, the drone will stop descending and continue to fly to the home point during the return cruise phase.
  • the actual heading E of the drone is measured using the positioning device, and the difference between the actual heading E of the drone and the cruise heading C is calculated. It is then determined whether the difference is greater than a second threshold. If it is still greater than the second threshold, the drone is still in a heading deviation state. If it is less than the second threshold, it is considered that the drone has exited the heading deviation state, and the drone returns to the cruise stage, and continues to cruise to the return point at the descended altitude.
  • the control method of this embodiment measures the flight parameters, and when it is judged that the drone is in the state of high wind blocking according to the flight parameters, a return command is generated.
  • Second threshold a second threshold. If it is less than the second threshold, the wind speed is not sufficient to affect the normal flight of the drone. If it is greater than the second threshold, it indicates that the wind speed is very large, and due to the effect of wind, the drone has severely deviated from the set flight heading and is in a heading deviation state. At this time, a return command is generated to cause the drone to perform the return as described above. action.
  • a control method of a drone according to another embodiment of the present disclosure is a brief description, and features that are the same as or similar to those of the above embodiments are not described repeatedly. Only the features that are different from the above embodiments are described below.
  • the drone during the cruise phase, when the drone is in a high wind blocking state, it enters a high wind returning stage, wherein the high wind blocking state includes a speed blocking state and a heading deviation state, and flight parameters include: none Ground speed, airspeed and actual heading of the man-machine.
  • the wind direction W In the cruise phase, when the wind direction W is neither parallel nor perpendicular to the cruise direction C as shown in Fig. 7, the wind direction W can be decomposed into a component W1 parallel to the cruise direction and a component W2 perpendicular to the cruise direction.
  • the component of the wind in this direction may cause the drone to be in a speed block state.
  • the component of wind in this direction may cause the drone to deviate from the course.
  • an airspeed meter is used to measure the airspeed of the drone
  • a positioning device is used to measure the ground speed and the actual heading E of the drone
  • the difference between the airspeed and the ground speed of the drone is calculated, and The difference between actual course E and cruise course C.
  • the drone in order to overcome the high wind obstruction, the drone enters the descent phase during the high wind return phase, so that the drone maintains the cruise power and descends at a preset speed.
  • the wind speed gradually decreases, and it is judged in real time whether the drone has exited the speed blocking state and the heading deviation state. If these two states have been exited, the drone will stop descending and continue to fly to the return point during the return cruise phase.
  • the drone is considered to have exited the high wind blocking state, and the drone returns to the cruise stage, and continues to cruise to the return point at the descended altitude.
  • the control method of this embodiment measures flight parameters, and when it is judged that the drone is in a high wind blocking state according to the flying parameters, a return command is generated.
  • the drone 1 a includes a fuselage 10 a and a power unit 20 a.
  • the power unit 20a includes four arms extending from the fuselage 10a, and a rotor mounted on the arm for generating power.
  • the fuselage 10a is provided with a controller 11a, an air speed measuring device, and a ground speed measuring device. Flight parameters include: airspeed and ground speed of drone 1a.
  • the ground speed measuring device for example, a positioning device 12a such as a GPS receiver or an inertial measurement device, is disposed inside the fuselage 10a and is electrically connected to the controller 11a, and is used to measure the ground speed when the drone 1a is flying.
  • a positioning device 12a such as a GPS receiver or an inertial measurement device
  • the airspeed measuring device for example, an airspeed meter 13a, is electrically connected to the controller 11a, and is used to measure the airspeed when the drone 1a is flying.
  • the controller 11a is provided inside the fuselage 10a, and is configured to receive the measurement values of the airspeed measurement device and the ground speed measurement device, and control the actions of the power device 20a to control the flight of the drone 1a.
  • the controller 11a is configured to generate a return home instruction to cause the drone 1a to perform a return home operation, where the return home operation includes at least one cruise phase.
  • the airspeed meter 13a measures the airspeed when the drone 1a is flying, and the positioning device 12a measures the ground speed when the drone 1a is flying.
  • the controller 11a determines that the drone 1a is in a speed retardation state, the drone 1a is caused to enter a windy return phase. Specifically, the controller 11a calculates a difference between the airspeed and the ground speed of the drone 1a, and then determines whether the difference is greater than a first threshold. If it is less than the first threshold, it means that the wind speed is not large enough to affect the cruise of the drone 1a. If it is greater than the first threshold, it indicates that the wind speed is very large, and due to the effect of wind, it is difficult for the drone 1a to fly to the home point again, and the speed is blocked, so that the drone 1a enters the high wind return phase.
  • the airspeed meter 13a includes a pitot tube 131a installed outside the drone body 10a, and a pressure gauge 132a installed inside the airframe 10a.
  • Pitot tube 131a also known as airspeed tube and Pitot tube, is a device for measuring the point velocity of fluids. As shown in FIG. 3, this embodiment uses an L-type pitot tube.
  • the L-type pitot tube is a metal tube bent at a right angle and includes two layers of casings: a main pressure tube and a static pressure tube, which are not connected to each other.
  • a section of the L-type pitot tube is the probe, and D is the diameter of the probe.
  • the top of the measuring head is provided with a total pressure hole 1311 communicating with the total pressure pipe, and d is a diameter of the total pressure hole 1311.
  • a static pressure hole 1312 communicating with the static pressure pipe is opened on the side of the probe.
  • the other end of the L-shaped pitot tube is a support rod.
  • the bottom end of the support rod is a total pressure outlet tube 1313, a static pressure outlet tube 1314, and an alignment handle 1315.
  • the pressure gauge 132a includes a piezoelectric sensor and a processing circuit. Pressure sensors are used to convert pressure signals into electrical signals.
  • the processing circuit includes: an amplifier, a filter, and an A / D converter, which are used to process the electric signal output by the piezoelectric sensor to obtain a pressure measurement value.
  • the pitot tube 131a is mounted on the back of the fuselage 10a (the position p1 of the pitot tube) or the front or rear portion of the fuselage 10a (the position of the pitot tube p2) through the support pipe 133a.
  • the support tube 133a includes two layers of sleeves: an inner tube and an outer tube which are not connected to each other. One end of the inner tube is in communication with the total pressure derivation tube 1313, one end of the outer tube is in communication with the static pressure derivation tube 1314, and the other end of the inner tube and the outer tube are connected to a piezoelectric sensor of the pressure gauge 132a.
  • the air enters the pitot tube 131a through the total pressure hole 1311, and enters the pressure gauge 132a through the internal pressure pipe, the total pressure outlet pipe 1313, and the inner pipe of the support pipe 133a.
  • the piezoelectric sensor of the pressure gauge 132a converts the air pressure into Electrical signal.
  • the electrical signal is amplified by an amplifier, filtered by a filter, and converted by an A / D converter to obtain a total voltage measurement value.
  • the air enters the pitot tube 131a through the static pressure hole 1312, and enters the pressure gauge 132a through the outer pipe of the static pressure pipe, the static pressure outlet pipe 1314, and the support pipe 133a.
  • the piezoelectric sensor of the pressure gauge 132a converts the air pressure into an electrical signal.
  • the signal is amplified by an amplifier, filtered by a filter, and converted by an A / D converter to obtain a static pressure measurement value.
  • the controller 11a receives the total pressure measurement value and the static pressure measurement value measured by the airspeed meter 13a, and calculates the dynamic pressure and the airspeed of the drone 1a according to the Bernoulli equation.
  • the pitot tube 131a is installed outside the fuselage 10a through the support pipe 133a.
  • the pitot tube 131a is spaced a certain distance from the fuselage 10a and is located outside the airflow affected area R of the fuselage 10a, such as around the rotor. Especially under the rotor, it can avoid the influence of airflow on the pitot tube 131a, and further improve the accuracy of airspeed measurement.
  • the included angle of the pitot tube 131a with respect to the fuselage 10a is equal to the maximum flight inclination angle ⁇ of the drone 1a, that is, when the drone 1a cruises at the maximum flight inclination angle ⁇ , the axis of the pitot tube 131a The direction is parallel to the cruise course.
  • the pitot tube 131a measures the airspeed when the drone 1a cruises at the maximum flight inclination angle ⁇ , thereby improving the accuracy of the airspeed measurement, and can more accurately obtain the judgment result of the speed block state.
  • pitot tubes 131a can be installed on the back of the fuselage 10a, respectively facing the nose and the tail; or, pitot tubes 131a can be installed on the front and the rear of the fuselage 10a at the same time. Both the nose and the tail of 1a can be used to measure the airspeed.
  • the pitot tube 131a can also be directly installed on the surface of the back, front, or rear of the fuselage 10a, which can reduce the overall volume and size of the drone 1a without affecting the appearance of the drone 1a.
  • the airspeed meter 13a measures the airspeed when the drone 1a is flying, and the positioning device 12a measures the ground speed when the drone 1a is flying.
  • the controller 11a determines whether the difference between the airspeed and the ground speed is greater than the first threshold. If not, the drone 1a exits the speed block state, and the controller 11a returns the drone 1a to the cruise stage.
  • the controller 11a issues an instruction to return the drone 1a to the descending phase during the high wind return phase, and maintains the cruise power of the drone 1a and descends at a preset speed during the descending phase. During the descent, the wind speed gradually decreases, and the controller 11a judges in real time whether the drone 1a has exited the speed blocking state. If it has exited the speed blocking state, the drone 1a will stop descending and return to the cruise point to continue to fly to the return point.
  • the airspeed meter 13a and the positioning device 12a measure the airspeed and ground speed of the drone 1a, respectively.
  • the controller 11a calculates a difference between the airspeed and the ground speed of the drone 1a, and determines whether the difference is greater than a first threshold. If it is still greater than the first threshold value, it indicates that the drone 1a is still in a speed blocking state. If it is less than the first threshold, the drone 1a is considered to have exited the speed blocking state, and the drone 1a is returned to the cruise stage, and continues to cruise to the return point at the descended altitude.
  • the fuselage 10a of the drone 1a is further provided with an obstacle detection device 14a for detecting an obstacle below the fuselage 10a.
  • an obstacle detection device 14a for detecting an obstacle below the fuselage 10a.
  • the controller 11a stops the drone 1a and maintains cruise power.
  • the controller 11a causes the drone 1a to continue to descend. This can prevent the drone 1a from being damaged by obstacles, and improve cruise safety.
  • the positioning device 12a measures the ground speed of the drone 1a
  • the airspeed meter 13a measures the airspeed of the drone 1a.
  • the controller 11a calculates a difference between the airspeed and the ground speed of the drone 1a, and determines whether the difference is greater than a first threshold. If it is less than the first threshold, the wind speed is not large enough to affect the normal flight of the drone 1a. If it is greater than the first threshold, it indicates that the wind speed is very large, and due to the effect of wind, it is difficult for the drone 1a to perform normal flight again, and it is in a state of speed retardation.
  • the controller 11a generates a return command to cause the drone 1a to perform the above return action.
  • the drone of this embodiment uses an airspeed meter and a positioning device to detect whether the drone is in a speed block state during the cruise phase, and executes a corresponding return strategy to avoid the impact of high winds on the return flight, thereby ensuring no Human aircraft can return home safely, which solves the problem of slow or even stagnation of the current technology in high wind conditions, which causes the drone to run out of power and fail to return, improving the reliability and safety of drone return.
  • a return flight instruction is generated when the drone is in a high wind block state to avoid the impact of high winds on normal flight and further improve the drone flight. Reliability and security.
  • Another embodiment of the present disclosure provides an unmanned aerial vehicle 1b.
  • the features that are the same as or similar to those of the previous embodiment are not repeated, and only the features that are different from the previous embodiment are described below.
  • the fuselage 10b is provided with a controller 11b and a heading measuring device.
  • Flight parameters include: actual course E of drone 1b.
  • the heading measuring device for example, a positioning device 12b such as a GPS receiver or an inertial measurement device, is provided inside the fuselage 10b and is electrically connected to the controller 11b, and is used to measure the actual heading E of the drone 1b during flight.
  • a positioning device 12b such as a GPS receiver or an inertial measurement device
  • the controller 11b is disposed inside the fuselage 10b, and is used for receiving the measurement value of the heading measuring device and controlling the action of the power device 20b to control the flight of the drone 1b.
  • the controller 11b is configured to generate a home return instruction to cause the drone 1b to perform a home return operation, and the home return operation includes at least one cruise phase.
  • the positioning device 12b measures the actual heading E of the drone 1b.
  • the controller 11b calculates a difference between the actual course E of the drone 1b and the cruise course C, and then determines whether the difference is greater than a second threshold. If it is less than the second threshold, it indicates that the wind is not strong enough to affect the cruise of the drone 1b. If it is greater than the second threshold, it indicates that the wind is very strong, and due to the effect of the wind, the drone 1b is flying in a direction deviating from the home point and is in a heading deviation state, and the controller 11b causes the drone 1b to enter the windy home phase.
  • the controller 11b causes the drone 1b to enter the descending phase during the high wind return phase. During the descent, the controller 11b judges in real time whether the drone 1b has exited the heading deviation state. If the heading deviation state has been exited, the drone 1b stops descending, and continues to fly to the home point in the return cruise stage.
  • the positioning device 12b measures the actual heading E of the drone 1b.
  • the controller 11b calculates a difference between the actual course E of the drone 1b and the cruise course C, and then determines whether the difference is greater than a second threshold. If it is still greater than the second threshold, the drone 1b is still in a heading deviation state. If it is less than the second threshold, it is considered that the drone 1b has exited the heading deviation state, and the controller 11b returns the drone 1b to the cruise stage, and continues to cruise to the return point at the descended altitude.
  • the fuselage 10b of the drone 1b is further provided with an obstacle detection device 14b for detecting an obstacle below the fuselage 10b.
  • the positioning device 12b measures the actual heading E of the drone 1b.
  • the controller 11b has a difference between the actual heading E of the drone 1b and the set flight heading, and determines whether the difference is greater than a second threshold. If it is less than the second threshold value, it means that the wind speed is insufficient to affect the normal flight of the drone 1b. If it is greater than the second threshold, the wind speed is very large, and due to the effect of wind, the drone 1b has severely deviated from the set flight heading and is in a heading deviation state.
  • the controller 11b is also used to generate a return command to make the drone 1b Perform the return operation as described above.
  • this embodiment uses a positioning device to detect whether the drone is in a heading deviation state during the cruise phase, and executes the corresponding return strategy to avoid the impact of strong winds on the return flight, thereby ensuring that the drone can return to the flight safely, which solves the current problem.
  • Some technologies have drifted the course in the event of high winds, which caused the problem that the drone was exhausted and unable to return to home, which improved the reliability and safety of the drone.
  • the positioning device is used to detect whether the drone is in a heading deviation state, and a return flight instruction is generated to avoid the impact of high winds on normal flight and further improve the reliability and safety of the drone flight.
  • Another embodiment of the present disclosure provides an unmanned aerial vehicle 1c.
  • the features that are the same as or similar to those of the above embodiment will not be repeated, and only the features that are different from the above embodiment will be described below.
  • the fuselage 10c is provided with a controller 11c, an airspeed measuring device, and a ground speed and heading measuring device. Flight parameters include: airspeed, ground speed, and actual course E of UAV 1c.
  • the ground speed and heading measuring device for example, a positioning device 12c such as a GPS receiver or an inertial measurement device, is located inside the fuselage 10c and is electrically connected to the controller 11c. It is used to measure the ground speed and actuality of the drone 1c during flight. Heading E.
  • a positioning device 12c such as a GPS receiver or an inertial measurement device
  • the airspeed measuring device is, for example, an airspeed meter 13c, which is electrically connected to the controller 11c, and is used to measure the airspeed when the drone 1c is flying.
  • the airspeed meter 13 includes a pitot tube 131c installed outside the fuselage 10c through a support tube 133c, and a pressure gauge 132c installed inside the fuselage 10c.
  • the controller 11c is provided inside the fuselage 10c, and is used for receiving the measured values of the airspeed measuring device and the ground speed and heading measuring device, and controlling the actions of the power device 20c to control the flight of the drone 1c.
  • the controller 11c is configured to generate a return-to-home instruction to cause the drone 1c to perform a return-to-home action, where the return-to-home action includes at least one cruise phase.
  • the airspeed meter 13c measures the airspeed of the drone 1c
  • the positioning device 12c measures the ground speed and actual heading E of the drone 1c.
  • the controller 11c calculates the difference between the airspeed and the ground speed of the drone 1c, and the difference between the actual heading E and the cruise heading C, and determines whether the difference between the airspeed and the ground speed of the drone 1c is greater than a first threshold , Whether the difference between the actual course E and the cruise course C is greater than the second difference.
  • a first threshold Whether the difference between the actual course E and the cruise course C is greater than the second difference.
  • the controller 11c causes the drone 1c to enter the descending phase during the high wind return phase, and maintains the cruise power of the drone 1c and descending at a preset speed during the descending phase. During the descent, the wind speed gradually decreases, and the controller 11c judges in real time whether the drone 1c has exited the speed blocking state and the heading deviation state. If these two states have been exited, the drone 1c will stop descending and continue to fly to the return point during the return cruise phase.
  • the airspeed meter 13c measures the airspeed of the drone 1c
  • the positioning device 12c measures the ground speed and actual heading E of the drone 1c.
  • the controller 11c calculates the difference between the airspeed and the ground speed of the drone 1c, and the difference between the actual heading E and the cruise heading C, and determines whether the difference between the airspeed and the ground speed of the drone 1c is greater than a first threshold , And whether the difference between the actual course E and the cruise course C is greater than the second difference.
  • the fuselage 10c of the drone 1c is further provided with an obstacle detection device 14c for detecting an obstacle below the fuselage 10c.
  • the airspeed meter 13c measures the airspeed of the drone 1c
  • the positioning device 12c measures the ground speed and the actual heading E of the drone 1c.
  • the controller 11c calculates the difference between the airspeed and the ground speed of the drone 1c, and the difference between the actual heading E and the cruise heading C, and determines whether the difference between the airspeed and the ground speed of the drone 1c is greater than a first threshold , And whether the difference between the actual course E and the cruise course C is greater than the second difference.
  • the controller 11c is configured to generate a return-to-home instruction to cause the drone 1c to perform the return-to-home action as described above.
  • this embodiment detects whether the drone is in a high wind blocking state during the cruise phase and the normal flight phase, and implements corresponding strategies to avoid the impact of high winds on return and normal flight, thereby ensuring that the drone is safe.
  • the return flight and normal flight have improved the reliability and safety of drone flight.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种无人机(1a、1b、1c)的控制方法和无人机(1a、1b、1c),该无人机(1a、1b、1c)的控制方法包括:生成返航指令,使所述无人机(1a、1b、1c)执行返航动作,所述返航动作至少包括一巡航阶段;在所述巡航阶段中,测量所述无人机(1a、1b、1c)的飞行参数,当根据所述飞行参数判断所述无人机(1a、1b、1c)处于大风阻滞状态时,所述无人机(1a、1b、1c)进入大风返航阶段;在所述大风返航阶段中,测量所述飞行参数,当根据所述飞行参数判断所述无人机(1a、1b、1c)退出大风阻滞状态时,所述无人机(1a、1b、1c)返回巡航阶段。

Description

无人机的控制方法和无人机 技术领域
本公开涉及无人机领域,尤其涉及一种无人机的控制方法和无人机。
背景技术
无人机在返航、正常作业等飞行过程中可能会遭遇大风。当风力很大时,无人机的前飞分力可能不足以抵消风力,这会降低无人机的航速,甚至使无人机停滞。风力也可能使无人机的航向严重偏离预设航向。而现有技术并不会对大风进行检测,无人机也不会在飞行过程中对大风进行规避,容易造成无人机电量耗尽而无法到达目标点,影响无人机的飞行安全。
公开内容
本公开提供了一种无人机的控制方法,其中,包括:生成返航指令,使所述无人机执行返航动作,所述返航动作至少包括一巡航阶段;在所述巡航阶段中,测量所述无人机的飞行参数,当根据所述飞行参数判断所述无人机处于大风阻滞状态时,所述无人机进入大风返航阶段;在所述大风返航阶段中,测量所述飞行参数,当根据所述飞行参数判断所述无人机退出大风阻滞状态时,所述无人机返回巡航阶段。
本公开还提供了一种无人机,其中,包括:机身,所述机身设置有控制器和至少一个测量装置;所述控制器用于生成返航指令,使所述无人机执行返航动作,所述返航动作至少包括一巡航阶段;在所述巡航阶段中,所述至少一个测量装置用于测量所述无人机的飞行参数,当所述控制器根据所述飞行参数判断所述无人机处于大风阻滞状态时,所述控制器控制所述无人机进入大风返航阶段;在所述大风返航阶段中,所述至少一个测量装置用于测量所述飞行参数,当所述控制器根据所述飞行参数判断所述无人机退出大风阻滞状态时,所述控制器控制所述无人机返回巡航阶段。
从上述技术方案可以看出,本公开实施例至少具有以下有益效果:
通过在巡航阶段检测无人机是否处于大风阻滞状态,并执行相应的返航策略,以避免大风对返航的影响,从而确保无人机能够安全返航,提高了无人机返航的可靠性和安全性。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开实施例无人机的控制方法的流程图。
图2为本公开实施例无人机返航动作的流程图。
图3为本公开一实施例无人机的皮托管的结构示意图。
图4为本公开一实施例无人机的结构示意图。
图5为本公开一实施例无人机的俯视图。
图6为本公开另一实施例无人机的俯视图。
图7为本公开又一实施例无人机的俯视图。
【符号说明】
1a、1b、1c-无人机;
10a、10b、10c-机身;
11a、11b、11c-控制器;
12a、12b、12c-定位装置;
13a、13c-空速计;
131a、131c-皮托管;
1311-总压孔;1312-静压孔;1313-总压导出管;1314-静压导出管;
1315-对准柄;D-测头的直径;d-总压孔的直径;
132a、132c-压力计;
133a、133c-支撑管;
14a、14b、14c-障碍物检测装置;
20a、20b、20c-动力装置;
θ-夹角;p1、p2-皮托管的位置;α-最大飞行倾角;R-气流影响区域;
W-风向;W1-平行于巡航航向的分量;W2-垂直于巡航航向的分量;
C-巡航航向;E-实际航向。
具体实施方式
以下,将参照附图来描述本公开的实施例。但是应该理解,这些描述只是示例性的,而并非要限制本公开的范围。此外,在以下说明中,省略 了对公知结构和技术的描述,以避免不必要地混淆本公开的概念。
本公开一实施例提供了一种无人机的控制方法,如图1所示,该控制方法包括以下步骤:
步骤S101:通过向无人机发送返航指令,使无人机执行返航动作,返回动作至少包括一巡航阶段。
如图2所示,返航动作包括:爬升阶段S1、巡航阶段S2以及降落阶段S3,巡航阶段S2包括一大风返航阶段S21。
爬升阶段包括:返航准备、强制上升、航向对齐、自动上升等阶段。
无人机首先执行刹车悬停操作,以做好返航准备。当无人机处于悬停状态、或者其航速小于预设航速、或者执行刹车悬停操作的时间已经超过预设时间时,无人机进入强制上升阶段。
在强制上升阶段,无人机以预设速度上升。当无人机到达预设高度、或者强制上升的时间已经超过预设时间时,无人机进入航向对齐阶段。
在航向对齐阶段,无人机悬停于预设高度并调整航向,与巡航航向对齐。无人机可以机头朝向返航点或者机尾朝向返航点。当无人机的实际航向与巡航航向的差值小于预设角度、或者航向调整的时间已经超过预设时间时,无人机进入自动上升阶段。
在自动上升阶段,无人机以预设速度上升至巡航高度,巡航高度为预设的返航高度和无人机限高高度之间的较小者。当无人机升至巡航高度、或者自动上升的时间已经超过预设时间、或者无人机接收到油门杆操作指令时,无人机进入巡航阶段。
在巡航阶段,无人机以预设速度向返航点飞行。当无人机到达返航点正上方时,巡航阶段结束,无人机进入降落阶段。
在降落阶段,无人机以预设速度下降,直至落在目标点,返航动作完成。
另外,无人机在巡航阶段会检测其当前位置与周边物体的距离,当该距离小于预设距离时,认为该周边物体为障碍物,此时,巡航阶段还可以包括避障阶段。
在避障阶段,无人机首先执行刹车悬停操作并计算回退位置。然后无人机向回退位置后退。当无人机的位置与回退位置的距离小于预设距离、 或者后退时间超过预设时间时,无人机开始避障上升。无人机在避障上升过程中持续检测与障碍物的距离,当与障碍物的距离大于预设距离、或者避障上升的时间超过预设时间时,以避障上升后的高度继续巡航至返航点。
步骤S102:在巡航阶段中,测量无人机的飞行参数,当根据飞行参数判断无人机处于大风阻滞状态时,无人机进入大风返航阶段。
在本实施例中,所述飞行参数包括无人机的空速和地速。无人机安装有定位装置和空速计,分别用于测量无人机飞行时的地速和空速。地速是指无人机相对于地面的速度,空速是指无人机相对于空气的速度。定位装置例如是GPS接收机和/或惯性测量器件。空速计包括安装于无人机机身外部的皮托管。当无人机在空中飞行时,来流迎向皮托管的总压孔产生滞压,皮托管的静压孔测量静压,空速计根据伯努利方程即可计算出动压,从而得到无人机的空速。
本实施例的大风阻滞状态是指航速阻滞状态。对于返航动作而言,当风向W如图5所示与巡航航向相反时,无人机的空速较大,意味着两种可能的情况。一种情况是无人机处于无风、风速很小或风速较小的环境,无人机以高地速飞行。另一种情况就是航速阻滞状态,即风速很大,但无人机的地速很小甚至为零。在这种情况下,尽管空速计测量的空速很大,但由于风力的作用,无人机几乎不能再向返航点飞行,如果使无人机继续巡航,则很难完成返航动作。
因此,在巡航阶段中,首先分别利用空速计和定位装置测量无人机的空速和地速,并计算无人机的空速与地速的差值。然后判断所述差值是否大于第一阈值。如果小于第一阈值,说明风速不大,不足以影响无人机的巡航。如果大于第一阈值,说明风速很大,且由于风力的作用,无人机已经很难再向返航点飞行,处于航速阻滞状态,需要使无人机进入大风返航阶段。
无人机在巡航时,不论机头还是机尾朝向返航点,其机身相对于水平面都具有一定的倾角。当风速很大时,为了抵抗风力的作用,无人机会不断增大该倾角,并以最大飞行倾角飞行。
本实施例在巡航阶段测量的是无人机以最大飞行倾角巡航时的空速,即当无人机以最大飞行倾角巡航时,皮托管的轴向平行于与巡航航向,从 而提高了空速测量的准确性,可以更加准确地得出航速阻滞状态的判断结果。
同时,进入皮托管的是无人机机身的气流影响区域之外的空气,该气流影响区域例如是旋翼周围,尤其是旋翼下方,空速计利用气流影响区域之外的空气测量空速,可以避免机身气流对皮托管产生影响,进一步提高空速测量的准确性。
步骤S103:在大风返航阶段中,测量飞行参数,当根据飞行参数判断无人机退出大风阻滞状态时,无人机返回巡航阶段。
风是由空气的大范围运动形成的。风在流经地表时会与地表物体产生摩擦,从而使风速下降。随着高度的下降,空气与地表摩擦的影响逐渐增大,空气流动速度减慢。因此对于无人机飞行的近地表而言,风速会随着高度的下降而减小。
因此,为克服航速阻滞状态,在大风返航阶段中,无人机进入下降阶段,使无人机维持巡航功率并以预设速度下降。在下降的过程中风速逐渐减小,实时判断无人机是否已经退出航速阻滞状态。如果已经退出航速阻滞状态,无人机停止下降,返回巡航阶段继续飞向返航点。
在下降的过程中,分别利用空速计和定位装置测量无人机的空速和地速,并计算无人机的空速与地速的差值。然后判断所述差值是否大于第一阈值。如果仍然大于第一阈值,说明无人机仍然处于航速阻滞状态。如果小于第一阈值,认为无人机已经退出航速阻滞状态,无人机返回巡航阶段,以下降后的高度继续巡航至返航点。
本实施例中,无人机在大风返航阶段还可进行避障操作。在下降阶段中,当无人机下方有障碍物时,无人机停止下降并维持巡航功率。当所述障碍物不再位于无人机下方时,无人机继续下降。这样可以避免无人机被障碍物损坏,提高巡航的安全性。
由此可见,本实施例通过在巡航阶段检测无人机是否处于航速阻滞状态,并执行相应的返航策略,以避免大风对返航的影响,从而确保无人机能够安全返航,解决了现有技术在大风情况下返航速度慢、甚至停滞,进而造成无人机电量耗尽而无法返航的问题,提高了无人机返航的可靠性和安全性。
正常飞行的无人机如果遇到大风而处于大风阻滞状态,其已经很难再进行正常飞行。当无人机处于飞行状态时,本实施例的控制方法测量飞行参数,当根据飞行参数判断无人机处于大风阻滞状态时,生成返航指令。
首先分别利用空速计和定位装置测量无人机的空速和地速,并计算无人机的空速与地速的差值。然后判断所述差值是否大于第一阈值。如果小于第一阈值,说明风速不大,不足以影响无人机的正常飞行。如果大于第一阈值,说明风速很大,且由于风力的作用,无人机已经很难再进行正常飞行,处于航速阻滞状态,这时生成返航指令,使无人机执行如上所述的返航动作。
由此可见,本实施例通过在正常飞行阶段判断无人机是否处于航速阻滞状态,生成返航指令,以避免大风对正常飞行的影响,进一步提高了无人机飞行的可靠性和安全性。
本公开另一实施例的无人机的控制方法,为简要描述,其与上一实施例相同或相似的特征不再赘述,以下仅描述其不同于上一实施例的特征。
在本实施例的控制方法中,在巡航阶段中,当无人机处于大风阻滞状态时,进入大风返航阶段,其中大风阻滞状态是指航向偏离状态,飞行参数包括:无人机的实际航向。
在巡航阶段,当风向W如图6所示垂直于无人机的巡航航向C时,在风力的作用下,无人机的实际航向E会相对巡航航向C发生偏移,实际航向E与巡航航向C之间形成一夹角θ,该夹角θ的大小反映实际航向E与巡航航向C的差值大小。该夹角θ会随着风力的增大而增大,当夹角θ过大时,实际航向E与巡航航向C会发生严重偏移,无人机无法成功飞至返航点。
因此,在巡航阶段中,利用定位装置测量无人机的实际航向E,并计算无人机的实际航向E与巡航航向C的差值。然后判断所述差值是否大于第二阈值。如果小于第二阈值,说明风力不大,不足以影响无人机的巡航。如果大于第二阈值,说明风力很大,且由于风力的作用,无人机正向偏离返航点的方向飞行,处于航向偏离状态,需要使无人机进入大风返航阶段。
与上一实施例类似,为克服航向偏离状态,在大风返航阶段中,无人机进入下降阶段。在下降的过程中风速逐渐减小,实时判断无人机是否已 经退出航向偏离状态。如果已经退出航向偏离状态,无人机停止下降,返回巡航阶段继续飞向返航点。
在下降的过程中,利用定位装置测量无人机的实际航向E,并计算无人机的实际航向E与巡航航向C的差值。然后判断所述差值是否大于第二阈值。如果仍然大于第二阈值,说明无人机仍然处于航向偏离状态。如果小于第二阈值,认为无人机已经退出航向偏离状态,无人机返回巡航阶段,以下降后的高度继续巡航至返航点。
由此可见,本实施例通过在巡航阶段检测无人机是否处于航向偏离状态,并执行相应的返航策略,以避免大风对返航的影响,从而确保无人机能够安全返航,解决了现有技术在大风情况下航向偏移,进而造成无人机电量耗尽而无法返航的问题,提高了无人机返航的可靠性和安全性。
与上一实施例类似,当无人机处于飞行状态时,本实施例的控制方法测量飞行参数,当根据飞行参数判断无人机处于大风阻滞状态时,生成返航指令。
首先利用定位装置测量无人机的实际航向E,并计算无人机的实际航向E与设定的飞行航向的差值。然后判断所述差值是否大于第二阈值。如果小于第二阈值,说明风速不足以影响无人机的正常飞行。如果大于第二阈值,说明风速很大,且由于风力的作用,无人机已经严重偏离设定的飞行航向,处于航向偏离状态,这时生成返航指令,使无人机执行如上所述的返航动作。
由此可见,本实施例通过在正常飞行阶段判断无人机是否处于航向偏离状态,生成返航指令,以避免大风对正常飞行的影响,进一步提高了无人机飞行的可靠性和安全性。
本公开另一实施例的无人机的控制方法,为简要描述,其与上述实施例相同或相似的特征不再赘述,以下仅描述其不同于上述实施例的特征。
在本实施例的控制方法中,在巡航阶段中,当无人机处于大风阻滞状态时,进入大风返航阶段,其中大风阻滞状态包括航速阻滞状态与航向偏离状态,飞行参数包括:无人机的地速、空速和实际航向。
在巡航阶段,当风向W如图7所示与巡航航向C既不平行也不垂直时,该风向W可以分解为平行于巡航航向的分量W1和垂直于巡航航向 的分量W2。在W1方向上,风力在该方向的分量可能导致无人机处于航速阻滞状态。在W2方向上,风力在该方向的分量可能导致无人机处于航向偏离状态。
因此,在巡航阶段中,利用空速计测量无人机的空速,利用定位装置测量无人机的地速和实际航向E,并计算无人机的空速与地速的差值,以及实际航向E与巡航航向C的差值。
然后判断无人机的空速与地速的差值是否大于第一阈值,实际航向E与巡航航向C的差值是否大于第二差值。当二者中的任一个成立时,说明在风力的作用下,无人机已经很难再向返航点飞行,或者正向偏离返航点的方向飞行;当二者均成立时,说明上述两种情况同时发生。无人机处于航速阻滞状态和/或航向偏离状态,需要使无人机进入大风返航阶段。
因此,为克服大风阻滞状态,在大风返航阶段中,无人机进入下降阶段,使无人机维持巡航功率并以预设速度下降。在下降的过程中风速逐渐减小,实时判断无人机是否已经退出航速阻滞状态和航向偏离状态。如果已经退出这两种状态,无人机停止下降,返回巡航阶段继续飞向返航点。
在下降的过程中,利用空速计测量无人机的空速,利用定位装置测量无人机的地速和实际航向E,并计算无人机的空速与地速的差值,以及实际航向E与巡航航向C的差值。
然后判断无人机的空速与地速的差值是否大于第一阈值,实际航向E与巡航航向C的差值是否大于第二差值。当上述两个条件均不成立时,认为无人机已经退出大风阻滞状态,无人机返回巡航阶段,以下降后的高度继续巡航至返航点。
由此可见,本实施例通过在巡航阶段检测无人机是否处于航速阻滞状态和航向偏离状态,并执行相应的返航策略,以避免大风对返航的影响,从而确保无人机能够安全返航,解决了现有技术在大风情况下的航速阻滞与航向偏移,进而造成无人机电量耗尽而无法返航的问题,提高了无人机返航的可靠性和安全性。
与上述实施例类似,当无人机处于飞行状态时,本实施例的控制方法测量飞行参数,当根据飞行参数判断无人机处于大风阻滞状态时,生成返航指令。
首先利用空速计测量无人机的空速,利用定位装置测量无人机的地速和实际航向E,并计算无人机的空速与地速的差值,以及实际航向E与巡航航向C的差值。
然后判断无人机的空速与地速的差值是否大于第一阈值,实际航向E与巡航航向C的差值是否大于第二差值。当二者中的至少一个成立时,生成返航指令,使无人机执行如上所述的返航动作。
由此可见,本实施例通过在正常飞行阶段判断无人机是否处于大风阻滞状态,生成返航指令,以避免大风对正常飞行的影响,进一步提高了无人机飞行的可靠性和安全性。
本公开一实施例提供了一种无人机1a。如图5所示,无人机1a包括:机身10a和动力装置20a。动力装置20a包括:从机身10a延伸出的四个臂,及安装于臂上的、用于产生动力的旋翼。
机身10a设置有:控制器11a、空速测量装置和地速测量装置。飞行参数包括:无人机1a的空速和地速。
地速测量装置,例如是GPS接收机或惯性测量器件等定位装置12a,设置于机身10a内部且与控制器11a电性连接,用于测量无人机1a飞行时的地速。
空速测量装置,例如是空速计13a,与控制器11a电性连接,用于测量无人机1a飞行时的空速。
控制器11a,设置于机身10a内部,用于接收空速测量装置和地速测量装置的测量值,并控制动力装置20a的动作,以控制无人机1a的飞行。
在本实施例中,控制器11a用于生成返航指令,使无人机1a执行返航动作,所述返航动作至少包括一巡航阶段。
在巡航阶段中,空速计13a测量无人机1a飞行时的空速,定位装置12a测量无人机1a飞行时的地速。当控制器11a判断无人机1a处于航速阻滞状态时,使无人机1a进入大风返航阶段。具体来说,控制器11a计算无人机1a的空速与地速的差值,然后判断所述差值是否大于第一阈值。如果小于第一阈值,说明风速不大,不足以影响无人机1a的巡航。如果大于第一阈值,说明风速很大,且由于风力的作用,无人机1a已经很难再向返航点飞行,处于航速阻滞状态,使无人机1a进入大风返航阶段。
空速计13a包括安装于无人机机身10a外部的皮托管131a、以及安装于机身10a内部的压力计132a。
皮托管131a又称空速管、毕托管,是测量流体点速的装置。如图3所示,本实施例采用L型皮托管,L型皮托管是弯成直角的金属管,包括两层套管:总压管和静压管,二者互不连通。L型皮托管的一段为测头,D为测头的直径。测头的顶端开有与总压管连通的总压孔1311,d为总压孔1311的直径。测头的侧面开有与静压管连通的静压孔1312。L型皮托管的另一段为支杆,支杆的底端为总压导出管1313和静压导出管1314以及对准柄1315。
压力计132a包括:压电传感器以及处理电路。压力传感器用于将压力信号转换为电信号。处理电路包括:放大器、滤波器、A/D转换器,用于对压电传感器输出的电信号进行处理,得到压力的测量值。
如图4所示,皮托管131a通过支撑管133a安装于机身10a的背部(皮托管的位置p1)、或者,机身10a的前部或后部(皮托管的位置p2)。支撑管133a包括两层套管:互不连通的内管和外管。内管的一端与总压导出管1313连通,外管的一端与静压导出管1314连通,内管和外管的另一端均连通压力计132a的压电传感器。
在巡航阶段,空气经总压孔1311进入皮托管131a,并经总压管、总压导出管1313、支撑管133a的内管进入压力计132a,压力计132a的压电传感器将空气压力转换为电信号,电信号经放大器放大、滤波器滤波、A/D转换器转换后得到总压测量值。空气经静压孔1312进入皮托管131a,并经静压管、静压导出管1314、支撑管133a的外管进入压力计132a,压力计132a的压电传感器将空气压力转换为电信号,电信号经放大器放大、滤波器滤波、A/D转换器转换后得到静压测量值。控制器11a接收空速计13a测量的总压测量值和静压测量值,根据伯努利方程计算出动压以及无人机1a的空速。
本实施例的无人机1a,皮托管131a通过支撑管133a安装于机身10a外部,皮托管131a与机身10a间隔一定距离,位于机身10a的气流影响区域R之外,如旋翼周围,尤其是旋翼下方,可以避免机身气流对皮托管131a产生影响,进一步提高空速测量的准确性。
如图4所示,皮托管131a的轴向相对于机身10a的夹角等于无人机1a的最大飞行倾角α,即当无人机1a以最大飞行倾角α巡航时,皮托管131a的轴向平行于巡航航向。这样,皮托管131a测量的是无人机1a以最大飞行倾角α巡航时的空速,从而提高了空速测量的准确性,可以更加准确地得出航速阻滞状态的判断结果。
以上只是示例性说明,本实施例并不限于此。例如,可以在机身10a的背部安装两个皮托管131a,分别朝向机头和机尾两个方向;或者,在机身10a的前部和后部同时安装皮托管131a,这样无论无人机1a的机头朝向返航点还是机尾朝向返航点,均可以对空速进行测量。皮托管131a也可以直接安装于机身10a的背部、前部或后部的表面,这样可以减小无人机1a的整体体积和尺寸,不影响无人机1a的外观。
在大风返航阶段中,空速计13a测量无人机1a飞行时的空速,定位装置12a测量无人机1a飞行时的地速。控制器11a判断空速与地速的差值是否大于第一阈值,如果否,则无人机1a退出航速阻滞状态,控制器11a使无人机1a返回巡航阶段。
为克服航速阻滞状态,在大风返航阶段中,控制器11a发出指令,使无人机1a进入下降阶段,在下降阶段使无人机1a维持巡航功率并以预设速度下降。在下降的过程中风速逐渐减小,控制器11a实时判断无人机1a是否已经退出航速阻滞状态。如果已经退出航速阻滞状态,使无人机1a停止下降,返回巡航阶段继续飞向返航点。
在下降的过程中,空速计13a和定位装置12a分别测量无人机1a的空速和地速。控制器11a计算无人机1a的空速与地速的差值,判断所述差值是否大于第一阈值。如果仍然大于第一阈值,说明无人机1a仍然处于航速阻滞状态。如果小于第一阈值,认为无人机1a已经退出航速阻滞状态,使无人机1a返回巡航阶段,以下降后的高度继续巡航至返航点。
无人机1a的机身10a还设置有障碍物检测装置14a,用于检测机身10a下方的障碍物。在下降阶段中,当障碍物检测装置14a检测到无人机1a下方有障碍物时,控制器11a使无人机1a停止下降并维持巡航功率。当障碍物检测装置14a检测到所述障碍物不再位于无人机1a下方时,控制器11a使无人机1a继续下降。这样可以避免无人机1a被障碍物损坏,提 高巡航的安全性。
在无人机1a正常飞行时,定位装置12a测量无人机1a的地速,空速计13a测量无人机1a的空速。控制器11a计算无人机1a的空速与地速的差值,并判断所述差值是否大于第一阈值。如果小于第一阈值,说明风速不大,不足以影响无人机1a的正常飞行。如果大于第一阈值,说明风速很大,且由于风力的作用,无人机1a已经很难再进行正常飞行,处于航速阻滞状态,控制器11a生成返航指令,使无人机1a执行上述返航动作。
由此可见,本实施例的无人机在巡航阶段利用空速计和定位装置检测无人机是否处于航速阻滞状态,并执行相应的返航策略,以避免大风对返航的影响,从而确保无人机能够安全返航,解决了现有技术在大风情况下返航速度慢、甚至停滞,进而造成无人机电量耗尽而无法返航的问题,提高了无人机返航的可靠性和安全性。通过在正常飞行阶段利用空速计和定位装置检测无人机是否处于大风阻滞状态,当处于大风阻滞状态时生成返航指令,以避免大风对正常飞行的影响,进一步提高了无人机飞行的可靠性和安全性。
本公开另一实施例提供了一种无人机1b,为简要描述,其与上一实施例相同或相似的特征不再赘述,以下仅描述其不同于上一实施例的特征。
如图6所示,机身10b设置有:控制器11b和航向测量装置。飞行参数包括:无人机1b的实际航向E。
航向测量装置,例如是GPS接收机或惯性测量器件等定位装置12b,设置于机身10b内部且与控制器11b电性连接,用于测量无人机1b飞行时的实际航向E。
控制器11b,设置于机身10b内部,用于接收航向测量装置的测量值,并控制动力装置20b的动作,以控制无人机1b的飞行。
在本实施例中,控制器11b用于生成返航指令,使无人机1b执行返航动作,所述返航动作至少包括一巡航阶段。
在巡航阶段中,定位装置12b测量无人机1b的实际航向E。控制器11b计算无人机1b的实际航向E与巡航航向C的差值,然后判断所述差值是否大于第二阈值。如果小于第二阈值,说明风力不大,不足以影响无人机1b的巡航。如果大于第二阈值,说明风力很大,且由于风力的作用, 无人机1b正向偏离返航点的方向飞行,处于航向偏离状态,控制器11b使无人机1b进入大风返航阶段。
为克服航向偏离状态,在大风返航阶段中,控制器11b使无人机1b进入下降阶段。在下降的过程中控制器11b实时判断无人机1b是否已经退出航向偏离状态。如果已经退出航向偏离状态,使无人机1b停止下降,返回巡航阶段继续飞向返航点。
在下降的过程中,定位装置12b测量无人机1b的实际航向E。控制器11b计算无人机1b的实际航向E与巡航航向C的差值,然后判断所述差值是否大于第二阈值。如果仍然大于第二阈值,说明无人机1b仍然处于航向偏离状态。如果小于第二阈值,认为无人机1b已经退出航向偏离状态,控制器11b使无人机1b返回巡航阶段,以下降后的高度继续巡航至返航点。
与上一实施例类似,无人机1b的机身10b还设置有障碍物检测装置14b,用于检测机身10b下方的障碍物。
在无人机1b正常飞行时,定位装置12b测量无人机1b的实际航向E。控制器11b无人机1b的实际航向E与设定的飞行航向的差值,并判断所述差值是否大于第二阈值。如果小于第二阈值,说明风速不足以影响无人机1b的正常飞行。如果大于第二阈值,说明风速很大,且由于风力的作用,无人机1b已经严重偏离设定的飞行航向,处于航向偏离状态,控制器11b还用于生成返航指令,使无人机1b执行如上所述的返航动作。
由此可见,本实施例在巡航阶段利用定位装置检测无人机是否处于航向偏离状态,并执行相应的返航策略,以避免大风对返航的影响,从而确保无人机能够安全返航,解决了现有技术在大风情况下航向偏移,进而造成无人机电量耗尽而无法返航的问题,提高了无人机返航的可靠性和安全性。同时,在正常飞行阶段利用定位装置检测无人机是否处于航向偏离状态,生成返航指令,以避免大风对正常飞行的影响,进一步提高了无人机飞行的可靠性和安全性。
本公开又一实施例提供了一种无人机1c,为简要描述,其与上述实施例相同或相似的特征不再赘述,以下仅描述其不同于上述实施例的特征。
如图7所示,机身10c设置有:控制器11c、空速测量装置、和地速 与航向测量装置。飞行参数包括:无人机1c的空速、地速和实际航向E。
地速与航向测量装置,例如是GPS接收机或惯性测量器件等定位装置12c,设置于机身10c内部且与控制器11c电性连接,用于测量无人机1c飞行时的地速和实际航向E。
空速测量装置,例如是空速计13c,与控制器11c电性连接,用于测量无人机1c飞行时的空速。空速计13包括通过支撑管133c安装于机身10c外部的皮托管131c、以及安装于机身10c内部的压力计132c。
控制器11c,设置于机身10c内部,用于接收空速测量装置和地速与航向测量装置的测量值,并控制动力装置20c的动作,以控制无人机1c的飞行。
在本实施例中,控制器11c用于生成返航指令,使无人机1c执行返航动作,所述返航动作至少包括一巡航阶段。
在巡航阶段中,空速计13c测量无人机1c的空速,定位装置12c测量无人机1c的地速和实际航向E。控制器11c计算无人机1c的空速与地速的差值,以及实际航向E与巡航航向C的差值,并判断无人机1c的空速与地速的差值是否大于第一阈值,实际航向E与巡航航向C的差值是否大于第二差值。当二者中的任一个成立时,说明在风力的作用下,无人机1c已经很难再向返航点飞行,或者正向偏离返航点的方向飞行;当二者均成立时,说明上述两种情况同时发生,无人机1c处于航速阻滞状态和/或航向偏离状态,控制器11c使无人机1c进入大风返航阶段。
为克服大风阻滞状态,在大风返航阶段中,控制器11c使无人机1c进入下降阶段,在下降阶段使无人机1c维持巡航功率并以预设速度下降。在下降的过程中风速逐渐减小,控制器11c实时判断无人机1c是否已经退出航速阻滞状态和航向偏离状态。如果已经退出这两种状态,使无人机1c停止下降,返回巡航阶段继续飞向返航点。
在下降的过程中,空速计13c测量无人机1c的空速,定位装置12c测量无人机1c的地速和实际航向E。控制器11c计算无人机1c的空速与地速的差值,以及实际航向E与巡航航向C的差值,并判断无人机1c的空速与地速的差值是否大于第一阈值,以及实际航向E与巡航航向C的差值是否大于第二差值。当上述两个条件均不成立时,认为无人机1c已经 退出大风阻滞状态,使无人机1c返回巡航阶段,以下降后的高度继续巡航至返航点。
与上述实施例类似,无人机1c的机身10c还设置有障碍物检测装置14c,用于检测机身10c下方的障碍物。
在无人机1c正常飞行时,空速计13c测量无人机1c的空速,定位装置12c测量无人机1c的地速和实际航向E。控制器11c计算无人机1c的空速与地速的差值,以及实际航向E与巡航航向C的差值,并判断无人机1c的空速与地速的差值是否大于第一阈值,以及实际航向E与巡航航向C的差值是否大于第二差值。当二者中的至少一个成立时,控制器11c用于生成返航指令,使无人机1c执行如上所述的返航动作。
由此可见,本实施例通过在巡航阶段和正常飞行阶段检测无人机是否处于大风阻滞状态,并执行相应的策略,以避免大风对返航和正常飞行的影响,从而确保无人机能够安全返航和正常飞行,提高了无人机飞行的可靠性和安全性。
本领域技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的装置的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
最后应说明的是:以上各实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述各实施例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;在不冲突的情况下,本公开实施例中的特征可以任意组合;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围。

Claims (23)

  1. 一种无人机的控制方法,其中,包括:
    生成返航指令,使所述无人机执行返航动作,所述返航动作至少包括一巡航阶段;
    在所述巡航阶段中,测量所述无人机的飞行参数,当根据所述飞行参数判断所述无人机处于大风阻滞状态时,所述无人机进入大风返航阶段;
    在所述大风返航阶段中,测量所述飞行参数,当根据所述飞行参数判断所述无人机退出大风阻滞状态时,所述无人机返回巡航阶段。
  2. 如权利要求1所述的控制方法,其中,所述大风阻滞状态包括:航速阻滞状态与航向偏离状态的至少其中之一。
  3. 如权利要求2所述的控制方法,其中,所述大风阻滞状态为航速阻滞状态;所述飞行参数包括:无人机的空速和地速;
    在所述巡航阶段中,判断所述空速与所述地速的差值是否大于第一阈值,如果是,则所述无人机处于航速阻滞状态;
    在所述大风返航阶段中,判断所述空速与所述地速的差值是否大于第一阈值,如果否,则所述无人机退出航速阻滞状态。
  4. 如权利要求2所述的控制方法,其中,所述大风阻滞状态为航向偏离状态;所述飞行参数包括:无人机的实际航向;
    在所述巡航阶段中,判断所述实际航向与巡航航向的差值是否大于第二阈值,如果是,则所述无人机处于航速阻滞状态;
    在所述大风返航阶段中,判断所述实际航向与巡航航向的差值是否大于第二阈值,如果否,则所述无人机退出航速阻滞状态。
  5. 如权利要求2所述的控制方法,其中,所述大风阻滞状态包括航速阻滞状态和航向偏离状态;所述飞行参数包括:无人机的空速、地速和实际航向;
    在所述巡航阶段中,判断所述空速与地速的差值是否大于第一阈值、以及所述实际航向与巡航航向的差值是否大于第二阈值;当二者中的至少一个成立时,则所述无人机处于大风阻滞状态;
    在所述大风返航阶段中,判断所述空速与地速的差值是否大于第一阈值、以及所述实际航向与巡航航向的差值是否大于第二阈值,当二者均不 成立时,则所述无人机退出大风阻滞状态。
  6. 如权利要求3或5所述的控制方法,其中,所述空速为所述无人机以最大飞行倾角巡航时的空速。
  7. 如权利要求3或5所述的控制方法,其中,利用所述无人机的气流影响区域之外的空气测量所述空速。
  8. 如权利要求1所述的控制方法,其中,在所述大风返航阶段中,所述无人机进入下降阶段;在所述下降阶段中,当所述无人机退出大风阻滞状态时,停止下降,返回巡航阶段。
  9. 如权利要求8所述的控制方法,其中,在所述下降阶段中,当所述无人机下方有障碍物时,无人机停止下降;当所述障碍物不再位于所述无人机下方时,无人机继续下降。
  10. 如权利要求1所述的控制方法,其中,所述生成返航指令包括:当所述无人机处于飞行状态时,测量所述飞行参数,当根据所述飞行参数判断所述无人机处于所述大风阻滞状态时,生成所述返航指令。
  11. 一种无人机,其中,包括:机身,所述机身设置有控制器和至少一个测量装置;
    所述控制器用于生成返航指令,使所述无人机执行返航动作,所述返航动作至少包括一巡航阶段;
    在所述巡航阶段中,所述至少一个测量装置用于测量所述无人机的飞行参数,当所述控制器根据所述飞行参数判断所述无人机处于大风阻滞状态时,所述控制器控制所述无人机进入大风返航阶段;
    在所述大风返航阶段中,所述至少一个测量装置用于测量所述飞行参数,当所述控制器根据所述飞行参数判断所述无人机退出大风阻滞状态时,所述控制器控制所述无人机返回巡航阶段。
  12. 如权利要求11所述的无人机,其中,所述大风阻滞状态包括:航速阻滞状态与航向偏离状态的至少其中之一。
  13. 如权利要求12所述的无人机,其中,所述至少一个测量装置包括:空速计和定位装置;
    所述大风阻滞状态为航速阻滞状态;在所述巡航阶段和大风返航阶段中,
    所述定位装置用于测量所述无人机的地速;
    所述空速计用于测量所述无人机的空速;
    在所述巡航阶段中,所述控制器用于判断所述空速与所述地速的差值是否大于第一阈值,如果是,则所述无人机处于航速阻滞状态;
    在所述大风返航阶段中,所述控制器用于判断所述空速与所述地速的差值是否大于第一阈值,如果否,则所述无人机退出航速阻滞状态。
  14. 如权利要求12所述的无人机,其中,所述至少一个测量装置包括:定位装置;
    所述大风阻滞状态为航向偏离状态;在所述巡航阶段和所述大风返航阶段中,所述定位装置用于测量所述无人机的实际航向;
    在所述巡航阶段中,所述控制器用于判断所述实际航向与巡航航向的差值是否大于第二阈值,如果是,则所述无人机处于航速阻滞状态;
    在所述大风返航阶段中,所述控制器用于判断所述实际航向与巡航航向的差值是否大于第二阈值,如果否,则所述无人机退出航速阻滞状态。
  15. 如权利要求12所述的无人机,其中,所述至少一个测量装置包括:空速计和定位装置;
    所述大风阻滞状态包括航速阻滞状态和航向偏离状态;在所述巡航阶段和大风返航阶段中,
    所述定位装置用于测量所述无人机的地速和实际航向;
    所述空速计用于测量所述无人机的空速;
    在所述巡航阶段中,所述控制器用于判断所述空速与地速的差值是否大于第一阈值、以及所述实际航向与巡航航向的差值是否大于第二阈值;当二者中的至少一个成立时,则所述无人机处于大风阻滞状态;
    在所述大风返航阶段中,所述控制器用于判断所述空速与地速的差值是否大于第一阈值、以及所述实际航向与巡航航向的差值是否大于第二阈值,当二者均不成立时,则所述无人机退出大风阻滞状态。
  16. 如权利要求13或15所述的无人机,其中,所述空速计包括:
    安装于所述机身外部的皮托管,用于形成空气的总压力和静压力;
    安装于所述机身内部的压力计,与所述皮托管连通,用于对所述空气的总压力和静压力进行处理,得到所述无人机的所述空速。
  17. 如权利要求16所述的无人机,其中,当所述无人机以最大飞行倾角巡航时,所述皮托管的轴向平行于巡航航向。
  18. 如权利要求16所述的无人机,其中,所述皮托管与所述机身相距预定距离,位于所述机身的气流影响区域之外。
  19. 如权利要求16所述的无人机,所述皮托管安装于机身的背部、前部和后部的至少其中之一。
  20. 如权利要求13或14所述的无人机,其中,所述定位装置包括:GPS接收机和惯性测量器件的至少一种。
  21. 如权利要求11所述的无人机,其中,在所述大风返航阶段中,所述控制器控制所述无人机进入下降阶段;在所述下降阶段中,当所述无人机退出大风阻滞状态时,所述控制器控制所述无人机停止下降,返回巡航阶段。
  22. 如权利要求21所述的无人机,其中,所述机身还设置有障碍物检测装置;
    在所述下降阶段中,所述障碍物检测装置用于检测所述无人机下方是否有障碍物,当所述障碍物检测装置检测到所述无人机下方有障碍物时,所述控制器使所述无人机停止下降;当所述障碍物检测装置检测不到所述障碍物时,所述控制器使所述无人机继续下降。
  23. 如权利要求11所述的无人机,其中,当所述无人机处于飞行状态时,所述至少一个测量装置用于测量所述无人机的所述飞行参数,当所述控制器根据所述飞行参数判断所述无人机处于所述大风阻滞状态时,所述控制器生成所述返航指令。
PCT/CN2018/108774 2018-09-29 2018-09-29 无人机的控制方法和无人机 WO2020062166A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880049113.7A CN110998474B (zh) 2018-09-29 2018-09-29 无人机的控制方法和无人机
PCT/CN2018/108774 WO2020062166A1 (zh) 2018-09-29 2018-09-29 无人机的控制方法和无人机
CN202310751221.1A CN116560411A (zh) 2018-09-29 2018-09-29 无人机的控制方法和无人机
US17/206,105 US20210208609A1 (en) 2018-09-29 2021-03-18 Unmanned aerial vehicle control method, and unmanned aerial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108774 WO2020062166A1 (zh) 2018-09-29 2018-09-29 无人机的控制方法和无人机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/206,105 Continuation US20210208609A1 (en) 2018-09-29 2021-03-18 Unmanned aerial vehicle control method, and unmanned aerial vehicle

Publications (1)

Publication Number Publication Date
WO2020062166A1 true WO2020062166A1 (zh) 2020-04-02

Family

ID=69950190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108774 WO2020062166A1 (zh) 2018-09-29 2018-09-29 无人机的控制方法和无人机

Country Status (3)

Country Link
US (1) US20210208609A1 (zh)
CN (2) CN116560411A (zh)
WO (1) WO2020062166A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115856359B (zh) * 2023-02-15 2023-06-09 成都凯天电子股份有限公司 一种直升机空速在线修正方法
CN118333613A (zh) * 2024-06-12 2024-07-12 山东登远信息科技有限公司 一种无人机电力巡检风险检测方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176477A (zh) * 2013-03-11 2013-06-26 北京航空航天大学 一种基于风速风向动态调整的机载sar飞行航路编排方法
CN104459193A (zh) * 2014-12-05 2015-03-25 中国航天空气动力技术研究院 一种基于无人机侧航法估算侧风信息的方法
CN106828956A (zh) * 2017-03-21 2017-06-13 广东容祺智能科技有限公司 一种无人机风速预警保护系统及方法
CN107077153A (zh) * 2017-01-22 2017-08-18 深圳市大疆创新科技有限公司 可移动装置的控制方法、控制系统、和可移动装置
JP2018052341A (ja) * 2016-09-29 2018-04-05 セコム株式会社 飛行ロボット制御システムおよび飛行ロボット
CN107885227A (zh) * 2017-11-30 2018-04-06 广州市华科尔科技股份有限公司 一种无人机自动避障方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4422147A (en) * 1980-09-08 1983-12-20 The Boeing Company Wind shear responsive turbulence compensated aircraft throttle control system
US5077558A (en) * 1990-12-14 1991-12-31 Allied-Signal Inc. Airborne wind shear detection weather radar
US5669582A (en) * 1995-05-12 1997-09-23 The Boeing Company Method and apparatus for reducing unwanted sideways motion in the aft cabin and roll-yaw upsets of an airplane due to atmospheric turbulence and wind gusts
EP3399381A1 (en) * 2014-09-05 2018-11-07 SZ DJI Technology Co., Ltd. Context-based flight mode selection
CN104977426B (zh) * 2015-06-24 2017-12-12 云南电网有限责任公司电力科学研究院 一种大风环境下电力线路巡检机器人的控制方法
CN107111321B (zh) * 2016-10-11 2020-06-19 深圳市大疆创新科技有限公司 控制方法、控制装置、飞行控制系统与多旋翼无人机
JP2018090012A (ja) * 2016-11-30 2018-06-14 キヤノンマーケティングジャパン株式会社 無人航空機制御システム、無人航空機制御システムの制御方法、およびプログラム
CN107153424A (zh) * 2017-07-06 2017-09-12 上海复亚通信科技有限公司 一种能抗大风的全自动无人机巡飞系统
CN108152529A (zh) * 2017-11-02 2018-06-12 成都飞机工业(集团)有限责任公司 一种基于飞行参数计算风速及风向的方法
CN108353784B (zh) * 2018-04-16 2023-02-03 农业部南京农业机械化研究所 一种无人机授粉装置及其方法
CN108594839B (zh) * 2018-05-22 2019-06-28 深圳智航无人机有限公司 基于多矢量技术的控制方法、飞机及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176477A (zh) * 2013-03-11 2013-06-26 北京航空航天大学 一种基于风速风向动态调整的机载sar飞行航路编排方法
CN104459193A (zh) * 2014-12-05 2015-03-25 中国航天空气动力技术研究院 一种基于无人机侧航法估算侧风信息的方法
JP2018052341A (ja) * 2016-09-29 2018-04-05 セコム株式会社 飛行ロボット制御システムおよび飛行ロボット
CN107077153A (zh) * 2017-01-22 2017-08-18 深圳市大疆创新科技有限公司 可移动装置的控制方法、控制系统、和可移动装置
CN106828956A (zh) * 2017-03-21 2017-06-13 广东容祺智能科技有限公司 一种无人机风速预警保护系统及方法
CN107885227A (zh) * 2017-11-30 2018-04-06 广州市华科尔科技股份有限公司 一种无人机自动避障方法

Also Published As

Publication number Publication date
CN110998474B (zh) 2023-06-20
CN110998474A (zh) 2020-04-10
CN116560411A (zh) 2023-08-08
US20210208609A1 (en) 2021-07-08

Similar Documents

Publication Publication Date Title
EP3136197B1 (en) Aircraft stall protection system
RU2706679C9 (ru) Система и способ компенсации порыва воздушной массы для воздушных летательных аппаратов
EP2238025B1 (en) Vertical gust suppression for transport aircraft
US10183738B2 (en) Flight control augmentation system and method for high aspect ratio aircraft including motorglider aircraft, optionally piloted vehicles (OPVs) and unpiloted air vehicles (UAVs)
WO2020062166A1 (zh) 无人机的控制方法和无人机
WO2021008624A1 (zh) 一种无人机安全保护方法、装置及无人机
EP2668095A1 (en) Dynamic limitation of monoblock flight control surfaces inclinations during stall susceptibility conditions
AU2012210185A1 (en) Dynamic limitation of monoblock flight control surfaces inclinations during stall susceptibility conditions
CN107065899B (zh) 用于保护飞行器最大升力能力的方法和装置
US20160179097A1 (en) Unmanned Aerial Vehicle and a Method for Landing the Same
CN102667654A (zh) 用于推力不对称控制的报警速度的计算及显示
JP2019182075A (ja) 飛行機の突風応答軽減システム、乱気流検知システム、動揺推定システム、ドップラーライダー及び飛行機の突風応答軽減方法
CN105235895A (zh) 带有紧急制动装置的多旋翼无人飞行器及其紧急制动方法
US10678270B2 (en) Method and device to control aircraft flying in formation
US20130311013A1 (en) Measurement Assisted Aerodynamic State Estimator
CN109240334A (zh) 一种无人飞机的避障方法
WO2021081708A1 (zh) 无人机的控制方法和无人机
CN112208747A (zh) 通过主动阵风感测增强起飞/着陆稳定性
KR101618956B1 (ko) 소형 무인 비행체의 공력성능 향상장치
US8965603B2 (en) Method and device for protecting an aircraft
CN110930639B (zh) 直升机机载风切变报警系统及方法
CN111051921A (zh) 用于基于感测到的空气移动控制飞机的系统和方法
EP3602078B1 (en) Method and system for determining an estimation of an anemometric parameter in an aircraft
CN106275464B (zh) 一种空速自动保护系统
CN114326815B (zh) 一种湿滑跑道下无人机安全起飞轨迹设计方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934812

Country of ref document: EP

Kind code of ref document: A1